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ABSTRACT  

In the past 10 to 15 years, there has been a tremendous increase in the amount of 

photovoltaic (PV) modules being both manufactured and installed in the field. Power 

plants in the hundreds of megawatts are continuously being turned online as the world 

turns toward greener and sustainable energy. Due to this fact and to calculate LCOE 

(levelized cost of energy), it is understandably becoming more important to comprehend 

the behavior of these systems as a whole by calculating two key data: the rate at which 

modules are degrading in the field; the trend (linear or nonlinear) in which the 

degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) 

measurements, non-intrusive measurements are preferable to obtain these two key data 

since owners do not want to lose money by turning their systems off, as well as safety 

and breach of installer warranty terms. In order to understand the degradation behavior of 

PV systems, there is a need for highly accurate performance modeling. In this thesis 39 

commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop 

an understanding on the rate and trend of degradation seen by crystalline silicon PV 

modules. A total of three degradation rates were calculated for each power plant based on 

three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. 

These methods were validated from in field I-V measurements obtained by Arizona State 

University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate 

performance models, the generated degradation rates may be used by the system owners 

to claim a warranty from PV module manufactures or other responsible parties. 
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1.0 INTRODUCTION 

 

1.1 Background 

 

A large number of developed and developing countries have set milestones of 

reaching 20-30% of their energy demands by 2050 using clean energy. Solar photovoltaic 

(PV) is one the primary technologies being used to meet these goals and thus has seen 

tremendous growth in the amount of installation seen around the globe. Specifically 

within the U.S., solar has seen more and larger scale PV power plants being turned online 

due to cheaper module and system costs, as well as the renewable tax credit (RTC) that 

gives companies incentives to invest into these PV power plants. Because of the recent 

extension to the RTC, it is expected that a surge of large scale PV installations will be 

seen in the near future. This then leads to the need of having highly accurate modeling 

and energy predictions of how these power plants will generate energy.  

Arizona State University has been one of first U.S. colleges to install a large 

amount of PV systems, having a total of 23 MW of installed PV from more than 70 PV 

systems. With all of these systems being located in the greater Phoenix-Metro area, the 

collected data from these systems can be used to understand the behavior of PV power 

plants that are installed in the hot-dry climate of Arizona. By understanding the behavior 

of the degradation rates of PV modules, and by extension PV power plants, more accurate 

energy predictions can be obtained which will in turn allow module manufactures to 

better understand the rate at which their modules are degrading in a specific climate, 

allow consumers to have a better idea of what to expect from there PV systems, and  
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allow  a smarter grid management that is able to account for the losses which can be 

experienced when dealing with PV power plants. 

1.2 Scope of Work 

 

 This thesis deals with the challenges of analyzing and implementing climate-

specific models, for both irradiance and module temperature, in order to develop high 

accuracy performance ratio (PR) and performance index (PI) values for 38 commercial 

size PV power plants installed in a hot-dry climate of Arizona. Based on the PR, PI and 

filtered raw kWh data, the degradation rates were determined. These degradation rates are 

then analyzed to determine whether or not the degradation rates experienced by these 

systems are shown to be linear. All systems evaluated in this thesis are crystalline 

(monocrystalline and polycrystalline) silicon based PV systems (except one system which 

is composed of HIT modules). The ages of these power plants vary from 2 years to 16 

years with the majority of the analyzed systems being less than 5 years of age.  

2.0 LITERATURE REVIEW 

 

2.1 Irradiance Models 

 

 It is well known that the two biggest factors that affect PV module performance is 

that of the amount of irradiance seen by the module (plane of array, POA, irradiance) and 

the temperature at which the module is operating. It is because of this there have been 

extensive studies into developing models that accurately predict the operating conditions 

of PV modules when there is lack of monitored POA irradiance and module temperature. 

When analyzing the performance of PV system, it is critical to first know the 

irradiance hitting the POA being analyzed. Often only global horizontal irradiance (GHI) 
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is measured on the ground or calculated based on the satellite data instead of directly 

measuring POA irradiance. Because of this issue, there is ae need of converting GHI data 

into POA irradiance data using decomposition models and transposition models. 

2.1.1 Decomposition Models 

 

The use of decomposition models plays an important role in the overall 

effectiveness of modeling the POA irradiance due to the fact that they empirically 

determine the amount of direct and diffused irradiance hitting a horizontal plane. The 

more accurate a decomposition model is at predicting the beam and diffused components 

on the horizontal, the more accurate transposition models will be able to convert these 

data into POA irradiance. 

2.1.2 Transposition Models 

 

The decomposed diffuse and beam components of GHI are then transposed to 

POA using transposition models.   Extensive studies have been undertaken by the 

industry to develop the most accurate transposition models. The POA irradiance that is 

empirically derived can then be used to model the performance, operating temperature, or 

many other parameters of a PV system. 

2.1.3 Previous Irradiance Modeling Work 

 

The use of decomposition and transposition models is often widely used. Lave et 

al. showed an extensive comparative analysis of 12 decomposition models and four 

transposition models, for multiple locations across the United States [1]. 
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Fig. 1. Flowchart Showing How to Model POA Irradiance from Measured GHI [1]. 

Similar studies were also conducted by Wong and Chow which also showcases a 

different set of optimized decomposition and transposition models for Hong Kong [2]. 

Yang et al. [3] presented a reverse study of the best decomposition and transposition 

models to convert POA irradiance into GHI for Singapore. 

2.2 Thermal Models 
 

The second main effect on the performance of a PV module(s)/array is that of the 

temperature at which the model(s) is/are operating at (Tmod). Due to the fact direct 

measurements of PV module temperatures are not always available, there is  a need for 

highly accurate PV module temperature models based on operating conditions of 

irradiance, ambient temperature (Tamb), and wind speed (WS). 

2.2.1 Previous Thermal Modeling Works 

 

A study done by Schwingshackl et al. evaluates the comparison of multiple PV 

temperature models with measured cell (backsheet) temperatures for a large PV power 

plant in Italy [4]. A similar study was also conducted by Olukan and Emziane comparing 
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thermal models to measured PV module temperatures in Abu Dhabi [5]. The results of 

both papers indicate that it is not only important to understand the effect of wind and 

other operating conditions on the operating temperature of PV modules, but also gives 

insight to the fact that there is not one conclusive model that works for all climates and 

regions. 

2.3 Performance Models 

 

The importance of correct irradiance and temperature modeling is seen when the 

performance of PV module(s)/arrays/systems is/are analyzed. Performance metrics such 

as PR and PI can be used to see the performance and relative health of the 

module(s)/arrays/systems that are being evaluated. Recent studies done by Shrestha et al. 

showed how accurate PR and PI degradation rates can be when compared to onsite field 

I-V evaluations for the degradation rates measured in the Phoenix-Metro area [6]. The 

metric of performance ratio is defined by the IEC 61724 standard in which the approach 

for analyzing a photovoltaic system is discussed [7].  As shown by Townsend et al., by 

incorporating other system losses, such as temperature, soiling and inverter efficiency, a 

more accurate PR, now identified as PI, can be calculated [8].  Shrestha et al., also 

showed, in his thesis work, a method of using filters for POA and Tmod in order to 

develop degradation rates based solely on metered kWh data [6]. In this thesis, a new 

method is devised using a statistical approach to accurately calculate degradation rates 

based solely on raw kWh data without having any measured or modeled operating 

conditions. 
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2.3.1 Performance Ratio (PR) 

 

The performance ratio calculated for each evaluated system is done as per the IEC 

61724 standard [7]. Performance ratio is defined as the ratio of the system yield, Yf, and 

the reference yield, Yr. As is the standard, the performance ratio is an indicator of how 

well a system is operating, after being corrected for only irradiance losses. Equations 

shown below are used to calculate the performance ratio of a PV system. 

Yf = τR ∗
∑ 𝑃𝐴

𝑃𝑂
∗ 𝜂𝑙𝑜𝑎𝑑  (1) 

Yr = τR ∗
∑ GI

GI,ref
   (2) 

PR =  
Yf

Yr
   (3) 

Where, 

τR ∗ ∑ PA = daily array energy of the system 

PO = rated array power 

ηload = efficiency with which the energy from all sources is transmitted to the loads 

τR ∗ ∑ GI = daily energy incident on the system 

GI,ref = reference irradiance, 1000 
W

m2
 

2.3.2 Performance Index (PI) 

 

 As stated before, the performance index is nothing but a more accurate 

performance ratio that accounts for other losses such as temperature, wiring, module 

mismatch, balance of systems (BOS), and etc. The performance index is a dimensionless 

unit, just as PR, but gives a more accurate representation as to the actual losses being 
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seen in PV power plant [8]. The performance index is defined as the ratio of actual 

energy to that of the expected energy, adjusted for known losses, as shown in Equation 4. 

PI =
Actual Energy

Adjusted Energy
  (4) 

Where, 

Actual Energy = measured energy at any given time 

Adjusted Energy = Rated Power x Loss Adjustments  

When substituting in the actual loss factors that can be derived for PV systems, 

Equation 4 can be modified to that of Equation 5, as shown below. 

PI =
Actual Energy∗Rated Irradiance

Rated Power∗Actual Insolation∗TA∗DA∗SA∗BOSA
  (5) 

Where, 

Rated Irradiance = 1000 W/m2 for flat plate modules 

Rated Power = nameplate power of the array 

Actual Insolation = total energy incident on the plane of array 

TA = Temperature Adjustment 

DA = Degradation Adjustment 

SA = Soiling Adjustment 

BOSA = Balance of System Adjustment 

2.3.3 kilowatt-hour (kWh) Analysis 

 

 As was previously reported, Shrestha et al. looked into the use of only metered 

kWh analysis. This method, as outlined in the diagram below, requires the use of filtering 

data based on user defined manual filtration. While this method was shown to be 

accurate, it required for the user to individually evaluate whether or not a data point 
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should be considered an outlier [6]. A newer statistical method is presented later on in the 

current thesis that allows processing that can be done quicker and ensuring that the same 

degradation rate can be calculated independent of user’s expertise in identifying the 

correct outliers. 
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Fig. 2. Calculation of Degradation Rate per Year Using Only Raw (Manually Filtered) 

Metered kWh Data [6]. 

 

 

Collect Hourly kWh Output 

Sum Hourly kWh to Daily 

kWh 

Compute Average Daily kWh 

for each month 

Remove the outliers or 

missing days 

Check for 

outliers or 

missing days 

Repeat above procedure for all 

possible years 

Calculate slope of a particular month 

over different years assuming 

insolation of that month is constant 

every year  

Repeat above process for 

remaining 11 months 

Compute degradation per year 

assuming first year is 100% 

Compute the mean & median 

degradation rate per year 

Y 

N 
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3.0 METHODOLOGY 

 

The optimization of irradiance and temperature models was the first step in the 

analysis of the 38 PV systems that were evaluated in this thesis. Due to the fact that all 

PV temperature models require POA irradiance as an input, it was critical that the best 

combination of decomposition and transposition model would be found first. The flow 

chart below gives an overview of the measurement, analysis, and validation steps that 

were completed and implemented.  

Fig. 3. Overall Procedure Developed at ASU-PRL to Determine Optimized Irradiance 

and Temperature Models to Produce High Accuracy PR and PI.  

3.1 Determination of Optimal Irradiance Model  

 

In this study, satellite modeled GHI data was used from SolarAnywhere. Since all 

systems evaluated are located very near to one another, it is assumed that the GHI seen 

by one system at a given time, is the same that is seen by all nearby systems. Shrestha et 

al., also demonstrated the uncertainty that can come from using satellite based data [6]. In 



11 

 

order to correct for this, satellite based data was used as the input for all decomposition 

and transposition models, in which the resulting calculated POA irradiance was used and 

compared to two full years of POA irradiance measurements from a commercially owned 

system near the ASU Tempe campus (where 37 of the 38 PV plants are located). Within 

this thesis, a total of 12 decomposition models and 10 transposition models for each 

decomposition model, were evaluated. This results in 120 possible combinations that 

were evaluated. Next step is to determine the irradiance and thermal models’ combination 

that work the best for the hot-dry climate of Arizona. All evaluated models were 

evaluated based on the previously reported models found by Lave [1], Wong [2], and 

Yang [3]. All irradiance models used are listed in the table below. 

