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ABSTRACT  

   

Richard Feynman said “There’s plenty of room at the bottom”. This inspired the 

techniques to improve the single molecule measurements. Since the first single molecule 

study was in 1961, it has been developed in various field and evolved into powerful tools 

to understand chemical and biological property of molecules. This thesis demonstrates 

electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and 

two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, 

the two series of carotenoid molecules with four different substituents were investigated to 

show how substituents relate to the conductance and molecular structure. The measured 

conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal 

substituents and conductivity increasing rather than Carbon. Also, the conductivity is 

adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and 

peptides were identified through STM-RT. The distribution of the intuitive features (such 

as amplitude or width) are mostly overlapped and gives only a little bit higher separation 

probability than random separation. By generating some features in frequency and 

cepstrum domain, the classification accuracy was dramatically increased. Because of large 

data size and many features, supporting vector machine (machine learning algorithm for 

big data) was used to identify the analyte from a data pool of all analytes RT data. The 

STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, 

carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, 

due to their huge number of possible isomeric configurations. This study shows that STM-

RT can identify not only isomers of mono-saccharides and disaccharides, but also various 
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mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity 

between recognition molecule and analyte was investigated by comparing with surface 

plasmon resonance. In present, the RT technique is applying to chip type sequencing device 

onto solid-state nanopore to read out glycosaminoglycans which is ubiquitous to all 

mammalian cells and controls biological activities. 
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CHAPTER 1 

INTRODUCTION TO SINGLE MOLECULE MEASREMENTS 

1.1. Methods of Single Molecule Measurements 

Single molecule research has been evolved into powerful tools to understand 

chemical and biological property of molecules, due to their unique abilities not only high 

sensitivity and the insight of molecular features. The conventional ensemble methods 

provide averaged properties of large numbers of molecules. In contrast with the 

conventional methods, single molecule methods allow to directly measure properties of 

individual molecule through measuring molecular force or molecular functional responses 

to mechanical manipulation etc. High sensitivity of single molecule measurements have 

direct benefits. Some molecules are easily aggregated in ensemble concentration. Single 

molecule methods can be done at low concentration, and it allows to study the property of 

the monomeric species at equilibrium. [1][2] 

Richard Feynman said “There’s plenty of room at the bottom”. [3] This inspired 

the techniques to improve the single molecule detection limit. The first single molecule 

study was in 1961, “Measurement of activity of single molecules of beta-D-galactosidase”, 

which observed single beta-D-galactosidase in microdroplets and on fluorogenic substrate. 

[4][5] 

Single molecule measurement techniques have been developed in various fields 

from physics to biology. As described in figure 1, single molecule techniques can be 

grouped into two regions by aims of the methods. One is for developing and improving 

methods and the other is for addressing scientific questions. [2] For instance, near-field 
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approaches such as scanning tunneling microscopy (STM) and atomic force microscopy 

(AFM), and optical microscopy of single quantum systems such as ion traps and atom traps, 

and confocal microscopy with fluorescence, and optical tweezers etc. [4] Some of these 

pioneer researches was selected for Nobel Prize. Though some techniques require extreme 

conditions, such as low temperature (~1K) or ultra-high vacuum (~10ିଽ Torr), others can 

be performed in liquid at room temperature. Some methods is able to directly measure the 

molecule, while others need to label targets for measurable interaction, which may be larger 

than the target molecules. Also diverse molecules have been studied from single atoms to 

complicate living cells. [1][6][7][8] 

 

Figure 1. Components and scope of single molecule science. 

Figure taken from ref [2]. 

 

Electron is a good probe at short distance scales for single molecule measurements. 

Its tunneling behavior allows us measurements in a few nanometers with angstrom 

sensitivity. Charge transport is an important mechanism in chemical and biological 
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processes. Understanding charge transport provides chemical information in single 

molecule level [9] and it can be used for molecular electronics and sensor applications 

which are based on electrical detection of molecular binding events [10]. [1][11] The thesis 

is based on electronic single molecule measures through STM applications. The details are 

discussed in the following chapters. 

 

1.1.1. Electron Based Measurements 

Electron is a very attractive probe for direct and label free detections. STM and 

TEM are the most popular techniques for electron based single molecule measurements. 

Some of nano-gap techniques including STM is useful to measure molecular conductance, 

vibrational energy levels, electronic polarizability and spin states [12][13]. TEM uses high 

energy electron beams through the sample. Crystallographic structure can be analyzed by 

diffraction patterns. [1] 

The quantum tunneling allows that electrons can be transported across a nanometer-

gap such as molecule or insulating layer between electrodes. Electrons on the negatively 

charged electrode are more likely to be moved to the other electrode positively charged. 

Then the gap size is critical to tunneling current. The larger gap makes harder to transport 

electrons, so current decreases exponentially as gap increases. If the gap is filled by a 

conductive medium instead of non-conducting insulator such as vacuum or air, charges can 

be transferred easily then the tunneling current increases. Some detail discussions about 

the tunneling current will be in chapter 1.2. [14] 



4 

The sensitivity of tunneling current to the gap size and the medium in the gap means 

that solution environments can give a range of opportunities to study chemical reactions 

and to sequence the composition of biopolymers. Liquid environments makes easier to 

prepare biomolecules such as DNA and proteins. Also, analyte molecules in solution are 

easily saturated on the electrode surface and it increases the stability of the molecular 

junction. In contrast to fluorescence spectroscopy, the tunneling based methods are label-

free due to the medium sensitivity since molecules have their own unique electronic 

structure. [14] 

 

1.1.1.1. Scanning Tunneling Microscopy (STM) 

As discussed before, STM is based on electron tunneling phenomena at small gap 

between two electrodes while a bias applied. Because of small gap size (a few nano-meter) 

and small tunneling current (sub nano-ampere), STM requires precise tip position 

controller and amplifier as shown in Figure 2. Thus the surface image can be acquired with 

precise resolution in angstrom unit. The tip position is controlled by piezo-electric material 

with feedback servo loop to maintain constant current or gap distance. The tunneling 

current exponentially decreases as the gap size increases. Also the electronic structure of 

the molecular junction is critical to the tunneling current. It makes that STM can quantify 

molecule energy level. [1][11] 

STM is a most widely used tool for single molecule detection and manipulation, 

because of the resolution and sensitivity. STM can image an individual molecule which is 

absorbed on the substrate and is able to manipulate single molecule even an atom on the 
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substrate [15]. By modifying the tip with a molecule, one can offer spectroscopy 

measurement [16]. [11] 

 

Figure 2. Schematics of Scanning Tunneling Microscopy (STM). 

STM is based in tunneling phenomena between metal tip and metal sample. At a few nanometer gap, a 
few pico-ampere of tunneling current is induced. Amplifier is required to read very small tunneling 
current, and the small gap is maintained by feedback controller and piezotube. Figure taken from ref 
[17]. 

 

1.1.1.2. Fixed Electrodes 

STM is a fascinate tool for single molecule measurements by the facts of the 

sensitivity, easy to control the gap size, and low operating cost. However, it has a noise 

issue which comes from the feedback servo controller. It reduces the signal-to-noise ratio 

of STM. A simple way to over the limit is to fabricate facing electrodes separated by 

nanogap in molecular scale corresponding to a few nanometers. The fixed electrodes which 

are fabricated on a solid substrate provide mechanically stable molecular junctions.  There 

are two types of devices, planar and vertical nanogap devices, as shown in Figure 3. 
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However, fabricating nanogap is beyond the present nanofabrication techniques limit. 

Researchers have been developed to fabricate such a molecular scale nanogap junctions, 

or to use nanoparticles interacting with analyte and electrodes as described in Figure 4(b) 

and 4(c). Not only low fabrication yield due to difficulty, but also large device to device 

variation should be improved. [11][18] 

 

Figure 3. Schematics of Planar and Vertical Nanogap Devices. 

(a) Planar nanogap device with two electrodes (b) Vertical nanogap device with two electrodes (c) 
Vertical nanogap device with three electrodes; Source, Gate, and Drain. Figure taken from ref [18]. 

 

 

Figure 4. Schematics of Different Molecular Junction Mechanisms. 

(a) Single molecule bridged between two electrodes with a molecular-scale separation prepared by 
electromigration, electrochemical etching or deposition, and other approaches. (b) Formation of 
molecular junctions by bridging a relatively large gap between two electrodes using a metal particle. (c) 
Dimer structure, consisting of two Au particles bridged with a molecule, assembled across two 
electrodes. Figure taken from ref [11]. 

 

1.1.1.3. Mechanically Controllable Break Junction (MCBJ) 

As discussed in the previous section, fixed nanogap fabrication has a limit to make 

molecular scale separation between electrodes. MCBJ is a novel way to generate nanogap 

electrodes by mechanically breaking metal wire which is controlled by bending substrate 

as described in Figure 5. [19] The rod displacement is converted to the gap distance 
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between electrodes with the attenuation factor r. MCBJ gives high stability holding single 

molecule at room temperatures [20]. 

 

Figure 5. Schematics of MCBJ Fabrication. 

A free standing metal junction is fabricated by e-beam lithography and metal deposition on the substrate. 
The substrate and pushing rod are in a three-point bending configuration, the vertical movement of the 
pushing rod is controlled by PZT and stepping motor. The gap size d can be tuned by the vertical 
displacement of the pushing rod D by d=rD, where r is the attenuation factor determined by the 
configuration as r=3ut/L. Figure taken from ref [19]. 

 

1.1.1.4. Conducting Atomic Force Microscopy (CAFM) 

AFM was invented to overcome the limit of STM which cannot perform the non-

conducting samples. Though AFM is working on the force interaction between cantilever 

tip and sample, by modifying the probe and substrate with conducting material, it provides 

conductance spectroscopy of the molecular junction simultaneously. The break-down of 

individual molecular junction generates step change in the conductance curves with abrupt 

force decrease shown in Figure 6(b). Cui et. al. showed that the molecular junction 

conductance is quantized and it is reproducible with CAFM. [21] The average breakdown 
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force of the stepwise conductance decrease is ~1.5 nN [22] which is the same with the Au-

Au bond breaking. It implies that the breakdown occurs at the Au-Au bond. [11] 

 

Figure 6. Schematics of Conducting Atomic Force Microscopy (CAFM). 

(a) Schematic illustration of a molecule covalently bonded to two Au electrodes under mechanical 
stretching, during which both the conductance and the force are measured. (b-d) Simultaneously recorded 
conductance and force curves of C8 (b-c) and BPY junctions (d) during stretching. (c) shows that two 
molecules can break simultaneously at the last stage, resulting in twice as much change in the conductance 
and the force. The inset in (d) shows that the force fluctuations are correlated with conductance 
fluctuations. [11], Figure taken from ref [23]. 

 

1.1.1.5. Nanopore 

The idea of nanopore method has been originated from patch clamp experiments in 

1970s which is possible to measure the currents of single ion channel molecules. The 

molecular property is measured by passing the analytes through a nanometer scale pore 

which gives millisecond scale switching signals in sub-nanoampere order of ionic currents 

with kilohertz frequency. [24] 
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Figure 7. Schematics of Nanopore Mechanism. 

(a) biological pore (b) solid state pore (c) hybrid pore. Figures taken from ref [25] and [26]. 

 

The nanopore fabrication techniques can be grouped into biological, solid state, and 

hybrid methods. The protein pores are formed in a membrane such as lipid bilayer. The 

solid state pores are fabricated on synthetic materials substrate such as silicon nitride or 

graphene. Also, the protein pores can be formed in electrically resistant membrane bilayer 

(Figure 7(c)). The Oxford Nanopore sequencing kit which is the first commercially 

available pore based sequencing device, is fabricated by hybrid methods. The array of 

alpha-hemolysin protein pores is set in an electrically resistant polymer membrane. 

[1][25][26] 

 

1.2. Charge Transport in Molecular Junctions 

In nano-scale study, the characteristic length scale of the molecular junction is 

important. According to the Ohm’s law, it states that the current through a material is 

proportional to the voltage and the constant proportionality is the resistance defined by  
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ܴ ൌ ߩ
ܮ
ܣ
 ሺ2ሻ	݊݋݅ݐܽݑݍ݁																																															

where ߩ is the resistivity of the material, ܮ is the length of the material, and	ܣ is the cross-

section area. 

Then the macroscopic conductance is relative with the current and applied voltage. 

Then the conductance, the inverse of the resistance, is 

ܩ ൌ ߪ
ܣ
ܮ
 ሺ3ሻ	݊݋݅ݐܽݑݍ݁																																															

where  ߪ is the conductivity of the material which is the inverse of the resistivity. 

In the diffusive regime when junction size is larger than the electron mean free path 

(l), the electrons behave like a random walk between elastic collisions with impurities. 

However, in the ballistic regime that junction is smaller than l, the momentum of electrons 

becomes constant. In addition, the phase coherence length (ܮఝ) must be considered at small 

scale, which is the distance that electron’s phase information can be preserved. The 

materials in this scale have coherent charge transport. [27][28] 

The following sections will introduce the basic models for the quantum tunneling 

and Landauer formula. 

 

1.2.1. Quantum Tunneling 

The quantum tunneling means that electrons are able to transport across a nano-

meter scale gap, insulating layer such as molecule between electrodes. By applying bias 

voltage onto the source, some of electrons in source have higher energy than drain side, 



11 

then they can be transported towards the drain electrode, even their energy is smaller than 

molecular junction barrier. The tunneling exponentially depends on the gap size, the 

applied bias voltage, and the electronic structure of the bridge junction. The figure 8 shows 

the schematics of molecular junction circuit (Figure 8(a)) and the relative energy diagrams 

for electrons energy level (Figure 8(b)) and wave propagation (Figure 8(c)) in a square 

potential barrier. The source and drain electrodes can be regarded as electron reservoirs 

bridged by molecule. Then the electrons act like free plane wave propagation through 

electrodes. When the waves are scattered into the barrier, there is a probability that the 

electrons will be transmitted through barrier even with the less energy than the barrier. 

Considered that electrons incident from left to barrier, as described in Figure 8c, the 

electrons have a probability to be transmitted through the barrier and reflected from the 

barrier. From the scattering theory, the transmission probability is given by 

ܶ ൌ ฬ
݀݁ݐݐ݅݉ݏ݊ܽݎݐ
ݐ݊݁݀݅ܿ݊݅

ฬ
ଶ

 ሺ4ሻ	݊݋݅ݐܽݑݍ݁																																							

For the STM, there were many efforts to predict the tunneling current. In 1961, 

Bardeen explained the tunneling phenomena as the net of many independent scattering. 

[29] His theory is based on some assumptions. Two of them is from Oppenheimer’s 

perturbation theory: 

(O-1) tunneling is weak enough that the first-order approximation. 

(O-2) tip and sample states are nearly orthogonal. 
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Figure 8. Schematics of Tunneling Current. 

An energy level diagram for a one-dimensional electron-tunneling junction. The Fermi energy levels 
 of the tip and sample are offset by the applied bias voltage (V) times the electron charge (e). The (ிܧ)
resultant current is exponentially dependent on the distance between the sample and the tip (z). LDOS, 
local density of states; ߔ, work function of the metal. Figure taken from ref [12]. 

