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ABSTRACT 

Mechanical properties of cells are important in maintaining physiological 

functions of biological systems. Quantitative measurement and analysis of mechanical 

properties can help understand cellular mechanics and its functional relevance and 

discover physical biomarkers for diseases monitoring and therapeutics. 

This dissertation presents a work to develop optical methods for studying cell 

mechanics which encompasses four applications. Surface plasmon resonance microscopy 

based optical method has been applied to image intracellular motions and cell mechanical 

motion. This label-free technique enables ultrafast imaging with extremely high 

sensitivity in detecting cell deformation. The technique was first applied to study 

intracellular transportation. Organelle transportation process and displacement steps of 

motor protein can be tracked using this method. The second application is to study 

heterogeneous subcellular membrane displacement induced by membrane potential 

(de)polarization. The application can map the amplitude and direction of cell 

deformation. The electromechanical coupling of mammalian cells was also observed. The 

third application is for imaging electrical activity in single cells with sub-millisecond 

resolution. This technique can fast record actions potentials and also resolve the fast 

initiation and propagation of electromechanical signals within single neurons. Bright-

field optical imaging approach has been applied to the mechanical wave visualization that 

associated with action potential in the fourth application. Neuron-to-neuron viability of 

membrane displacement was revealed and heterogeneous subcellular response was 

observed.  
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All these works shed light on the possibility of using optical approaches to study 

millisecond-scale and sub-nanometer-scale mechanical motions. These studies revealed 

ultrafast and ultra-small mechanical motions at the cellular level, including motor 

protein-driven motions and electromechanical coupled motions. The observations will 

help understand cell mechanics and its biological functions. These optical approaches 

will also become powerful tools for elucidating the interplay between biological and 

physical functions. 
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CHAPTER 1 SIGNIFICANCE AND OBJECTIVE 

Mechanical properties are intrinsic to all materials. Eukaryotic cells are one type 

of material that composed of soft matters and fluids(Bao and Suresh 2003). Each cell 

displays a unique mechanical signature(Moeendarbary and Harris 2014), which 

determines the behaviors of the cell in physiological conditions(Levental, Georges et al. 

2007, Tyler 2012). Modulation of intracellular biomaterials, coupling them with other 

energy sources and their interaction with external mechanical stimuli will cause 

mechanical perturbations to cells(Janmey and McCulloch 2007). Such mechanical 

perturbation plays physiological roles in regulating the cell function, enabling a cross talk 

between mechanical and biochemical regulatory machinery(Pickup, Mouw et al. 2014). 

Many studies revealed that cell mechanical signature is highly correlated with disease 

development such as cancer progression(Lu, Weaver et al. 2012, Pickup, Mouw et al. 

2014). Therefore, the mechanical signature can be potentially used for diagnosis and 

prognosis(Otto, Rosendahl et al. 2015). Biological response to the mechanical stimuli can 

also greatly determine the stem cell fate during differentiation(Guilak, Cohen et al. 2009). 

Although many approaches have been developed for probing the mechanical 

properties, technology is still lacking for ultrafast imaging cell deformation. High speed 

imaging is critical for small objects because the speed of motion increases as the object 

size decreases. This also introduces technical difficulties, since signal from the motion 

becomes harder to detect as the size decreases. Traditional mechanical probing methods, 

such as AFM and optical tweezers(Bao and Suresh 2003), can provide accurate 

measurement; however, they are not capable of spatially mapping the mechanical strain 

and lack of measurement throughput. 
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Fast development in biotechnology in these decades provides valuable insights of 

the intrinsic regulatory machinery from genotypic level. However, a huge gap still exists 

between physical understanding of cell mechanics and its biological relevance. One 

barrier is that the mechanical property exists as a functional regulator only at the 

macroscopic level, which can be attributed to the population-level systematic behavior of 

cellular mechanics. Thus it is hard to study the interplay between mechanical force and 

its biological signaling, including force recognition, signal transduction, downstream 

amplification and the crosstalk between biochemical regulations. Lack of quantitative 

measurement in biology also limits the use of mechanical properties as physical 

biomarker for cell phenotyping.  

My work is to develop optical methods for studying cell mechanics. In Chapter 2 

and Chapter 3, I review the biological basis of cell mechanics and its properties as a 

whole cell. Chapter 3 also introduces biological significance of cell mechanics in disease 

development and other biological processes. Surface plasmon resonance microscopy 

based optical method has been applied to study intracellular motions and cell mechanical 

motion. This imaging method is label free and provides ultrafast imaging capability with 

extremely high sensitivity in detecting cell deformation. Chapter 4 demonstrates the 

application of surface plasmon resonance microscopy in studying intracellular 

transportation. I explored organelle transportation process using this imaging method and 

nanometer displacement step of motor protein was observed. Using this approach, I also 

observed a small membrane displacement induced by membrane potential 

(de)polarization (Chapter 5). The displacement is governed by the intrinsic mechanical 

property of the whole cell. The capability of tiny displacement probing on cell membrane 
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allows a direct imaging of action potential in neurons using this method (Chapter 6). 

Bright-field imaging was also employed for action potential imaging. Mechanical waves 

that accompany action potential were resolved (Chapter 7). I summarize the findings and 

discussed the future works in Chapter 8. 
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CHAPTER 2 BIOLOGICAL BASIS OF CELL MECHANICS 

Biofilaments and Motor Proteins 

Biofilaments 

Eukaryotic cells can form a three-dimensional protein scaffold, named 

cytoskeleton(Fletcher and Mullins 2010). Cytoskeleton plays the most critical role in 

maintaining the shape of eukaryotic cells, interacting with external mechanical stimuli 

and is involved in multiple cellular processes, such as cell division and movement. The 

main components of cytoskeleton are three types of biofilaments: actin filaments, 

intermediate filaments and microtubules, all of which are protein polymers composed of 

hundreds of protein subunits. 

Microfilaments and actins 

Microfilaments or actin filaments are the thinnest protein polymer structure 

among all three types. Microfilaments are universally found in eukaryotic cells. They are 

critical in regulating cell motility and interacting with external forces. The building block 

of the microfilaments is the actin monomer, a 42-kD protein in cytoplasm, whose 

concentration is extremely high. These proteins either exist as monomers, known as G-

actin (“G” for Globular), or dynamically form linear polymers, known as F-actin (“F” for 

filamentous). Each microfilament contains two interwined strands of subunits, whose 

thickness is about 6 nm. 

Actin filaments are polarized. The fast-growing end is denoted as the plus (+) end. 

Actin monomers nucleate at this end with the help of ATP. The other end is called the 

minus (-) end. F-actin dissembles with the help of other depolymerization proteins. 

Typically, these microfilaments are formed at the edge of eukaryotic cells. The dynamic 
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treadmilling process generates or retracts the force at the cell edge and control the cell 

edge movement during cell migration. Many other proteins, such as Acting-Related 

Protein-2/3 (Arp2/3) complex, determine the microfilament nucleation and cross linking, 

which plays a significant role in forming 3D network structures. The mass per unit length 

of actin filaments is about 16kD/nm. 

Intermediate filaments  

Intermediate filaments are thicker than microfilaments. They are composed of a 

family of proteins sharing similar secondary structure and features. Multiple types of 

intermediate filaments can be found in the same cell. Some intermediate filaments, such 

as neurofilaments, are exclusively expressed in certain cell types. The common secondary 

structure of intermediate filament monomer is the central α-helical rod domain, which is 

composed of four α-helix segments. The N and C terminals vary among intermediate 

filament proteins. Two intermediate filament monomers dimerize in parallel and form a 

dimer. The center α-helical rod domains of both monomers align together and form 

coiled coil during dimerization. Dimer is the building block of the intermediate filament, 

whose diameter is about 10 nm on average. Many building blocks bundle together to 

form a rope-like higher structure.  

Unlike microtubule and actin filaments, intermediate filament is non-polarized 

and does not involve treadmilling activity. However, intermediate filaments are still 

dynamic. The mass per unit length of intermediate filaments is about 35 kD/nm. This 

number varies depending on the filament type. The typical mass of neurofilaments is 

about 50 kD/nm per unit length. 
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Microtubules and tublins 

Microtubule is the thickest biofilaments among all three types(Howard and 

Hyman 2003). It is composed of two types of tubulin proteins, α- and β- tubulin. 

Heterodimer of these two proteins form a unit of 8 nm in length. These units assemble as 

a long linear polymer end-to-end, which is called protofilaments. Typically, thirteen long 

protofilaments form a hollow cylinder, called a microtubule. The outer diameter of 

formed microtubule is about 25 nm, while the inner diameter is about 12 nm. The α β 

tubulin dimer has a molecular weight of about 100 kD. The overall molecular mass per 

unit length of a microtubule is about 160 kD/nm.  

Similar to actin filaments, the microtubule is also polarized. The fast growing end 

is called the plus (+) end, which is terminated by the β-tubulin. The other end, the minus 

(-) end, is where the α-tubulin is exposed. In vivo, dimers nucleate at the plus end, while 

the minus end is generally anchored to the centrosome. Therefore, the plus end is 

typically dynamic. The conversion from growing to dissembling is called catastrophe, 

whereas the conversion from dissembling to synthesis is called rescue. Microtubules acts 

as tracks for motor proteins to transport organelles and cargos. They also provides solid 

support for maintaining the cell shape. Microtubules also participate in cell division and 

play important roles in regulating cell morphology. 

Motor proteins 

Molecular motors are one category of proteins that can generate motion or 

mechanical work. These motor proteins participate in many cellular processes. For 

example, F0F1ATP synthase, one type of motor protein, rotates and generates ATP based 
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on cross-membrane proton gradient. DNA polymerase, another motor protein, actively 

participates in DNA replication.  

Motor proteins are one specific family of molecular motors that move along 

cytoskeleton biofilaments. These proteins are involved in processes such as active 

transport of proteins, vesicles and organelles, muscle contraction, chromosome separation 

during cell division, and other cell motility functions. Deficiencies of these motor 

proteins are related to multiple diseases and syndromes. Three types of motor proteins 

have been discovered: myosin, kinesin and dynein. 

Actin motor – myosin 

Myosin is a superfamily of proteins that walks along the actin filaments. Myosin 

consumes energy from ATP hydrolysis and generates mechanical force along with 

protein configuration change. The successive configuration change and interaction of 

myosin to the actin induces the mechanical motion along the track. Myosin is specifically 

involved in actin-guided motion. Myosin proteins can be divided into 18 family classes. 

The characteristic feature of myosin includes three functional domains. (a) The head 

domain: The head domain is the actin binding site. The binding affinity is regulated by 

ATP and ADP. Myosin uses the energy from ATP and generates motion on the actin. (b) 

The tail domain: The tail domain is the site which interacts with the cargo molecules or 

other myosin. This domain is critical in regulating transportation behaviors. (c) The neck 

domain: The neck domain acts as a linker between the tail domain and head domain. It 

works as lever arm that transduces the mechanical force at the interface of head domain 

and actin track to the tail domain. 
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Myosin superfamily can be also separated into conventional and unconventional 

families. Conventional family is the myosin II family, which is highly expressed in 

muscle cells and responsible for muscle contraction. These myosin motors contain two 

heavy chains and four light chains. Heavy chains constitute the coiled coil structure in 

neck domain. Four light chains (two for each heavy chain) bind to the heavy chains at the 

neck of head domain, which can regulate the function of muscle contraction. 

Unconventional myosin families include those involved in cargo transportation in 

cytoplasm. Among them, two families, myosin V and myosin VI, are the most studied. 

Myosin V consists a dimer with two heavy chains in coiled-coil structure. The two heads 

successively step along the actin filaments to the plus end of the filament with 37 nm in 

size. Myosin V also contains a calmodulin binding domain at the head. One light chain, 

LC8, binds to the tail of heavy chain of the myosin. It stabilizes the structure rather than 

binds to the cargos. Myosin VI is another unconventional family of proteins that is 

involved in transportation inside cells. However, it travels towards the minus end of the 

actin filaments.   

Microtubule motors – kinesin and dynein 

Two types of motor proteins are involved in microtubule guided transportation: 

kinesin and dynein. Kinesin motors move in the anterograde direction towards the plus 

end of microtubule (to the axon tip in neuron transportation); dynein motors move in the 

retrograde direction towards the minus end of microtubule (to the soma in neuron 

transportation). 

Kinesin superfamily is composed of 14 protein families. Kinesin I family (KIF5) 

is the first discovered kinesin family in vitro. This protein family is also called 
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conventional kinesin, which is studied as a motor model for kinesin mechanics. The 

structure of kinesin I is similar to that of myosin mentioned earlier, which contains track-

binding head domains, long-stalk neck domains and cargo-carrying tail domain. In 

vertebrates, conventional kinesin motor is composed of two heavy chains and two light 

chains. Two heavy chains bind as a dimer, forming a long coiled-coil stalk neck, two tail 

regions and two globular heads. Two light chains interact with the tail regions and 

regulate the selection and recognition of cargos. In fact, three heavy chain genes and 

three light chain genes in vertebrates are involved in this tetramer formation. These genes 

combine in various permutations and functionally regulate the specific cargo 

transportation. The head domain successively binds to tubulins and generates motion 

along the microtubule. Each step is about 8 nm in length, which is similar to the length of 

each α β tubulin unit.  

Dynein is another superfamily of proteins involved in retrograde transportation on 

microtubules. Dynein is relatively less understood because it is difficult to express whole 

length dynein in other in vitro systems, due to its huge molecular weight. The structure of 

cytoplasmic dynein has been better studied. Each monomer dynein has a heavy chain, 

composing 6 AAA+ ATPase-like domains arranged as a ring. Four of the AAA+ domains 

play a role as the ATP hydrolysis site. The other two stabilize the structure. The heavy 

chain also forms small globular head domain, which mediates the binding to the tubulin 

structure. A coiled-coil structure is also involved in heavy chain structure, which 

facilitates the dimerization of two dynein as a functional unit. The neck and cargo-

binding region of cytoplasmic dynein is relatively complicated. It also includes one light 

chain, LC8, which regulates the cargo binding. Dimeric cytoplasmic dynein also takes 8-
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nm steps during movement. However, each individual motor domain of dynein dimer 

walks in a 16-nm-step manner. There are still debates on the dynamic pattern of 

cytoplasmic dynein motion. 

Biomembranes and Membrane Proteins 

Eukaryotic cells separate themselves from the environment solution by plasma 

membrane. Phospholipid bilayer, which contains many types of phospholipids, 

constitutes this physical barrier. Membrane proteins are embedded in this two-

dimensional liquid layer. They form lipid rafts or domains and actively participate in 

transducing external signals into the cell. Interaction between plasma membrane and 

membrane protein is also important in mechanosensing and mechanical signal 

transductions. 

Plasma membrane 

Plasma membrane has several features. On one hand, it is dynamic and 

viscoelastic. It forms a two-dimensional semi-fluidic plain, with lateral diffusion 

coefficient in the order of 10-12 m2/s. Phospholipids are involved in many dynamic 

motions such as trans-gauche isomerization, rotation, wobbling, as well as 

transmembrane flip-flop events. 

On the other hand, phospholipid bilayer is a Maxwell material. It has both viscous 

and elastic components(Evans and Hochmuth 1978). Its tension and viscosity depends on 

frequency. The relaxation time is at the level of tens of microseconds. The susceptibility 

of deformation to the force can be quantified by different types of moduli, including 

those related to compressibility (volume, area and thickness change), rigidity (in-plain 

shear or extension) or curvature elasticity (surface bending). Compared with compression 
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modulus, bending modulus of membrane is much smaller, which means that lipid 

membrane is more sensitive to the bending deformation. This property allows cells to 

perform bending-like motions in a low energy-cost manner, such as exocytosis, 

endocytosis and cell morphological manipulation (protrusion or repulsion). In eukaryotic 

cells, the intrinsic viscoelastic properties are governed by the cytoskeleton mechanics, 

which will be discussed later.  

Plasma membrane also serves as an electrical barrier for separating the inside of 

cells from the outside(Mosgaard, Zecchi et al. 2015). Bilayer of membrane can be 

electrically modelled as the combination of one parallel capacitor of lipid bilayer -Cm, 

and two layers of double layer capacitor - CD, at the interface of lipids to the solution in 

series. The capacitance of lipid bilayer is typically in the range of ~1 μF/cm2 for 

eukaryotic cells. Double layer capacitance can be quantified by 𝐶𝐷 = 𝜖𝑤𝜖0/𝐾𝐷, where 𝜖𝑤 

is relative permittivity of water, 𝐾𝐷 is Debye length, which is quantified as 𝐾𝐷 =

(𝜖𝑤𝜖0𝑘𝐵𝑇/2𝑧2𝑒0
2𝑛)1/2(𝑘𝐵, Boltzmann’s constant; 𝑒0, electron charge, 𝜖0, permittivity 

of free space, 𝑧, ion valence, 𝑛, ionic strength). In normal physiological condition, the 

double layer capacitance is much bigger than lipid bilayer capacitance. Therefore, most 

of the transmembrane potential drops on the lipid bilayer.  

Membrane proteins 

Membrane proteins are functional units that transduce extracellular signal into the 

cell and regulate the physiological functions. Membrane proteins compose of 20% of the 

type of proteins of a single cell.  

Similar to other proteins, membrane proteins undergo a dynamic conformational 

change when they bind to different stimuli or during events such as ion channel 
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open/close and ion transportation of membrane transporters. Binding of extracellular 

signal will also induce down-stream mechanical motion of membrane proteins, such as 

protein dimerization in Receptor Tyrosine Kinase bindings and G-protein release in G-

protein-coupled receptor (GPCR) signaling. The two-dimensional membrane supports 

mechanical movements of membrane proteins. This interface also enables cell unit 

function in communication and recognition with other cells, such as aligned connexins in 

electrical synapses and aligned pairs of receptors in immune synapse formation.  

