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ABSTRACT  
   

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative enteric 

pathogen that causes self-limiting gastroenteritis in healthy individuals and can cause systemic 

infections in those who are immunocompromised. During its natural lifecycle, S. Typhimurium 

encounters a wide variety of stresses it must sense and respond to in a dynamic and coordinated 

fashion to induce resistance and ensure survival. Salmonella is subjected to a series of stresses 

that include temperature shifts, pH variability, detergent-like bile salts, oxidative environments and 

changes in fluid shear levels. Previously, our lab showed that cultures of S. Typhimurium grown 

under physiological low fluid shear (LFS) conditions similar to those encountered in the intestinal 

tract during infection uniquely regulates the virulence, gene expression and pathogenesis-related 

stress responses of this pathogen during log phase. Interestingly, the log phase Salmonella 

mechanosensitive responses to LFS were independent of the master stress response sigma 

factor, RpoS, departing from our conventional understanding of RpoS regulation. Since RpoS is a 

growth phase dependent regulator with increased stability in stationary phase, the current study 

investigated the role of RpoS in mediating pathogenesis-related stress responses in stationary 

phase S. Typhimurium grown under LFS and control conditions. Specifically, stationary phase 

responses to acid, thermal, bile and oxidative stress were assayed. To our knowledge the results 

from the current study demonstrate the first report that the mechanical force of LFS globally alters 

the S. Typhimurium χ3339 stationary phase stress response independently of RpoS to acid and 

bile stressors but dependently on RpoS to oxidative and thermal stress. This indicates that fluid 

shear-dependent differences in acid and bile stress responses are regulated by alternative 

pathway(s) in S. Typhimurium, were the oxidative and thermal stress responses are regulated 

through RpoS in LFS conditions. Results from this study further highlight how bacterial 

mechanosensation may be important in promoting niche recognition and adaptation in the 

mammalian host during infection, and may lead to characterization of previously unidentified 

pathogenesis strategies. 
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CHAPTER 1 

INTRODUCTION 

Salmonella enterica serovar Typhimurium 

Clinical Importance  
 

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative, non-

typhoidal, enteric bacterial pathogen. S. Typhimurium infections typically cause diarrhea and 

gastroenteritis in healthy individuals and can also cause systemic infections in individuals that are 

immunocompromised (Graham S. M., 2010; Majowicz et al. 2010; Parry et al. 2013; Varma et al. 

2005; Vugia et al. 2004). The global health impact by non-typhoidal Salmonella serovars has 

been estimated to cause 93.8 million illnesses, and 155,000 deaths annually and S. Typhimurium 

is an important contributor to these numbers (Majowicz et al. 2010; Scallan et al. 2005). In 2004 

the National Centers for Infectious Disease, Center for Disease Control and Prevention estimated 

that economic burden of Salmonella in the United States was an annual total cost of $2.8 billion 

(Adhikari et al. 2004). S. Typhimurium is known to cause illness when orally ingested, commonly 

through animal fecal contamination of food or water. This foodborne pathogen is also a health 

and safety concern of commercially produced food products (Alvarez-Ordonez et al. 2015; 

Painter et al. 2013).   

During the S. Typhimurium life cycle, the pathogen enters the host and encounters a 

change in temperature and acidic environment of the stomach. From the stomach Salmonella 

moves to the alkaline environment of the small intestinal duodenum, where bile salts are 

introduced for the break down of fat-soluble molecules. S. Typhimurium then moves into the 

ileum where it adheres to the mucosa and invades epithelial cells. During cell invasion, S. 

Typhimurium experiences oxidative stress by host cells and low intraphagosomal pH of 

macrophages (Murray, H. W. 1988; Ohkuma, S., Poole, B. 1978). S. Typhimurium encounters 

mechanical fluid shear in the external environment and as S. Typhimurium moves through the 

gastrointestinal tract, which is a regulatory factor of S. Typhimurium pathogenesis (Nauman et al. 
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2007; Nickerson et al. 2007; Nickerson et al. 2000, 2001, 2003, 2004; Pacello et al. 2012; Wilson 

et al. 2002a, 2002b, 2007, 2008).   

RpoS Regulation 
 

RpoS is closely related to the major housekeeping sigma factor RpoD (sigma 70), 

encoded by the rpoD gene, which transcribes the majority of genes and encodes important 

products for exponentially growing bacteria in normal conditions (Gross et al. 1992; Gruber and 

Gross, 2003). These two sigma factors recognize similar promoter sequences and can regulate 

different sets of genes (Hengge-Aronis, 2002b). Structurally and functionally similar, these sigma 

factors compete to reversibly bind core RNA polymerase, to form the holoenzyme necessary for 

promoter recognition and initiation of transcription (Gaal et al. 2001; Hengge-Aronis, 2002b) 

Distinct regions, –10 and –35 sites, upstream of the start point of transcription (designated as +1) 

have been conserved for sigma factor promoter recognition (Hengge-Aronis, 2002b). RpoD and 

RpoS deviate in their promoter specificity, specifically elements surrounding the -10 and -35 

regions, and length between the -10 and -35 regions, DNA topography and transcriptional 

regulators (Hengge-Aronis, 2002b). Expression of RpoS gene expression (mRNA and protein) is 

highly complex and involves regulation at multiple levels including transcriptional, translational, 

degradation and activity (Hengge-Aronis, 2002b). As it is not possible within the scope of this 

thesis to fully cover the complex regulation of RpoS however, there are some good reviews on 

the topic (Andrews-Polynebus et al. 2010; Audia et al. 2001; Dodd et al 2001, 2007; Rychlik et al. 

2005). In E. coli transcription of rpoS is activated by the general stress alarmone ppGpp, when 

unfavorable conditions require RpoS regulation, but no evidence of ppGpp regulating RpoS in S. 

Typhimurium at either the mRNA or protein level (Hirsch and Elliott, 2002; Lange et al. 1995; 

Lange and Hengge-Aronis, 1991, 1994, Gentry et al, 1993; Pizarro-Cedra and Tedin, 2004). 

