
Answer Set Programming Modulo Theories

by

Michael Bartholomew

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2016 by the
Graduate Supervisory Committee:

Joohyung Lee, Chair
Rida Bazzi

Charles Colbourn
Georgios Fainekos
Vladimir Lifschitz

ARIZONA STATE UNIVERSITY

May 2016



ABSTRACT

Knowledge representation and reasoning is a prominent subject of study within the

field of artificial intelligence that is concerned with the symbolic representation of

knowledge in such a way to facilitate automated reasoning about this knowledge.

Often in real-world domains, it is necessary to perform defeasible reasoning when

representing default behaviors of systems. Answer Set Programming is a widely-

used knowledge representation framework that is well-suited for such reasoning tasks

and has been successfully applied to practical domains due to efficient computa-

tion through grounding–a process that replaces variables with variable-free terms–

and propositional solvers similar to SAT solvers. However, some domains provide a

challenge for grounding-based methods such as domains requiring reasoning about

continuous time or resources.

To address these domains, there have been several proposals to achieve efficiency

through loose integrations with efficient declarative solvers such as constraint solvers

or satisfiability modulo theories solvers. While these approaches successfully avoid

substantial grounding, due to the loose integration, they are not suitable for per-

forming defeasible reasoning on functions. As a result, this expressive reasoning on

functions must either be performed using predicates to simulate the functions or in

a way that is not elaboration tolerant. Neither compromise is reasonable; the former

suffers from the grounding bottleneck when domains are large as is often the case in

real-world domains while the latter necessitates encodings to be non-trivially modified

for elaborations.

This dissertation presents a novel framework called Answer Set Programming Mod-

ulo Theories (ASPMT) that is a tight integration of the stable model semantics and
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satisfiability modulo theories. This framework both supports defeasible reasoning

about functions and alleviates the grounding bottleneck. Combining the strengths of

Answer Set Programming and satisfiability modulo theories enables efficient contin-

uous reasoning while still supporting rich reasoning features such as reasoning about

defaults and reasoning in domains with incomplete knowledge. This framework is

realized in two prototype implementations called MVSM and ASPMT2SMT, and

the latter was recently incorporated into a non-monotonic spatial reasoning system.

To define the semantics of this framework, we extend the first-order stable model

semantics by Ferraris, Lee and Lifschitz to allow “intensional functions” and provide

analyses of the theoretical properties of this new formalism and on the relationships

between this and existing approaches.
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Chapter 1

INTRODUCTION

Knowledge Representation and Reasoning is an area of study within the field of

Artificial Intelligence that is concerned with the symbolic representation of knowl-

edge in such a way to facilitate automated reasoning about this knowledge. Many

approaches in this area are based on formal logics, often having limitations that make

certain kinds of reasoning difficult or preclude efficient computation. In particular,

we often want to efficiently reason about expressive functions.

While first-order logic (FOL) is well-known and decidable fragments of FOL are

used in knowledge representation formalisms such as Description Logic and Boolean

Satisfiability (SAT), it is unsuitable for certain kinds of reasoning. One such reason-

ing is defeasible reasoning such as reasoning about inertia or the default behavior of

a system. This kind of reasoning is important for systems that do not always have

complete information about the domain, but should still make decisions based on

default assumptions of the world. However, such reasoning cannot be naturally ex-

pressed in FOL due to its monotonic nature. For instance, FOL is not well-structured

for representing defaults such as that by default, a box will remain at its previous

location. Due to this limitation, there has been extensive work in developing and

studying non-monotonic formalisms.

One successful nonmonotonic formalism that has been successfully applied to a

number of real world domains is the stable model semantics Gelfond and Lifschitz

(1988). The Answer Set Programming (ASP) framework is based on this formalism

and has successfully been applied to domains such as Automated Product Configura-
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tion Tiihonen et al. (2003), Space Shuttle Decision Support Balduccini et al. (2001),

and Phylogenetic Tree Inference Brooks et al. (2007) 1 . The success of these appli-

cations of ASP is largely due to efficient grounders–tools that replace variables with

ground terms–and efficient solvers, which are based on SAT solvers.

However, grounding-based methods suffer when the domain contains many values

as is the case in many real-world settings requiring reasoning about continuous time

or resources. For example, we consider a simple domain in which a tank of water

has some current water level that remains the same by default but can increase at a

constant rate when an input valve is open and decrease at a constant rate when on

output valve is open. The reasoning task of determining the current water level of

the tank requires reasoning about continuous time but any grounding based method

will need to discretize this and to achieve reasonable approximations, the discretized

domain must be quite large.

To address this grounding bottleneck, several formalisms have been proposed that

avoid extensive grounding. This is achieved by loosely integrating Answer Set Pro-

gramming with other declarative formalisms such as constraint processing Gebser

et al. (2009a); Balduccini (2009), satisfiability modulo theories (SMT) Janhunen et al.

(2011), and mixed integer programming Liu et al. (2012). While these approaches

outperform standard ASP, due to the loose coupling, these approaches treat functions

as in First-order logic so that they are unsuitable for defeasible reasoning. Further,

except for Balduccini (2009), these approaches all consider integral domains, but are

not able to perform continuous reasoning.

Approaches such as Cabalar (2011); Lifschitz (2012); Balduccini (2012) have in-

corporated so-called “intensional functions” into the stable model semantics in order

1This list comes from Lifschitz (2008).
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to support defeasible reasoning about the value of functions (nonBoolean fluents).

Intensional functions are intuitively functions that are defined in terms of other func-

tions and predicates as opposed to predefined functions. For example, we can express

the speed of a car as an intensional function that relies on the applied acceleration

and previous speed of the car, whereas the function ’+’ is usually intended to be

defined as arithmetic addition.

However, these frameworks are not focused on efficient computation and do not

address the grounding bottleneck. In addition, the semantics described in Cabalar

(2011); Balduccini (2012) are defined using a more complex notion of satisfaction

than in the original stable model semantics while Lifschitz (2012) exhibits some be-

havior that is unexpected compared to typical extensions of the original stable model

semantics.

We propose a novel framework–Answer Set Programming Modulo Theories (ASPMT)–

that addresses some deficiencies in both groups of proposals. ASPMT is a tight in-

tegration of ASP and SMT that addresses the grounding bottleneck present in ASP

and the restricted reasoning about functions present in SMT, resulting in a framework

that is able to perform defeasible reasoning on continuous domains. To give the for-

mal semantics of this framework, we introduce the functional stable model semantics

(FSM), defined similarly to the first-order stable model semantics by Ferraris, Lee

and Lifschitz Ferraris et al. (2011) but supporting the notion of intensional functions

so that we attain the ability to support defeasible reasoning on these functions. By

directly augmenting the first-order stable model semantics, we are able to extend

some of the results established for the first-order stable model semantics. With these

two newly introduced formalisms, we see a complete analogy between SAT, SMT,

and FOL and the nonmonotonic counterparts ASP, ASPMT, and FSM.
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Monotonic Nonmonotonic

First-order Logic Functional Stable Model Semantics

Satisfiability Modulo Theories Answer Set Programming Modulo Theories

Propositional Satisfiability Answer Set Programming

We provide two prototype implementations of the ASPMT system–MVSM and

ASPMT2SMT. System MVSM computes the stable models of ASPMT theories by

a reduction to ASP. While this approach still suffers the grounding bottleneck, it

provides a more natural representation of functions while also adding basic typing to

ASP. System ASPMT2SMT computes the stable models of ASPMT theories by a

reduction to SMT. This approach partially addresses the grounding bottleneck and in

doing so, is able to perform efficient defeasible reasoning about continuous time and

resources. We formally compare the latter system to the state-of-the-art and show

that this approach is a promising one.

This document is organized as follows. In Chapter 2, we present background

material necessary to understand why the existing approaches are insufficient in per-

forming efficient defeasible reasoning about continuous resources. In Chapter 3, we

formally present the stable model semantics and the notion of intensional functions.

In Chapter 4, we present the functional stable model (FSM) semantics and provide

two alternate reformulations of this semantics. Chapter 5 discusses several properties

of FSM that are of both theoretical and practical interest. In Chapter 6, we detail how

to eliminate intensional predicates in favor of intensional functions and in Chapter 7,

we detail how to eliminate intensional functions in favor of intensional predicates. In

Chapter 8, we present the many-sorted generalization of FSM, a practical generaliza-

tion that allows different functions to have different ranges and domains. Chapter 9
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Figure 1.1: Dissertation Outline

describes the ASPMT framework and presents two prototype implementations of this

framework. In Chapter 10, we discuss in detail the relationship between FSM and

the Cabalar Semantics. Chapter 11 provides a comparison of FSM and ASPMT to

several other related approaches. We then conclude in Chapter 12.
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Chapter 2

BACKGROUND

2.1 Answer Set Programming

Answer Set Programming is a declarative programming paradigm especially well-

suited for solving NP-hard combinatorial search problems. Among the applications

that ASP has been successfully used are Automated Product Configuration Tiihonen

et al. (2003), Space Shuttle Decision Support Balduccini et al. (2001), and Phylo-

genetic Tree Inference Brooks et al. (2007). The syntax of traditional ASP pro-

grams is similar to that of Prolog programs but the computation is based instead

on the idea of grounding and search techniques similar to those used in SAT solvers.