The interplay between membrane protein and cell plasma membrane also plays a 

significant role(Phillips, Ursell et al. 2009). Membrane protein can help shape the plasma 

membrane mechanics. One example is the clathrin-regulated membrane budding and 

SNAP (Soluble NSF Attachment Protein) Receptor (SNARE) induced membrane 

fusion(McMahon and Gallop 2005). The incorporation of membrane protein into the lipid 

bilayer also induces changes in local membrane curvature, thickness and elasticity. Lipid 

bilayer can actively regulate cellular functions as well. The mechanical stress of the 

plasma membrane regulates membrane protein functions. Mechanosensitive ion channels 

are an extensively-studied model found in many organisms(Peyronnet, Tran et al. 2014). 

Local membrane tension or membrane curvature will directly induce the configuration 

change of the mechanosensitive ion channel, which further affect the gating of ions 

transfer cross the membrane. Recently, a piezoelectric protein, Piezo family protein, was 

found in mammalian cells and play a role in tension sensing in mechanoreceptors. 

Although the molecular mechanism of channel gating is still obscure, it indicates that 

direct mechanical sensing is important for cells in physiological conditions. 
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Extracellular Matrix and Cell-substrate Interaction 

Extracellular matrix (ECM) 

In multicellular organisms, extracellular matrix (ECM) molecules act as a support 

for cells and transduce force from one cell to another. ECM is involved in multiple 

cellular processes in physiological condition, such as cell growth, differentiation, 

migration, and regulatory roles in cell-cell communications and cancer progression. The 

molecular constitution of ECM depends on the multicellular structures. The main 

components include proteoglycans, polysaccharide, protein fibers, and other functional 

proteins. On the opposite side of extracellular matrix – inside the cells - a transmembrane 

protein, integrin, is the receptor sensing the extracellular force. Many extracellular 

proteins, such as collagen, fibronectin and laminin, contain integrin-recognition sites 

(such as RGD motif). The recognition causes a direct binding of cell-surface integrin to 

the extracellular matrix and transduces mechanical force into the cytoskeleton inside the 

cell. The cell thereby sense the force, amplifies the force and triggers downstream 

responses. Therefore, integrin works not only as a connection between the inside 

cytoskeleton and the outside ECM, but also functionally serves as a force sensor for the 

cell. 

Integrin and cell-substrate interaction 

Integrin is a heterodimer composed of α and β subunits. Several subtypes of α and 

β subunits can combine and form heterodimers. Integrin plays significant roles in cell 

mechanotrasduction. Together with other adapter proteins, such as talin, vinculin and 

actinin, integrin can form focal adhesions, which are large protein clusters allowing cells 

to anchor to the surface. Inside the cells, actin filaments connect to integrins and provide 
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the motion force. The focal adhesions dynamically assemble and disassemble, allowing 

cells to migrate on the surface with the support of the substrate. 

Dynamic interaction between cell and substrate allows the cell to migrate on the 

surface. The crawling process is also called cell locomotion. A simple mechanical model 

has been proposed in describing the process. The cell firstly protrudes at the leading edge 

through actin filament synthesis. The tip of the leading end finds the new location and 

forms the new focal adhesion. The posterior part of the cell detaches and old focal 

adhesions at the posterior part dissemble. Via this dynamic process, the cell migrates to a 

new location. 



 

15 

CHAPTER 3 MECHANICS OF THE CELL AND MECHANICAL CELL BIOLOGY 

The Whole Cell – Soft Materials and Fluids 

The composition of an individual cell is extremely complicated. A cell contains 

soft materials and fluids with a variety of compositions. The mechanics of a whole cell is 

mainly determined by the viscoelastic property of the cytoskeleton structure(Pourati, 

Maniotis et al. 1998). The cytoskeleton scaffold forms a three-dimensional network 

wrapped by the plasma membrane. This structure shapes the eukaryotic cell and 

determines the mechanical properties. The mechanics of cytoskeleton have been 

characterized by several methods(Trepat, Lenormand et al. 2008, Hoffman and Crocker 

2009). The findings show that cytoskeleton mechanics of all cell types share several 

properties. 

Power law relation of cell rheology 

Dynamic mechanical analysis using methods such as optical magnetic twisting 

cytometry (OMTC), atomic force microscopy (AFM) and optical tweezers indicates that 

the storage modulus (𝐺′) of the cell has a weak power-law relationship with the 

frequency, that is 𝐺′(𝑓) ∝ 𝑓𝛼, where 𝛼 is in the range of 0.1-0.2. This relationship spans 

the spectrum range from 0.01 Hz to 1kHz. The loss modulus (𝐺′′) of the cell follows a 

similar power law below frequency ~30 Hz. The dynamic modulus is given by 𝐺∗(𝑓) =

𝐺′ + 𝑖𝐺′′. The ratio of the loss modulus and storage modulus, known as hysteresivity, 

𝜂 = 𝐺′′/𝐺′, remains constant between 0.2 and 0.4 below 30 Hz. This indicates that below 

30 Hz, the cell is mainly elastic. 𝐺′′ shows a much higher power coefficient above 30 Hz, 

and starts to dominate over storage modulus above hundreds of Hertz. This suggests that 

at a high frequency range, the viscous property of the cell becomes dominant.  
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Subdiffusive and superdiffusive motion of particle  

Quantification of particle motions inside cells or embedded in the cytoskeleton 

can provide valuable information on cell mechanical properties. To quantify the motion, 

mean square displacement (MSD) of the particle vs. various time intervals Δ𝑡 is 

calculated. Their relation is 𝑀𝑆𝐷 = 𝐷Δ𝑡𝛽, where 𝛽 is the power coefficient. For particles 

undergoing pure Brownian motion, 𝛽 = 1, which means the impulsive forces are 

randomly applied and the direction of the next step and the previous step are 

uncorrelated. 𝛽 > 1 indicates that the forces in time series has positive correlation, which 

means the next step is likely to be in the same direction as the previous step. This regime 

is also called superdiffusive region. For the 𝛽 < 1 case, the correlation is in the opposite 

way, which means that the next step is likely to be in the opposite direction from the 

previous step. This is also called subdiffusive. Particles inside cells or attached to the 

cytoskeleton have a typical 𝛽 = 0.2 for time interval below 1 s and a 𝛽 = 1.6 for large 

Δ𝑡. The transition of 𝛽 = 1 is in the order of 1 s. This analysis demonstrates the 

complexity of the motions inside cells. 

Cell Mechanics and Biological Functions 

Cell mechanics and oncology 

The ability of cancer cells to migrate is important for cancer metastasis(Wirtz, 

Konstantopoulos et al. 2011). Cell migration is involved in several processes of 

metastasis, from leaving the primary tumor to the localizing in the secondary tumor. A 

tumor cell first detaches from the primary tumor. It migrates to the blood vessels via 

attaching to the basal membrane and intravasating into the blood. It then circulates in the 

blood system as circulating tumor cell (CTC). After that, the cell attaches to blood vessel 
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wall again and extravasates to a new location. Finally it grows into a secondary tumor. 

During these processes, the mechanical property of the cell and its interaction with 

extracellular environment determines the ability of cell migration. The capability of 

cancer cell to squeeze into the blood vessel by crossing the basal membrane is also 

related to the cell deformation capability. Typically, mechanical probing measurement 

shows that a tumor cell is softer than a normal cell(Cross, Jin et al. 2007, Plodinec, 

Loparic et al. 2012).  

Cancer cells at different stages of progression may have different mechanical 

properties. Cell mechanics have potential to become biomarkers for cancer diagnosis and 

stratification. Therefore, the intrinsic mechanical signature of cells can also be used as 

phenotypic readout of cancer progression. High-throughput mechanical probing methods, 

such as deformability cytometry, have been developed to identify tumor 

populations(Darling and Di Carlo 2015, Otto, Rosendahl et al. 2015). Another application 

is external manipulation of cell mechanics. Modulating the extracellular mechanical 

environment and targeting the intracellular mechanical-related machinery are both 

helpful in controlling the metastasis capability. By targeting myosin, researchers have 

developed an alternative approach to cancer treatment to suppress metastasis(Surcel, Ng 

et al. 2015). 

Cell mechanics and stem cells 

Extensive studies have revealed that external mechanical stimuli can regulate the 

fate of stem cells, such as muscle satellite cells and hematopoietic stem cells. Stem cells 

can remember mechanical cues, for instance, the stiffness, from the extracellular 

matrix(Yang, Tibbitt et al. 2014). These physical properties can influence the localization 
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of transcription factors, regulate gene expressions and affect the lineage commitment of 

stem cells(Yang, Tibbitt et al. 2014). Mechanical environment can also regulate cell 

reprogramming(Downing, Soto et al. 2013, Caiazzo, Okawa et al. 2016). 
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CHAPTER 4 LABEL-FREE TRACKING OF SINGLE ORGANELLE 

TRANSPORTATION IN CELLS WITH NANOMETER PRECISION USING A 

PLASMONIC IMAGING TECHNIQUE 

Imaging and tracking of nano- and micrometer-sized organelles in cells with 

nanometer precision is crucial for understanding cellular behaviors at the molecular scale. 

Because of the fast intracellular dynamic processes, the imaging and tracking method 

must also be fast. In addition, to ensure that the observed dynamics is relevant to the 

native functions, it is critical to keep the cells under their native states. Here, a 

plasmonics-based imaging technique is demonstrated for studying the dynamics of 

organelles in 3D with high localization precision (5 nm) and temporal (10 ms) resolution. 

The technique is label-free and can track subcellular structures in the native state of the 

cells. Using the technique, nanometer steps of organelle (e.g., mitochondria) 

transportation are observed along neurite microtubules in primary neurons, and the 3D 

structure of neurite microtubule bundles is reconstructed at the nanometer scale from the 

tracks of the moving organelles. 
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Introduction 

Imaging and tracking fast intracellular dynamic processes with nanometer 

precision is critical to understand the underlying molecular processes of many biological 

phenomena, including cell growth, mass transportation, signaling transduction and cell 

migration(Hirokawa and Takemura 2005). Myriad intracellular events are well 

orchestrated at the molecular level within the tiny volume of a single cell. Aberrant 

regulations cause various developmental and neurodegenerative diseases(De Vos, 

Grierson et al. 2008, Sheng and Cai 2012). Despite the great need, tracking the 

intracellular dynamics remains a difficult challenge. A technique for this task requires 

high spatial localization accuracy and temporal resolution. It should also be non-invasive 

in order to minimize perturbations to the native dynamic processes under study. To date, 

the most popular method is fluorescence imaging techniques(Yildiz, Forkey et al. 2003, 

Huang, Wang et al. 2008, Huang, Bates et al. 2009, Patterson, Davidson et al. 2010, 

Schindler, Chen et al. 2014). Although powerful, fluorescence emission is relatively 

weak, which requires time to collect sufficient photons, thus limiting the imaging speed. 

Moreover, labeling of living systems with fluorescent tags may disturb their native 

cellular processes and affect the original physiological functions.  

To overcome these drawbacks, label-free imaging techniques have been employed 

for imaging and tracking. Previous studies on unstained lipid droplet demonstrated a 

nonperturbative tracking strategy using coherent anti-Stokes Raman scattering (CARS) 

microscopy and stimulated Raman scattering (SRS) microscopy(Nan, Potma et al. 2006, 

Dou, Zhang et al. 2012). Other nonlinear optical techniques, such as second harmonic 

generation (SHG) microscopy and third harmonic generation (THG) microscopy, have 
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also been applied for studying dynamic trafficking of lipid bodies(Debarre, Supatto et al. 

2006). By combining with multi-photon excited native fluorescence, these multimodal 

methods showed a powerful imaging capability of studying intrinsic metabolic signals in 

tissue(Zipfel, Williams et al. 2003). However, the imaging rates of these techniques are 

limited for studying fast dynamic processes.(Jungst, Winterhalder et al. 2011) 

Surface plasmon resonance (SPR) is a surface sensing technique widely used in 

life sciences and pharmaceutical discovery. The extremely high sensitivity to mass 

density changes on the surface makes SPR an indispensable technique in assessing 

protein-protein interaction and studying binding kinetics. Recently, SPR microscopy has 

been demonstrated in the total internal reflection (TIR) configuration(Huang, Yu et al. 

2007). This plasmonics-based microscopy technique provides superior spatial resolution, 

allowing for studying protein binding kinetics(Wang, Yang et al. 2012). However, 

tracking of subcellular organelles with high spatial and temporal resolution has not been 

shown previously. 

Here, I demonstrate tracking of single organelle dynamics in cells with this 

plasmonics-based imaging technique(Huang, Yu et al. 2007, Wang, Shan et al. 2010, 

Shan, Díez-Pérez et al. 2012, Wang, Yang et al. 2012). The technique excites surface 

plasmonic waves on a gold surface with light, and the presence of an organelle on or near 

the surface scatters the plasmonic waves (Figure 4-3 a), leading to a high contrast image 

of the organelle without labels. By analyzing the high contrast plasmonic images over 

time, I have tracked intracellular dynamics in three dimensions with nanometer 

localization precision and millisecond temporal resolution, and observed stepwise 

movement of the organelles (mitochondria) that are originated from the motor proteins.  
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Materials and Methods 

Cell culture and fluorescence staining 

Primary rat hippocampus neurons (Life Technologies, Carlsbad, CA, USA) were 

recovered from cryopreservation and seeded on poly-L-lysine (Trevigen, Gaithersburg, 

MD, USA) coated sensor chip surface at ~105 cells/cm2. After incubation in a humidified 

atmosphere with 5% CO2 at 37°C for 4~8 days, cells attached to the surface and were 

ready for experiment. Neurons were cultured in neurobasal medium (Life Technologies, 

Carlsbad, CA, USA) with B-27® supplement (Life Technologies, Carlsbad, CA, USA) 

and GlutaMAX™ (Life Technologies, Carlsbad, CA, USA). Mitochondria were stained 

with MitoTracker® Orange CMTMRos (Life Technologies, Carlsbad, CA, USA) for 

observations. 

Plasmonic imaging 

An inverted microscope (X81, Olympus, Shinjuku, Tokyo, Japan) with total 

internal reflection (TIR) configuration illumination was implemented in the plasmonic 

imaging system. P-polarized light beam (~5 mW) from a 680 nm fiber-coupled 

superluminescent diode (SLD) (Qphotonics LLC, Ann Arber, MI, USA) was introduced 

into the microscope via a TIR fluorescence tube lens (TIRF module, Olympus, Shinjuku, 

Tokyo, Japan) and a 50/50 beam splitter (Thorlabs, Newton, New Jersey, USA). The 

reflected light from the gold surface was detected by a CMOS camera (ORCA-Flash 4.0, 

Hamamatsu Photonics, Hamamatsu, Japan) with 4M pixels and a pixel size of 6.5 μm. A 

total of 160 x optical zoom was achieved by using a high numeric aperture 100 x 

objective combined with a 1.6 x magnification changer. Sensor chips were prepared by 

coating BK-7 glass coverslips with a ~1.5 nm chromium layer and the followed with a 
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~47 nm gold layer. To remove contaminations, each chip was rinsed with deionized 

water and ethanol followed by hydrogen-flame annealing. Before cell seeding, gold 

surface was modified with poly-L-lysine (5 μg/ml) solution for ~1 hour in a Flexi-Perm 

(Sarstedt, Newton, NC, USA) cell culture chamber attached on chip surface. For 

intracellular organelle observation, full resolution (2048 x 2048 px) image sequences at a 

video rate (25 fps) or a fast rate (100 fps) were either recorded in the computer memory 

and then saved to disk, or directly streamed into a solid-state drive (SSD) array.  

Organelle localization and tracking 

A custom MATLAB (Natick, MA, USA) program was used to accurately localize 

the mass centroid of the organelle. 2-D Gaussian function was employed for precise 

positioning throughout the whole image sequences. Before fitting, images were spatially 

filtered with 7 x 7 pixel average kernel. Local plasmonic intensity was obtained by 

calculating the mean value of the center 13 x 17 pixel region.  

Organelle step analysis 

When a target organelle moved laterally during the recording, a negative intensity 

region appeared after the first frame was subtracted from the whole image sequences. 

This region was used as a reference to evaluate the system noise and control the quality 

of stepping analysis in each case. To analyze the stepwise organelle movements, the 

signal drift was corrected by low-pass filtering of the recorded images in the reference 

area. Corrected x-y trajectory was then aligned along the principal axis of motion. On-

axis (along the principal axis of motion) and off-axis (perpendicular to the principal axis 

of motion) components were assigned to the trajectory. The direction of the principal axis 

was determined by minimizing the off-axis distance variation over the entire trace.  
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For step detection, a step-finding algorithm developed by Drs. Jacob 

Kerssemakers and Marileen Dogterom was employed to analyze the on-axis 

component(Kerssemakers, Munteanu et al. 2006). This algorithm is accomplished by 

least-square fitting using a series of amplitude-undetermined steps. High ratio of χ2
fit and 

χ2
counter-fit indicated the real steps in the trajectory. To unbiasedly analyze the step size, I 

applied Chung-Kennedy filtering procedure to single on-axis trajectory(Chung and 

Kennedy 1991). This filter uses forward and backward moving average algorithm to 

preserve the step feature while removing noise. This algorithm has been widely used to 

reduce noise for quantitative analysis of biological events(Nan, Sims et al. 2005, Qiu, 

Derr et al. 2012). Pair-wised histogram of filtered trace was further implemented for 

statistical analysis and step size identification. For every trajectory, a reference region 

was fitted with 2D Gaussian function, and long-term drift was corrected in order to 

characterize the positioning inaccuracy due to the system noise over time.  