 

In addition, he introduced several further assumptions: 

(B-1) the electron-electron interaction can be ignored. 

(B-2) occupation probabilities for the tip and sample are independent of each other, and do 

not change, despite the tunneling 

(B-3) the tip and sample are each in electrochemical equilibrium. 

Thus, the tunneling current can be written as 

ܫ ൌ
݁ߨ2
԰

௧௦|ଶܯ|௧௜௣෍ߩ

௧௦

 ሺ5ሻ	݊݋݅ݐܽݑݍ݁																																		
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where ܯ௧௦ ൌ
԰

ଶ௠
ሺ߰௧	ܵ݀׬

௦߰ߘ∗ െ ߰௦߰ߘ௧
∗ሻ. Though his model gives valuable intuition for 

STM imaging, it requires wave functions of the tip and sample states to predict tunneling 

current.  

In 1983, Tersoff and Hamann applied Bardeen’s formula to the STM [30] by 

modelling the electronic wavefunctions of the tip by radially symmetric and Chen 

improved their model [31] by regarding the tip wavefunction outside of the tip region as a 

linear combination of the generalized wavefunction and its partial derivatives. For low bias, 

the tunneling current can be written by 

ܫ ൌ
݄݁ଷ

݉ଶ ሺߤ௧ െ ௦ሻߤ ∙ ௧ߩ ∙  ሺ6ሻ	݊݋݅ݐܽݑݍ݁																																௦ሺ0ሻߩ

where ߩ௦ሺ0ሻ is the local density of sample states per unit volume. Thus the Tersoff-Hamann 

model predicts that tunneling current is proportional to the local density of sample states. 
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1.2.2. Landauer Formula 

 

Figure 9. Schematics of Molecular Junction’s Energy Level and Corresponding Fermi 
Distribution. 

Two electrodes (labeled by 1 and 2) which separated by potential barrier െ݁ ௕ܸ have Fermi energy levels 
 ଶ. The molecular energy level is broadened by ݄଴ and the Fermi functions of the electrons on twoߤ ଵ andߤ
electrodes are shown. The difference of electrodes are shown in red. Figure taken from ref [14]. 

 

 Landauer theory well explains the charge transportation in quantum system. [32] 

Considered the molecular junction which shown in Figure 9, the current is the electron 

flow between electrodes 1 and 2 induced by the Fermi distribution difference. Then the 

flux is proportional to a transmission function ܶሺܧሻ and the function characterizes the 

molecular junction property. The net current can be calculated by 

௡௘௧ܫ ൌ
ݍ
݄
න ሻܧሺܶ	ܧ݀ ∙
ାஶ

ିஶ
ሼ ଵ݂ሺܧሻ െ ଶ݂ሺܧሻሽ																					݁݊݋݅ݐܽݑݍ	ሺ7ሻ 

where ݍ  is the charge, ଵ݂ ൌ ሾ1 ൅ expሺܧ െ ଵሻߤ /݇஻ܶሿିଵ , and ଶ݂ ൌ ሾ1 ൅ expሺܧ െ ଶሻߤ /

݇஻ܶሿିଵ with ߤଶ ൌ ଵߤ ൅ ݍ ௕ܸ. 

The transmission function ܶሺܧሻ  can be calculated using the Green’s function 

formalism as 

ܶሺܧሻ ൌ  ሺ8ሻ	݊݋݅ݐܽݑݍ݁																																	ାሿܩଵ߁ܩଶ߁ሾ݁ܿܽݎݐ
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where ߁ଵ,ଶ  is the broadening matrix of the electrodes, ܩ  and ܩା  are the retarded and 

advanced Green’s function of the junction. Taking the assumption that two electrodes are 

coupled with a single channel of length ݀ and energy ݄଴ [33], the broadening matrices, the 

retarded, and the advanced Green’s functions are given by  

ଵ,ଶ߁ ൌ
԰ ∙ ݒ
݀

 ሺ9ሻ	݊݋݅ݐܽݑݍ݁																																														

ܩ ൌ
݀

െ݅԰ݒ െ ܷ଴
ାܩ		݀݊ܽ	 ൌ

݀
݅԰ݒ െ ܷ଴

 ሺ10ሻ	݊݋݅ݐܽݑݍ݁																			

where ݒ is the velocity of electrons and ܷ଴ is an additional potential acting on the channel. 

Thus, the transmission function is given as 

ܶሺܧሻ ൌ
԰ଶݒଶ

԰ଶݒଶ ൅ ܷ଴
ଶ  ሺ11ሻ	݊݋݅ݐܽݑݍ݁																																					

For large ܷ଴, ܶሺܧሻ becomes too small to transport charges by the junction and the 

current is zero. In the case of ܷ଴ ൌ 0 which there is no potential barrier by the channel, the 

transmission function becomes 1. Replaced the Fermi functions by step functions, the 

distribution difference within the molecular junction is 1. Thus, the total current is 

௡௘௧ܫ ൌ
ଶݍ

݄ ௕ܸ																																										݁݊݋݅ݐܽݑݍ	ሺ12ሻ 

Considering the contribution of the two electrons of opposite spin in each level, the 

quantum conductance is given by 

଴ܩ ൌ
௡௘௧ܫ݀
݀ ௕ܸ

ൌ
ଶݍ2

݄
ൌ  ሺ13ሻ	݊݋݅ݐܽݑݍ݁																												ܵߤ77.46
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Therefore, the conductance of molecular junction is given in units of ܩ଴ and it can 

characterizes the molecular property. 

 

1.3. Applications of STM for Biological Single Molecule Measurements 

1.3.1. Break Junction 

Conductance is the most frequently measured physical property of single molecule 

and Scanning Probe Microscopy (SPM) is one of the most straightforward technique. Break 

junction method is the most widely used technique to study electron transport of molecular 

junction. Similar with AFM based break junction method which was described in chapter 

1.1.1.4, STM also can be used for break junction method. Xu & Tao reported an STM break 

junction method [34]. As described in Figure 10, a metal substrate electrode is modified 

with a self-assembled monolayer and a metal tip is withdrawn. The modified molecules 

have two end groups which can make a bond with tip and substrate. Thiol (SH) is the 

mostly used anchor group because of strong Au-S bonds forming stable molecular junction 

with electrodes. The tip position is controlled by servo feedback and repeatedly moving 

into and out of the substrate. The tip motion speed is determined by the sweep rate of the 

piezo-voltage. 
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Figure 10. Schematics of Break Junction Method. 

(a) The system consists of a metal substrate covered with self-assembled monolayer of a target molecule 
and a metal tip; (b) A tip is indented into a substrate in a solvent. Subsequently, the fused contact is 
stretched by pulling out the tip and the conductance trace is measured (left). In case of Au junctions, the 
conductance drops in a stepwise fashion and show a long plateau at 1 G0 signifying formation of Au single 
atom chains. After breaking the Au contacts, current flows through several molecules bridging the tip and 
the substrate. Further retracting the tip, the metal-molecule bonds rupture and the number of the current-
carrying molecules decreases one by one showing conductance staircases (middle) and finally to zero 
(right). Thousands of single-molecule junctions can be formed within a relatively short time by repeating 
the series of processes, which allows deduction of junction-to-junction variations of the single-molecule 
conductance. Figure taken from ref [19]. 

 

The STM break junction method has some unique advantages rather than MCBJ or 

AFM-BJ. This method electively measures the conductance of the molecules bound to the 

both electrodes and focuses on the separation process. Because only the bound molecules 

can be stretched and broken as the tip is withdrawn. This technique is performed in an 

organic solvent, so the sample molecules can be easily introduced. In addition, STM can 
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take an image of the substrate surface before break junction measurement. Then it makes 

us to place the tip on an atomically flat surface. 

 

Figure 11. Break Junction Measurements. 

Electronic break junction can be used to quantify the conductance of single molecules. As a gold contact 
is slowly broken, quantized decreases in conductance are observed, first corresponding to changes in the 
geometry of the gold contact (A,B), then a set of smaller quantized peaks (C,D) resulting from one, two, 
or three conductive molecules (here dipyridine) bridging the junction. At slightly larger distances, the 
junction ceases to exhibit conductance (E,F). Figure taken from ref [34]. 

 

In Figure 11, it shows quantized conductance measurements via STM-BJ. The gold 

metal junction (11(a)) provides some set of peaks corresponding to multiples of ܩ଴ ൌ

2݁ଶ ݄⁄  (11(b)) through a chain of single Au atoms. Molecular junctions also gives similar 

pattern of peaks (11(c)) and fractions of ܩ଴, corresponding to the molecular conductance. 

At little larger distance which is longer than molecular junction length, no quantized 

conductance was observed (11(e),(f)). 

In the next chapter, some carotenoids with different functional groups are 

characterized through the STM-BJ experiments. 
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1.3.2. Recognition Tunneling 

As discussed in the previous chapters, molecular junctions can be characterized at 

nano-gap device through charge transportation, because of the strong distance dependence 

and electronic sensitivity. The tunneling is also one of the most power method of 

sequencing biological analytes. This method does not require any labelling which results 

in the high cost of competing sequencing methods such as fluorescent or radioactive tags. 

Additionally, tunneling sequencing method is able to sequence not only DNA, but also 

peptides or carbohydrates etc. 

In Figure 12, it shows the schematics of probing process by tunneling. Freely 

diffused analytes bridge the two electrodes and enhance the tunneling current. Once the 

molecule is unbound from the gap, the tunneling current goes back to the original current 

level, baseline. Through statistical analysis of many tunneling current data, the analytes 

can be identified by a characteristic conductance. The mean and width of the conductance 

distribution depend on the molecule junction and not only on the electrical properties and 

electrodes geometry. However, the dependence between the junction and tunneling current 

is not always trivial. The distribution of each analytes could be overlapped, so the mean of 

conductance is not distinguishable to characterize analytes. Or the junction can generate 

current signals including valuable information about molecular process in the gap such as 

hydrogen bonding patterns, Recognition Tunneling (RT).  Modifying the electrodes makes 

the current distribution narrowing down showing in Figure 13. [35] 



20 

 

Figure 12. Probing Dynamic Processes at the Solid/Liquid Interface by Tunneling. 

(a) Sensing of a freely diffusing analyte that first diffuses into the tunneling junction, then bridges the gap 
and finally detaches and diffuses out of the junction. (b) Tunneling readout of DNA base composition. In 
this scenario, the DNA strand moves along the tunneling junction in a controlled conformation and at 
well-defined speed. Each base interacts with the tunneling junction and is identified by a characteristic 
tunneling conductance. ௕ܸ is the bias voltage applied to the two tunneling electrodes. Figure taken from 
ref [14]. 

 

 

Figure 13. Current Amplitude Distribution Measured with (A) Bare Electrodes and (B) 
Functionalized Electrodes. 

(A) Shows the current distribution measured for a pair of bare gold electrodes for dG. GBL was increased 
to 20 pS to obtain these reads. (B) Shows the current distribution for dG with just one electrode 
functionalized. Figure taken from ref [36]. 
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Figure 14. DNA Base Recognition through Recognition Tunneling. 

(A)–(D) Show energy-minimized structures for the four nucleosides bound in a 2.5 nm gap with 4-
mercapto benzoic acid as the reading reagent. The ‘S’ stands for the deoxyribose sugar (not shown) and 
the order (dT, dG, dC, dA) corresponds to the predicted order of increasing tunnel conductance using 
DFT. (E) Shows the background tunnel current in organic solvent (trichlorobenzene) with the gap set to 
GBL = 12 pS (6 pA at 0.5 V bias). At this gap there is no indication of interactions between the two benzoic 
acid readers. (F) Shows an example of the current spikes that are observed when a solution of dG is 
injected into the tunnel junction. The inset shows details of some of the spikes on a millisecond-timescale. 
Many of them show the telegraph noise switching characteristic of single molecule binding (the slight 
slope in the ‘on’ level reflects the action of the servo used to control the tunnel gap). (G) Measured 
distributions of current for the four bases. The order agrees with the density functional prediction, but the 
measured currents are larger than predicted. The overlap between reads limits the probability of a correct 
assignment on a single read to about 60%. Figure taken from ref [36]. 

 

STM-RT has been used to identify DNA bases. [35] The both electrodes are 

functionalized with reading reagent which has hydrogen bond donors and acceptors, and 

they can capture a molecule within the gap as described in Figure 14(A~D). The ‘S’ stands 

for the deoxyribose sugar (not shown) and the order (dT, dG, dC, dA) follows the 

increasing order which calculated by using DFT. The black circle represents hydrogen 

bonds between reading reagents and nucleotides. The measured current distribution shows 

a limited separation about 60% in Figure 14(G). For the better separation accuracy, further 
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features rather than the current amplitude can be extracted at other domains, such as 

frequency or quefrency domain. The details of the feature extraction will be discussed in 

chapter 4. 

This study shows that STM-RT can be used for peptide and carbohydrate 

sequencing which are followed in the chapter 3 and 4. 
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CHAPTER 2 

CONDUCTANCE MEASUREMENTS BY STM-BASED BREAK JUNCTIONS 

2.1. Introduction 

Research for the electrical properties of single molecules is important not only from 

fundamental point of view but also for nanoscale electrical applications. The researches 

aim to make chemically stable molecular configurations, so that to be possible to 

systematically control the conductance output. There are many molecular parameters what 

should be controlled, such as length, conjugation, substitutions, conformation, alignment 

of the highest occupied/lowest unoccupied (HOMO/LUMO) molecular frontier orbitals to 

the electrode Fermi energy level, and anchoring chemical groups to the electrodes. 

[37][38][39][40][41][42] 

This study reported new series of carotenoid molecular wires whole conductivity is 

fine-tuned by inserting multiple phenyl substituents and their conductance measurements 

via STM based break junction method. Furthermore, it presented the molecular modeling 

based on DFT-optimized structures and distribution of the molecular orbitals to describe 

the experimental results. 
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2.2 Experimental Method 

2.2.1. Carotenoid Samples 

The carotenoid samples were prepared by Dr. Sangho Koo’s lab in Myoung Ji 

University, Korea. The detail synthesis recipes and NMR spectra of the samples can be 

obtained from the supporting information of the paper. [43] 

Two kinds of series were studied in this study, C-series and N-series. All the 

polyene chain of the C-series is composed of carbon atoms. The N-series replaces the two 

distal carbons of the chain by nitrogen atoms, as shown in Figure 15. The two series are 

identical for the position of the phenyl substituents, but the angle of the distal phenyl rings 

relative to the plane of the conjugated backbone are different as shown in Figure 15. The 

internal phenyl substituents of the both groups are fixed, but the distal phenyls of the N-

series are twisted by 11.4°. 

Figure 15. Molecular Structures and Substituent Components. 

a) C-series and b) N-series with distal and internal phenyls labelled as “Ph-distal” and “Ph-internal”. 
c) Definition of the R groups. 