Table 1. List of All Decomposition and Transposition Models Analyzed 

The best combination of models was determined by taking the root mean square 

error (RMSE) and normalized root mean square error (NRMSE) for all combinations. 

These statistical values are frequently used to measure the difference between the values 

Decomposition Models Transposition Models
Liu and Jordan Isotropic

Orgil and Hollands Korokanis

Erbs Badescu

Spencer Sandia

Reindl 1 Willmot

Reindl 2 Temps and Coulson

Lam and Li Klutcher

Skartveit and Olseth Hay & Davies

Maxwell Reindl

Louche Perez

Vignola and McDaniels

Perez

Irradiance Models
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predicted by a model and the values that are actually observed. The combination that was 

able to give the lowest RMSE and NRMSE results for two years of measured data was 

considered to be the most optimized model for the evaluation of all ASU systems or for 

hot-dry desert climate systems . By determining the best combination of a decomposition 

model and transposition model over the two years of measured data, it helped to reduce 

any uncertainties that may occur from use of SolarAnywhere satellite irradiance data. 

3.2 Determination of Optimal Module Temperature Model  

 

The evaluation of multiple module temperature models was conducted in a similar 

fashion as that of the irradiance models. In this study, 9 temperature models were 

evaluated and compared to module temperature readings using a commercially owned 

power plant.  

3.2.1 Average Operating Temperature of a PV Power Plant 

  

As was shown by Umachandran et al., the temperature of all the cells within a PV 

module is not necessarily the same during operating conditions [9]. This effect is even 

more prominent in a PV power plant. ASU-PRL has recently began to study this effect by 

installing temperature sensors into a fixed horizontal tilt system. The temperatures of five 

modules in the power plant, located in the northeast corner, southeast corner, southwest 

corner, northwest corner, and center of the plant, were measured by attaching T-type 

thermocouples to the backsheets of the modules Figure 4 shows the layout of the PV 

plant and the location of the modules with installed temperature sensors. 
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Fig. 4. Thermal Mapping Locations at a Fixed Horizontal Tilt PV system [Hobo is a Data 

Acquisition System Each Collecting Temperatures from Four Thermocouples Attached to 

Each of the Five Modules]. 

For each of the five PV modules, 4 temperature measurements are continuously 

taken using four thermocouples on backside of the PV modules. The 4 readings 

correspond to the center (T1), top corner (T2), bottom/short-frame (T3), and side/long-

frame (T4). The diagram below shows an accurate depiction of where each thermocouple 

was placed. The average of these thermocouple readings from each module is considered 

as the temperature of that module. 
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Fig. 5. Location of T-type Thermocouples on the Backsheet of a PV Module. 

 All thermocouples are connected to a four channel HOBO data logger. The data 

logger collects data every five minutes and stores in its internal memory. The device is 

said to be accurate to within ±0.6°C while having an operating range of -260°C to 400°C 

[9].  

Fig. 6. Hobo 4 – Channel Temperature Data Logger 

It is assumed, by all the thermal models used by the industry, all modules in a PV 

power plant operate at a single temperature. In order to obtain this single operating 
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temperature for the entire plant, all 20 module temperature measurements (5 modules 

each having 4 thermocouples) were averaged together.  The plant readings were recorded 

for seven months, April to October.  

3.2.2 Temperature Model Selection  

 

The nine empirical temperature models which were evaluated in this work are 

listed in the table below. The model which most closely matched with the average 

measured module temperature of the PV power plant was selected for further analysis. 

This analysis was again conducted by using RMSE and NRMSE values as that of 

irradiance models described earlier. The input for these models were the GHI, wind 

speed, and ambient temperature data sets from SolarAnywhere. Satellite based data was 

used to verify the best thermal model since the evaluated PV systems will only have 

satellite generated data used for modeling the operating conditions.  

Table 2. List of All PV Temperature Models Used to Calculate Operating Module 

Temperature. 

 

 

 

PV Temperature Models
Simple Model

ASU Tang Model

Sandia King Model

NOCT Model

PVsyst Cell Model

PVsyst Module Model

Homer Model

Mattei 1 Model

Mattei 2 Model
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3.3 Performance Analysis  

 

Each of the 34 ASU PV power plants was evaluated for performance and 

degradation rate calculations through multiple methods. Hourly data was used in which it 

was then used to generate daily and monthly values for both PR and PI determinations. 

Degradation rate calculations were then based on the calculated PR and PI values. A 

degradation rate calculation based on each systems’ kWh data was also determined. One 

previously measured system by ASU-PRL was used as the baseline system to determine 

the accuracy of all methods, while 4 other PV plants, which were measured by in-field IV 

measurements by ASU-PRL, were used to validate the statistical degradation rate 

calculation from metered raw kWh data.  

3.3.1 Performance Ratio (PR) Analysis  

 

 As previously discussed, the performance ratio (PR) is the ratio of measured energy 

to expected energy (based on nameplate data and measured/translated insolation). For all 

ASU systems, daily PR values were calculated using measured kWh data and the calculated 

expected energy. The methodology of calculating performance ratio is similar to that 

previously reported by Shrestha et al. [6], but was slightly modified in order to fit the type 

of data that was available in this study. Do to the unavailability of site specific 

meteorological data and system operating conditions (POA irradiance and module 

temperatures) satellite generated data was used. Figure 7 shows a modified flowchart of 

the steps taken to calculate the degradation rate per year using daily PR values. The data 

was filtered out when the irradiance was less than 40 W/m2. Any obvious outliers that were 

seen to not fit the overall trend of the year-to-year data sets were removed. For monthly 
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PR values, the average/median of the days with data availability corresponding for that 

particular month were used. The slope of a line for a particular month vs. number of years 

was then determined to be the degradation rate per year for that particular month leading 

to 12 slopes for 12 months of a year.  
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Fig. 7. A) New Method for Calculating Performance Ratio (PR) Using Optimized 

Irradiance Models from GHI Satellite Data. B) Previously Reported Method from 

Shrestha et al.  

3.3.2 Performance Index (PI) Analysis  

 

 Performance index (PI), as previously mentioned, is more accurate than PR due to 

the fact that it corrects for other losses in a PV system, such as temperature, soiling, 
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balance of systems (BOS), wiring, etc. The ratio of the measured kWh data to the 

expected energy, having been corrected for irradiance, temperature, module mismatch, 

and inverter efficiency encompasses the PI values reported in this study. Again, for the 34 

ASU systems being evaluated, the weather data and irradiance data were retrieved from 

the SolarAnywhere web database (using the 10X10 km resolution). Four previously 

measured systems by ASU-PRL are reported also reported in this study for both 

validation and degradation rate analysis. The POA irradiance and module temperature for 

the 34 newly evaluated ASU systems and one control system for validation, were 

calculated based on the optimized models, as discussed in the results and discussion 

chapter. The inverter efficiency was taken based on the listed California Energy 

Commission (CEC) efficiency or on the manufacture’s data sheet. The module mismatch 

in a string was assumed to be a constant value for all plants (3.3%) and was developed 

from analysis of previously measured systems by ASU-PRL. Wiring losses were also 

assumed to be constant, regardless of system, by using a relative nominal value of 1.0% 

for ohmic losses of smaller plants. This is based on the general 1.5% that is used in 

PVSYST [10].  

 A comparison of the new developed flowchart as compared to that of one 

previously shown by Shrestha et al. [4] is shown in Figure 8. This procedure was carried 

out for all 34 ASU systems within the scope of this study.   
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Fig. 8. A) New Method for Calculating Performance Index (PI) Using Optimized 

Irradiance and Temperature Models from Satellite GHI and Meteorological Data. B) 

Previously Reported PI Method from Shrestha et al. 

 



21 

 

3.3.2 kilowatt-hour Degradation Analysis  

 The kilowatt-hour degradation analysis that was originally presented by Shrestha 

et al. showed the possibility of using raw kWh data for calculating degradation rates. The 

kWh method that was originally developed by Shrestha et al., used a similar approach as 

that of the PR and PI methods in which the degradation rate was calculated using year-

over-year month approach leading to 12 degradation rates [6]. In this study, a statistical 

approach is used to calculate only one degradation rate instead of 12 degradation rates, 

which matches with the field measured I-V data.  

In order to calculate the degradation rate the total daily output is summed for each 

day with each corresponding day having multiple values relating to the number of years 

the day has been “seen.” Ideally, one would expect 365 slopes if we plot the year-over-

year daily degradation versus number field exposed years. All data points are filtered for 

values that are less than 10 kWh since this means the system was not operating. The 

slope for all days is taken and divided by the first value of a particular day. This makes 

the assumption that the first day’s production is always 100%. The standard deviation for 

all days is also calculated. The average of all daily kWh summations is taken. A filter of 

15% times the average daily kWh generation is then applied to the standard deviation 

values of all days. Any day that had a standard deviation greater than the calculated value 

of 15% of the average daily kWh generation was removed. The remaining days were then 

filtered by their respective degradation rates. If a plant is less than 6 years old, any day 

having an annual degradation rate less -3.1% (gain in power) or greater than 3.0% (loss in 

power) was removed as outliers for c-Si modules. If a plant is greater than 6 years old, 

any day having an annual degradation rate less than -3.1% or greater than 1.0% was 
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removed. The median of the remaining days’ degradation rates was then considered to be 

the rate at which the plant was degrading. As can be shown in Figure 9, the distribution 

of the data points is very widespread and contains many outliers, but after filtering, 

Figure 10, the distribution is narrower and the median value matches that of in field 

degradation measurements. The method for determining the degradation rate by use of 

metered kWh data is shown in Figure 11. 

Fig. 9. Unfiltered Degradation Rates for All System Operating Days. 
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Fig. 10. Filtered Degradation Rates for All System Operating Days, Where the Median 

Matches Reported I-V Degradation Percent per Year. 
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Fig. 11. A) Flowchart for Newer kWh Degradation Method Based on Statistical Analysis. 

B) Previously Reported kWh Method from Shrestha et al. 
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4.0 RESULTS AND DISCUSSION 

 

 The determination of optimal irradiance and temperature models is first analyzed 

in this section. The resulting irradiance and temperature models verified to best compare 

to measured data were then used as the models to evaluate the performance and 

degradation trend analysis of 38 commercial PV systems. 

4.1 Irradiance Model Validations 
 

 As was previously mentioned in an earlier chapter, 12 decomposition models and 

10 transposition models were analyzed to determine the best model for the hot-dry 

climate of Arizona. The GHI data \ irradiance data used in these models came from two 

different sources, satellite GHI and in-field measured GHI, to validate the differences, if 

any, between the calculated POA irradiance values and the real in-field measured POA 

irradiance values. 

4.1.1 Irradiance Model Validations Based on In-field GHI 

 

 The GHI and POA irradiance data measured by a meteorological station at 

Arizona State University’s Photovoltaic Lab was used to validate the multiple irradiance 

models used. The POA irradiance results from the all of the combinations of 

decomposition and transposition models, as well as the output POA irradiance from 

PVsyst, were analyzed and compared to two years of data, 2013 and 2014, collected from 

a Kipp and Zonen pyrometer at latitude tilt (33°) at ASU-PRL in Mesa, Arizona. The 

models were looked at two different perspectives: 1) how accurately the hourly data 

matched that collected from ASU-PRL and 2) how accurately models matched the total 
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yearly insolation measured at ASU-PRL. The weather station in which the data was 

collected from is shown below. 

Fig. 12. Weather Station and Irradiance Sensors Used to Measure GHI and POA 

Irradiance (33° South Facing Tilt) for 2013 and 214 in Mesa, Arizona. 