Although ppGpp may not regulate RpoS in S. Typhimurium, Fis a DNA-binding protein has been 

shown to repress rpoS at the transcriptional level during log phase (Hirsch and Elliott, 2004; 

Pizarro-Cedra and Tedin, 2004). The RNA-chaperone Hfq and small regulatory RNAs (sRNA) are 

involved in the activation and inhibition of rpoS translation (Brennan et al. 2007; Lange and 
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Hengge-Aronis 1994; Muffler et al. 1997b; Repoila et al. 2003). The Hfq-dependent sRNA, DsrA 

and RprA work to promote rpoS translation through altering the secondary structure of rpoS 

mRNA (Majdalani et al. 1998, 2001; Muffler et al. 1997b). The sRNA OxyS is also Hfq-dependent, 

which represses rpoS translation through binding of Hfq and altering Hfq activity (Zhang et al. 

1998). The Hfq chaperone protein has also been implicated in regulating RpoS translational 

stability (Breannan R. G., 2007; Brown and Elliott, 1996; Muffler et al. 1997b) as well as in the 

control of pathogen virulence (Bajaj et al. 1996; Vogel et al. 2006; Wilson et al. 2007). Post-

translational regulation was observed from studies that show increased stability of the RpoS 

sigma factor during stationary phase, or encountering stressful conditions (Bearson et al. 1996; 

Hengge-Aronis, 2000, 2002a; Lynch et al. 2004; Muffler et al. 1996, 1997a).  The post-

translational regulation of RpoS stability through proteases, ClpXP, and phosphorylated response 

regulator proteins, RssB, determine the turnover rate of RpoS (Becker et al. 1999, 2002; Bearson 

et al. 1996, Bouche et al. 1998; Hengge, R., 2009; Lange and Hengge-Aronis, 1994; Hengge, R. 

2008; Klauck et al. 2001; Muffler et al. 1997a; Zhou et al. 2001). Negative regulation of RpoS is 

important to ensure that core RNA polymerase is available for proper sigma factor binding, during 

times RpoS is not essential for bacterial survival. The dynamic, complex and coordinated 

regulation of the RpoS sigma factor is important in establishing infection and survival of S. 

Typhimurium during its life cycle.    

RpoS a Major Regulator of Salmonella Stress Response and Virulence 
 

S. Typhimurium is exposed to a variety of stressors outside the host that are similar to 

those experienced within the host. Among these stressors include nutrient deprivation, oxidative, 

osmotic, and changes in pH and temperature (Alvarez-Ordonez et al. 2015; Hengge-Aronis 2000, 

2002a; Rychlick et al. 2005). The ability of S. Typhimurium to dynamically regulate gene 

expression and pathogenesis-related stress responses is crucial for the survival of this bacterium 

outside and within the host environment. The alternative sigma factor RpoS is encoded by the 

rpoS gene and is the master regulator of the general stress response in various Gram-negative 

bacteria, including Salmonella (Lange and Hengge-Aronis, 1991, Hengge, R. 2011; Loewen, P., 
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& Hengee-Aronis, R. 1994). RpoS plays a role in regulating the expression of genes in stationary 

phase and genes important to provide cross-protection to multiple environmental stresses in 

Escherichia coli (E. coli) and S. Typhimurium (Hengge-Aronis, 2000, 2002a). Although more 

stable in stationary phase, RpoS is active in log phase of growth (Lynch et al. 2004). Given the 

diverse function of genes regulated by RpoS, it is not surprising that Salmonella strains that carry 

a mutant rpoS allele display major alterations in their stress response phenotype and are highly 

attenuated for virulence. (Fang et al. 1992; Bang et al. 2005; Nickerson and Curtiss, 1997; 

Robbe-Saule et al. 1995; Wilmes-Riesenberg et al. 1997; Wilson et al. 2002a). Consistent with 

the central role for RpoS in Salmonella virulence, tissue distribution studies have shown a 

decreased ability for rpoS null mutant strains, as well as strains with rpoS allelic replacements, to 

colonize murine lymphoid Peyer’s patch tissue, as well as to reach the deep tissues of the liver 

and spleen (Coynault et al. 1996; Nickerson and Curtiss, 1997; Wilmes-Riesenberg et al. 1997).  

Relevant to deep tissue colonization, RpoS is known to regulate the Salmonella plasmid virulence 

(spv) genes, which are important for S. Typhimurium to establish an infection beyond the Peyer’s 

patches (Fang et al. 1992; Gulig and Doyle, 1993). 

 Importance of Fluid Shear  
 

Fluid shear is the force of fluid across the surface of an object as it moves through the 

fluid (Nauman et al. 2006; Nickerson et al. 2004). Fluid shear is a physical force measured in 

dynes/cm2, a measure of force per unit area, wherein one dyne equals one gram accelerated by 

1 cm/second2. It is important to understand what fluid shearing forces organisms are exposed to 

in vivo, in order to provide a better model for testing them in vitro. Although fluid shear is only one 

aspect of the bacterial microenvironment, it has been shown to play an important role in the 

global reprogramming of virulence, gene expression and/or pathogenesis-related stress 

responses of S. Typhimurium, E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus 

(Allen et al. 2008; Castro et al. 2011; Crabbe et al. 2010; Fang et al. 1997; Lynch et al. 2004; 

Nickerson et al. 2000; Nickerson et al. 2004; Pacello et al. 2012; Soni et al. 2014Wilson et al. 

2002a; Wilson et al. 2002b, Wilson et al. 2007). 
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It is important to mimic the fluid shear that is encountered by S. Typhimurium during its 

life cycle when performing in vitro studies, in order to collect data that best models interactions 

that occur in vivo. There are many ways to culture bacteria and not all represent the same 

environmental cues. In particular, S. Typhimurium encounters different physiologically relevant 

mechanical fluid shear forces, including high fluid shear (HFS) within the lumen of the small 

intestine and low fluid shear (LFS) between the brush border microvilli of epithelium (Beeson et 

al. 2000; Cai et al. 2000; Guo et al. 2000; Nickerson et al. 2004; Nauman et al. 2006). The 

mechanical forces sensed by S. Typhimurium in vivo should be considered when characterizing 

the bacteria for pathogenesis-related stress responses, but in order to mimic the fluid shear levels 

experienced by S. Typhimurium in vivo the proper culturing model and technique should be 

established.  