However, modern systems have augmented the language with rich features including

aggregates, external predicates, and preferences. The efficient implementations of

intelligent grounders and developments in SAT solvers have enabled the successful

application of ASP to these domains.

The semantics of ASP is the stable model semantics originally defined in Gel-

fond and Lifschitz (1988) which is presented in terms of a notion called a reduct

that will be detailed in Section 3.2. This semantics is non-monotonic which makes

representation in this framework appealing because encoded domains are elaboration

tolerant in sense of McCarthy (1998)–that is, it is convenient to modify a description

to accommodate new behavior. It is possible to simply add the new domain specifi-

cations without amending existing formulas. This is particularly useful in defeasible

reasoning, examples of which include reasoning about inertia and default behaviors
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of systems.

Example 1 Consider the following running example from a Texas Action Group

discussion, posted by Vladimir Lifschitz 1 .

A car is on a road of length l. If the accelerator is activated, the car

will speed up with constant acceleration a until the accelerator is released

or the car reaches its maximum speed ms, whichever comes first. If the

brake is activated, the car will slow down with acceleration −a until the

brake is released or the car stops, whichever comes first. Otherwise, the

speed of the car remains constant. Give a formal representation of this

domain, and write a program that uses your representation to generate a

plan satisfying the following conditions: at duration 0, the car is at rest

at one end of the road; at duration t, it should be at rest at the other end.

We can represent the property that by default, the speed of the car will stay the

same as in the previous timestep with the ASP rule 2

{speed(1, Y )} ← speed(0, Y ). (2.1)

which intuitively reads “If the speed is Y at timestep 0, then by default, the speed is

Y at time 1”. The exceptions to this default behavior can then simply be added to the

description

speed(1, Y ) ← accel(0) ∧ speed(0, X) ∧ duration(0, D) ∧ (Y = X + a×D).

speed(1, Y ) ← decel(0) ∧ speed(0, X) ∧ duration(0, D) ∧ (Y = X − a×D).

1http://www.cs.utexas.edu/users/vl/tag/continuous problem

2Rather than presenting the native syntax of the various formalisms, many descriptions will be
given in this syntax similar to predicate logic but where free variables are capitalized to distinguish
these from lower-case constants. Further, unless otherwise stated, formulas with free variables are
to be understood as the universal closure of the formula.

7



which intuitively reads “If the speed is X at timestep 0 and the agent accelerates (or

decelerates) for a duration of D, then the speed at timestep 1 is Y = X + a×D (or

Y = X − a×D)”.

Any number of elaborations to the default behavior can be added to the domain

description in this manner. This is unlike in classical logic where either the original

rules must be revised to explicitly exclude situations according to these new elabo-

rations or must include auxiliary abnormality constants that these new elaborations

trigger.

However, due to the grounding-based computation of ASP, this encoding cannot

be efficiently processed by standard solvers when the domain becomes too large.

Further, when the domain becomes infinite, such as in the case of reasoning about

continuous time, distance, or speed, ASP systems cannot compute solutions at all.

In addition, fluents in this domain such as speed and duration are functional in

nature but are represented using relations and therefore must have the uniqueness

and existence of these relations explicitly expressed in the encoding. These challenges

have led to research into alternative formalisms that partially address these issues.

2.2 Constraint Answer Set Programming

While Answer Set Programming addressed the problem of performing defeasible

reasoning on predicates, two issues that still challenge ASP are that defeasible rea-

soning cannot be performed on functions and efficient computation is not achievable

when domains grow too large due to the grounding-based computation of ASP.

By loosely integrating constraint processing with ASP, Constraint Answer Set
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Program (CASP) has been able to partially address the latter issue. At the same

time, CASP allows for more general functions; while in ASP, functions are taken to

be Herbrand (so that they must be mapped to themselves in any interpretation so

that f(1) = 1 can never be true), in CASP, this is relaxed by processing functions

using constraint solving rather than ASP. CASP has been implemented in solvers

including ACSOLVER Mellarkod et al. (2008), CLINGCON Gebser et al. (2009b),

EZCSP Balduccini (2009), IDP Mariën et al. (2008), and MINGO Liu et al. (2012).

However, CASP is unsuitable for performing defeasible reasoning on functions.

CASP employs loose integration of ASP and CSP solvers. Consequently, functions

are treated as in classical logic and so defeasible reasoning reasoning must either be

performed by representing functions as predicates or by representing the defeasible

reasoning as it is represented in classical logic–by modifying the existing rules for new

elaborations or defining abnormality atoms that can be triggered by new elaborations.

For example, representing the rule (2.1) from the car example can be expressed

using functions but would have to be modified with explicit exceptions like

speed(1)=Y ← speed(0)=Y ∧ ¬accel(0) ∧ ¬decel(0)

or require auxiliary abnormality atoms as in

speed(1)=Y ← speed(0)=Y ∧ ¬abnormal(0)

and then elaborations would trigger the abnormality with the rules

abnormal(0) ← accel(0)

abnormal(0) ← decel(0).

Representing functions as predicates encounters the same issue as ASP that large

domains will encounter a grounding bottleneck, while representing the defeasible rea-
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soning as in classical logic either requires auxiliary constants or is not tolerant to

elaborations.

2.3 Satisfiability Modulo Theories

The Boolean Satisfiability Problem, or SAT, is a well-studied logical formalism and

while the restriction to propositional constants is inconvenient, SAT solver technology

has been successfully applied to Answer Set Programming through the process of

grounding into atoms that amount to propositional constants. However, SAT lacks the

ability to represent information about functions. To enable more expressive reasoning,

boolean satisfiability modulo theories, or SMT, considers the satisfiability of a formula

subject to some background theory. Common background theories include the theory

of arithmetic over reals or integers but background theories are very general and so

complex concepts such as bit vectors, lists, and arrays can be represented in SMT.

For example, we can consider a simple formula which SAT solvers cannot handle

but SMT solvers equipped with the background theories of integer arithmetic can:

a ∨ b ∨ 2 ∗ f ≥ g

An SMT solver will find many models among which are {b, f = 3, g = 8} and {f =

4, g = 4}.

Efficient SMT solvers such as iSAT (https://projects.avacs.org/projects/isat/)

and Z3 (http://z3.codeplex.com/releases) have built-in background theories including

linear arithmetic, non-linear arithmetic, bit vectors, and quantifiers, among others;

they have been successfully applied to challenging domains such as software verifica-

tion, planning, model checking, and automated test generation. In addition, annual
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SMT competitions promote further improvements to SMT solvers. However, functions

here are still viewed under classical logic so SMT, too, is unsuitable for performing

defeasible reasoning on functions.

2.4 Intensional Functions

To address the problem of performing defeasible reasoning on functions, several

formalisms have been introduced that extend the stable model semantics to include

the notion of intensional functions Cabalar (2011); Lifschitz (2012); Balduccini (2012).

For example, the rule (2.1) can now be expressed using functions as

speed(1)=Y ∨ ¬(speed(1)=Y ) ← speed(0)=Y.

While this is a tautology in classical logic, under these extensions we can use rules

like this to express default behavior that can be superseded in the presence of other

knowledge.

However, these approaches focused on the modeling aspect and so the grounding

bottleneck still poses a challenge to these formalisms. Additionally, the semantics

described in Cabalar (2011); Balduccini (2012) are defined using a more complex

notion of satisfaction than in the original stable model semantics while Lifschitz (2012)

exhibits some unintuitive behavior that was not present in the original stable model

semantics. These are explained in further detail in chapter 3
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Chapter 3

TECHNICAL PRELIMINARIES

3.1 Reduct Characterization of the Stable Model Semantics

For a ground formula (i.e., a first-order formula with no variables), we define the

answer sets in terms of a reduct. This definition is similar to the one given in Ferraris

(2005) for propositional formulas that generalizes the original definition in Gelfond

and Lifschitz (1988).

For two interpretations I, J of the same signature and a list c of distinct predicate

constants, which we refer to as the “intensional predicates”, we write J <c I if

• J and I have the same universe and agree on all constants not in c,

• pJ ⊆ pI for all predicates p in c, and

• J and I do not agree on c.