 In order to fist look at how accurate all model combinations and PVsyst outputs 

were able to predict the measured POA irradiance, the calculated POA irradiances were 

analyzed by use of Root Mean Square Error (RMSE) and Normalized Root Mean Square 

Error (NRMSE). The results for the two years of data are shown below in Tables 3-6. 
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Table 3. Root Mean Square Error for All Decomposition and Transposition Models 

When Converting Measured GHI Data, from PRL in 2013, to POA Irradiance (33° South 

Facing Tilt). 

Table 4. Normalized Root Mean Square Error for All Decomposition and Transposition 

Models When Converting Measured GHI Data, from PRL in 2013, to POA Irradiance 

(33° South Facing Tilt). 

 

 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 43.27 88.56 42.92 43.63 51.88 47.11 46.15 94.07 56.22 58.46

Orgil and Hollands 29.95 29.92 39.84 29.75 44.82 34.51 32.06 46.33 47.60 32.27

Erbs 30.96 31.00 31.93 30.84 45.62 35.78 33.56 46.05 47.35 34.28

Spencer 76.12 72.34 87.86 75.22 77.73 43.20 60.78 72.17 65.71 94.92

Reindl 1 30.27 30.34 31.21 30.16 45.70 35.32 33.06 46.55 47.84 33.60

Reindl 2 43.61 42.71 46.80 43.35 49.45 40.05 39.57 49.74 50.59 45.42

Lam and Li 33.27 32.78 35.88 32.77 46.39 34.80 32.55 46.69 48.28 32.60

Skartveit and Olseth 26.71 26.25 29.52 26.08 32.15 30.12 26.96 33.60 35.76 26.25

Maxwell 56.10 53.61 63.73 54.98 42.00 35.79 39.67 38.82 37.37 40.55

Louche 57.03 54.69 64.54 55.98 44.86 38.14 40.34 41.79 39.15 40.78

Vignola and McDaniels 54.77 52.48 61.89 53.69 42.24 36.24 40.83 40.58 35.93 37.57

Perez 39.90 39.70 41.23 39.40 39.88 40.69 43.13 42.05 41.16 37.34

Pvsyst 14.63 18.82

Transpostion Models

Root Mean Square Error (RMSE) for PRL GHI to POA in 2013

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 3.942% 8.068% 3.910% 3.975% 4.726% 4.292% 4.205% 8.570% 5.122% 5.325%

Orgil and Hollands 2.729% 2.725% 3.629% 2.710% 4.084% 3.144% 2.920% 4.221% 4.336% 2.939%

Erbs 2.820% 2.824% 2.909% 2.809% 4.156% 3.260% 3.057% 4.195% 4.313% 3.123%

Spencer 6.935% 6.591% 8.004% 6.852% 7.081% 3.936% 5.537% 6.575% 5.986% 8.647%

Reindl 1 2.758% 2.764% 2.843% 2.748% 4.163% 3.218% 3.012% 4.241% 4.359% 3.061%

Reindl 2 3.972% 3.891% 4.263% 3.949% 4.505% 3.649% 3.605% 4.531% 4.608% 4.138%

Lam and Li 3.031% 2.986% 3.269% 2.985% 4.226% 3.170% 2.965% 4.253% 4.398% 2.970%

Skartveit and Olseth 2.433% 2.391% 2.689% 2.376% 2.929% 2.744% 2.456% 3.061% 3.258% 2.391%

Maxwell 5.110% 4.884% 5.806% 5.009% 3.827% 3.261% 3.614% 3.536% 3.405% 3.694%

Louche 5.196% 4.982% 5.880% 5.100% 4.087% 3.474% 3.675% 3.807% 3.567% 3.715%

Vignola and McDaniels 4.990% 4.781% 5.638% 4.891% 3.848% 3.301% 3.719% 3.696% 3.273% 3.423%

Perez 3.635% 3.617% 3.756% 3.589% 3.633% 3.707% 3.929% 3.831% 3.750% 3.402%

Pvsyst 1.333% 1.714%

Normalized Root Mean Square Error (NRMSE) for PRL GHI to POA in 2013
Transpostion Models
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Table 5. Root Mean Square Error for All Decomposition and Transposition Models 

When Converting Measured GHI Data, from PRL in 2014, to POA Irradiance (33° South 

Facing Tilt). 

Table 6. Normalized Root Mean Square Error for All Decomposition and Transposition 

Models When Converting Measured GHI Data, from PRL in 2013, to POA Irradiance 

(33° South Facing Tilt). 

 When looking at the RMSE and NRMSE data from the above tables, it is clear 

that when converting from measured data, where the uncertainty is maintained at 

minimum, PVsyst is the most accurate source of irradiance translation. The interesting 

thing to note though, is that the Hay & Davies model, said to be the more robust model, is 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 46.50 90.43 46.29 46.73 50.41 49.65 48.59 52.52 52.31 61.09

Orgil and Hollands 35.16 35.01 36.68 34.89 43.86 37.74 35.43 44.85 45.47 35.68

Erbs 35.77 35.69 36.87 35.55 43.71 38.89 36.74 44.09 45.26 37.42

Spencer 71.30 68.24 80.66 70.54 71.09 46.98 58.88 66.26 61.55 90.99

Reindl 1 34.21 34.13 35.42 33.98 44.27 37.40 35.12 44.90 45.60 35.68

Reindl 2 44.00 43.38 46.45 43.81 47.34 42.12 40.84 47.64 47.98 45.58

Lam and Li 38.02 37.58 40.35 37.55 44.26 38.65 36.52 44.56 46.34 36.79

Skartveit and Olseth 32.16 31.67 34.78 31.56 35.52 33.67 30.80 37.16 38.82 30.55

Maxwell 56.28 53.88 63.64 55.19 42.86 35.87 39.79 39.53 36.69 40.13

Louche 60.84 57.05 65.78 59.87 43.77 42.34 40.85 41.65 36.92 44.58

Vignola and McDaniels 56.54 54.25 63.64 55.49 42.88 36.70 40.79 39.71 37.03 39.77

Perez 40.88 38.55 42.20 40.30 40.30 38.55 41.24 43.99 42.10 37.40

Pvsyst 15.23 20.43

Root Mean Square Error (NRMSE) for PRL GHI to POA in 2014
Transpostion Models

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 4.203% 8.174% 4.184% 4.224% 4.556% 4.487% 4.392% 4.747% 4.728% 5.522%

Orgil and Hollands 3.178% 3.164% 3.315% 3.153% 3.965% 3.411% 3.202% 4.054% 4.109% 3.224%

Erbs 3.233% 3.226% 3.333% 3.213% 3.950% 3.515% 3.321% 3.985% 4.091% 3.382%

Spencer 6.444% 6.168% 7.291% 6.376% 6.425% 4.246% 5.321% 5.989% 5.563% 8.224%

Reindl 1 3.092% 3.085% 3.201% 3.071% 4.002% 3.380% 3.175% 4.058% 4.122% 3.225%

Reindl 2 3.977% 3.920% 4.198% 3.960% 4.279% 3.807% 3.692% 4.306% 4.337% 4.120%

Lam and Li 3.436% 3.397% 3.647% 3.394% 4.000% 3.494% 3.301% 4.027% 4.188% 3.325%

Skartveit and Olseth 2.907% 2.863% 3.144% 2.853% 3.211% 3.043% 2.784% 3.359% 3.509% 2.762%

Maxwell 5.086% 4.870% 5.752% 4.988% 3.873% 3.242% 3.597% 3.573% 3.316% 3.627%

Louche 5.499% 5.156% 5.945% 5.412% 3.956% 3.826% 3.692% 3.765% 3.337% 4.029%

Vignola and McDaniels 5.111% 4.903% 5.752% 5.015% 3.876% 3.317% 3.686% 3.589% 3.347% 3.594%

Perez 3.695% 3.484% 3.814% 3.642% 3.642% 3.484% 3.727% 3.976% 3.805% 3.380%

Pvsyst 1.376% 1.847%

Normalized Root Mean Square Error (NRMSE) for PRL GHI to POA in 2014
Transpostion Models
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actually more accurate than the Perez model, by ~.4%. This result is similar to the results 

that were reported in Lave et al. that the Hay & Davies model may want to be used when 

the diffused irradiance component is not directly measured [1]. While the translations 

shown here show that the PVsyst software does the most accurate job in predicting the 

hourly values of the POA irradiance, another important aspect that needs to be 

investigated is whether or not these values are slight under predictions or over predictions 

on the total insolation seen throughout the year. 

 In order to validate the amount of total energy that was predicted from the models 

and PVsyst, the hourly POA irradiance was summed for both years. In Tables 7 and 8, 

the percent difference of the predicted annual POA insolation versus that of the measured 

POA insolation is given for the years 2013 and 2014, respectively. 

Table 7. Percent Difference of Predicted Total Insolation for All Decomposition and 

Transposition Models vs. Measured POA Irradiance Data from PRL in 2013. 

 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 3.501% 17.179% 2.663% 3.880% 4.623% 5.810% 5.167% 5.765% 4.796% 6.836%

Orgil and Hollands -0.332% 0.332% -1.359% 0.036% 1.983% 4.307% 3.336% 2.750% 4.201% 2.806%

Erbs 0.052% 0.683% -1.530% 0.434% 2.253% 4.399% 3.487% 2.940% 4.250% 3.195%

Spencer -6.373% -5.203% -9.277% -6.000% -5.128% 2.937% -1.958% -3.436% -0.676% -8.301%

Reindl 1 0.087% 0.728% -1.493% 0.468% 2.325% 4.444% 3.579% 3.015% 4.349% 3.183%

Reindl 2 -0.363% 0.215% -1.815% 0.010% 1.728% 4.055% 2.958% 2.417% 3.592% 1.704%

Lam and Li -1.292% -0.523% -3.224% -0.913% 1.553% 4.164% 3.282% 2.326% 4.120% 1.984%

Skartveit and Olseth -1.791% -1.034% -3.625% -1.407% 0.841% 3.347% 2.264% 1.254% 2.983% 1.145%

Maxwell -7.388% -6.176% -10.418% -7.001% -5.600% 1.593% -1.737% -4.106% -1.733% -4.843%

Louche -6.778% -5.668% -9.532% -6.390% -4.853% 1.852% -1.345% -3.486% -1.048% -3.826%

Vignola and McDaniels -6.974% -5.792% -9.946% -6.587% -5.132% 1.878% -1.371% -3.608% -1.089% -4.286%

Perez -1.843% -1.281% -3.256% -1.457% -0.661% 1.638% 1.051% -0.143% 0.530% 0.380%

Pvsyst 0.977% 2.691%

% Diff. of Modled Insolation vs. Measured Insolation for PRL GHI to POA in 2013
Transpostion Models
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Table 8. Percent Difference of Predicted Total Insolation for All Decomposition and 

Transposition Models vs. Measured POA Irradiance Data from PRL in 2014. 

 When evaluating the models for predicted total insolation, it becomes apparent 

that there are some models that can more accurately predict the annual amount of solar 

radiation hitting a tilted surface on the Earth than those given by PVsyst. Some models 

seem to also have more variation year to year than others. One such example is than of 

Orgil and Hollands decomposition model with the Korokanis transposition model. In 

2013, this model overpredicted the total insolation by 0.332%, whereas in the following 

year it was nearly identical with the measured value with only having 0.012% difference. 

This year to year variation is also evident in the outputs from PVsyst that show a 

difference of 0.456% and 0.322% for the Hay & Davies and Perez models, respectively.  