Culturing Techniques 
 

There are many methods that can be used to culture bacterial cells in order to identify 

cellular responses to stressful conditions, but it is important for in vitro models to mimic the in vivo 

fluid shear conditions that are relevant to the pathogen during its course of infection. Many well-

known culturing techniques like shaking or static cultures in flasks have been used for years. 

These conventional culturing techniques have provided a wealth of knowledge, but are limited in 

the ways they mimic the low physiological fluid shear encountered by pathogens in certain areas 

of the infected host.  

Rotating Wall Vessel  
 

The rotating wall vessel bioreactor (RWV) created by NASA at the Johnson Space 

Center (Houston, TX) is an optimized suspension culture technology that allows for investigation 

of the effects of fluid shear forces on cells (Schwarz and Wolf, 1991; Wolf and Schwarz, 1991). 

Culturing in the RWV allows cells to grow in suspension, while reducing the fluid shear forces 

encountered by the cell (Gao et al. 1997; Lynch et al. 2004; Nauman et al. 2006; Nickerson et al. 

2003, 2004; Schwarz and Wolf, 1991; Wilson et al. 2002a; Wolf and Schwarz, 1991). Within the 
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RWV bioreactor a hydrophobic membrane allows for oxygenation of the culture media (Nickerson 

et al. 2004, Schwarz and Wolf, 1991; Wolf and Schwarz, 1991). The RWV has been shown to 

culture cells under fluid shear conditions that are physiologically relevant to those encountered by 

pathogens in the infected host, including by Salmonella in the intestinal tract (Nauman et al. 2006; 

Nickerson et al. 2004) 

The RWV bioreactor was used in this study (Fig. 1). The RWV can rotate on either a 

horizontal or vertical axis, to study low fluid shear (LFS) and control conditions, respectively (Fig. 

2). When the RWV is rotating on a horizontal axis, it maintains a gentle fluid orbit of culture, which 

creates a low fluid shear (<0.01 dynes/cm2) environment for bacterial cultures (Nauman et al. 

2007). The sedimentation of cells within the RWV in the LFS orientation is offset by the solid body 

rotation of the media, allowing the cells to remain in suspension (Nickerson et al. 2004). All air 

bubbles are removed in order to minimize fluid shear disturbances to the cultures. The amount of 

fluid shear force that is experienced by the cells in the culture is based on the density of the cell 

relative to the media and the particles radius, as the radius and density increase, the fluid shear 

forces increase (Gao et al. 1997). When the RWV is rotated on a vertical axis (control orientation, 

Fig. 2) the cells sediment and experience increased fluid shear forces. 

 

Figure 1. RWV Bioreactor 
The NASA-engineered RWV bioreactor is an optimized suspension culture system that was 
developed to produce a physiologically relevant low fluid shear environment (LFS).  
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Figure 2. LFS and Control Orientations 
During experiments, reactors are rotated in either the LFS or control positions. In the LFS 
orientation, cells remain in suspension and do not sediment.  In the control orientation, bacteria 
sediment to the bottom of the vessel and are subjected to higher fluid shear conditions.  
(Modified from Dr. Jennifer Barrila).   

Published Studies Using the RWV 
 

Previous studies by our lab have shown that culturing S. Typhimurium χ3339 (the same 

strain used in this work) in the LFS condition to late log phase induced global changes in gene-

expression, virulence, and pathogenesis-related stress responses (Nickerson et al. 2000; Wilson 

et al. 2002a, 2002b). Collectively, the results of these studies suggested that the sigma factor 

RpoS would be a logical candidate that might serve as a global regulator of the LFS-induced 

response of S. Typhimurium (Hengge-Aronis 2000, 2002a; Nickerson et al. 2000; Wilson et al. 

2002a, 2002b).  In follow up studies, it was demonstrated by our lab that LFS-dependent stress 

regulation is RpoS independent for S. Typhimurium χ3339 grown to late log phase (Wilson et al. 

2002a). Based on our findings, Lynch et al. 2004 investigated the effects of LFS on E. coli stress 

regulation during log phase and stationary phase of growth, with subjection to a variety of 

environmental stressors. The LFS response of E. coli was found to be RpoS-independent in log 

phase, but RpoS-dependent in stationary phase (Lynch et al. 2004). A subsequent study by 

Pacello et al. 2012 using S. Typhimurium strain 14028 cultured to stationary phase (20 hours) 

 Low Fluid Shear  Control 
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found RpoS-dependent regulation of the LFS acid stress response, but RpoS-independent 

regulation for the LFS oxidative stress response (Pacello et al. 2012). To our knowledge we are 

the first to study the relationship between mechanosensation of the LFS culture environment by 

S. Typhimurium χ3339 in stationary phase of growth, and its effects on RpoS regulation of the 

general stress response to a broad spectrum of pathogenesis related stresses.  