Microtubule 3D structure mapping 

Sequential x-y trajectories of organelle were translated into net displacement by 

pixelated distance calculation according to their common tracks. Intensity and position 

were determined by Gaussian fitting along the displacement trajectory. Height of the 

microtubule bundle can be calculated from the plasmonic image intensity.  

Z-Axis Displacement Calculation and Localization Accuracy Evaluation 

Z-axis displacement was calculated from local intensity change and calibrated 

decay constant of plasmonic intensity. Intensity profile along z-axis can be expressed as 

exponential decay equation: 𝐼∆𝑧 = 𝐼0 exp
∆𝑧

𝜆
, where 𝐼0 is the intensity of reference point, 

Δ𝑧 is the relative height change along z-axis of reference point, 𝐼∆𝑧 is the intensity value 
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at height Δ𝑧, 𝜆 is the decay constant. I calibrated the decay constant using different 

thickness of CYTOP coating surface with particles on top (Figure 4-1). A decay constant 

of 95.8 nm was achieved. Based on the local plasmonic intensity and calibrated decay 

constant, I can extract the relative height information ∆𝑧 based on the equation. In Figure 

4-9d, the maximum intensity point was used as reference for ∆𝑧 calculation. To evaluate 

the z-axis localization accuracy, I mapped the intensity variations into displacement by 

the same procedure as described above. Generally, for each individual trajectory, a 

variation of 100 intensity unit (a.u.) was achieved (Figure 4-9c and Figure 4-7d as typical 

trajectories). After translating the intensity into z-axis displacement, I estimated a 

localization accuracy of ~5 nm in the z-direction.  

Figure 4-1 Decay Length Calibration Using CYTOP Coating 

Plasmonic intensity profile with different particle-substrate distance. Nanometer z-axis 

displacement was controlled by thin film coating of CYTOP (refractive index: 1.34) 

with different thickness. Red curve shows the fitting result using exponential decay 

function with decay constant of 95.8 nm. 
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Evaluation of Localization Accuracy in X and Y-Directions 

The shadow region was used for evaluating of localization accuracy (Figure 4-2a). 

The localization accuracy was determined by 2D Gaussian fitting of this negative region 

over whole video clip. Figure 4-2b  shows the control region fitting of the trajectory of 

Figure 4-8over 10 s. Standard deviation of 6.1 nm in x direction and 4.3 nm in y direction 

was observed in this case. Generally, a standard deviation of about 5 nm was achieved in 

both x and y directions of this plasmonic tracking method. The noise levels on both 

directions are comparable.  

Figure 4-2 Negative Control Region and Tracking Accuracy Identification 

(a) Time-lapse plasmonic images of moving organelle after first frame subtraction. 

Yellow arrow indicates the moving organelle over time. Green arrow indicates the 

negative shadow region, which is formed after organelle leave. (b) Fitting position in 

negative control region over time. Histograms show the distribution of fitting position in 

x and y direction. Scale bar: (a) 500 nm. 
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Data analysis 

All data analysis were carried out by using custom-written MATLAB scripts 

and/or Image J (Schneider, Rasband et al. 2012). Multiple Kymograph Image J plugin 

was used in moving organelle visualization.   
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Results and Discussion 

Plasmonic imaging of intracellular organelle dynamics in live cell 

Figure 4-3b and c show a bright field and corresponding plasmonic images of a 

live cell. Compared to the traditional bright field image (b), the plasmonic image (c) 

shows a much higher image contrast. This high contrast imaging capability allows for 

tracking of individual organelles inside a cell. In order to focus on the dynamics of the 

organelles, I subtract the first frame from the subsequent frames. The time-differential 

images reveal only moving organelles, and thus suppressing non-moving objects in the. 

Figure 4-3d is such a differential image, which shows several bright spots as marked by 

white arrows. Zooming-in of a lower left region of the image reveals more clearly the 

bright spots, each with a “V” shape tail along the propagation direction of the surface 

plasmonic wave (Figure 4-3e). The tail is due to the scattering of the surface plasmonic 

wave by the organelles, which also shows up in the plasmonic images of nanoparticles as 

reported previously by our group (Shan, Diez-Perez et al. 2012).  
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To identify the organelles, I stained the cell with a fluorescent dye, 

MitoTracker®, which targets at mitochondria. Figure 4-3f is a fluorescent image of the 

same region as the time-differential plasmonic image shown in Figure 4-3e. The 

 

       

        

    

    

  

 

  

  

 

   

   

 

 

 

  

Figure 4-3 Plasmonic Imaging of Intracellular Organelle Dynamics in Live Cell.  

(a) Schematic diagram of plasmonic imaging setup for imaging intracellular processes. 

(b, c) Transmitted (b) and plasmonic (c) images of single SH-EP1 cell. (d) A 

representative image of intracellular organelles after subtracting the first frame, where 

the white arrows indicate the intracellular organelles. (e, f) Zoom-in images of another 

plasmonic image after subtracting the first frame (e) and epi-fluorescence (f) labeled with 

MitoTracker® in region marked by orange boxes in (d). Red arrows indicate common 

features of plasmonic images and fluorescence. Blue arrows indicate fluorescence-only 

features. Note the blurry of the fluorescence image of (f) is affected by the gold film. 

Scale bar: (b-d) 25 μm; (e, f) 5 μm. 
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organelles revealed in the plasmonic image match well with those in the fluorescent 

image (Figure 4-4), which indicates that the features tracked by the plasmonic imaging 

technique are mitochondria. However, some mitochondria in the fluorescent image do not 

show up in the plasmonic image, which is probably due to that they are located outside of 

the evanescent field associated with the plasmonic waves. In addition to dot-like 

mitochondria, I also observed elongated ones. Figure 4-6 shows two mitochondria sliding 

on the same track, each has a length of ~1.5 μm. Since mitochondria are the largest and 

 

 

 

 

 
 

  

  

  

               

            

                

            

Figure 4-4 Overlay of Plasmonic and Fluorescent Images 

(a) Differential plasmonic image of moving mitochondria. (b) Fluorescent image 

of mitochondria stained with MitoTracker. (c) Overly of plasmonic and 

fluorescent images. White circle shows the overlayed features in both plasmonic 

and fluorescent images. Scale bar: (a-c) 5 μm 



 

31 

most abundant organelles in cell, I expected most of the features revealed in plasmonic 

image are from mitochondria.  

Mitochondria are essential organelles responsible for energy production and many 

other cellular processes, including cell apoptosis and aging(Chan 2006, Lin and Beal 

2006). Their trafficking and distribution are critical for local energy supply in distal 

structures, such as axons and dendrites in neurons. Various neurodegenerative diseases 

are related to inappropriate mitochondrial trafficking(De Vos, Grierson et al. 2008, Chen 
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Figure 4-5 Plasmonic Tracking of Intracellular Organelle Dynamics in Live Cell.  

Transmitted (a) and plasmonic (b) images of primary hippocampus neuron obtained 

by the plasmonic imaging system. (c) Snapshots of plasmonic images of the 

movement of two intracellular organelles along the neurite structure (marked as 

dashed line) in region marked by a dashed box in (b). (d) Kymograph of two 

organelles in (c). Scale bar: (a), (b), 10 μm; (c) 3 μm; (d) Distance: 3 μm; Time: 5 s. 
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and Chan 2009). Plasmonic imaging provides a label-free approach to study mitochondria 

in native state, eliminating complications with dye-labeling process, which could hinder 

the respiratory function of mitochondria. To explore the long-range axonal transport, I 

studied the organelle dynamics in primary neurons. The plasmonic imaging of the 

neurons has superior image contrast, compared to the traditional bright field optical 

images, allowing me to resolve clearly minor structures, such as axons and dendrites 

(Figure 4-5a and Figure 4-5b). It also allows me to observe confined organelle 

transportation in the neurite structure. Figure 4-5c shows several snapshots of the time-

differential plasmonic images of two organelles marked with arrows moving from upper 

left towards the lower right of the frame. The moving tracks of the two organelles (the 

yellow dashed line in Figure 4-5c) follow well the neurite structure as shown in the 

plasmonic image marked by a dashed square box in Figure 4-5b. The dynamics of the 

two organelles moving along the neurite structure is described by plotting the distance vs. 

time, or known as kymographs in Figure 4-5d. The kymographs provide detailed 

information about the motion of the organelles. For example, the local slope is the 

velocity of the moving organelle. These examples demonstrate a label-free imaging of 

single organelle dynamics in cells. 
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Observation of organelle stepping by fast tracking 

I show below that it is also possible to accurately track the movement of the 

organelles with the plasmonic imaging capability. As shown in Figure 4-3e, the 

plasmonic image of an organelle displays a V-shape diffraction pattern with a bright spot 

at the apex of the “V” (Figure 4-7a,b). The bright spot reflects the center of mass of the 

organelle. By fitting the bright spot with a 2D Gaussian distribution function, I located 

the position of the organelle, and tracked its transportation by following the position over 

time (Figure 4-7c,d).  

Figure 4-6 Elongated Mitochondria  

(a-d) Plasmonic images of two elongated mitochondria moving along the same track 

over time. Yellow arrow indicates the first mitochondrion. Blue arrow indicates the 

second mitochondrion. (e) Kymograph of these two mitochondria on track showing as 

dashed green line in (a). Scale bar: (a-d) 2 μm (e) Distance: 2 μm; Time: 5 s. 
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Recent studies have revealed that motor proteins move along their tracks in a 

stepwise manner by alternating their track-binding motor domain(Vale 2003, Yildiz, 

Forkey et al. 2003, Yildiz, Tomishige et al. 2004, Kural, Kim et al. 2005, Nan, Sims et al. 

2005, Nan, Potma et al. 2006, Cui, Wu et al. 2007, Nan, Sims et al. 2008, Sims and Xie 

2009, DeWitt, Chang et al. 2012, Gu, Sun et al. 2012). This microtubule-depended 

motion is a universal model for organelle transporting, including mitochondria, lipid 

 

    

  

  

Figure 4-7 Fast Tracking Intracellular Organelle by 2D Gaussian Fitting.  

(a) A typical plasmonic image of individual organelle. (b) Center region of the organelle 

in (a). (c) 3D plot of plasmonic intensity of organelle in (a). (d) A represented trace of 

one organelle movement after tracking by 2D Gaussian fitting. Scale bar: (a) 3 μm; (b) 

200 nm. 
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droplets, endosomes, and lysosomes. Most of these previous works are based on labeling 

the motor proteins or organelles with fluorescent tags, which may disturb the native 

behavior of the motor proteins. In fact, evidence has shown that changing in the load of 

the motor proteins may alter the stepping sizes(Mallik, Carter et al. 2004), which 

underscores the importance of non-invasive and label-free plasmonic imaging and 

tracking of organelle transportation. Additionally, plasmonic imaging intensity is rather 

bright, compared to fluorescent imaging, making it possible to track fast movement of 

organelles.  
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To track the fast organelle transportation dynamics, I recorded moving organelles 

in neurites using a frame rate up to 100 frames per second. Faster frame rates are also 

possible because the plasmonic imaging measures the scattering of the plasmonic waves 

by the organelles, which is sufficiently strong and can be detected with a fast camera. 
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Figure 4-8 Stepping Observation of Single Organelle.  

(a) Green line: the trajectory of an organelle moving in cell over time. Red line: fitting of 

the trajectory with a stepwise function. Upper left inset:  Trajectory of a moving 

organelle in x-y plane. Bottom right: zoom in of the trajectory between time 1.7 s and 3 s. 

(b) Pair-wised histogram of organelle displacement, showing discrete peaks with a 

separation of 16 nm. Scale bar: (a) Space between two horizontal grid line: 16 nm. Top 

inset: 400 nm (b) space between two vertical line: 16 nm. 
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Figure 4-8a shows the displacement of an organelle determined with the plasmonic 

tracking method over time. Stepwise changes in the displacement with a step size of ~16 

nm can be identified (inset of lower right of Figure 4-8a). This step size is consistent with 

previous reports for microtubule-based movement of dynein(Mallik, Carter et al. 2004, 

Nan, Sims et al. 2005, Rai, Rai et al. 2013). Pair-wise statistical analysis of the 

displacement reveal pronounced peaks separated with 16 nm intervals, which further 

confirms the stepwise transportation of the organelles observed here (Figure 4-8b). Note 

that both 8 nm and 16 nm step sizes have been reported in kinesin and dynein driven 

motion(Yildiz, Tomishige et al. 2004, Reck-Peterson, Yildiz et al. 2006). The absence of 

the 8 nm-steps in the present work might be due to the complexity of organelle behavior 

in native environment. 

In addition to accurate tracking of the organelle displacement laterally (x-y or the 

image plane), the plasmonic imaging technique can track the organelle displacement 

vertically (z-direction). This is because the evanescent field associated with the surface 

plasmonic waves decays exponentially from the surface into the solution phase, and 

consequently, the plasmonic imaging intensity is also an exponential function of the 

vertical position (z displacement) of the organelle. I experimentally verified the z-axis 

decay constant by measuring the imaging intensity of small particles placed at various 

distances from the gold surface (Figure 4-1). The measured decay constant (95.8 nm) is 

consistent with simulation result using multiple layer model.(Shan, Huang et al. 2009, 

Shan, Wang et al. 2010, Shan, Fang et al. 2014) From the measured plasmonic imaging 

intensity change, and the decay constant, I was able to determine the z component of the 

displacement with high accuracy. The capability of accurate tracking in z direction is not 
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available for the conventional fluorescence-based imaging method, which makes the 

present plasmonic tracking method unique for studying the dynamics of subcellular 

organelles in 3D. 

Three-dimensional mapping of microtubule bundle 

To obtain structural information of microtubules, I monitored the movement of 

single organelles back and forth along a section of a neurite fiber (Figure 4-9a). 

Kymographs of three different recordings are plotted in Figure 4-9b, which show 

different movements of the organelle along the same microtubule. The plasmonic 
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Figure 4-9 3D Mapping of Microtubule Structure by Single Organelle Tracking.  

(a) Trajectory of moving organelle in x-y plane. (b) Kymograph of three different runs 

of the same organelle. Vertical direction: time. Horizontal direction: distance. (c) 

Plasmonic image intensity variation of an organelle along its track. (d) 3D structure of 

microtubule bundle of the region highlighted with yellow shade in (c). Scale bar: (a) 1 

μm (b) Time: 5 s; Distance: 2 μm. 
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imaging intensity of the organelle is plotted against the net displacement along the neurite 

fiber in Figure 4-9c, which reveals a large variation of the intensity along the fiber. The 

patterns of the intensity variation for repeated recordings of the organelle moving back 

and forth along the fiber are similar, which indicates that the plasmonic intensity depends 

mainly on the location along the fiber. I thus believe that the observed variation in the 

plasmonic imaging intensity of the organelle was due to the local variation in the distance 

between the microtubule and the surface. This z-position information, along with the x 

and y positions, allowed me to extract the 3D structure of the microtubule from the 

plasmonic images. Figure 4-9d shows the extracted 3D structure of a section of 

microtubule bundle.  

I evaluated the accuracy of displacement tracking in x-y directions by Gaussian 

fitting of the negative shadow region. The standard deviation in x-y direction is about 5 

nm (Figure 4-2), which is sufficient for resolving a 16 nm step of the motor proteins. To 

further validate the observation of the 16 nm step in the pair-wise histogram analysis and 

eliminate the possible artificial measurement errors, I performed same analysis procedure 

to a step-exclusive ramp signal with similar noise. I did not observe obvious steps (Figure 

4-10). The accuracy of displacement tracking z-direction was determined from the 

plasmonic imaging intensity noise, which corresponds to an accuracy of ~ 5nm. Noise 

from camera and light source limited the tracking accuracy. It can be fundamentally 

improved by using ultrafast camera with high-power light source and averaging over 

frames. The temporal resolution of present study is 10 ms, limited by the frame rate of the 

camera used in the experiment. This temporal resolution compares favorably with the 
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fluorescence-based method, and much faster frame-camera could be used to acquire 

plasmonic images, which would allow for even faster tracking speed. 

  

Figure 4-10 Simulated Ramp Signal with Similar Noise Level 

(a) Light red line: simulated ramp signal with similar noise level as in negative control region 

over time. Red line: simulated signal after Chung-Kennedy filtering procedure. Inset: zoom-in 

signals from 1.7 s to 3s. (b) Pairwised histogram of simulated signal after Chung-Kennedy 

filtering. No peaks can be observed. Scale bar: (a) Distance between two horizontal grid line: 

16 nm. (b) Distance between two vertical lines: 16 nm. 
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Conclusion 

In conclusion, I have demonstrated a plasmonic imaging technique for tracking 

single organelle dynamics with nanometer precision. The scattering of the surface 

plasmonic waves by organelles creates high contrast images of the organelles, allowing 

for tracking of organelle dynamics with 5 nm accuracy, and ms-time resolution. 

Compared to fluorescent tracking techniques, the present plasmonic imaging method is 

label-free, fast, and provides accurate position information in all the three dimensions. 