 From the data and models analyzed in this section, two conclusion can be drawn 

and implemented for the hot-dry climate of Arizona. The first conclusion that can be 

made is that when on site measured GHI data is available, PVsyst gives an accurate 

representation of the hour by hour value for the POA irradiance seen on a south facing 

tilted surface. If PVsyst is unavailable to be used, combination of the Skartveit and Olseth 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 3.334% 17.096% 2.489% 3.711% 4.396% 5.754% 4.979% 4.808% 4.370% 6.866%

Orgil and Hollands -0.647% 0.012% -2.358% -0.293% 1.419% 4.167% 3.089% 2.179% 3.622% 2.676%

Erbs -0.254% 0.385% -1.832% 0.126% 1.667% 4.263% 3.249% 2.359% 3.686% 3.065%

Spencer -4.722% -3.596% -7.549% -4.345% -3.735% 3.613% -0.498% -2.130% 0.514% -6.812%

Reindl 1 -0.258% 0.379% -1.892% 0.107% 1.734% 4.314% 3.354% 2.435% 3.777% 3.048%

Reindl 2 0.070% 0.606% -1.266% 0.449% 1.669% 4.079% 3.019% 2.327% 3.405% 2.235%

Lam and Li -1.293% -0.531% -3.235% -0.928% 1.156% 4.203% 3.278% 1.924% 3.690% 2.078%

Skartveit and Olseth -2.001% -1.266% -3.843% -1.632% 0.568% 3.283% 2.081% 0.942% 2.686% 1.142%

Maxwell -7.303% -6.097% -10.321% -6.918% -5.690% 1.673% -1.692% -4.212% -1.842% -4.610%

Louche -6.640% -5.588% -9.515% -6.253% -5.131% 2.017% -1.351% -3.735% -1.364% -3.590%

Vignola and McDaniels -7.076% -5.889% -10.060% -6.691% -5.524% 1.918% -1.539% -4.029% -1.449% -4.336%

Perez -2.015% -1.504% -3.431% -1.631% -0.814% 1.583% 0.911% -0.243% 0.492% 0.486%

Pvsyst 0.521% 2.369%

% Diff. of Modled Insolation vs. Measured Insolation for PRL GHI to POA in 2014
Transpostion Models
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decomposition model and Perez transposition model, also gives a good prediction as to 

the hour by hour amount of POA irradiance. In both the two years of observed data, this 

combination gave an NRMSE value of 2.39% and 2.76%. The second conclusion that can 

be made from this data set is that PVsyst generally over predicts the total yearly amount 

of insolation seen in the hot-dry climate of Arizona and that the more robust Hay & 

Davies transposition model should be used. The over prediction of total insolation can 

vary as much as little as 0.52% to as much as 2.37% depending on which model is used 

in the PVsyst software. In both years of analyzed data, the Hay & Davies was more 

accurate than the Perez model in predicting the hourly POA irradiance as well as yearly 

total POA insolation. While this model was the most accurate from PVsyst, it was shown 

to be outdone by multiple other decomposition and transposition model combinations as 

seen by the average percent difference for the two years of data in the table below.  

Table 9. Average Percent Difference of Predicted Total Insolation for All Decomposition 

and Transposition Models vs. Measured POA Insolation Data from PRL for 2013 and 

2014. 

 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 3.417% 17.137% 2.576% 3.796% 4.509% 5.782% 5.073% 5.286% 4.583% 6.851%

Orgil and Hollands -0.489% 0.172% -1.858% -0.128% 1.701% 4.237% 3.212% 2.464% 3.912% 2.741%

Erbs -0.101% 0.534% -1.681% 0.280% 1.960% 4.331% 3.368% 2.650% 3.968% 3.130%

Spencer -5.548% -4.399% -8.413% -5.172% -4.432% 3.275% -1.228% -2.783% -0.081% -7.556%

Reindl 1 -0.085% 0.553% -1.693% 0.288% 2.029% 4.379% 3.466% 2.725% 4.063% 3.116%

Reindl 2 -0.146% 0.410% -1.541% 0.230% 1.699% 4.067% 2.988% 2.372% 3.499% 1.970%

Lam and Li -1.293% -0.527% -3.229% -0.921% 1.355% 4.184% 3.280% 2.125% 3.905% 2.031%

Skartveit and Olseth -1.896% -1.150% -3.734% -1.520% 0.705% 3.315% 2.172% 1.098% 2.835% 1.143%

Maxwell -7.345% -6.136% -10.369% -6.959% -5.645% 1.633% -1.714% -4.159% -1.788% -4.726%

Louche -6.709% -5.628% -9.524% -6.322% -4.992% 1.934% -1.348% -3.611% -1.206% -3.708%

Vignola and McDaniels -7.025% -5.840% -10.003% -6.639% -5.328% 1.898% -1.455% -3.818% -1.269% -4.311%

Perez -1.929% -1.392% -3.343% -1.544% -0.738% 1.611% 0.981% -0.193% 0.511% 0.433%

Pvsyst 0.749% 2.530%

Avg % Diff. of Modled Insolation vs. Measured Insolation for PRL GHI to POA
Transpostion Models
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One such combination is that of the Spencer decomposition model and Reindl 

transposition model, that gave an average percent difference of -0.081%. This is a drastic 

improvement over the average percent difference of 0.75% for the Hay & Davies model 

and 2.53% for the Perez model from PVsyst.  

4.1.2 Irradiance Model Validations Based on Satellite GHI 

 

 Due to the cost of expensive irradiance sensors, system owners and installers do 

not wish to put many sensors in the field to measure the GHI of a particular location 

unless needed. Because of this reason, satellite base GHI data can also be used in which 

land areas are generally divided into tiles. These tiles can be smaller in size, giving higher 

accuracy results, or large in area, with lower resolution, but costing less to purchase. Due 

to the lack of available on site GHI data, SolarAnywhere data was used to generate the 

GHI seen by all systems within the Phoenix-Metro region of Arizona. This was more 

specifically done for the Tempe area, as shown by the map below. Since satellite data 

itself contains some uncertainties, it became necessary to verify all decomposition models 

and transposition models, as well as PVsyst, in order to validate which models are again 

most accurately predicting the measured POA irradiance. The same procedure was done 

for satellite data as was previously shown for measured in-field GHI data. The calculated 

POA irradiance was once again compared to the measured POA irradiance of a 

commercial PV power plant located in the same region as that of the selected tile. The 

results of the RMSE and NRMSE for the two years of measured data are shown in Tables 

8-11. 
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Fig. 13. Tile selection from SolarAnywhere based on site locations. 

Table 10. Root Mean Square Error for All Decomposition and Transposition Models 

When Converting Satellite GHI Data, from SolarAnywhere in 2009, to POA Irradiance 

(10° South Facing Tilt). 

 

 

 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 23.23 23.28 23.10 23.30 24.75 27.68 39.40 24.82 24.59 25.05

Orgil and Hollands 20.56 20.65 20.33 20.60 22.42 28.90 23.21 22.51 22.70 19.18

Erbs 17.31 17.38 17.10 17.36 23.13 26.06 23.39 26.14 26.00 18.82

Spencer 27.85 27.64 28.52 27.83 33.15 30.19 25.29 32.20 28.75 31.39

Reindl 1 20.87 20.95 20.63 20.91 22.73 28.87 23.50 22.82 23.00 19.71

Reindl 2 21.31 21.32 21.29 21.37 24.78 26.36 24.02 24.80 23.82 23.61

Lam and Li 17.05 17.09 16.95 17.08 22.58 26.49 24.25 22.68 22.93 18.34

Skartveit and Olseth 10.57 10.66 10.38 10.62 19.23 23.28 19.89 19.26 19.56 12.45

Maxwell 23.27 23.11 23.80 23.23 20.17 31.87 24.54 20.33 11.96 14.02

Louche 27.80 27.74 28.01 27.76 31.49 35.15 31.77 29.64 24.59 27.61

Vignola and McDaniels 18.24 18.12 18.66 18.18 14.39 29.48 20.73 14.66 13.92 12.87

Perez 34.02 34.14 33.70 34.06 34.44 38.91 28.46 36.61 26.00 31.06

Pvsyst 11.35 12.76

Root Mean Square Error (RMSE) for Satellite GHI to POA in 2009
Transpostion Models
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Table 11. Normalized Root Mean Square Error for All Decomposition and Transposition 

Models When Converting Satellite GHI Data, from SolarAnywhere in 2009, to POA 

Irradiance (10° South Facing Tilt).  

Table 12. Root Mean Square Error for All Decomposition and Transposition Models 

When Converting Satellite GHI Data, from SolarAnywhere in 2010, to POA Irradiance 

(10° South Facing Tilt). 

 

 

 

 

 

 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 24.31 24.35 24.20 24.37 26.99 28.64 36.63 27.27 26.87 26.00

Orgil and Hollands 18.55 18.61 18.38 18.59 22.14 27.42 24.53 22.22 22.39 21.24

Erbs 19.54 19.60 19.37 19.58 22.37 27.55 24.84 22.45 22.40 20.82

Spencer 30.20 30.01 30.81 30.19 31.18 32.73 27.74 30.29 26.47 33.92

Reindl 1 19.25 19.31 19.08 19.29 22.13 27.67 25.06 22.25 22.42 22.00

Reindl 2 23.28 23.29 23.27 23.33 25.24 27.95 25.56 27.58 25.44 27.64

Lam and Li 19.81 19.85 19.73 19.84 22.15 28.36 26.13 22.28 22.52 20.91

Skartveit and Olseth 11.15 11.23 10.97 11.20 21.48 23.49 19.98 21.46 21.72 13.00

Maxwell 19.94 19.82 20.35 19.90 18.75 29.94 24.43 18.62 16.65 17.92

Louche 37.78 37.69 38.05 37.76 23.69 43.13 33.33 20.70 20.13 25.44

Vignola and McDaniels 18.61 18.50 19.00 18.56 13.42 29.83 23.03 13.48 13.26 13.72

Perez 40.87 40.99 40.51 40.89 40.87 45.16 31.40 43.10 26.25 29.14

Pvsyst 11.25 12.72

Root Mean Square Error (RMSE) for Satellite GHI to POA in 2010
Transpostion Models

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 2.193% 2.198% 2.181% 2.200% 2.337% 2.613% 3.720% 2.343% 2.321% 2.365%

Orgil and Hollands 1.941% 1.950% 1.919% 1.945% 2.116% 2.729% 2.192% 2.126% 2.143% 1.811%

Erbs 1.634% 1.641% 1.615% 1.639% 2.184% 2.461% 2.209% 2.468% 2.455% 1.777%

Spencer 2.630% 2.610% 2.692% 2.628% 3.130% 2.850% 2.388% 3.041% 2.715% 2.964%

Reindl 1 1.970% 1.979% 1.948% 1.974% 2.146% 2.726% 2.219% 2.154% 2.171% 1.861%

Reindl 2 2.012% 2.013% 2.010% 2.018% 2.340% 2.488% 2.268% 2.342% 2.249% 2.229%

Lam and Li 1.610% 1.614% 1.601% 1.612% 2.132% 2.501% 2.289% 2.142% 2.165% 1.731%

Skartveit and Olseth 0.998% 1.006% 0.980% 1.003% 1.815% 2.198% 1.878% 1.819% 1.847% 1.176%

Maxwell 2.197% 2.182% 2.247% 2.193% 1.905% 3.009% 2.317% 1.919% 1.130% 1.324%

Louche 2.625% 2.619% 2.645% 2.621% 2.973% 3.319% 2.999% 2.799% 2.322% 2.607%

Vignola and McDaniels 1.722% 1.711% 1.762% 1.717% 1.359% 2.784% 1.957% 1.384% 1.314% 1.216%

Perez 3.212% 3.223% 3.182% 3.216% 3.252% 3.674% 2.687% 3.457% 2.455% 2.933%

Pvsyst 1.071% 1.205%

Normalized Root Mean Square Error (NRMSE) for Satellite GHI to POA in 2009
Transpostion Models
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Table 13. Normalized Root Mean Square Error for All Decomposition and Transposition 

Models When Converting Satellite GHI Data, from SolarAnywhere in 2010, to POA 

Irradiance (10° South Facing Tilt). 