Current Study 
 
 In this study, we test the hypothesis that low fluid shear stimulates regulation of multiple 

environmental stresses in S. Typhimurium χ3339 in an RpoS-independent manner at stationary 

phase of growth. Previous characterization of the same strain of S. Typhimurium in LFS 

conditions at late log phase has provided evidence for RpoS-independent regulation of the stress 

response through an alternative pathway(s), which we believe to also occur in stationary phase of 

growth (Wilson et al. 2002a). In this current study, we have identified stationary phase RpoS-

independent regulation of χ3339 to acid and bile stress, in addition to RpoS-dependent regulation 

to oxidative and thermal stress during LFS culture. To our knowledge this is the first report that 

mechanosensation of the LFS stimulus by S. Typhimurium χ3339 induces RpoS independent and 

RpoS dependent stress regulation to multiple environmental stresses at stationary phase of 

growth. This study expands on the complex regulation of S. Typhimurium to sense and respond 

to physiological fluid shear. 
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CHAPTER 2 

METHODS 

Bacterial Strains 
 

All studies were performed using S. Typhimurium strain χ3339 (wild type, CAN672), an 

animal-passaged isolate of SL1344 (Gulig, P., & Curtiss, R. 1987), and an isogenic rpoS mutant 

derivative of χ3339 (CAN968). Jiseon Yang performed construction of the rpoS mutant through 

deletion of the complete rpoS gene (+1 though +993 base pairs). A suicide plasmid was 

constructed and conjugated to the recipient’s plasmid. The first cross over conjugants of 

χ3339::pYA4804 were selected on Lennox Broth (LB) with 30 µg/mL chloramphenicol (Cm). The 

second crossovers were induced and selected with 5% sucrose. The ΔrpoS-deletion mutant was 

verified by PCR and also verified as Cm-sensitive and catalase-negative. A catalase-negative 

phenotype would be present due to the absence of rpoS-dependent catalase gene expression. 

Growth Conditions 
 

Bacteria were grown in LB for all experiments (Lennox, E.S., 1955). Bacterial strains 

were inoculated into 5 mL of LB in a 15 mL snap-cap tube directly from frozen glycerol stock 

using a sterile pipette tip. Bacteria were cultured at 37oC, shaking at 250 rpm for 15 hours 

(overnight culture). A 1:200 dilution was subsequently made by transferring 750 µL of overnight 

culture into fresh 150 mL of LB media in a 250mL flask. This 50 mL of culture was loaded into the 

RWV bioreactor, completely filling the vessel with media and all air bubbles removed. The RWVs 

were oriented for growth in the LFS and HFS orientations (Fig. 2). RWVs were placed into a 37oC 

incubator rotated at a speed of 25 rpm. Cultures were harvested after 24 hours of growth for all 

experiments, unless indicated otherwise. At 24 hours, LFS and control cultures were in stationary 

phase of growth.  

Growth Curve 
 

Cultures of both strains of S. Typhimurium were grown in the RWV bioreactors in LB 

media in the LFS and HFS control orientations for 24 hours at 37oC and 25 rpm. The growth 
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curve was performed by sampling from the RWVs, with removal and inversion of the HFS control 

bioreactor in order to thoroughly mix the culture (necessary due to sedimentation of bacteria in 

control RWV) (Fig. 3). Cultures were sampled every hour over the course of 12 hours and 

cultures serially diluted and plated for viable colony forming units (CFU/mL) on LB agar plates. 

The second half of the growth curve (remaining 12 hours) samples was taken every 2 hours. Two 

independent trials were performed for both the wild type and mutant strains.  

Environmental Stress Assays 
 

Strains were grown in the RWV bioreactors in the LFS and HFS control orientations at 

37oC and harvested after 24 hours of growth. Once harvested, the cultures were immediately 

subjected to the environmental stress condition being tested. With the exception of thermal 

stress, all cultures were incubated statically on the bench top at room temperature for the 

duration of the stress assay. Acid stress was subjected to the culture by lowering the pH of the 

culture to 3.5 with the addition of sterile 1M citrate buffer. During the acid stress assay, the pH 

was monitored using a pH probe on an additional culture sample to avoid contamination. 

Following the acid stress assay, the pH of the LFS and HFS control cultures was confirmed using 

a pH probe. The acid stress assay was performed for 60 minutes, with cultures sampled, serially 

diluted, and plated at 30, 45, and 60 minutes (Fig. 4). The bile stress assay was performed by the 

addition of 10% bile salts (1.18mM) (Sigma-Aldrich: B8756). Cultures were sampled, serially 

diluted and plated 15, 30, 60 and 90 minutes (Fig. 5). Oxidative stress using fresh hydrogen 

peroxide (stored at 4°C for less than a month) was added to the culture from a 30% stock solution 

to a final concentration of 0.09% for both strains. The assay was performed at room temperature 

for 30 minutes, serially diluted and plated at 15 and 30 minutes (Fig. 6). An additional oxidative 

stress assay using fresh 30% stock solution and adding a final concentration of 0.24% to the wild-

type strain was performed for 30 minutes (Fig. 7). For thermal stress assay, a 2 mL aliquot was 

immediately transferred to heating blocks that were set at a temperature of 53oC. The assay was 

performed statically for 60 minutes and cultures sampled, serially diluted and plated at 15, 30, 45, 

and 60 minutes (Fig. 8). For all of the stress assays, samples were removed at time zero before 
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the stress was added to the culture. In addition, samples were removed at the designated time 

points and plated on LB agar to determine the number of viable colony forming units (CFU/mL). 

For these data, the percent survival was calculated as the number of CFU/mL at each time point 

divided by the number of CFU/mL at time zero. For each assay, at least three independent trials 

were performed using independent cultures. p-values were calculated using two-tailed Student’s 

t-test. Significance is indicated in graphs by * p <0.05, ** p <0.01, and *** and p <0.001. 
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CHAPTER 3 

