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ABSTRACT

In recent years, there has been an increased interest in sharing available bandwidth

to avoid spectrum congestion. With an ever-increasing number of wireless users, it

is critical to develop signal processing based spectrum sharing algorithms to achieve

cooperative use of the allocated spectrum among multiple systems in order to reduce

interference between systems. This work studies the radar and communications sys-

tems coexistence problem using two main approaches. The first approach develops

methodologies to increase radar target tracking performance under low signal-to-

interference-plus-noise ratio (SINR) conditions due to the coexistence of strong com-

munications interference. The second approach jointly optimizes the performance of

both systems by co-designing a common transmit waveform.

When concentrating on improving radar tracking performance, a pulsed radar that

is tracking a single target coexisting with high powered communications interference

is considered. Although the Cramér-Rao lower bound (CRLB) on the covariance of

an unbiased estimator of deterministic parameters provides a bound on the estima-

tion mean squared error (MSE), there exists an SINR threshold at which estima-

tor covariance rapidly deviates from the CRLB. After demonstrating that different

radar waveforms experience different estimation SINR thresholds using the Barankin

bound (BB), a new radar waveform design method is proposed based on predicting

the waveform-dependent BB SINR threshold under low SINR operating conditions.

A novel method of predicting the SINR threshold value for maximum likelihood

estimation (MLE) is proposed. A relationship is shown to exist between the formu-

lation of the BB kernel and the probability of selecting sidelobes for the MLE. This

relationship is demonstrated as an accurate means of threshold prediction for the

radar target parameter estimation of frequency, time-delay and angle-of-arrival.

For the co-design radar and communications system problem, the use of a common

i



transmit waveform for a pulse-Doppler radar and a multiuser communications system

is proposed. The signaling scheme for each system is selected from a class of waveforms

with nonlinear phase function by optimizing the waveform parameters to minimize

interference between the two systems and interference among communications users.

Using multi-objective optimization, a trade-off in system performance is demonstrated

when selecting waveforms that minimize both system interference and tracking MSE.
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Chapter 1

INTRODUCTION

1.1 Radar and Communications System Coexistence

Radar systems and wireless communications systems have different objectives,

both for commercial and government use. However, due to spectrum congestion in

some frequency bands, there is an increased interest in having multiple systems coexist

and share available bandwidth [1, 2]. Both radar and communications systems cur-

rently occupy different regions of most of the available bandwidth below 4 GHz. For

the two systems to share the same bandwidth, it is important to develop schemes to

maximize the signal-to-interference-plus-noise-ratio (SINR) imposed on each system

from the coexistence of the other system.

Recent studies in this area considered joint estimation bounds on the performance

of radar and communications coexistence [3–6]. In [7], Guerci, et. al. presented a new

theoretical foundation for radar and communications joint design and operation; the

framework was based on advanced joint channel estimation and on an adaptive space-

time transmit and receive optimization for maximizing forward channel SINR while

minimizing co-channel interference. In [3, 5, 8, 9], the authors presented a method

for a joint radar and communications system with signaling based on orthogonal fre-

quency division multiplexing (OFDM). The idea of a joint radar and communications

systems dates back to 1978 [10] and since then, it is used as an approach for spec-

trum sharing applications [6, 9, 11–27]. Because of the high throughput of OFDM

and current wireless communications designs, the authors in [28] considered a joint

system that employed OFDM for the communications system and linear frequency-

1



Figure 1.1: An Illustration of a Practical Joint Radar and Communications Envi-
ronment.

modulated (LFM) signaling for the radar and utilizes the fractional Fourier transform

for spectrum sharing. In addition to a joint radar and communications system that

is based on OFDM, the use of LFMs was also considered in [29–31]. However, these

studies did not extend their results to a multi-user communications system, and the

model for the radar is not very practical in terms of current systems.

1.2 Radar Waveform Design for High Communications Interference

A general joint spectral environment, with coexisting radar and communications

systems, is illustrated in Figure 1.1. Until recently, the two systems are allocated

unique spectral bands, and the systems designers consider the physical constraints on

the system that are affected by the allocated band. For example, wireless communi-

cations systems design the antenna physical size since the size should be smaller as

frequency increases [32, 33]. As another example, radar systems design the carrier

modulation frequency of the high powered transmit signal since it affects the received

target return [34, 35].

Due to the increased demand on the finite amount of spectrum as well as the

physical constraints required to stay within a specific spectrum band, systems are

now faced with the problem of spectrum congestion. As a result it has become neces-

sary for different systems to consider novel signal processing methods that allow for

both systems to occupy the same frequency band [3–9, 11–20, 26–31, 36–43]. One

approach toward system coexistence is to develop methodologies to increase radar

2



target tracking performance under low SINR conditions, when the low SINR is due

to the presence of strong communications signals. From the perspective of a radar

system, the communications system can be modeled as a random process whose power

needs to be reduced at the radar receiver. This approach has been recently considered

in [3, 7, 36, 37]. When considering the communications signals as interference for the

radar system, it is important to examine performance bounds on the mean squared

error (MSE) for estimating unknown target parameters in low SINR. Information on

the bounds could lead to methods for predicting and benchmarking system perfor-

mance for a variety of practical problems such as the estimation of Doppler shifts,

time-delays, and angles of arrival.

The Cramér-Rao lower bound (CRLB) provides a lower bound on the MSE per-

formance of unbiased estimators of deterministic parameters [44]. It is a commonly

used bound for high SINR, especially since it is simple to compute assuming that the

probability density functions (pdfs) involved in the computation do not violate the as-

sumed regularity conditions [44, 45]. For example, the maximum likelihood estimator

(MLE) attains the CRLB when the SINR is high or when large data records are avail-

able. However, in many nonlinear estimation problems, the MLE can rapidly deviate

from the CRLB below a unique SINR value. The MSE region where this deviation is

observed is called the SINR threshold region and is associated with side-lobes of the

likelihood function exceeding the main-lobe with very high probabilities [33, 45–51].

Note that the CRLB only considers local main-lobe error and does not provide any

information about SINR threshold prediction. One possible method for predicting the

SINR threshold is the method of interval errors (MIE) [33, 47–50, 52, 53], however it

is algorithm/problem dependent and does not always have a simple formulation.

The Barankin bound (BB) was originally formulated in [54] in order to obtain

a tighter bound on estimator MSE performance. In [55], P. Swerling was the first
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ever to apply the BB [54] to engineering problems. The BB has been applied to

many statistical signal processing problems using approximations of the theoretical

formulation is that very difficult to implement [56–60].

The various approximations used to compute the BB [46, 56, 58, 61–63] have

improved algorithm efficiency in the number of test points required to obtain com-

putationally tractable methods for practical applications. Most approximations for

the BB ultimately end up in the form of a Euclidean norm minimization over a fi-

nite set of equality constraints for mean unbiasedness [51, 64, 65]. However, extreme

care needs to be taken in the selection of these test points [66]. The general chal-

lenge experienced amongst researchers who work with the BB for signal processing

applications is largely focused on test-point selection and the numerical challenges

associated with the bound [51, 67, 68]. Although for many signal processing related

estimation problems there exist methods for intelligent test-point selection, such as

considering peak side-lobe locations [66, 69], there does not exist a robust method for

two-dimensional measurement models such as the ambiguity function. Note, however,

that since the BB provides a tighter bound on the MSE estimation, it is promising

as a tool for SINR threshold prediction.

1.3 Co-design of Radar and Communications Signaling Schemes

Many joint radar and communications systems addressed the spectrum congestion

problem through cooperative means [6, 9, 11–27]. Another approach that can be

considered for non-cooperative radar and communications systems is the design for

both systems in order to jointly reduce the interference of the two systems with the

assumption that information can be shared between the two systems. In [29–31], the

authors proposed the use of the LFM for a single user communications system and

a pulsed radar. However, they do not consider the case of multiple communications
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users. In [3, 5, 8, 9], the authors propose the use of OFDM as a joint radar and

communications signaling scheme. However, the cyclostationary properties of OFDM

manifest into poor ambiguity function characteristics and do not inherently possess

properties that are desired for a transmit radar waveform. The OFDM signaling

scheme also suffers from high peak to average power ratio [33].

1.4 Work Contributions

Although many contributions have been made toward spectrum coexistence for

radar and communications systems, it still remains a challenging problem. To this

end, we propose two main approaches. The first approach focuses on designing radar

waveforms for low SINR conditions to improve target tracking performance. The

second approach develops a common signaling scheme for both radar and commu-

nications systems and considers a multi-objective optimization scheme to trade-off

between the performance of the two systems.

1.4.1 SINR Threshold Prediction via Kernel Effective Rank

We develop a novel approach to compute the SINR threshold value for determinis-

tic parameter estimation via the effective rank of the BB kernel. We demonstrate that

there exist a relationship between the singular value decomposition of the BB kernel

as function of SINR and the probability of side-lobe selection for the MLE. The flex-

ibility and usefulness of this approach for estimating Doppler shift, time-delay, and

angle of arrival of a target is demonstrated and compared to other common methods

for SINR threshold prediction.

A numerical method is proposed for predicting the MLE SINR threshold by uti-

lizing the inherent relationship between outlier probability and effective rank of the

BB kernel. The proposed method is useful for computing the SINR threshold rather
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than computing a tighter MSE performance bound. Using the proposed approach

there is no need for problem specific test-point selection or complicated probability

computations. It is shown that using the effective rank of the BB kernel provides a

very accurate prediction and can be considered as a tool for engineers when analyzing

system and algorithm benchmark performance.

1.4.2 Radar Waveform Design Using Barankin Bound Predicted SINR Threshold

Under low SINR conditions, the estimation accuracy of an efficient estimator

of deterministic parameters, such as the MLE suddenly decreases. In particular,

past an SINR threshold value, the estimator covariance rapidly deviates from the

CRLB. Knowing when this threshold region occurs can be very useful in selecting

transmit waveforms for optimum system performances [70, 71], as it can provide

insight into the system’s estimation accuracy. An estimate of the SINR threshold

value can be obtained using the BB [54, 72–76]. As such, the BB has been used

in various applications to estimate time-delay, Doppler frequency, and direction of

arrival [73, 77–80].

In this thesis, we propose a waveform design method for low SINR tracking scenar-

ios with an overall objective to improve target tracking performance. We achieve our

objective by adaptively selecting SINR threshold regions using the BB. Note that the

BB threshold analysis was performed in [71] for a track-before-detect tracking prob-

lem by approximating the measurement model using Gaussian point spread functions.

We obtain a tighter bound by using instead the BB approximation in [61] for the am-

biguity function resolution cell measurement model. Using a dictionary of waveforms

with nonlinear time-varying phase functions and varying parameters, we compute the

deviation of the BB from the CRLB as a function of the signal parameters. We select

the optimal signal for transmission by minimizing the bound deviation. The proposed
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waveform selection algorithm is integrated with a track-before-detect tracker for low

SINR scenarios. We demonstrate the proposed algorithm by adaptively designing the

radar waveform at every transmission in order to minimize the adverse interactions

between coexisting radar and communications systems in the S band, ranging from 2

to 4 GHz.

1.4.3 Joint Radar and Communications Waveform Co-Design

We propose the use of a common transmit LFM waveform with amplitude modu-

lation and optimized parameters in a co-design signaling scheme to be jointly used by

a ground based pulse-Doppler radar and a multi-user communications system. The

signal scheme is designed to reduce interference between the radar and communica-

tions systems as well as interference between the multiple users. We demonstrate the

feasibility of this signaling design to achieve desirable performance for both systems.

We examine the trade-offs in performance for both systems and propose the use of a

multi-objective (Pareto) optimization to select radar transmit waveforms that jointly

minimize radar MSE performance and interference between the two systems. The

proposed scheme first designs the duration of the communications users transmit sig-

nal to satisfy some desired gross bit rate and using the bandwidth allocation to both

systems. Once the duration is selected, we optimize the LFM rate parameter for each

user to minimize multiple access interference (MAI). This is achieved by selecting the

LFM parameters such that the user transmit waveforms are approximately orthogo-

nal to each other over their symbol duration, assuming that the users are temporally

synchronized.

When not all possible users occupy the given spectrum, we further optimize the

LFM rates of the current users by finding the rate combination that minimizes MAI.

As the search for the best combination becomes very computationally intensive as the
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number of users increase, we use simulated annealing to reduce the computational

cost. Once the communications signals are designed, information on the LFM rates

and duration are made available to the radar system. Using this information, the

radar transmit waveform is selected using multi-objective optimization.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we summarize the

mathematical framework needed for this work on MSE performance bounds and target

tracking under low SINR conditions. In Chapter 3, we investigate the numerical

challenges associated with computing the BB in practice and propose the use of

singular value decomposition to exploit the effective rank of the BB kernel matrix to

predict the SINR threshold. In Chapter 4, we propose a radar transmit waveform

design approach that is based on predicting the SINR threshold by optimizing the

deviation of the BB from the CRLB for multiple waveforms with varying parameters

and nonlinear phase function. In Chapter 5, we propose a co-design signaling scheme

for a pulse-Doppler radar and a multiuser communications system. The design selects

LFM waveform parameters using a multi-objective optimization that minimizes both

the radar MSE performance and the interference between the two systems.
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Chapter 2

RADAR AND COMMUNICATIONS COEXISTENCE PROBLEM

2.1 Radar and Communications Systems Spectrum Sharing

In general, different systems, such as radar and wireless communications with

entirely different goals of operation may be required to share the same allocated

spectrum. The goal of a communications system is to transmit some information

and process the noisy received signal to extract the information. As the channel

can distort the signal, causing changes such as amplitude fading or multipath delay,

the system needs to estimate the transmitted information using any prior channel

knowledge [32]. A radar system, however, has a different goal. The radar receiver

needs to process the received signal to estimate the effects of the channel in order

to extract information on the target from the reflected signal [21, 34, 81]. Despite

the difference in their goals, this work considers the problem of radar and wireless

communications systems coexisting by sharing the same bandwidth to avoid spectrum

congestion and interference [1, 2].

The coexistence of the two systems over a common bandwidth of Ba Hz is demon-

strated in Figure 2.1 both for the baseband and passband transmission with a carrier

frequency of fc Hz. Assuming a co-located receiver for both systems, the received

signal can be given by

z(t) = xr(t) + xc(t) + w(t) (2.1)

where xr(t) is due to the radar and xc(t) is due to the communications. The term

w(t) is additive white Gaussian noise (AWGN) due to electrical thermal noise with
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Figure 2.1: Baseband and Passband Illustration of a Radar System and a Commu-
nications System Sharing the Same Spectrum.

associated power [33, 34]

σ2
w = kBTeffBa

where kB = 1.3806488 × 10−23 (J/K), Teff is the effective temperature in the elec-

tronics system in Kelvin (K) units, and Ba is the available bandwidth in Hertz. The

measurement z(t) is assumed to be present at both the communications and radar

receivers.

For a single point target, the narrowband radar channel that results in the signal

xr(t) in (2.1) can be described as a linear time-invariant (LTI) system with impulse

response [34, 35, 81]

hr(t) =
√
Prδ(t− τ0)e−j2πν0t

where τ0 and ν0 are the time-delay and frequency shift caused by the reflection of the

transmitted radar signal off of the target and Pr is the radar return power [34]. Using

the time delay τ0 = 2r0/cε0 , we can obtain the range r0 of the target from the radar,

where cε0 = 3× 108 m/s is the wave velocity for electromagnetic propagation in free
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Figure 2.2: Visualization for Modeling Range and Range Rate of a Target with a
Ground Based Radar.

space (the speed of light) [33, 34, 81]. The frequency shift ν0 = 2fcṙ0/cε0 occurs by

nature of the Doppler effect from the motion of the target and it can be utilized to

obtain the range rate ṙ0 of the target.

As demonstrated in Figure 2.2, we assume that a target is located at the three-

dimensional (3-D) Cartesian coordinate (x0, y0, z0) and the location is given by the

vector x0 = [x0 y0 z0]T ∈ R3. We also assume that the target moves at a velocity

ẋ0 = [ẋ0 ẏ0 ż0]T ∈ R3 where (ẋ0, ẏ0, ż0) is the three dimensional Cartesian coordinate

of the target velocity. A stationary ground based radar, located at xr = [xr yr zr]
T ∈

R3 is used to observe the radar return and to estimate the target’s range and range

rate which are given by

r0 = ||xr − x0||2 (2.2)

ṙ0 =
ẋT0 (xr − x0)

||xr − x0||2
.

Here xT denotes vector transpose of the vector x and ||x0||22 = xT0 x0 = x2
0 + y2

0 + z2
0

is the Euclidean norm.

The radar return power is given by the radar equation for the monostatic case

as [34, 35]

Pr =
PrtG

2
radλ

2σRCS

64π3r4
0
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where Prt is the radar transmit power in Watts, Grad is the radar antenna gain,

λ = cε0/fc is the wavelength of the radar signal, r0 is the range from the target to

the radar from (2.2), and σRCS is the radar cross section (RCS).

Assuming a frequency selective channel, the communications received signal xc(t)

in (2.1) can be represented as the output of an LTI system with impulse response [32,

33]

hc(t) =
√
Pc

Lp−1∑

l=0

αlδ(t− τl).

Here, we assume Lp multipath components τl with corresponding fading coefficients

αl and Pc represents the communications received signal power given by [32, 33]

Pc =
PctGctGcrλ

2

16π2r2
c

where Pct is the transmitter power, Gct and Gcr are the transmitter and receiver an-

tenna gains, and rc is the range from the communications transmitter to the receiver.

2.2 Estimation Bounds of Unknown Deterministic Parameters

2.2.1 Estimation Mean Squared Error and Maximum Likelihood

A deterministic parameter estimation problem involves the estimation of the np-

dimensional unknown parameter vector θ(0) = [θ
(0)
1 . . . θ

(0)
np ]T ∈ Θ where Θ ⊆ Rnp is

the parameter space and we are given an Ns-dimensional noisy discrete-time obser-

vation written as the vector z = [z[1] . . . z[Ns]]
T ∈ Z, where Z is the observation

space [44]. The observation vector can consist of a signal in AWGN that depends on

the parameters

z = s(θ(0)) + w (2.3)

where s(θ(0)) = [s[1;θ(0)] ... s[Ns;θ
(0)]]T and w = [w[1] ... w[Ns]]

T is a random

noise vector that is often assumed to have a normal probability density function [44].
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Θ θ(0)

zd ∼ p(z;θ(0))
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Z

θ̂(zd)

e
[
θ̂(zd)

]

Figure 2.3: Conceptual View of Random Measurements Being Mapped into Obser-
vation Space Z and an Estimator Mapping an Estimate of the True Parameter θ(0)

Back into a Point in the Parameter Space Θ. The Error is the Deviation that the
Estimate Has From the True Parameter.

Regardless of the complexity of the observation, we want to estimate the unknown

parameters as close to their true values as possible using an optimal and efficient

approach. The estimated parameter θ̂(z) depends on the observation vector z.