 Again, when looking at the RMSE and NRMSE data from the above tables, it is 

easy to see that when converting from satellite generated GHI data, where the uncertainty 

can be as much as 5% [11], PVsyst is shown to not be the most accurate source of 

irradiance translation. When using the satellite GHI data for translating to POA 

irradiance, the most accurate model was found to be the combination of the Skartveit and 

Olseth decomposition model and Badescu transposition model. This model showed to 

slightly outperform the NRMSE of the Hay & Davies model found in PVsyst by 0.09% 

and 0.03% in 2009 and 2010, respectively. As shown in the two figures below, the 

accuracy of the Skartveit and Olseth – Badescu model is on par with that of the results 

generated from PVsyst. There are only a few outliers each year and only occurred when 

the measured POA was less than 100 W/m2 where the system would be producing little to 

no energy. 

Decomposition Models Isotropic Korokanis Badescu Sandia Willmot Temps. Klutcher Hay & Davies Reindl Perez

Liu and Jordan 2.289% 2.293% 2.279% 2.295% 2.541% 2.697% 3.449% 2.567% 2.530% 2.448%

Orgil and Hollands 1.746% 1.753% 1.731% 1.750% 2.085% 2.582% 2.310% 2.092% 2.109% 1.999%

Erbs 1.839% 1.845% 1.823% 1.844% 2.106% 2.594% 2.339% 2.114% 2.109% 1.960%

Spencer 2.844% 2.826% 2.901% 2.842% 2.936% 3.081% 2.612% 2.852% 2.492% 3.194%

Reindl 1 1.812% 1.818% 1.796% 1.816% 2.084% 2.605% 2.360% 2.095% 2.111% 2.071%

Reindl 2 2.192% 2.193% 2.191% 2.197% 2.377% 2.632% 2.407% 2.597% 2.395% 2.602%

Lam and Li 1.865% 1.869% 1.857% 1.868% 2.085% 2.670% 2.460% 2.098% 2.120% 1.968%

Skartveit and Olseth 1.050% 1.057% 1.033% 1.055% 2.022% 2.212% 1.881% 2.021% 2.045% 1.224%

Maxwell 1.878% 1.866% 1.916% 1.873% 1.766% 2.819% 2.300% 1.753% 1.567% 1.687%

Louche 3.557% 3.549% 3.583% 3.555% 2.230% 4.061% 3.138% 1.949% 1.895% 2.395%

Vignola and McDaniels 1.753% 1.742% 1.789% 1.748% 1.263% 2.808% 2.169% 1.269% 1.248% 1.291%

Perez 3.848% 3.860% 3.814% 3.850% 3.848% 4.252% 2.956% 4.058% 2.472% 2.743%

Pvsyst 1.059% 1.198%

Normalized Root Mean Square Error (NRMSE) for Satellite GHI to POA in 2010
Transpostion Models
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Fig. 14. Correlation comparison of PVsyst Models and Best Decomposition Model and 

Transposition Model vs. Measured Hourly POA Irradiance for 2009. 

Fig. 15. Correlation Comparison of PVsyst Models and Best Decomposition Model and 

Transposition Model vs. Measured Hourly POA Irradiance for 2010. 
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It was also found again that the more robust Hay & Davies model was able to 

outperform the Perez model in PVsyst. This means that for the hot-dry climate of 

Arizona, when using PVsyst, the Hay & Davies transposition model should be used no 

matter if the input data is in-field measured GHI or satellite generated GHI. To determine 

if the best model was that of Hay & Davies from PVsyst or the Skartveit & Olseth – 

Badescu model, the deciding factor would be which model more closely represented the 

total annual energy since both translation methods gave nearly identical NRMSE values. 

The two figures below show the over prediction of the models for each year as compared 

to the measured total insolation. 

Fig. 16. Skartveit & Olseth – Badescu Model Insolation and PVsyst Hay & Davies Model 

Insolation Compared to the Measured Insolation of a Commercial PV System (10° South 

Facing Rooftop) for 2009. 

 



38 

 

Fig. 17. Skartveit & Olseth – Badescu Model Insolation and PVsyst Hay & Davies Model 

Insolation Compared to the Measured Insolation of a Commercial PV System (10° South 

Facing Rooftop) for 2010. 

 When looking at the total insolation for both years, it is evident that the more 

effective model is that of the Skartveit & Olseth – Badescu model since it only over 

predicts the total insolation by 1.0% as compared to that of the PVsyst Hay & Davies 

model that over predicts by 2.9%. To verify this, the average monthly percent variation of 

the model POA irradiance compared to that of the measured POA irradiance was 

averaged for both years of data. The results of this are shown in Figure 18. 
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Fig. 18. Average Percent Monthly Variation of POA Irradiance from PVsyst Models and 

Skartveit & Olseth – Badescu as Compared to Measured POA Irradiance for a 

Commercial PV System from 2009 to 2010. 

 As can be seen from the graph above, both the Hay & Davies and Perez PVsyst 

models are shown to over predict the POA irradiance by a minimum of 3.0% for a single 

month and can be as much as 10.4%. The Skartveit & Olseth – Badescu model was 

shown to have more variance in it since it under predicts by 3.0% in a single month and 

can then over predict by 12.0% in a summer month. This graph indicates that for the 

summer months (May-August) PVsyst’s Hay & Davies model showed the least amount 

of variation, but during the other months, the Skartveit & Olseth – Badescu showed to 

have the least amount of monthly variations. Because of this it was decided that a hybrid 

model of PVsyst’s Hay & Davies model and the Skartveit & Olseth – Badescu model 

would be the best way to minimize the RMSE and NRMSE. When this was done, the 
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RMSE values were reduced to 9.29 W/m2 and 9.50 W/m2 for 2009 and 2010, 

respectively. This results in the NRSME values falling to 0.878% for 2009 and 0.895% 

for 2010, the lowest observed values. Since these values were seen to give the lowest 

errors for predicting hourly POA irradiance data, the hybrid model was determined to be 

the most optimal model. While the model showed improvement on the hour by hour 

basis, it was shown to still have an over prediction of 1.3%. This value is still far better 

than those produced from PVsyst and only adds an additional .3% over prediction to that 

of the Skartveit & Olseth – Badescu model. 

 When looking at the translation of satellite generated GHI data into POA 

irradiance data, some important conclusions can be made. First, it has been shown that 

there are multiple combinations and models that give highly accurate results. One such 

model is that of the Skartveit & Olseth decomposition and Badescu transposition model. 

This model showed to be better than both the Hay & Davies PVsyst models on both the 

hour to hour POA irradiance results and annual POA insulation. While this model alone 

was shown to be more accurate than the PVsyst models, it still had some months with 

high variations as compared to measured POA irradiance. In order to compensate for this, 

the hybrid model of Skartveit & Olseth – Badescu and PVsyst’s Hay & Davies model 

was developed to give the lowest found RMSE and NRMSE values for two years of 

measured data. This hybrid model also showed to have a drastic improvement on the total 

annual insulation prediction as compared to the PVsyst models by decreasing the over 

prediction percentage from 2.9% to 1.3%. The second conclusion that can thus be drawn 

is that when looking to reduce the overall variations seen in models throughout the year, a 
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developed hybrid model that uses the months of lowest variability of multiple models can 

result in a highly accurate irradiance model on both the hour to hour POA irradiance 

basis as well as annual POA insolation predictions.  

4.2 Temperature Model Validations 
 

 The second most important feature when performing performance analysis on PV 

module(s)/arrays/systems is to have an accurate measurement of operating temperature of 

the PV module(s) that are being analyzed. As was done with the irradiance models in the 

previous section, measured data was compared to calculated data from different 

temperature models. As was previously discussed in an earlier chapter, the measured data 

was collected from a commercial PV system in which all temperatures were averaged 

together to give one overall operational temperature of the system. Due to a lack of in 

field measured data, the meteorological and GHI data was only validated using data 

obtained by use of SolarAnywhere. The results given are thus based on the temperature 

model that most accurately reproduced the measured onsite measured module 

temperatures.  

 The model that was shown to have the smallest RMSE and NRMSE values was 

again assumed to be the best model for use of predicting operating PV module 

temperatures using satellite based data. This is shown in Figures 19 and 20 below. 

 

 

 

 



42 

 

Fig. 19. RMSE Values of Thermal Models with Coefficient values of the Transmittance 

of the System Times the Absorption Coefficient of the PV Module (τ·α) Set to Either 

0.90 (Blue Bars) or 0.81 (Orange Bars). 

Fig. 20. NRMSE Values of Thermal Models with Coefficient Values of the 

Transmittance of the System Times the Absorption Coefficient of the PV Module (τ·α) 

Set to Either 0.90 (Blue Bars) or 0.81 (Orange Bars). 
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 As it can be seen on the above graphs, some models (Mattei 1. Mattei 2, PVsyst 

Cell Model, and Homer Model) use two coefficients identified as the transmittance of 

system (τ) and the absorption coefficient of the PV module (α). These two coefficients 

are multiplied to generate a constant multiplier. This constant multiplier is generally set 

to 0.9 [4], but was shown to be optimized to 0.81 by Mattei [12]. Because of this, all 

models were evaluated using both values to see the results. It is to be noted that the 

PVsyst models used the values given by the software for the constant heat transfer 

coefficient (U0) and convective heat transfer coefficient (U1) of 25.0 W/m2K and 1.2 

W/m2sK, respectively, regardless of which constant multiplier value (0.90 or 0.81) was 

used. 

 The resulting conclusion from the graphs above indicate that the temperature 

model designated as Mattei 1, produces the most accurate prediction of operating module 

temperatures. This model was consistently the best model regardless of whether or not 

the constant multiplier was set to 0.90 or 0.81. The interesting thing to note is that the 

majority of the temperature models were shown to all be close to one another. Another 

note that can be made is some models tended to over predict the operating temperature of 

a PV module. Since the performance of a PV module is inversely proportional to the 

operating temperature, this results in performance models that may slightly under predict 

the actual amount of energy that is being produced depending on the thermal model that 

was used.  

 When looking at which model most accurately predicts the in-field measurement 

conditions, model that perfectly predicts the measured values would produce an R2-value 
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equal to 1.00 when predicted values are plotted against measured values. The results of 

this plot are shown in Figure 21. 

Fig. 21. Correlation of Predicted Module Temperature for All Thermal Models Compared 

to Actual Measured Module Temperature. 

 The above graph shows that again, while Mattei 1 was the model that most 

correlated with the measured temperature values, all other models still had a very high 

correlation of greater than 90%. This means that for quick operating temperature 

calculations, the Simple Model method, which only needs ambient temperature and POA 

irradiance, can be used. For high accuracy predictions though, for things such 

degradation rate calculation and large scale energy generation predictions, more 

complicated models such as Mattei 1, PVsyst, and Sandia models need to be used. As can 

be concluded from the analysis performed in this section, the thermal model that gave 

most accurate prediction of operating module temperature for the hot-dry climate of 

Arizona was that of the Mattei 1 model, based on the 7 months of available data.  
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4.3 Performance Validation 

 

 The degradation rate, and thus the resulting trend of degradation, is calculated for 

38 commercial PV plants in the Phoenix-Metro area of Arizona. Because of this, it is 

critical to know whether the calculated degradation rates are accurate to what the 

modules are actually experiencing. In order to validate the process, the degradation rate 

found through in-field IV measurements as reported by [6] was used as the validation 

parameter. This degradation rate should be identical to all methods of performance 

analysis (PR, PI, and kWh) that are performed in this thesis. The system used to validate 

all performance models was chosen due to the fact the system was only unavailable for 

59 days of the total 3,431 days the system was evaluated for. The graph below shows the 

availability of the system with any down times resulting in a break in the bar chart (white 

spaces). 

Fig. 22. System Availability Check of Commercial PV System Used for Performance 

Validations and Degradation Rate Calculations. 
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4.3.1 Performance Ratio (PR) Validation 

 As stated earlier, the determination of the performance ratio (PR) was done per 

the IEC 61724 standard. This means that the expected energy production of the system is 

only corrected for POA irradiance and not for any other system losses. In order to 

accurately calculate the degradation rate of the PV system based on PR, the steps as 

discussed in the methodology section were followed. This first involved calculating the 

expected amount of energy to be produced from the system based on the POA irradiance. 