 

A key feature of the carotenoid wires in this study is the cementing of phenyl 

substituents on a pure carotenoid backbone bearing a െܵܪܥଷ group at each end which can 

bind to gold electrodes. The െܵܪܥଷ as anchoring groups allow for the formation of robust 

single molecule junctions and narrow conductance distributions. [37][38][44] 
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The phenyl substituents have two important functions; chemical stability and 

electron donating property. The phenyl substituents ensure chemical stability of the highly 

conjugated system since their conductance is much higher than saturated counterparts. Also 

the substituents vary the electron donating character from less electron-donating (Ph-Cl) to 

more electron-donating (Ph-OCH3) groups. [45][46] The phenyl substituents locations on 

the polyene chain were confirmed through NMR measurements, as shown in Figure 17. 

The other NMR data can be downloaded from the publication. [43] 

 

Figure 16. B3LYP/6-31G(d) Optimized Structures of Ph-H Substituted C-series and N-
series. 
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Figure 17. NMR Spectra of ܥଶ Compounds. 

 

2.2.2. Sample Preparation and STM-based Break Junction 

Au(111) monocrystalline substrate (10 mm X 1 mm) was purchased from MaTeck 

(Germany) which is 99.9999% purity and orientation accuracy <0.1 degrees. The substrate 

was electropolished to remove residual contaminants and annealed with a ܪଶ flame. The 

cleaned substrate was assembled with the STM cell and 80 µL of pure mesitylen (ACROS 

Organic, Thermo Fisher Scientific USA) was injected into cell. Control experiment was 

taken first in mesitylen. Next, 6 drops of a few µM of the carotenoids was injected to STM 

cell for break junction experiments. All glassware and Teflon STM cells were cleaned with 

piranha solution (ܪଶܱଶ:ܪଶܵ ସܱ ൌ 1: 1 ), and rinsed with 18 MΩ ܿ݉  Milli-Q water 

(Millipore), and dried in ଶܰ gas flow. 

All the break junction experiments was conducted by using PicoSPM microscope 

(Agilent) controlled by a Picoscan 2500 (Agilent). Data acquisition was performed by 
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using NI-DAQmx>BNC-2110 National Instruments (LabVIEW data acquisition system). 

The collected data was analyzed by LabVIEW code which was developed in Dr. Nongjian 

Tao’s research group in ASU. Detail experimental procedure is following. First, the STM 

tip was approached to clean Au (111) substrate in tunneling distance. Then the feedback 

system was turned off and the LabVIEW data acquisition code was started to drive the tip 

into and out of contact with the substrate in 1~2 V/s which results in current decay with 

junction break indications. 3000 ~ 4000 of current decay curves were collected in each 

runs. The molecular conductance was determined by G ൌ ௦௧௘௣ܫ ܷ௕௜௔௦⁄ , where I is the 

current of step in decay curve and U is the applied voltage bias. The LabVIEW analysis 

code automatically selects good decay curves which maintain plateaus of break junction 

and the selected decay curves are accumulated to semi-logarithmic histogram of 

conductance. By fitting the accumulated histogram to Gaussian distribution function, it 

gives an average single molecule conductance. The plateaus in current decay curve 

represents the absence of molecular bridge (or break junction). The same selection criteria 

was used to compile the conductance histograms. Typically, 8 ~ 15 % of decay curves 

provide clear plateaus like step. The compiled conductance histograms gave obvious peaks 

above the background histogram. 

 

2.2.3. Computational Methods 

DFT calculations were conducted by co-worker in University of Barcelona. The 

geometry optimizations were performed using Density Functional methods (DFT) within 
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the B3LYP/6-31G(d) approximation. The calculated frontier orbitals were performed using 

higher basis set cc-pVTZ. 

 

2.3 Results and Discussion 

I measured eight carotenoids and all measured current traces show well-defined 

plateaus (Figure 18(a) and (b)) which represents a single molecule bridge formation during 

the process. The measured single molecule conductance increases as the electron donating 

capability of the phenyl substituents increases as shown Figure 18(c) and (d). As the 

HOMO level is closer to the Fermi energy level, the orbital dominates the electron transport 

in the molecular junction. [37][47][48][49][50] 

Also the conductance of the carotenoids with substituents in N-series is higher than 

the C-series with the corresponding same substituents. Comparing C- and N- series, Ph-Cl 

substituent gives an indistinguishable conductivity in the both series as shown in Figure 18. 

It means that the inserted nitrogen atom is not included in the electron transport of the 

carotenoid molecular junction. However, the conductance of the other phenyl substituents 

shows increasing trend and larger in the N- series carotenoids (Figure 18). This can be 

explained by rotation of the distal phenyl groups as shown in Figure 15. The insertion of 

the nitrogen atom allows more interaction between the distal phenyl groups and the polyene 

backbone because of their twisted phenyls with lower dihedral angle of the distal 

functionalized phenyl to the polyene plane (Table 1). It results in the larger electron 

donating ability of the Ph-distal substituents and HOMO level shift toward Fermi level for 

the N- series which makes them higher electron donating character. 
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Figure 18. Representative Individual Current Traces and Conductance Histograms. 

Semi-log conductance histograms for c) C1–C4 and d) N1–N4 compounds. The conductance values are 
extracted from Gaussian fits of the peaks. Insets in figures c and d summarize the average conductance 
magnitude for each compound. The applied bias was set to 50 mV. 
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Figure 19. Evolution of the Conductance Values versus the Electron-donating Character 
of the Phenyl Substituents. 

The error bars represent the standard deviation of the conductance values and are derived from the full 
width at half maximum (FWHM) values of the conductance peaks in the histograms of Figure 18 c,d. 

 

The reported experimental results are supported by the optimized orbital geometry 

and the calculated energy of the HOMO/LUMO levels of the molecular systems. First, the 

contribution of the twisted phenyls (distal phenyls) and the non-twisted phenyls (internal 

phenyls) were studied by comparing pure N-series polyene backbone and Ph-OCH3 

substituents. As shown in Table 2, inserting two twisted distal phenyls increases the 

HOMO energy by 0.29 eV than phenyl free carotenoid and two internal phenyls increases 

0.10 eV. The HOMO energy increasing implies the higher electron donating character of 

the distal phenyl substituents. 

Furthermore, the orbital energies of C- and N- series with substituents are 

calculated (Table 3). The HOMO energy increment from Ph-Cl to Ph-OCH3 of N-series is 

0.48 eV and C-series is 0.37 eV. The calculation confirms the conductance evolution of 

phenyl substituents and C-/N- series as shown in Figure 19. 
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Table 1. Dihedral Angles of Phenyl Substituents of the both C- and N- series. 

The dihedral angles for both Ph-distal and Ph‐internal groups together with their differences are listed. 
Angles were obtained from the optimized geometry performed with B3LYP/6‐31G(d) level of DFT. 

 

In Table 1, the dihedral angle and substituents dependence of conductance are 

summarized. All the phenyl substituents in the C-series has about 60° of dihedral angle and 
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this prevents electronic communication between the carotenoid backbone and the 

substituents. On the other hands, the molecular orbitals of phenyl substituents in the N- 

series have 50° of dihedral angle. The N- series shows a more effective hybridization and 

higher conductance than C- series. The HOMO energy increment of the C- series is 0.37 

eV and N- series is 0.48 eV from Ph-Cl to Ph-OCH3. It implies that the molecular orbital 

energy of the N- series carotenoids is closer to the Fermi energy and results in the higher 

conductance of the molecular junction. 

 

Table 2. Optimized Geometry and HOMO Energy Calculation of N-series for the Ph-
OCH3. 
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Table 3. HOMO and LUMO Orbital Energies of N- series with Various Substituents at 
B3LYP/cc-pVTZ of DFT. 
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Figure 20. Distribution of the Orbital versus the Electron-donating Character of the 
Phenyl Substituent for both C- and N- series. 

Arrows indicate the evolution of the conductance as a function of the phenyl dihedral angle (x-axis) and 
phenyl electro-donating character (y-axis). 

 

In conclusion, a series of carotenoid wires were synthesized to show the 

conductance fine-tuning ability by replacing two of carbon atoms in polyene backbone to 

nitrogen and inserting various phenyl substituents with controlled conformation. The distal 

phenyl substituents of the N- series rotate more toward the backbone rather than one of the 

C- series. It enhances their electron donating role and increase the conductivity of the wires. 

In addition, the substituent replacement amplifies the conductance of the molecular wires. 

By adjusting the composition and geometry of the phenyl substituents, the conductivity of 

the wires were increased over an order of magnitude, from 2.1 ∗ 10ିସܩ଴ conductance to 

3.5 ∗ 10ିଷܩ଴, where the conductance quantum ܩ଴ ൌ 77.4	݉ܵ for a 3 nm length wire. This 
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study offers a general method to fine-tune the conductivity of a molecular wire in a wide 

conductance range by adjusting conformation of the side group substituents. 

CHAPTER 3 

SINGLE MOLECULE SPECTROSCOPY OF AMINO ACIDS AND PEPTIDES BY 

RECOGNITION TUNNELING 

3.1. Introduction 

The proteome is a promising powerful tool indicating the health status rather than 

the genome. [51] However, the proteome has a limit to be developed, because of the lack 

of protein amplification technique. [52] Thus, there may be many protein variants which 

are not discovered yet. The difficulty can be overcome by a single molecule techniques 

which are able to identify biomarkers and real-time diagnostic. The STM-RT has been 

developing as an electronic single molecule sequencing technique for DNA recognition. 

This study shows that STM-RT is able to identify individual amino acids and peptides, and 

may open the protein sequencing. [53] 

 

3.1.1. Recognition Tunneling 

The Recognition Tunneling was discussed in chapter 1.3.2. In brief, two electrodes 

are modified with recognition molecules and separated by ~2 nm gap (Figure 21(a)). The 

recognition molecules capture target molecules by weaker non-covalent contacts. The 

trapped molecule makes a stochastic current signals (pA-nA) from thermal vibrations of 

the molecule (Figure 21(c),(d)). The current traces characterize the bonding of the 
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molecular junction (Figure 21(e),(f)). The complicate tunneling current data is decoded 

with high accuracy via supporting vector machine which is a machine-learning algorithm 

for big data analysis. [54][55] 

 

Figure 21. STM Recognition Tunneling (STM-RT). 

(a) Recognition molecules (1H-imidazole-2-carboxamide, ICA) are strongly attached to a pair of closely 
spaced electrodes, displacing contamination and forming a chemically well-defined surface. An analyte 
(here shown as L-Asn) is captured by non-covalent interactions (blue bars show hydrogen bonds) with the 
recognition molecules. The bonding pattern is specific to the analyte. The red arrow shows the orientation 
of the molecular dipole for L-Asn. (b) ESIMS shows that stoichiometric adducts form between reader 
molecules, here illustrated for 2:1 complexes of ICA and L-Asn. (c) Generation of RT signals. Picturing 
the analyte as a mass (sphere) trapped by a pair of springs that represent the non-covalent bonds, the 
extent of analyte motion, X(t), depends on the strength of the springs. (d) A simple sinusoidal motion of 
the analyte (blue trace) produces a series of sharp current spikes (red trace) because of the exponential 
dependence of tunnel current on position. (e, f) Simulations for random thermal excitation of a strongly 
(e) and more weakly (f) bonded analyte, showing how the current fluctuations are much bigger when the 
bonding is weaker (red traces). The blue traces show the random thermal fluctuations in position of the 
analyte. The simulations are carried out as described by Huang and colleagues [56]. 
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3.1.2. Amino Acids and Peptide Sequencing 

Protein or peptide sequencing has many difficulties than DNA sequencing. First, 

there are many fundamental blocks, 21 amino acids (Figure 22) for protein but 4 

nucleotides for DNA. It makes more complicate to identify the uniqueness of each basis. 

Second, no technique is developed to amplify low concentration of proteins. In contrast, 

for DNA sequencing, low concentrations of DNA can be easily amplified through the 

polymerase chain reaction (PCR). Thus it is hard to detect small amount proteome and 

there may be many undiscovered rare proteins which are below the detection limits of 

present methods. [57] Once being able to read protein sequencing, it will make us to 

understand cellular processes and design drugs for specific metabolic pathways. [51][52] 

 



38 

 

Figure 22. The 21 Amino Acids Found in Eukaryotes Grouped according to Their 
Functional Side Chains. 

 

3.2 Experimental Method 

3.2.1. Preparation of Analytical Solutions 

Amino acids compounds were purchased from Sigma Aldrich which purity is 

higher than 98%. The buffer solution was made to be 1 mM phosphate buffer at pH 7.4 

using purified water from a Milli-Q system with ~18 MΩ ܿ݉ and total organic carbon 
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contamination below 5 ppb. Peptides were purchased from CPC Scientific and dissolved 

in the same buffer solution. 

 

3.2.2. Preparation of Probes and Substrates 

STM probes were etched [58] from 0.25 mm Pd wire (purchased from California 

Fine Wires) and insulated with polyethylene to avoid ionic current leakage. The metal tip 

apex opens only a few tens nanometers. Substrates were prepared by depositing palladium 

on silicon wafer with the following recipe. First, a 10 nm Ti adhesion layer was deposited 

on 750 µm silicon wafer using electron-beam evaporator (Lesker PVD 75). Next, 100 nm 

Pd is fabricated on the Ti film. Tunneling current is very sensitive to the distance, then 

leakage of probes make errors in the set point current. So probes were tested to ensure that 

ionic current leakage was less than 1 pA in buffer solution at -500 mV bias. For electrodes 

functionalization, electrodes were immersed in ICA solution (~0.5 mM) in ethanol [59]. 

After ~20 hours, the probe and substrate were rinsed with ethanol, and gently dried with 

nitrogen gas. All the probes and substrates are freshly prepared, right before the 

experiments. 

 

3.2.3. STM-RT 

Two different PicoSPMs (Agilent Technologies) with custom LabView interfaces 

were used for data acquisition. Tunnel current was collected at 50 kHz sampling rate. The 

STM cells were cleaned in piranha, and rinsed with Milli-Q water and ethanol, and dried 

in ଶܰ gas flow. A probe was approached to a substrate with 4 pA tunneling set-point and -
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0.5 V bias applied on substrate under integral and proportional gains of 1.0. The surface of 

substrate was scanned to ensure that the probe provides good image and the grain structure 

of Pd is clearly visible. After 2 hours stabilization of the microscope, the integral and 

proportional gains were reduced to 0.1 and tunneling current was recorded. The control 

(1.0 mM phosphate buffer at pH 7.4) was run before an amino-acid solution was measured. 

Freshly prepared probes and substrates were used for each run, usually recording four runs 

for each analyte. 

 

3.2.4. ESIMS 

Sample solutions were prepared to be the same molar ratio of the capturing 

mechanism in the STM electrodes gap in 1:1 and 2:1 of ICA to amino acid. The compounds 

were dissolved in water to be 100 mM. The prepared amino acids solutions were injected 

into a Bruker MicrOTOF-Q electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) 

mass spectrometer (MS) and tandem MS was used to confirm the mass peaks of the 

corresponding ratio mixtures. 