RESULTS 

Growth Curve 
 
 Previous studies by our laboratory demonstrated that wild type S. Typhimurium χ3339 

displayed no differences in its growth profiles in L broth when grown in the LFS and control 

conditions (Nickerson et al. 2000). In the current study, growth curves were performed to confirm 

this trend with the wild type, as well as to determine if culturing in LFS affects the growth 

dynamics of the newly constructed S. Typhimurium χ3339 ΔrpoS mutant (Fig. 3). Both strains 

were cultured in LB media for 24 hours at 37oC in the RWVs positioned in the LFS and control 

orientations and rotated at 25 rpm. Wild type S. Typhimurium χ3339 and the ΔrpoS mutant strain 

displayed no significant differences in growth between the LFS and control conditions. There is 

an observed jump in the growth curve at 12 hours and could be due to the start of the second part 

of the growth curve in a separate experiment were the incubating bioreactors were not disturbed 

and held at a constant temperature of 37 oC for 12 hours. The first part of the experiment requires 

the incubator be opened every hour to retrieve samples, changing the temperature of the 

incubator. This has an observed effect on the bacterial growth when cultures are disturbed. The 

data confirmed that both strains were in stationary phase of growth at 24 hours and shared 

similar growth profiles when cultured in LFS and control conditions. The 24 hour time point was 

selected for the environmental stress assays.  
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Growth Curve 
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Figure 3. Growth Curve 
Growth curve for (A) wild type Salmonella χ3339 (CAN968) and (B) χ3339 ΔrpoS (CAN672) 
cultured in low fluid shear (LFS), blue bar, and control (Con), red bar, conditions for 24 hours at 
25 rpm at 37oC. The percentage of number of bacteria present was determined through plating 
dilutions on LB agar. There were two independent trials run. The p-value was calculated through 
a two-tailed t-test. P-value is significant if (<0.05).   

Environmental Stress Assays 
 

S. Typhimurium χ3339 and ΔrpoS strains were cultured in LB media for 24 hours in RWV 

bioreactors, rotating at 25 r.p.m. in the LFS and control orientations, and incubated at 37°C. At 24 

hours of growth (stationary phase) the RWV bioreactors were harvested and immediately 

subjected to environmental stress. This culture technique was used for all environmental stress 

assays. These assays were used to establish whether RpoS plays a role in regulating select 

pathogenesis-related stress responses of S. Typhimurium following culture in the LFS 

environment. 
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To test the response of S. Typhimurium to pathogenesis-related stress, χ3339 and ΔrpoS 

strains were subjected to acid or bile stress. After challenging S. Typhimurium χ3339 and ΔrpoS 

strains with acid pH 3.5 (Fig. 4), a comparison was made between the survival profiles for each 

strain cultured in the LFS and control orientations. Consistent with previous studies performed by 

our laboratory using stationary phase cultures of χ3339 (Wilson et al. 2007, Wilson et al. 2008), 

we found in this study that LFS culture reduced the resistance of S. Typhimurium to acid stress 

(Fig. 4a). A similar trend was observed with the isogenic rpoS mutant when cultured in the LFS 

condition, wherein the LFS cultures were more sensitive to acid stress relative to the control 

cultures (Fig. 4b). The rpoS mutant strain displayed increased sensitivity to this stress compared 

to the wild type.  These similar trends in survival profiles between the LFS and control condition 

were also observed, when each strain was challenged with bile salts at 10% concentration (Fig. 

5).  
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Figure 4. Acid Stress Assay 
Salmonella strains (A) χ3339 (CAN968) and (B) ΔrpoS (CAN672) were cultured in LFS (blue 
bars) and control (Con, red bars) growth conditions for 24 hours at 37°C, and Percent survival 
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was assessed at each time point by sampling each culture, performing serial dilutions and plating 
on LB agar to determine CFU/ml. Bacterial counts at each time point were normalized to the 
counts obtained prior to the addition of the stress. Results shown represent three biological 
replicates, with three technical replicates per experiment. The p value was calculated using a 
Student’s t-test. P-value is considered significant if p <0.05. The error bars correspond to the 
standard error of the mean. 
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Figure 5. Bile Stress Assay 
Salmonella strains (A) χ3339 (CAN968) and (B) ΔrpoS (CAN672) were cultured in the RWV 
oriented in the LFS (blue bars) and control (Con, red bars) orientations for 24 hours at 37°C, and 
then subjected to a 10% bile salt concentration. Percent survival was assessed at each time point 
by sampling each culture, performing serial dilutions and plating on LB agar to determine CFU/ml. 
Bacterial counts at each time point were normalized to the counts obtained prior to the addition of 
the stress. Results shown represent three biological replicates, with three technical replicates per 
experiment. The p value was calculated using a Student’s t-test. P-value is considered significant 
if p <0.05. The error bars correspond to the standard error of the mean. 
 

 
S. Typhimurium wild type and rpoS mutant strains were subjected to 0.09% hydrogen 

peroxide (H2O2) oxidative stress following RWV culture (Fig. 6). Each strain showed no significant 

difference in response to oxidative stress after culturing in LFS and control conditions in the 

0.09% concentration of H2O2. The rpoS mutant displayed enhanced sensitivity compared to the 

wild type.  The wild type and rpoS mutant strains shared similar trends in response to 0.09% 
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H2O2 oxidative stress for both the LFS and control growth orientations. Since the wild type 

response to 0.09% H2O2 oxidative stress showed little decrease in survival, additional assays 

were performed with 0.24% H2O2 oxidative stress (Fig. 7). The results showed an increased 

sensitivity of the wild type in LFS conditions exposed to 0.24% H2O2. 
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Figure 6. Oxidative Stress Assay 0.09% 
Salmonella strains (A) χ3339 (CAN968) and (B) ΔrpoS (CAN672) were cultured in the RWV 
oriented in the LFS (blue bars) and control (Con, red bars) orientations for 24 hours at 37°C, and 
then subjected to 0.09% hydrogen peroxide. Percent survival was assessed at each time point by 
sampling each culture, performing serial dilutions and plating on LB agar to determine CFU/ml. 
Bacterial counts at each time point were normalized to the counts obtained prior to the addition of 
the stress. Results shown represent three biological replicates, with three technical replicates per 
experiment. The p value was calculated using a Student’s t-test. P-value is considered significant 
if p <0.05. The error bars correspond to the standard error of the mean. 
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Figure 7. Oxidative Stress Assay 0.24%  
Salmonella strains (A) χ3339 (CAN968) was cultured in the RWV oriented in the LFS (blue bars) 
and control (Con, red bars) orientations for 24 hours at 37°C, and then subjected to 0.24% (WT 
χ3339) and (χ3339 ΔrpoS) hydrogen peroxide. Percent survival was assessed at each time point 
by sampling each culture, performing serial dilutions and plating on LB agar to determine CFU/ml. 
Bacterial counts at each time point were normalized to the counts obtained prior to the addition of 
the stress. Results shown represent three biological replicates, with three technical replicates per 
experiment. The p value was calculated using a Student’s t-test. P-value is considered significant 
if p <0.05. The error bars correspond to the standard error of the mean. 
 