The performance ratio was then calculated for 365 days every year and then filtered for 

any outliers. The resulting days were then evaluated based on a month to month basis. To 

determine the typical daily performance ratio of a particular month, the median data point 

of the filtered data set was taken. This was done for every year where a particular month 

had measured data. A plot of these values is shown below in Figure 23.  

Fig. 23. Typical Monthly PR Values for 10 Year Old Commercial PV System. 
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From the plot, it is noticeable that the PR of the summer months (May – August) 

typically have a lower value than those of the remaining months. This can be attributed to 

the fact that operating temperatures are not accounted for and in the hot-dry climate of 

Arizona, module operating temperatures can as high as 50°C on open rack systems. These 

high operating conditions are thus causing a severe loss in performance, this will be 

analyzed in more detail later on in the section. As can be seen the above plot each month 

has a total of 9 PR values (except for November and December that each have 10) that 

were calculated for each year of field exposure. The slope of these data points, for each 

month, were taken in order to calculate the degradation rate of the plant. This results in a 

final 12 degradation rates being calculated for the plant. The resulting degradation rates 

are shown in Table 12. 

Table 14. Table of Calculated PR for Each Month of System Operation and the Resulting 

Calculated Degradation Rate. 

As was reported by Shrestha et al. the consistency of the irradiance that hits the 

Earth’s surface for the Phoenix-Metro area has high and low variance months [6]. Due to 

this fact the 7 months with the least variation (April – October) were used in order to 

Month 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Degradation (%/yr)

January 0.7737 0.7589 0.7358 0.7902 0.7173 0.6755 0.6959 0.7777 0.7233 -0.57%

February 0.8002 0.7076 0.7723 0.7458 0.6954 0.7031 0.7082 0.6376 0.7162 -1.19%

March 0.7947 0.7566 0.7506 0.6896 0.6999 0.7160 0.6968 0.6687 0.6968 -1.23%

April 0.7636 0.8441 0.7418 0.7920 0.7039 0.6913 0.6967 0.6989 0.6687 -1.68%

May 0.7435 0.7110 0.7097 0.6581 0.6633 0.6801 0.6732 0.6709 0.6298 -1.04%

June 0.7213 0.7197 0.6836 0.6356 0.6679 0.6510 0.6558 0.6511 0.6026 -1.20%

July 0.7036 0.7047 0.6835 0.6356 0.6537 0.6456 0.6547 0.6682 0.6338 -0.73%

August 0.7296 0.7436 0.6926 0.6679 0.6811 0.6590 0.6448 0.6482 0.6779 -1.00%

September 0.7466 0.7407 0.7207 0.6919 0.6763 0.6819 0.6730 0.6638 0.6690 -1.08%

October 0.7837 0.7590 0.7143 0.7007 0.6824 0.6845 0.6705 0.6621 0.6851 -1.32%

November 0.7313 0.7598 0.7023 0.6496 0.6807 0.6465 0.6885 0.7004 0.6251 0.7014 -0.69%

December 0.7460 0.6799 0.6860 0.7600 0.7863 0.6755 0.6656 0.6965 0.7203 0.7198 -0.18%

Monthly PR Degradation
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calculate the actual degradation rate of the plant. The average of these seven months’ 

degradation rates was then stated as being the systems true degradation rate. This results 

in the degradation rate of 1.15%/yr being calculated by use of PR values. The measured 

in-field IV degradation rate of this plant was stated to be 1.37%/yr. The under predicted 

PR degradation rate is similar to the trend reported by Shrestha et al. that showed the use 

of PR giving lower degradation rates than those measured by in-field IV curve 

measurements [6].  

The results of this plant show that the PR method, PR values, and degradation rate 

calculation were all validated and can then be used for further plant evaluations. The 

results here show the typical trend of PR giving an under predication of module 

degradation by about 0.2%. The PR values were also shown to have a wide variance 

since the values only account for irradiance correction and no other performance criteria, 

such as temperature, module mismatch, and etc.  

4.3.2 Performance Index (PI) Validation 

 

 The performance index of a system is the most accurate representation of the 

systems current performance and overall working health due to the fact that it accounts 

for all known losses. The performance index (PI) was used to correct for irradiance and 

other system losses (temperature, inverter efficiency, module mismatch, and wiring 

losses). Again as stated in an earlier chapter, the wiring losses was assumed to be a 

nominal 1.0% based on previous works [10]. The mismatch that can occur between 

modules was assumed to be a constant value of 3.3%. This value was calculated based on 

in-field IV measurements of multiple commercial PV power plants measured by ASU-
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PRL. The string power and summed individual module powers were analyzed to see the 

mismatches that could occur. In order to make sure the value was as accurate as possible 

only the best performing strings and median performing strings were analyzed. The 

mismatch values were found to vary from as little as 0.84% to as much as 5.5%. The 

average of all calculated mismatch values was taken to be the typical mismatch values 

seen in the hot-dry climate of Arizona.  

 The steps used to calculate the degradation rate based on PI was carried out as 

described in the methodology. The operating temperature of the PV system was 

calculated by use of POA irradiance and meteorological data generated from 

SolarAnywhere. These values were used as the input to the Mattei 1 model, found to be 

the most accurate temperature model in an earlier section, to generate the operating 

temperature of the PV system. The efficiency of the inverter (found from manufacturer’s 

datasheet), module mismatch, and wiring losses were also used to generate the predicted 

adjusted energy that should be produced by the system. As was done with the PR values, 

a table was generated for the typical PI value seen by the plant per month for each year of 

field exposure. The distribution of these values for each month can be seen in Figure 24 

below. 
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Fig. 24. Typical Monthly PI Values for 10 Year Old Commercial PV System.  

When looking at the plot above, it is to first notice the difference in the trend of 

the PI values calculated for the summer months (May – August) as compared to those 

previously shown for PR. Since PI accounts for all known system losses, the high 

operating temperature of the PV systems is corrected for and thus results in a more 

uniform PI value from month to month instead the large variation that is seen in PR. The 

above plot shows that each month has a total of 9 PI values (except for November and 

December that each have 10) that were again calculated for each year of field exposure. 

The slope was once again take for these data points, for each month, and were again used 

to calculate the degradation rate of the plant. This results in a final 12 degradation rates 

being calculated for the plant, now based on PI values. The resulting degradation rates are 

shown in Table 15. 
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Table 15. Table of Calculated PI Values for Each Month of System Operation and the 

Resulting Calculated Degradation Rate. 

The same seven months, when the irradiance variations are the lowest, were again 

averaged to find the degradation rate of the PV system. This value was found to be 

1.33%/yr. The calculated value is nearly identical to that of the measured IV curve 

degradation rate of 1.37%/yr. This value shows that the losses accounted for in the PI 

calculation are good representations of the general losses seen by PV power plants in the 

hot-dry climate of Arizona.  

The results of this plant show that the PI method, PI values, and degradation rate 

calculation were all validated and can then be used for further plant evaluations. The 

results here show the how accurate the degradation rate calculated from PI is compared to 

the measured in-field IV degradation rate. The PI degradation rate was found to be only 

0.02%/yr less than the measured value, well within the percent error that could occur 

from instruments used in field. The PI values were also shown to have a lesser variance 

than those of PR since the calculated PI values account for all losses experienced by the 

PV power plant.  

Month 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Degradation (%/yr)

January 0.828605 0.83311 0.79923 0.8597 0.797777 0.7471 0.765698 0.757136 0.780963 -1.00%

February 0.856074 0.79916 0.856101 0.832131 0.810133 0.786821 0.783089 0.726636 0.797259 -1.07%

March 0.927003 0.868458 0.871282 0.810118 0.801344 0.807692 0.798585 0.778127 0.807002 -1.50%

April 0.896946 0.867588 0.870853 0.792075 0.831282 0.798425 0.815906 0.791167 0.771245 -1.39%

May 0.891603 0.869959 0.878712 0.781336 0.824748 0.817185 0.81388 0.810917 0.76881 -1.27%

June 0.886403 0.909258 0.865197 0.811285 0.826142 0.802574 0.807014 0.808834 0.765333 -1.52%

July 0.886772 0.884735 0.859829 0.79468 0.825672 0.798714 0.816546 0.823379 0.769625 -1.23%

August 0.90908 0.918926 0.874139 0.829284 0.853667 0.829696 0.817352 0.805208 0.835394 -1.25%

September 0.934142 0.899499 0.870947 0.847068 0.830249 0.844474 0.831786 0.818266 0.829571 -1.24%

October 0.909346 0.883253 0.833486 0.830805 0.811641 0.802992 0.800237 0.782851 0.798894 -1.40%

November 0.825406 0.851101 0.804735 0.741769 0.781439 0.747931 0.770626 0.787819 0.73512 0.790623 -0.70%

December 0.75912 0.746006 0.748784 0.822565 0.791249 0.712192 0.731649 0.763629 0.716782 0.780355 -0.18%

Monthly PI Degradation
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4.3.3 kilowatt-hour (kWh) Degradation Validation 

 
  The newly developed statistical method for calculating the degradation rate is 

analyzed in this section. The values obtained here were calculated after following the  

Because of the newer method, the calculated kWh based degradation rates for 4 

commercial PV power plants are compared to the measured degradation rates obtained by 

ASU-PRL [6,13]. In the figure below, the calculate kWh degradation rates are shown 

against the measured values. 

Fig. 25. Comparison of Measured IV Degradation Rates and Calculated kWh 

Degradation Rates for 4 Commercial PV Power Plants in the Phoenix-Metro Area of 

Arizona. 

 The above graph shows that the overall accuracy of the newly developed model is 

on par, if not better than, the degradation rate that can be calculated by using PR values. 

Unlike PR that generally under predicts the real degradation rate observed by a PV power 
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plant, the newly developed kWh degradation method seems to slightly over predict the 

actual degradation rate. The benefit of this new method though is that it is statistically 

based, with not manual data filtration necessary, and it also does not involve any type of 

modeled data or measured data, except inverter kWh values and date/time. 

When performing the kWh degradation analysis, it was found that the needed 

filters used for removing outlier data points varied by the age of the plant. For new plants, 

less than 5 years of age, the degradation rates were filtered for a wider array of values, 

between -3.0%/yr and 3.0%/yr. For the older plants, it was found that a filter of -3.0%/yr 

and 1.0%/yr were applied. 

 From the results shown in this section, the use of raw kWh data for degradation 

rate calculation is highly accurate when based on the calculated statistical values. The 

values used in the statistical analysis have no set statistical reason for being applied, other 

than it was discovered to give similar, if not identical, degradation rates to those of 

measured in-field IV curved degradation rates measured by ASU-PRL. While the 

degradation rates calculated from this new kWh method are accurate, without having any 

other system performance data, it is not as useful as PR or PI when wanting/needing to 

analyze other system performance factors such as the amount of energy loss to 

temperature effects, the rate of soiling, and etc. 

 The filtering of the kWh data can also be represented when looking at the energy 

generation of the resulting Julian Days that were used to calculate the degradation rate. 

This new statistical method shows an ability to remove a large amount of outliers in order 
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to develop an accurate degradation rate. A comparison of the unfiltered data and resulting 

filtered data can be seen in Figures 26 – 29. 

Fig. 26. Unfiltered Daily kWh Generation for Each Year per Julian Day. 

 

Fig. 27. Filtered Daily kWh Generation for Each Year per Selected Julian Day Used for 

Degradation Rate Calculation. 
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Fig. 28. Unfiltered Daily kWh Generation for All Days from First Measured Day to Last 

Measured Day. 