Conceptually shown in Figure 2.3 we can see that a draw zd from the likelihood

function p(z;θ(0)) that characterizes the statistics of the measurement takes us from

the parameter space into the observation space. An estimator, θ̂(zd) utilizing this

measurement takes us back to observation space, usually to a different location but

hopefully close to the true parameter θ(0). The deviation between the estimate and

the true parameter is the error e[θ̂(zd)] which is a function of the estimator. It is

particularly useful to have as small of an error as possible and as such we typically

have ways to analyze the error of an estimator so that we can judiciously choose the

best one for a given problem. We will be discussing these methods of analysis in the

following sections in this chapter.

The mean squared error (MSE) of a parameter estimation can be defined as

MSEθ0(θ̂(z)) = Ez;θ(0)

{
||e[θ̂(z)]||22

}

=

∫

Rnz
eT [θ̂(z)]e[θ̂(z)]p(z;θ(0))dz. (2.4)

where e[θ̂(z)] = θ̂(z)− θ(0) and p(z;θ(0)) is the likelihood function [44].
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θ̂(z)
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[θ]2
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Figure 2.4: Geometric Interpretation of a 2-D Parameter Vector θ = [θ1 θ2]T In

Terms of its Estimate θ̂(z), True Value and Error.

The estimator, the true parameter vector, and the error have the geometric inter-

pretation shown in Figure 2.4 for when θ ∈ R2.

The bias of an estimator is defined as [44]

bθ̂(z) = Ez;θ

{
θ̂(z)

}
− θ, ∀θ ∈ Θ

where Ez;θ {·} denotes statistical expectation with respect to the likelihood function

p(z;θ) [44, 82].

Mean unbiasedness relates the covariance Σθ̂(z) of an estimator with its MSE as

tr
{

MSEθ0(θ̂(z))
}

= tr
{

Σθ̂(z)

}
+ ||bθ̂(z)||22 (2.5)

where if an estimator is unbiased, then its covariance is equal to the MSE. The

notation tr {M} is the trace of the matrix M which is the sum of the diagonal elements

of M. The covariance matrix is computed as

Σθ̂(z) =

∫

Rnz

(
θ̂(z)− Ez;θ

{
θ̂(z)

})(
θ̂(z)− Ez;θ

{
θ̂(z)

})T
p(z;θ)dz (2.6)

From the covariance (2.6) and the relationship in (2.5), an unbiased estimator satisfies

Ez;θ

{
θ̂(z)

}
= θ, ∀θ ∈ Θ.

For the case of minimum MSE estimation, mean unbiasedness of an estimator

is one possible constraint that can be introduced to avoid trivial estimators that
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wholly make no sense, viz. consider the estimator θ̂(z) = θ(0) that would result

from unconstrained MMSE optimization. In general, mean unbiasedness is part of a

general family of expressions of biasedness, known as Lehmann bias [82] which defines

bias in terms of the classical cost functions such as hit-or-miss error, absolute error,

squared error, and periodic error.

In many applications, the observation vector in (2.3) can be given as a linear

model. Specifically,

z = Sθ(0) + w (2.7)

where S ∈ Rnz×np is a known deterministic, full rank channel matrix and w can be

assumed to be Gaussian with zero mean vector and covariance matrix Σ = σwINs that

we can write as w ∼ N (0nz , σ
2
wInz). Here, we can compute the likelihood function

p(z;θ) ∝ exp

[
− 1

2σ2
w

||z− Sθ||22
]
.

Under the assumption of a high signal-to-interference-plus-noise ratio (SINR) or

large data records, the maximum likelihood estimate (MLE) can used to provide

efficient estimates of the parameters of interest. The MLE can be computed by

maximizing the gradient of the likelihood, or equivalently the log-likelihood function.

Performing this calculation for the linear model, we obtain

θ̂ML(z) =
(
STS

)−1
STz. (2.8)

The MLE can be shown to be unbiased since

Ez;θ

{(
STS

)−1
STz

}
= θ, ∀θ ∈ Θ

The MSE can be found to be

MSEθ0(θ̂(z)) = σ2
w

(
STS

)−1
. (2.9)

In this case, the MSE is equivalent to the covariance of the MLE since it is an unbiased

estimator.
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2.2.2 Estimator Mean Squared Error Bounds

An estimator’s performance lower bound is a mathematical inequality that can be

derived to provide a limit on the performance in terms of estimator MSE. For a given

estimator, the bound can then be used to evaluate the estimator’s performance; if the

bound is not met then the estimator’s MSE is worse than the bound.

For MSE bound analysis, we consider the observation space Z and the parameter

space Rnp to define the Hilbert space Hz;θ. For scalar parameters, this Hilbert space

is a vector space with inner product [45, 67, 83, 84]

〈
g, h
〉
Hz;θ

=

∫

Z
g(z)h(z)p(z; θ)dz

where g(z) and f(z) are scalar functions of the observation vector z in Hz;θ, and

induced norm given by

||g||2Hz;θ
= 〈g, g〉Hz;θ

= Ez;θ

{
g2
}
.

Note that for np ≥ 1, the general Hilbert space Hz;θ × · · · × Hz;θ is the product of

np Hilbert spaces. Using this norm definition, the MSE for estimating the scalar

deterministic parameter θ(0) is given by

MSEθ0(θ̂(z)) =
∣∣∣∣θ̂(z)− θ(0)

∣∣∣∣2
H

z;θ(0)
.

which is sometimes referred to as the second-order absolute central moment (SACM)

at θ(0) [54]. In this sense, by stating that the estimator error e[θ̂(z)] ∈ Hz;θ means

that

∣∣∣∣e[θ̂(z)]
∣∣∣∣2
Hz;θ

<∞

and hence this Hilbert space only concerns ourselves with estimators that are con-

vergent in the MSE sense or all functions of the measurements having finite SACMs
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with respect to the true likelihood function. We can also state that θ̂(z) ∈ Hz;θ0

since finite affine translations of an estimator do not influence its convergence in the

Hilbert space [45, 67, 83, 84].

If H(K) is another Hilbert space, that is a proper Hilbert subspace of Hz;θ, then

the projection of the error vector onto H(K) provides a geometric interpretation of

an estimator’s performance bound [45, 67, 83, 85, 86]. The norm of this projection

provides a lower bound on the MSE for an estimator, as geometrically interpreted in

Figure 2.5. Specifically, for some vector v(z) ∈ H(K), the lower bound on the MSE

lower bound on the MSE is given by [45, 67, 83, 84]

MSEθ0(θ̂(z)) �
∣∣∣∣projv(z)e[θ̂(z)]

∣∣∣∣2
H

z;θ(0)
×···×H

z;θ(0)
(2.10)

where projv(z)e[θ̂(z)] denotes the projection of the error vector for some v(z). It

should be noted that by changing v(z) that different bounds on the MSE can be

computed. In particular, any such bound can be represented in terms of the norm of

the projection in a linear transformed subspace for all vectors v(z). Typically these

linear transformations are of the form of derivatives and/or sampling operators and

can be expressed as integral operators. This type of analysis was first introduced by

Emanuel Parzen in [85], was then further elucidated by Duttweiler et. al. in the series

of articles published under similar titles to [87] and most recently revitalized by the

couple of papers produced by Todros and Tabrikian in [45, 67, 83, 84].

The notation A � B in (2.10) is the Loewner partial ordering of matrices A,B ∈

Snp++ such that A−B is a symmetric positive semidefinite matrix. This ordering states

that the size of the eigenstructure (spectral radius) of the estimator’s MSE matrix is

either larger than or equal to the squared norm matrix.

The Hilbert spaceH(K) is a reproducing Kernel Hilbert space (RKHS) [45, 67, 83–
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Figure 2.5: Geometric View for Estimator MSE Performance Bounds. A Bound
on the MSE Can be Expressed as the Norm of a Projection from Hz;θ onto Vectors
v(z) ∈ H(K).

85]. Specifically, if we define the likelihood function ratio (LFR) [54]

πθ =
p(z;θ)

p(z;θ(0))
∈ H(K)

then we can define the unique reproducing kernel as

K(θ,θ′) = Ez;θ(0) {πθπθ′} (2.11)

= 〈πθ, πθ′〉Hz;θ0
(2.12)

that is symmetric and non-negative [85]. An RKHS is a unique Hilbert space with

unique reproducing kernel provided that the following two properties hold [85–87]

K(θ,θ′) ∈ H(K), ∀θ′ ∈ Θ (2.13)

〈α(θ′), K(θ,θ′)〉H(K) = α(θ), ∀θ ∈ Θ, ∀α(θ) ∈ H(K) (2.14)

where the second line is known as the reproducing property.

In order to demonstrate that a projection provides a lower bound on the MSE for

an unbiased estimator or equivalently, to demonstrate the inequality [45, 67, 83–85]

||e[θ̂(z)]||2Hz;θ
≥
∣∣∣∣projv(z)e[θ̂(z)]

∣∣∣∣2
Hz;θ

(2.15)
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we first use the LFR πθ to represent the definition of unbiasedness in terms of the

true likelihood function as
∫

Z
θ̂(z)πθp(z;θ(0))dz = θ, θ ∈ Θ. (2.16)

Using (2.16) and the linearity property of integration, it can be shown that
∫

Z

(
θ̂(z)− θ(0)

)
πθp(z;θ(0))dz = θ − θ(0)

for θ ∈ Θ. If the vector v(z) in the RKHS is defined as the linear combination

v(z) =

∫

Θ

α(θ)πθdθ ∈ H(K) (2.17)

for some coefficients α(θ), then v(z) can be used in the derivation of general bounds

for unbiased deterministic parameter estimators at the true parameter θ(0). We also

note that the projection of the error onto the RKHS H(K) is estimator independent.

This is demonstrated by applying the Hilbert projection theorem [45, 67, 83–86] which

says that there exists a unique v(z) ∈ H(K) such that

projv(z)e[θ̂(z)] = arg min
v(z)∈H(K)

{∣∣∣∣e[θ̂(z)]− v(z)
∣∣∣∣2
Hz;θ

}

by expanding the norm, the equivalent objective function to be minimized can be

given as

projv(z)e[θ̂(z)] = arg min
v(z)∈H(K)

{
||v(z)||2Hz;θ

− 2〈θ̂(z)− θ(0),v(z)〉Hz;θ

}

Using (2.16) for the second term we obtain from the linearity of integration

〈θ̂(z)− θ(0),v(z)〉Hz;θ
=

∫

Θ

α(θ)
(
θ − θ(0)

)
dθ

demonstrating that the projection does not depend on the estimator θ̂(z). Note from

Figure 2.5 and using the Pythagorean theorem, it can be shown that

||e[θ̂(z)]||2Hz;θ
= ||εp||2Hz;θ

+
∣∣∣∣projv(z)e[θ̂(z)]

∣∣∣∣2
Hz;θ

which leads to Equation (2.15), εp ⊥ H(K) is the vector representing the projection

error and 0 ≤ ||εp||Hz;θ
<∞ since ||e[θ̂(z)]||2Hz;θ

<∞.
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2.2.3 The Cramér-Rao Lower Bound

The most noteworthy and fundamental bound in estimation theory is the Cramér-

Rao Lower Bound (CRLB) [44]. The CRLB provides a lower bound on the MSE of

an unbiased estimator. Mathematically, we can write the relationship

MSEθ̂(z) � CRLB (2.18)

and equivalently tr
{

MSEθ̂(z)

}
≥ tr {CRLB}.

An estimator whose MSE achieves the CRLB is said to be efficient [44]. In prac-

tice, high SINR and/or very large data records will allow for approximate equality

between the CRLB and the estimator MSE in (2.18); in such cases the estimator is

asymptotically efficient [44].

The CRLB can be derived by using the projection based approach as follows. We

assume that np = 1 and we consider the simple vector from Equation (2.17) in the

RKHS H(K)

v1(z) = πθ(0) − πθ(1)

= 1− πθ(1)

where θ(1) ∈ Θ and the coefficients are α0 = 1 and α1 = −1. Using Equation (2.15) we

know that the squared norm of the projection of the error vector e[θ̂(z)] = θ̂(z)− θ(0)

onto v1(z) provides a bound. Thus, we have a bound that we will denote for now as

C that is given by

C =
∣∣∣∣projv1(z)θ̂(z)− θ(0)

∣∣∣∣2
H(K)

(2.19)

=
∣∣〈θ̂(z)− θ(0), v1(z)〉Hz;θ0

∣∣2 (2.20)

=

∣∣∣∣
∫

Z

(
θ̂(z)− θ(0)

)
v1(z)p(z; θ(0))dz

∣∣∣∣
2

. (2.21)
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Using the Cauchy-Schwartz inequality the bound in (2.19) can be shown to sat-

isfy [88]

∣∣∣∣
∫

Z

(
θ̂(z)− θ(0)

)
v1(z)p(z; θ(0))dz

∣∣∣∣
2

≤ (2.22)

∫

Z

(
θ̂(z)− θ(0)

)2

p(z; θ(0))dz

∫

Z
v2

1(z)p(z; θ(0))dz (2.23)

and v1(z)p(z; θ(0)) = 1 − p(z; θ(1)). The LFR combined with the unbiased definition

in Equation (2.16) can be used to obtain

∫

Z
(θ̂(z)− θ(0)) (πθ(0) − πθ(1)) p(z; θ(0))dz = θ(1) − θ(0)

which, when substituted into the left-hand side (LHS) in the inequality of (2.22)

results in

(
θ(1) − θ(0)

)2 ≤
∫

Z

(
θ̂(z)− θ(0)

)2

p(z; θ(0))dz

∫

Z
v2

1(z)p(z; θ(0))dz.

By rearranging terms we obtain in the previous inequality,

∫

Z

(
θ̂(z)− θ(0)

)2

p(z; θ(0))dz ≥
(
θ(1) − θ(0)

)2

∫
Z v

2
1(z)p(z; θ(0))dz

. (2.24)

As can be seen, the LHS of the inequality is the MSE at θ(0) of an estimator θ̂(z).

If we let θ(1) = θ(0) + ε for some small real-valued ε > 0, then as ε → 0, the

right-hand side (RHS) of Equation (2.24) results in

MSEθ̂(z) ≥ lim
ε→0

ε2

∫
Z

(
p(z;θ(0)+ε)−p(z;θ(0))

p(z;θ(0))

)2

p(z; θ(0))dz
. (2.25)

The term in the denominator in the RHS of (2.25) can be expressed as

∫

Z

(
1

p(z; θ(0))
lim
ε→0

p(z; θ(0) + ε)− p(z; θ(0))

ε

)2

p(z; θ(0))dz
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which, using the definition of the derivative, corresponds to

J =

∫

Z

(
1

p(z; θ(0))

∂p(z; θ(0))

∂θ

)2

p(z; θ(0))dz. (2.26)

Using the properties of the chain rule for natural logarithm functions, we can write

p−1(z; θ(0))∂p(z; θ(0))/∂θ = ∂ ln p(z; θ(0))/∂θ. We also note that if we just take a

general θ(1) ∈ Θ and do not take a limit in Equation (2.25) we obtain what is known

as the Hammersley-Chapman-Robbins bound (HChRB) [56, 89].

The inverse of the term in Equation (2.26) provides the CRLB for scalar parameter

estimation. Specifically, the CRLB is given by

CRLB , J−1 (2.27)

=
1

Ez;θ(0)

{(
∂ ln p(z;θ(0))

∂θ

)2
} (2.28)

=
1∣∣∣∣∂ ln p(z;θ(0))

∂θ

∣∣∣∣2
Hz;θ

. (2.29)

Note that J in (2.26), which is the inverse of the CRLB, is the Fisher information

(FI) [44]. It is a function that represents the amount of information provided by the

measurement z about the unknown parameter θ. The CRLB can be generalized for

estimating the np > 1 dimensional vector parameter [44]

CRLB = J−1 ∈ Snp++

where J is the Fisher information matrix (FIM) defined as

J , Ez;θ

{
∂ ln p(z;θ)

∂θ

∂ ln p(z;θ)

∂θ

T ∣∣∣∣
θ=θ(0)

}
(2.30)

and Snp++ defines the set of all np-dimensional matrices that are symmetric positive

definite.
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The CRLB can be shown to exist under certain regularity conditions of the likeli-

hood function. The conditions are [44]: (1) the derivative of the log-likelihood func-

tion exists and is finite; and (2) the derivative operation on θ can be interchanged

with the integration on z. The CRLB can be viewed as a measure of the likeli-

hood function’s curvature [33, 44]. This is demonstrated using the 1-D measurement

z = s0θ +w, where θ is an unknown parameter, s0 = 1, and w is a Gaussian random

variable with zero mean and variance σ2
w. In this case, the likelihood function and

corresponding log-likelihood function are given, respectively, by

p(z; θ) =
1√

2πσ2
w

exp

[
− 1

2σ2
w

(z − s0θ)
2

]

ln p(z; θ) = − ln
√

2πσ2
w −

(z − s0θ)
2

2σ2
w

. (2.31)

Following (2.27) to compute the CRLB, the first derivative of the log-likelihood func-

tion with respect to θ results in

∂ ln p(z; θ)

∂θ
=
h0

σ2
w

z − s2
0θ

σ2
w

.

Computing another derivative with respect to θ and inverting the result yields CRLB =

σ2
w/s

2
0. The effect on the CRLB for a fixed s0 = 1 and different variances for this

simple example is shown in Figure 2.6. Here the true parameter value is θ(0) = 2.

This figure demonstrates that when the variance of the noise, and thus the CRLB,

are low, the likelihood function has a sharper peak.

If we compute the MLE of θ using Equation (2.31), we obtain

θ̂MLE(z) =
z

s0

.

The variance of the MLE is plotted in Figure 2.7 using 100 Monte Carlo simulations.

As the figure shows, the estimator variance performance increases and the asymp-

totic variance as the number of simulations increases, averaged over all simulations is

approximately equal to the CRLB.
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Figure 2.6: Noise Variance Effect on CRLB for Fixed s0 = 1 and θ(0) = 2. (left)
Likelihood Function p(z; θ) for Different Noise Variance Values; (right) CRLB for the
Corresponding Cases.
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Figure 2.7: Measurement Noise Variance Effect on MLE Estimates with CRLB for
Fixed s0 = 1 and θ(0) = 2 for the Different Noise Variance Cases for 100 Trials of the
Measurement.

2.2.4 The Barankin Bound

As discussed in the previous section, the CRLB only provides estimator MSE per-

formance information at high SINR and/or large data record lengths. For low SINR

and/or small data records, we consider large error bounds as they provide tighter

bounds when system operating conditions become poor. For the case of unknown de-

terministic parameter estimation, the large error bound is the Barankin bound (BB).
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It is the tightest estimation bound that can be obtained for an unbiased estimator.

We sometimes refer to the CRLB as a small error bound because of the fact

that the CRLB only provides estimator MSE performance information at high SINR

and/or large data record lengths. However, it is possible to consider the derivation

of estimator performance bounds for the low SINR and/or small data record lengths.