 

 

3.2.5. SVM Analysis 

The kernel-mode SVM [55] was used in this work and available from 

https://github.com/vjethava/svm-theta. The first step of data analysis is feature extraction 

from the raw current signal. There are two main groups, peak and cluster. Peak represents 
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thermal fluctuation of a captured single molecule maintaining within the gap. Cluster is 

composed by some of close neighbor peaks which would be from the same molecule that 

anchors at one electrode and the other end binding and unbinding. Once a molecule is 

unbound from any electrode, current signal goes back to the baseline current. The baseline 

of raw signal, 4 pA, was shifted to zero and all the spikes above 15 pA was determined as 

peaks and characterized using the features listed in Table 4. The shape of each spike was 

characterized in frequency domain by a fast Fourier transformation (FFT). FFT amplitudes 

were averaged at three sections that were equally spaced (0–2.7 kHz, 8.4–11.1 kHz and 

22.3–25 kHz), and theses averages were used to define more features, such as the ratio of 

the highest to lowest FFT bins (High Low Ratio in Table 4). The Fourier transformed trace 

was down-sampled into nine bins that equally spaced from 0 kHz to 25 kHz. 

Clusters were automatically identified by applying a Gaussian window to the 

detected peaks as described in Figure 23 (ref. [54]). While determining the peaks, the spikes 

smaller than 15 pA threshold was ignored as random noise signals. However, once a cluster 

was identified, all the spikes in the cluster range were used to define cluster features. The 

Fourier spectrum of the whole cluster is deconvolution of instrumental response by spectral 

division. Since clusters contain more data points than spikes, the cluster FFT spectrum was 

down-sampled into bigger number of bins (61 bins) than the one of peak (9 bins). Each bin 

in cluster down-sampling corresponds to 25 kHz/61 or 410 Hz in width. The Noll method 

[60] was used to calculate the cepstrum amplitudes from the FFT spectrum and the 

resulting spectrum was down-sampled again into 61 bins. 

To avoid that some bigger (or huge) numerical value features bias others, all the 

extracted features were rescaled as follows. The distribution of each individual feature was 
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calculated for one amino acid which arbitrarily selected (in this study, arginine for amino 

acids and glycine for peptide analysis). The scaling factor was determined by shifting the 

mean of the distribution to be zero and the standard deviation to be 1.0. All the features of 

all other analytes were adjusted by using the same scaling factor. 

Feature selection follows three steps. First, the features which are highly correlated 

with other features were removed. To calculate the normalized correlation between 

different feature pairs (feature x and y), ߪ௫௬ ൌ 〈ሺݔ െ ݕሻሺݔ̅ െ 〈തሻݕ  was used. ߪ௫௫  is 1, 

because the features were normalized. All the data was used to make a correlation matrix 

(Figure 36) and all feature combinations of ߪ௫௬ ൒ 0.7 were removed.  

Second, feature variations was compared which named ‘in-group’ and ‘out-group’ 

fluctuation. The ‘in-group’ fluctuation is a variation between repeated experiments of the 

same analyte. The ‘out-group’ fluctuation is a comparison with all possible pairs of other 

analytes. The ratios of ‘out-group’ fluctuation to ‘in-group’ fluctuation were ranked and 

the lowest 15 features were removed. Finally, the usefulness of the survived features was 

tested by evaluating the identification accuracy with randomly selected feature sets. A tree 

search was used in the process. 

The details of the SVM written in Matlab can be obtained from 

https://svmsignalanalysis.codeplex.com/. 
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Table 4. 161 Starting Features Used in the Signal Analysis. 

Details of their calculation are given in ref [54]. 
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Figure 23. Automatic Cluster Identification. 

Automatic cluster identification was carried out by placing Gaussians of unit height (A) and full width of 
4,096 data points (1 data point = 20 µs) at the location of each spike (B), summing them (C), and assigning 
a cluster to regions where this sum exceeds a threshold (0.05 in this study). Figure taken and adjusted 
from ref [54]. 

 

3.3 Results and Discussion 

3.3.1. Identifying Amino Acids 

In this study, three application experiments were conducted. First, a data pool of 

seven different analytes was examined to show how well single amino acid can be 

identified which is a first step for sequencing technique. Second, it was shown that a 

modified amino acid, sarcosine (N-methylglycine or mGly, a promising cancer marker [61]) 

can be identified from glycine (Gly). Third, enantiomers (L- and D- asparagine) and 

isobaric amino acids (leucine and isoleucine) were distinguished through STM-RT. 

The example RT current traces are shown through Figure 24 ~ Figure 27. The 

tyrosine and tryptophan provide RT signal under different conditions rather than other 

molecules as described in Figure 27. All other amino acids give RT signal under 4 pA set 

point at 0.5 V bias which corresponds to ~2 nm gap. However tyrosine is at 6 pA and 

tryptophan is as 10 pA. 
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Figure 24. RT Current Traces of the Charged Amino Acids. 

Tunnel gap set to 4 pA at 0.5V bias with 100μM solutions in 1 mM phosphate buffer, pH 7.4. A trace for 
buffer alone is shown as the control in the upper left. 

 

 

Figure 25. RT Current Traces of the Hydrophobic Amino Acids. 

Tunnel gap set to 4 pA at 0.5V bias with 100μM solutions in 1 mM phosphate buffer, pH 7.4. A trace for 
buffer alone is shown as the control in the upper left. (excluding tyrosine and tryptophan) 
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Figure 26. RT Current Traces of the Remaining Amino Acids. 

Tunnel gap set to 4 pA at 0.5V bias with 100μM solutions in 1 mM phosphate buffer, pH 7.4. A trace for 
buffer alone is shown as the control in the upper left. A trace for buffer alone is shown as the control in 
the upper left. The arrow points to a “water” spike. 

 

 

Figure 27. RT Current Traces of the Tyrosine and Tryptophan. 

Tunnel gap was set to 6 pA at 0.5V bias (for tyrosine) and 10 pA at 0.5V bias (for tryptophan). Control 
scans in these two tunneling conditions are shown below. Data for 100μM solutions in 1 mM phosphate 
buffer. 
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Figure 28. Signal Trace of Arg with Color Code. 

The color code corresponds to the peak assignment made by a machine learning algorithm (green: correct 
call, red: wrong call, black: water peak, yellow: common to all amino acids). The red bars at the bottom 
mark signal clusters generated by a particular single-molecule binding event. 

 

The RT signal includes important information and enable to extract unique features 

to identify the molecule. A computer algorithm was made to define clustered data 

automatically as depicted in Figure 23. Clusters is single molecule binding events by the 

following reasons. First, cluster width (or duration) is the order of 0.2 sec (Figure 29) which 

is comparable to the hydrogen bond lifetime in a nanogap. [62] Second, signals within 

clusters are more strongly correlated rather than signals from other clusters. Finally, each 

cluster of mixture sample is assigned into only one molecule (Figure 31). 

 

 

 

 



48 

 

Figure 29. Feature Distribution of mGly and Leu of STM-RT. 

a, Peak amplitudes are exponentially distributed so provide little discrimination. Identification accuracy 
between Leu and mGly is 0.58 only slightly better than random (0.5). b,c, Particular Fourier components of 
the clusters show more separation, producing 74% (b) and 67%(c) accuracies. The way in which these 
Fourier components reflect peak shapes in a cluster is illustrated by the signal traces inset in b and c, each 
trace having the feature value indicated. The high amplitude of high-frequency components of the mGly 
signals (inset in c) is evident in the sharper spikes. Accuracy improves when multiple features are used 
together. d, Two-dimensional plot of probability density. The color scale shows mGly data as red and Leu as 
green. Calling all the spikes with pairs of feature values that fall in the green regions as Leu and all the 
spikes with pairs of features that fall in the red regions as mGly produces a correct call 95% of the time. 
Only the yellow regions yield ambiguous calls. 

 

Figure 29 shows features distribution of mGly and Leu STM-RT data. Though the 

distribution of the average amplitude of cluster is almost overlapped (Figure 29a), some 

features which are associated with signal shapes are less overlap (Figure 29(b),(c)). 

However, the accuracy of single molecule true positive calling is limited to ~70% where 

the random calls probability is 50%). When the two features are considered together, it 

provides much higher accuracy than single feature identification. The two dimensional 

scatter map gives ~95% calling accuracy (Figure 29(d)). Only a small fraction is 
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overlapped near origin, colored by yellow in which red represents mGly and green is for 

Leu. It follows the Cover’s theorem that pattern recognition accuracy increases with higher 

number of features. [63] In this study, SVM, a machine learning algorithm, was used to 

identify the analytes from a pool of multiple data sets. SVM trains on a subset of the data 

to find a hyper-plan separating the analytes in the subset and tests the determined hyper-

plan on the rest of the data. [54][64] With a large number of features, SVM is able to 

provide high accuracy. 

In the case of chemically similar pairs of analytes, L-Asn and D-Asn in Figure 30, 

the Cover’s theorem is more dramatic. The six of single feature distribution are overlapped 

and give a low identification accuracy in Figure 30(a),(b),(d),(e),(g),(h). Using two features 

increases the separation accuracy, higher than 80% in all three cases  shown in Figure 

30(c),(f),(i). If there were more analytes to be identified, it becomes more complicate and 

harder than two analytes identification. The SVM is a powerful tool to analyze complicate 

and big data. Once numerical features are extracted from tunneling current data, each single 

spike is plotted in N dimensional space, where N is the total number of features. A 

randomly selected subset of the data is used to make a hyperplane of N-1 dimension 

(support vectors) classifying the known data. The SVM is originally developed for a binary 

classifier, but multiclass SVMs can be constructed. There are a number of methods to 

construct multiclass SVMs from binary SVMs and is still researching. The SVM used in 

this study is based on ‘One against the Rest approach’.[65] Assuming M classes to be 

classified,  the M of binary classifiers is created where each classifier is trained to identify 

one class from the rest M-1 classes. In other words, the best partition to separate signals 

from each analyte from a pool of data set. The support vectors are determined by finding 
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margin from the hyperplane. Other classifiers (support vectors) are constructed in the same 

manner. Once trained with a subset of the data, the determined support vectors are tested 

on the rest of data set.  

 

Figure 30. Feature Distributions of Chemically Similar Pairs of Analytes, D-Asn and L-
Asn. 

Closely related pairs of analytes can be significantly separated (>80%) using just two signal features 
together. All data are for pure solutions of one analyte. a–i, Chiral enantiomers D-Asn and L-Asn (a–c), 
Gly and mGly (d–f) and the isobaric isomers Leu and Ile (g–i) are quite well separated in two dimensional 
probability density maps (c,f,i), even when the distributions of any one signal feature are almost 
completely overlapped in one dimension (a,b,d,e,g,h; see Methods and Supplementary Table 4 for a 
description of these features). The two-dimensional maps plot probability densities for the analyte pairs 
(color coded as listed at the top) as a function of both features, which, by themselves, produce separations 
only a little above random (0.51 to 0.64). Probabilities of making a correct call based on the probability 
densities are marked on c, f and i, and calculated as described in the caption for Figure 29. 
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3.3.2. Analyzing Mixtures of Analytes 

The STM-RT and SVM analysis were tested to identify an amino acid from mixture. 

The mixture sample was prepared with L- and D-Asn in various ratios of 1:1, 2:1 and 3:1. 

The pure L- and D-Asn RT signals were used to constructed support vectors and the support 

vectors was used to assign the spikes from mixture signal. Figure 31(a) shows a trace of 

raw RT signal which is color-labeled with respect to the assignment (L-Asn is yellow, D-

Asn is purple, Common spike is black). The identical clusters are marked by the red bars 

at the bottom. It clearly shows that each cluster is composed by one type of analyte. By 

applying the common noise filter, only pure cluster remain. It implies that the clusters 

represent single molecule binding events. Using assignment of SVM makes us to count 

molecules in mixtures. Figure 31(c) shows the trend between the measured L/D ratio and 

the actual ratio by counting peak assignments (red points) and cluster assignments (blue 

points). Counting by peaks overcounts the L-Asn as described in Figure 31(c), the slope is 

2.7. Counting by clusters undercounts the L-Asn which the slope is 0.2. It might be 

explained by binding strength between analyte and ICA and local reduction of L-Asn on 

the electrode surface. 
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Figure 31. Mixture Analysis to Recognize Pure Amino Acids. 

A mixture produces alternating cluster signals as different molecules diffuse into and out of the gap. a, 
Signal trace obtained with a 1:1 mixture of L- and D-asparagine. The SVM assignments are coded purple 
(D-Asn) and yellow (L-Asn) (black spikes are unassigned). b, Each cluster (red tags in a) contains only 
one type of signal, as shown statistically. The red points are for 556 raw data clusters and the blue points 
are for 400 clusters that remain after filtering for common signals. After filtering (blue points), no mixed 
clusters survive, with all of the clusters being 100% L- or D-Asn signals. c, Quantification of the L/D ratio 
using SVM trained on pure samples. The measured ratio increases with actual ratio in the samples, but 
the calibration depends on whether the number of signal spikes (red) or clusters (blue) is used, probably 
reflecting differential binding. Error bars are from repeated runs and repeated samplings. 

 

3.3.3. RT Signals from Peptides 

In the previous sections, they show that the possibility of STM-RT to recognize 

pure single amino acids and components from mixture in various ratio. Furthermore, this 

technique was tested to identify some short peptides; GGGG and GGLL. In the case of 

amino acids measurements, the hydrogen bonding (recognition mechanism) sites are the 

zwitterionic center as depicted in Figure 31(a). Peptides may be more spatially separated 

between N and C termini, so it may be hard to generate RT signals. However, peptides 
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produced obvious RT signals and the examples of peptide RT signals are shown in Figure 

32. 

 

Figure 32. Examples of Peptide RT Signal. 

(a) GGGG and (b) GGLL. 

 

The support vectors from pure amino acids was applied onto the peptide data, but 

it could not identify their constituent amino acids (Table 5). It means that the binding 

mechanism of the amino acids in peptides are different from the pure amino acids in 

solution. So it has been tried to identify a peptide from the pool of three peptides data (GGG, 

GGGG and GGLL). Through SVM analysis, one produced >90% accuracy with 65% of 

common peak rejection (Table 6). Thus, though the RT mechanism is different with pure 

amino acids, multiple peptides can be recognized from others, even the difference is only 

one residue among four constituents. It suggests that single molecule sequencing of protein 

is possible through RT. 
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Table 5. Peptide Recognition Calling from SVM of Pure Amino Acids and Peptides. 

Distribution of calls among the peptides and amino acids, showing percentages of the signal spikes from 
each peptide called as one of the seven amino acids, the correct peptide, or the wrong peptide. The vast 
majority of calls are correct (73 and 87%) showing how each peptide it distinct form the other and distinct 
from the amino acids. 

 

Table 6. Peptide Recognition Calling from SVM of Three Peptides Pool. 

Separation of signals from three peptides. Samples are listed in the left hand column with the distribution 
of calls among the three possible calls listed in the three right columns. This accuracy was achieved with 
65% of the signal spikes rejected as “common”. 