Fig. 29. Filtered Daily kWh Generation from First Measured Day to Last Measured Day 

Based on Selected Days Used for Degradation Rate Calculation.  
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4.3.4 Analysis of System Operating Conditions 

 

 When calculating the performance of a system using PI, it becomes possible to 

also look at the affects that other conditions, such as system and temperature losses, 

having on the performance and the amount of energy that is being lost due to these 

factors. As stated earlier, system losses are typically assumed to be a constant nominal 

value since the only component that really degrades is the PV modules that comprise the 

PV power plant. Looking at the amount of energy loss due to temperature can give 

system owners a better understanding of the amount and variation of lost energy 

production that can occur from month to month and year to year. This can be seen in 

Figure 30 below. 

Fig. 30. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for a 10 Year Old Commercial Rooftop PV System.  
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The above graph gives a very distinct picture of the amount of energy that this 

system loses on a yearly basis and the amount of very that can occur between the losses 

seen in the summer months and those seen in the winter months. On an annual basis 

(excluding the first year where the system was only installed for two months) this system 

averages a loss of 8.5% of the expected energy production due solely to performance 

losses from temperature. This value is shown to be rather consistent since there is little 

variation from the smallest annul value, 7.80%, and the highest annual loss of 9.08%. A 

simple reason for this variation could be that the average annual ambient temperatures 

were respectively lower and higher, resulting in the operating temperatures of the PV 

modules also being lower or higher than the average. One can also look at break down of 

loss factors and actual performance of the system by looking at the percent contribution 

of each individual loss and generation component as seen in Figure 31. 

Fig. 31. Performance Overview of Loss Factors for a 10 Year Old Commercial Rooftop 

PV System in the Phoenix-Metro Area and Hot-Dry Climate of Arizona. 
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From the above pie chart, it becomes easily visible that the overall assumptions of 

system losses and calculated thermal losses accurately predict the actual conditions found 

for the power plant. When using the calculated degradation rate, which was already 

verified to be nearly identical to the measured IV curve degradation rate, it can be seen 

that the degradation rate of the modules accounts for 12.0% of the overall losses 

experienced by the system since installation. The system losses, accumulating of inverter 

efficiency, module mismatch, and wiring losses, is found to be a total of 8.0% of the 

overall losses of the system. As stated earlier the amount of energy lost to just operating 

temperatures is 8.4% of the total expected energy (this is slightly lower than the average 

annual values since it also includes the first two months of installation in the first year). 

The unknown losses, accounting for 3.4% of the total expect energy, can be attributed to 

a single or combination of factors such as soiling, under assumption of wiring losses, 

under assumption of module mismatch, and/or an over assumption on the efficiency of 

the inverter. 

 The results presented in this section show the usage of calculated and/or assumed 

operating parameters of a PV system in order to develop an overall picture of the affects 

these parameters are having on the system output. It is important to note the large amount 

of fluctuation that can occur throughout the year for the amount of energy lost to 

operating temperatures of the PV modules within the system. This large fluctuation 

shows that when installing a system, it is important for PV system designers and owners 

to account for this variance and that on average, an open rack rooftop system will lose 

8.5% of the expected energy production per year to thermal losses alone in the hot-dry 
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climate of Arizona. This section also shows the validation of the assumed wiring losses 

and module mismatch factors as being reasonable assumptions that can made for use in 

predicting the adjusted energy expected to be produced by a PV system in the Phoenix-

Metro area of Arizona. 

4.4 Degradation Rate and Linearity Analysis 
 

 The analysis and degradation rates of 38 PV systems are analyzed to determine 

the trend, whether linear or not, of degradation seen by crystalline silicon PV power 

plants in the hot-dry climate of Arizona. In order to develop these degradation rates, the 

same performance analysis based on (PR, PI, and kWh) were used to look at the 

variances that could occur. All systems had the same analysis done as that shown in the 

previous sections and can be found in Appendix A. The age of the power plants evaluated 

range from 2 to 16 years of age with the majority of the systems being less than 5 years 

of age. The degradation trend of all PV power plants based on PR, PI, and kWh, can be 

seen in Figures 32 – 34, respectively. 
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Fig. 32. Calculated Degradation Rates for All 38 Evaluated ASU and Commercial 

Systems Based on PR and In-Field IV Curve Measurements, Where Available.  

Fig. 33. Calculated Degradation Rates for All 38 Evaluated ASU and Commercial 

Systems Based on PI and In-Field IV Curve Measurements, Where Available. 
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Fig. 34. Calculated Degradation Rates for All 38 Evaluated ASU and Commercial 

Systems Based on kWh and In-Field IV Curve Measurements, Where Available. 

 When looking at the above graphs, it is easy to see that there are some systems in 

which the degradation rates are shown to be excessively high or even negative (indicating 

increased performance). High degradation rates can be attributed to site specific issues 

that may occur such as shading losses, blown fuses, heavy soil deposition, and etc. When 

looking at the hourly kW generation, it is easy to see that there is a large amount of losses 

that are not typical of crystalline silicon based PV technologies, as shown in Figure 35. 

For systems that are less than 3 years old, they may show a negative degradation that 

indicates an increasing performance trend. This is not possible, but due to year to year 

variations, it is possible that the second year could produce slightly more energy than the 

first year and since there is smaller number of data points available, this trend can be 

exaggerated. When looking at the degradation rates report by the PI calculated method, a 

few of the older ASU systems, around 4 years of age, also show an increase in system 

performance. This again is easy to explain when looking at the hourly kW generation of 
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the system since there is a trend of high degradation rates and then a sudden increase in 

performance after a few years. This could be indicative of either a modules that were 

exceeding the manufactures degradation rate warranty and were replaced, inverters that 

were down for long periods of time before either being fixed or replaced, and any other 

system performance factor that was corrected at a later date. An example of one these 

systems is shown in Figure 36.  

Fig. 35. Hourly kWh Generation for One ASU System That Shows a High Amount of 

Degradation.  
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Fig. 36. Hourly kWh Generation for One ASU System That Shows a High Amount of 

Degradation and Then a Sudden Increase in Performance in the Later Years.  

In the above figures, the ratio between either the measured values (blue) and 

expected energy (red) will yield the PR or measured values and adjusted expected energy 

(green) will yield the PI. Since the expected energy for either PR or PI will always 

remain constant, one show expect for the difference between the initial values to be very 

little and gradually increase over time, such as that of system used for performance 

validation in Figure 37. 
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Fig. 37. Hourly kWh Generation for a Commercial PV System Used in Performance 

Validation That Shows a Gradual Increase in the Difference Between the Measured 

Values and Expected or Adjusted Energy Values. 

 Another issue that was also noticed is that some systems had a high DC to AC 

ratio resulting in inverter clipping. This poses a challenge for looking at the actual 

degradation rates seen by a system since the output of the plant will not show a decrease 

in performance until the PV modules have degraded to a level where the inverter size is 

no longer undersized as compared the amount of energy being produced. An example of 

inverter clipping is shown in Figure 38 below. 
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Fig. 38. Hourly kWh Generation for One ASU System That Shows Inverter Clipping and 

thus the Unavailability of Looking at a Degradation Trend. 

 The systems that show unrealistic degradation rates due to either inverter clipping 

or other unknown issues were chosen to be removed since they would skew the trend of 

the data set. The list of all the systems and whether or not they were used in this analysis 

is shown in Table 14. The degradation rates of PR, PI, and kWh were then graphed again 

in order to develop a clearer analysis of the trend of degradation seen by multiple PV 

power plants in Arizona, as shown in Figures 39 – 41. 
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System 

Name 

Age 

(Years) 

DC System 

Size (kW) 
Tilt(°) 

Inverter 

Clipping? 

PI Deg. 

Rate 

(%/yr) 

Used for 

Analysis? 

ASU-U 1.94 230.4 12 No 0.03% Yes 

ASU-AC 1.94 252.54 10 No -0.02% No 

ASU-AH 1.96 86.22 5 No -0.41% No 

ASU-X 2.04 250.56 10 No 0.08% Yes 

ASU-AF 2.05 310.32 8 No 0.04% No 

ASU-AA 2.10 204.6 10 No 0.15% Yes 

ASU-AB 2.10 224.4 10 No -0.04% No 

ASU-Z 2.10 89.1 10 No 0.05% Yes 

ASU-R 2.10 66 12 Yes 0.18% No 

ASU-T 2.23 254.1 12 Yes -0.03% No 

ASU-S 2.92 69.3 12 Yes 0.17% No 

ASU-J 2.97 214.86 20 No 1.73% No 

ASU-Y 2.97 138.6 10 Yes 0.22% No 

ASU-AE 2.99 246.06 10 No 0.21% Yes 

ASU-Q 3.03 65.82 12 Yes 0.15% No 

ASU-AD 3.05 166.38 10 Yes 0.23% No 

ASU-AG 4.01 2132.48 8 No 0.82% No 

ASU-L 4.01 705.6 20 Yes 0.83% No 

ASU-G 4.08 144.48 20 No 0.13% Yes 

ASU-E 4.09 57.12 20 No 0.29% Yes 

ASU-I 4.09 188.16 20 No -0.74% No 

ASU-N 4.12 497.28 20 No -0.80% No 

ASU-K 4.22 168 20 Yes 0.81% No 

ASU-B 4.23 63.84 20 Yes 0.19% No 

ASU-D 4.28 94.08 20 No 0.38% Yes 

ASU-H 4.28 64.68 20 No 0.30% Yes 

ASU-P 4.28 67.2 15 Yes 0.41% No 

ASU-F 4.36 94.08 20 No 1.39% No 

ASU-C 4.40 63.84 20 No 0.34% Yes 

ASU-G 5.25 289.8 20 No 1.76% No 

ASU-V 5.31 248.64 11 No 0.48% No 

ASU-M 5.32 141.12 20 No 0.73% Yes 

ASU-A 5.66 150.15 20 No 0.64% Yes 

ASU-O 6.00 23.1 20 No 0.74% Yes 

CT 9.40 97.2 5 No 1.33% Yes 

G 12.00 249.9 1-axis No  
Only for kWh 

analysis 
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BRO1 16.00 113.4 0 No  
Only for kWh 

analysis 

BRO2 16.00 113.4 0 No  
Only for kWh 

analysis 

Table 16. Filtration of Systems Used in This Analysis Based on Inverter Clipping, 

Unrealistic Degradation Rates, and Quality of Data Sets (Systems ASU-AF and ASU-V). 

Fig. 39. Calculated Degradation Rates for All Filtered ASU and Commercial Systems 

Based on PR and In-Field IV Curve Measurements, Where Available. 
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Fig. 40. Calculated Degradation Rates for All Filtered ASU and Commercial Systems 

Based on PI and In-Field IV Curve Measurements, Where Available. 

Fig. 41. Calculated Degradation Rates for All Filtered ASU and Commercial Systems 

Based on kWh and In-Field IV Curve Measurements, Where Available. 
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 The resulting filtered degradation rates that are shown in the three graphs above 

show an overall trend of increasing degradation as systems age. As seen in the PR and 

kWh degradation graphs, there are still a few systems that show to have an increase in 

performance. This is likely due the small number of data points and robustness of the two 

methods in calculating system degradation rates. Without having the high accuracy of PI 

calculations, other various performance that can affect a PV system are exaggerated and 

thus affect the calculated degradation rates. This is why all degradation trend analysis is 

conducted on reported PI values since they have been validated to be the most accurate 

performance measurements without having in-field measured IV data. 

Figure 40 is an interesting graph due to fact that if it is typically assumed that for 

all crystalline PV systems, the degradation is linear in nature. If this was the case, all 

lines would be around the same degradation rate, typically ~1.0%, no matter the age of 

the system. Since this is not the case, it could be construed that the degradation rates of 

crystalline silicon PV systems is not truly linear. To view this possibility in detail the, 

distribution of yearly PI for the evaluated PV power plants is analyzed. In order to view 

whether or not a system is linear, a minimum of 4 data points was determined to be 

needed since any systems less than 4 years of age would show a high linear correlation 

due to the lack of available data. This results in a total of 10 systems that can be 

evaluated for degradation trend analysis by use of PI. The figures below show the 

degradation trend for 4 of the 10 systems, both linear and non-linear, for all 12 months of 

PI values or for the 7 months of PI values used to calculate the reported degradation rates.  
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Fig. 42. Degradation Trend Analysis of Commercial PV system 
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Fig. 43. Degradation Trend Analysis of ASU-A PV System 
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Fig. 44. Degradation Trend Analysis of ASU-M PV System 
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Fig. 45. Degradation Trend Analysis of ASU-O PV System 

In the above graphs the degradation trend analysis is shown using the median with 

either: A) Distribution of PI values per year based on 12 months data using a log fit, B) 

Distribution of PI values per year based on 7 months data using a log fit, C) Distribution 

of PI values per year based on 12 months data using a linear fit, D) Distribution of PI 

values per year based on 7 months data using a linear fit, E) Distribution of PI values per 

year based on 12 months data using a 2 slope linear fit, and F) Distribution of PI values 

per year based on 7 months data using a 2 slope linear fit. 