S. Typhimurium wild type and rpoS mutant strains were subjected to thermal stress 

(53oC) following RWV culture (Fig. 8). Interestingly, the wild type and rpoS mutant strains showed 

opposite trends in response to thermal stress. The wild type strain displayed an increased 

sensitivity for cultures grown under low fluid shear relative to the control cultures. Conversely, the 

rpoS mutant strain was more resistant to thermal stress following low fluid shear culture relative 

to the control. In accordance with observations from a previous study, the rpoS mutant was more 

sensitive to thermal stress relative to the wild type (Wilson et al. 2002a).  
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Figure 8. Thermal Stress Assay 
Salmonella strains (A) χ3339 (CAN968) and (B) ΔrpoS (CAN672) were cultured in the RWV 
oriented in the LFS (blue bars) and control (Con, red bars) orientations for 24 hours at 37°C, and 
then subjected to thermal stress at 53oC. Percent survival was assessed at each time point by 
sampling each culture, performing serial dilutions and plating on LB agar to determine CFU/ml. 
Bacterial counts at each time point were normalized to the counts obtained prior to the addition of 
the stress. Results shown represent three biological replicates, with three technical replicates per 
experiment. The p value was calculated using a Student’s t-test. P-value is considered significant 
if p <0.05. The error bars correspond to the standard error of the mean.   
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CHAPTER 4 

DISCUSSION 

The purpose of this study was to investigate the relationship between fluid shear and 

RpoS regulation of the stationary phase S. Typhimurium stress response. RpoS is the master 

regulator of the general stress response and provides cross-protection against different 

environmental stresses (Hengge-Aronis, 2000, 2002a). S. Typhimurium encounters a variety of 

environmental stresses during its normal lifecycle including acid, bile, oxidative, and thermal 

stress (Hengge-Aronis, 2000, 2002a; Hofmann A. F., 1998, Rychlik et al. 2005). The ability of the 

bacterium to survive these and other stressors dictates the outcome of infection, and as such, 

RpoS has been shown to regulate genes involved in virulence and pathogenesis-related stress 

resistance (Allen et al. 2008; Bang et al. 2005; Coynault et al. 1996; Fang et al. 1992; Hengge-

Aronis, 2000, 2002a; Nickerson et al. 2000, 2004; Robbe-Saule et al. 1995; Wilmes-Riesenberg 

et al. 1997; Wilson et al. 2002a, 2002b).  

It is essential to study the response of Salmonella within the context of physiologically 

relevant forces found in vivo, including low fluid shear, which is encountered by Salmonella in 

several regions of the body, including between brush border microvilli of the intestinal epithelium 

(Guo et al. 2000; Nickerson et al. 2004). Previous studies by our lab using wild type S. 

Typhimurium χ3339 cultured in the RWV to late log phase were the first to demonstrate that the 

mechanical force of fluid shear can alter the virulence, global gene expression and stress 

response profiles of the pathogen (Nickerson et al. 2000; Wilson et al. 2002a, 2002b). Follow-up 

studies by our lab using an isogenic rpoS mutant strain found that during late log phase of growth 

LFS regulation of acid, osmotic, thermal and oxidative stress was independent of RpoS (Wilson et 

al. 2002a). These studies suggested that LFS culture pre-adapts S. Typhimurium to respond to 

acid, thermal, osmotic and oxidative stress using an alternative pathway(s) (Wilson et al. 2002a). 

These studies formed the basis for the current set of experiments presented here. This study is 

the first to look at the correlation between LFS and RpoS regulation of stress in response to a 

broad spectrum of pathogenesis-related stresses in stationary phase S. Typhimurium χ3339. 
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In this study, it was determined that the LFS condition displayed increased sensitivity to 

acid and bile stress relative to the control condition for both the wild type and isogenic rpoS 

mutant, indicating that under the conditions tested in this work, RpoS is not involved in regulating 

the stationary phase LFS-response of S. Typhimurium to those stresses, but does provide cross-

protection that is observed as the increased sensitivity of the rpoS mutant. The underlying reason 

for LFS-associated sensitivity of S. Typhimurium relative to the control during stationary phase is 

not known, although Hfq a global regulator has been shown previously by our lab to be a likely 

regulator of the expression of a large group of genes in response to the LFS stimulus (Wilson et 

al. 2002b, 2007). Hfq is a RNA chaperone protein that activates small regulatory RNAs that have 

been shown to directly regulate RpoS stability (Muffler et al. 1997b). 

In previous studies by other laboratories, it was determined that E. coli and S. 

Typhimurium strain 14028 grown to stationary phase displayed an RpoS-dependent phenotype to 

acid stress (Lynch et al. 2004; Pacello et al. 2012). This is in contrast to the findings of this study, 

which showed an RpoS-independent phenotype to acid stress (Fig. 4). In late log phase, S. 

Typhimurium χ3339 expressed an enhanced survival when cultured in LFS as compared to the 

control condition after being subjected to acid stress (Wilson et al. 2002a). Although S. 

Typhimurium χ3339 cultures grown to log phase and stationary phase share acid stress 

regulation independent of RpoS, they do not share trends in survival profiles when cultured in the 

LFS orientation. RpoS is but one of many regulators that act to induce acid shock proteins (ASP).  

The existence of other regulators (discussed below) could explain the RpoS independent 

regulation of S. Typhimurium χ3339 in stationary phase under LFS conditions.   

In addition to RpoS, the PhoP and Fur proteins can regulate the acid tolerance response 

(ATR), by induction of ASP (Baik et al. 1996; Bearson et al. 1996, 1997, 1998; Foster, J., & 

Spector, M. 1995; Rychlik et al. 2005). In an RpoS independent response to acid stress, S. 