Example 2 Consider four interpretations I, J,K, L with universe {1, 2} and signa-

ture σ = {p, q} where p and q are unary predicates. Let c be {p} (so that q is

non-intensional). When

pI = {1}, qI = {1}

pJ = ∅, qJ = {1}

pK = {2}, qK = {1}

pL = {1}, qL = {2}

we can see that J <c I holds since pJ ⊆ pI (the former has an empty extent while the

latter has extent {1}) and J and I do not agree on c since J and I disagree on p. On

12



the other hand, K <c I does not hold since pK ̸⊆ pI (the former has extent {2} while

the latter has extent {1}). Finally, L <c I does not hold since L and I do not agree

on the constant q which is not in c.

The reduct F I of a formula F relative to an interpretation I is the formula obtained

from F by replacing every maximal subformula that is not satisfied by I with ⊥

(falsity).

Definition 1 For any interpretation I of σ, I is called an answer set of F if

• I satisfies F , and

• every interpretation J of σ such that J <c I does not satisfy F I .

Example 3 For example, consider a box initially at l1 which stays at its current location

by default. This can be represented as (where L is a variable ranging over locations l1 and

l2)

at(box, 0, l1) ∧ Choice(at(box, 1, L))← at(box, 0, L)).

where Choice(at(box, 1, L)) is an abbreviation for ((at(box, 1, L)∨¬at(box, 1, L)). Although

this is a tautology in classical logic, in the answer set semantics, this can be used to describe

default behaviors. This will be explained in more detail in Section 5.2. We consider the

ground version F of this:

at(box, 0, l1)∧

((at(box, 1, l1) ∨ ¬at(box, 1, l1)) ← at(box, 0, l1))∧

((at(box, 1, l2) ∨ ¬at(box, 1, l2)) ← at(box, 0, l2))

We consider the interpretation I1 such that at(box, 0, l1)I1 = t and at(box, 1, l1)I1 = t (and

all other atoms are interpreted as f). Clearly I1 satisfies F so we then form the reduct F I1:

at(box, 0, l1)∧

((at(box, 1, l1) ∨ ⊥) ← at(box, 0, l1))∧

((⊥ ∨ ¬⊥) ← ⊥)
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If we take c to be {at}, we can see that there is no interpretation J <c I1 that satisfies F I1.

Thus, I1 is an answer set.

On the other hand, if we consider I2 such that at(box, 0, l1)I2 = t and at(box, 1, l2)I2 = t

(and all other atoms are interpreted as f), we can see that I2 satisfies F . We then form

the reduct F I2:

at(box, 0, l1)∧

((⊥ ∨ ¬⊥) ← at(box, 0, l1))∧

((at(box, 1, l2) ∨ ⊥) ← ⊥)

and then we can see that the interpretation J such that at(box, 0, l1)J = t (and all other

atoms are interpreted as f) is an interpretation such that J <c I2 and J satisfies F I2.

Thus, I2 is not an answer set.

3.2 First Order Stable Model Semantics

We review the stable model semantics as defined in Ferraris et al. (2011) which

presents an extension to the stable model semantics to first-order logic. This extension

is defined in terms of second-order logic, where we have quantifiers over function and

predicate variables in addition to the quantifiers over object variables as in first-order

logic.

Formulas are built the same as in first-order logic. A signature consists of function

constants and predicate constants. Function constants of arity 0 are called object

constants. We assume the following set of primitive propositional connectives and

quantifiers:

⊥ (falsity), ∧, ∨, →, ∀, ∃ .

14



We understand ¬F as an abbreviation of F → ⊥; symbol ⊤ stands for ⊥ → ⊥, and

F ↔ G stands for (F → G) ∧ (G→ F ).

For predicate symbols (constants or variables) u and c, we define u ≤ c as

∀x(u(x) → c(x)). For two lists of predicate symbols u and c, we define u ≤ c

as the conjunction of u ≤ c for each u ∈ u and the corresponding c ∈ c. We then

define u < c as u ≤ c ∧ ¬(c ≤ u).

Let c be a list of distinct predicate constants and let ĉ be a list of distinct predicate

variables corresponding to c 1 . We call members of c intensional predicates. We

define SM[F ; c] as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where F ∗(ĉ) is defined as follows:

• When F is an atomic formula, F ∗ is F ′, where F ′ is obtained from F by replacing

every intensional predicate in it with the corresponding predicate variables;

• (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF )∗ = ∀xF ∗; (∃xF )∗ = ∃xF ∗.

Example 3 continued For example, when F is

at(box, 0, l1) ∧ ((at(box, 1, L) ∨ ¬at(box, 1, L))← at(box, 0, L)),

1That is to say, d and ĉ have the same length and the corresponding members have the same
arity.
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as before, then F ∗(ât) is 2

ât(box, 0, l1) ∧ (

( (at(box, 1, L) ∨ ¬at(box, 1, L))← at(box, 0, L) )∧

( (ât(box, 1, L) ∨ (¬at(box, 1, L) ∧ ¬ât(box, 1, L)))← ât(box, 0, L) ) ).

When F is a sentence, the models of SM[F ; c] are called the c-stable models of F .

They are the models of F that are “stable” on c. We often drop the list of constants

when c is the entire signature.

Example 3 continued Consider I1 and I2 from before. I1 |= SM[F ; at] while

I2 ̸|= SM[F ; at]. Thus, I1 is a stable model of F but I2 is not.

3.3 Constraint Answer Set Programming

A constraint satisfaction problem (CSP) is a tuple (V,D,C), where V is a set of

constraint variables with the respective domains D, and C is a set of constraints that

specify legal assignments of values in the domains to the constraint variables.

A constraint answer set programΠ with a constraint satisfaction problem (V,D,C)

is a set of rules of the form

a← B,N,Cn, (3.1)

where a is a propositional atom or ⊥, B is a set of positive propositional literals, N is

a set of negative propositional literals, and Cn is a set of constraints from C, possibly

preceded by not.

2 Recall ¬at(box, 1, L) is an abbreviation for at(box, 1, L) → ⊥ so that (¬at(box, 1, L))∗(ât) is

(at(box, 1, L)→ ⊥)∧ (ât(box, 1, L)→ ⊥), which we then abbreviate as ¬at(box, 1, L)∧¬ât(box, 1, L)
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For any signature σ that consists of object constants and propositional constants,

we identify an interpretation I of σ as the tuple ⟨If , X⟩, where If is the restriction

of I on the object constants in σ, and X is a set of propositional constants in σ that

are true under I.

Given a constraint answer set program Π with (V,D,C), and an interpretation

I = ⟨If , X⟩, we define the constraint reduct of Π relative to X and If (denoted by

ΠX
If
) as the set of rules a ← B for each rule (11.1) is in Π such that If |= Cn, and

X |= N . We say that a set X of propositional atoms is a constraint answer set of Π

relative to If if X is a minimal model of ΠX
If
.

Consider the water level example mentioned in the introduction. By default, the

water level will stay the same but if the input valve is open, the water level will

increase by 1 unit per time unit and if the output valve is open, the water level will

decrease by 2 units per time unit (and if both are open, the water level will decrease

by 1 unit per time unit).

Notice that object constants cannot appear in the heads of rules. In addition, the

notion of answer set is defined using minimality only w.r.t. propositional atoms. Due

to these restrictions, representing this domain using functions must be done either

in a way that is not elaboration tolerant or using auxiliary abnormality atoms. The

former is illustrated below:

⊥ ← ¬ inputOpen,¬ outputOpen,¬(amount1=amount0)

⊥ ← inputOpen,¬ outputOpen,¬(amount1+1=amount0)

⊥ ← ¬ inputOpen, outputOpen,¬(amount1+2=amount0)

⊥ ← inputOpen, outputOpen,¬(amount1−1=amount0)

Now if we wanted to elaborate on this domain by introducing a second input valve,

this would require modifying all four of these rules and adding four more rules to
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handle all eight configurations of the valves.

3.4 Satisfiability Modulo Theories

Formally, an SMT instance is a formula in many-sorted first-order logic, where

some designated function and predicate constants are constrained by some fixed back-

ground interpretation. SMT is the problem of determining whether such a formula

has a model that expands the background interpretation Barrett et al. (2009).

Let σbg be the (many-sorted) signature of the background theory bg. An interpre-

tation of σbg is called a background interpretation if it satisfies the background theory.

For instance, in the theory of reals, we assume that σbg contains the set R of sym-

bols for all real numbers, the set of arithmetic functions over real numbers, and the

set {<,>,≤,≥} of binary predicates over real numbers. Background interpretations

interpret these symbols in the standard way.