These bounds are referred to as large error bounds in the literature as they provide

tighter bounds when operating conditions become poor in the system. For the case of

unknown deterministic parameter estimation, the BB is the tightest bound one can

compute for an unbiased estimator that is best at estimating θ(0).

The BB is useful as it provides an attempt to characterize the SINR threshold

because the large error bounds will actually provide an obvious CRLB departure. In

this way, the BB is a useful low SINR tool for assessing how well a particular system

will function when conditions become poor.

Computation of the Barankin Bound

We consider an estimator θ̂B(z) that satisfies two criteria. The first criterion is that

the estimator is unbiased and thus satisfies

∫

Z
θ̂B(z)p(z; θ)dz = θ, ∀θ ∈ Θ.

The second criterion is that the estimator is minimum SACM compared to all unbiased

estimators at θ(0) and

∣∣∣∣θ̂B(z)− θ(0)
∣∣∣∣2
H

z;θ(0)
≤
∣∣∣∣φ(z)− θ(0)

∣∣∣∣2
H

z;θ(0)
, ∀φ ∈ U (2.32)

where U defines the manifold of Hz;θ(0) of unbiasedness estimators as

U =

{
φ(z) ∈ Hz;θ(0) :

∫

Z
φ(z)p(z; θ)dz = θ, ∀θ ∈ Θ

}
. (2.33)
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This is the problem that was of interest by Edward W. Barankin in his seminal

paper [54].

The above two criteria describe the locally best unbiased estimator at θ(0). Note

that the term locally is used in this context to emphasize that the parameter is

assumed to be deterministic.

Returning to the original problem for local estimation, we can say that the es-

timator θ̂B(z) satisfying both (2.32) and (2.33) is then said to be the locally best

unbiased estimator, the quantity

B =
∣∣∣∣θ̂B(z)− θ(0)

∣∣∣∣2
H

z;θ(0)
(2.34)

is essentially providing a lower bound for the MSE of all unbiased estimators. This

is because, by construction no other estimator can have better MSE than θ̂B(z). In

Section 2.2.2, we noted that all bounds on the MSE are projections onto a RKHS.

Thus, the bound B can be given as

∣∣∣∣θ̂B(z)− θ(0)
∣∣∣∣2
H

z;θ(0)
=
∣∣∣∣projv(z)

(
θ̂(z)− θ(0)

) ∣∣∣∣2
H

z;θ(0)

where v(z) ∈ H(K) and θ̂(z) is any estimator satisfying U . If we let

v(z) =

∫

Θ

α(θ)πθdθ

and project any estimator satisfying U onto this vector, we obtain the following

projv(z)

(
θ̂(z)− θ(0)

)
=
〈θ̂(z)− θ(0), v(z)〉H

z;θ(0)
v(z)

||v(z)||2H
z;θ(0)

.

Hence,

∣∣∣∣projv(z)

(
θ̂(z)− θ(0)

) ∣∣∣∣2
H

z;θ(0)

=
∣∣〈θ̂(z)− θ(0), v(z)〉H

z;θ(0)

∣∣2

=

∣∣∣∣
∫

Z

(
θ̂(z)− θ(0)

)(∫

Θ

α(θ)πθdθ

)
p(z; θ(0))dz

∣∣∣∣
2

.
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Once again, using the Cauchy-Schwartz inequality, we obtain

∣∣∣∣
∫

Z

(
θ̂(z)− θ(0)

)∫

Θ

α(θ)πθ(0)(θ)dθp(z; θ(0))dz

∣∣∣∣
2

≤ (2.35)

∫

Z

(
θ̂(z)− θ(0)

)2

p(z; θ(0))dz

∫

Z

(∫

Θ

α(θ)πθdθ

)2

p(z; θ(0))dz.

Similar to the steps used to derive the CRLB in Section 2.2.3, we apply the unbiased

definition to the LHS of (2.35) to obtain

∣∣∣∣
∫

Z

(
θ̂(z)− θ(0)

)∫

Θ

α(θ)πθdθp(z; θ(0))dz

∣∣∣∣
2

=

[∫

Θ

α(θ)
(
θ − θ(0)

)
dθ

]2

.

Rearranging the terms, we can obtain the inequality

∫

Z

(
θ̂(z)− θ(0)

)2

p(z; θ(0))dz ≥
[∫

Θ
α(θ)

(
θ − θ(0)

)
dθ
]2

∫
Z

(∫
Θ
α(θ)πθdθ

)2
p(z; θ(0))dz

From this inequality, a lower bound for all unbiased estimators of the true parameter

θ(0) is given by

B , sup
α(θ)6=0

[∫
Θ
α(θ)

(
θ − θ(0)

)
dθ
]2

∣∣∣∣ ∫
Θ
α(θ)πθdθ

∣∣∣∣2 =
∣∣∣∣θ̂B(z)− θ(0)

∣∣∣∣2
H

z;θ(0)
(2.36)

where the least upper bound is taken so that the LHS of the inequality is as tight

as possible and that it equals the SACM of θ̂B(z) at θ(0). Equivalently, this is the

minimum possible MSE for all unbiased estimators of θ(0).

One might note here that the optimization is looking for an optimal solution

vector v∗(z) that maximizes the projection [84] further facilitating it’s fundamental

relationship with the RKHS integral equation and projection theorem interpretation

from above [85]. This occurs when the orthogonality principle for estimation theory

holds or equivalently the projection that makes the projection error vector orthogonal

to H(K). This is also a corollary of the Hilbert projection theorem and it occurs when

the norm in the denominator is minimum. This is therefore a minimum norm problem.
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If the measure for the integral in Equation (2.36) of the vector is the counting

measure and equality is obtained almost everywhere, then the resulting bound is that

obtained by Edward W. Barankin [54] and is given by

BB , lim sup
L→∞
α1,...,αL
θ(1),...,θ(L)

(∑L
l=1 αl(θ

(l) − θ(0))
)2

Ez;θ(0)

{(∑L
l=1 αlπ

(l)
θ

)2
} (2.37)

Here, θ(l), 1, . . . , L is the lth test-point used for computing the BB. The optimization

problem in this form becomes a convex quadratic program (QP) with a theoretically

infinite number of linear equality constraints.

Both the CRLB and the BB can be expressed in terms of the reproducing kernel

function K(θ, θ′) in (2.11). In particular, if the error is projected onto some vector

ṽ(z) =
∫

Θ
α̃(θ)πθdθ then the bound in (2.37) can be written as

B = ||ṽ(z)||2Hz;θ0

where

||ṽ(z)||2Hz;θ0
=

∫

Z

∫

Θ

α̃(θ)πθdθ

∫

Θ

α̃(θ′)πθ′dθp(z; θ(0))dz (2.38)

=

∫

Θ

∫

Θ

α̃(θ)α̃(θ′)

∫

Z
πθπθ′p(z; θ(0))dzdθdθ′ (2.39)

=

∫

Θ

∫

Θ

α̃(θ)α̃(θ′)K(θ, θ′)dθdθ′. (2.40)

This norm represents a bound and can be simplified to the CRLB by expressing an

integral transform of πθ [45, 67, 83] and rewriting the norm of linear combinations of

this integral transform in the subspace that πθ has been mapped into. Using Equation

(2.38), the BB can be shown to be in a quadratic form in the kernel. Specifically,

using the Hilbert projection theorem, the optimal projection is one in which the error
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vector εp ⊥ H(K) so that [67, 83]

〈ṽ(z)− e[θ̂(z)], v(z)〉Hz;θ0
= 0, ∀v(z) ∈ H(K), or (2.41)

〈ṽ(z), v(z)〉Hz;θ0
= 〈e[θ̂(z)], v(z)〉Hz;θ0

(2.42)

〈ṽ(z), v(z)〉Hz;θ0
=

∫

Θ

α(θ)(θ − θ(0))dθ (2.43)

∫

Θ

∫

Θ

α̃(θ′)α(θ)

∫

Z
πθπθ′p(z; θ(0))dzdθdθ′ =

∫

Θ

α(θ)(θ − θ(0))dθ (2.44)

∫

Θ

α(θ)

∫

Θ

α̃(θ′)K(θ, θ′)dθ′dθ =

∫

Θ

α(θ)(θ − θ(0))dθ, ∀θ ∈ Θ. (2.45)

We note that the only way equality can occur in the last line in Equation (2.41) is if

∫

Θ

α̃(θ′)K(θ, θ′)dθ′ = θ − θ(0), ∀θ ∈ Θ.

In this way the coefficients α̃(θ′) can be viewed as the coefficients that expand h(θ) =

θ − θ(0) into the set of functionals ΦK = span {K(θ, θ′)}θ′∈Θ. We also note that the

integral equation described above can be recognized to be in the form of Fredholm

integral equation of the first kind [87]. The BB formulation in this way this further

elucidates the fact that

BB = ||θ − θ(0)||2H(K)

as an equivalent interpretation of the BB, as noted by both Parzen and later by

Albuquerque in [85, 86] and also further solidifies the RKHS concept. We can also

state that the estimator that achieves this MSE is then [51]

θ̂B(z) =

∫

Θ

α̃(θ)πθdθ.

It is now the case that the BB is easily seen to be a quadratic form in the kernel

K(θ, θ′). This will match later analysis in the approximations introduced in the

following section.
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The kernel representation of the BB for the general case of np ≥ 1 parameters is

the quadratic form [45, 67, 83, 84]

BB ,
∫

Θ

∫

Θ

α(θ)αT (θ′)K(θ,θ′)dθ′dθ

where α : Θ→ Rnp is the coefficients that solve the linear equations

∫

Θ

α(θ′)K(θ,θ′)dθ′ = θ − θ(0), ∀θ ∈ Θ.

or in other words, the coefficients that assert the reproducing property for the Kernel

K(θ,θ′) [85, 86]. The minimum norm solution to these linear equations yields the

tightest bound on the MSE. The problem here is that both the Barankin optimiza-

tion problem and the Fredholm integral equation are difficult to solve in a closed

form and in some cases impossible. As a result, the BB usually is computed using

approximations for non-trivial problems.

Barankin Bound Approximation

The BB has been applied to many statistical signal processing problems in the form

of an approximation rather than working with the theoretical expressions derived in

the previous section [56–60]. In [55], P. Swerling was the first ever to apply the

Barankin works [54] to engineering problems.

The BB approximations to solve for the BB that have appeared in the liter-

ature [56, 58, 61–63] and have largely acted as improvements in the sense of the

efficiency of the number of test points L that are required resulting in computation-

ally tractable methods to compute the BB for practical problem analysis without the

need for an infinite number of test points. Most approximations for the BB are in

the form of a Euclidean norm minimization over a set of L equality constraints for

unbiasedness [51, 64, 65]. Here the norm is the MSE defined in the same way as in the

previous sections. The minimum MSE is then considered to approximate the MSE of
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the minimum MSE locally best estimator and the argument of the minimum is then

θ̂B(z).

Thus we can obtain the minimum MSE subject to L + 1 test-point unbiasedness

constraints as

minimize ||θ̂(z)− θ(0)||2Hz;θ0
(2.46)

subject to 〈θ̂(z)− θ(0), πθl〉Hz;θ0
= θ(l) − θ(0), l = 0, 1, ..., L. (2.47)

The solution to (2.46) can be obtained using the equality constrained minimum norm

lemma given by [51]

minimize ||x||2

subject to Gx = h.

This lemma can be solved by Lagrange multipliers [51] to obtain the solution ||x∗||2 =

hTK−1h with K = GGT . Thus, the optimal solution lies in the space which is

orthogonal to the null space of G, x∗ ⊥ Null(G).

Applying the lemma to (2.46) the solution to the optimization problem is given

by

||θ̂(z)− θ(0)||2Hz;θ0
= hTMSK

−1
MShMS

where

hMS = [θ(0) − θ(0)...θ(L) − θ(0)]T ,

[K−1
MS]l,l′ = K(θ(l), θ(l′))− 1, for l, l′ ∈ {0, 1, ..., L} .

This solution, which is commonly used [56, 58, 59, 61, 63, 88] is known as the

McCaulay-Seidman (MS) approximation of the BB. For np > 1, the MS approxi-

mation has the quadratic form

BBMS , HT
MSK

−1
MSHMS
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where HMS = [θ(0)−θ(0) . . . θ(L)−θ(0)]T and the l, l′th element of the inverse of the

matrix KMS is given by [K−1
MS]l,l′ = K(θ(l),θ(l′))−1, l, l′ = 0, 1, . . . , L. This results in a

matrix BBMS ∈ Snp++. Note that the quadratic form given by the equality constrained

minimum norm solution yields the same solution as discretizing the integral equation

(IE) form of the BB discussed in the previous section.

A new BB approximation was proposed in [51], that provides a tighter approx-

imation in terms of predicting the SINR threshold region of the MLE MSE when

compared to the commonly used MS approximation [56, 61]. This is referred to as

the Quinlan-Chaumette-Larzabal (QCL) approximation [45]. The parameter space

in the QCL approximation is divided into finite sub-intervals for which the likelihood

function is assumed to satisfy the CRLB regularity conditions allowing for a first

order Taylor series expansion to be applied in each sub-interval. For simplicity, the

authors in [51] take a first order Taylor expansion at θ(l) of the likelihood function

p(z; θ) to obtain

p(z; θ) ≈ p(z; θ(l)) +
∂p(z; θ(l))

∂θ
.

This means that condition of unbiasedness of the estimator θ̂(z) at θ(l) can be ap-

proximately expressed locally as

∫

Z
θ̂(z)

(
p(z; θ(l)) +

∂p(z; θ(l))

∂θ

)
dz = θ(l) + 1, ∀θ(l) ∈ Θ.

This equation can be further expanded into a meaningful integral inHz;θ(0) by carefully

rewriting the LHS of the above equation as

∫

Z
θ̂(z)

(
p(z; θ(l))

p(z; θ(0))

)
p(z; θ(0))dz +

∫

Z
θ̂(z)

(
1

p(z; θ(0))

∂p(z; θ(l))

∂θ

)
p(z; θ(0))dz.

In compact form using the LFR, this can be rewritten as

〈θ̂(z), πθl〉Hz;θ0
+

〈
θ̂(z),

∂πθ(0)(θ
(l))

∂θ(l)

〉

Hz;θ0

. (2.48)
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Note that the first term in (2.48) is the equality constraint for the MS minimum

norm problem that defines unbiasedness in the Barankin sense, as the second term is

essentially defining unbiasedness of the score function for the likelihood [85].

The QCL approximation uses the second term in (2.48) as an additional optimiza-

tion constraint. The optimization problem is then stated as the following minimum

norm formulation

minimize ||θ̂(z)− θ(0)||2Hz;θ0

subject to 〈θ̂(z)− θ(0), πθ(l))〉Hz;θ0
= θ(l) − θ(0), l = 0, 1, ..., L.

〈
θ̂(z)− θ(0),

∂πθ(l)

∂θ(l)

〉

Hz;θ0

=
∂
(
θ(l) − θ(0)

)

∂θ(l)
, l = 0, 1, ..., L

where we note that the additional constraint has added a sense of unbiasedness to

the score function or informant of the likelihood. Also note that for the estimation

problem of particular interest here, the term ∂
(
θ(l) − θ(0)

)
/∂θ(l) = 1, ∀l = 0, 1, . . . , L

since we are assuming estimation of the parameters directly and not a function of the

parameters.

This results in the minimum norm solution of the form

||θ̂(z)− θ(0)||2Hz;θ0
= HT

QCLK−1
QCLHQCL,

that includes higher order constraints for the unbiasedness constraint discussed in the

previous section [65]. The QCL approximation can ultimately be written in a similar

form to the MS approximation for np ≥ 1 as

BBQCL , HT
QCLK−1

QCLHQCL (2.49)
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where

HQCL =
[
θ(0) − θ(0) θ(1) − θ(0) · · · θ(L) − θ(0) Inp · · · Inp

]T

KQCL =




KMS UT

U E




where HQCL ∈ R(np+1)(L+1)×np , KMS ∈ R(L+1)×(L+1), E ∈ Rnp(L+1)×np(L+1) extends the

FIM to incorporate L test points θ(l) ∈ Θ, l= 1, . . . , L, beyond the true parameter

θ(0) and the U ∈ Rnp(L+1)×(L+1) contains a cross terms between the entries of the

KMS and E matrices. The resulting bound is a matrix BBQCL ∈ Snp++. The individual

structure of these three matrices, demonstrating the dependence on the test points

θ(l), are given by

KMS =




K(θ(0),θ(0)) · · · K(θ(0),θ(L))

...
. . .

...

K(θ(L),θ(0)) · · · K(θ(L),θ(L))



, (2.50)

U =




u(θ(0),θ(0)) · · · u(θ(0),θ(L))

...
. . .

...

u(θ(L),θ(0)) · · · u(θ(L),θ(L))



, and (2.51)

E =




E(θ(0),θ(0)) · · · E(θ(0),θ(L))

...
. . .

...

E(θ(L),θ(0)) · · · E(θ(L),θ(L))



. (2.52)

Note that the sub-block elements of these matrices have the dimensionsK(θ(m),θ(n)) ∈

R++, u(θ(m),θ(n)) ∈ RNp , and E(θ(m),θ(n)) ∈ RNp×Np , and m,n ∈ {0, 1, . . . , L} are

indexed up to the maximum number of test points L (including the true parameter

θ(0)). Also note that np is the dimension of the vector of deterministic parameters θ

to be estimated.
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If this BB approximation is applied to the signal model

z =
√
P s(θ(0)) + w

where s : Rnp → Cnz is a known deterministic nonlinear function and is complex

Gaussian with zero mean and covariance matrix σ2
wINs , then the sub-matrices in the

block matrices KMS, U, and E in Equation (2.49) as [51]

K(θ(l),θ(l′)) = exp

[
P

σ2
w

(n1(θ(l),θ(l)′)− n2(θ(l),θ(l)′))

]
(2.53)

n1(θ(l),θ(l)′) = ||s(θ(l)) + s(θ(l′))− s(θ(0))||22

n2(θ(l),θ(l)′) = ||s(θ(l))||22 + ||s(θ(l′))||22 − ||s(θ(0))||22

[u(θ(l),θ(l′))]i =
P

σ2
w

K(θ(l),θ(l′))

〈
s(θ(l′))− s(θ(0)),

∂s(θ(l))

∂[θ]i

〉
(2.54)

[E(θ(l),θ(l′))]i,l =
P

σ2
w

K(θ(l),θ(l′))

{〈
∂s(θ(l′))

∂[θ]i
,
∂s(θ(l))

∂[θ]j

〉
+ (2.55)

P

σ2
w

〈
s(θ(l′))− s(θ(0)),

∂s(θ(l))

∂[θ]i

〉
·

〈
s(θ(l))− s(θ(0)),

∂s(θ(l′))

∂[θ]j

〉}
(2.56)

where s(θ(l)) is the evaluation of the nonlinear function at the test point θ(l) and

〈u,v〉 = vTu is the standard inner product for vectors u,v ∈ RN . In (2.53)-(2.56),

we see the dependence on the SINR = P/σ2
w and i, j ∈ {1, . . . , np}. For the frequency

estimation problem the parameter to be estimated is a scalar (np = 1) and θ(l) = fl

for fl ∈ (−1/2, 1/2).