 

3.3.4. Bonding in the RT Junctions 

Even though ICA was designed to bind with DNA bases, it has been demonstrates 

ICA also can capture amino acids through hydrogen bonding. It is confirmed with the 

density functional theory (Figure 21(a)) and ESIMS measurements (Table 7, Table 8 and 

Figure 33, Figure 34).  
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Table 7. Structure Information and MS Data of Individual Amino Acids and ICA. 

1. The relative Intensity (%) value of observed ions are given in parentheses next to each complex ion. The 
most intense peaks in single stage MS spectra are defined as 100. 
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Table 8. Characteristic ESIMS of ICA-Amino Acids 1:1 & 2:1 Mixtures and Their 
MS/MS Products. 
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Figure 33. Examples of ES-MS Spectra of Pure Compounds and Complexes. 

(a) Leucine, (b) ICA, (c) ICA+ Leucine at 2:1 ratio. (d), (e), (f) show spectra at higher resolution. 

 

 

Figure 34. Examples of MS-MS Spectra. 

Two peaks are found in 2:1 mixtures of ICA with Leucine, circled in (a). MS-MS shows that the peak at 
516 Daltons is a complex of an oxidized ICA (labeled ICA’) in which two ICA molecules are joined by a 
disulfide linkage (b). The peak at 518 Daltons is shown (c) to consist of two nonoxidized ICA molecules 
with one Leucine. 
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3.3.5. Reproducibility of the SVM Analysis 

The previous sections demonstrate that STM-RT is able to recognize amino acids 

and peptides through hydrogen bonding between ICA and target analytes and SVM 

analysis. The bonding mechanism was confirmed through mass spectroscopy 

measurements that ICA can form a complex with amino acids in 2:1 ratio. Then, it can 

reach the question about analysis method, such as ‘How reproducible are the tunneling 

data?’ and ‘How transferrable is the SVM training?’. 

 

Figure 35. Correction for Instrumental Frequency Response. 

Showing the amplitude distribution for FFT3 (5.6 – 8.3 kHz) for L- and D-ASN before (a) and after (b) 
correction of the Fourier amplitudes by division of the signals by the Fourier amplitudes of the background 
signal. Large differences between the analytes at low amplitudes were masked by the instrumental response 
in (a). 

 

In order to check the reproducibility of RT and SVM, we analyzed multiple data 

sets for each analyte by selecting features and setting SVM running parameters which give 

robust results. There is 161 starting features as described in Table 4. There are two types 

of features; for individual spikes (or clusters) and for shapes of spikes (or clusters). The 

Fourier and cepstrum components are used for shape features.[60] Here, Fourier and 
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cepstrum components were corrected for the instrumental frequency response as shown in 

Figure 35. The seven pure amino acids RT data produced total 30,000 spikes (3,000 clusters) 

and corresponding 161 features. Figure 36 shows the correlation among all the features 

which gives 40 features are highly correlated as shown in Table 9. After removing highly 

correlated features, it reduced the total features to 121. In addition, the variance from run 

to run of the same analyte was considered which does not vary from one analyte to others. 

The features in Table 10 is the bottom 15 features ranked of out-of-group fluctuations to 

in-group fluctuations from the seven pure amino acids data pool. By removing the bad 

features of in-/out-group ranking, it reduces the sensitivity to experimental artifacts. 

Next, noise spikes were removed. The noise spikes were determined by common 

peak assignments of all analytes by SVM. The noise filtering stiffness was adjusted by the 

soft margin of SVM running parameters which determined the broadening of the hyper 

plane boundaries. The higher soft margin improves the classification accuracy with 

removing more signals as shown in Figure 37. After filtering process, the SVM trains on a 

subset (~10%) of the data and test the supporting vectors on the rest of data. 

The training data set was randomly selected and all the described data process was 

repeated to make sure that the outcomes fluctuations were small. 

 

 

Table 9. Features which are Highly Correlated with σ≥0.7. 
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Figure 36. Correlation Map for All 161 Features. 

Each axis lists the feature number as labeled in Table 4. Blue = -1, red = +1. The large red region in the 
middle reflects a high degree of correlation among the higher frequency cluster FFT components. 

 

 

 

Table 10. Features Removed by Ranking of Out-of-group Fluctuations to In-group 
Fluctuations. 
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Figure 37. Scatter Plot of Data Rejection by Sort Margin Value and Accuracy. 

Scatter plot of the average accuracy for calling all seven analytes from a single spike as a function of the 
percent of data rejected as common by broadening the soft margins of the SVM rejection filter. Repeated 
points are for different feature combinations. There is a “sweet point” at about 30% data retention. 
Further filtering of common signals does little to improve accuracy beyond this point. 

 

3.4 Conclusion 

STM has been fascinated for single molecule measurements and can be a powerful 

tool for sequencing device. Even the recognition molecule (ICA) was designed to capture 

DNA bases, it also enable to bond amino acids and generates RT signals. RT is complicate 

signals that gives a possibility of a new molecular spectroscopy at single molecule level. 

This study shows that STM-RT is able to identify pure amino acids, distinguish the 

constituent amino acids from mixture and count the ratio, and recognize not only 

enantiomers and isobaric isomers also peptides. Though RT signals are complicate and 

includes many information about the captured molecule between ICA, SVM enables to 

analyze RT signals and gives high accuracy of the classification of the analytes. 
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One has studied that nanopore device is able to carry out continuous strand 

sequencing.[66] Integrated RT junctions into nanopores, it may prove the limit of the 

present single molecule techniques. 
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CHAPTER 4 

ELECTRONIC SINGLE MOLECULE IDENTIFICATION OF CARBOHYDRATE 

ISOMERS BY RECOGNITION TUNNELING 

4.1. Introduction 

Though glycans play an important role in most biological processes, it is difficult 

to read the sequence of glycans. This is because of the fact that there are huge number of 

possible isomeric configurations for a short oligosaccharide. Recently, ion-mobility 

spectrometry-mass spectrometry showed possibility of stereoisomers identification.[67] 

STM-RT is also promising technique for glycan analysis. The present work shows how to 

identify stereoisomeric carbohydrates and individual carbohydrate from 11 different 

molecules data pool.[68]  

 

4.1.1. Carbohydrates 

A carbohydrate broadly means a biological molecule which is consisted of carbon, 

hydrogen and oxygen atoms, usually in a constant ratio of 2:1 for hydrogen and oxygen. 

The term of saccharide is commonly used in biochemistry. It can be categorized into four 

chemical groups; monosaccharides, disaccharides, oligosaccharides and polysaccharides 

sorted by numbers of carbohydrates. The term of glycan means polysaccharide linked 

glycosidically to proteins. By the glycosylation linker, it can be grouped into N-linked 

glycans and O-linked glycans. 
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Glycosylation is one of the most important post-translational modifications of cell 

proteins. Glycan modified proteins play a central role as mediators in a wide range of 

biological and physiological processes, such as protein folding, cell adhesion, cell 

communication, gene expression, pathogen recognition and cellular immunity. 

[69][70][71][72][73][74][75] Figure 38 shows some functions of glycans. Glycan 

functions depends on the structure of the oligosaccharides which are covalently attached 

to proteins through two motifs. The N-linked glycans are attached to the amide group of 

an asparagine and the O-linked glycans are attached to the hydroxyl group on serine or 

threonine. Structural isomerism (epimers, anomers, regioisomers and branched sequences) 

makes complicate glycan structures and hard to analyze glycan.[76] For instance, hexa-

saccharide can have more than 10ଵଶ  structures. Mass-Spectrometry (MS), Nuclear 

Magnetic Resonance (NMR), High Performance Liquid Chromatography (HPLC) and 

High-Performance Anion-Exchange chromatography with Pulsed Amperometric 

Detection (HPAE-PAD) are commonly used for glycan analysis. [77][78][79][80][81][82] 
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Figure 38. Glycans Permeate Cellular Biology. 

Complex glycans at the cell surface are targets of microbes and viruses, regulate cell adhesion and 
development, influence metastasis of cancer cells, and regulate myriad receptor: ligand interactions. 
Glycans within the secretory pathway regulate protein quality control, turnover, and trafficking of 
molecules to organelles. Nucleocytoplasmic O-linked N-acetylglucosamine (O-GlcNAc) has extensive 
crosstalk with phosphorylation to regulate signaling, cytoskeletal functions, and gene expression in 
response to nutrients and stress. Figure taken from ref [69]. 

 

4.1.2. Current Technique to Analyze Carbohydrates 

One of the most popular methods for glycan structural analysis is Nuclear Magnetic 

Resonance (NMR). NMR is non-destructive and measures the magnetic distortion of 

glycan. The combination of one-dimensional proton and carbon NMR spectra and two-

dimensional homonuclear and heteronuclear NMR methods provides the ratio of the 

components for monosaccharides and their anomeric bonds.[83] Nano-NMR analysis has 

been shown high resolution spectrum which enables distinguishing linkage site of samples 

and mixtures of N- / O-linked glycans.[84] Though NMR is fascinate to study glycan-

protein interactions because of its fast exchange[85], it requires a quite large amounts of 

sample (~milligrams) and long data acquisition time (~hours or days). And it cannot 

distinguish small amounts of coexisting isomers.[86]  
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Mass-Spectrometry (MS) is a power technique to investigate glycans due to its high 

resolution and mass accuracy which provides glycans profiling and structural information. 

In contrast to the HPLC method, it requires a large amount of glycan samples for a single 

MS spectrum. Matrix-assisted laser desorption/ionization time-of-filight (MALDI-TOF) 

MS is the most popular technique. The MALDI-TOF MS provides mass weight data of the 

sample, which can assign monosaccharide structures in a pure oligosaccharide. However, 

it is unable to identify coexisting isomers without additional chemical steps, since they 

share a molecular weight.[87][88] The problem has recently been addressed with ion-

mobility spectrometry-mass spectrometry (IM-MS) by measuring collision cross-section 

of isomer samples.[67] However, IM-MS cannot identify epimers which have almost 

identical collision cross-sections. This study shows that recognition tunneling with STM is 

able to identify carbohydrates with label-free and at single molecule level. 

 

4.1.3. Recognition Tunneling 

As discussed in chapter3, recognition tunneling is capable to analyze and sequence 

biological samples. Briefly, capturing a molecule tethered to two electrodes in a few 

nanometers generates characteristic electron tunneling current spikes. The STM-RT has 

been used to identify individual nucleobases, amino acids, and 

peptides.[35][36][53][89][90] In the present study, the capture molecule was 4(5)-(2-

mercaptoethyl)-1H-imidazole-2-carboxamide which has multiple hydrogen bond donors 

and acceptors for recognition and alkyl chain terminated with a thiol group to bind with 

electrodes. [59]  



67 

 

4.1.4. Machine Learning Algorithm for Data Analysis 

Supporting Vector Machine (SVM) was used for STM-RT data analysis in this 

study. The details of the machine learning and SVM will be discussed in the following 

chapter 4.2.7. 

 

4.2. Experimental Methods 

4.2.1. Preparation of Probes and Substrates 

4.2.1.1 Preparation of Electrodes; STM Probe and Substrate 

The electrode preparation followed the procedure that developed in my lab. [91] 

The STM probes were made from 0.25 mm Pd wire (California Fine Wires) by AC 

electrochemical etching in mixed solutions of HCl and ethanol (1:1) as shown in Figure 39. 

The etched tip was insulated with high density polyethylene (HDPE) leaving a few tens of 

nanometers tip apex. The substrate was prepared by using electron-beam evaporator 

(Lesker PVD 75). First, a 10 nm titanium was deposited on a 750 µm silicon wafer as an 

adhesion layer, and a 100 nm thick palladium was deposited.  
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Figure 39. STM Probe Etching Circuit and Conditions. 

(a) Schematic circuit diagram. (b) Etching conditions for Pd etching. Figure taken from ref [92]. (c) Image 
of coating a tip with HDPE. 

 

 

Figure 40. Optical Images of Probes and Saturation Current. 

Optical images under 250× magnification of (a) a good etched gold STM probe which is smooth, straight, 
and sharp such that it reaches an apex of radius less than 1 μm, (b) a poor etched gold STM probe which 
is not smooth or sharp, such that the apex of this tip is visibly rounded, and (c) a good coated STM probe 
with a smooth and continuous coating which comes to a point at the apex, and has no visible protrusions 
there. An TEM image (d) of typical good STM probe with radius of curvature equal to 8.3 nm in this case. 
(e) The saturation current (∆ܫ) of coated STM probes was measured by cyclic voltammetry in 100 mM 
K3Fe(CN)6 in 1 M KCl (see inset). Figure taken from ref [91]. 

 

4.2.1.2 Functionalization and Characterization of Palladium Electrodes 

The insulated probes were gently cleaned by ethanol (200 proof), dried with a 

nitrogen flow, immersed in an ethanolic solution of ICA (0.5 mM, degassed by argon) for 

20 hours at room temperature, and then gently rinsed with ethanol and dried with nitrogen. 
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All the STM probes and substrate were freshly prepared before each experiment. Palladium 

substrates were functionalized with ICA in the same way as the STM probes were prepared 

and characterized with various physical and chemical tools. 

The modified substrate was characterized with ellipsometry. The Gaertner L 123b 

Ellipsometer (Gaerner Scientific Corporation) was used for measuring the thickness of ICA 

monolayer. The palladium substrate was hydrogen flame annealed immediately prior to 

baseline measurements, and was modified with ICA in the same manner which explained 

in the previous section. A refractive index of the organic thin films was assumed 1.50. [93] 

The measured ICA monolayer was 9.10±0.41 [Å] which was collected on five spots of two 

samples. The ICA molecule was estimated by ChemDraw 3D to be ~8.3 Å long. 

Static water contact angle were measured using Easydrop Drop Shape Analysis 

System (KRȔSS GmbH, Hamburg). The palladium substrate was annealed with hydrogen 

and modified for SAM formation on the substrate. 1µL of water was dropped on the surface. 

5-6 measurements were taken on different locations of the each functionalized and bare 

palladium substrates. The contact angle for the bare palladium substrate was 8.3 ± 2.0o, for 

the ICA monolayer 33.1 ± 5.1o 

The FTIR spectra was obtained by using a Nicolet 6700 FT-IR (Thermo Electron 

Corporation) with a surface grazing angle device (Smart SAGA, Thermo Electron 

Corporation) at 4 ܿ݉ିଵ  resolution with 256 scans for ICA monolayer and with an 

attenuated total reflection accessory (Smart Orbit, Thermo Electron Corporation) for ICA 

powder under 4 ܿ݉ିଵ resolution with 128 scans in the 6000-400 ܿ݉ିଵ (shown 3500-700 

ܿ݉ିଵ in Figure 41). The spectrum of the ICA powder sample gives two of broad bands; 
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3400-2800 ܿ݉ିଵ  and 1700-700 ܿ݉ିଵ. The higher band (3400-2800 ܿ݉ିଵ) implies the 

intermolecular hydrogen bonding interactions. In contrast, the ICA monolayer shows very 

sharp peaks in the same region due to the removal of the intermolecular hydrogen bonds. 