Using the plasmonic tracking technique, I have successfully observed stepwise 

transportation of organelles in cell native state, providing molecular-scaled information 

of the motor proteins behind the organelle transportation. From the tracks of the 

individual organelles, I have further extracted the 3D structure of microtubule bundles in 

live cells. I anticipate the plasmonic imaging technique provide a powerful new tool for 

quantitative analysis of intracellular dynamic in live cells. 
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CHAPTER 5 VISUALIZING SUBCELLULAR ELECTROMECHANICAL 

DEFORMATION USING PLASMON-BASED DISPLACEMENT MICROSOCOPY 

(PLADIM) 

Thermodynamics predicts that potential change is always accompanied with 

mechanical deformation. In mammalian cells, membrane potential depolarization is 

associated with subtle cellular deformation. This anisotropic mechanical response plays a 

significant role in regulating action potential firing in neurons and controls the 

mechanosensitive ion channels. However, methods for probing this nanometer to sub-

nanometer scale deformation are limited. Scanning probe and optical beam can provide 

accurate displacement measurement; however, they are insufficient to resolve 

heterogeneous responses within single cells. Here, I provided a plasmon-based imaging 

method for visualizing heterogeneous subcellular displacement accompanied with 

electrical stimulation. This method is ultrasensitive to the deformation, and can map the 

deformation amplitude and direction down to subcellular level. Using this technique, for 

the first time, I comprehensively characterized electromechanical coupling of mammalian 

cells, and revealed a bidirectional deformation mode inside cells. Spectrum analysis 

further raveled an elastic behavior during cell deforming from Hertz to hundred Hertz 

range, which was mainly determined by mechanical property of cytoplasm. I also 

examined the effect of mechanical perturbation by depolarizing actin fibers. A significant 

directional phase shift was observed. I expect this imaging method will provide new 

approach for quantifying mechanical responses. This work will also shed light on the 

quantitative studies in mechanobiology. 
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Introduction 

Electricity is one of the fundamental driving forces in biological systems(Hodgkin 

and Huxley 1952). It causes mechanical responses in various spatiotemporal aspects, 

such as intermolecular interactions induced by electrostatic forces(Leckband 2000) and 

structural changes in voltage-gated ion channels(Bezanilla 2008). The electromechanical 

coupling effect is also the basic machinery for heart cell beating and auditory sensing of 

hair cells.  

Cellular deformation accompanied with membrane depolarization in mammalian 

cells has been recently resolved using atomic force microscopy (AFM)(Zhang, Keleshian 

et al. 2001). The nanometer scale displacement was physically predicted from 

thermodynamic Lippmann equation that surface tension changes proportionally with 

membrane potential. This universal mechanical force is pivotal in regulating neuron 

action potential firing and controlling mechanical gating at molecular level(Mueller and 

Tyler 2014). However, methods for quantifying this electromechanical responses is 

limited. AFM provides an accurate measurement on cellular displacement, but it lacks 

spatial resolution(Zhang, Keleshian et al. 2001). Moreover, to measure cellular 

displacement, a close contact to the cell of AFM tip is required. This causes the indention 

in the cell body, which might bias the measurement and cannot reflect the real 

mechanical response under cell native state. Other probing methods, including 

piezoelectric nanoribbon transducer(Nguyen, Deshmukh et al. 2012) and optical methods, 

such as spectral-domain optical coherence phase microscopy (SD-OCT) have also been 

applied for deformation measurement(Akkin, Joo et al. 2007). They are either one-

location measurement or whole cell measurement, which are insufficient to resolve 
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subcellular responses. Quantitative phase microscopy has been employed recently(Oh, 

Fang-Yen et al. 2012). This label-free method provides imaging capability. However, 

quantitative information in subcellular level has not been systematically characterized 

yet. 

Here, I demonstrated a plasmon-based imaging method that can accurately 

quantify the sub-nanometer cell displacement. Combined with ultrafast camera, this 

method provided a broad bandwidth measurement capability for displacement 

quantification. Using this technique, I systematically characterized the electromechanical 

property of cells, and revealed a heterogeneous subcellular response in both deformation 

magnitude and movement direction.  
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Materials and Methods 

Cell culture  

Wildtype HEK293T cell line (ATCC) was seeded on fibronectin (Sigma) coated 

gold film one day before the experiment. Cells were cultured in DMEM (Lonza) medium 

with 10% FBS (Life Technologies) according to user’s manual from ATCC. After 

overnight incubation in 5% CO2 humidified atmosphere at 37°C, cells attached to the 

sensor surface and were ready for experiment.  

Electrophysiology  

Cultured cells were recorded at room temperature in whole-cell configuration 

using Axopatch 200B system (Axon Instruments). Membrane potential was modulated 

sinusoidally from -60 mV to 140 mV in the voltage-clamp mode. Electrical current was 

simultaneously recorded. Glass micropipettes were pulled using a flaming puller (P-97, 

Sutter Instrument, CA). Intracellular recording solution containing 10 mM NaCl, 135 

mM K-gluconate, 10 mM HEPES, 2 mM MgCl2, 2 mM Mg-ATP and 1 mM EGTA (pH 

7.4) was injected to the tip of pulled micropipettes. Micropipettes with typical resistance 

3-10 MΩ was used for recording. The extracellular recording solution contains 135 mM 

NaCl, 5 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM CaCl2 and 10 mM glucose at 

pH 7.4. To depolymerize the actin structure, cells were incubated at 37 °C for 30 min in 

10 μM cytochalasin D (CD)-containing media before measurements. Control cells were 

maintained in the normal culture media. Experiments with and without CD-treated cells 

were performed in the normal recording media. 
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Plasmonic imaging  

An inverted microscope (IX81, Olympus, Shinjuku, Tokyo, Japan) with a 60× NA 

1.49 oil immersion objective was implemented in the plasmonic imaging system. P-

polarized light beam from a 670 nm superluminescent light emitting diode (SLD-26-HP, 

Superlum, https://www.superlumdiodes.com) was introduced into the microscope via a 

total internal reflection fluorescence tube lens (TIRF module, Olympus, Shinjuku, Tokyo, 

Japan) and a 50/50 beam splitter (Thorlabs, Newton, New Jersey, USA). The reflected 

light from the gold surface was detected by an CMOS (Complementary metal-oxide-

semiconductor) camera (PIKE) with the full resolution (640 px × 480 px) recording at 

106.6 frame per second (fps). To reveal the spectral response of the cell, an ultra-fast 

CMOS camera (Phantom V310, Vision Research, http://www.visionresearch.com) with a 

frame rate of 1000 fps was used. For step hyperpolarization and depolarization 

experiment, 10000 fps was applied to match the electrical sampling rate. Cameras were 

externally triggered by the patch clamp voltage controller for synchronization. Sensor 

chips were made from BK-7 glass coverslips by evaporated coating of ~1.5 nm 

chromium layer and a ~47 nm gold layer on top. Chips were rinsed with deionized water 

and ethanol before cell plating. Cells were cultured in a removable Flexi-Perm (Sarstedt, 

Newton, NC, USA) silicone cell culture chamber placed on top of the chip surface.  

Displacement spectrum calculation 

Raw plasmonic images were smoothed at 5×5 pixel (600×600 nm on PIKE 

camera) spatially to minimize the pixel noise. Fast Fourier transform (FFT) was applied 

to the images along time. Amplitude and phase-shift images at the lock-in frequency was 

obtained. Applied micropipette potential was used as reference for phase-shift 

https://www.superlumdiodes.com/
http://www.visionresearch.com/
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calculation. Local amplitude and phase-shift was obtained by manually choosing the 

region of interest and calculating the mean pixel value. Z-axis displacement was 

quantified by plasmonic amplitude-displacement relations. For potential step 

experiments, image sequences were aligned with polarization/depolarization steps. 

Multiple cycles were run on each potential step repeatedly. Image sequences were 

averaged over multiple cycles to enhance the signal to noise ratio. Local displacement 

was plotted and calculated for each potential step with 5 millisecond moving average 

smoothed over time. Spectral response was fitted with linear equation in logarithm scale. 

All post-acquisition analyses were carried out using custom-written MATLAB (Natick, 

MA, USA) scripts. 
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Results and Discussion 

The Plasmon-based Displacement Microscopy (PLADIM) 
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Figure 5-1 Plasmon-based Displacement Microscopy (PLADIM).  

a) Cells are plated on the gold coated coverslip and imaged with plasmonic 

microscopy. Single frequency electrical modulation waveform was coupled into the 

cell from a micropipette in a whole-cell patch configuration. Plasmonic images was 

captured using a fast camera. b) Membrane potential change induces mechanical 

deformation on membrane, which predicted by Lippmann equation. c) Plasmonic 

images was analyzed by applying fast Fourier transform (FFT) along time. Amplitude 

and phase-shift images were picked on modulation frequency. Based on relations of z-

axis displacement and plasmonic intensity, displacement magnitude and displacement 

direction can be resolved. 
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I built a plasmonic imaging system on an inverted microscope (Figure 5-1a). 

HEK293T cells were cultured on top of a glass coverslip coated with 47 nm-thick gold 

film. High numerical aperture objective coupled incident light onto the gold surface and 

directed the reflected light into a CMOS camera for imaging. When the incident light 

reaches surface plasmon resonance angle, plasmonic images were recorded. At the 

resonance angle, because the evanescent wave created on the surface decays 
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Figure 5-2 Electromechanical Response of the Cell. 

Transmitted a) and plasmonic b) images of the cell that modulated with 37 Hz sinusoidal 

waveform c). d-e) Amplitude images of the modulated cell at different frequencies. 

Strong plasmonic intensity signal was observed at the modulation frequency e). No 

obvious signal at the nearby frequencies d) and f). g) Phase-shift image of the modulated 

cell. h) Spectrum response of the plasmonic intensity at the whole cell region and 

background region without cell. Obvious peak was observed at the modulation frequency 

in the whole cell region. Scale bar: 10 um. 
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exponentially into the solution with an extremely short decay constant at only about 100 

nm, plasmonic imaging is ultrasensitive to the displacement along the direction 

perpendicular to the surface. Previously, I have successfully detected a 0.1 nm 

displacement of nanoparticle oscillation using the plasmonic imaging method.  

Previous studies indicated that cell electromechanical fluctuation is only within 

the range of sub-nanometer to nanometer. To unveil such small signals, I modulated the 

membrane potential at a single frequency by coupling a 200 mV peak-to-peak amplitude 

sinusoidal waveform into the cell while simultaneously capturing plasmonic 

images(Figure 5-1b). Small mechanical signal can be isolated by applying fast Fourier 

transform (FFT) to the image sequences along the time axis (Figure 5-1c) and extracted 

the amplitude and phase-shift images at the modulation frequency. These images 

represented corresponding intensity fluctuation magnitude and response delay that is 

relative to the modulating force. To further quantify the cell deformation, I calculated 

local displacement from modulation amplitude based on intensity decay function along 

the z-axis. For small plasmonic intensity change Δ𝐼, the fractional intensity change, Δ𝐼/𝐼, 

is linear with displacement change Δ𝑧 over decay constant 𝜆. I experimentally verified 

that the intensity decay constant along the z-axis is about 100 nm, which is close to 

theoretical simulation result.  

Visualizing Heterogeneous Subcellular Electromechanical Response 

Figure 5-2a-b showed transmitted and plasmonic images of a cell clamped with a 

micropipette. Plasmonic image represented the mass density of cell bottom part that was 

within the penetration depth of the surface evanescent wave. Since micropipette is 

beyond the penetration depth, it cannot be observed on the plasmonic image. I then drove 
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the membrane potential oscillation from -60 mV to 140 mV by coupling a 37 Hz 

sinusoidal waveform from the whole-cell patched electrode for 10 seconds (Figure 5-2c). 

An enhanced amplitude signal at the lock-in frequency was observed comparing with 

nearby frequencies (Figure 5-2d-f). To clearly examine the spectral response, I plotted the 

frequency spectrum in the whole cell region and the background region outside the cell 

(Figure 5-2h). A sharp peak at the stimulation frequency clearly showed in the whole-cell 

region plot, while a relative flat noise showed in the background region. This sharp peak 

illustrated the electrical induced mechanical response of the cell. From the amplitude 
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Figure 5-3 Cell Deformation with Different Modulation Amplitude 

a) Plasmonic image of potential stepwise modulated cell. b) Differential plasmonic image 

of depolarized cell at potential step of 100 mV. White line indicated the morphology of 

the cell. c) Potential step protocol used in modulation. d) Averaged displacement profile 

calculated from cell edge region and cell center region that responded to the stepwise 

modulation. e) Relationship of averaged displacement calculated from cell edge region 

and cell center region at the steady state with the potential steps. Scale bar: 10 um. 
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image at the stimulation frequency (Figure 5-2e), heterogeneous subcellular mechanical 

response was clearly visualized. Cell edge showed a much higher mechanical fluctuation 

than the center region.  

To quantify the time delay of this mechanical response, I analyzed the phase-shift 

of the response at the stimulation frequency. Figure 5-2g presented the phase-shift of the 

same cell relative to the driving micropipette potential signal. Interestingly, two types of 

deformation in opposite phases were observed inside cell. The center region showed a 

phase-locking (0°) response (cyan), while the edge area was mainly ~180° out of phase 

(red). No intermediate phase lag was observed. This 0° and 180° only phase-shift map 

indicated that deformation follows the driving electrical force at the modulation 

frequency, while domains at the cell center and the cell edge moved in opposite 

directions, that is, the center regions moved towards the gold surface and the edge regions 

moved away from the surface when the membrane potential is depolarized (Figure 5-2b). 

This observation is consistent with the hypothesis that the whole cell volume is conserved 

during the process of electrical-driven mechanical deformation. Thus, by combining 

plasmonic imaging system with electrophysiological stimulation, I visualized 

heterogeneous subcellular response within single cells induced from electromechanical 

coupling. 

Electromechanical Deformation Is Proportional to the Membrane Potential  

To further study the relationship between mechanical response and membrane 

potential, I measured corresponding mechanical response at different membrane 

polarization levels. The clamped cell was electrically hyperpolarized and depolarized 

from -80 mV to 100 mV at the interval of 20 mV per step (Figure 5-3c). Plasmonic 
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response was simultaneously monitored (Figure 5-3a). Figure 5-3b showed a cellular 

response of depolarization from -60 mV to 100 mV. Consistent with the AC modulation 

results, the cell center showed an increased response with the membrane depolarization, 

while the cell edge showed an opposite response. To accurately quantify the dynamic 

response of cell deformation, I plotted the temporal profile of averaged displacement in 

the center region and the edge region respectively (Figure 5-3d). Both regions exhibited a 

gradual deformation change with stepwise membrane potential modulation. Displacement 

magnitude showed a linear relationship with the membrane potential at the steady state. I 

plotted displacement magnitude versus membrane potential for both the cell center and 

the edge in Figure 5-3e. Deformation magnitude changed linearly with membrane 

potential, with an averaged displacement about 0.002 nm per 10 mV potential change. 

The number is higher than that in the cell center, which only displayed a 0.0005 nm 

change per 10 mV depolarization. These numbers are about one order smaller than 

previous studies, which I think is mainly due to the confined mechanical movement at the 

bottom of adherent cells. Therefore, I confirmed that electromechanical response is 

linearly proportional to the membrane potential. The cell center and cell edge displayed 

an opposite deformation direction.  

Elastic Behavior of Cell Electromechanical Deformation 

I now turn to the detailed mechanism of electromechanical coupling on single 

cell. Thermodynamics predicts that transmembrane voltage modulates membrane tension 

leading to mechanical deformation in the membrane. The relationship between membrane 

surface tension and membrane potential for a single interface can be described as 

Lippmann equation: 𝑑𝛾/𝑑𝑉 = −𝑞 , where 𝛾 is the surface tension, 𝑉 is the membrane 
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electrical potential, and 𝑞 is the excess mobile charge in the double layer of the 

membrane surface. However, thermodynamics does not tell how much cell will deform 

with the given changes of membrane potential. The actual magnitude and time delay of 

the deformation induced by the membrane tension is determined by the mechanical 

properties of the cytoplasm.  

To examine how fast cells can respond to the driving electrical force mechanically 

and study the mechanical properties of the cell systematically, I performed a spectral 

measurement on the deformation displacement. I measured the cellular mechanical 

response over the frequency range from 7 Hz to 312.5 Hz with same modulation 

amplitudes. Figure 5-4a-e illustrated the plasmonic response at different frequencies. For 

data visualization, plasmonic amplitude was shown in brightness value and the phase-

shift was encoded in hue value. My measurements displayed a quasi-in phase mechanical 

response with the applied potential modulation (0° and 180° only) over the frequency 

range. To explain the results, a complex bending modulus 𝐺 = 𝐺′ + 𝑖𝐺′′ is introduced, 

where 𝐺′ is bending storage modulus and 𝐺′′ is bending loss modulus. 𝐺(𝑓) is examined 

by calculating the ratio between applied oscillatory force 𝐹(𝑓) at frequency 𝑓 and 

corresponding displacement 𝑥(𝑓), that is, 𝐹(𝑓)/𝑥(𝑓), in the frequency domain. Thus, the 

behavior of a cell (𝐺) can be modeled as a combination of an in-phase elastic component, 

which described in 𝐺′, and a 90° phase-lag viscous component, 𝐺′′ in series (Figure 

5-4f). Therefore, the in-phase mechanical response showed in Figure 5-4a-e revealed that 

the cell was mainly an elastic body rather than a viscous one within the frequency range.  
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Because Lippmann equation predicted a correspondent change in membrane 

potential and in surface tension, I can extract the cytoplasm mechanical properties by 

analyzing the relation between displacement and the applied voltage. I calculated the 

averaged displacement at both the cell center and the edge and examined the amplitude 

response over frequencies. Figure 5-4g-h showed the spectral response of displacement 
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Figure 5-4 Cell Deformation with Different Modulation Frequency 

a-e) Cellular response with different modulation frequencies. f) Mechanical model of 

cell deformation. g-h) Averaged displacement in the cell edge and the cell center in 

response to the modulation frequencies. Data was plotted in log-log scale and fitted 

with linear equation. Scale bar: 20 um. 