Typhimurium can induce ATR by using the PhoP protein, the regulator of the PhoP/PhoQ two-

component system (PhoP/Q) and stabilizer of RpoS in the acid stress response (Bearson et al. 

1998; Ruiz and Silhavy, 2003; Zwir et al. 2005). The PhoP/Q system has been shown to be 
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important in macrophage survival and virulence (Galan, J., & Curtiss, R. 1989; Mahan et al. 

1996). It is also responsible for sensing Mg+2, and can regulate genes for pH-resistance (Vescovi 

et al. 1994; Zwir et al. 2005). Another ATR regulator is the ferric uptake regulator (Fur), known for 

its regulation of iron dependent genes, and has been shown to also regulate ASP through an iron 

independent manner (Bearson et al. 1996; Hall et al. 1996). Both PhoP and Fur mutants express 

increased acid sensitivity, which suggests their importance in the ATR (Hall et all 1996; Vescovi 

et al. 1994). PhoP, Fur, or other proteins may be contributing to the acid stress response of S. 

Typhimurium χ3339 under the LFS conditions (Wilson et al. 2002a, 2002b, 2007, 2008).  

Other studies have indicated a role for RpoE, the alternative sigma factor responsible for 

membrane and periplasmic homeostasis during extracytoplasmic stress, in resistance to low pH 

in vitro (Humphreys et al. 1999; Muller et al. 2009; Testerman et al. 2002). RpoE may also be 

playing a role in S. Typhimurium resistance to acid stress in LFS conditions. Hfq regulates PhoP, 

Fur, RpoE, and RpoS proteins (Wilson et al. 2002b, 2007, 2008). Hfq regulates the PhoP/Q 

system with the sRNA, GcvB, which expresses the gene rstB (Jin et al. 2009; Wilson et al. 

2002b). The putative membrane sensory kinase rstB gene is up regulated during LFS culture in 

addition to Hfq and is able to regulate the Fur protein (Jeon et al. 2008; Wilson et al. 2002b, 

2007). Along with Fur, Dps is a ferritin and stress response protein that is capable of providing 

resistance to stress (Nair and Finkel, 2004). Furthermore, Hfq is known to directly and indirectly 

regulate Dps expression, a DNA binding protein that is responsible for acid tolerance, oxidative 

tolerance and thermal tolerance by altering DNA topography (Nair and Finkel, 2004).   

 S. Typhimurium encounters bile salts when entering the duodenum, were the bile salts 

that are stored in the gall bladder and synthesized by liver hepatocytes are released (Hofmann A. 

F., 1998). Detergent-like bile salts can cause damage to the cell membrane, proteins, and DNA 

(Begley et al. 2005; Merritt and Donaldson, 2009; Prieto et al. 2004). To our knowledge this study 

is the first study to examine the effects of bile salt in stationary phase cultured S. Typhimurium 

χ3339 under LFS conditions (Fig. 5). The results from this study show an RpoS independent 

regulation of bile stress in response to LFS. RpoS independent genes have been recognized as 
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bile resistance factors, such as those that encode outer membrane proteins and the PhoP/Q 

regulon (Prouty et al. 2002; Prouty et al. 2004; Pucciarelli et al. 2002; Rychlik et al. 2005; van 

Velkinburgh and Gunn, 1999). PhoP/Q is important in both acid and bile stress resistance and 

could be a mechanism by which the LFS resistance is regulated. In addition, due to the 

expression of outer membrane proteins during exposure to bile stress, RpoE the extracytoplamic 

sigma factor may be involved with bile resistance in LFS conditions of S. Typhimurium 

(Hernandez et al. 2012; Mecsas et al. 1993; Prouty et al. 2002; Pucciarelli et al. 2002). Again, the 

global regulator Hfq could play a regulatory role for the RpoS independent response to bile stress 

and has been shown to regulate outer membrane proteins (Wilson et al. 2002b, 2007, 2008).  

As S. Typhimurium interacts with the host within the brush border microvilli of the 

intestinal epithelium, it is subjected to active oxygen species, phagocytic bursts by host cells, and 

oxidative stress (Farr and Kogoma, 1991). Previously examined S. Typhimurium rpoS mutants 

have shown increased sensitivity to oxidative stress, providing evidence of RpoS regulation (Fang 

et al. 1992; Robbe-Saule et al. 1995; Wilmes-Riesenberg et al. 1997; Wilson et al. 2002a). S. 

Typhimurium cultured in LFS conditions and subjected to oxidative stress has been shown to be 

RpoS independent in late-log and stationary phase (Wilson et al. 2002a; Pacello et al. 2012). The 

findings from this study represent RpoS dependent stress regulation of oxidative stress for S. 

Typhimurium χ3339 cultured in LFS to stationary phase of growth. The results between the S. 

Typhimurium 14028 and χ3339 strains also differed in respect to the survival profile trends. The 

survival profile for S. Typhimurium 14028 exhibited enhanced resistance in the LFS condition 

(Pacello et al. 2012), as S. Typhimurium χ3339 showed no difference in resistance between the 

LFS and control conditions at 0.09% H2O2 (Fig. 6), and an increased sensitivity in LFS when the 

wild type was subjected to 0.24% (Fig. 7), which confirms previous findings (Soni et al. 2014). 

The rpoS mutant was subjected to 0.24% H2O2 concentration and showed no survival (data not 

shown). LFS culture orientation provided increased sensitivity to S. Typhimurium χ3339 cultured 

in late-log phase, compared to the enhanced resistance observed in response to other stresses 

(Wilson et al. 2002a). Although, RpoS has been identified as a regulator of the oxidative stress 
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response, Hfq and the alternative sigma factor RpoE also regulate genes and proteins 

responsible for oxidative stress tolerance, were Hfq regulates the oxidative stress response 

independent of RpoS (Figueroa-Bossi et al. 2006; Guisbert et al. 2007; Sittka et al. 2007; Wilson 

et al. 2007; Zhang et al. 1998). RpoE mutants have shown to be sensitive to oxidative stress 

providing a role for RpoE in the regulation of this stress response (Testerman et al. 2002). RpoE 

has been shown to play a role in regulating RpoS and assists RpoS in response to oxidative 

stress in stationary phase (Muffler et al. 1997a; Rychlik et al. 2005; Testerman et al. 2002). 