Both spectra show the vibrations of the amide function in the region of 1700-1600 ܿ݉ିଵ.  

Figure 41. FTIR Spectrum of ICA. 

(a) ICA powder and (b) ICA monolayer. 

 

X-ray photoelectron spectra were obtained using a VG ESCALAB 220i-XL 

photoelectron spectrometer and Al-Kα radiation (15 keV) at 6 ൈ 10ଵ଴ mbar base pressure. 

C(1s), Pd(3d), N(1s) and S(2p) core level high resolution spectra were recorded at a pass 

energy of 20 eV and wide scan spectra were obtained at pass energy of 150 eV. CasaXPS 

software was used for data analysis. C(1s), N(1s), and S(2p) core peaks were fitted and the 

ICA element ratio was calculated through area integral of peaks. Table 11 shows the found 

elemental ratio, which is close to the calculated ratio. 
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Table 11. Element Compositions of the Imidazole Monolayer from XPS 

 

4.2.2. Chemicals and Reagents 

All the monosaccharides, maltose and cellobiose were purchased from Sigma-

Aldrich (99% purity). The two disaccharides compounds, 4-O-sulfated-chondroitin sulfate 

disaccharide and 6-O-sulfated chondroitin sulfate disaccharide, were synthesized by Dr. 

Xu Wang’s lab. All the samples are dissolved in pH 7.4, 1 mM sodium phosphate buffer 

solution. Water was purified by a Milli-Q system for ~18MΩ-cm and less than 5 ppb of 

total organic carbon contamination. All the sample solution’s concentration is 100 µM and 

was prepared freshly right before the measurements. 

 

4.2.3. STM Experimental Details 

PicoSPM (Agilent Technologies) was used with customized LabView interface for 

data acquisition. The tip was tested to ensure current leakage is less than 1 pA in PB 

solution at 500 mV bias. Current set point is 4 pA which corresponds to ~2.5 nm gap size 

between two electrodes [94] and the probe approached to substrate under 1.0 integral and 

proportional gain servo control. The surface was scanned to ensure that the probe is not 

over-coated by high density poly-ethylene (HDPE), so electrodes are good condition for 

RT measurement. After the clear grain structure of Pd substrate was obtained, probe was 

withdrawn 1 um and the bias was turned off to avoid possible damages on ICA layer during 
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2 hour instrument stabilization. Probe was re-engaged, and the integral and proportional 

gain were set to 0.1. The control (1mM PBS at pH 7.4) was collected before every sugar 

experiment and we usually recorded four runs for each analyte. Different batches of probes 

and substrates were used for each run. Analyte tunneling data was collected 5-10 min for 

control (buffer solution) and 30-40 min for analyte solution. The gain values were 

determined by noise spectrum (Power Spectral Density) under various gain values. The 

Figure 42 shows that servo control distorts the signal. With 0.1 for the integral and 

proportional gain, spectrum under 30 Hz (corresponding 33 ms) is suppressed. The gain is 

long enough not to distort all spikes but some of long spikes. Tunneling current was Fourier 

transformed and plotted as a spectral density calculated by 

 

ܦܵܲ ൌ
2

ܰ ∙ ݐ∆
ܴ݁ଶ ൅ ଶ݉ܫ

݂
 ሺ14ሻ	݊݋݅ݐܽݑݍ݁																									

 

where ܰ ൌ 50,000 and ∆ݐ ൌ  .ݏߤ	20
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Figure 42. Noise Spectrum of STM. 

(a) without servo control. (b) with servo control. Blue lines are the noise spectrum, and red lines are fits 
to 1/f spectrum. 

 

4.2.4. ESI-MS 

ICA (200 µM) and carbohydrate (100 µM each) solutions were respectively 

prepared in water and sparged with argon. Each sample solution was injected into a Bruker 

maXis 4G electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass 

spectrometer at a 3 μL/min infusion rate via syringe pump. Tandem (MS/MS) mass 

spectrometry was used to observe product ion peaks from molecular complex ion peaks to 

confirm the composition of the molecular complex. The ESI source was equipped with a 

microflow nebulizer needle operated in a positive ion mode. The spray needle was held at 

ground and the inlet capillary set to -4500 V. The end plate offset was set to -500 V. The 

nebulizer gas and dry gas (N2) were set to 1.2 Bar and 1.5 L/min, respectively, and the dry 

gas was heated to 220°C. In TOF-only mode the quadrupole ion energy was set to 4 eV 

and the collision energy was set to 1 eV. Collision gas (Ar) was set to a flow rate of 20%. 

In most cases MS/MS experiments were conducted with a precursor ion isolation width of 

3 m/z units. However, if other ions were present in this range precursor ion isolation width 



74 

was set to 1 m/z unit. Collision energy was set to 10-20 eV, which was sufficient to 

fragment non-covalent complexes. Each spectrum was recorded over a time period of 0.5 

to 1 min. Typically a spectrum acquired for one minute is an accumulation of 60 separate 

recorded mass spectra averaged across 1 min time period. Signal to noise ratio greater than 

three (S/N>3) was used to define the limit of detection. Due to the lack of an acid modifier 

in the infused solutions, most carbohydrates and molecular complexes were observed as 

single or multiply sodium ions [M+nNa-(n-1)H]+ rather than as protonated molecular form 

[M + H]+. Average mass accuracy was within 0.025 Da. 

 

4.2.5. Feature Extraction 

Once the tunneling current signals were collected, some features should be defined 

to represent the signals and to analyze the data (to classify the analyte molecules). For 

example, Fourier transformation is the most popular feature for electric signal analysis. 

This study used three different domains; time, frequency, and cepstrum. The primary 

features are defined in time domain, such as peak amplitude and peak width etc. (Figure 

43(a)) The secondary features are defined in transformed domain such as frequency domain 

for FFT components and cepstrum(quefrency) domain for cepstrum components. 

The primary features are in time domain. The baseline of raw tunneling current 4 

pA was shifted to zero and all the current spikes above 15 pA was characterized as 

described in Supplement Table 12. The clusters were identified by applying Gaussians 

window (4096 data points and unit height) to each peaks. The Gaussian traces were 

summed and a cluster was assigned when the sum exceeds 0.1.[54] Though the peak 
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features were characterized with the spikes above 15 pA, the cluster features include all the 

spike data within the assigned region. An example of a determined cluster is shown in 

Figure 43(a) and some example features are labeled on the figure. The cluster was furrier 

transformed with 25 kHz window which is the Nyquist frequency of amplifier and the 

whole frequency range is down-sampled to small windows. [Nature Nanotech paper] The 

feature names peakFFT or clusterFFT was used the same window size (red in Figure 43(b)) 

for sampling, but peakFFT_Whole and clusterFFT_Whole used various different window 

size (green in Figure 43(b)) that the lower frequency has smaller sampling window size. 

(In the figure, it shows only six windows for the simplicity.) The third domain is cepstrum 

which is the inverse Fourier transform of the logarithm of the Fourier transform signal. The 

spectrum in quefrency domain is also down sampled into the even size of windows as 

shown in Figure 43(c). 

 

Figure 43. Feature Extraction at Three Domains. 

(a) primary features in time domain, secondary features in (b) frequency domain and (c) cepstrum domain. 
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Table 12. 264 Starting Features Used in the Signal Analysis. 

Details of their calculation are given in Chang et al. The first letter of each feature name means peak 
(for P) or cluster (for C). The primary features are defined in time domain, the secondary features are 
defined in frequency domain or others, after applying Fourier transformation to the raw time domain 
trace. Table taken from ref [54]. 

 

Once all the features are determined, they were normalized and scaled to be avoid 

that large numeric features dominate those in small range. The mean of each feature was 

shifted to be zero and scaled to make standard deviation to 1. 

 

4.2.6. Data Analysis (Machine Learning) 

STM-RT provides a huge data. I collected four data sets for each analyte and each 

data set is consisted of 5~10 min current trace of control (buffer solution) and 40~60 min 
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trace of the analyte. From the feature extraction, each peak has 264 starting features. Then, 

for example, the data pool of methyl α-D-glucopyranoside and methyl β-D-

glucopyranoside has ~32,000 data points (total number of features data points is 8.5 

millions.) As the number of analytes increases, the data analysis becomes more complicate. 

 

Figure 44. Distribution of Features. 

(a) cluster FFT Whole 37 and (b) peak FFT 9 and (c) scatter plot of the two features. Distributions of 
signal features are broad and overlapped (red = α-MGlu, green = β-MGlu) as shown here for one frequency 
band in the Fourier transform of signal clusters (cluster FFT whole 37 –a) and for a band in the Fourier 
transform of individual peaks (Peak FFT 9 –b). Data can only be assigned to one analyte or the other with 
a probability only marginally above random, P=0.5 (see Methods for details of the signal analysis). 
However, when the same two distributions are plotted together in a 2D histogram (c) where the brightness 
of each point represents the frequency with which a particular pair of values occur, the accuracy with 
which data can be assigned increases to 80%. This accuracy can be improved to ~ 99% using additional 
signal features. Colors in (c) are mixed so overlapped points are yellow. 

 

The data analysis becomes more difficult and complicate in the case of isomeric 

molecule recognition, such as methyl α-D-glucopyranoside and methyl β-D-

glucopyranoside identification. Because isomers have same molecular components and 

share many molecular properties (molecular weight and charge etc.). As shown in Figure 

44, classification with single features is almost random separation (0.5), 0.58 from Cluster 

FFT Whole 37 and 0.57 from Peak FFT 9. However, by plotting the two features at the 

same time, the classification accuracy reached to 0.80. It can be explained by Cover’s 

theorem.[63]  Using more features can give higher separation. 
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For the complicate STM-RT data analysis, there are many well-known computer 

based analysis technique for big data, Machine Learning. A variety of machine learning 

algorithms has been developed from the field of computer science. Table 13 shows some 

accuracy results from six kinds of the algorithms. All the calculations was conducted with 

the packages in Matlab R2015a. The machine learning can be categorized by two, 

supervised learning and unsupervised learning.[96] Supervised learning is to find an 

inferring function from labeled training data, which means all the data is known and 

determine the best partition or clustering boundary. Unsupervised learning is to discover 

hidden structure in unlabeled data. In Table 13, k-Means is unsupervised learning 

algorithm, and all others are supervised one. SVM gives the best classification accuracy. 

 

Table 13. Machine Learning Algorithm Comparison with methyl α-D-glucopyranoside 
and methyl β-D-glucopyranoside Data Pool. 

 

The k-Means is unsupervised clustering method to separate the data into k clusters. 

Each cluster is represented by its centroid and defined as the center of the points in the 

cluster. Each data point is assigned to the cluster whose center is nearest. The calculation 

is based on the equation (1), minimizing intra-cluster variance or the sum of squares of 

distances between data and the corresponding cluster centroid.[97] 
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Though it is simple and fast, it has some limits. First, it does not yield the same 

result with different run. This is because of the initial centroid point dependence. Figure 45 

shows how the results can be different by the initial centroid points. Second, it requires 

choosing appropriate number of clusters. Finally, k-Means does not guaranteed to find the 

optimal configuration. 

 

Figure 45. Dependence of Starting Centroid Points in k-Means Clustering. 

(a) The initial centroid points are close and within the biggest data point group. The lower two centroids 
move far away from the top one, and the lower two data groups (green and blue) are assigned into two 
different clusters. (b) Two of initial centroid points are within the biggest group and the other is away 
from two centroids and close to the lower data group (brown). Finally, the k-Means assigns the lower two 
data groups into the same cluster (brown). This shows how the initial centroids selection is critical in k-
Means. Figure taken from ref [97]. 

 

Artificial Neural Network (ANN) is a mimic of human brain system, network of 

neurons. Figure 46 shows schematics of neural network. ANN has multiple hidden layers 

which are networks of transfer functions. The multiple weighted inputs are evaluated by 
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their success at discriminating the classes in training. While the network is training, the 

weights are adjusted by the separation error between inputs and predetermined classes. 

Convergence proceeds until the reduction error reaches to threshold.[98] Though ANN is 

one of the most popular algorithm and gives good performance, it is hard to visualize the 

network model.[99] 

 

Figure 46. Schematic Diagrams of Neural Network. 

(a) neuron and (b) neural network system. Figure taken from https://en.wikibooks.org/wiki/Artificial_ 

Neural_Networks/Activation_Functions. 

 

The decision tree is non-parametric supervised learning which does mapping 

observations to conclude target values, in other words Divide-and-Conquer algorithm. As 

shown in Figure 47, input v follows the tree branch and each node has a condition to assign 

the input into a class (output). Decision tree is simple to understand and can be easily 

visualized. However, it can create over-complex trees (overfitting) which do not provide 

good prediction. Also it is very sensitive to even small variations in the data which results 

in completely different tree. It may not work well for complicate large data with small 

internal data variation. [96] 
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Figure 47. Diagram of Decision Tree. 

 

Random forest is an ensemble classification. It fits multiple decision tree classifiers 

on various sub-set of the all data. During training, it averages to improve the predictive 

accuracy and control over-fitting. [96] Random forest is one of the most accurate algorithm 

and effectively runs with large data. However, it can over-fit even averaging many subsets. 

Unlike decision tree, it is difficult to visualize because of many subsets and various 

weighting factors. [97] 

 

Figure 48. Schematic Diagram of Random Forest. Figure taken from ref [96] 

 

Supporting Vector Machine (SVM) was suggested by Vapnik in 1995.[100] SVM 

finds a non-linear partitions in high-dimensional space by solving a quadratic optimization 
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problem, equation (2) or (3). The hyperplane is defined by support vectors which defines 

hyperplane and is a subset of training samples. 

 

Figure 49. Schematics of SVM to Determine Maximum Margin Hyperplane. 

(a) separable linear case (b) non-separable linear case. 

 

In the case of Figure 49a, the maximum marginal hyperplane is determined by the 

equation (2) 

arg min
ሺܟ,௕ሻ

1
2
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where ݓሬሬԦ is the normal vector to the hyperplane. 

For the non-separable linear case of Figure 49(b), SVM finds the margin by 

introducing a cost parameter C and slack variable ߦ. If 0 ൏ ߦ ൑ 1, it represents that the 

data point is between the marginal boundary and the correct side of hyperplane. If ߦ ൐ 1, 

the data point is misclassified. The parameter C controls the importance of minimizing ݓሬሬԦ, 

equivalent to the maximizing the margin. In other words, creating wide range of safety 

margin around the partition makes us to maximize the margin. If C is close to 0, there is 
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no cost for the margin constraint. If C is large or close to infinite, the running should pay 

lots of data points which don’t satisfy the constraint. The cost function can be minimized 

by selecting small number of support vectors.[98][101] Figure 50 shows the relationship 

between C and width of support vectors. 

argmin
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Figure 50. Relations between Cost Parameter and Support Vectors. 

Figure taken from ref [102]. 