Let σ be a signature that is disjoint from σbg. We say that an interpretation I

of σ satisfies F w.r.t. the background theory bg, denoted by I |=bg F , if there is a

background interpretation J of σbg that has the same universe as I, and I∪J satisfies

F . For any SMT sentence F with background theory σbg, interpretation I is a model

of F (w.r.t. background theory σbg) if I |=bg F .

Example 4 Consider the formula F

∀x(f = x→ ∃y(y ∗ y = x))

and consider the interpretations I1 and I2 such that f I1 = 1 and f I2 = 2 and where

the universe is the set of real numbers. Now consider the background theory real that

18



is defined as standard arithmetic over reals. We have I1 |=real F and I2 |=real F

(since
√
2 ∗
√
2 = 2).

Now, take interpretations J1 and J2 such that fJ1 = 1 and fJ2 = 2 where the

universe is the set of integers. Now consider the background theory integer that is

defined as standard arithmetic over reals. We have I1 |=integer F but I2 ̸|=integer F .

It should be stressed that these background theories can be quite general; aside

from integers, rationals, and reals, SMT can have background theories over bit-

vectors, lists, and arrays to name a few. This generality has led to the use of SMT

solvers in software engineering applications such as static program analysis Moy et al.

(2009), fuzz testing Bounimova et al. (2013), and program verification Ge et al. (2007).

3.5 Lifschitz Semantics of Intensional Functions

We consider rules of the form

H ← B, (3.2)

where H and B are formulas that do not contain →. We identify a rule with the

universal closure of the implication B → H. An IF-program is a finite list of those

rules.

An occurrence of a symbol in a formula F is negated if it belongs to a subformula

of F that begins with negation, and is non-negated otherwise. Let F be a formula,

let f be a list of distinct function constants, and let f̂ be a list of distinct function

variables corresponding to f .

By F ⋄(f̂) we denote the formula obtained from F by replacing each non-negated

occurrence of a member of f with the corresponding function variable in f̂ . By
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IF[F ;f ] we denote the second-order sentence

F ∧ ¬∃f̂(f̂ ̸= f ∧ F ⋄(f̂)).

According to Lifschitz (2012), the f -stable models of an IF-program Π are defined as

the models of IF[F ;f ], where F is the FOL-representation of Π.

An unexpected property of this extension is that stable models may map functions

to constants not occurring anywhere in the formula. This is unexpected in the light

of the rationality principle Gelfond and Kahl (2014) of the stable model semantics

which states “Believe nothing you are not forced to believe”. For example, consider

the formula c = 1→ ⊥. The interpretation I of signature {c} such that |I| = {1, 2}

and cI = 2 is a stable model under the Lifschitz semantics despite 2 not occurring in

the formula.

3.6 Cabalar Semantics

3.6.1 Partial Interpretations

Before formally reviewing the semantics for intensional functions from Cabalar

(2011), we first define the notions of partial interpretations and partial satisfaction.

We define the notion of a partial interpretation as follows. Given a first-order

signature σ comprised of function and predicate constants, a partial interpretation I

of σ consists of

• a non-empty set |I|, called the universe of I;

• for every function constant f of arity n, a function f I from (|I| ∪ {u})n to

|I| ∪ {u}, where u is not in |I| (“u” stands for undefined);
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• for every predicate constant p of arity n, a function pI from (|I| ∪ {u})n to

{1, 0}.

For each term f(t1, . . . , tn), we define

f(t1, . . . , tn)
I =

 u if tIi = u for some i ∈ {1, . . . , n};

f I(tI1, . . . , t
I
n) otherwise.

The satisfaction relation |=
p
between a partial interpretation I and a first-order

formula F is the same as the one for first-order logic except for the following base

cases:

• For each atomic formula p(t1, . . . , tn),

p(t1, . . . , tn)
I =

 0 if tIi = u for some i ∈ {1, . . . , n};

pI(tI1, . . . , t
I
n) otherwise.

• For each atomic formula t1 = t2,

(t1 = t2)
I =

 1 if tI1 ̸= u, tI2 ̸= u, and tI1 = tI2;

0 otherwise.

We say that I |=
p
F if F I = 1.

Observe that under a partial interpretation, t = t is not necessarily true: I ̸|=
p
t = t

iff tI = u. On the other hand, ¬(t1 = t2), also denoted by t1 ̸= t2, is true under I

even when both tI1 and tI2 are mapped to the same u.

3.6.2 Cabalar Semantics Definition

The Cabalar semantics was originally defined in Cabalar (2011) in terms of a

modification to equilibrium logic.
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Given any two partial interpretations J and I of the same signature σ, and a set

of constants c, we write J ≼c I if

• J and I have the same universe and agree on all constants not in c;

• pJ ⊆ pI for all predicate constants in c; and

• fJ(ξ) = u or fJ(ξ) = f I(ξ) for all function constants in c and all lists ξ of

elements in the universe.

We write J ≺c I if J ≼c I but not I ≼c J . Note that J ≺c I is defined similar

to J <c I (Section 3.1) except for the treatment of functions. Note that the third

condition means essentially undefined functions are “smaller” than defined functions.

Example 5 Consider four partial interpretations I, J,K, L with universe {1, 2} and

signature σ = {p, q, f} where p and q are unary predicates and f is a unary function.

Let c be {p, f}. When

pI = {1}, qI = {1}, f I = 1

pJ = ∅, qJ = {1}, fJ = u

pK = {1}, qK = {1}, fK = 2

pL = {1}, qL = {2}, fL = 1

we can see that J ≼c I holds since pK ⊆ pI (the former has an empty extent while

the latter has extent {1}) and fJ = u. However, I ≼c J does not hold since f I ̸= fJ

and f I ̸= u. Thus J ≺c I. Similarly, K ≼c I does not hold since fJ ̸= f I and

fJ ̸= u. On the other hand, L ≼c I does not hold since L and I do not agree on the

constant q which is not in c.

A PHT-interpretation (“Partial HT-interpretation”) I of signature σ is a tuple

⟨Ih, It⟩ such that Ih and It are partial interpretations of σ that have the same

universe.
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The satisfaction relation |=
pht

between a PHT-interpretation I, a world w ∈ {h, t}

ordered by h < t , and a first-order sentence F of the signature σ is defined recursively:

• If F is an atomic formula, I, w |=
pht

F if Iw |=
p
F ;

• I, w |=
pht

F ∧G if I, w |=
pht

F and I, w |=
pht

G;

• I, w |=
pht

F ∨G if I, w |=
pht

F or I, w |=
pht

G;

• I, w |=
pht

F → G if, for every world w′ such that w ≤ w′, I, w′ ̸|=
pht

F or I, w′ |=
pht

G;

• I, w |=
pht
∀xF (x) if, for every ξ ∈ |I|, I, w |=

pht
F (ξ⋄);

• I, w |=
pht
∃xF (x) if, for some ξ ∈ |I|, I, w |=

pht
F (ξ⋄).

We say that an HT-interpretation I satisfies F , written as I |=
pht

F , if I, h |=
pht

F .

A PHT-interpretation I = ⟨I, I⟩ of signature σ is a partial equilibrium model of a

sentence F relative to c if

• ⟨I, I⟩ |=
pht

F , and

• for every partial interpretation J such that J ≺c I, we have ⟨J, I⟩ ̸|=
pht

F .

Example 3 continued Consider again the formula describing the inertia of a box.

Take I1 = ⟨I1, I1⟩ and I2 = ⟨I2, I2⟩ where I1 and I2 are from before. Relative to at,

we can see that I1 is a partial equilibrium model while I2 is not. To show that I1

is a partial equilibrium model we consider the three partial interpretation J1, J2, J3

that are such that Ji ≺at I1. These interpretations agree with I1 except

• at(box, 0, l1)J1 = u;

• at(box, 1, l1)J2 = u;
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• at(box, 0, l1)J3 = u and at(box, 1, l1)J3 = u.

⟨J1, I1⟩ and ⟨J3, I1⟩ both fail to satisfy at(box, 0, l1) while ⟨J2, I1⟩ fails to satisfy

((at(box, 1, l1) ∨ ¬at(box, 1, l1)) ← at(box, 0, l1)). Thus, I1 is a partial equilibrium

model.

On the other hand, if we consider J4 that agrees with I2 except that at(box, 1, l2)
J4 =

u (so that J4 ≺at I2), then we see that ⟨I2, J4⟩ |=pht F and so I2 is not a partial equi-

librium model.

3.7 Balduccini Semantics

Let us restrict a signature σ to be comprised of a set of intensional function and

predicate constants denoted c as well as a set of non-intensional object constants

σ \ c.