Note that for L= 1, BB1 = HChRB, is the Hammersley-Chapman-Robbins

bound (HChRB) [51, 59] and for L = 0, the CRLB is given by

CRLB = [E]−1
1,1 = E(θ(0),θ(0))−1.
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Barankin Bound Test Point Selection

The selection of test points θ(l) is an important step for computing the BB. In general,

as long as θ(l) ∈ Θ a bound can be obtained. However, not all test points provide

the tightest bound possible and not all test points provide a convergent bound [66].

As such, the BB approximation in the previous section needs an additional attention

given to both how the test points are selected and also to how many test points should

be considered.

In theory, as the number of test points L increases, the tightness of the bound

also increases [89]. However, this also increases the computational complexity since

the dimension of the matrix KQCL, that needs to be inverted, becomes very large,

especially when there are a number of parameters to be estimated.

Consider the MS approximation of the BB given by BBMS = hTMSK
−1
MShMS where

the inverse of the kernel matrix was defined to have elements

[KMS]l,l′ = K(θ(l), θ(l))− 1, l, l′ ∈ {1, . . . , L}

and hMS = [θ(1)−θ(0) . . . θ(L)−θ(0)]T . Here, we can conceptually note of ways to make

this quantity as large (make the bound tighter) as possible using simple mathematics.

Essentially, we either require p(z; θ(l)) to approximate p(z; θ(0)) as best as possible so

that KMS ≈ 0L×L or that the deviations θ(l) − θ(0) be as large as possible [62].

As it turns out this can sometimes have a nice relationship to the problem of

interest. For example, it was pointed out in [69] that for time-delay of arrival, the

best test-points tend to be ones that correspond to peaks in the matched filter output,

normally called sidelobes and for some signals these are integer multiples of the period.

In this case the test-point selection can be optimally done given knowledge of the

problem but in general this is not the case.

In addition to the computational complexity required to compute the large in-
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version of either KMS or KQCL, test-point selection is one of the largest drawbacks

that adds to the difficult effort of computing large-error bounds. Comparing what is

required for the BB to that of the CRLB, which has a rather pedestrian calculation,

forces the practical computation for large-error bounds to continue to be an area of

active research [45, 51, 67, 83]. Furthermore, the selected test-points need to be care-

fully chosen for the problem so as to avoid a violation of the underlying assumptions

for unbiased estimation [66] otherwise divergent bounds can be accidentally computed

and SINR threshold predictions may be inaccurate and actually make no sense.

2.3 Sequential Bayesian Filtering

When the unknown parameters to be estimated vary with time, then sequential

Bayesian filtering methods are used to estimate the unknown probability density

function of the parameters given measurements over time. This method uses two

equation: a transition equation that relates the unknown parameter or state values

at the current time step with the corresponding values at the previous time step; and a

measurement equation that relates the unknown state values with observation values

that evolve over time. The two equations are provided by a state space representation

(SSR) and are given by

xk = fk(xk−1,gk−1) (2.57)

zk = hk(xk,vk) (2.58)

where xk ∈ Rnx is the state vector at discrete time step k, fk : Rnx × Rng → Rnx is a

possibly nonlinear time-varying function of the state at the previous time step k− 1,

zk ∈ Rm is the measurement vector, hk : Rnx × Rnv → Rnz is a possibly nonlinear

time-varying function of the state, and gk ∈ Rng and vk ∈ Rnv is the state process

and measurement noise, respectively [90].
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A solution to recursively compute the optimal state estimates for the aforemen-

tioned SSR model in Equations (2.57) and (2.58) in the Bayesian sense is to iteratively

compute the posterior density function of the state in a two step process of state pre-

diction and measurement update. This approach is called recursive Bayesian filtering

(RBF) as current values are estimated from past values and current observations [90].

The method assumes a known initial prior distribution p(x) state x0 at time step k = 0

that represents some information that may be available on the initial values of the

unknown parameters. In general, if we assume that at time k− 1 we have the poste-

rior distribution p(xk−1|z0, . . . , zk−1), then we can compute a prediction of the state

using the Chapman-Kolmogorov equation by evaluating [90]

p(xk|Z0:k−1) =

∫

Rnx
p(xk|xk−1)p(xk−1|Z0:k−1)dxk−1 (2.59)

where Z0:k−1 = {z0, . . . , zk−1} represents the sequence of measurements received up

to time step k − 1. When the new measurement zk is received, then it can be used

to can compute an update on the posterior using Bayes’ rule

p(xk|Z0:k) ∝ p(zk|xk)p(xk|Z0:k−1). (2.60)

Using (2.60), an estimate of the state at time step k is computed as

x̂k|k =

∫

Rnx
xkp(xk|Z0:k)dxk (2.61)

which corresponds to the mean of the posterior distribution p(xk|Z0:k). The covari-

ance of this estimate can be similarly computed as

Pk|k =

∫

Rnx

(
xk − x̂k|k

) (
xk − x̂k|k

)T
p(xk|Z0:k)dxk. (2.62)

This process of prediction and update is Bayes’ optimal, and it provides the mini-

mum mean squared error (MMSE) estimate. The integrals in Equations (2.59)-(2.62)
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can be computed explicitly in closed form when the state and measurement models

are both linear and the statistics of the process and measurement noise are Gaussian.

In this case, the MMSE recursion reduces to the Kalman filter [90]. However, in

practice, it is difficult to evaluate these integrals as they usually do not have a closed

form.

2.3.1 Particle Filtering

When the assumptions of Gaussian distributed noise model processes and/or non-

linear state transition or measurement models cannot be made, then sequential Monte

Carlo (SMC) numerical techniques can be used [90]. With the increasing computa-

tional power of computers, SMC methods have become common in practice. SMC

relies on the ability to draw a large amount of samples from a distribution and prop-

agate them recursively. Integrations can then be performed used finite summations

and expectations can be easily computed numerically for a large number of samples

and can be shown to converge to the true expectation if enough samples are used [90].

A commonly used SMC algorithm is particle filtering (PF) that draws Nd >> 1 sam-

ples from a proposal distribution π(xk|x(i)
0:k−1, z0:k−1), x

(i)
k , i = 1, . . . , Nd. At time

step k − 1, each drawn sample x
(i)
k−1 is assumed to be weighted by an associated set

of uniform weights w
(i)
k−1 = 1/Nd, i = 1, . . . , Nd. Using the likelihood distribution

p(zk|x(i)
k ), a weight is assigned to each of these samples so that the outlier samples,

compared to the measurements zk, are assigned relatively low values and those that

are close are assigned a high value. This overall process is called sequential impor-

tance sampling (SIS) and it computes the updated weights at time step k (up to a

normalizing constant) as

w
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

π(xk|x(i)
0:k−1, z0:k−1)

(2.63)
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for i = 1, . . . , Nd.

Studies demonstrated the applicability of various proposal distributions for dif-

ferent dynamical conditions [90]. However, a commonly used proposal distribution

is the transitional prior p(x
(i)
k |x

(i)
k−1) for the modeling we are concerned with. In this

case, the weight update calculation in (2.63) simplifies

w
(i)
k = w

(i)
k−1p(zk|x

(i)
k ). (2.64)

Using the samples x
(i)
k and associated weights w

(i)
k , we can now approximate the

posterior distribution p(xk|Z0:k) as the probability mass function (pmf)

p(xk|Z0:k) ≈
Nd∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (2.65)

where δ(xk) is the Kronecker delta [90]. It can be shown that as Nd → ∞, the

posterior distribution in (2.65) converges to

Nd∑

i=1

w
(i)
k δ(xk − x

(i)
k )→ p(xk|Z1:k)

almost surely. Using the PF algorithm, computationally intractable expectations can

be computed as finite sums. Specifically, given a function φ(xk) of the state, the

expected value of the function can be approximated as

Exk|Z0:k
{φ(xk)} ≈

Nd∑

i=1

w
(i)
k φ(x

(i)
k ).

The estimate of the state vector using the PF, together with the covariance of the

estimate at every time step k are given, respectively, by

x̂k|k =

Nd∑

i=1

w
(i)
k x

(i)
k

Pk|k =

Nd∑

i=1

w
(i)
k (x̂k|k − x

(i)
k )(x̂k|k − x

(i)
k )T .
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reducing the integrals in (2.61) and (2.62) to finite sums.

The PF is a powerful method because it allows us to recursively compute estimates

for dynamically changing parameters in SSR models with general distributions and

nonlinear relationships for the state and measurement functions. The PF described

above is known in the literature as the SIS [90] PF. The steps of the SIS-PF algorithm

is summarized in Algorithm 1 below.

Algorithm 1 Sequential Importance Sampling (SIS) Algorithm
{

xk,x
(i)
k , w

(i)
k

}Nd
i=1

= SIS

({
x

(i)
k−1, w

(i)
k−1

}Nd
i=1

, zk

)

for i = 1 to Nd do

Draw x
(i)
k ∼ p(xk|x(i)

k−1)

Update Weights w
(i)
k = w

(i)
k−1p(zk|x

(i)
k )

end for

Calculate s =
∑Nd

i=1 w
(i)
k

for i = 1 to Nd do

Normalize Weights w
(i)
k = s−1w

∗(i)
k

end for

Estimate State x̂k|k =
∑Nd

i=1 w
(i)
k x

(i)
k

return

Ths SIS PF suffers from a problem known as degeneracy [90, 91]. After a few

iterations, only a small set of the SIS PF weights w
(i)
k , i = 1, . . . , Nd have large values

and most of them are close to zero. This violates the assumptions required for the

Bayes’ recursion as the small number of particles can no longer approximate a valid

pdf.

The resampling process for the SIS PF consists of computing the cumulative dis-

tribution function (CDF) from the weights [90, 91]. Using the CDF, particles with
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low probability are reassigned to particles with high probability. This process ensures

that the particles always propagate towards the estimated mean at every time step.

As the particles with very small probability are discarded, the PF maintains Nd parti-

cles in order to avoid degeneracy. The resampling algorithm is listed in Algorithm 2.

After resampling, all of the weights are reset back to uniform, w
(i)
k = N−1

d , ∀i. When

Algorithm 2 Resampling Algorithm
{

x
∗(j)
k , w̃

(j)
k

}Nd
j=1

= Resample

({
x

(i)
k , w

(i)
k

}Nd
i=1

)

Let c1 = w
(1)
k

for i = 2 to Nd do

ci = ci−1 + wik

end for

Let m = 1

Draw u1 ∼ U(0, N−1
d )

for j = 1 to Nd do

uj = u1 + (j − 1)N−1
d

while uj > cm do

m = m+ 1

end while

x
∗(j)
k = x

(m)
k

w̃
(j)
k = N−1

d

end for

return

the resampling algorithm is combined with the SIS algorithm, the result is commonly

referred to as the sequential importance resampling (SIR) PF.
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2.3.2 Track-Before-Detect Filtering

Track-Before-Detect Algorithm

The track-before-detect (TBD) algorithm is a batch measurement processing method

that integrates unthresholded measurements over time about a possible estimate of

an unknown object. The TBD is useful when the measurement as low SINR or an

object is embedded in high clutter or interference. The TBD algorithm can be solved

using the Bayes’ recursion. However, an additional step needs to be implemented to

allow for a varying probability of object detection at each time step k. The object

existence is characterized using a two-state Markov chain. Specifically, we let Ek =

denote the presence of the object and Ek = 0 denote the absence of the object. This

gives rise to the probability of object birth Pb and death Pd intuitively computed

as [90]

Pb = Pr (Ek = 1|Ek−1 = 0)

Pd = Pr (Ek = 0|Ek−1 = 1) .

These two probabilities can be accurately described as a two state Markov chain this

is demonstrated in Figure 2.8. If the object is not present, then its state parameter is

considered undefined, and it is not transitioned to the next time step for prediction.

We can also write this in the form of a stochastic matrix representing the transition

probabilities as

ΠBD =




1− Pb Pb

Pd 1− Pd


 (2.66)

In this case, the received signal model has two hypothesis: hypothesis H0 corresponds

to the case when Ek = 0 and hypothesis H1 corresponds to the case when Ek = 1.

The Bayes’ optimal estimate for the TBD algorithm can be recursively computed

using the Chapman-Kolmogorov equations with the additional bookkeeping required
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Pb

Pd1− Pd 1− Pb

Ek = 1
Ek = 0

Figure 2.8: Birth and Death Two-State Markov chain of Order One that Describes
Object Existence Ek ∈ {0, 1} From Time Step k − 1 to k with a Probability of Birth
Pb and Death Pd

for the probability of a target not being present. The prediction step is now given by

p(xk, Ek = 1|Z1:k−1) =

∫

Rnx
p(xk−1, Ek−1 = 1|Z1:k−1)·

p(xk, Ek = 1|xk−1, Ek−1 = 1)dxk−1+
∫

Rnx
p(xk−1, Ek−1 = 0|Z1:k−1)·

p(xk, Ek = 1|xk−1, Ek−1 = 0)dxk−1

where

p(xk, Ek = 1|xk−1, Ek−1 = 1) = p(xk|xk−1, Ek = 1, Ek−1 = 1)· (2.67)

Pr (Ek = 1|Ek−1 = 1)

= p(xk|xk−1)(1− Pd) (2.68)

p(xk, Ek = 1|xk−1, Ek−1 = 0) = p(xk|xk−1, Ek = 1, Ek−1 = 0)· (2.69)

Pr (Ek = 1|Ek−1 = 0)

= πb(xk)Pb (2.70)

where p(xk|xk−1) is the kinematic transitional prior, and πb(xk) is the birth pdf. The

update can be computed using Bayes’ rule giving

p(xk, Ek = 1|Z1:k) ∝ p(zk|xk, Ek = 1)p(xk, Ek = 1|Z1:k−1).

The estimate of the state at time step k, when the target is present, is computed
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as the expectation over the posterior distribution

x̂k|k =

∫

Rnx
xkp(xk, Ek = 1|Z1:k)dxk (2.71)

and the covariance of this estimate can be similarly computed as

Pk|k =

∫

Rnx

(
xk − x̂k|k

) (
xk − x̂k|k

)T
p(xk, Ek = 1|Z1:k)dxk. (2.72)

Implementation of TBD Using Particle Filtering

The TBD algorithm can be implemented using an SMC PF method as follows. We

first define a set of particles for the state and existence with corresponding weights

as

Pk =
{

x
(i)
k , E

(i)
k , w

(i)
k

}Nd
i=1

where we can approximate the posterior distribution as the probability mass function

(pmf)

p(xk, Ek = 1|Z1:k) ≈
∑

i∈Ek

w
(i)
k δ(xk − x

(i)
k ) (2.73)

with Ek =
{
i ∈ Z : E

(i)
k = 1

}
⊆ {1, . . . , Nd} representing an indexed set correspond-

ing to the particles that remain present. We assume that the existence particles, E
(i)
k

all follow the two state birth and death Markov chain in (2.66). Specifically, each

existence particle has the distribution

E
(i)
k ∼ ΠBD, i = 1, . . . , Nd

The state particles x
(i)
k = [x

(i)
k , y

(i)
k , ẋ

(i)
k , ẏ

(i)
k ]T for i = 1, . . . , Nd are drawn from the

following distributions depending upon particle existence

p(xk, Ek = 1|xk−1, Ek−1 = 1) = p(xk|xk−1)

p(xk, Ek = 1|xk−1, Ek−1 = 0) = πb(xk)
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When a particle represents an object that is not present, the particle state is set to

x
(i)
k = ∅.

The overall measurement likelihood function for both the RF and bearing mea-

surements combined can be computed as

p(zk|x(i)
k ) =

p(zk|x(i)
k , H1)

p(zk, H0)

Note that the likelihood ratio is used as it is not known whether or not the object is

present.
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Chapter 3

BARANKIN KERNEL EFFECTIVE RANK THRESHOLD REGION

PREDICTION

3.1 Signal-to-Interference-Plus-Noise Ratio Threshold Estimation

The Crámer-Rao lower bound (CRLB), presented in Section 2.2.3, for estimating

unknown deterministic parameters can be shown to be equal to the mean squared

error (MSE) estimator performance when the observation is related linearly to the

unknown parameters [60]. This is demonstrated using the following linear model

example. We consider the observation given by

z = Sθ + w (3.1)

where z ∈ RNs , S ∈ RNs×np , θ ∈ Rnp , and w is a zero-mean additive white Gaus-

sian noise (AWGN) random vector with covariance matrix σ2
wINs . The CRLB for

estimating θ can be computed in closed form using Equation (2.30) to obtain

CRLB = σ2
w

(
STS

)−1
.

The MSE for the same problem was computed in Equation (2.9) to be exactly equal

to the CRLB. A simple example of a linear model was also provided in Section 2.2.3.

When the observation model is nonlinear, the MSE can be shown to asymptotically

approach the CRLB at high signal-to-interference-plus-noise ratio (SINR) values or for

large data records. To demonstrate this, we consider an observation of a noisy sinusoid

with unknown frequency f (0). Specifically, we consider the noisy measurement z given

by

z =
√
P s
(
f (0)
)

+ w (3.2)
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where P is the signal power, s(f (0)) = [1 ej2πf
(0)

. . . ej2πf
(0)(Ns−1)]T ∈ CNs and w

is a zero-mean circularly-symmetric complex AWGN random vector with covariance

matrix σ2
wINs . Here, we define the SINR to be P/σ2

w. In this particular case, the

maximum likelihood estimate (MLE) can be computed as

f̂ML(z) = arg max
f∈(− 1

2
, 1
2

)

{
− 1

2σ2
w

∣∣∣∣z−
√
P s(f)

∣∣∣∣2
2

}
(3.3)

that requires a search of the maximum norm between the received measurement and

the transmit sinusoid over the normalized frequency range. As a specific example,

consider Ns = 10, σ2
w = 1, and f (0) = 0 in Equation (3.2). Using simulations, we plot

the MSE of the frequency MLE for various SINR values in Figure 3.1. The figure also

shows the CRLB for varying SINRs.

As it can be seen, the CRLB is equal to the MSE of the MLE estimator for high

SINRs, that is, for P/σ2
w >> 1. As the SINR decreases, the estimator MSE deviates

from the CRLB resulting in a large increase in MSE for a small change in SINR. Note

that the CRLB was computed in closed form as [44, 51]

CRLB =
σ2
w

P
∣∣∣∣∂s(f (0))

∂f

∣∣∣∣2
2

=
3σ2

w

4π2PNs(Ns − 1)(2Ns − 1)
.