 

56 

with same stimulation amplitude at both regions. Fitted with linear equation in log-log 

scale, the displacement followed a negative power-law form: |𝑥(𝑓)|~𝑓−𝛽 with 𝛽 equals 

to 0.15 and 0.3 in edge and center region respectively. Storage modulus, the inverse of 

displacement with the same modulation amplitude, thus displayed a positive power-law 

relationship with frequency, |𝐺′(𝑓)|~𝑓𝛽. This weak positive power relationship is in 

agreement with previous rheological measurements using intracellular microbead or 

cytoskeleton-attached magnetic nanoparticle conducted on other types of cells. The 

power index 𝛽 for the cell edge is consistent with these studies, while the number for the 

cell center is two times higher, which indicated a stronger relationship with the increasing 

frequency in the cell center. Thus, I systematically characterized the cell spectral 

electromechanical deformation and revealed a heterogeneous subcellular response. 

Spectrum analysis further unveiled an elastic behavior during cell deforming from Hertz 

to hundreds of Hertz range. I also verified this sub-nanometer deformation was mainly 

determined by mechanical property of cytoplasm.  
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Perturbation in Cytoskeleton Causes Altered Subcellular Response 

By perturbing mechanical structure of cells, I expected electromechanical 

response would be altered as well consequently. To confirm this hypothesis, I treated the 

cells with an actin polymerization inhibitor, cytochalasin D, and examined the 

corresponding response. Intriguingly, after depolymerizing the actin frame, cells 

displayed a different mechanical response. Phase-shift in the cell center showed a much 

larger negative phase area compared with those in normal condition (Figure 5-5a-b, 

indicated as white dash lines). Correspondingly, the phase-following region, which 

moves towards to the gold surface along with the cell depolarization, was shrunk. 

-180

-90

0

90

180

P
h

a
s
e

 S
h

if
t 
(D

e
g
)

80

100

120

140

160

A
v
e

ra
g
e

 P
h

a
s
e

 S
h

if
t 
(D

e
g
)

p < 0.01

CD (n=11) Normal (n=6)

Cytochalasin D Normal

a b

c d
Normal

Cytochalasin De

*

Figure 5-5 . Electromechanical Response of Cells Treated with Cytochalasin D 
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normal condition. c) Averaged phase shift of the whole cell region. p<0.01, t-test. d-e) 
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Compared with those well-separated phase regions at the cell center and the cell edge in 

the normal condition (Figure 5-5b), these 0° and 180° phase regions appeared randomly 

with undefined subcellular location. To examine the subcellular phase changes, I 

quantified the average phase over the whole cell area. A significant phase shift towards 

reverse phase (180°) after cytochalasin D treatment was observed (Figure 5-5c). This 

shift indicated a larger synchronous unidirectional region that moved inward over the 

whole cell. Because cytochalasin D breaks the structure of cytoskeleton, the soften effect 

are likely to reduce the modulus that are resistant to subtle surface area changes, and 

leads to the biased phase shift at the cell bottom. Such structural change can also 

contribute to a more randomized pattern observed here by generating smaller 

unconnected subdomains in the membrane structures (Figure 5-5d). Therefore, I 

confirmed the observation of structural change of electromechanical coupling. 

Cytochalasin D treatment also revealed an altered subcellular response to the driving 

electrical force.  
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Conclusion 

In this paper, I demonstrated a plasmon-based imaging method for quantifying 

cellular deformation induced by potential changing. Sub-nanometer displacement was 

accurately detected. I resolved and visualized a heterogeneous subcellular displacement 

response in both deformation magnitude and movement direction. I also systematically 

characterized the electromechanical property of mammalian cells, and revealed 

subcellular anisotropic deformation in both amplitude and spectrum manners. I further 

examined the effect of mechanical perturbation by destructing the actin structure. An 

obvious directional shift in the cell center was observed. Thus, using plasmon-based 

imaging method, I successfully unveiled the inverse piezoelectric effect within single 

cells. 

The extremely short penetration depth of evanescent wave created on the surface 

enables the ultrasensitive measurement on the subtle mechanical displacement of cells 

presented here. The sensitivity can be further improved by longer modulation time with 

more stimulation cycles. The plasmon-based imaging technique detects the reflected 

light; therefore, the imaging speed is not constrained. Higher speed camera can be 

implemented to achieve broader spectrum for deformation measurements. However, the 

applied electrical force might be problematic at higher frequencies due to the effect of the 

membrane capacitance and resistance in the electrical circuit formed in the whole-cell 

patch configuration. 

In sum, I demonstrated an optical method for detecting sub-nanometer 

displacement from cell electromechanical coupling. I expect this electromechanical 

imaging capability can be used as a novel detecting strategy for measuring cell membrane 
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potentials, including action potential firing in neurons. The systematical study on cellular 

electromechanical coupling presented here will provide new insights into 

mechanobiology studies, and shed light on the understanding of biological function from 

an electromechanical aspect in systems, such as mechanosensitive ion channels and 

protein configuration changes in voltage-gated ion channels.  
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CHAPTER 6 PLASMONIC IMAGING OF ACTION POTENTIAL AND ITS 

PROPAGATION IN NEURONS WITH SUB-MILLISECOND RESOLUTION 

Measuring the action potential and its fast propagation in neurons is critical to the 

understanding of neuron physiology. The patch clamp technique using micropipettes has 

been the gold standard, but a non-invasive tool with both high spatial and temporal 

resolution to resolve fast and local electrical activities is highly desirable. Here I report a 

plasmonic technique to image the electrical activities in mammalian neurons. The 

technique measures a mechanical deformation associated with an action potential in the 

neurons optically with sub-millisecond resolution, which allows me to image the fast 

initiation and propagation of action potentials within single mammalian neurons. The 

measured action potential waveforms agree with those simultaneously recorded with the 

patch clamp technique. I further show the technique works for both the current and 

voltage clamp modes. I anticipate that the plasmonic imaging technique will provide a 

new optical approach to study neuronal activities with complementary capabilities to the 

existing techniques.  
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Introduction 

Neuronal signaling relies on the initiation and propagation of action potentials 

within a neuron and a network of neurons at millisecond or shorter time scales (Boyden, 

Zhang et al. 2005, St-Pierre, Marshall et al. 2014). The patch clamp technique is the gold 

standard tool that can measure the electrical activities of neurons with a micropipette at 

the millisecond time scale. While powerful, the technique can be invasive and has limited 

spatial resolution (Peterka, Takahashi et al. 2011). Fluorescent imaging techniques using 

Calcium (Grewe, Langer et al. 2010, Chen, Wardill et al. 2013, Berlin, Carroll et al. 

2015), and voltage fluorescent indicators (Tsutsui, Karasawa et al. 2008, Popovic, Foust 

et al. 2011, Jin, Han et al. 2012, Kralj, Douglass et al. 2012, St-Pierre, Marshall et al. 

2014) have been developed to provide high spatial resolution imaging of the electrical 

activities in neurons. However, the fluorescent imaging techniques are usually too slow to 

resolve the fast action potentials. To overcome the speed limitation, a novel engineered 

voltage indicator was developed, which together with a sub-frame interpolation approach, 

allows fast imaging of neuronal activities(Hochbaum, Zhao et al. 2014). Another recent 

effort was to use an electrochromic dye to measure electrical signals from dendritic 

spines(Popovic, Carnevale et al. 2015). 

Here I report a label-free optical technique to image the action potentials in 

mammalian neurons with high spatial and temporal resolution. Using this capability, I 

image transient electrical activities in single neurons, and resolve the fast initiation and 

propagation of action potential within a neuron. I validate the plasmonic technique 

performing simultaneous electrical recording with the patch clamp technique. 

Furthermore, I show that the plasmonic imaging technique works in both current and 
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voltage clamp modes. Unlike the fluorescent imaging approaches, the present technique 

is based on plasmonic imaging, which does not require labeling of neurons, and measures 

intrinsic physical characteristics of the neurons, which can potentially provide 

complementary capabilities to the existing techniques. 
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Materials and Methods 

Neurons cell culture 

Primary rat hippocampus neurons (Life Technologies, Carlsbad, CA, USA) were 

recovered from cryopreservation and seeded on poly-L-lysine (Trevigen, Gaithersburg, 

MD, USA) coated gold film with a coverage of ~105 neurons/cm2. After incubation in a 

humidified atmosphere with 5% CO2 at 37°C for 4~8 days, the neurons attached to the 

surface and were ready for experiment. The neurons were cultured in neurobasal medium 

(Life Technologies, Carlsbad, CA, USA) with B-27® supplement (Life Technologies, 

Carlsbad, CA, USA) and GlutaMAX™ (Life Technologies, Carlsbad, CA, USA). 

Plasmonic imaging set-up 

The plasmonic imaging system was built on an inverted microscope (Olympus 

IX81) with a TIRF imaging attachment using a 60× NA 1.49 oil immersion objective. 

The light source was a 670 nm superluminescent light emitting diode (SLD-26-HP, 

Superlum, https://www.superlumdiodes.com). For high temporal resolution imaging, an 

ultra-fast CMOS (Complementary metal-oxide-semiconductor) camera (Phantom V310, 

Vision Research, http://www.visionresearch.com) with 10,000 frames per second in 256 

pixels by 256 pixels was used. For resolving individual action potentials, a low noise 

sCMOS camera (scientific CMOS, ORCA-Flash 4.0, Hamamatsu, Japan) was also 

utilized at frame rate of 1603 fps with 2048 pixels by 128 pixels. Images were directly 

streamed into SSD hard-disks with parallel writing. To synchronize the electrical 

recording with plasmonic recording, cameras were externally triggered by the patch 

clamp voltage controller. The setup was placed on a floating optical table and enclosed in 

a custom build faradic cage and acoustic enclosure to minimize electrical and mechanical 

https://www.superlumdiodes.com/
http://www.visionresearch.com/
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noises. The gold films were prepare by evaporating 2 nm chromium adhesion followed, 

followed by ∼47 nm gold on BK-7 glass coverslips. Each gold film was washed with 

water and ethanol followed by hydrogen-flame annealing in order to remove possible 

surface contamination. The gold films were modified with 140 µl of 5 µg/ml poly-L-

lysine solution in 37 °C for one hour, and further rinsed with deionized water twice prior 

to cell seeding. A removable Flexi-Perm silicon chamber (SARSTEDT, 

http://www.sarstedt.com) was placed on top of the gold chip to serve as a culture 

chamber. 

Electrophysiology 

Cultured hippocampal neurons were recorded in whole-cell configuration, using 

Axopatch 200B amplifier (Axon Instruments) at room temperature on the plasmonic 

imaging set-up. To identify the plamonic signal, membrane potential was modulated 

sinusoidally from -60 mV to 140 mV in the voltage-clamp mode at 23 Hz for 10 seconds 

(otherwise indicated in manuscript). To trigger multiple action potentials, depolarizing 

current pulse trains with amplitude of 500 pA and duration of 2-4 ms were typically 

applied in a current clamp mode at 23 Hz for totally 4 seconds (otherwise indicated in 

manuscript). Typically, all the current pulses will excite action potentials. For noise 

identification, neurons were evoked at a pattern of combined 23 Hz and 37 Hz for total 

86 cycles. Glass micropipettes were prepared by a flaming puller (P-97, Sutter 

Instrument, CA), which were filled with 10 mM NaCl, 135 mM K-gluconate, 10 mM 

HEPES, 2 mM MgCl2, 2 mM Mg-ATP and 1 mM EGTA (pH 7.4). The resistance of 

these micropipettes is 5-10 MΩ. Neurons were recorded in extracellular recording 
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solution, containing 135 mM NaCl, 5 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM 

CaCl2 and 10 mM glucose at pH 7.4. 

Sodium ion channel inhibitors TTX was added to the above extracellular 

recording solution for inhibiting action potential initiation (1 μM, final working 

concentration). For actin depolymerization experiment, cytochalasin D (CD) stock 

solution was diluted with culture medium to the final concentration of 10 mM, and the 

neurons were incubated at 37 °C for 30 min before measurements. Neurons of control 

group were maintained in normal culture media. Experiments with and without CD-

treated neurons were both performed in the normal recording media.  

Data analysis 

In potential modulation experiment, raw plasmonic images were spatially 

smoothed with 3×3 pixel (0.9×0.9 μm) mean kernel. After aligning with the starting of 

the potential modulation, Fast Fourier Transform was applied to the plasmonic image 

sequences along time. Amplitude image at the lock-in frequency was picked. Subcellular 

response was obtained by examining the lock-in response at the frequency domain of the 

ROI intensity profile in the region that manually selected from the image. Relative phase-

shift to the driving electrical signal was also examined. For action potential visualization 

with multiple pulse stimulations, image sequences were filtered with 11×11 pixel 

(3.3×3.3 μm) mean kernel and aligned with injected current pulses. The mean image 

stack was obtained by averaging over multiple cycles with typical cycle number of 40-

150. Optical response was examined and displayed in a differential way by subtracting 

the first image of the mean image stack. To remove spatial noise, the mean image stack 

was temporally detrended pixel by pixel using a fitted linear function. High frequency 
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noise was further suppressed by a digital FIR low-pass filter with 1 kHz cut-off 

frequency. For individual spike resolving, a 50 ms moving average signal of intensity 

profile from the ROI was removed to subtract out the long-term drift (20 Hz high-pass 

filter). Bands at frequencies of 60 Hz, 120 Hz, 180 Hz, 300 Hz, 420 Hz and 540 Hz were 

digitally filtered, which were typical noise from electrical sources. Intensity profile was 

further smoothed with 5 ms moving average for plotting. The electrical signals recorded 

with the patch clamp were filtered by a 2 kHz low-pass Bessel filter. To accurately 

identify the time-lag of action potential propagation, Lorentzian function was utilized to 

fit the peak position of action potential at different region. Local intensity profile was 

plotted by manually choosing the region of interest. All post-acquisition analyses were 

carried out by custom-written MATLAB (Natick, MA, USA) codes. 

Contributions to plasmonic imaging intensity 

Ionic concentration effect on plasmonic imaging 

The diffusion coefficient (D) of Na+ ions in water at room at room temperature is 

1.33×10-5 cm2·s-1. According to the diffusion equation, Dtl 2 , the averaged diffusion 

distance for Na+ ions is about 2.3 μm during the 2 ms action potential excitation period 

(Figure 6-1a). From the measure current, I estimated a total amount of ~2.7×10-17 mole of 

Na+ ions transported into a neuron during an action potential spike (Figure 6-1b). The 

average diameter of the neurons is ~20 μm, from which the Na+ ion concentration change 

near the gold film during action potential was determined to be ~1.6×10-5 mM, which 

corresponds to a shift in surface plasmon resonance angle of ~0.04 mDeg, 5 times smaller 

than the observed signal associated with the action potential spike.  
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Electrical contribution to plasmonic imaging intensity 

The local surface charge density () and surface plasmon resonance angle 

change () are related by   , where  is a constant (=28 C·m-2 deg-1)(Foley, 

Shan et al. 2008). The total transient charge change due to the flow of Na+ and K+ ions 

during an action potential spike is 5.5×10-11 C as determined by integrating of the sodium 

and potassium current. The projected surface area of neuron calculated is 447 µm2 

(Figure 6-1), the induced surface charge density is 1.2×10-3 C·m-2, from which the 

plasmonic signal () is ~0.044 mDeg, which is 5 times smaller than the observed signal 

associated with the action potential spike..  
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Figure 6-1 Membrane Potential Change  

(a), and ionic current (b) recorded during action potential. The shaded area was integrated 

to calculate the ion flux during an action potential spike. 
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Results and Discussion 

Plasmonic imaging of action potential 

Figure 6-2a illustrates the plasmonic imaging setup built on an inverted optical 

microscope with a high numerical aperture oil emersion objective (Huang, Yu et al. 

2007). Placed on the objective was a glass slide coated with a 47 nm-thick gold film. The 

film was further modified with a layer of poly-L-lysine, on which neurons were cultured. 

Incident light from a super luminescent diode was directed onto the gold surface through 

the objective, and the reflected light was collected with the same objective and then 

directed to a CMOS camera to create a plasmonic image (Figure 6-2a). The temporal 

resolution was limited by the CMOS camera, which was 10 s in the present study for a 

p polarized light

High-NA 

objective

Micropipette

Neurons

Gold-coated slide

Fast camera Plasmonic

Images

Neuron

Readout

a b

Figure 6-2 Setup of Plasmonic Imaging of Action Potential in Neurons.  

(a) p-polarized light beam is directed onto a gold-coated glass coverslip through an oil 

immersion objective to excite plasmons on the gold surface, which is imaged optically 

with a fast camera. Neurons are cultured on the poly-L-lysine-coated gold surface, and a 

micropipette is patched on one neuron to trigger action potential that is recorded with 

both the patch clamp electronics and plasmonic imaging. (b) Plasmonic images are 

captured simultaneously with electrical action potential firing.  
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frame rate of 100,000 fps. The neuronal excitation was triggered with a conventional 

patch-clamp recording setup in either the current-clamp mode or the voltage-clamp mode, 

and the corresponding voltage or current were recorded electrically with the traditional 

patch clamp electronics, and optically with P-EIM, simultaneously (Figure 6-2b).  

Figure 6-3a and b show both bright field and plasmonic images of a hippocampal 

neuron cultured from embryonic day 18 rat. A command current with peak value of 500 

pA and width of 4 ms (in current-clamp mode) was injected through the patch electrode, 

and triggered a single action potential spike with a width of ~2 ms, as recorded with the 

patch clamp electronics (Figure 6-3c). The transient plasmonic image intensity of the 

neuron during the action potential firing process is shown in Figure 6-3d, exhibiting a 

spike with shape and width similar to the action potential spike obtained from the patch-
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Figure 6-3 Plasmonic Imaging of Action Potential in Single Neurons. 