 

Also it is necessary to consider the case of non-linearly separable data, because data 

is always linear separable. It can be treated by introducing kernel function which is a 

transformation of input data. Kernel functions make SVM to enable classify non-linear 

support vectors using a linear hyperplane as described in Figure 51.[96] There are the most 

commonly used kernel functions in Figure 52. This study used RBF for data analysis. 
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Figure 51. Schematics of Kernel Function Method. 

Figure taken from ref [96]. 

 

 

Figure 52. Examples of Kernel Functions 

Figure taken from ref [96]. 
 

4.2.7. Details of Data Analysis 

A class of the water signals was determined through SVM from control data and all the 

peaks of analyte signals within the water class is removed. For the SVM analysis, randomly 
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selected 10% data is used to construct support vectors (hyper plane to separate analyte data 

points) calling as training process, and the rest 90% of data is tested with the previously 

determined supported vectors calling as testing process. 

Once features are extracted, there are 264 starting features. Some features are 

strongly correlated with other features, so they were removed through the normalized 

correlation calculation between feature pairs. The features which coefficient is bigger than 

0.7 were rejected. The feature variation of the repeated experiments and different analytes 

are calculated by comparing the single feature histogram with the accumulated histogram. 

The difference between the repeated runs histogram and the accumulated histogram of the 

given analyte is assigned as 'in-group' fluctuation (variation of the repeats). The difference 

of the normalized histogram between the possible analyte pairs is 'out-group' fluctuation 

(variation of the analytes).[54] The features were ranked by the ratio between the in-group 

fluctuation and the out-group fluctuation, and the low ranked features were dropped. The 

survived features were evaluated the classification accuracy and optimized to get the 

maximum true positive accuracy. 

 

4.2.8. STM-RT Experiment for Binding Affinity 

The α-MGlu was dissolved in sodium phosphate buffer (pH 7.4, 1 mM) to make a 1 

mM stock solution, which was diluted to various concentrations from 500 µM to 100 pM. 

For each measurement, an analyte solution (200 µL) was injected into the liquid cell using 

a syringe attached to a micro filter. After the measurement, the liquid cell and electrodes 

were rinsed with the phosphate buffer solution (3 mL) through the fluidic channels to 
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obtain a clean control signal. A pair of electrodes was able to carry out three measurements 

with different concentrations from lower to higher concentration. The measurement at each 

concentration was repeated at least 2 times. The isotherm absorption data were analyzed in 

software OriginPro 2016 using the Levenberg-Marquardt algorithm for fitting to a 

Langmuir equation: f(x) =a∗(b·x)/(1+b·x). 

 

4.2.9. SPR Experiment for Binding Affinity 

A gold chip was immersed into an absolute ethanol solution of ICA (100 μM) for 

24 h, followed by rinsing with absolute ethanol and drying with a nitrogen flow, and used 

immediately. The instrument Bi 2000 from Biosensing Instrument was used for SPR 

measurements. An ICA modified gold chip was mounted on the instrument and calibrated 

with 1% ethanol in a PBS buffer, pH 7.4. A solution of α-MGlu (500 μM) was flowed onto 

the chip at a rate of 50 µl/min over a period of 1.5 min. Association (kon) and dissociation 

rate constants (koff) were determined using built-in Biosensing Instrument SPR data 

analysis software version 2.4.6. 

 

4.3. Results and Discussion 

4.3.1. Isomeric Carbohydrates Identification 

First, two of anomeric isomers (methyl α-D-glucopyranoside (α-MGlu) and methyl 

β-D-glucopyranoside (β-MGlu)) were tested to identify the molecules through STM-RT. 

The only difference between these two molecules is the relative orientation of methoxy 
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group which is colored in red as shown in Figure 53(b),(c). The theoretically calculated 

capturing configuration and corresponding hydrogen bonding energy shows that isomers 

can be distinguishable. α-MGlu forms two hydrogen bonds with each ICA, but β-MGlu 

makes a single hydrogen bond. It results in that α-MGlu makes a more stable complex than 

β-MGlu. The complexes between ICA and the anomers in a solution was confirmed by ESI-

MS measurements, as shown in Table 14 and Table 15 (it includes all the data for other 

monosaccharides and disaccharides which were used in this study). 
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Figure 53. Structures of Molecules (a, b, c). Schematics of the Capturing Configuration 
(d, e). Example Current Signal Trace (f, g). Distribution of Features (h-j). 

(a) The recognition molecule ICA contains a thiol linkage to bond to metal electrodes, as well as a number 
of hydrogen bonding donors and acceptors through which a large range of analytes can be can captured 
by a diversity of spatial arrangements. (b) Structure of α-MGlu and (c) Structure of β-MGlu, both of which 
can form hydrogen-bonded triplets with ICA molecules spanning a tunnel gap of 2.2 nm, as shown by 
simulations in (d) and (e). Evidence of these complexes is provided by the current-spikes that appear only 
after an analyte solution is added to pure buffer solution in a tunnel gap (f and g). Distributions of signal 
features are broad and overlapped (red = α-MGlu, green = β-MGlu) as shown here for one frequency band 
in the Fourier transform of signal clusters (cluster FFT whole 37 –h) and for a band in the Fourier 
transform of individual peaks (Peak FFT 9 –i). Data can only be assigned to one analyte or the other with 
a probability only marginally above random, P=0.5 (see Methods for details of the signal analysis). 
However, when the same two distributions are plotted together in a 2D histogram (j) where the brightness 
of each point represents the frequency with which a particular pair of values occur, the accuracy with 
which data can be assigned increases to 80%. This accuracy can be improved to ~ 99% using additional 
signal features. Colors in (j) are mixed so overlapped points are yellow. 
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Table 14. Characteristic MS Peaks of 1:1 ICA-Carbohydrate Complexes and Their 
MS/MS Products. 

M denotes the corresponding carbohydrate molecule. 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in parentheses respectively 
next to each complex ion in observed m/z column. I% values are reported in parentheses next to each 
complex ion in MS/MS product ion column. The most intense peak is considered as 100. 
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Table 15. Characteristic MS Peaks of 2:1 ICA-Carbohydrate Complexes and Their 
MS/MS Products. 

M denotes the corresponding carbohydrate molecule. 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in parentheses respectively 
next to each complex ion in observed m/z column. I% values are reported in parentheses next to each 
complex ion in MS/MS product ion column. The most intense peak is considered as 100. 

 

The tunneling current signals are stochastic driven by thermal fluctuations and 

includes a lot of information about the capturing configuration and captured analytes. 
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Individual signal features are broadly distributed and give mostly overlapped distributions. 

Figure 53(h) and (i) show two of individual feature distribution and they give only a little 

bit higher separation probability, 0.58 with Cluster Whole FFT 37 and 0.57 with Peak FFT 

9, when random calling probability is 0.5. However, scatter plot of those two features 

together provides much higher separation 0.80 (Figure 53(j)). It can be explained by 

Cover’s theorem as discussed in chapter 3. On the plot, the red points represent α-MGlu and 

the green points are β-MGlu. The overlapped area is appeared as yellow. The plot are 

complicate with many islands of data points, but the two analytes are well separated with 

~80%. Like Cover’s theorem, by considering more features, the separation accuracy can 

be getting higher. Here, Supporting Vector Machine (SVM) was used for data analysis to 

identify each analytes. The α-MGlu and β-MGlu identification accuracy is shown in Table 

16. 

In addition to the glucose isomers, five more anomeric molecule pairs were 

measured as shown in Table 16. First, three of monosaccharide anomeric pairs were used. 

STM-RT is able to distinguish glucose, glucosamine are N-acetylglucosamine from their 

C-4 epimers. Though there can be an equilibrium ratio of anomeric isomers in solution, 

STM-RT identifies the epimers with high accuracy. This is because the training data set 

also contains the same equilibrium anomer mixture. STM-RT also was tested with 

disaccharide anomeric pairs that are the pair of maltose (α-D-glucopyranosyl-(1→4)-D-

glucopyranose) and cellobiose (β-D-glucopyranosyl-(1→4)-D-glucopyranose), and the 

pair of 4-O-sulfated-chondroitin sulfate disaccharides (D0A4) and 6-O-sulfated 

chondroitin sulfate disaccharides (D0A6) which are repeating disaccharide unit of 
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glycosaminoglycans (GAGs). The feature sets that provides the accuracies on Table 16 are 

shown in Table 17. 

 

Table 16. Accuracy of Isomeric Molecular Pairs by SVM Analysis. 
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Table 17. List of Feature Sets which Generates the Accuracy on Table 16. 

 

4.3.2. Pure Carbohydrates Identification 

STM-RT was also able to identify many different monosaccharides from their 

pooled data with high identification accuracy as shown in Table 18. Among the samples, 

D-Glucosamine, D-Galactosamine, and D-Mannose are abundant in the mammalian 

glycome. [103][104] N-acetyl-neuraminic acid is the predominant sialic acid in 

mammalian cells. The eleven monosaccharides were well identified in overall 94% 
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accuracy (random would be 9%). In contrast, IM-MS does not effectively discriminate the 

molecules between galactose and mannose [105] or glucose and galactose [67]. 

 

Table 18. Accuracy of Individual Mono-saccharides from Their Pooled Data. 

 

 

Table 19. List of Feature Set which Generates the Accuracy on Table 18. 

 

4.3.3. Binding Affinity of ICA to α-MGlu 

The binding affinity of ICA to α-MGlu in the gap was determined by STM-RT and 

Surface Plasmon Resonance (SPR). In Figure 54, it shows a trend of the normalized single 

peak counts at various concentrations under STM-RT. The data was well fitted to a 

Langmuir isotherm equation with ܴଶ ൌ 0.976. The dissociation constant was obtained 

from the fitting parameter, ܭௗ ൌ 0.74 േ  However, the one measured by SPR is .ܯߤ	0.25
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 as the adsorption of α-MGlu on an ICA monolayer (Figure 55). Compared the two ܯ݉	4

values, STM-RT gives less dissociation constant which means better affinity between ICA 

and analyte, α-MGlu in here. The enhanced affinity comes from the simultaneous 

interaction with a pair of ICA at two electrodes. Assuming that entropy changes for ICA at 

two electrodes are the same and single binding has a constant entropy change, the 

adsorption free energy would be doubled for binding at two electrodes. Thus ܭௗ of two-

site binding can be square of the single site binding, ሺ4	݉ܯሻ	ଶ	ݎ݋	16	ܯߤ, but it is still 

much larger than the observed 0.74	ܯߤ . There are some more possible enhancement 

factors. The electric field in the gap enhance the capturing of bound molecules. Also the 

molecular dipole can increase the free energy upto 20% of thermal energy. 

 

Figure 54. Plot of Normalized Peak Counts and Concentration of α-MGlu. 

Plot of normalized RT counting rates vs concentration of α-MGlu for trapping the analyte in an RT gap 
functionalized with ICA molecules and a fit to a Langmuir isotherm. 
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Table 20. Peak Counts of α-MGlu at Various Concentrations and Adjusted Counts. 

 

 

Figure 55. Example Signal of the SPR Sensogram for ICA and α-MGlu. 

 

Table 21. Kinetic Parameters of α-MGlu on the ICA Monolayer. 

1. Each datum listed is an average of two measurements. 

2. ݇ௗ ൌ ݇௢௙௙ ݇௢௡⁄  
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The number of peak counting at a given concentration is reproducible shown in 

Table 21. In the range of 10 ~ 100 nM, there is a significant peak count rates increasing. It 

implies a quantitative ability to quantify the relative amount of a given analyte. This 

provides an overcome limits of current techniques. For instance, mass spectroscopy is not 

quantitative and requires additional techniques labelling isotope for quantification. 

STM-RT needs 200 µL of sample solutions to fill the liquid cell. However, the 

recent research in this research group has showed that it can be reduced upto microliter 

volumes of sample with micron-scale solid-state tunnel junctions. [106] 

 

4.4. Conclusion 

In spite of the enormous biological importance of glycans, their sequence analysis 

remains one of the most challenging areas of chemistry, lagging behind genomic 

sequencing. This is because of their extensive isomerism, which leads to astronomical 

numbers of possible configurations for even a short oligosaccharide. This study 

demonstrates that STM-RT is able to discriminate individual saccharide from a pool of 

data, even they are isomeric molecules. No current technique could analyze large number 

of isomers in a long oligosaccharide. [80] However, RT can provide a single molecule 

recognition in linear oligosaccharides. In the present work, we illustrate the technique with 

two glucopyranoside anomers and go on to show how six other pairs of “difficult” isomers 

are readily separated, show how an individual glycan can be identified in data pooled from 

11 different molecules, and demonstrate quantitative measurement over a dynamic range 

of concentrations. It has been proposed that a nanopore with RT electrodes can be used for 
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DNA sequencing. [107] The present work shows that RT is able to identify many different 

individual glycans. Thus, if it is combined with a nanopore, we can obtain the 

compositional sequence of linear oligosaccharides directly without any kinds of molecular 

labelling. It also opens a path to direct, single-molecule sequencing of linear 

oligosaccharides (an on-going project). 
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CHAPTER 5 

SINGLE MOLECULE SEQUENCING OF GLYCOSAMINOGLYCANS USING 

RECOGNITION TUNNELING NANOPORES 

5.1. Introduction 

Carbohydrates play significant roles in mediating extracellular interactions and 

their functions are determined by the sequence of the carbohydrates. However, sequencing 

polysaccharides is more difficult than the one of DNA and protein. This study uses RT 

junction embedded nanopore to read sequence of linear polysaccharides known as 

glycosaminoglycan (GAG). GAG’s linearity is attractive for the nanopore sequencing. 

GAGs are linear and sulfated polysaccharides are common to all mammalian cells. They 

interact with enzymes, signaling proteins and pathogenic microbes which make GAGs 

important modulators of biological phenomena. However, it requires further improvement 

to understand the relation between their structure and function. GAGs’ structure is difficult 

to analyze due to their large size and random nature of sulfation modifications. The current 

ensemble analytical techniques are not able to identify structures. A single molecule 

sequencing technique provides advantages in polysaccharides analysis. 

The goal of this study is to develop a nanopore based recognition tunneling device 

for single molecule sequencer as shown in Figure 56. Analytes pass an electrodes pore 

modified with recognition molecules which make non-covalent capturing with the analytes. 

The RT chip fabrication was published by colleagues in this research group[106] and I am 

working to incorporate it into nanopore. 
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The step one of this work is to investigate translocations of GAG through solid state 

nanopores and to study how translocation time and blockade current are determined by 

length of GAG molecules and sulfation densities. The step two is to identify GAG fragment 

of charged disaccharides using the RT nanopore functionalized with ICA. 

 

Figure 56. Schematic of Recognition Tunneling Nanopore Device. 

GAGs are translocated from one side (Cis) of the chip to the other (Trans). Their recognition tunneling 
signals can be recorded for determination of their sequence structures. 