The deviation from the CRLB in Figure 3.1 occurred at about 4.4 dB SINR. This

deviation is known as the SINR threshold effect, and it is exhibited by general non-

linear estimation problems [51, 57]. For this example, the MLE MSE at low SINRs

is not adequate since the worst error is bounded by |f̂(z)− 1/2|2 due to the bounded

parameter space. If the parameter space was theoretically the entire real number line,

then the MLE MSE would tend to positive infinity. However, in most practical cases,

the parameter space can be bounded given some a priori knowledge.
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Figure 3.1: MLE Variance for the Frequency Estimation Problem and the Corre-
sponding CRLB.

One method for determining the SINR threshold in based on the method of interval

errors (MIE) approximation to the MSE [92]. Using the MIE approximation, MSE is

expressed as the convex combination [33, 52, 53]

MSEθ̂(z) ≈ Pr
(
θ̂(z) = θ(0)

)
CRLB + Pr

(
θ̂(z) 6= θ(0)

)
MSEthr

where Pr
(
θ̂(z) = θ(0)

)
= 1−Pr

(
θ̂(z) 6= θ(0)

)
denotes the probability of the estimator

selecting the correct value θ(0) and MSEthr is an approximation of the MSE devia-

tion from the CRLB. Note, however, that the MIE requires good approximations for

Pr
(
θ̂(z) = θ(0)

)
and MSEthr for which there is no general approach and it is prob-

lem/algorithm dependent. Nevertheless, if it is possible to compute the MIE for a

given problem, it is shown to provide quite accurate results for computing the SINR

threshold [47–50, 92]. For the frequency estimation problem in (3.1), the symmetry

of the parameter space can be used to approximate the threshold region probability

of error as a uniform distribution [92]. A detailed MIE derivation for MIE is provided

in [33, 52, 53] for estimating direction of arrival in vector arrays.
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For the frequency estimation example in (3.2), the MIE formulation in [33, 52, 53]

results in

MSEf (0)(f̂(z)) ≈
[
1− Pr

(
f̂(z) 6= f (0)

)] 3σ2
w

4π2PNs(Ns − 1)(2Ns − 1)
+

Pr
(
f̂(z) 6= f (0)

) (
f (0) − 0.5

)2
.

The probability of an interval error occurring is given by [33, 50, 52, 53]

Pr
(
f̂(z) 6= f (0)

)
=

1

2

[
1−QM (a1, b1) +QM (b1, a1)

]

where

a1 =

√
PNs

2σ2
w

(
1 +

√
1− |ρ0|2

)

b1 =

√
PNs

2σ2
w

(
1−

√
1− |ρ0|2

)

ρ0 =
1

Ns

sH(f (0)) s(0.5)

and QM(·) is the Marcum Q-function.

3.2 Barankin Bound Kernel

In Section 2.2.4, we presented the Barankin bound (BB) as the lower bound for the

MSE of all unbiased estimators of the deterministic parameter θ0 ∈ Θ, where Θ ⊆ R

is an associated parameter space. We are particularly interested in the problem

where we observe a vector of measurements z ∈ CNs that is, in general, a nonlinear

function of the true parameter that gives rise to an SINR threshold at which estimator

performance rapidly deviates from the CRLB. Such a model arises ubiquitously in

the estimation problem of parameters such as frequency, time-delay and angle-of-

arrival. We consider the analysis used in Section 2.2.2 that is based on the estimation
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theoretic construction based on inner product spaces [45, 67, 83–85]. For two functions

f, g ∈ Hz;θ0 we have that

〈f, g〉Hz;θ0
=

∫
f(z)g(z)p(z; θo)dµ(z)

and ||g||2Hz;θ0
= 〈g, g〉Hz;θ0

is the induced norm. We denote by θ̂(z) : Z → Θ any

estimator of θ0 ∈ Θ. Then, if the estimation error is e[θ̂(z)] = θ̂(z) − θ0, then the

MSE or second absolute central moment (SACM) at θ0 is given by [45, 54]

MSEθ0(θ̂(z)) = ||e||2Hz;θ0
=

∫
e(z)2p(z; θ0)dz.

The estimator mean-biasedness can be found by considering πθ = p(z; θ)/p(z; θ0) and

the inner product

bθ̂(z) = 〈θ̂(z)− θ, πθ〉Hz;θ0
, ∀θ ∈ Θ

for which it can be seen that πθ simply reassigns the measure of the integral to the

distribution associated with the parameter θ. An estimator is said to be unbiased (in

the mean) if bθ̂(z) = 0, ∀θ ∈ Θ. The BB estimator can be found by considering [51, 54]

θ̂B(z) = arg inf
φ∈U

{
||φ(z)||2Hz;θ0

}
(3.4)

where U is a manifold of the Hilbert space Hz;θ0 containing all estimators satisfying

bφ(z) = θ − θ0, ∀θ ∈ Θ. In [54], conditions were considered to find a unique BB

estimator, assuming it exists, and utilize it as a bound on MSE. Given the openness

of the formulation in (3.4), it should be evident that this problem is enormously

challenging.

An approach considered to somewhat simplify the optimization problem of (3.4)

is to consider L discrete test-points θl ∈ Θ for l = 1, . . . , L, and then solve [51, 64, 65]

minimize ||φ(z)||2Hz;θ0

subject to 〈φ(z), πθl〉Hz;θ0
= θl − θ0, l = 1, . . . , L.

51



This minimization is known to have a solution of the form [51, 64, 65]

min ||φ(z)||2Hz;θ0
= hT

(
KB − 11T

)−1
h (3.5)

where [KB]l,l′ = 〈πθl , πθl′ 〉Hz;θ0
and [h]l = θl − θ0. The kernel associated with the

matrix KB is given K(θ, θ′) in (2.11).

We consider the specific measurement model case of z =
√
η s(θ) + w where w is

a complex Gaussian random vector with zero-mean and identity covariance matrix.

Here, η is the SINR of the measurement. In this particular case, the elements of the

kernel matrix can be computed in closed form as [45, 51, 58, 65]

[KB(η)]l,l′ =

∫
p(z; θl)p(z; θl

′
)

p(z; θ0)
dz

= exp
[
2η<e

{
(s(θl)− s(θ0))H(s(θl

′
)− s(θ0))

}]

= exp (2η)ρl,l′

where ρl,l′ , <e
{

(s(θl)− s(θ0))H(s(θl
′
)− s(θ0))

}
, <e {z} = (z+z∗)/2 is the real part

of a complex value z, and z∗ denotes the conjugate of z.

Note that the SINR parameter η only affects the BB kernel matrix KB(η) in

Equation (3.5). The vector h only depends on the deviation of the test-points from

the true parameter. If KB(η) ∈ RL×L we can express the BB kernel in terms of its

singular value decomposition (SVD) as

KB(η) = U(η)Σ(η)VH(η) (3.6)

Here U(η) and V(η) ∈ RL×L are matrices with rank L whose columns and rows

represent the left and right singular vectors of KB(η), respectively. The diagonal

matrix of singular values Σ(η) ∈ RL×L has diagonal entries given by the values

σ1(η) ≥ σ2(η) ≥ · · · ≥ σL(η) ≥ 0.
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Theoretically the rank of the BB kernel is given by the index corresponding to the

smallest singular value that is strictly positive.

The matrix KB(η) in (3.6) represents a full rank invertible Gramian matrix. Nu-

merically, however, KB(η) can have challenges and in fact depending on the evaluation

can result in an ill-conditioned matrix. As a result, although theoretically KB(η) has

rank L, in practice, the effective rank may not be L, due to finite numerical precision

computations that begin to become a factor as SINR increases.

3.3 Effective Rank of the BB Kernel

The rank of a matrix is defined as the difference between the largest dimension

of any matrix M ∈ FN×M where F is any field (typically F = R or F = C) and the

number of non-trivial orthogonal vectors x such that Mx = 0 [93]. The effective

rank in numerical computations can be computed using SVD where for a particular

machine epsilon ε the effective rank is defined as [94]

εrank M = | {i : σi > max(M,N) · ε(σ1)} |

where ε(σ1) is the distance from the largest singular value σ1 to the next largest

number in the same precision, and |S| denotes set cardinality. For the kernel KB(η),

the εrank KB(η) also depends on the SINR parameter.

The columns (and rows) of KB(η) are orthogonal in theory. However, if we eval-

uate the l, l′th entry of the kernel matrix as

[KB(η)]l,l′ =

〈
p(z; θl, η)

p(z; θ0, η)
,
p(z; θl

′
, η)

p(z; θ0, η)

〉

Hz;θ0

, (3.7)

then the likelihood function ratios (LFRs) in (3.7) approach arbitarly small positive

numbers for some threshold SINR ηthr when evaluated at the lth parameter θl that

is distant from the true parameter θ0. This is a natural correspondence that is
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witnessed precisely in the computation of the MLE where at some low SINR η that the

probability that the measurement came from some outlier parameter θl will become

large. The understanding of this phenomenon is known as the threshold effect and is

used as the basis for formulating the MIE that is used to predict ηthr [33, 47–50, 52, 53].

The BB effective rank εrank KB(η) can thus be utilized to predict the SINR

threshold for a given problem. This is because, at some point of evaluation, the

effective rank of KB(η) starts to rapidly decrease as the SINR η increases since the

probability that the measurement came from an outlier becomes arbitrarily small.

In other words, full effective rank of the kernel corresponds to absolute ambiguity in

the estimation problem and low effective rank corresponds to absolute definiteness

in the estimation problem. We thus propose to use the effective rank to predict the

SINR threshold and to evaluate it under the assumption of uniform sampling of L

test-points over the parameter space Θ.

In general, the MLE θ̂(z) resulting from a nonlinear estimation problem has a

threshold region that is associated with selecting sidelobes as the maximum peak

over the mainlobe with high probability. For a given set of measurements z and cor-

responding likelihood function p(z; θ0), and a given SINR η, this sidelobe probability

can be represented as [33, 47–50, 52, 53]

Psl(θ, η) = Pr

(
max
θ 6=θ0∈Θ

{p(z; θ)} > p(z; θ0)

)

= Pr

(
max
θ 6=θ0∈Θ

{
p(z; θ)

p(z; θ0)

}
> 1

)

= Pr

(
max
θ 6=θ0∈Θ

{πθ} > 1

)
.

For the signal model in (3.2), this can be solved to obtain [33, 52, 53]

Psl(θ, η) =
1

2

[
1−QM (a1, b1) +QM (b1, a1)

]
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Figure 3.2: Selection of a Sidelobe Probability as a Function of Parameter Space
and SINR Parameter η for Estimating Frequency.

where

a1 =

√
ηNs

(
1 +

√
1− |ρ0|2

)

b1 =

√
ηNs

(
1−

√
1− |ρ0|2

)

ρ0 =
1

Ns

sH(f (0)) s(0.5)

and QM(·) is the Marcum Q-function. The sidelobe probability is plotted in Figure 3.2

using the complex sinusoid model with [s(θ)]n = ej2πθ(n−1), Θ = (−0.5, 0.5), θ0 = 0

and Ns = 4. From the figure, it can be seen that the probability of confusing a

sidelobe for a given SINR η falls off exponentially towards a small positive value.

Note that the elements of the BB kernel matrix KB(η) are correlations of the

likelihood function ratios (LFRs) πθl at the various sidelobe values in the parameter

space as shown in (3.7). The sidelobe probability approaches a exponentially small

positive number ε > 0. However, the singular vectors associated with KB(η) are

associated with these LFRs with singular values σ1(η) ≥ · · · ≥ σL(η) ≥ 0. These

singular values fall off rapidly near the SINR threshold as shown in Figure 3.3 and
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Figure 3.3: Plot of the Normalized SVD Singular Values for KB(η) for a Range of
SINRs for Frequency Estimation.

thus cause the effective rank to decrease rapidly. The proposed method to obtain the

predicted SINR threshold ηthr using the effective rank of the kernel is given by

ηthr = arg min
η

{
∂rε(η)

∂η

}
= arg max

η

{
∂2rε(η)

∂2η

}
(3.8)

where rε(η) = εrank KB(η).

3.4 Simulation Results

In all of the following examples, the numerical computations were obtained in

Matlab using double precision accuracy.

3.4.1 Frequency Estimation

We consider the observation model z =
√
η s(θ)+w, where w is complex Gaussian

noise with zero mean and identity covariance matrix and z ∈ CNs . The transmit signal

is given by

[s(θ)]n = ej2πθ(n−1),
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Figure 3.4: Performance for Frequency Estimation.

where θ(0) = f (0) is the unknown (normalized) frequency. We also assume that Θ =

(−0.5, 0.5), Ns = 10, θ0 = 0, and the SINR is given by η. In Figure 3.4, we compare

the Monte-Carlo (MC) MLE estimator performance using NMC = 10, 000 number of

Monte Carlo trials to the CRLB, the MIE, the Chapmann-Robbins bound (ChRB),

McCaulay-Seidman bound (MSB) BB approximation, and the Quinlan-Chaumette-

Larzabal bound (QCLB) BB approximation. The figure shows that the other MSE

bounds are tighter than the CRLB, but they are not inherently accurate at predicting

the true MLE SINR threshold. In this example, the kernel effective rank method,

plotted in Figure 3.5, provides the most accurate prediction, followed by the MIE.
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Figure 3.5: Rank of Kernel Matrix as a Function of SINR for Frequency Estimation.

3.4.2 Angle of Arrival Estimation

In this case, we assume an observation model for a uniform linear array (ULA)

with Nyquist spatial sampling along the y−axis. Thus,

[s(θ)]n = ej2π(n−1) sin(θ)

where θ is the unknown angle of arrival with possible values in Θ = [π/18, 4π/9].

Here, the number of array elements is Ns = 5, and the SINR is again given by η. The

true angle of the narrowband source is assumed to be θ(0) = π/4. In this example, we

plot the performance of the MLE, MIE, CRLB and the kernel effective rank method

in Figure 3.6. In Figure 3.7, we see that the effective rank of the Barankin kernel

provides the most accurate prediction. In this example, we only compare the MC

MLE, with NMC = 10, 000 trials, to the CRLB and MIE.
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Estimation.

3.4.3 Time Delay Estimation

In this example, we assume that the transmit signal is an linear frequency-modulated

(LFM) chirp with frequency modulation (FM) rate b and pulse duration T . The LFM
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x(t) is received after an unknown time delay θ. The received signal samples are then

processed as

[s(θ)]n = s(nTs)

where s(t) = x(t− θ) =
√

2(t− θ)ej2πb(t−θ)2pT (t− θ) and pT (t) = 1, ∀t ∈ (0, T ) and

zero otherwise. Here we assume that Θ = [−2T, 2T ], Ns = 320, Fs = 1/Ts = 20

MHz, θ(0) = 0 and that ||s(θ)||22 = 1. In this example, we consider two waveforms

with equal duration T = 4 µs but with different FM rates b1 = 1.25 GHz/s and

b2 = 0.6214 GHz/s. For both waveforms, the performance of the asymptotic time-

delay estimation using both MC MLE with NMC = 100, 000 and CRLB depends

on the bandwidth B = 2bT of the waveform. Generally, the larger the bandwidth,

the lower the CRLB. However, in Figure 3.8, we see a trade-off that occurs between

asymptotic MSE and SINR threshold for the two different waveforms.
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Chapter 4

LOW SINR RADAR WAVEFORM DESIGN BASED ON BARANKIN BOUND

4.1 Radar Target Tracking Measurement Model

When a radar system coexists with a wireless communications system by sharing

bandwidth, the radar target tracking performance is expected to decrease. The co-

existence problem between the two systems is discussed in Section 2.1. Assuming a

co-located receiver for both systems, the joint received waveform is a linear combina-

tion of the target return signal xr(t), the wireless communications signal xc(t), and

additive white Gaussian noise (AWGN) w(t). At the radar receiver, the unknown

target parameters need to be estimated from the target return signal xr(t) and the

communications signal xc(t) is seen as high power interference. As a result, the main

objective of the radar receiver is to increase the target tracking performance under

low signal-to-interference-plus-noise ratio (SINR) conditions.

We consider a pulse-Doppler radar receiver tracking a target in the presence of

strong interference from an long term evolution (LTE) time division duplex (TDD)

communications system. Assuming that a target is present under the given SINR

operating conditions, the noisy complex baseband radar received signal is given by

r(t) =
√
Pr s(t− τ ; p) e−j2πνt + v(t), t ∈ Td (4.1)

where s(t; p) is the transmit signal that varies according to the parameter vector p,

Td is the observation time window, and Pr is the power of the radar return. Assum-

ing continuous multiple-user LTE TDD transmissions for both downlink and uplink,

the zero-mean additive complex white Gaussian process v(t) is the result of both the
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measurement noise and the communications interference. The unknown target pa-

rameter vector θ = [τ ν]T consists of the target time delay τ and Doppler shift ν on

the transmit signal s(t; p), where T denotes vector transpose.

The radar receiver processing involves detecting the presence of a target and esti-

mating its the unknown parameter vector θ. At high SINR, this estimation processing

is performed using the ambiguity function (AF). The cross AF between the received

signal r(t) and the transmit signal s(t) is defined as [81, 95]

Ars(τ, ν; p) =

∫

R
r(t)s∗(t− τ ; p)ej2πνtdt . (4.2)

The cross AF can be viewed as the inner product of the received signal r(t) with

the signal s(t − τ ; p)ej2πνt over a range of time delay and Doppler shifted for some

τ ∈ [τ1, τ2] and ν ∈ [ν1, ν2], respectively. The auto AF, As(τ, ν; p), is computed

by letting r(t) = s(t) in (4.2). An important property of the auto AF is that its

maximum value always occurs at the origin of the (τ, ν) plane. Specifically,

|As(τ, ν; p)|2 ≤ |As(0, 0; p)|2.

It is this property of the AF that is used to obtain maximum likelihood estimates

(MLEs) of the range and range-rate. This is because, at high SINR, the MLEs of

the time-delay and Doppler target parameters are obtained by maximizing the AF.

In order to obtain the MLEs, we first expand the cross AF in (4.2) to obtain

Ars(τ, ν; p) = =

∫

R

(√
Pr s(t− τ0; p) e−j2πν0t + v(t)

)
s(t− τ ; p) e−j2πνtdt

=

∫

R

√
Pr s

∗(t− τ0; p) e−j2πν0ts∗(t− τ ; p) e−j2πνtdt+ v(τ, ν) ,

where the term v(τ, ν) is a random process formed by the cross AF of xr(t) and v(t).

The first term corresponds to the AF of the transmitted signal, so the cross AF can
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Figure 4.1: Example Measurement of z(τ, ν) in (4.3) When the SINR is (left) 20 dB
and (right) -10 dB.

be written as

z(τ, ν) = Ars(τ, ν; p) =
√
PrAs(τ − τ0, ν − ν0; p) + v(τ, ν) . (4.3)

If we maximize (4.3) over all τ and ν, we obtain

{τ0, ν0} = arg max
τ,ν

Ars(τ, ν; p) .

This follows from the fact that the peak of As(τ − τ0, ν − ν0; p) in (4.3) occurs at

τ = τ0 and ν = ν0 [81].