In Balduccini (2012), Balduccini considered terms to have the form f(c1, . . . , ck)

where f is an intensional function constant (in c), and each ci is a non-intensional

object constant (in σ \ c). He considered an atom to be an expression p(c1, . . . , ck)

where p is an intensional predicate constant, and each ci is a non-intensional object

constant; a t-atom is an expression of the form f=g where f is a term and g is either

a term or a non-intensional object constant; a seed t-atom is a t-atom of the form

f = c where c is a non-intensional object constant. A t-literal is a t-atom f = g or

∼(f = g), where ∼ denotes strong negation 3 . A seed literal is an atom a, or ∼a,

or a seed t-atom. A literal is an atom a, or ∼a, or a t-literal. An ASP{f} program
3The concept of strong negation is different from default negation. Intuitively, ∼A represents

that A is false while ¬A represents that A is not known to be true. This will be explained in greater
detail in Section 6.3.
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consists of rules of the form

h← l1, . . . , lm, not lm+1, . . . , not ln , (3.3)

where h is a seed literal or ⊥, and each li is a literal. An ASP{f} program is a finite

set of rules. We identify rule (3.3) with an implication

l1 ∧ · · · ∧ lm ∧ ¬lm+1 ∧ · · · ∧ ¬ln → h ,

and an ASP{f} program as the conjunction of each implication corresponding to a

rule in the program. Note that ASP{f} programs do not contain variables.

A set I of seed literals is said to be consistent if it contains no pair of an atom a

and its strong negation ∼a; and contains no pair of seed t-atoms t = c1 and t = c2

such that c1 ̸= c2. It is clear that any subset of a consistent set of seed literals is

consistent as well.

The notion of satisfaction between a consistent set I of seed literals and literals is

denoted by |=
b
and is defined as follows.

• For a seed literal l, I |=
b
l if l ∈ I;

• For a non-seed literal f = g, I |=
b
f = g if I contains both f = c and g = c for

some object constant c;

• For a non-seed literal ∼(f = g), I |=
b
∼(f = g) if I contains both f = c1 and

g=c2 for some object constants c1 and c2 such that c1 ̸= c2.

This notion of satisfaction is extended to formulas allowing ∧, ¬ and← as in classical

logic.

The reduct of an ASP{f} program Π relative to a consistent set I of seed literals

is denoted ΠI and is defined as

ΠI = {h← l1 . . . , lm | (3.3) ∈ Π and I |= ¬lm+1 ∧ · · · ∧ ¬ln} .
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I is called a Balduccini answer set of Π if

• I |=
b
ΠI , and,

• for every proper subset J of I, we have J ̸|=
b
ΠI .

Example 3 continued Consider again the example of describing the inertia of

a box. Since the head of a rule must be a seed literal or ⊥, we express this as the

program Π

at(box, 0) = l1

at(box, 1) = l1← at(box, 0) = l1,¬ ∼at(box, 1) = l1

at(box, 1) = l2← at(box, 0) = l2,¬ ∼at(box, 1) = l2

Recall the interpretations I1 and I2 from before; I1 is such that at(box, 0, l1)I1 = t and

at(box, 1, l1)I1 = t while I2 is such that at(box, 0, l1)I2 = t and at(box, 1, l2)I2 = t.

So we consider the corresponding sets J1 = {at(box, 0) = l1, at(box, 1) = l1} and

J2 = {at(box, 0) = l1, at(box, 1) = l2}.

The reduct ΠJ1 is

at(box, 0) = l1

at(box, 1) = l1← at(box, 0) = l1.

It is clear that J1 |=b ΠJ1 . For any subset K of J1 we have that K ̸|=
b
ΠI1 so I1 is a

Balduccini answer set of Π.

The reduct ΠJ2 is

at(box, 0) = l1

at(box, 1) = l2← at(box, 0) = l2.

It is clear that J1 |=b ΠJ2 . However, if we take K = {at(box, 0) = l1}, we see that

there is a subset K of J2 such that K |=
b
ΠJ2 and so J2 is not a Balduccini answer set

of Π.
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3.8 Multi-valued Propositional Formulas

The convenience of multi-valued propositional formulas for knowledge represen-

tation is demonstrated in the context of nonmonotonic causal theories and action

language C+ Giunchiglia et al. (2004). Multi-valued formulas serve as a simple but

useful special case of first-order formulas for use in establishing some results and serve

as the theoretical context for system MVSM described in Chapter 9.

A multi-valued signature is a set σ of symbols called constants, along with a finite

set Dom(c) of symbols that is disjoint from σ and contains at least two elements,

assigned to each constant c. We call Dom(c) the domain of c. A multi-valued atom

of σ is ⊥, or an expression of the form c=v (“the value of c is v”) where c ∈ σ

and v ∈ Dom(c). A multi-valued formula of σ is a propositional combination of

multi-valued atoms.

A multi-valued interpretation of σ is a function that maps every element of σ

to an element in its domain. We often identify an interpretation with the set of

atoms of σ that are satisfied by I. A multi-valued interpretation I satisfies an atom

c=v (symbolically, I |= c=v) if I(c) = v. The satisfaction relation is extended from

atoms to arbitrary formulas according to the usual truth tables for the propositional

connectives. We say that I is a model of F if it satisfies F .

An expression of the form c=d, where both c and d are constants, will be under-

stood as an abbreviation for the formula∨
v∈Dom(c)∩Dom(d)

(c=v ∧ d=v). (3.4)

Let F be a multi-valued formula of signature σ, and let I be a multi-valued
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interpretation of σ. The reduct of F relative to I (denoted F I ) is the formula obtained

from F by replacing each (maximal) subformula that is not satisfied by I with ⊥. We

call I a multi-valued stable model of F if I is the only multi-valued interpretation

of σ that satisfies F I .

Example 6 Take σ = {c} and Dom(c) = {1, 2, 3}, and let F be

c=1 ∨ ¬(c=1), (3.5)

and let Ii (i = 1, 2, 3) be the interpretation that maps c to i. All three interpretations

satisfy (3.5), but I1 is the only stable model of F : the reduct F I1 is c= 1 ∨ ⊥, and

I1 is the only model of the reduct; the reduct of F1 relative to other interpretations is

⊥ ∨ ¬⊥, which does not have a unique model.

If we conjoin c=2 with (3.5), we can check that the only stable model is {c=2}.

3.9 Partial Multi-valued Propositional Formulas

In this section we introduce a variant of the stable model semantics in the previous

section, which allows multi-valued propositional constants to be mapped to nothing.

This is essentially a simple special case of the semantics in Cabalar 2011, and later

in Balduccini 2013, which allows functions to be partially defined. In other words,

interpretations are allowed to leave some constants undefined. By complete inter-

pretations, we mean a special case of partial interpretations where all constants are

defined. Complete interpretations can be identified with classical (“total”) interpre-

tations.

We consider the same syntax of a multi-valued formula as in the previous section.

As with total interpretations, a partial interpretation I satisfies an atom c = v if I(c)

is defined and is mapped to v. This implies that an interpretation that is undefined
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on c does not satisfy any atom of the form c = w for any w ∈ Dom(c). As before,

it is convenient to identify a partial interpretation I with the set of atoms of σ that

are satisfied by this interpretation. For instance, an interpretation of σ = {c} which

is undefined on c is identified with the empty set. Again, the satisfaction relation is

extended from atoms to arbitrary formulas according to the usual truth tables for the

propositional connectives. We call I a model of F if it satisfies F .

The reduct F I is defined to be the same as before. We say that a partial inter-

pretation I is a partial multi-valued stable model of F if I satisfies F and no proper

subset J of I satisfies F I .

Example 6 continued

In this context, c=1 ∨ ¬(c=1) does not mean that c is mapped to 1 by default.

Instead, it means that c can be mapped to 1 or nothing at all. As before, the reduct

F I1 relative to I1 where I1 is {c=1} is c=1 ∨ ⊥, and I1 is the minimal model of the

reduct. 4 Further, the reduct F I0 relative to I0 where I0 is ∅ is ⊥ ∨ ¬⊥, and I0 is

the minimal model of the reduct.