 (a) Optical transmission and (b) plasmonic images of a hippocampal neuron, where the 

dashed lines mark the edge of a neuron. (c) Patch clamp recording of action potential and 

(d) simultaneous P-EIM recording of action potential of the whole cell (frame rate of 

10,000 fps). (e-h) Snapshot P-EIM images of action potential at the moments marked by 

the red spots in (d). The P-EIM images were averaged over 90 frames for noise reduction. 
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clamp recording. However, unlike the electrical recording, the P-EIM images provide 

both spatial and temporal resolution. Figure 6-3e-h show several snapshots of the movie 

during different stages of the action potential spike (marked in Figure 6-3d). Note that the 

P-EIM images shown in Figure 6-3 are differential images, obtained by subtracting each 

frame with the initial frame captured before the firing of the action potential and averaged 

over multiple stimulation cycles.  

I triggered neuronal action potentials repeatedly with a frequency of 50 Hz. In 

some cycles, action potentials were not generated, which is also often observed in the 

traditional patch-clamp electrical recording of action potential. This characteristic is 

distinctly different from the passive depolarization and polarization of the membrane, 
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Figure 6-4 Failed Cycles of Action Potential Firing.  

Optical transmission (a) and plasmonic (b) images of hippocampal neuron. A snapshot 

plasmonic imaging of action potential at 4 ms after triggering (c). Electrical recording of 

action potential with patch clamp (d). Plasmonic recording of a successful (blue) and 

failed (red) action potential firing. 
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which always accompany with electrical triggering (Figure 6-4). To further confirm that 

the plasmonic image response was caused by action potential, tetrodotoxin (TTX), a 

sodium ion channel inhibitor, was used to block action potential generation. The 

plasmonic images show no spikes that can be attributed to the action potential after 

blocking the sodium ion channel with TTX (Figure 6-5). These observations, together 

with the close resemblance in the shape and width of the plasmonic spikes with the 

electrically recorded action potential peaks, and additional evidence described below, 

confirm that the plasmonic signal is indeed generated by action potential.  

Plasmonic imaging of action potential propagation in single neuron 

P-EIM is capable of high spatial and temporal resolution imaging of action 

potential in neurons. Using this capability, I measured action potential initiation and 

propagation within a single neuron. Figure 6-6a and b show bright field and plasmonic 
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Figure 6-5 TTX Inhibition Effect 

TTX inhibited Na+ ion channel (red) and control experiment (blue) measured with the 

patch clamp (a) and plasmonic recordings (b). 
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images of two neurons outlined with dashed lines, 1 and 2. Action potential was triggered 

in neuron 1 at the location marked with a white dot. Figure 6-6c plots the action 

potentials measured at different locations of neuron 1, and neuron 2, which show well-

defined action potentials in neuron 1, but no action potential in neuron 2, indicating that 

the two neurons were not electrically connected. Examination of the action potentials at 

different locations reveals time delays at different locations of the neuron. For example, 

Figure 6-6d shows a 0.5-ms lag of action potential at two locations, one (outlined with 

green line) is near the triggering point, and the other one (outlined with purple line) is 

near the end of the axon (see Figure 6-6b). This observation indicates that the sub-

millisecond temporal resolution of the present plasmonic imaging technique may be used 

to directly track signaling propagation within a single neuron, which has been an 

extremely difficult task with traditional methods.  
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To further validate the time delay in the action potentials between different 

regions of neuron, I recorded a movie of action potential propagation within a neuron 

with 10-μs temporal resolution. Figure 6-7a shows a few snapshots of the process. From 

the high-speed movie, I constructed a map of action potential time delay (Figure 6-7b and 

c). The map allowed me to estimate the propagation speed of action potential in a neuron 

to be ~ 0.1 m/s inside a single cell, which supports the reported values in literature 

(Debanne 2004, Kole and Stuart 2008). The map further shows that the time delay does 

not simply increase with the distance between a particular region and the triggering point. 
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Figure 6-6 Plasmonic Imaging of Action Potential Propagation within a Single Neuron.  

(a) Optical transmission and (b) plasmonic images of 2 hippocampal neurons, where the 

dash lines mark the edges of the neurons, and the white dot marks the location of 

micropipette. (c) Time course of action potential at locations outlined by solid lines with 

the corresponding colors in b. (d) Comparison of action potential spikes at two locations 

showing time decay due to finite propagation speed of action potential. The green and 

orange lines are Lorentzian fitting to the P-EIM data. 
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It has been proposed that the initiation and propagation of action potential are highly 

dependent on the density of sodium ion channels (Kole, Ilschner et al. 2008). Therefore, 

the spatiotemporal pattern of action potential propagation may be used to map the 

heterogeneous distribution of sodium ion channels, which could help identify the special 

function of different regions within a neuron (Korchev, Negulyaev et al. 2000). 

High-fidelity single spike detection 

In order to resolve single spikes without temporally averaging, I further 

suppressed the noise by minimizing noise in the optical setup and using a low noise 

sCMOS camera. Action potentials were evoked by a sequence of short current pulses at a 
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Figure 6-7 Snapshots of Action Potential Propagation  

(a) Snapshots of action potential propagation (frame rate: 100,000 fps). (b) Action 

potential delay map. (c) Overlay of the action potential delay map with bright field image 

of the neuron. 
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frequency 23 Hz. Figure 6-8 shows the action potential spikes recorded with P-EIM 

(blue), and those recorded simultaneously with patch clamp electrode (red) in a neuron. 

Despite the remaining noise, individual spikes can be distinguished, which demonstrates 

P-EIM capability for visualizing individual action potential spikes.  

Plasmonic imaging of ion channel activities in neurons 

To elucidate ion channel activities, it is useful to follow the ionic current while 

clamping the voltage. To demonstrate this capability, I recorded ionic current and P-EIM 

signals simultaneously by depolarizing the neuron with fast voltage pulses. Figure 6-9a 

shows a current spike by the patch clamp (red), and the corresponding spike by P-EIM 

(blue). The plasmonic spike has a similar width and temporal response as the electrically 

recorded ionic current associated with the ionic flow during the opening of ion channels. 

To confirm the observation, I introduced a Na+ channel blocker, TTX to the same neuron, 

and found that both the electrical and plasmonic spikes disappeared in the presence of 
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Figure 6-8 Imaging Single Action Potential Spikes  

(a) P-EIM (blue), and patch clamp (red) recordings of individual action potential spikes 

of a neuron triggered with current pulses at frequency of 23 Hz (P-EIM frame rate: 1,600 

fps). 
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TTX (Figure 6-9b). I further confirmed this Na+ flow-induced plasmonic spike by 

replacing the Na+ extracellular solution with iso-osmotic choline solution. Choline, a 

cation, is impermeant to the open Na+ channels, so I expect a reduction in the plasmonic 

spikes. Indeed, I observed both the current spikes recorded by P-EIM and patch clamp 

dropped substantially when I replaced the buffer with 55% choline solution (green curves 

in Figure 6-9c). I also studied the potassium current contribution to the current and 

plasmonic spikes by inhibiting K+ channel with 4-Aminopyridine (4-AP). These 

experiments confirmed that P-EIM is sensitive to Na+ and K+ ion fluxes.  

Mechanisms of plasmonic imaging of action potential. 

Thermodynamics predicts that transmembrane voltage modulates membrane 

tension leading to mechanical deformation in the membrane(Zhang, Keleshian et al. 

2001). The relationship between membrane surface tension and membrane potential for a 

single interface could be described as: , known as Lippmann equation, qdVd /
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Figure 6-9 Imaging Ion Channel Activities in Voltage-clamp Modes.  

(b) Patch clamp (top) and P-EIM (bottom) recordings of an ionic current spike recorded 

in voltage-clamp mode. (c) Patch clamp (top) and P-EIM (bottom) recordings of ionic 

current after blocking Na+ ion channels with TTX in voltage-clamp mode. (d) Patch 

clamp (top) and P-EIM (bottom) recordings of ionic current with (green) and without 

(red) replacing 55% of the extracellular Na+ by choline cations in voltage-clamp mode. 

Frame rate for (b-d): 10,000 fps. 
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where  is the surface tension, V is the membrane electrical potential, and q is the excess 

mobile charge in the double layer of the membrane surface. Since plasmonic imaging is 

extremely sensitive to the mechanical deformation, I anticipated that the imaged signal is 

mainly from subtle morphological change from the cell during the action potential firing 

(Figure 6-10a). This prediction is supported by literatures. For example, swelling in nerve 

fibers associated with action potentials was reported(Iwasa, Tasaki et al. 1980). An 

atomic force microscope (AFM) study revealed voltage-induced mechanical responses in 

mammalian cells(Zhang, Keleshian et al. 2001). Nanometer scaled displacement in nerve 

fibers placed between two surfaces was observed with spectral-domain optical coherence 

phase microscopy (SD-OCT), where the reflection from the top surface served as a 

reference beam(Akkin, Joo et al. 2007). A more recent report showed that mechanical 

response of cells could be measured with an elegant piezoelectric nanoribbon 

transducer(Nguyen, Deshmukh et al. 2012). The AFM and SD-OCT use either a scanning 

probe or optical beam to measure a mechanical response at one location at time, which 

cannot map the entire sample simultaneously. The piezoelectric nanoribbon measures the 

mechanical response of the entire cells, but it is a non-imaging method. In contrast, the 

present plasmonic imaging technique allows mapping of local mechanical deformation of 

the entire neuron membrane associated with action potentials and other electrical 

activities with sub-nanometer detection limit and microsecond temporal resolution(Shan, 

Patel et al. 2010, Wang, Yang et al. 2012). 


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Although thermodynamics predicts a surface tension change during an action 

potential, the magnitude of the membrane deformation is governed by cell stiffness and 

membrane potential(Zhang, Keleshian et al. 2001). To further quantify the cell 

deformation, I calculated local displacement from modulation amplitude based on 

intensity decay function along the z-axis. For small plasmonic intensity change Δ𝐼, the 

fractional intensity change, Δ𝐼/𝐼, is linear with displacement change Δ𝑧 over decay 

constant 𝜆. I experimentally verified that the intensity decay constant along the z-axis is 
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about 100 nm, which is close to theoretical simulation result(Shan, Fang et al. 2014, 

Yang, Yu et al. 2015). Therefore, with a typical 0.3-1‰ intensity change was observed 

for 100 mV depolarization, the associated membrane deformation is estimated to be 0.03-

0.1 nm per 100 mV, which is corresponding to 0.075-0.2 mDeg resonance angle shift. 

Note that associated with the action potential is the opening and closing of sodium 

and potassium ion channels, which change the local concentrations of sodium and 

potassium ions, in addition to membrane mechanical deformation. Since the plasmonic 

imaging is also sensitive to refractive index change near the surface, the change of local 

ionic concentrations may also lead to a change in the plasmonic image intensity. 

However, the corresponding change in the plasmonic image intensity is estimated to be at 

least 5 folds smaller (Materials and Methods). This consideration rules out local 

concentration change in the sodium and potassium ions as the imaging mechanism of the 

observed action potential.  

Local charge density change induced by action potential may also affect the 

resonance frequency of surface plasmons, as plasmonic imaging is also sensitive to 

surface charge density (Figure 6-10b) (Foley, Shan et al. 2008, Wang, Foley et al. 2011). 

However, the similarity in the shapes of plasmonic intensity profile and membrane 

potential measured by patch clamp rules out the possibility that the imaged signal comes 

directly from extracellular recording, which should display a temporal derivative shape of 

the intracellular signal. On the other hand, the field-induced charge on the surface that is 

originated from intracellular action potential may also affect the gold chip and contribute 

to the imaged signal. However, the corresponding change in the plasmonic image 

intensity was estimated to be at least 5 folds smaller than the experimental value 
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(Materials and methods). It also predicts a positive intensity response for depolarization 

induced surface charge, which is opposite to the observation in both external modulation 

and spontaneous action potential firing cases. Therefore, the electrical mechanism may 

not be a dominant contribution to the plasmonic signal. 

The membrane deformation model indicates that softer membrane will lead to a 

larger deformation. To examine this prediction, I measured neurons treated with 

cytochalasin D, which is known to soften the cell by inhibiting polymerization of the 

actin, the major component of the cytoskeleton(McDowell, Ellerbee et al. 2007). I indeed 

observed that the change in the plasmonic image intensity associated with action potential 

in cytochalasin D-treated neurons is ~20% larger than that of the control neurons (Figure 

6-11). Thus, I conclude that the mechanical deformation of the cells accompanied with 

membrane potential is main driving mechanism for the optical signal.  
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Figure 6-11 Effect of CD, an Actin Polymerization Inhibitor, on the Plasmonic Signals. 

5 CD-treated and 10 control neurons were studied. 
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Conclusion 

I have demonstrated a new principle to record action potential in single 

mammalian neurons optically by detecting membrane mechanical deformation with a 

plasmonic imaging technique. The imaging technique clearly resolves the individual 

action potential spikes with width and shape closely resemble those simultaneously 

recorded with the traditional patch clamp technique. This method is label-free and 

removes the possible effects of the labeling on the native functions of the neurons. This 

capability, together with the high spatial resolution, allows me to image the fast initiation 

and propagation of action potential in single neurons at subcellular level. The imaging 

setup is fully compatible with the traditional patch clamp recording and fluorescence 

microscopy, allowing the study of the same sample with multiple techniques. Although 

the present work is focused on cultured neurons as an effort to demonstrate the imaging 

capability, researchers can expand it to study neuronal networks in vivo by integrating it 

with the optotrode techniques(Kim, McCall et al. 2013, Caucheteur, Voisin et al. 2015). 

Currently, the signal-to-noise level is marginally sufficient for imaging signal action 

potential, various signal enhancement strategy may apply for better imaging quality. With 

the merit of non-perturbation to the target cells, I anticipate that the plasmonic recording 

technique will contribute to the understanding of action potential firing pattern formation 

and transition for the same cell during long-term monitoring and return the cell native 

state. 
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CHAPTER 7 IMAGING MECHANICAL WAVES THAT ACCOMPANY ACTION 

POTENTIAL IN MAMMALIAN NEURONS 

Mechanical waves may accompany the action potential and play functional roles 

in neurons, but measuring the subtle mechanical waves in single mammalian neurons has 

been a challenge. Here I report an optical method to image membrane displacement in 

mammalian neurons with sub-micron spatial resolution and sub-ms temporal resolution, 

and quantify the displacement with sub-nm detection limit. I show that mechanical waves 

do accompany the action potential in mammalian neurons, and their shape and width are 

similar to those of the action potential. The amplitude of the mechanical wave varies 

from neuron to neuron, ranging from 0.2 - 0.4 nm. There is also a large variability in the 

local membrane displacement within a neuron. The basic phenomenon is consistent with 

theories, but the shape and variability of the mechanical waves call for further 

investigations. 
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Introduction 

Action potentials (APs) play a central role in neuronal communication(Hodgkin 

and Huxley 1952). While most of the efforts to date have focused on recording the AP as 

an electrical signal, theoretical and experimental evidence has suggested that the AP is 

accompanied by a mechanical response, and the interplay between the electrical and 

mechanical responses is relevant to physiological functions of neurons(Bezanilla 2002, 

Martinac 2004, Coste, Mathur et al. 2010, Mueller and Tyler 2014). Despite the 

importance, the mechanical response is much less studied compared to the electrical 

signal. Here I describe a method to image mechanical responses in single neurons with 

sub-micron spatial resolution, sub-ms temporal resolution and sub-nm detection limit. 

Using this method, I image local mechanical waves that accompany the AP in single 

mammalian neurons. I compare the mechanical waves with the simultaneously recorded 

AP waves by the patch clamp electrophysiological method. I study neuron-to-neuron 

variability, and also local variability within a neuron in both the amplitude and direction 

of the membrane displacement. I compare the experimental results with theories. 

Recent theories predicted that linear and non-linear (e.g., solitons) mechanical 

waves accompany AP propagation along the axonal membrane(Heimburg and Jackson 

2005, El Hady and Machta 2015), and experiments observed mechanical responses in 

animal nerve fibers(Hill, Schubert et al. 1977, Iwasa, Tasaki et al. 1980, Tasaki and Iwasa 

1982, Tasaki and Byrne 1988, Tasaki and Byrne 1990). However, detecting them in 

single mammalian neurons is challenging because the mechanical response is expected to 

be on the order of sub-nm, and live neurons move constantly due to thermal fluctuations 

and metabolic activities. To study the transient and local mechanical responses that 
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accompany the AP, the measurement must also have high temporal (millisecond) and 

spatial (microns) resolutions. Atomic Force Microscope (AFM)(Mosbacher, Langer et al. 

1998, Zhang, Keleshian et al. 2001, Kim, Kosterin et al. 2007, Pamir, George et al. 

2008), piezoelectric nanoribbons(Nguyen, Deshmukh et al. 2012) and various optical 

approaches(Cohen and Keynes 1971, Hill, Schubert et al. 1977, Ross, Salzberg et al. 

1977, Iwasa, Tasaki et al. 1980, Akkin, Joo et al. 2007, Oh, Fang-Yen et al. 2012)have 

been developed to measure small mechanical responses in cellular membranes, but 

imaging subtle mechanical waves that accompany the AP in mammalian neurons with 

high temporal and spatial resolutions has been difficult.  

To detect the mechanical waves that accompany the AP, I developed a method to 

track the membrane displacement of a neuron with an inverted optical microscope using a 

differential detection algorithm (Figure 7-1a)(Guan, Shan et al. 2015). I cultured rat 

hippocampal neurons on poly-D-lysine coated glass coverslip placed on the objective of 

the microscope. To initiate the AP, I patched the neuron with the standard patch clamp 

technique, recorded the electrical signal and imaged the associated membrane 

displacement simultaneously with the differential detection algorithm described below 

(Figure 7-1b).  