When the SINR is low, it is very difficult to locate the AF peak due to the high

power of the communications interference. This is demonstrated in Figure 4.1 that

provides the AF of measurement with 20 dB SINR (plot on the left) and -10 dB SINR

(plot on the right). As it can be seen, it is not possible to locate the peak of the AF

when the SINR is -10 dB, and a large estimation error is expected if the AF is used

to obtain the time delay and Doppler MLEs.

Under low SINR conditions, unthresholded measurements in the form of an AF res-

olution cell measurement model are used for processing [59, 96]. This model is formed

by computing the AF in (4.3) numerically as follows. Using sampling period Ts, we
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obtain the discrete-time signal s[n; p] = s(nTs; p), n = 1, . . . , Ns, where Ns is the

number of signal samples. We consider discrete time-delay bins i∆τ , i = 1, . . . , Nτ ,

and discrete Doppler bins l∆ν , l ∈ D, l = 1, . . . , Nν , where ∆τ and ∆ν correspond to

the time-delay and Doppler shift values between consecutive bins, respectively, and

Nτ and Nν are the number of time-delay and Doppler shift bins, respectively. This

AF measurement model z(τ, ν) in (4.3), assuming a signal transmission at each time

step k, is thus given in discrete form by

zk[i, l] = zk(i∆τ , l∆ν) =
√
PrAs(i∆τ − τk, l∆ν − νk; pk) + v(i∆τ , l∆ν) , (4.4)

where τk and νk are the time-delay and Doppler shift unknown parameters at time

step k. The discrete measurement model can also be written in matrix form as

Zk =
√
Pr A(θk; pk) + Vk (4.5)

where the (i l)th element of A(θk; pk) ∈ CNτ×Nν is the AF As(i∆τ − τk, l∆ν−νk; pk)

in (4.4) and the unknown parameter vector θk = [τk νk]
T needs to be estimated to

obtain the range and range rate of the target at each time step k. The (i l)th element

of V ∈ CNτ×Nν is v(i∆τ , l∆ν) in (4.4); it is modeled as discrete AGWN with total

power Pv. In vector form, (4.5) can be written as

zk =
√
Pr aθk;pk + vk (4.6)

where aθk;pk = vec(A(θk; pk)) is obtained by concatenating the matrix columns of

A(θk; pk); similarly, zk = vec(Zk) and vk = vec(Vk).

4.2 Prediction of SINR Threshold for Radar Waveforms

4.2.1 SINR Threshold and Barankin Bound

The SINR threshold effect, presented in Chapter 2, is an important aspect for

system design as it provides information on the SINR value at which a particular
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estimation problem shows a sudden decrease in MSE performance. The MSE per-

formance of an unbiased estimator depends on the SINR as well as on the transmit

waveform and corresponding measurement model. For a given waveform, when the

SINR decreases, the low SINR conditions cause a decrease in the probability of target

detection and thus in the parameter estimation accuracy. The SINR threshold of

a general, possibly nonlinear, estimate θ̂(z) of an unknown deterministic parameter

θ(0) is defined conceptually as the value SINRthr at which the MSE of the estimator

rapidly deviates from the CRLB. Specifically, the SINR threshold is a system param-

eter dependent SINR value at which the covariance of the estimator becomes very

large and cannot be predicted using the CRLB.

In Chapter 3, we demonstrate the use of the BB effective rank matrix in predicting

the SINR threshold. However, as the effective rank is computed using singular value

decomposition (SVD) of the BB kernel, we cannot obtain it for all possible signals.

We thus want to examine a different approach that directly uses the BB in order

to predict the SINR threshold. In order to relate the SINR threshold with the BB,

we compute various BB approximations for the frequency estimation problem from

Section 3.1 and compare them to the MLE MSE and the CRLB. We thus consider

the estimation of the unknown frequency θ(0) = f (0) using the noisy measurement

z =
√
P s
(
f (0)
)

+ w

where z ∈ CNs , s(f (0)) = [1 ej2πf
(0)

. . . ej2πf
(0)(Ns−1)]T ∈ CNs is the complex sinusoid

vector, w is the circularly-symmetric complex AWGN vector with zero mean and

covariance σ2
w INs , and the measurement SINR is computed as P/σ2

w. The MLE f̂ML

of the unknown frequency is given in Equation (3.3). Also, when the actual frequency

was f (0) = 0, we showed in Section 3.1 that the MLE MSE deviated from the CRLB

at around 4.44 dB SINR . In order to examine the effect of the BB for the same
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problem, we computed the corresponding QCL BB approximation using L = 2 test

points, the MS BB approximation using L = 200 test points, and the sampled integral

equation (SIE) of the BB using 200 points uniformly sampled on the parameter space.

These BB approximations are shown in Figure 4.2 for varying SINR values. It can

be seen that the QCL BB approximation is much tighter than the MS and SIE BB

approximations. The QCL BB is also much more computationally affordable for

computing the MSE bound as it only uses 2 test points. When comparing the BB

with the CRLB in the same figure, we see that both the BB and MLE start to deviate

from the CRLB near the same SINR value. However, the BB provides a noticeably

tighter bound than the MLE MSE in the threshold region. As such, the BB provides

a better approach that the MLE in predicting the SINR threshold. We also notice

that at high SINR, the relationship between the estimator MSE, BB, and CRLB is

given by

MSEf̂ML(z) ≥ BB ≥ CRLB

with approximate equality when SINR→∞.

In general, we can define three main estimation operating regions: the asymptotic

region, the threshold region, and the no information region. This is visualized in

Figure 4.3. It is not usually feasible for most problems to compute the SINR threshold

from the MLE covariance. This is because to compute an accurate performance curve

for the MLE, we normally require to use Monte Carlo methods as a function of SINR.

As a result, we propose to use the BB as a method for computing the SINR threshold

region.

For a general estimation problem with MSE matrix MSEθ̂(z) of a parameter esti-

mate θ̂(z), the relationships between the bounds are given by

MSEθ̂(z) � BB � CRLB .
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The equality is achievable asymptotically at high SINR and/or large data record

lengths. We can utilize this relationship to approximate the SINR threshold for an

estimator by computing the deviation of the BB from the CRLB and finding the SINR

value at which this deviation starts to increase (or equivalently, when the deviation
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exceeds some ε > 0 ). We define the deviation as a function of SINR as

ρ(SINR) =
tr {BB−CRLB}

tr {CRLB} .

We also define the set that defines the interval at which the deviation ρ(SINR) is less

than some small constant ε as

Aε = {SINR ∈ R++ : ρ(SINR) ≤ ε} .

We then consider the SINR threshold value to be approximated as

SINRthr = arg max
SINR∈Aε

ρ(SINR)

which corresponds to the smallest SINR for which the BB starts to deviate from

the CRLB. We demonstrate this using the frequency estimation example by plotting

the deviation ρ(SINR) for ε = 0.01; the value of ε was obtained empirically from

simulations. The resulting plot is shown in Figure 4.4. We found that the SINR

threshold using the BB based approach was 2.8 dB, which is comparable to the 4.44

dB threshold region obtained using the MLE.

4.2.2 Barankin Bound for Ambiguity Function Measurement Model

Considering the radar tracking problem discussed in Section 4.1, low SINR condi-

tions are expected to reduce both the probability of target detection and parameter

estimation accuracy. We thus want to predict the BB SINR threshold region in order

to assess the estimation performance accuracy [45, 54, 84]. From the different BB ap-

proximations presented in Chapter 2, we use the QCL BB approximation as it results

in a tighter bound than the other approximations and thus provides a more accurate

estimate of the SINR threshold. Note that, even though the QCL BB approximation

was presented in [51] for multiple unknown parameters in vector form, the example
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provided was for a single unknown frequency. We propose to compute the QCL BB

approximation for the unknown target parameter vector θk = θ in the radar prob-

lem, using the two-dimensional (2-D) AF resolution cell measurement model aθ,p in

Equation (4.6). Note that, to the best of our knowledge, an example of the QCL BB

approximation has not been demonstrated before for an unknown parameter vector.

For notational simplicity, we drop the dependence on the time step k.

BB Computation

Using Equation (4.6) and considering a set of L test points, {θ(1),θ(2), . . . ,θ(L)},

where θ(l) = [τ (l) ν(l)]T , l = 1, . . . , L, and np = 2, the BB ∈ Snp++ is given by [51]

BBΘ,η,aθ,p
= HT

Θ K−1
Θ,η,aθ,p

HΘ . (4.7)

Note that the subscript in the BB formulation in (4.7) emphasizes the dependence of

BB on the AF aθ,p in (4.6), the waveform parameter vector p , the unknown target

parameter vector θ, the test point set Θ = {θ(0),θ(1),θ(2), . . . ,θ(L)}, and the SINR

value η. Here, θ(0) is a particular θ value and η = Pr/σ
2
v is the SINR value. The
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3(L+ 1)×3(L+ 1) matrix KΘ,η,a(θ;p) in (4.7) is given by [70]

KΘ,η,aθ,p
=




MΘ,η,aθ,p
UT

Θ,η,aθ,p

UΘ,η,aθ,p
EΘ,η,aθ,p


 .

The dimensions of the sub-matrices M, U, and E are (L+1)×(L+1), 2(L+1)×(L+

1) and 2(L + 1)×2(L + 1), respectively. The l l′th element, l, l′ = 1, . . . , L, of the

reproducing kernel matrix M is [54]

[MΘ,η,aθ,p
]l l′ = exp

{
η

(
||aθ(l),p + aθ(l′),p − aθ(0),p)||22

−||aθ(l),p||22 − ||aθ(l′),p||22 + ||aθ(0),p||22

)}
,

where ||u||22 = 〈u,u〉 and 〈u,v〉 = uTv is the inner product between vectors u and v.

Matrix E extends the Fisher information matrix [44] to incorporate the L test points

beyond the particular value θ(0). Its l l′th element, l, l′ = 1, . . . , L, is also a matrix,

with i, jth element, i, j = 1, . . . , L, given by

[ [EΘ,η,aθ,p
]l l′ ]i,j = η [MΘ,η,aθ,p

]l l′

(〈∂ aθ(l′),p

∂θ(i)
,
∂ aθ(l),p

∂θ(j)

〉
+

η
〈

(aθ(l′),p − aθ(0),p),
∂ aθ(l),p

∂θ(i)

〉

〈
(aθ(l),p − aθ(0),p),

∂ aθ(l′),p

∂θ(j)

〉)
.

Matrix U contains cross terms between the entries of M and E; its l l′th element,

l, l′ = 1, . . . , L, is a vector with ith element, i = 1, . . . , L, given by

[ [UΘ,η,aθ,p
]l l′ ]i = η [MΘ,η,aθ,p

]l l′
〈

(aθ(l′),p − aθ(0),p),
∂ aθ(l),p

∂θ(i)

〉
.
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The 3(L+ 1)×2 matrix HΘ in (4.7) is given by

HΘ =




(θ(0)− θ(0))T

(θ(1)− θ(0))T

...

(θ(L)− θ(0))T

I2

...

I2








(L+ 1) times

where I2 is the identity matrix of dimension 2.

Test Point Selection

The tightness of the BB bound depends on the selection of the test points θ(l) =

[τ (l) ν(l)]T , l = 1, . . . , L, as well as the number L of test points [66, 74]. Although any

set of test points inside the parameter space can be selected [51, 70, 73], we select

points at the boundary corners of the support [−τb, τb]×[−νb, νb] of the AF resolution

cell. These boundary points were found to maximize the BB as they reflect maximum

outliers in the parameter space. In our computation, we continue to increase the

number of points L until there is no significant gain in the tightness of the bound

[80]. Note that L affects the dimensionality of matrix K in (4.7). As this matrix

needs to be inverted, increasing L also increases the computational cost of the BB.

4.2.3 Radar Waveform SINR Threshold Prediction

Computation of SINR Threshold

As the BB is the greatest lower bound of the MSE of any unbiased estimator of
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deterministic parameters, over all possible values of θ, it can be shown that

MSEθ̂,η,aθ,p
� BBΘ,η,aθ,p

� CRLBη,aθ,p
(4.8)

where θ̂ is an unbiased estimate of θ. Given the AF resolution cell measurement

model aθ,p at SINR value η, the CRLB in (4.8) is computed as the inverse of the

Fisher information matrix. The MSE is obtained as

MSEθ̂,η,aθ,p
=

∫

z

(θ̂ − θ(0))(θ̂ − θ(0))Tp(z;θ(0)) dz ,

where p(z;θ(0)) is the probability density function of the measurement z in (4.6) for

fixed SINR value η and particular parameter value θ(0).

The MSE in (4.8) achieves the CRLB only under asymptotic conditions, such as

high SINR or large data records. Under these conditions, the unbiased estimator is

characterized by three different operating regions: asymptotic, threshold , and no

information regions (shown in Figure 4.3). From these regions, it is important to

be able to estimate an SINR threshold of a particular waveform in order to obtain

information on the waveform’s expected MSE performance. We propose to approxi-

mate an SINR threshold using the BB and the CRLB, following the relation in (4.8).

We first compute the deviation of the BB from the CRLB for a waveform with fixed

parameter vector p as

ρη,aθ,p
=

tr{BBΘ,η,aθ,p
− CRLBη,aθ,p

}
tr{CRLBη,aθ,p

} , (4.9)

where tr{·} denotes the trace of a matrix. The SINR threshold is selected as the SINR

value η ∈ Aε at which the deviation is as small as possible. We thus set ρη,aθ,p
≤ ε,

for small ε > 0, and obtain the SINR threshold ηthr as

ηthr(p) = arg max
η∈Aε

ρη,aθ,p
, (4.10)
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which corresponds to the smallest SINR value at which the BB starts to depart from

the CRLB. An example of computing the deviation for a sinusoid signal with ε = 0.01

is depicted in Figure 4.4.

Radar Transmit Waveform and SINR Threshold

We assume that the radar transmit signal in (4.1) at time step k is a nonstationary

signal with nonlinear time-varying phase function ξk(t/tr) and given by [95]

s(t; pk) = ψ(t) ej2πbk ξk(t/tr), t ∈ (0, λk) . (4.11)

Here, tr > 0 is a reference time and ψ(t) is a (possibly) time-varying amplitude

modulation (AM) that is selected such that the signal has unit energy. The parameter

vector pk = [λk bk]
T consists of the signal duration λk and the frequency modulation

(FM) rate bk at time step k.

We computed the SINR threshold in (4.10) for two waveforms with nonlinear

phase function ξ(t/tr) in (4.11). Specifically, we considered the linear frequency-

modulated (LFM) waveform with quadratic phase function ξ(t/tr) = (t/tr)
2 and the

hyperbolic frequency-modulated (HFM) waveform with logarithmic phase function

ξ(t/tr) = ln (t/tr). The unit energy LFM waveform, with Gaussian window AM, is

given by

s(t; p) = (2πλ)−0.5 e−(t/tr)2/(2λ2) ej2πb(t/tr)
2

, (4.12)

and the HFM, with rectangular window AM, is given by

s(t; p) = ej2πb ln(t/tr), t ∈ (0, λ) . (4.13)

An example of a noisy LFM radar signal embedded in high-power communications

interference with 2.2 dB SINR is demonstrated in Figure 4.5. As shown, both the
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Figure 4.5: LFM Radar Waveform Embedded in 2.2 dB SINR Communications
Interference.

communications signal and the the radar transmit signal coexist in the same time-

frequency space.

The SINR threshold for the LFM in (4.12) was computed as a function of its

duration and time-bandwidth product (TBP) as well as the asymptotic MSE for high

SINR. The result is shown in Figure 4.6. We notice that there exists an inverse rela-

tionship between SINR threshold and asymptotic variance for this particular signal

model. This inverse relationship has been pointed out for a few different applications

such as direction-of-arrival vector array estimation for the spacing between the ele-

ments [63]. A few other cases where this effect occurs is discussed in [46, 56] for other

applications.

We expect that the SINR threshold affects the tracking algorithm when the trans-

mitted waveform is not designed for low SINR situations. We know from the previous

section that the SINR threshold occurs at a higher SINR for higher resolution wave-

forms. For example, if we consider a TBP of 100 and a duration of λ = 10 µs for the

HFM and LFM, for which we know that the HFM is a higher resolution waveform
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Demonstrating an Inverse Relationship Between SINR Threshold and Asymptotic
MSE Performance for Each Waveform.

then we expect that the threshold SINR is higher. Indeed, this is the case as can be

seen in both the BB and CRLBs shown in Figure 4.7 and the corresponding threshold

SINRs shown in Figure 4.13.

Barankin Bound Based Waveform Design

As we are considering very low SINR tracking scenarios due to the presence of high

power interference, the measurement model in (4.6) can greatly affect the estimation

performance of the targets position and velocity. We propose to select the radar trans-

mit waveform using the deviation of the BB from the CRLB. Specifically, at each time

step k, we compute the deviation in (4.9) for a dictionary of J available waveforms

s(t; p
(j)
k ) in (4.11), j = 1, . . . , J , with phase function ξk(t/tr) and varying parameter

vector p
(j)
k = [λ

(j)
k b

(j)
k ]T . Emphasizing its dependence on the jth dictionary waveform

with parameter vector p
(j)
k , the corresponding SINR threshold ηthr(p

(j)
k ) can be com-
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Figure 4.7: BB and CRLB for a Fixed 100 TBP and 10 µs Duration for the HFM
and LFM Waveforms.

puted for all waveforms in the dictionary using (4.10). Then, the selected transmit

waveform s(t; p̂k) is the one with the minimum SINR threshold value. Specifically,

s(t; p̂k) = arg min
j=1,...,J

ηthr(p
(j)
k ) . (4.14)

4.3 Low SINR Target Tracking

4.3.1 Target Tracking Formulation

The overall measurement equation for the target tracking formulation includes

the measurement in (4.6) with waveform parameter vector p̂k in (4.14) and a bearing

angle measurement from a noisy linear observation. Assuming a single target moving

at a constant velocity in two dimensions, the unknown target state vector xk =

[xk yk ẋk ẏk]
T consists of the Cartesian coordinates for the target’s position and

velocity are (xk, yk) and (ẋk, ẏk), respectively. The state equation is thus linear and

given by xk = F xk−1 + uk−1, where F describes the state transition following the

constant velocity model and uk is a modeling error random process.