4Minimality is understood in terms of set inclusion.
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Chapter 4

FUNCTIONAL STABLE MODEL SEMANTICS

4.1 Reduct-Based Characterization

4.1.1 Infinitary Ground Formulas and Grounding

We first present the reduct-based characterization of the functional stable model

semantics. However, since we allow the universe to be infinite, grounding a quantified

sentence introduces infinite conjunctions and disjunctions over the elements in the

universe. Here we rely on the concept of grounding relative to an interpretation

from Truszczynski (2012). The following is the definition of an infinitary ground

formula, which is adapted from Truszczynski (2012). One difference is that we do not

replace ground terms with their corresponding object names, leaving them unchanged

during grounding. This change is necessary in defining a reduct for functional stable

model semantics. For each element ξ in the universe |I| of I, we introduce a new

symbol ξ⋄, called an object name. By σI we denote the signature obtained from σ

by adding all object names ξ⋄ as additional object constants. We will identify an

interpretation I of signature σ with its extension to σI defined by I(ξ⋄) = ξ. 1

We assume the primary connectives to be ⊥, {}∧, {}∨, and→. Propositional con-

nectives ∧,∨,¬,⊤ are considered as shorthands: F ∧G as {F,G}∧; F ∨G as {F,G}∨.

¬ and ⊤ are defined as before.

1For details, see Lifschitz et al. (2008).
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Let A be the set of all ground atomic formulas of signature σI . The sets F0,F1, . . .

are defined recursively as follows:

• F0 = A ∪ {⊥};

• Fi+1(i ≥ 0) consists of expressions H∨ and H∧, for all subsets H of F0∪ . . .∪Fi,

and of the expressions F → G, where F,G ∈ F0 ∪ · · · ∪ Fi.

We define Linf
A =

∪∞
i=0Fi, and call elements of Linf

A infinitary ground formulas of σ

w.r.t. I.

For any interpretation I of σ and any infinitary ground formula F w.r.t. I, the

definition of satisfaction, I |= F , is as follows:

• For atomic formulas, the definition of satisfaction is the same as in the standard

first-order logic;

• I |= H∨ if there is a formula G ∈ H such that I |= G;

• I |= H∧ if, for every formula G ∈ H, I |= G;

• I |= G→ H if I ̸|= G or I |= H.

Example 7 Consider a domain that is comprised of a bucket that has a leak and ini-

tially contains some amount of water. By default, the bucket will lose one unit of water

at each timepoint. If we consider ten timepoints, then we have σ = {bucket0, . . . , bucket9}.

Let F be the infinite set of ground formulas {bucket0 = i : i ∈ N}. By F∨, we

can represent that the bucket initially contains some amount of water.

Let Gi be the infinite set of ground formulas {bucketi = j+1→ bucketi+1 = j : j ∈

N}. By G∧i we can represent that from timepoint i to timepoint i+1, the bucket loses

one unit of water. Then, if we let H be the finite set of sets {Gi : i ∈ {0, . . . , 8}}, we
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can represent this behavior for every timepoint by H∧. Thus, we can represent this

domain as {F∨,H∧}∧.

Consider the interpretation I such that |I| = N and bucket0 = 15, bucket1 = 14,

. . . , bucket9 = 6.

• First, we see that I |= F∨ since I |= bucket0 = i where i = 15.

• Then, we can see that I |= G0 since I |= bucket0 = j + 1 → bucket1 = j for

every j ∈ N ; for every j ̸= 14, I ̸|= bucket0 = j+1 and so I vacuously satisfies

the implication, but when j = 14, we see that I |= bucket1 = 14 and so I |= G0.

• Similar arguments show that I |= Gi for each i ∈ {1, . . . , 8} and so we conclude

that I |= H∧ and consequently, I |= {F∨,H∧}∧.

Given a first-order sentence F , and an interpretation I, by grI [F ] we denote the

infinitary ground formula w.r.t. I that is obtained from F by the following process:

• If F is an atomic formula, grI [F ] is F ;

• grI [G⊙H] = grI [G]⊙ grI [H] (⊙ ∈ {∧,∨,→});

• grI [∃xG(x)] = {grI [G(ξ⋄)] | ξ ∈ |I|}∨;

• grI [∀xG(x)] = {grI [G(ξ⋄)] | ξ ∈ |I|}∧.

Example 7 continued Consider an elaboration to the bucket example where an

agent can fill up the bucket at time t where t ∈ {0..8} with the action fillUpt, which

restores the bucket to its maximum capacity–10–at the next timestep t+ 1. We can
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represent this domain with the first-order formula F :

∀y((amount1=y) ∨ ¬(amount1=y) ← amount0=y+1)

∀y((amount2=y) ∨ ¬(amount2=y) ← amount1=y+1)

. . .

∀y((amount9=y) ∨ ¬(amount9=y) ← amount8=y+1)

amount1=10 ← fillUp0

amount2=10 ← fillUp1

. . .

amount9=10 ← fillUp8

Now, consider an interpretation I such that the universe |I| = N . grI [F ] is the

following set of formulas.

(amount1=0) ∨ ¬(amount1=0) ← amount0=0+1

(amount1=1) ∨ ¬(amount1=1) ← amount0=1+1

(amount1=2) ∨ ¬(amount1=2) ← amount0=2+1

. . .

(amount2=0) ∨ ¬(amount2=0) ← amount1=0+1

(amount2=1) ∨ ¬(amount2=1) ← amount1=1+1

(amount2=2) ∨ ¬(amount2=2) ← amount1=2+1

. . .

amount1=10 ← fillUp0

amount2=10 ← fillUp1

. . .

amount9=10 ← fillUp8
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4.1.2 Reduct-Based Characterization

Let F be any first-order sentence of a signature σ, and let I be an interpretation

of σ.

For any two interpretations I, J of the same signature and any list c of distinct

predicate and function constants, we write J <c I if

• J and I have the same universe and agree on all constants not in c;

• pJ ⊆ pI for all predicate constants p in c; and

• J and I do not agree on c.

The difference between the above definition and the definition in Section 3.1 is

only in that here, c is not restricted to contain only predicate constants.

Example 8 Consider four interpretations I, J,K, L with universe {1, 2} and signa-

ture σ = {p, q, f} where p and q are unary predicates and f is a unary function. Let

c be {p, f}. When

pI = {1}, qI = {1}, f I = 1

pJ = {1}, qJ = {1}, fJ = 2

pK = ∅, qK = {1}, fK = 1

pL = {1}, qL = {2}, fL = 1

we can see that J <c I holds since pJ ⊆ pI (both have an extent of {1}) and J and I

do not agree on c since f I ̸= fJ . Similarly, K <c I holds since pK ⊆ pI (the former

has an empty extent while the latter has extent {1}) and K and I disagree on p. On

the other hand, L <c I does not hold since L and I do not agree on the constant q,

which is not in c.
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The reduct F I of an infinitary ground formula F relative to an interpretation I is

defined as follows:

• For each atomic formula F , F I = F

• (H∧)I = {GI | G ∈ H}∧;

• (H∨)I = {GI | G ∈ H}∨;

• (G→ H)I = ⊥ if I ̸|= G→ H; otherwise (G→ H)I = GI → HI .

Similar to the definition in section 3.1, for any interpretation I of σ, I is an answer

set of of an infinitary ground formula F iff

• I satisfies F , and

• every interpretation J of σ such that J <c I does not satisfy F I .

Example 7 continued For simplicity, let us consider the same domain but with

only two timesteps–0 and 1. Consider the interpretation I1 such that |I1| = N ,

amount I11 = 5, amount I10 = 6, and fillUpI1
0 = f . The reduct (grI1 [F ])I1 is

⊥ ∨ ¬⊥ ← ⊥

⊥ ∨ ¬⊥ ← ⊥

⊥ ∨ ¬⊥ ← ⊥

. . .

(amount1=5) ∨ ⊥ ← amount0=5+1.

. . .

⊥ ← ⊥

which is equivalent to

(amount1=5)← amount0=6. (4.1)
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No interpretation that is different from I1 only on amount1 satisfies the reduct.

On the other hand consider the interpretation I2 such that |I2| = N , amount I21 =

8, amount I20 = 6, and fillUpI2
0 = f , the reduct (grI2 [F ])I2 is equivalent to

⊥ ∨ ¬⊥ ← amount0=5+1,

or simply ⊤, and we can find another interpretation that is different from I2 only

on amount1 which satisfies the reduct. For example, take J such that |J | = N ,

amountJ1 = 3, amountJ0 = 6, and fillUpJ
0 = f .

4.2 Second-Order Logic Characterization

We now present a characterization of the functional stable model semantics for

formulas which are built the same as in first-order logic. A signature consists of

function constants and predicate constants. Function constants of arity 0 are called

object constants. We assume the following set of primitive propositional connectives

and quantifiers:

⊥ (falsity), ∧, ∨, →, ∀, ∃ .

As before, we understand ¬F as an abbreviation of F → ⊥, ⊤ as an abbreviation of

⊥ → ⊥, and F ↔ G as an abbreviation for (F → G) ∧ (G→ F ).