The optical image reveals the individual neurons, and zooming-in of a neuron 

shows the edge of the neuron. I selected a rectangular region of interest (ROI) that 

includes the edge, and divided the ROI along the edge into two equal halves, one half is 

inside of the neuron, and the second half falls outside of the neuron (Figure 7-1b). I 

denote the intensities of the two halves as I1 and I2, respectively. If the neuron expands, 

then I1 decreases and I2 increases. Conversely, if the neuron shrinks, then I1 increases and 
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I2 decreases. The membrane displacement is proportional to (I1-I2)/(I1+I2) within a 

displacement range of several hundred nm (Figure 7-2). I determined the range, and 

calibrated the relation between the displacement and normalized differential intensity, (I1-

I2)/(I1+I2), using the procedure described in Methods and Materials.  

By measuring the normalized differential image intensity, (I1-I2)/(I1+I2), within 

each ROI, I obtained the local membrane displacement at every location along the edge 

of the neuron (Figure 7-1b). The spatial resolution of the method is limited by optical 

diffraction, which is ~0.4 µm in the present case (numerical aperture of the subjective is 

0.65). Compared to AFM that measures one location at a time, the present method is fast 

and allows multiple neurons and different regions of the same neuron to be imaged 

simultaneously. The differential detection algorithm reduces common noise, such as light 

intensity fluctuations, which leads to a detection limit of 0.2 nm of membrane 

displacement with a denoising scheme detailed in Methods and Supplementary 

Information. 
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Figure 7-1 Optical Imaging of Mechanical Wave that Accompanies Action Potential in 

Single Mammalian Neurons. 

a) Experimental setup showing a hippocampal neuron cultured on a glass slide mounted 

on an inverted optical microscope, which is studied simultaneously with the patch clamp 

configuration for electrical recording of the action potential, and optical imaging of 

membrane displacement associated with the action potential. b) Imaging and 

quantification of membrane displacement with a differential detection algorithm that 

tracks the edge movement of a neuron. A region of interest is selected to include a 

portion of the neuron edge, and divided into two halves along the edge (orange and green 

boxes) with intensities, I1 and I2, respectively. The expansion or shrinking of the neuron 

is measured by a membrane displacement, x, from the change in the intensities, which is 

proportional to the normalized differential intensity, (I1-I2)/(I1+I2). See text for details. 
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Materials and Methods 

Optical imaging of membrane displacement 

The membrane displacement was measured with an inverted optical microscope 

(IX81) using a 60x objective (NA = 0.65), a halogen lamp in the Köhler configuration, 

and a sCMOS camera (Hamamatsu, Flash 4.0) for imaging. To image the membrane 

displacement in HEK293T cells, the camera was operated with a frame rate of 400 fps, 

and pixel density of 256 x 512 (2 pixel binning mode). To image action potential-induced 

mechanical waves in neurons, the frame rate of the camera was increased to 1603.5 fps 

with pixel density of 128 x 512. Images were streamed to a fast disk array consist of 4 

solid-state hard disks (Samsung 840 Pro 512GB) in parallel writing mode (RAID 0). To 

minimize the shot noise, the image intensity captured by the camera was adjusted close to 

camera saturation. To synchronize the electrical recording with images, the camera was 

externally triggered by the patch clamp system. The whole setup was placed on a floating 

optical table (Newport RS2000) and enclosed in a custom built faradic cage and acoustic 

enclosure to minimize electrical and mechanical noises. 

Electrophysiological recording  

Electrophysiological signals were recorded in the whole-cell configuration using 

Axopatch 200B amplifier (Axon Instruments). To image membrane displacement in 

HEK293T cells, membrane potential was modulated sinusoidally in the voltage-clamp 

mode with typical frequency of 23 Hz for 10 seconds (otherwise indicated in manuscript). 

For action potential imaging in hippocampal neurons, multiple depolarization current 

pulses (typically 500 pA, 2-4 msec) were injected into the cell to evoke action potential 

trains at 23 Hz for 20 seconds (otherwise indicated in manuscript). Glass micropipettes 
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were prepared with a pipet puller (P-97, Sutter Instrument) with typical resistance of 3-8 

MΩ. Before patching a cell, the micropipette was filled with intracellular recording 

solution consisting of 10 mM NaCl, 135 mM K-gluconate, 10 mM HEPES, 2 mM 

MgCl2, 2 mM Mg-ATP and 1 mM EGTA (pH 7.4). Cells and neurons were recorded in 

extracellular recording solution, containing 135 mM NaCl, 5 mM KCl, 1.2 mM MgCl2, 5 

mM HEPES, 2.5 mM CaCl2 and 10 mM glucose at pH 7.4. The electrical signals were 

filtered by a 1 kHz low-pass Bessel filter. 

Cell and neuron culture 

Wildtype HEK293T cells (ATCC, CRL-3216) were seeded on a fibronectin 

(Sigma-Aldrich, f1141) coated petri dish one day before the experiment. Cells were 

cultured in DMEM (Lonza) medium with 10% FBS (Life Technologies, 10437077) 

according to the user’s manual from ATCC. E18 rat hippocampus (Brainbits) were 

dissociated with papain and seeded on a poly-D-lysine (Sigma, P6407) coated glass 

coverslip at a density of ~105 neurons/cm2. After incubation in growth medium 

(NbActive4, Brainbits) in 5% CO2 humidified atmosphere at 37°C for 5-8 days, the 

neurons were ready for experiment. 

Differential detection algorithm 

The optical images were first interpolated five times in size by adding additional 

pixels. The image size represented by each pixel size was determined by dividing the 

physical dimension of the pixel in the sCMOS imager (6.5 μm, Hamamatsu Flash 4.0) 

with the optical zoom and digital interpolation in the system. An ROI with a typical size 

of 100 x 100 pixels (2.2 μm x 2.2 μm) was selected at one location at the cell edge and 

split into two halves, one inside (I1) and one outside (I2). To calibrate the response of 
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normalized differential intensity with displacement, the ROI was shifted by a certain 

number of pixels in the direction perpendicular to the edge (Figure 7-2). Normalized 

differential intensity, (I1-I2)/(I1+I2), vs. pixel shift (displacement) showed a typical “S” 

shape (Figure 7-2). Within a certain range (marked between two dashed lines in Figure 

7-2d, ~500 nm), the differential intensity change is linearly proportional to the pixel shift 

(displacement). I determined the slope of the linear region, and used it as the calibration 

factor to determine the membrane displacement with the differential detection algorithm 

(Figure 7-2e). For all the measurements performed in this work, the membrane 

displacement is small (less than few tens of nm), well within the linear region (Figure 

7-3d).  

For both HEK293T cells and hippocampal neurons, cell edges were manually 

identified, and the local membrane displacement was determined using the procedure 

described above. Note that the differential detection algorithm is insensitive to the 

accuracy of the edge identification as long as the edge falls within the ROI, and the 

displacement is within the linear rage (~500 nm) as shown in Figure 7-2e. After 

quantifying the displacement at one location, the ROI automatically stepped to an 

adjacent location, and the procedure was repeated until the displacement along the edge 

of the entire cell was determined. In the case of HEK293T cells, the ROI was stepped 

every 10 degrees to the centroid of the cell (average ~1.7 μm/step along the edge for 10 

μm cell in radius). For neurons, the ROI was stepped every 64 pixels along the boundary 

(~1.4 μm/step for 60x zoom). It took about 5 mins to complete the analysis of one cell 

with the method, and it can be further optimized in the future. 



 

91 

Denoising scheme and difference image 

To resolve the subtle mechanical displacement, denoising procedures were 

applied to measurements of both HEK293T cells and hippocampal neurons. In the 

HEK293T experiment, because a sinusoidal potential was used to modulate the 

membrane, Fast Fourier Transform (FFT) filter was used to remove noise at frequencies 

other than the modulation frequency for each ROI (Supplementary Information). The 

amplitude and phase at the modulation frequency were quantified as magnitude and 

direction of the edge displacement while membrane potential depolarized.  
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Figure 7-2 Calibration Procedure of Differential Algorithm 

a-c) A ROI at the cell edge is shifted towards inside of the cell pixel by pixel. d) 

Normalized differential intensity profile (I1-I2)/(I1+I2) vs. ROI positions (in pixels and 

μm). e) Zooming-in of the region between two vertical dashed lines in d) displaying a 

linear dependence, where the red line is linear fitting. Scale bar: 10 μm.  
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To obtain the time difference image of the cell, FFT filter was applied to the 

image stack over time pixel by pixel. Since the mechanical response is in phase (0 or 180 

degrees phase shift) with the applied potential modulation, real part image at the lock-in 

frequency was selected as the time difference image (the imaginary part measured 

response in +/-90 degrees). Mathematically, the time difference image (quantify the 

temporal information first) is equivalent to the differential detection scheme (quantify the 

spatial information first, then denoising along temporal dimension), and it provides a 

convenient way to visualize the membrane displacement, both in direction and amplitude. 

Images were spatially smoothed with 3×3 pixels (0.33×0.33 μm) mean kernel before FFT 

filtering. 

For hippocampal neurons, repeated APs were evoked with typically 100-400 

cycles. Both electrical signal and images were averaged over the repeating cycles, and 

averaged signal for single cycle was obtained. To observe the mechanical wave, time 

difference images were obtained by subtracting the first image from the averaged image 

stack. Mechanical displacement was quantified using the differential detection algorithm 

along the edge as described earlier from the averaged image stack. To remove spatial 

noise, the mean image stack was temporally detrended pixel-by-pixel using a fitted linear 

function, and digitally filtered with FIR low-pass filter with a cut-off frequency of 500 

Hz. 

Displacement quantification and data analysis 

Local membrane displacement map was obtained by interpolating local 

displacement quantified by the differential detection algorithm. The displacement power 

spectral density and standard deviation between 20 – 200 Hz were quantified as the noise 
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level. All post-acquisition analysis was carried out by custom-written MATLAB (Natick, 

MA, USA) code.  
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Results and Discussion 

Optical imaging of membrane potential-induced membrane displacement 

I first examined the method by applying it to measure membrane potential-

induced mechanical displacement in HEK293T cells. For this purpose, I modulated the 

membrane potential of a HEK293T cell sinusoidally in the whole-cell patch clamp 

configuration, and recorded the electrical current and optical images simultaneously 

(Figure 7-3a). Figure 7-3d shows the current response (middle panel, red trace) to an 

applied potential modulated from -60 mV to 40 mV with frequency of 23 Hz (top panel, 
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blue trace). The current is due to polarization, as no AP is excited in HEK293T. This is 

also confirmed by the 90°-phase shift between the applied membrane potential and 

measured current. Associated with the membrane potential modulation, I expect a 

membrane displacement according to the thermodynamic theories that predict different 

effects, including piezoelectricity and flexoelectricity (Petrov 2006, Mosgaard, Zecchi et 

al. 2015). The membrane displacement is too small to be visualized directly from the 

Figure 7-3 Quantification of Membrane Depolarization-induced Membrane Displacement 

in Cells. 

a) Bright field image of a HEK293T cell and a micropipette used to change the 

membrane potential. b) Left panel: Zooming-in of the bright field images (grey scale) of 

the cell edge at -60 and 40 mV, and difference image (colored) obtained by subtracting 

the bright field image obtained at -60 mV from that at 40 mV. The characteristic orange 

and purple lines represent the cell edge displacement. Right panel: Corresponding 

intensity profiles along lines indicated in the images, where the solid and dashed orange 

lines are from the bright field images at -60 mV and 40 mV, and the solid green line is 

from the difference image. c) Difference image of the entire cell showing cell edge 

displacement and local variability (intensities for the orange and purple bands) of the 

displacement. d) Left panel: Time traces of applied potential at frequency 23 Hz (blue), 

measured current (red) from the patch clamp setup, and differential intensity (I1 -I2, 

brown) from the optical imaging method. Note that the actual displacement determined 

from the differential detection algorithm is shown as a black line overlaid on top of the 

differential intensity, and the potential is indicated as dashed blue line. Right panel: A 

region of cell edge shown in raw bright field (grey scale) and difference (colored) 

images. e) Fast Fourier Transformation (FFT) power spectra of differential intensity in 

regions with (brown) and without (pink) cell (as indicated as colored squares in a). The 

FFT power spectrum of the membrane displacement is shown as a black dashed line. f) 

Membrane displacement map obtained from the differential detection algorithm. Scale 

bar in a, c, f): 10 μm. 
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bright field optical image. For example, Figure 7-3b are two images of the cell edge 

(marked blue dashed line in Figure 7-3a) recorded at -60 and 40 mV, which show no 

visible difference. However, difference image obtained by subtracting the image at -60 

mV from that at 40 mV shows clear contrast of the cell edge with an orange and a purple 

bands in Figure 7-3b, corresponding to an increase and decrease in the image intensity, 

respectively (see Methods for obtaining difference image). This distinct contrast in the 

difference image reflects a membrane displacement, which can be understood by plotting 

intensity profiles across the cell edge at -60 (solid orange line) and 40 mV (dashed orange 

line). The difference between the two intensity profiles is simply a lateral displacement 

(Figure 7-3b). Subtraction of the two intensity profiles leads to regions with increased or 

decreased intensity, which gives rise to the orange and purple bands in the difference 

image.  

The analysis above demonstrates that the potential-induced membrane 

displacement can be visualized by the difference image. Figure 7-3c is the difference 

image of the cell shown in Figure 7-3a, revealing contrast with the characteristic purple 

and orange bands along the cell edge. According to the differential detection algorithm, 
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a-c) Difference images at the modulation frequency b) and nearby frequencies a) and 

c). Scale bar: 10 μm.  
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the intensities of the purple and orange bands are I1 and -I2, which provide membrane 

displacement. The upper right of Figure 7-3d shows a ROI at a cell edge, with a half 

inside (I1) and another half outside (I2) of the cell, and the lower right of Figure 7-3d is 

the difference image of the same region. I1-I2 is the sum of the purple and orange bands in 

the difference image, which is proportional to the membrane displacement. Figure 7-3d 

(lower left panel) plots I1-I2 vs. time, showing a periodic oscillation due to membrane 
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Figure 7-5 Cell Membrane Displacement with and without Membrane Potential 

Modulation 

a) Optical image of a patched HEK293T cell. b) FFT power spectra of the same cell with 

(green) and without (pink) potential modulation at 23 Hz. c) Difference images of the 

cell with (top) and without (bottom) modulation at the modulation frequency and nearby 

frequencies. Scale bar: 10 μm.  
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depolarization-induced cell edge movement. Fast Fourier Transform (FFT) of the I1-I2 

trace reveals a pronounced peak at 23 Hz, the frequency of membrane potential 

modulation (Figure 7-3e). The peak amplitude in the FFT spectrum provides an accurate 

measurement of the membrane displacement. The FFT analysis also reveals a 180° phase 

shift between the membrane potential and displacement, indicating that the cell edge 

shrinks as the membrane depolarizes.  

I validated the above results by carrying out further control experiments and 

analysis. First, I did not detect any peak at the frequency of modulation in the FFT 

spectrum in regions without the cell (pink line, Figure 7-3e), indicating that the image 

intensity change at 23 Hz is due to the mechanical response of the cell to the membrane 

potential modulation. Second, I did not detect any peak in the FFT spectrum in the cell 

region when I turned off the membrane potential modulation (Figure 7-5), which 

demonstrates that the observed membrane displacement was truly originated from the 

membrane potential modulation. Finally, I detected little signals at frequencies other than 

the modulation frequency in the FFT spectrum, which shows that the measured potential-

induced membrane displacement has sufficient signal-to-noise ratio compared to the 

background micro-motions of the cell arising from thermal fluctuations and metabolic 

activities (Figure 7-4).  

Quantification of membrane potential-induced mechanical response 

The analysis above shows that subtle cell membrane displacement can be 

visualized in the difference image, and measured by tracking the image intensity change 

along the cell edge with the differential detection algorithm. To quantify the 

displacement, I performed calibration using the procedure described in Methods and 
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Supplementary Information (Figure 7-2). The calibration allowed me to determine the 

local membrane displacement from the differential image intensity, (I1 - I2)/(I1 + I2). 

Scale bars in Figure 7-3d and Figure 7-3e show the membrane displacement of the region 

shown in Figure 7-3a. The membrane displacement is about 1.5 nm, corresponding to 15 

pm per mV. The signal to noise ratio (SNR) is ~7, as determined from the peak amplitude 

at the modulation frequency, and the background level near the modulation frequency, 

which leads to a noise level of ~0.2 nm of the region. The averaged displacement along 

the edge of the cell is ~1.4 nm. This number is consistent with model estimate based on 

the Lippmann equation (Zhang, Keleshian et al. 2001).  

Because different regions of a cell have different membrane displacements, I 

plotted the local membrane displacement of a cell in Figure 7-3f, showing large 

variability in membrane displacement along the cell edge. Some regions displace by as 

many as several nm (red), while other regions by only a fraction of nm (dark blue). 