 

5.1.1. Glycosaminoglycans 

Polysaccharides play significant roles in mediating extracellular interactions in 

every organism. Glycosaminoglycans (GAGs) is a linear and sulfated polysaccharide 

ubiquitous to all mammalian cells. GAG molecules control many biological activities, 

resulting from their extracellular localization and acidic nature. These properties make 

them to attract signaling molecules through electrostatic forces, and modulate proteins’ 
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interactions with cell surface receptors. GAGs have been shown to be vital to tissue repair 

and regeneration[108]; cancer cells are also known to express over-sulfated GAGs to 

attract growth factors during metastasis[109][110][111][112]; GAGs have also been 

identified as receptors for a growing list of pathogenic bacteria, protozoa and viruses[113]. 

Most GAGs are long polysaccharides composed of repeating disaccharide units of 

an uronic acid and an amino sugar. Classification of GAGs is based on the type of uronic 

acid and amino sugar contained in its disaccharide unit. Heparan sulfate (HS) or heparin 

(HP) contains glucosamine (GlcN) as the amino sugar and either glucuronic acid (GlcA) 

or iduronic acid (IdoA) as the uronic acid (Figure 57). Chondroitin sulfate (CS), another 

major type of GAGs, contains N-acetylgalactosamine (GalNAc) as the amino sugar and 

mostly GlcA as the uronic acid (Figure 57). Despite their repetitive and linear structures, 

GAGs are among the most complex biomolecules in nature. Their structural complexity is 

the result of their large size (each chain can contain hundreds of saccharide residues) and 

semi-random sulfations of monosaccharides. Most GAGs are found anchored to the cell 

surface through covalent linkages to serine hydroxyl groups on proteins, forming entities 

known as proteoglycans. 

Because of GAGs’ multitude of biological activities, interest in utilizing GAG as 

diagnostic tools and therapeutics in disorders such as cancer, inflammation and even 

Alzheimer’s disease have been high for some time.[114][115] But before these potential 

applications of GAGs can be realized, the structure-activity relationships between GAG 

sulfation patterns and its activity need to be fully understood. Indeed many basic questions 

regarding the relationship between GAG structure and its activity remain unresolved. For 

instance, N-sulfation of HS/HP is known to have important consequences on the biological 
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activity of GAGs. Although enzymatic degradation analysis of HS/HP indicates N-

acetylated and N-sulfated GlcNs often exist in clusters, the sizes and distributions of these 

clusters in intact GAGs have never been definitively measured because structural analysis 

of long GAG chains remains challenging.  

Figure 57. Chemical Structures of Representative HS/HP and CS Disaccharide Units. 

 

5.1.2. Nanopore 

A nanopore can be described as a short tube with a diameter of nanometers. It can 

be a nanofluidic channel for charged molecules transportation. Nanopores have become a 

single molecule tool for DNA sequencing [116], and sensing and unfolding proteins 

[66][117][118]. In the introduction, nanopores were categorized into three groups sorted 

by fabrication methods; biological, solid stat, and hybrid pores. Here, let’s assign them into 

three types: (a) protein nanopore, (b) solid-state nanopores, and (c) nanogap nanopores, as 

shown in Figure 58.[119] When an analyte is driven through the pore, it will partially block 

the channel (nanopore) and ionic current will be changed. Then the ionic current can be 

characterized by blockade amplitude (ܫ௣ ) and dwell time (ݐௗ ). A protein nanopores 

sequences DNA in single nucleotide resolution[120], but solid-state nanopore has not 
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achieved it yet[121]. On the other hand, a nanogap nanopore can be used to identify single 

nucleotides by measuring RT of single analyte captured by two electrodes in the pore. 

Compared to DNA, there are limited number of studies on polysaccharides through 

nanopores. Kullman et al studied interactions of the maltoporin protein pore with 

maltodextrins from triose to heptaose by translocation.[122] Bayley and his coworkers 

studied effects of electroomosis on cyclodextrin binding to α-hemolysin.[123] Teixeira et 

al showed that heparins and dextran sulfates blocked α-hemolysin protein pores in the 

presence of Ca2+ cations.[124] Bacri et al first demonstrated that neutral polysaccharids 

maltose and dextran with molecular weights  ranging from 504 to 10,300 g mol-1 can be 

translocated through α-hemolysin protein pores.[125] They demonstrated that 

oligosaccharides differing by two disaccharide repeats could be distinguished by their 

dwell times. There is only one report of the translocation of charged polysaccharides 

through silicon nitride (SiN) nanopores.[126] Translocation of sulfated GAGs has not been 

reported yet. 

 

Figure 58. Types of Nanopores. 

(a) protein nanopore (b) solid-state nanopore, and (c) nanogap nanopore. Figure taken from ref [119]. 
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5.1.3. Recognition Tunneling (RT) 

As discussed in the previous chapters, RT is powerful tool for single molecular 

sequencing. This can be integrated with nanopores to electronically read individual 

biomolecular components. Electrons can tunnel through the nanogap when a bias is applied 

between two electrodes. The tunneling can be enhanced and more sensitive by modifying 

the electrodes with recognition molecule. 4-(2-Mercaptoethyl)-1H-imidazole-2-

carboxamide (ICA) was designed as a universal reader to read DNA bases via hydrogen 

bonds between ICA and analytes.[59] The RT is tunneling current signal generated by 

capturing analyte between functionalized electrodes. Unexpectedly, the universal reader is 

also able to recognize amino acids and short peptides (Chapter 3) and to identify 

carbohydrates (Chapter 4). The complex of ICA and analyte generates a time-dependent 

current due to thermal fluctuations of the bonds. As the current goes back to the baseline 

current when a captured molecule leaves the gap, there is no frequent and dense signals in 

control experiments (without analyte in solution). The signals reflect thermal noise, but 

they are not random. The signals depend on the structure of analytes and types of bonding 

in the junction. The collected RT data is analyzed by using Support Vector Machine (SVM), 

one of machine learning algorithms, to identify unique signatures of analytes. It has been 

shown that the RT can distinguish among monosachaarides with different charges and 

between two anomeric isomers of a disaccharide (Chapter 4). These results demonstrate 

that the RT has the power to identify subtle differences in structures of carbohydrates. 
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5.2. Experimental Methods 

5.2.1. Preparation of GAG Solutions 

All the GAG samples; chondroitin sulfate and heparin polysaccharides, are 

prepared by Dr. Xu Wang’s research group. The GAGs is prepared in various length. In 

this discussion, two molecules (heparin dp10 and dp60) data will be discussed. The heparin 

dp10 (HEP10) means the five of HP disaccharide unit (corresponding to ten of 

monosaccharides) which is shown Figure 57(a). The heparin dp30 (HEP60) is a mixture of 

various length heparins, ranging from dp10 to dp60 (corresponding 20 to 120 mono-

saccharides). The GAG powder compounds are dissolved into a solution of 400 mM KCl 

buffered with 1 mM PB (pH 7.0) to be 1 µM. Water was purified by a Milli-Q system for 

~18MΩ-cm and less than 5 ppb of total organic carbon contamination. 

 

5.2.2. Fabrication of Layered Junction Device and Nanopores 

The fabrication of layered junction device has been developed by colleagues in this 

research group.[106] In the previously published paper, the pore size is ~20 nm diameter 

resulting in a bunch of analytes pass through the pore. It is hard to capture single molecule 

RT signals with large nanopore. The colleagues is working to introduce nanopores to 

tunneling junction. The details of current layered junction fabrication is following. 

Layered junction device is fabricated on <100> polished Si wafers or silicon nitride 

chip with 50 nm thick windows (purchased from Norcada). Au leads and pads which are 

used for connection with instrument were fabricated by photolithography or electron beam 

lithography (EBL) with a JEOL JBX 6000FS/E. The 6 µm width bottom electrodes (1 nm 
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Ti adhesion layer and 10 nm Pd) were deposited by electron beam evaporator (Lesker 

PVD75) (Figure 59(a-i)). After 2 nm thick AlଶOଷ  layer was deposited by atomic layer 

deposition (ALD) (Figure 59(a-ii)), 50 ~ 80 nm width of Pd nanowire with 1 nm Ti 

adhesion layer was fabricated by EBL on 60 nm thick patterned PMMA. The nanowire 

patterns were exposed at 500	 ܥߤ ܿ݉ଶ⁄ . The metal on PMMA layer was removed by 

soaking dicholoromethane for 15 min, and rinsed with acetone, isopropyl alcohol (IPA), 

and DI water, and gently dried by nitrogen gas flow. 

Making nanopores on the layered junction device is on process by using focused 

ion beam (FIB), reactive-ion etching (RIE), and TEM. 

 

Figure 59. Process of the Fabrication of Layered Tunnel Junctions. 

(a) Process for fabrication of layered tunnel junction: i. 10 nm thick Pd electrode is defined on a SiN 
support; ii. 2 nm thick ݈ܣଶܱଷ layer is deposited by atomic layer deposition (ALD); iii. A second 10 nm 
thick Pd nanowire is deposited on top of the dielectric layer. (b) A nanopore cut into the sandwich (‘RIE 
Cut’) exposes the junction giving access to analyte molecules (red dots). Figure taken from ref [106]. 

 

5.2.3. Preparation of Nanopores on Silicon Membrane 

Silicon nitrides chips were purchased from Norcada, Alberta. Silicon frame is 5	 ൈ

	5	݉݉  with 200	݉ߤ  thickness, and the silicon nitrides window is 200	 ൈ ݉ߤ	200	 . 

Nanopores are drilled using the electron beam in a JEOL 2010FEG transmission electron 

microscope (TEM) at 200 kV. The size of the pores is controlled by the focused electron 
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beam. The drilled nanopores are imaged right after drilling for the pore size estimation. 

Prior to every experiment, the chip with a nanopore is immersed in hot piranha 

:ଶܱଶܪ) ଶܵܪ ସܱ ൌ 1: 3) for 10 minutes and rinsed with water. The chip is dried with ଶܰ gas 

flow, and assembled in a piranha cleaned home-made Polytetrafluoroethylene (PTFE) cell, 

and sealed with a quick-curing silicone elastomer gasket to reduce capacitance. 

 

5.2.4. Translocation Measurement and Data Analysis 

The sample solution is injected into the cis chamber and positive bias is applied 

into trans chamber through freshly made Ag/AgCl electrodes. Ionic currents are taken with 

100 kHz sampling rate with 10 kHz low pass filter by using patch clamp amplifier Axon 

Axopatch 200B and digitizer DigiData 1550A (Axon Inc.). AxoScope 10.4 software is 

used to control those instruments and to record ionic current data. For data analysis, 

OpenNanopore is used, which is based on Matlab and developed by Laboratory of 

Nanoscale Biology (LBEN) of Ecole Polytechnique Fédérale de Lausanne (EPFL). 

 

5.3. Results 

As the first step of the project, it was studied to show possibility that solid-state 

nanopore enables to translocate GAG molecules. In the following chapters, it discusses the 

effect of molecular length and sampling rate to translocation. Furthermore, the nanopore 

size, voltage bias, and the charges on molecules will be investigated in future. 
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5.3.1. Length Dependence of Translocation 

Colleagues in the research group have published nanopore study with peptide-poly 

T20 conjugate.[127] It shows that poly-T20 gave frequent translocation signals. It is 

necessary to determine appropriate length of GAG molecules for nanopore experiments. If 

the molecule is too short relative to the size and length of nanopore, it does not give obvious 

translocation signal. First, various length of poly-thymine was measured as control 

experiments, ranging from 5 to 20 (T5, T10, and T20). As expected from the previous 

research with peptide conjugate, T20 gives frequent translocation signals, but T5 and T10 

are not (Figure 60(a)). Though there are some translocation events, the average number of 

peaks show that they would be random background noise. Figure 60(c) shows that the 

average number of peaks of T5 and T10 is close with the one in control measurements. 

Though the number of T5 and T10 is little bit higher than controls, it is hard to conclude 

that the events are from the GAG’s translocation. Similar statistic results are shown in 

Figure 61. It also gives some events with short molecule, but it is not as frequent as longer 

molecules. It implies there would be a critical length which drives frequent translocation 

events. This limit can be overcame through the RT junction embedded nanopore. It is able 

to identify the events whether they are random noises or analyte unique RT signals. 
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Figure 60. Analyte Length Effect with DNA Oligomer. 

(a) Example of translocation signals of various length oligomers, (b) TEM image of the nanopore right 
after drilling, (c) Statistics of each measurement. 

Example signal is a 30 sec trace from each analyte’s entire data. Translocation signals were measured in 
100kHz sampling rate with 10 kHz low pass filter. After every oligomer experiments, the cell (trans 
reservoir) was rinsed by 1 ml of buffer solution and control data was collect to confirm no analyte residues 
in the cell. The diameter of the nanopore was estimated by Gartan software. 
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Figure 61. Analyte Length Effect with GAG. 

(a) Example of translocation signals of various length GAGs, (b) TEM image of the nanopore right after 
drilling, (c) Statistics of each measurement. 

Example signal is a 30 sec trace from each analyte’s entire data. Translocation signals were measured in 
100kHz sampling rate with 10 kHz low pass filter. The diameter of the nanopore was estimated by Gartan 
software. 

 

5.3.2. Sampling Rate Dependence 

If an analyte is short, translocation time (dwell time) could be shorter too. It might 

be the reason why the shorter molecules (T5, T10, and HEP10) did not give frequent signals 

under 100 kHz sampling rate. The same analytes were measured at higher sampling 

frequency, 500 kHz (Figure 62). Even with higher sampling frequency, there is no 

significant translocation event detection with short analyte, HEP10. The average peaks of 

HEP60 which is a mixture of various length of heparin became doubled, but HEP10 is the 

same with 100 kHz measurement. It may imply that 500 kHz is still not enough for short 

molecules, however it can break some of long dwell time translocations of longer 

molecules that results in the average peaks increasing (from 30 peaks/min at 100 kHz to 
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62 peaks/min at 500 kHz). It was also observed with poly-thymine oligomers (not shown 

here). 

 

Figure 62. Sampling Rate Effect with GAG. 

(a) Example of translocation signals of various length GAGs, (b) TEM image of the nanopore right after 
drilling, (c) Statistics of each measurement. 

Example signal is a 30 sec trace from each analyte’s entire data. Translocation signals were measured in 
500kHz sampling rate with 50 kHz low pass filter. The higher low pass filter results in wider width of the 
baseline. The diameter of the nanopore was estimated by Gartan software. 

 

5.4. Conclusion 

From several experiments with oligomers and GAGs, it has been shown a 

possibility of GAG molecule. However, it needs further experiments not only to determine 

detail conditions such as pore size and length of analyte etc., but also to confirm 

translocation events. The project is at beginning step. The goal of the first step is 

demonstrate the possibility of the GAG molecule translocation on solid-state nanopore. 

The second goal is to identify GAGs through the RT junction embedded nanopore device. 

Several strategies are being considered to fabricate RT junction nanopore. The method 

shown in Figure 57 has been studied for a while in this group by colleagues, however 
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current nanopore size is a few tenth nanometer which is too wide to measure in single 

molecule level. I am also developing a recipe drilling a nanopore on the metal deposited 

thin silicon membrane by TEM. 
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