Our characterization of these formulas uses second-order logic, where we have

quantifiers over function and predicate variables in addition to the quantifiers over

object variables as in first-order logic. For predicate symbols (constants or variables)

u and c, we define u ≤ c as ∀x(u(x) → c(x)). We define u = c as ∀x(u(x) ↔ c(x))

if u and c are predicate symbols, and ∀x(u(x) = c(x)) if they are function symbols.
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For lists of predicate symbols (constants or variables) u and c, we define u ≤ c

as the conjunction of u ≤ c for each u ∈ u and the corresponding c ∈ c. We define

u = c as the conjunction of u = c for each u ∈ u and the corresponding c ∈ c.

Let c be a list of distinct predicate and function constants and let ĉ be a list of

distinct predicate and function variables corresponding to c.

By cpred we mean the list of the predicate constants in c, and by ĉpred the list of

the corresponding predicate variables in ĉ. We define ĉ < c as

(ĉpred ≤ cpred) ∧ ¬(ĉ = c)

and SM[F ; c] as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where F ∗(ĉ) is defined as follows.

• When F is an atomic formula, F ∗ is F ′ ∧ F , where F ′ is obtained from F

by replacing all intensional (function and predicate) constants in it with the

corresponding (function and predicate) variables; 2

• (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF )∗ = ∀xF ∗; (∃xF )∗ = ∃xF ∗.

Example 7 continued If F is the formula

(amount1=Y ) ∨ ¬(amount1=Y ) ← amount0=Y +1

amount1=10 ← fillUp

2If an atomic formula F contains no intensional function constants, then F ∗ can be defined as
F ′, as in Ferraris et al. (2011).
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and c is {amount1} then F ∗( ̂amount1) is equivalent to
3

(amount1=Y ) ∨ ¬(amount1=Y ) ← amount0=Y +1

((amount1=Y ) ∧ ( ̂amount1)=Y )) ∨ ¬(amount1=Y ) ← amount0=Y +1

amount1=10 ← fillUp

amount1=10 ∧ ̂amount1=10 ← fillUp

When F is a sentence, the models of SM[F ; c] are called the c-stable models of F .

They are the models of F that are “stable” on c.

Example 7 continued Consider interpretation I and I1 from before:

|I1| = N , amount I11 = 5, amount I10 = 6, fillUpI1 = f , and

|I2| = N , amount I21 = 8, amount I20 = 6, fillUpI2 = f .

I1 |= SM[F ; amount1] but I2 ̸|= SM[F ; amount1].

The following theorem states the equivalence between this formulation and the

formulation in terms of grounding and reduct from the previous section.

Theorem 1 Let F be a first-order sentence of signature σ and let c be a list of

intensional constants. For any interpretation I of σ, I |= SM[F ; c] iff

• I satisfies F , and

• every interpretation J such that J <c I does not satisfy (grI [F ])I .

If c contains predicate constants only, this definition of a stable model reduces to

the one in Ferraris et al. (2011). The definition of F ∗ above is the same as in Ferraris

et al. (2011) except for the case when F is an atomic formula.

3Recall ¬(amount1 = Y ) is an abbreviation for amount1 = Y → ⊥ so that (¬(amount1 =

Y ))∗( ̂amount1) is (amount1 = Y → ⊥) ∧ (amount1 = Y ∧ ̂amount1 = Y → ⊥) which is equiva-

lent to ¬(amount1=Y ) ∧ (¬(amount1=Y ) ∨ ¬( ̂amount1=Y )) or simply ¬( amount1=Y ).
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4.3 HT Logic Characterization

The functional stable model semantics can be reformulated in terms of a modifi-

cation to equilibrium logic, similar to the way the Cabalar semantics Cabalar (2011)

is defined, which is reviewed in Section 3.6.2. Recharacterizing the semantics in a

way similar to the Cabalar semantics helps to see the relationship between the two

semantics, which is explored in detail in Chapter 10.

An FHT-interpretation (“Functional HT-interpretation”) I of signature σ is a

tuple ⟨Ih, It⟩ such that Ih and It are classical interpretations of σ that have the

same universe. The satisfaction relation |=
fht

between an FHT-interpretation I, a

world w ∈ {h, t} ordered by h < t, and a first-order sentence of signature σ is defined

in the same way as |=
pht

for PHT-interpretations in Section 3.6.2 except for the base

case:

• If F is an atomic formula, I, w |=
fht

F if, for every world w′ such that w ≤ w′,

Iw′ |= F ;

• I, w |=
fht

F ∧G if I, w |=
fht

F and I, w |=
fht

G;

• I, w |=
pht

F ∨G if I, w |=
fht

F or I, w |=
fht

G;

• I, w |=
fht

F → G if, for every world w′ such that w ≤ w′, we have I, w′ ̸|=
fht

F or I, w′ |=
fht

G;

• I, w |=
fht
∀xF (x) if for each ξ ∈ |I|, we have I, w |=

fht
F (ξ⋄);

• I, w |=
fht
∃xF (x) if for some ξ ∈ |I|, we have I, w |=

fht
F (ξ⋄).

We say that FHT-interpretation I satisfies F , written as I |=
fht

F , if I, h |=
fht

F .
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Example 9 Consider the formula F that is ∀x(p(x)→ q(x)). Now take an interpre-

tation I = ⟨Ih, It⟩ such that

p(1)I
h
= t p(1)I

t
= f

p(2)I
h
= f p(2)I

t
= t

q(1)I
h
= t q(1)I

t
= t

q(2)I
h
= f q(2)I

t
= t

We will see that I |=
fht

F or rather, I, h |=
fht

F . We must show both

• I, h |=
fht

p(1)→ q(1). To verify this, we must show both

– I, h ̸|=
fht

p(1) or I, h |=
fht

q(1). This holds since It |= q(1) and Ih |= q(1)

and so we have I, h |=
fht

q(1).

– I, t ̸|=
fht

p(1) or I, t |=
fht

q(1) (recall h < t). This holds since It |= q(1) and

so we have I, t |=
fht

q(1).

• I, h |=
fht

p(2)→ q(2). To verify this, we must show both

– I, h ̸|=
fht

p(2) or I, h |=
fht

q(2). This holds since Ih ̸|= p(2) and so we

have I, h ̸|=
fht

p(2). Note, in this case, we do not have I, h |=
fht

q(2) since

Ih ̸|= q(2).

– I, t ̸|=
fht

p(2) or I, t |=
fht

q(2). This holds since It |= q(2) and so we

have I, t |=
fht

q(2). Note, in this case, we do not have I, t ̸|=
fht

p(2) since

It |= p(2).

The following theorem 4 asserts the correctness of the reformulation of the Func-

4Recall the definition of J <c I from section 4.1

• J and I have the same universe and agree on all constants not in c;

• pJ ⊆ pI for all predicate constants p in c; and

• J and I do not agree on c.
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tional Stable Model semantics in terms of equilibrium logic style.

Theorem 2 Let F be a first-order sentence of signature σ and let c be a list of

predicate and function constants. For any interpretation I of σ, I |= SM[F ; c] iff

• ⟨I, I⟩ |=
fht

F , and

• for every interpretation J of σ such that J <c I, we have ⟨J, I⟩ ̸|=
fht

F .
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4.4 Proofs

4.4.1 Proof of Theorem 1

We will often use the following notation throughout this section. Let σ be a first-

order signature, let c be a set of constants that is a subset of σ, and let d be a set

of constants not belonging to σ corresponding to c. 5 Jc
d denotes the interpretation

of signature (σ \ c) ∪ d obtained from J by replacing every constant from c with the

corresponding constant from d. For two interpretations I and J of σ that agree on

all constants in σ \ c, we define Jc
d ∪ I to be the interpretation from the extended

signature σ ∪ d such that

• Jc
d ∪ I agrees with I on all constants in c;

• Jc
d ∪ I agrees with Jc

d on all constants in d;

• Jc
d ∪ I agrees with both I and J on all constants in σ \ c.

Lemma 1 For any sentence F of signature σ and any interpretations I and J of σ,

(a) if Jc
d ∪ I |= F ∗(d), then I |= F .

(b) if ⟨J, I⟩ |=
fht

F , then ⟨I, I⟩ |=
fht

F .

Proof. by induction on F .

Lemma 2 Let F be a sentence of signature σ, and let I and J be interpretations of

σ such that J <c I. We have Jc
d ∪ I |= F ∗(d) iff J |= grI [F ]I .

5That is to say, d and c have the same length and the corresponding members are either predicate
constants of the same arity or function constants of the same arity.
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Proof. By induction on F .

Case 1: F is an atomic sentence. Then F ∗(d) is F (d) ∧ F , where F (d) is obtained

from F by replacing the members of c with the corresponding members of d. Consider

the following subcases:

• Subcase 1: I ̸|= F . Then Jc
d∪I ̸|= F ∗(d). Further, grI [F ]I = ⊥, so J ̸|= grI [F ]I .