The AF resolution cell measurement model at time step k is given in (4.6). In
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addition to the time-delay and Doppler, we also include a bearing angle measurement

given by

ak = φk + βk (4.15)

where φk is a linear observation and βk is zero-mean AWGN with variance σ2
β. The

overall measurement model is given by

The measurements are related to the unknown state vector xk using

τk =
2

c0

√
x2
k + y2

k (4.16)

νk =
2fc (xkẋk + ykẏk)

c0

√
x2
k + y2

k

(4.17)

φk = arctan (yk/xk) (4.18)

where c0 = 3× 108 m/s is the speed of electromagnetic propagation in free space and

fc is the signal carrier frequency in Hz. For the purposes of tracking, we process the

joint measurement of the AF and the bearing measurement as the combined vector




zk

bk


 =



√
Praθk;pk + vk

φk + βk




= h(xk,pk,vk, βk).

where the state xk has been mapped through the nonlinear relationships in (4.16)-

(4.18) via the AF and the bearing measurement equation in (4.15). It is assumed

that the state transition matrix for the target motion is given by

F =




1 0 TCPI 0

0 1 0 TCPI

0 0 1 0

0 0 0 1




78



where TCPI representing the coherent processing interval (CPI) of the radar at CPI

time step k and k − 1 and the process noise uk is assumed to follow a zero mean

Gaussian noise acceleration model [90] with covariance matrix

Σu = ip




T 3
CPI

3
0

T 2
CPI

2
0

0
T 3
CPI

3
0

T 2
CPI

2

T 2
CPI

2
0 TCPI 0

0
T 2
CPI

2
0 TCPI




and ip denotes the process noise intensity.

4.3.2 Measurement Model for Waveforms with Nonlinear Phase

For a given signal s(t; p), it is not always possible to provide a closed form ex-

pression of the AF using the integral in (4.2). For the Gaussian windowed linear

frequency-modulated (LFM) signal defined as

s(t; p) = exp
(
− t2

2T 2

)
exp (j2πb t2) ,

with parameter vector p = [T b]T , the AF can be obtained in closed form as

As(τ, ν; p) = exp

(
− τ 2

2T 2
− T 2 (ν − 2bτ)2

2

)
.

For sampled τ and ν values, the AF can be written in matrix form, A(τ, ν; p), to fit

the measurement model.

However, the AF cannot be obtained in closed form for the general frequency-

modulated signal,

s(t; p) = ψ(t)ej2πβξ(t/tr) , (4.19)

that has arbitrary nonlinear phase function ξ(t/tr). Here, tr > 0 is a reference time

point and ψ(t) is a time-varying amplitude modulation function. Some examples of
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ξ(t/tr) in (4.19) include the phase function

ξ(t/tr) = ln(|t/tr|)

that corresponds to a hyperbolic frequency-modulated (HFM) signal and

ξ(t/tr) =
∑

κ

ακ(t/tr)
κ

that corresponds to a power series frequency-modulated (PFM).

The AF of these signals is approximated numerically, following the discrete for-

mulation in (4.4) for some time-delay τk and Doppler shift νk. In particular, given

a discrete-time signal s[n; pk] = s(nTs; pk), n = 1, . . . , Ns, where Ts is the sampling

period and Ns is the number of signals samples, we compute the AF in matrix form

as

A(τk, νk; pk) = Ω Ξ(τk, νk; pk) (4.20)

where the ilth element of matrix A(τk, νk; pk) ∈ CNτ×Nν is As(i∆τ−τk, l∆ν−νk; pk),

i = 1, . . . , Nτ and l = 1, . . . , Nν . The discrete Fourier transform (DFT) matrix

Ω ∈ CNν×Ns in (4.20) is given by

Ω =




ej2π∆ν ej2π∆ν2 · · · ej2π∆νNs

...
...

. . .
...

ej2πNν∆ν ej4πNν∆ν2 · · · ej2πNν∆νNs



.

The matrix Ξ(τk, νk; pk) ∈ CNs×Nτ in (4.20) is given by

Ξ(τk, νk; pk) =

[
· · · s(θk; pk)� si−1(pk) s(θk; pk)� si(pk) s(θk; pk)� si+1(pk) · · ·

]

where � represents a Hadamard product (element-wise multiplication), s(θk; pk) ∈
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CNs is given by

s(θk; pk) =




s(Ts − τk; pk) e−j2πνk

s(2Ts − τk; pk] e−j2πνk2

...

s(NsTs − τk; pk) e−j2νkNs



.

and si(pk) ∈ CNs is given by

si(pk) =




s(Ts − i∆(τ); pk)

s(2Ts − i∆(τ); pk)

...

s(NsTs − i∆(τ); pk)



.

We implemented the AF using (4.20) for an Gaussian windowed LFM signal and

a rectangular windowed HFM signal; the corresponding AF plots for comparison are

shown in Figure 4.8 and Figure 4.9, respectively. The two signals show a trade off in

resolution in the (τ, ν) plane. In general, the AF resolution increases with the number

of AF side-lobes for a particular signal. In this example, the HFM signal is shown to

have higher estimation performance for the time-delay and Doppler shift parameters

at high SINR than the LFM signal. Based on design considerations, a signal experi-

ences these trade-offs in different ways based on its amplitude modulation, duration,

FM rate and phase function.

4.3.3 Integration of Waveform Design With Track-Before-Detect

Due to the low SINR conditions, we use a TBD tracker is implemented using a PF

that was discussed in Section 2.3.2 using Equations (2.66)-(2.73). The TBD-PF initi-

ates tracking iterations by a set of possible tracks that depend on the unthresholded

AF measurement. For the single target, we assumed a two-state Markov chain of or-

der one to describe the probability of the target entering or leaving the field-of-view
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Figure 4.8: AF for a Gaussian Windowed LFM Signal.
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Figure 4.9: AF for a Rectangular Windowed HFM Signal.

(FOV) at each time step k [90]. Using the selected waveform s(t; p̂k) and integrating

with a TBD-PF tracker, we were able to improve the SINR limit of applicability from

-6 dB to -8 dB.

In order to demonstrate the estimation performance for the Gaussian windowed

LFM and the rectangular windowed HFM we simulate them at high SINR (6 dB) and

use them to track a target using the TBD-PF. Both signals have the same duration

of 10 µs and time-bandwidth product (TBP) of 100. The resulting MSE performance

is shown in Figure 4.10 as a function of the actual time step. As it can be seen, the

MSE is lower for the HFM at every time step.
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Figure 4.10: MSE Performance of TBD-PF for an HFM and LFM; Both signals
have a 10 µs duration and 100 TBP.

We also demonstrated the TBD-PF performance when using only LFM signals but

with different parameters. Figures 4.11 and 4.12 show the effect of the particle spread

when estimating the target track in the (x, y)-plane using the TBD-PF algorithm and

an LFM signal with TBP 10 and 100, respectively; both signals have the same 10 µs

duration.
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Figure 4.11: Effect on the Tracker Particle Spread in the TBD-PF Algorithm with
a Gaussian Windowed LFM Simulated Transmit Waveform With 10 µs duration and
10 TBP.
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Figure 4.12: Effect on the Tracker Particle Spread in the TBD-PF Algorithm with
a Gaussian Windowed LFM Simulated Transmit Waveform With 10 µs duration and
100 TBP.

Before, we saw intuitively from the AF that the HFM has a higher resolution

compared to the LFM, so we naturally expect that the CRLB will predict the MSE to

be lower for the HFM and higher for the LFM. However, due to the inverse relationship

with the SINR threshold, if the HFM is operated below its SINR threshold then the

MSE should not be expected to be the best. We now demonstrated this with an

example using the TBD-PF algorithm. If we apply this to the TBD-PF algorithm

and simulate the tracker at an SINR of 3 dB which is below the HFM’s threshold

SINR and we also run the same scenario for the LFM we indeed find that the MSE

performance is much worse for the HFM. This is demonstrated in Figure 4.15. We

compare this to the MSE performance shown in Figure 4.10 where the HFM performs

better when the conditions were slightly better at an SINR of 6 dB which is above

the expected SINR threshold. Thus, we have a trade-off between SINR threshold and

asymptotic (high SINR) MSE performance for tracking.
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Chapter 5

JOINT WAVEFORM CO-DESIGN FOR COMMUNICATIONS AND RADAR

5.1 Design of Waveforms with Nonlinear Frequency-Modulation

One possible method for radar and communications systems to share the same

spectrum is to also share the same type of signaling scheme. The co-design can

involve waveforms with the same phase function but varying parameters that can be

designed to minimize the interference between the two systems or to optimize other

system performance metrics. Radar performance metrics can include mean-squared-

error (MSE) of target parameter estimation, range resolution, and transmitter blind-

zone. For a communications system, metrics can include spectral efficiency or gross

bit rate.

We consider first a simple co-design signaling scheme for a pulse-Doppler radar

system that emits a single pulse and a communications system with a single user.

Both systems share the same bandwidth B. In complex baseband, we assume that

the radar signal sr,B(t) and the communications signal sc,B(t) are both nonlinear

frequency-modulated (NLFM) signals given by

sr,B(t) = ar(t) e
j2πbr ξ(t/tr)

sc,B(t) = ac(t) e
j2πbc ξ(t/tr)

where ar(t) ∈ R and ac(t) ∈ R are potentially time-varying amplitude modulation

functions, and both signals have the same phase function ξ(t/tr), with normalizing

time constant tr > 0. The radar signal is assumed to have duration Tr and frequency-

modulation (FM) rate br, whereas the communications signal has duration Tc and

FM rate bc; both signals are also assumed to have unit energy.
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The NLFM phase function ξ(t/tr) can simplify to a variety of signals, includ-

ing a complex sinusoid with ξ(t/tr) = t/tr, a linear frequency-modulated (LFM)

signal with ξ(t/tr) = (t/tr)
2, a hyperbolic frequency-modulated (HFM) signal with

ξ(t/tr) = ln |t/tr|, a power frequency-modulated signal ξ(t/tr) = (t/tr)
k (k ∈ R),

and a polynomial frequency-modulated (PFM) signal with ξ(t/tr) =
∑L−1

l=0 αl (t/tr)
l.

Such classes of waveforms are found in numerous applications such as sonar, radar,

acoustics, biomimetics, and underwater communications [97–101].

5.2 Formulation of Coexistence Systems

5.2.1 Pulse-Doppler Radar Signal Processing

We consider a deterministic non-fluctuating target (Swerling-0 target model) [34,

35]. For a monostatic radar employing pulse-Doppler signal processing, Np pulses sr(t)

are transmitted during a coherent processing interval (CPI). The received baseband

signal corresponding to the mth transmitted pulse, m = 1, . . . , Np, can be modeled

as

zm(t) =
√
Prsr(t− τ0 −mTPRI)e

−j2πν0mTPRI + xc,m(t) + wm(t), 0 ≤ t ≤ TPRI (5.1)

where τ0 and ν0 correspond to the time-delay and frequency shift respectively, that

are assumed to be constant over the CPI, xc,m(t) is the communications interference

signal, and wm(t) is additive white Gaussian noise (AWGN).

Assuming a sampling period of Ts and a pulse repetition interval (PRI) of length

TPRI, the discrete-time received signal zm[n] = zm(nTs) is given by

zm[n] =
√
Prsr (nTs − τ0 −mTPRI) e

−j2πν0mTPRI + xc,m[n] + wm[n] (5.2)

for n = 1, . . . , Ns, where Ns = TPRIFs and Fs = 1/Ts. In vector form, the received

88



signal zm = [zm[1] · · · zm[Ns]]
T can be expressed as

zm =
√
Prsr(τ0;m)e−j2πν0mTPRI + xc,m + wm

where the target reflected signal from the mth radar transmission is given by

sr(τ0;m) =




sr(Ts − τ0 −mTPRI)

sr(2Ts − τ0 −mTPRI)

...

sr(NsTs − τ0 −mTPRI)



∈ CNs

and xc,m and wm are similarly defined. Considering Np pulses over the CPI, the

overall received signal is given by

zCPI[n] =

Np∑

m=1

(√
Prsr(nTs − τ0 −mTPRI)e

−j2πν0mTPRI + xc,m[n] + wm[n]
)
. (5.3)

In matrix form, the Np received signals can be concatenated to obtain the matrix

Z ∈ CNs×Np constructed as

Z = [z1 z2 · · · zNp ]

where zm, m = 1, ..., Np, is defined in (5.2). If we define

d(ν0) =
[
ej2πν0TPRI ej2πν02TPRI · · · ej2πNpν0TPRI

]

then the matrix Z over all PRIs can be written as

Z =
√
Prsr(τ0)dH(ν0) + Xc + W (5.4)

where Xc = [xc,1 · · · xc,Np ] is a matrix whose columns consist of the communications

interference symbols over each PRI and dH denotes vector Hermitian (complex con-

jugate transpose) of a complex valued vector d. Note that, with this notation, we can

represent the time-domain received signal over the CPI in (5.3) as the column vector

zCPI = vec (Z) ∈ CNsNp×1.

89



Here, vec(Z) denotes vectorization of matrix Z by stacking the matrix columns into

a single column vector.

The first step in pulse-Doppler processing involves the correlation of the received

signal at the mth PRI in (5.1) with a time-delayed version of the transmitted signal

to estimate the corresponding target range. Note that the PRI time step m, m =

1, . . . , Np, denotes slow-time processing, whereas the time sample n, n = 1, . . . , Ns,

denotes fast-time processing [34, 35]. Thus, at the mth slow-time PRI time step, we

compute the correlation

a`,m =
Ns∑

n=1

zm[n]s∗r(nTs − τ` −mTPRI) = zHmsr(τ`;m)

where τ`, ` = 1, ..., Nτ denotes the `th time-delay or range bin. The domain of τ` is

[Tr, TPRI], and it represents the domain for unambiguous target returns, where Tr is

the duration of the transmit radar signal sr(t). In essence, for a speed of propagation

cε0 , targets that are in range bins less then rBZ = cε0Tr/2 are not observable since

during these bins, the transmitter is on and the receiver is not processing. On the

other end, any pulse that is received after rUR = cε0TPRI/2 is considered ambiguous

as these range bins are processed in the next PRI to estimate a target position that

is closer than the actual position [34, 35].

If we assemble a correlation matrix over all time delay (or correspondingly range)

bins as

Ξ , [sr(τ1) sr(τ2) · · · sr(τNτ )] ∈ CNs×Nτ

then, over the set of measurements defined in (5.4), we can define the range correlation

matrix A = ZHΞ ∈ CNp×Nτ . Note that slow-time is represented by the rows and fast-

time correlation is represented by the columns.

The final output from the pulse-Doppler radar after Np pulses are received is

computed by taking the discrete Fourier transform (DFT) across the rows of the
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matrix A ∈ CNp×Nτ . Thus, the overall correlation output matrix Y ∈ CNν×Nτ is

given by

Y = ΦA = ΦZHΞ (5.5)

where Nν ≥ Np is the size of the slow-time DFT. The slow-time DFT matrix can be

written as

Φ = [φ1 φ2 · · · φNp ]

where φm = [ej2πν1mTPRI · · · ej2πνNνmTPRI ]H for m = 1, . . . , Np and the domain of the

lth Doppler shift bin νl, l = 1, . . . , Nν , is [−1
2
, 1

2
]; this corresponds to the unambiguous

Doppler shifts [−FPRF

2
, FPRF

2
], where FPRF = 1/TPRI. Using (5.4), we can then express

the pulse-Doppler output in (5.5) as

Y =
√
PrΦd(ν0)sHr (τ0)Ξ + Φ

(
XH
c + WH

)
Ξ

=
√
PrXr + Dcomm + N

where

Xr , Φd(ν0)sH(τ0)Ξ

is in the form of the ambiguity function (AF) of the transmitted signal [34, 81], and

Dcomm , ΦXH
c Ξ

N , ΦWHΞ.

In this form, the communications interference present in the processed radar return

is given by Dcomm, and N is an integrated noise term.

5.2.2 Wireless Communications Receiver Processing

We assume that a communications user transmits the signal sc(t)e
jφv with duration

Tc and V -phase shift keying (PSK) modulation [32] with v = 1, . . . , V . The user can
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thus transmit up to log2 V bits of information in a signal duration. We also assume

that NSPP = bTPRI/Tcc communications symbols are transmitted by the user over one

radar PRI.

The communications signal sc,m(t) is a continuous train of transmitted symbols

and is given by

sc,m(t) =

NSPP−1∑

q=0

sc(t− qTc −mTPRI)e
jφq,m

where φq,m = 2π(vq,m−1)/V and vq,m = 1, . . . , V is the phase shift index correspond-

ing to the V -PSK constellation point that represents the information of the user for

the qth symbol in the mth PRI.

For an AWGN channel, the communications receiver estimates the qth transmitted

symbol q. The received signal for the mth PRI is given by

zm(t) = xr,m(t) +
√
Pc

NSPP−1∑

q=0

sc(t− qTc −mTPRI)e
jφq,m + wm(t), 0 ≤ t ≤ TPRI

where xr,m(t) =
√
Prsr(t − τ0 − mTPRI)e

−j2πν0mTPRI is the radar return discussed in

the previous section. At the communications receiver, to determine the qth symbol

transmitted in the mth PRI, we compute the correlation

Tv,q,m = <e
{∫ (q+1)Tc

qTc

zm(t)sc(t− qTc −mTPRI)e
jφvdt

}
, q = 0, . . . , NSPP − 1 (5.6)

and the PSK modulation index is estimated by finding the symbol that maximizes

the correlation in (5.6) as [32, 99–101]

v̂q,m = arg max
v=1,...,V

{Tv,q,m} .

5.3 Optimization of Waveform Parameters for Minimum Interference

In the multiuser communications systems, the user signaling scheme must be de-

signed to minimize the interference between users or multiple access interference
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(MAI) . This is achieved by minimizing the correlation between each user’s signal

and thus increasing the bit-error-rate (BER) performance of each user [32, 99–101].

As the communications system shares the same bandwidth with the radar, it is also

necessary to minimize the interference between the radar and communications sys-

tems.

We assume that the n communication user is assigned a unique LFM signal with

duration T and FM rate bn. The signal is given by

sc,n(t) =
√

2t ej2πbn t
2

, t > 0.

The correlation between the signals used by the nth and mth, n 6= m and m,n ∈ Z++,

communications users is given by

φm,n(τ, τ ′) = |〈sc,m(t− τ), sc,n(t− τ ′)〉L2(R)|2

where the users have associated time delays τ and τ ′. If we assume that the com-

munication user symbols are time synchronized relative to each user, then we can set

τ = τ ′ = 0. In order to reduce interference between these two users, we need to find

the FM rates bn and bm to satisfy the constraint

φm,n(0, 0) = |〈sc,m(t), sc,n(t)〉L2(R)|2 (5.7)

=

∣∣∣∣
∫

R
sc,m(t)s∗c,n(t)dt

∣∣∣∣
2

= δm,n (5.8)

where δm,n = δ[m− n] is the Kronecker delta function.
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In order to solve for the FM rates, we simplify (5.8) to obtain

φm,n(0, 0) =

∣∣∣∣
∫ T

0

2t ej2πbmt
2

e−j2πbnt
2

dt

∣∣∣∣
2

=

∣∣∣∣
∫ T

0

2tej2π(bm−bn)t2dt

∣∣∣∣
2

=

∣∣∣∣
∫ T 2

0

ej2π(bm−bn)udu

∣∣∣∣
2

=

∣∣∣∣T 2sinc
[
(bm − bn)T 2

] ∣∣∣∣
2

where sinc(x) , sin(πx)/πx. Note that this simplification is only possible by con-

straining the AM of the LFM signal to be ac(t) =
√

2t, t > 0. Also note that the

signals are assumed to be modulated by the same carrier frequency, but the mod-

ulation term cancels when the correlation is computed. It is then clear from the

definition of sinc(x) that the correlation between the nth and mth users is minimized

when

bm ± bn =
l

T 2
, where l ∈ Z . (5.9)

As a result, selecting the FM rate assigned to each communications user to satisfy

the condition in (5.9) is expected to reduce MAI [32, 99–101].