Heterogeneity in cellular membrane is well documented in literature, including 

expression level of membrane proteins, type of lipids and structure of cytoskeleton, 

which play various functional roles in the cell (Fletcher and Mullins 2010). The present 

study reveals large heterogeneity in the membrane potential-induced mechanical 

response(Kuznetsova, Starodubtseva et al. 2007). 
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Figure 7-6 Detection of Mechanical Waves in Neurons Accompanying the Action 

Potential.  

a) Bright field image of a hippocampal neuron. b) Action potential of the neuron 

(green). c) Simultaneously recorded membrane displacement of the same neuron 

(magenta). d) Snapshots of difference images of the hippocampal neuron at different 

stages of the action potential spike. The moments where the difference images were 

recorded are indicated by filled grey circles in c). Scale bar: 10 μm. 
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Imaging of mechanical waves that accompany action potential 

I have demonstrated that potential-induced membrane displacement in cells can 

be imaged with sub-micron spatial resolution, and quantified with sub-nm precision. I 

now turn to the detection of mechanical waves that accompany the AP in primary 

neurons. I first identified a neuron with the bright-field optical microscope, and patched it 

with the patch clamp setup (Figure 7-6a). I then triggered the AP by injecting current into 

the neuron with the patch clamp micropipette, and recorded both the electrical potential 

(Figure 7-6b), and a stack of optical images with a frame rate of 1603 fps. To visualize 

the mechanical response, I obtained difference images by subtracting the first image from 

each of the images in the stack (see Methods). The difference images can be viewed as a 
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Figure 7-7 Mapping and Quantification of Local Membrane Displacement 

Associated with the Mechanical Wave.  

a) Bright field image of a hippocampal neuron. b) Local membrane displacement 

map at the peak of the action potential, where red indicates outward 

displacement, blue indicates inward displacement. c) Mechanical waveforms at 

locations indicated by the corresponding colored squares in a). Scale bar: 10 μm 
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movie (Supplementary Information), which shows the transient mechanical response of 

the neuron during the AP. From the video, I can visualize the AP initiation and 

progression in the regions of axons and dendrites. This spatial information is not 

previously accessible by the traditional electrical recording or other methods.  

Figure 7-6d shows a sequence of difference images captured at different stages of 

the AP (marked on Figure 7-6c). Before firing of the AP, the difference image is 

featureless (Figure 7-6d, I). As the AP rises, the difference image begins to show contrast 

(Figure 7-6d, II), and the image contrast reaches a maximum at the peak of the AP 

(Figure 7-6d, III). When the AP falls, the difference image contrast also decreases (Figure 

0 20 40

0

0.1

0.2

0.3

0 20 40

0

0.2

0.4

-40 0 40

-0.9 0 0.9

D
if
fe

re
n

ti
a

l

Im
a

g
e

 (
a
.u

.)

Time (msec)

D
is

p
la

c
e

m
e

n
t

M
a
p

 (
n

m
)

R
a

w

Im
a

g
e

M
e
a

n
 E

d
g
e

D
is

p
la

c
e

m
e

n
t 
(n

m
)

Cell 1

0 20 40

0

0.2

0.4

0 20 40

-50

0

50

-40 0 40

-1.2 0 1.2

Cell 2

0 20 40

-50

0

50

Time (msec)

-30 0 30

-1.0 0 1.0

0 20 40
-50

0

Time (msec)

Cell 3

V
 (

m
V

)

V
 (

m
V

)

V
 (

m
V

)

a

b

c

d

Figure 7-8 Heterogeneous Mechanical Responses of Neurons.  

Bright field images (a), difference images (b), local membrane displacement maps (c) 

and mean membrane displacement profiles (d) of three hippocampal neurons during 

action potential firing. The simultaneously recorded corresponding action potential 

profiles for the neurons are presented in the insets of (d). Scale bars: Cell 1 and Cell 2: 

15 μm; Cell 3: 20 μm. 
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7-6d, IV, and V), and eventually disappears to the background noise level (Figure 7-6d, 

VI). Note that the purple and orange bands in the difference images in Figure 7-6d 

represent decrease and increase in the image intensity, which is expected for the 

membrane displacement (expansion or shrinking) as I discussed earlier. 

I quantified the membrane displacement using the differential detection algorithm 

and obtained the overall transient mechanical deformation during the AP. To clearly 
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Figure 7-9 Mechanical Wave in Dorsal Root Ganglion (DRG) Neurons 

Bright field image a), difference image b), displacement map c) and mean displacement 

magnitude d) (pink curve) of the DRG neuron mechanical response. Inset in d) shows the 

action potential. Scale bar: 10 μm. 
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resolve the small membrane displacement in the presence of micro-motion of the 

mammalian neurons, I evoked the AP repeatedly and obtained the average transient 

membrane displacement (Figure 7-6c), which shows that accompanying the AP, there is 

membrane displacement with waveform similar to that of the AP (see Methods and 

Supplementary Information for the procedure). The maximum amplitude of the 

membrane displacement takes place at the peak of the AP and is ~0.2 nm (at ~90 mV 

depolarization potential). A recent theory based on linear mechanics predicted an AP 

induced membrane displacement in neurons(6). For hippocampal neurons, the theory 

estimates that the maximum membrane displacement that accompanies the AP is ~0.1 

nm, which is close to the present observation. However, the predicted mechanical 

waveform contains an oscillatory feature with a small negative displacement region 

followed by a more dominant positive displacement region, which is in contrast to the 

present observation that mechanical and electrical waveforms are similar. The observed 

mechanical waveform appears to resemble more closely with that of the soliton 

model(Heimburg and Jackson 2005, Andersen, Jackson et al. 2009, Shrivastava and 

Schneider 2013, Shrivastava and Schneider 2014). 

The observation of membrane displacement with amplitude of ~0.2 nm shown in 

Figure 7-6c is an averaged value over the entire neuron. The optical method here also 

provides valuable local information, which reveals large variability in the local 

membrane displacement, not only in the amplitude but also the polarity. Figure 7-7b 

shows the local displacement along the edge of a neuron (see Figure 7-7a for the optical 

image). In some regions (e.g., region 1), the displacement is negative (blue, cell 

membrane moves inward), indicating shrinking of the neuron. In other regions (e.g., 
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region 2), however, the displacement is positive (red, cell membrane moves outward), 

which is expected for expansion or swelling of the neuron. There are also regions (e.g., 

region 3) showing positive displacement on one side and negative displacement on the 

opposite side, suggesting a displacement of the entire section of the neuron in one 

direction. Figure 7-7c plots the membrane displacement waveforms at different locations. 

Despite the polarity difference, the waveforms are similar in shape to each other, and also 

to the electrically recorded AP.  
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Although the observation that mechanical waves accompany the AP is consistent 
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Figure 7-10 Noise Spectra and Effect of Averaging Over Multiple Pixels on 

Signal to Noise Ratio 

a) Displacement noise power density of selected ROI with different pixel 

numbers, where the black dashed line indicates the level of shot noise, and 

dashed line indicates linear dependence of cell intrinsic noise with a slope of -2. 

b) Standard deviation of displacement vs. pixel numbers. 
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with the recent theories, the detailed local variability in the mechanical deformation calls 

for more detailed theories. The mechanical wave theories assume a uniform cylinder for 

the neuron axon, and consider primarily elastic energy associated with membrane surface 

area changes(El Hady and Machta 2015). Elastic energy may also be stored in the 

membrane curvature that is related to bending modulus(Petrov and Sachs 2002, Petrov 

2006). Additionally, a more complete theory may also need to consider the local 

structural and mechanical variability in neurons, and the interaction of neurons with the 

supporting surface. 

I imaged the mechanical deformation in 11 different neurons, and observed 

mechanical waves that accompany the AP in every neuron (Figure 7-8). I also observed 

the mechanical wave in cultured rat Dorsal Root Ganglion (DRG) neurons (Figure 7-9), 

which suggests that the mechanical waves accompany the AP is a robust phenomenon. 

My data also show that despite both positive and negative membrane displacements are 
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Figure 7-11 Cell Intrinsic Micro-motion Noise 

Displacement noise power density of a live (blue) and fixed (red) cell, where the black 

dashed line marks the shot noise level, and the red dashed line indicates linear 

dependence of cell intrinsic noise with a slope of -2. Live cell displays 10 times higher 

noise level at the low frequency level than the fixed cell. 
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observed within a neuron, the absolute displacement averaged over a whole neuron 

displays a waveform that matches well with the simultaneously recorded AP. The 

average maximum displacement is ~0.3 nm, corresponding to ~4 pm/mV, but the 

maximum mechanical wave amplitude varies from ~0.2 to ~0.4 nm, from neuron to 

neuron (Figure 7-8). The width of the mechanical waveform matches that of the AP for 

each neuron (Figure 7-8).  

The data discussed above show that the AP is accompanied by a mechanical wave 

in the cell membrane, and the corresponding membrane displacement is a fraction of nm. 

To optimize the detection of such small displacement, I analyzed different noise sources. 

At high frequencies (>200 Hz), shot noise dominates (Figure 7-10), which can be reduced 

by increasing pixel size (or number) and light intensity. However, at low frequencies 

(<200 Hz), the intrinsic cell micro-motions dominate the noise spectrum as shown in the 

Supplementary Information (Figure 7-11 and Figure 7-12).  

 

  

Figure 7-12 Noise Reduction by Averaging Data Over Repeated Cycle of Action 

Potential 

a) Mechanical wave that accompanies the action potential averaged over different 

numbers of action potential cycle. b) Standard deviation of membrane displacement vs. 

number of cycle in the averaging, where the black dashed line indicates the signal level, 

and the red solid line is fitting of the data by a power law with an exponent of -0.58. 
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Conclusion 

In summary, I have imaged local membrane displacement in single mammalian 

neurons during the initiation and propagation of the action potential, and observed that a 

mechanical wave accompanies the action potential. The mechanical wave and AP have 

similar shapes and widths, and their peaks are synchronized with each other within the 

temporal resolution (0.6 ms) of the present imaging method. The mechanical wave is 

observed in nearly every neuron studied in this work, indicating the phenomenon is 

universal, but the amplitudes of the mechanical waves in different neurons are different, 

varying between 0.2 – 0.4 nm. There is also large variability in the local membrane 

displacement along the edge of a neuron, both in amplitude and direction: some regions 

expand while others shrink. Despite the local variability, the absolute displacement of a 

neuron displays a waveform similar to that of the action potential. While mechanical 

waves are anticipated to accompany the action potential by theories, detailed descriptions 

of the waveform, and the local variability in the membrane displacement call for more 

detailed theories. 
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CHAPTER 8 CONCLUSION AND PERSPECTIVES 

Conclusion 

The major findings and contributions of my current doctoral projects include: 

I. I developed a label-free imaging technique for tracking single organelle 

dynamics with nanometer precision. This plasmonic imaging method can track 

the dynamics of organelles in 3D with high localization precision (5 nm) and 

temporal (10 ms) resolution. Using this technique, I observed nanometer steps of 

organelle transportation along neurite microtubules in neurons in native state. 

This provides molecular-scaled information of the motor proteins behind the 

organelle transportation. By tracking the organelle transportation, I also 

reconstructed the 3D structure of neurite microtubule bundles in live cells. The 

technique has great potential to provide a powerful new tool for quantitative 

analysis of intracellular dynamic in live cells. 

II. I developed a plasmonics-based imaging technique for visualizing 

heterogeneous subcellular displacement accompanied with electrical stimulation. I 

used this method to map both amplitude and direction of deformation down to 

subcellular level. Using this technique, I characterized electromechanical coupling 

of mammalian cells and discovered a bidirectional deformation mode inside cells. 

The results show an elastic behavior during cell deforming from Hertz to 

hundreds of Hertz range, mainly determined by mechanical property of the 

cytoplasm. This imaging technique provides a novel detecting strategy for 

measuring cell membrane potentials, including action potential firing in neurons. 
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Results of this study enable further insights into biological functions from an 

electromechanical aspect in systems.  

III. I developed a plasmonics-based technique for imaging electrical activity 

in single neurons with sub-millisecond resolution. I visualized action potential in 

mammalian neurons using this non-invasive label-free technique. The technique 

also resolved the fast initiation and propagation of electrical signals. Single action 

potentials and ion channel related activity can also be observed. The technique 

sheds lights on brain imaging and neuronal circuitry studies, which will lead to a 

greater understanding of the mechanisms of neurodegenerative diseases.  

IV. I visualized mechanical wave associated with action potential in single 

mammalian neurons using bright-field optical imaging technique. The shape and 

width of mechanical waves were similar to those of the action potential. The 

amplitude of the mechanical wave varies from neuron to neuron, ranging from 0.2 

- 0.4 nm. I also showed the heterogeneous response of mechanical wave within a 

neuron. This study demonstrated the possibility of optically studying mechanical 

waves that accompany action potentials, which will provide new insights into 

understanding the physiological function of mechanical waves and unveiling the 

interplay between electrical and mechanical signals during action potentials. 

Perspectives 

All my works focused on simple mechanical sensors with quick and label-free 

readouts. Mechanical signatures are fundamental properties of all cells. These features 

can be used as physical biomarkers for monitoring change of cell status, such as stem cell 

differentiation and cancer cell progression. However, a huge gap remains for correlating 
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physical readouts and biological functions. I anticipate the optical imaging approaches 

will help simplify the physical measurements and potentially bridge the gap. 

I demonstrated the possibility of optically measuring small deformation at 

extremely fast time scale. The measurement accuracy is close to the conventional 

approaches for small deformation detection, such as scanning microscope. However, 

these optical approaches described here provide spatial information and allow fast and 

local measurement. After pushing the measurements to nanometers and microseconds 

levels, I anticipate new biological phenomenon will be observed. Combining with 

fluorescence microscopy and other biochemical/biophysical manipulating tools, I 

anticipate this approach will help accelerate the understanding of biochemical 

mechanisms of cell mechanics.  

Future works include: 

I. Development of label-free imaging technique for visualizing action 

potential. In my works, I demonstrated the possibility of visualizing action 

potential associated mechanical signal with multicycle trace averaging. 

Developing a label-free microscopy with sensitive algorithms to resolve single 

action potential spikes is critical and will become a powerful tool for direct 

measuring action potential at large scale. Success of developing this technique 

will allow a large-scale mapping of hundreds of neurons at the tissue level and 

will be useful for studying inter-neuronal communications. Current limitation of 

visualizing single individual action potential spikes is from the intrinsic motion of 

the neurons. Practically, although amplitudes of neuron intrinsic motion and 

action potential induced motion are similar, they have different characteristic 
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features and can be potentially separated by varieties of digital signal processing 

methods, such as signal filtering, fitting and transformation to other spaces. To 

enhance the action potential associated mechanical signal, biological approaches, 

such as transgenic approach can also be employed. Membrane potential sensitive 

motor proteins, such as prestin, will be potentially a signal amplifier and indicator 

for mechanically-resolving action potential in neurons. In fact, this genetic 

encoded mechanical indicator (GEMI) approach can be a universal signal 

transducer for biological system and finally imaged with mechanical deformation 

in microscope. With combination of current algorithms in computer vision, such 

as video magnification, I anticipate a simple module compatible with bright-field 

microscopy will be available for action potential imaging and direct visualization.  

II. Studying cell (electro)mechanics and its underlying mechanism by 

combining with fluorescence microscopy and other biochemical/biophysical tools. 

Since my work demonstrated the possibility of studying subcellular mechanical 

displacement, understanding the molecular mechanism of heterogeneous response 

is important. By combining with fluorescence microscope, 

cytoskeleton/membrane/extracellular structures can be labeled and its local 

mechanical response can be simultaneously measured by optical approaches in 

this work. Biochemical/biophysical tools will allow me to accurately perturb the 

system, for example, cutting single actin fiber, and studying the local mechanical 

response. These fundamental studies will help to elucidate the local cell 

mechanics in response to perturbations. Electromechanical study may also reveal 
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the local membrane potential distribution via quantifying local displacement 

response.  

III. Development of fast mechanophenotyping methods using flow cytometry. 

My works demonstrated the possibility of studying subtle deformations at extreme 

high speed. This allows a fast mechanophenotyping in a flow cytometry setting. 

High-throughput single-cell mechanophenotyping is thus achievable. This will 

allow a systematical study of mechanical signatures of cancer cells, and their 

relationship with molecular cancer biomarkers. It will also be possible to study 

mechanical signature of circulating tumor cells (CTCs) and quantify cell-cell 

interactions, such as immune synapse formation during T-cell activation in a high-

throughput manner, which is previously impossible. These studies will lead to the 

discovery of biophysical biomarkers and possibly provide new methods for cancer 

diagnosis and high-throughput screening. 

IV. Label-free phenotyping with machine leaning. In principle, the cell 

morphology are collective results of all forces generated from inside and outside 

of the cells. Morphology itself at certain time with multiple cells can be viewed as 

different states of sampled dynamic motions at different time. Therefore, the static 

morphology contains the mechanical signature of cells. By quantifying the 

morphology with deep leaning algorithms, I would expect mechanical signature 

change of cells can be revealed. This would be a very simple method for reading 

out the physical parameters. The revealed mechanical signature alternation could 

be related to extracellular forces change, cell-cell interactions perturbations that 

induced from deficiency of surface molecules or intracellular signaling events that 
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hinder the cell mechanical panel. This approach will also provide a pilot study for 

histological phenotyping at the tissue level. Subcellular morphology such as 

nucleus can also be studied. Nucleus mechanics are expected to contain 

information about cell cycles, high order chromosomal structure that related to 

epigenetic states. Studying nucleus mechanics may provide new insights into stem 

cell differentiation and identification of lineage determination. 

V. Multiplexing and systematic study of biophysical properties with 

biochemical approaches. I expect my work can potentially bridge the gap between 

biochemical research and biophysical quantification. By applying current 

biotechnologies, such as omics techniques, single-cell RNA-sequencing or 

imaging techniques, such as multiplexing fluorescence labeling, I expect to 

correlate the mechanical parameters with its molecular basis at the system level. 

This would provide a new perspective on molecular basis of cell biophysical 

properties. These studies will provide new insights into biochemically controlling 

and manipulating physical properties of the cells. I anticipate the study will lead 

to new discovery of other (bio/chemo)physical therapies that can control the 

migration and metastasis of cancer cells instead of current radiation physical 

therapies that only kill the cells. 

.
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