Therefore, the RpoS dependent stress response may be occurring either in addition to the global 

regulator Hfq or activity of RpoE when exposed to oxidative stress.  

This study revealed the LFS condition induced RpoS dependent stress response to 

increased temperature in stationary phase S. Typhimurium χ3339 (Fig. 8). The findings from this 

study support the RpoS dependent regulation and response to thermal stress in LFS conditions. 

A previous study by our lab indicated that LFS culture enhanced the resistance to thermal stress 

of late log S. Typhimurium χ3339, independent of RpoS (Wilson et al. 2002a). Interestingly, in this 

study the wild type strain expressed increased sensitivity when it was cultured in LFS orientation. 

However, the rpoS mutant exhibited enhanced resistance when cultured in LFS condition (Wilson 

et al. 2002a). The down regulation of RpoS in LFS conditions may occur as a regulatory system 

that decreases expression of RpoS for the increased expression of the heat shock alternative 

sigma factors RpoH and RpoE. In addition, studies using E. coli and the regulation of RpoH and 

heat shock proteins (HSP), indicated high expression levels as temperature increased rapidly, 

called the induction phase and lasts until adaptation phase occurs 20-30 minutes after exposure 

(Arsene et al. 2000; Guisbert et al. 2004; Herman, 2000; Rouviere et al. 1995; Straus et al. 1987; 

Yura et al. 2000). RpoE and RpoH have also been shown to provide heat tolerance in Salmonella 

(Rychlik et al. 2005). These findings suggest a role for LFS condition effecting the regulation of 

heat shock proteins using RpoH, and a possible explanation for enhance rpoS mutant resistance 

to wild type levels.  
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In summary, this study suggests that when pre-adapted in LFS conditions, stationary 

phase, the response of S. Typhimurium χ3339 to acid and bile stressors is independent of the 

master regulator of the general stress response, RpoS. In addition, S. Typhimurium χ3339 

regulates oxidative and thermal stress responses dependent of RpoS when cultured in LFS to 

stationary phase.  

In the LFS condition, the master regulator of the general stress response provides 

protection to the cell through cross-protection and not in response to acid or bile stress. Although 

stationary phase S. Typhimurium χ3339 expressed RpoS independent regulation of the stress 

response to acid and bile stress, the complete loss of tolerance was not observed and therefore 

suggests that other key pathway(s) are being utilized to respond to environmental stress. The 

regulation of Hfq has been previously examined by our lab, and can globally alter gene 

expression, virulence and pathogenesis related stress responses when exposed to LFS 

conditions (Wilson et al. 2007).  

Future investigations should also look into the RpoS dependent gene expression of 

oxidative and thermal stresses when S. Typhimurium χ3339 is cultured in LFS. Interestingly, the 

RpoS dependent regulation in the LFS condition does not enhance the resistance of S. 

Typhimurium χ3339, but instead increases the sensitivity of the wild type. This provides a 

platform for further investigation to identify the way stationary phase S. Typhimurium regulates 

RpoS in LFS and may provide new insight for regulation of pathogenesis-related stress 

responses. 

In conclusion, this study has examined the relationship between LFS and RpoS stress 

response regulation by stationary phase S. Typhimurium χ3339. The stress assays provided 

evidence of both RpoS independent (acid and bile) and RpoS dependent (oxidative and thermal) 

stress response regulation by stationary phase S. Typhimurium χ3339 in LFS cultures. The role 

of RpoS in regulating the general stress response to oxidative and thermal stress in LFS 

conditions by S. Typhimurium χ3339 has presented a platform for future investigation into the 

effects of LFS and RpoS regulation. Future studies should investigate the concentration of RpoS 
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in the LFS and control growth conditions in stationary phase S. Typhimurium χ3339 after being 

subjected to oxidative and thermal stress, to identify how RpoS is being regulated. To distinguish 

the concentration of protein between LFS and control, the Bardford protein assay can be utilized 

to identify whether LFS is affecting overall protein expression in stationary phase S. Typhimurium 

χ3339. Following the Bradford protein assay, it will be important to address whether there is 

differences at the transcriptional level. Regulation of rpoS during transcription can be observed by 

performing a quantitative PCR analysis. A quantitative western blot analysis can identify whether 

there is a difference in the translational regulation of RpoS between LFS and control conditions. 

These potential future studies will provide information about the regulation of RpoS in LFS 

conditions at the transcriptional and translational levels, to provide insight into the regulation of 

RpoS in stationary phase S. Typhimurium χ3339 oxidative and thermal stress response. 

The results generated from this study establish that the physiological LFS globally alters 

the response to acid and bile stress independent of RpoS in stationary phase S. Typhimurium 

χ3339, while RpoS was shown to provide cross-protection. Providing evidence for the LFS 

condition capable of inducing RpoS independent response to stress in stationary phase S. 

Typhimurium χ3339 through an alternative pathway(s). To our knowledge, this is the first report 

that the general stress response to acid and bile stressors in stationary phase LFS-cultured S. 

Typhimurium χ3339 is regulated independently of RpoS, while oxidative and thermal stress 

response was regulated dependently on RpoS. Future studies will aim to further understand 

known and unknown mechanisms of the LFS regulatory circuit. Results from this study further 

highlight how S. Typhimurium integrates the process of mechanosensation in its regulatory 

paradigm to uniquely pre-adapt the organism to survive pathogenic stresses in a manner that is 

different from that observed during conventional culture, and which may lead to characterization 

of previously unidentified virulence strategies. 
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