Given that the allocated bandwidth is Ba, the maximum possible FM rate is given

by

bmax =
Ba

2T
,

and the maximum number of communications users to be accommodated is given by

Nmax =

⌊
TBa

2

⌋
.

Using this information, the FM rate of the nth user, n = 1, 2, . . . , Nmax, for minimizing

MAI is given

bn =
Ba

2T
− Nmax − n

T 2
.
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Figure 5.1: Plot of Correlation Function for a Fixed Pulse Duration T as a Function
of the FM Rate b.

For the radar transmit waveform, we want to select an LFM signal that results

in minimum interference with the LFM signal of the nth communications user, n =

1, 2, . . . , Nmax. Thus, we want to minimize the correlation between the transmitted

radar signal and all communications users signals [34, 35]. As the radar return has

an unknown time-delay τ0, the resulting correlation to be reduced is given by

φr,(c,m)(τ0, 0) =

∣∣∣∣〈sr(t− τ0), sc,m(t)〉L2(R)

∣∣∣∣
2

=

∣∣∣∣
∫

R
2
√
t(t− τ0)ej2π(fs,r(t−τ0)+br(t−τ0)2)ej2π(fs,ct+bmt2)dt

∣∣∣∣
2

where sr(t) =
√

2t ej2πbr t
2
, t > 0. This integration is not possible to compute

in closed form, but we can evaluate it numerically. Assuming that fs,r = −Ba/2,

fs,c = Ba/2, and letting bn = Ba/(2T ), the correlation as a function of τ0 and br is

shown in Figure 5.1. We see from this figure that the correlation is minimized when

the FM rate of the radar signal is the negative of the FM rate of the communications

user signal [29, 30, 99–101].

5.4 Signal Design Trade-off Analysis

In order to determine the effect of the different communications system operation

parameters on the maximum number of users, we consider Figure 5.2. The top left

figure shows Nmax as a function of time-bandwidth product (TBP), and as it can be

seen, at the TBP increases, the maximum number of serviceable users also increases.

The bottom left figure shows the maximum number of users for three fixed allocated
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Figure 5.2: Maximum Number of Servicable Users Nmax as a Function of Signal
Duration T , Allocated Bandwidth Ba, and TBP.

bandwidths, Ba ∈ {10, 50, 100} MHz. The right figure shows a 2-D surface of the

maximum number of users as a function of signal duration and bandwidth.

We also consider the effect of bit rate on the communications systems performance

[32]. We assume that the communications system employs V -PSK modulation with

symbol duration T . Then the modulating signal for the symbol is given by

sc(t) =
√

2tej(2πbct
2+θc), t ∈ (0, T )

where

θc =
2π(v − 1)

V
, v = 1, . . . , V

and v is an index corresponding to a unique constellation point representing a se-

quence of binary digits of length log2 V . The gross bit rate can then be computed

as [32]

Rb =
log2 V

T

which is plotted in Figure 5.3. As it can be seen, for a fixed PSK modulation order V ,

the data rate increases as the symbol duration T decreases. Thus, for a given Ba, in
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Figure 5.3: Feasible Bit Rate Rb as a Function of Symbol Duration T for V -PSK
Modulation, for V Equal to 2, 4, 8, 16, and 32.

order to maximize the number of users Nmax, the LFM communications signals must

have longer durations. As a trade-off, to maximize the data rate, the durations should

be shorter. This intuitively makes sense as, the more complicated the communications

scheme is, the more susceptible it is to MAI as the channel becomes more crowded.

For the designed communications signaling scheme with V -PSK modulation and

an AWGN channel, Figure 5.4 shows a plot of the bit error rate (BER) performance as

a function of Eb/N0, where Eb is the energy per bit and N0 is the variance of the noise

samples. Note that the BER was obtained theoretically as well as using Monte-Carlo

(MC) simulations. Note that this plot requires higher signal-to-noise-ratio (SNR) to

reliably demodulate higher order modulations.

If we assume that Ncu ≤ Nmax users occupy the communications channel, then Ncu

waveforms are transmitted over the same bandwidth as the radar waveform. If the

radar receiver has knowledge of the number of users transmitting at each time step,

then the radar waveform can be designed to improve range resolution that is given

by σr = cε0/(2Ba) [34, 35]. Note that the range resolution as a function of bandwidth
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Figure 5.4: BER Performance as a Function of Eb/N0 for Various V -PSK Modula-
tion Orders Using LFM signals in an AWGN Channel with No Radar Signal Present.

is shown in Figure 5.5. If we assume that the rate of the LFM signal assigned to the

radar is given by br, then the relationship between the range resolution and the FM

rate is given by

σr(T, bn) =
cε0

4brT
.

As a result, for a fixed duration T and considering the FM rates b1, . . . , bNcu designed

for the communications users, then in order to minimize the range resolution, the FM

rate of the radar must be chosen as br = bNmax . Thus, if the objective of the radar

system is to minimize the range resolution, then the radar waveform must be chosen

as

sr,opt(t) =
√

2te−j2πbNmax t
2

, t ∈ (0, T ) .

For the following results, we assume that the allocated bandwidth is Ba = 10

MHz, the pulse duration for both radar and communications signals is T = 4 µs,

and the maximum number of users is Nmax = 20. In Table 5.1, we list four possible
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schemes when Ncu = 3 communications users are transmitting. Note that bui is the

FM rate assigned to the ith user, i = 1, 2, 3 and br is the FM rate of the radar signal.

Figures 5.6-5.8 show the BER performance for the various schemes. It is clear that

no single scheme is best overall for the communications system. In Figure 5.9, the

radar performance in the various schemes is shown. While the SINR threshold for the

different radar waveforms is different in the different schemes, we need to consider a

way to also simultaneously minimize the MSE performance.

Table 5.1: FM Rate Selection Schemes

Scheme 1 b1 = −b20 bu1 = b17 bu2 = b18 bu3 = b19

Scheme 2 b1 = b20 bu1 = b17 bu2 = b18 bu3 = b19

Scheme 3 br = −b20 bu1 = b1 bu2 = b4 bu3 = b8

Scheme 4 br = −b20 bu1 = b18 bu2 = b19 bu3 = b20

The BB SINR threshold analysis considered in Chapter 4 demonstrated the trade-

off in performance as a result of reducing the LFM rate at low SINR, assuming same

energy waveforms. Figures 5.10 and 5.11 show the tracking MSE for range and range-
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Figure 5.6: BER Performance as a Function of SINRcomm From the Communications
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Figure 5.7: BER Performance as a Function of SINRcomm From the Communications
Receiver Perspective for User 2 and Various FM Rate Selection Schemes.

rate at −18 dB and −34 dB SINRrad, respectively, using Kalman filtering [90]. As

it can be seen, the lower FM rate waveform in blue results in a lower MSE than the

higher FM rate waveform in red when the SINR is lower. Note, however, than for

higher SINR, the blue waveform has a higher detection rate and the sidelobe selection
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5.5 Multi-Objective Optimization for Joint Waveform Co-Design

In general, the objectives associated with optimizing both radar and communica-

tions systems performance do not have the same joint optimal design. For example,

the optimal radar waveform in terms of minimizing range resolution may not neces-

sarily correspond to the radar waveform in terms of optimizing gross bit rate for the

communications system.

If the actual number of communications users Nu is less than the maximum num-

ber of possible users Nmax, then the signaling scheme for the users can be revised in
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Figure 5.11: MSE for Range and Range-Rate Estimation for (br, bu1 , bu2 , bu3) =
(−b20, b18, b19, b20) in Red and (br, bu1 , bu2 , bu3) = (−b1, b18, b19, b20) in Blue at SINRrad

of -34 dB.

order to increase each user’s BER performance. In particular, we want the Nu users

to have the best combination of FM rates so as to minimize MAI. If we consider in a

received signal that only consists of Nu communications users as

z(t) = sc,1(t) + · · ·+ sc,Nu(t)

and we know that the received signal z(t) is correlated using a matched filter to obtain

the estimates of the transmitted bits for each symbol, then it is reasonable to consider

an optimization that aims to minimize the correlation between each user, for all users
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combinations. This optimal combination can be found as

{
b∗1, . . . , b

∗
Nu

}
= arg min

{bu}Nu≤Nmax
u=1 ∈Fc(Tc)





∑

{i,j:i 6=j unique}

∣∣〈sui , suj
〉∣∣2


 (5.10)

where

Fc(Tc) =

{
b ∈ R :

∣∣∣∣sinc
[
(bn − bm)T 2

c

] ∣∣∣∣
2

≈ 0

}

is the set of orthogonal FM rates and Tc ≤ log2(V )/Rb for V -PSK with desired bit

rate Rb.

This is a combinatorics optimization problem that becomes increasingly difficult

to solve as Nu increases. For small numbers of users such as Nu = 3, it is possible

to solve the problem by a brute force search approach. If Nu is larger, the computa-

tion becomes very intensive. Thus, in order to solve this combinatorics optimization

problem, we employ the simulated annealing (SA) stochastic optimization method

[102].

We consider a subsystem optimization using Nu ≤ Nmax active users with FM

rates assigned according to Equation (5.10). This communications signaling scheme

is assumed known at the radar receiver. The design of the radar waveform is not

obvious is the performance objective function is the estimation MSE. Normally, the

radar waveform is selected to have large bandwidth in order to reduce the time-delay

estimation MSE and thus improve range resolution [34, 35] However, it is not clear

how the large bandwidth radar waveform affects the interference between the radar

and communications systems. In order to jointly consider both the MSE and systems

interference objectives, we consider the communications interference component at

the radar receiver that was given in Section 5.2, Equation (5.5) as

Dcomm = ΦC(b∗1, . . . , b
∗
Nu , T

∗
c )HΞ(br, Tr) (5.11)
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where C(b∗1, . . . , b
∗
Nu
, T ∗c ) is the communications signaling scheme over the radar CPI

where it is assumed that the Nu users are always transmitting in the worst case. With

the assumption that the communications system shares signaling scheme information

with the radar then (5.11) can be computed at the radar transmitter to predict

what kind of interference to expect from the communications system and attempt to

optimize the transmitted radar waveform to minimize the correlation.

Note that this notation emphasizes that the communications interference compo-

nent depends on the FM rate br and pulse duration Tr of the radar waveform. We

can minimize the correlation over a set of feasible radar waveforms by considering the

following optimization problem of

{b∗r, T ∗r } = arg max
(br,Tr)∈Fr

{
||Dcomm||2F

}

where ||Dcomm||2F = tr
{
DH

commDcomm

}
is the Frobenius norm of the communications

disturbance over all time-delay and Doppler cells in Fr for a given radar waveform.

The feasible region for radar waveforms is given by

Fr =

{
(br, Tr) ∈ R2 : Tmin ≤ Tr ≤ Tmax, br(Tr;Bmin) ≥ Bmin

2Tr
, br(tr;Bmax) ≤ Bmax

2Tr

}
.

An example of this cost function is shown in Figure 5.12 for a Ba of 10 MHz and a

minimum sweep rate of 3 MHz.

This optimization is essentially computing the correlation of a radar waveform over

any possible time delay and Doppler shift given the known signaling of the commu-

nications users, but without knowledge of the users transmitted information. Note

that, as the term minimized is the correlation between radar and communications

systems, it affects the performance of both systems. However, the trade-off is that,

in general, the minimum correlation radar waveform does not provide the best MSE

performance.
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ple.

In order to examine the performance trade-offs, we formulate the optimization as

a multi-objective or Pareto optimization [103]. Consider the problem of optimizing

a set of k objective functions fl(p), l = 1, . . . , k, k ≥ 2, for a given set of waveform

parameters p. We also assume that there exists a set of waveforms P for which the

only feasible solutions to the multi-objective optimization problem exist ∀p ∈ P .

Then the optimization problem can be written as

min [f1(p), . . . , fk(p)]

such that p ∈ P

or equivalently [103] as

min f(p)

such that p ∈ P

where f(p) = [f1(p) . . . fk(p)]T . Consider the case where p = [br, Tr, b1, b2, . . . , bNu , Tc]
T

is the vector containing the radar waveform FM rate br and duration Tr, and the com-

munications users parameters b1, . . . , bNu and Tc are the for Nu ≤ Nmax users.
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We consider a optimization case where there are k = 2 objective functions. We

assume that the communications users are first optimized following Equation (5.10)

to obtain b∗1, b
∗
2, . . . , bNu∗ , T

∗
c . The first objective function f1(br, Tr, b

∗
1, b
∗
2, . . . , bNu∗ , T

∗
c )

represents the radar time-delay MSE from the simulated asymptotic performance.

The second objective function f2(br, Tr, b
∗
1, b
∗
2, . . . , b

∗
Nu
, T ∗c ) is the correlation between

the transmit waveforms of the radar and communications systems. The feasible sets

of parameters are those that satisfy Fr and Fc(Tc). As a example, we consider

Nu = 4, shared bandwidth Ba = 10 MHz, T ∗c = 4 µs, and 16-PSK modulation.

The optimal communications rates were found using SA [102]. We constrain the

radar signal sweep bandwidth ∆f = 2brTr between 3 and 10 MHz and the pulse

duration is selected between 1 and 4 µs. In Figure 5.13, we plot the solutions of the

two objective functions for a variety of radar waveforms within the Fr region. The

Pareto efficient solutions are connected with the Pareto frontier (shown in gray on the

figure). These are solutions that are not dominated by any other outcome from the

multi-objective optimization problem. If we examine the Pareto efficient parameter

sets in Figures (5.14)-(5.17), we can see the effect of the second objective function on

the BER performance for Nu = 4 users. It can be seen that the minimum correlation

radar waveform of Pareto design case 2 provides the best BER performance. We note

that there exists a trade-off in terms of radar time-delay MSE performance in Figure

5.18. In this figure, we see that the MSE performance for the Pareto design case 2 is

slightly higher than the MSE performance of the other three Pareto efficient design

cases.
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Figure 5.14: BER Performance for Pareto design case 1.
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Figure 5.15: BER performance for Pareto design case 2.
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Figure 5.16: BER performance for Pareto design case 4.
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Figure 5.17: BER performance for Pareto design case 24.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This thesis proposed tow main statistical signal processing methods to address

the radar and communications spectrum coexistence problem. The first method used

the use of the Barankin bound (BB) signal-to-interference-plus-noise-ratio (SINR)

threshold prediction for radar waveform design in low SINR settings. The second

method developed a joint radar and communications waveform co-design for a multi-

user communications system and a pulse-Doppler radar.

6.1.1 Radar and Communications Coexistence

We proposed a method for designing radar waveforms that has a useful appli-

cation when tracking a target operating under low SINR conditions. The method

integrates the use of track-before-detect filtering that is based on unthresholded am-

biguity function measurements and a new adaptive waveform design algorithm based

on the BB. Specifically, we obtain the SINR threshold by computing the deviation of

the Barankin bound from the Cramér-Rao Lower Bound (CRLB) and we optimally

select the waveform with the minimum SINR threshold. For a set of waveforms with

varying parameters we showed that there exists an inverse relationship between the

performance of a waveform under high SINR conditions in terms of tracking estima-

tion variance and the waveform’s SINR threshold. We demonstrated the applicability

of this adaptive waveform design for a radar and communications coexistence problem

using waveforms with logarithmic and quadratic phase functions.
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Using simulations, we demonstrated that linear frequency-modulated (LFM) wave-

forms result in lower mean-squared-error (MSE) performance for target parameter es-

timation than hyperbolic frequency-modulated (HFM) signals. The HFM waveforms,

however, perform better than the LFM ones at higher SINR values. This trade-off

allows for radar waveform design for the radar and communications coexistence prob-

lem when strong communications interference with varying power is assumed to be

present at the radar receiver.

6.1.2 Joint Radar and Communications Co-design

We proposed a waveform co-design method for radar and communications systems

that share the same allocated bandwidth. Utilizing the LFM waveform for both

systems, we showed that it is possible to design a common signaling scheme for

radar and communications systems for each system. We optimally designed the LFM

rates assigned to each communications user to reduce multiple access interference

(MAI) as well as interference between the two systems. We examined performance

for each system by developing a multi-objective optimization scheme that minimizes

the interference between systems and radar time-delay MSE performance..

Using simulations, we demonstrated that it is feasible to jointly design the trans-

mit waveform for both a pulse-Doppler radar and multi-user communications system

when the radar has cooperative knowledge of the communications system signaling

scheme information. In order to obtain desirable performance characteristics, it was

demonstrated that there exists Pareto trade-offs between optimal design for the radar

and optimal design for the communications users. We investigated different Pareto

radar waveform designs and examined the effect of a selected radar waveform on the

joint system.
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6.1.3 SINR Threshold Prediction with BB Kernel Rank

A novel SINR threshold prediction method was proposed based on the effective

matrix rank of the BB kernel matrix. Using singular value decomposition (SVD) as a

means of computing the effective rank relative to machine precision we demonstrated

to have a connection to the exponential decrease in the probability of sidelobe selection

over the true mainlobe in maximum likelihood estimator (MLE) computations for

nonlinear estimation problems.

Using simulations, we demonstrated the proposed SINR threshold prediction method

is demonstrated for estimating frequency, angle, and time-delay parameters from noisy

measurements. The kernel effective rank method provides an accurate prediction of

the MLE SINR threshold for a variety of unknown parameters, and the performance

was compared to other bounds and SINR threshold prediction methods.

6.2 Future Work

A future direction for the radar and communications coexistence problem includes

extending our proposed BB SINR threshold approach to tracking multiple targets.

For low SINR conditions and multiple targets, the track-before-detect tracking can

be combined with random finite set analysis and the multi-Bernoulli multi-target

tracker. Our proposed framework can also be extended to consider targets in clutter

or in wideband environments and develop design trade-offs for different radar scenes.

For the radar and communications systems joint co-design problem, it is possible

to extend our signaling scheme to include other waveforms with nonlinear phase func-

tions such as HFM or power frequency-modulated (PFM) signals with time-varying

amplitude modulation. Although our approach assumed transmission in fading chan-

nels for the communications systems it can be extended to include frequency selec-
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tive and time-frequency fading channels. The Pareto optimization design can also

be extended to include more objective functions, such as user capacity, bit rate, and

spectral efficiency to further improve the joint waveform designs. Another possible

extension is to employ multiple chirp rates for single users when the number of users is

less than the maximum allowable in the design. Such an approach could improve the

spectral efficiency for each user as more information would be able to be transmitted

simultaneously, allowing for higher achievable data rates.
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