When looking at the results from these plots, it can be seen that the general trend 

is for the logarithmic degradation to have a higher correlation value than that of a linear 

trend line, but as the systems increase in age, the difference in correlation values 
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decreases. What this may tend to indicate is that in the initial years, the systems do not 

degrade linearly, but after a period of time, the degradation rates may seem to then level 

out into a consistent linear degradation. The graph below also shows the comparison of 

the calculated degradation rate of the “good” ASU systems for PR, PI, and kWh methods 

as compared to IV measurements previously found at older PV sites by ASU-PRL. 

Fig. 46. Degradation Rates for 13 Evaluated ASU PV Systems Using PR, PI, and kWh 

Methods as Compared to Previously Reported IV Degradation Rates by ASU-PRL. 

From the above graph, it is noticeable that the calculated degradation rates for 

systems that have less than 5 years of field exposure have severely lower degradation 

rates than what would typically expected to be found. There are two reasons for these low 

degradation rates. The first reason is due to the fact there are uncertainties that arise from 

the use of modeling irradiance and module temperature values, instead of having 

physically measured values. The irradiance values, as taken from SolarAnywhere, have a 
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built in uncertainty of 5% before even being converted to POA irradiance values. By 

using this data source, it is possible that the year over year (YOY) degradation rate may 

occasionally have an increase in performance from the first year to the second. The 

second reason for this occurrence may stem from the fact that the insolation from one 

year to another may have changed drastically in which one year had more rain than 

another, or more soil deposition occurred, or etc. These types of occurrences do occur as 

shown by Figure 47 below. 

Fig. 47. Overview of Degradation Trend of Commercial PV System Where Some Year 

Over Year Degradation Rates Show a Positive Slope (Red Ovals) as Compared to the 

Overall Negative Trend (Blue Ovals).  

Positive YOY degradation rates have been seen relatively frequently by the 

industry. As reported by Black & Veatch, the YOY degradation analysis can vary as 

much as ±20% [14]. The figure below, as shown in the Black & Veatch report, presents 

the overall distribution of YOY degradation rates for a total of 73,829 degradation rates 
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of non-SunPower systems (Red) and 45,636 degradation rates for SunPower systems 

(Blue). 

Fig. 48. Histograms of all Site Level YOY Degradation Rate Data for SunPower and 

Non-SunPower Systems. 

The results presented in this section give indications to the non-linear degradation 

trend that seems to occur in crystalline silicon based PV modules and PV power plants. 

This non-linearity is seen to closely resemble that of a logarithmic degradation in the 

early years of PV power plants. For current long-term warranty and energy prediction 

models, linear assumptions still prove to be practically accurate, but may need to be 

adjusted for systems with less than five years of age, perhaps using a double-slope 

approach. Due to a lack of available systems, most systems evaluated range between 4 to 

6 years in age. The continuation of this study as the systems increase in age or evaluating 
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other systems of an older age is encouraged to develop a definitive answer to the overall 

degradation trend experience by crystalline silicon PV modules in the hot-dry climate of 

Arizona.  

5.0 CONCLUSION 

 

 From the results that were discussed in the previous chapter, important 

conclusions for the type of irradiance, temperature, performance models that best operate 

in the hot-dry climate of Arizona can be drawn.  The best irradiance model found for 

correcting in-field measured GHI data to POA irradiance was that of PVsyst. The 

commercial software showed to have the best RMSE (14.63 W/m2 and 15.23 W/m2) and 

NRMSE (1.33% and 1.38%) values for the two years of measured data, 2013 and 2014. 

These values were found by using the Hay & Davies transposition model. The Hay & 

Davies model, said to be the more robust model, gives the best results compared to that of 

the other transposition model used in PVsyst, the Perez transposition model, since it is 

more accurate by ~.4%. When using satellite generated GHI, it was found that while 

PVsyst did give accurate irradiance results, it was not the most accurate. The most 

accurate overall model was that of the combination of the Skartveit and Olseth 

decomposition model and Badescu transposition model. The Skartveit and Olseth – 

Badescu model gave the best RMSE (10.38 W/m2 and 10.97 W/m2) and NRMSE (0.98% 

and 1.03%) values for the two years of measured data, 2009 and 2010. This model also 

performed better than the PVsyst model when predicating the overall insolation that 

could be expected for a particular location. This was shown by the Skartveit and Olseth – 

Badescu model reducing the overall over predication of PVsyst’s best model, Hay & 
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Davies, from an average 2.9% to only 1.0%. To further generate the most accurate hourly 

irradiance model for converting satellite GHI into POA irradiance, a hybrid model of the 

PVsyst Hay & Davies model and that of the Skartveit and Olseth – Badescu model was 

developed. This model was able to reduce the RSME values from 10.38 W/m2 and 10.97 

W/m2 to 9.29 W/m2 and 9.50 W/m2 for 2009 and 2010, respectively. This results in the 

NRSME values falling to 0.878% for 2009 and 0.895% for 2010, the lowest observed 

values. Since these values were seen to give the lowest errors for predicting hourly POA 

irradiance data, the hybrid model was determined to be the most optimal model for the 

hot-dry climate of Arizona. 

 The best model for predicting the operating temperature of crystalline silicon PV 

modules in the hot-dry climate of Arizona was determined to the be Mattei 1 thermal 

model since it gave the lowest RMSE and NRMSE values for the 7 months of measured 

in-field module temperature data. As was shown in an earlier chapter, for quick operating 

temperature calculations, the Simple Model method, which only needs ambient 

temperature and POA irradiance, can be used for a rough idea the operating conditions 

being seen by a PV module. For high accuracy predictions though, for things such 

degradation rate calculation and large scale energy generation predictions, more 

complicated models such as Mattei 1, PVsyst, and Sandia models need to be used, with 

the Mattei 1 method giving the most accurate results for the hot-dry climate of Arizona. 

 The performance models used, Performance Ratio, Performance Index, and 

kilowatt-hour methods, also showed differences in the calculated degradation rates. 

While it was shown that the best method, after the IV method, for calculating degradation 
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rates is by using PI values, the developed kWh degradation rate calculation gives similar 

results to that of PI, but without the need of using sophisticated modeling for temperature 

and irradiance. The developed kWh degradation model does produce better results than 

those of the PR calculation, but cannot be used to determine any specific system 

component losses since it is purely a statistical calculation without having any other 

operating conditions being taken into consideration.  

 The trend and rate of degradation for crystalline silicon PV systems was found to 

be slightly nonlinear with logarithmic degradation rates having more correlation than that 

of the single slope linear degradation rates. When reviewing this trend, it was only 

observed in systems that were 5 or more years old, since any systems younger then this 

had too few data points to make conclusions about the trend of the data sets. The graphs 

and data presented in an earlier chapter help support the idea of using a two slope 

regression model where the first three years seem to degrade at a higher rate than the 

proceeding years. The degradation rate of systems in Arizona was calculated with an 

average rate of 1.43%/yr in the first three years and an average rate of 0.67% for years 

greater than three, when using systems that have 5 or more years of field exposure. The 

overall average degradation rate (using the standard one slope method) of the 13 ASU PV 

power plants that were analyzed showed an average degradation rate of only 0.31%yr. 

This value is not close to the expected value of ~1.0%/yr and should not be used when 

looking at the overall degradation rate of the hot-dry climate of Arizona since the 

uncertainties in irradiance and temperature models and assumptions in the kWh method 

heavily dominate calculated degradation rates for systems less than 5 years of age. 
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 Again when comparing the degradation rates found in this study, new systems 

(installed within ~5 years) show an average degradation of 0.70%/yr (when averaging the 

calculated degradation rates from PI single slope method with 7 months data for plants ~5 

years old), while old systems (installed ~10 years or more) show an average degradation 

rate of 1.12%/yr (when averaging the in-field measured IV curves of systems ~10 years 

old or more). The two different degradation rates could be attributed to an improvement 

in the quality of modules that are being installed in newer systems, but without having 

intermediate data, this cannot be stated for certain.  

This study shows that the rate and trend of degradation can only be assumed as 

true when: A) there is a large data set available in which a system has 5 or more years of 

field exposure, B) the on-site measured values (POA irradiance, module temperature, 

weather, etc.) are used for calculating performance and degradation rate analysis instead 

of modeled data, and C) in-field measured IVs are performed when the system(s) is 

initially installed and then are measured again at set incremental periods of time. The 

method discussed in C would give the most accurate degradation rate since it would 

directly measure the modules performance and be the least susceptible to error. In both 

methods A and B, the system also must not have inverter clipping, long system down 

times, or any sudden increases in performance (without knowing the reason why) in order 

to have accurate performance and degradation calculations. 

 Continuation and future work of this study is suggested since it as these systems 

continue age it will be critical to see if the proposed second slope will continue to be 

linear or if there is another non-linear degradation that may occur at later years after a 
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greater amount of time in the field. From the control commercial PV power plant, it was 

seen that there was no other non-linear degradation that occurred in later years, but a 

larger sample size should be used in order to conduct a statistically accurate conclusion 

on this phenomenon. Determining the effective ness of the kWh technique on larger 

utility sized systems ( >1 MW ) in the same climate and in different climates is also 

advised in order to determine whether or not the filtration ranges used are representative 

of all climatic conditions or only that of Arizona. The determination of optimal irradiance 

and temperature models for other climates should also be one of further study in order to 

better understand the variances that can occur between region to region so that the 

optimal type of PV system can be used and the behavior of the PV system can better be 

predicated and modeled. 
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APPENDIX A 

PERFORMANCE ANALYSIS 
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Fig. 49. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-A System.  

Fig. 50. Performance Overview of Loss Factors for ASU-C Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 51. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-C System. 

 

Fig. 52. Performance Overview of Loss Factors for ASU-C Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 53. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-D System. 

Fig. 54. Performance Overview of Loss Factors for ASU-D Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 55. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-E System.  

Fig. 56. Performance Overview of Loss Factors for ASU-E Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 57. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-G System.  

 

Fig. 58. Performance Overview of Loss Factors for ASU-G Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 59. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-H System.  

Fig. 60. Performance Overview of Loss Factors for ASU-H Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 61. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-M System. 

Fig. 62. Performance Overview of Loss Factors for ASU-H Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 63. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-O System.  

Fig. 64. Performance Overview of Loss Factors for ASU-O Rooftop PV System in the 

Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 65. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-U System.  

 

Fig. 66. Performance Overview of Loss Factors for ASU-U Parking Structure PV System 

in the Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 67. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-X System.  

Fig. 68. Performance Overview of Loss Factors for ASU-X Stadium Structure PV System 

in the Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 69. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-Z System.  

 

Fig. 70. Performance Overview of Loss Factors for ASU-Z Rooftop System PV System 

in the Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 71. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-AA System.  

Fig. 72. Performance Overview of Loss Factors for ASU-AA Stadium Structure PV 

System in the Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 
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Fig. 73. Percent of Expected Energy Production Lost to Thermal Losses Based on 

Monthly and Yearly Basis for ASU-AE System. 

Fig. 74. Performance Overview of Loss Factors for ASU-AE Parking Structure PV 

System in the Phoenix-Metro Area of the Hot-Dry Climate of Arizona. 

 

 

 