• Subcase 2: I |= F . Then Jc
d ∪ I |= F ∗(d) iff Jc

d |= F (d) iff J |= F . Further,

grI [F ]I = F , so J |= grI [F ]I iff J |= F .

Case 2: F is G∧H or G∨H. The claim follows immediately from I.H. on G and H.

Case 3: F is G → H. Then F ∗(d) = (G∗(d) → H∗(d)) ∧ (G → H). Consider the

following subcases:

• Subcase 1: I ̸|= G→ H. Then Jc
d ∪ I ̸|= F ∗(d). Further, grI [F ]I = ⊥, which J

does not satisfy.

• Subcase 2: I |= G → H. Then Jc
d ∪ I |= F ∗(d) iff Jc

d ∪ I |= G∗(d) → H∗(d).

On the other hand, grI [F ]I = grI [G]I → grI [H]I so this case holds by I.H. on

G and H.

Case 4: F is ∃xG(x). By I.H., Jc
d∪I |= G(ξ⋄)∗(d) iff J |= grI [G(ξ⋄)]I for each ξ ∈ |I|.

The claim follows immediately.

Case 5: F is ∀xG(x). Similar to Case 4.

Lemma 3 For any interpretations I and J of signature σ, we have Jc
d ∪ I |= d < c

iff J <c I.
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Proof. Recall that by definition, d < c is

(dpred ≤ cpred) ∧ ¬(d = c),

and by definition, J <c I is

• J and I have the same universe and agree on all constants not in c;

• pJ ⊆ pI for all predicate constants p in c; and

• J and I do not agree on c.

First, by definition of Jc
d ∪ I, J and I have the same universe and agree on all

constants in σ \ c.

Second, by definition, Jc
d ∪ I |= dpred ≤ cpred iff, for every predicate constant p in

c,

Jc
d ∪ I |= ∀x(p(x)cd → p(x)), 6

which is equivalent to saying that (pcd)
Jc
d∪I ⊆ pJ

c
d∪I . Since I does not interpret any

constant from d, and Jc
d does not interpret any constant from c, this is equivalent to

(pcd)
Jc
d ⊆ pI and further to pJ ⊆ pI .

Third, since I does not interpret any constant from d and Jc
d does not interpret

any constant from c, Jc
d ∪ I |= ¬(d = c) is equivalent to saying J and I do not agree

on c.

Theorem 1 Let F be a first-order sentence of signature σ and c be a list of intensional

constants. For any interpretation I of σ, I |= SM[F ; c] iff

• I satisfies F , and

6p(x)cd means the atom that is obtained from p(x) by replacing p with the corresponding member
of d if p ∈ c, and no change otherwise.
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• every interpretation J such that J <c I does not satisfy (grI [F ])I .

Proof. I |= SM[F ; c] is by definition

I |= F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)). (4.2)

The first item, “I satisfies F”, is equivalent to the first conjunctive term of (4.2).

By Lemma 16 and Lemma 3, the second item, “no interpretation J of σ such that

J <c I satisfies grI [F ]I”, is equivalent to the second conjunctive term in (4.2).

4.4.2 Proof of Theorem 2

Lemma 4 Let F be a sentence of signature σ and let I and J be interpretations of σ

such that J <c I. We have J |= grI [F ]I iff ⟨J, I⟩ |=
fht

F .

Proof. By induction on F .

Case 1: F is an atomic sentence. grI [F ] is F .

• Subcase 1: I ̸|= F . Then grI [F ]I is ⊥, which J does not satisfy. Further, since

⟨J, I⟩, t ̸|=
fht

F , ⟨J, I⟩ ̸|=
fht

F .

• Subcase 2: I |= F . Then grI [F ]I is F , and ⟨J, I⟩, t |=
fht

F . It is clear that J |= F

iff ⟨J, I⟩, h |=
fht

F .

Case 2: F is G∧H or G∨H. The claim follows immediately from I.H. on G and H.

Case 3: F is G→ H. Consider the following subcases:

• Subcase 1: I ̸|= G → H. Then grI [G → H]I is ⊥, which J does not satisfy.

Further, ⟨I, I⟩ ̸|=
fht

G→ H. By Lemma 1 (b), ⟨J, I⟩ ̸|=
fht

G→ H.
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• Subcase 2: I |= G→ H. Then grI [G→ H]I is equivalent to grI [G]I → grI [H]I .

Further, ⟨J, I⟩ |=
fht

G → H is equivalent to ⟨J, I⟩ ̸|=
fht

G or ⟨J, I⟩ |=
fht

H. Then

the claim follows from I.H. on G and H.

Case 4: F is ∀xG(x), or ∃xG(x). By induction on G(ξ⋄) for each ξ in the universe.

Theorem 2 Let F be a first-order sentence of signature σ and c be a list of predicate

and function constants. For any interpretation I of σ, I |= SM[F ; c] iff

• ⟨I, I⟩ |=
fht

F , and

• for any interpretation J of σ such that J <c I, we have ⟨J, I⟩ ̸|=
fht

F .

Proof. We use Theorem 1 to refer to the reduct-based reformulation and instead

show

• I satisfies F , and

• every interpretation J such that J <c I does not satisfy (grI [F ])I .

iff

• ⟨I, I⟩ |=
fht

F , and

• for any interpretation J of σ such that J <c I, we have ⟨J, I⟩ ̸|=
fht

F .

Clearly, I |= F iff ⟨I, I⟩ |=
fht

F . By Lemma 4, for every interpretation J such that

J <c I, we have J ̸|= (grI [F ])I iff ⟨J, I⟩ ̸|=
fht

F .

46



Chapter 5

PROPERTIES OF THE FUNCTIONAL STABLE MODEL SEMANTICS

5.1 Constraints

Following Ferraris et al. (2009), we say that an occurrence of a constant, or any

other subexpression, in a formula F is positive if the number of implications containing

that occurrence in the antecedent is even, and negative otherwise. We say that the

occurrence is strictly positive if the number of implications in F containing that

occurrence in the antecedent is 0. For example, in ¬(f = 1)→ g = 1, the occurrences

of f and g are both positive 1 , but only the occurrence of g is strictly positive.

We say that a formula F is negative on a list c of predicate and function con-

stants if members of c have no strictly positive occurrences in F . We say that F

is a constraint if it has no strictly positive occurrences of any constant. Clearly, a

constraint is negative on any list of constants. For instance, a formula of the form

¬H is a constraint.

Theorem 3 For any first-order formulas F and G, if G is negative on c, SM[F ∧G; c]

is equivalent to SM[F ; c] ∧G.

Example 10 Consider a formula F

(f = 1 ∨ g = 1) ∧ (f = 2 ∨ g = 2)

whose stable models are {f = 1, g = 2} and {f = 2, g = 1}. Now, to find the

stable models of F ∧ ¬(f = 1), we observe that since ¬(f = 1) is negative on {f, g},
1Recall that ¬(f = 1) is an abbreviation for f = 1→ ⊥.
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according to Theorem 3, SM[F ∧¬(f = 1); fg] is equivalent to SM[F ; fg]∧¬(f = 1),

which leaves only {f = 2, g = 1} as a stable model.

5.2 Choice and Defaults

Similar to Theorem 2 from Ferraris et al. (2011), the theorem below shows that

making the set of intensional constants smaller can only make the result of applying

SM weaker, and that this can be compensated by adding “choice formulas.” For any

predicate constant p, by Choice(p) we denote the formula ∀x(p(x) ∨ ¬p(x)), where

x is a list of distinct object variables. For any function constant f , by Choice(f) we

denote the formula ∀xy((f(x) = y) ∨ ¬(f(x) = y)), where y is an object variable that

is distinct from x. For any finite list of predicate and function constants c, Choice(c)

stands for the conjunction of the formulas Choice(c) for all members c of c.

Theorem 4 For any first-order formula F and any disjoint lists c, d of distinct

constants, the following formulas are logically valid:

SM[F ; cd]→ SM[F ; c],

SM[F ∧ Choice(d); cd]↔ SM[F ; c].

For example, the formula g=1→ f =1 has only one f -stable model–{f = 1, g =

1}. By Theorem 4, SM[g=1→ f=1; f ] is equivalent to

SM[(g=1→ f=1) ∧ Choice(g); fg]

or rather

SM[(g=1→ f=1) ∧ ∀y(g=y ∨ ¬(g=y)); fg]
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which has only {f = 1, g = 1} as a model. This allows capturing the notion of the

c-stable models without having to refer to the list of intensional constants, instead

encoding this notion in the formula directly.

5.3 Strong Equivalence

Strong equivalence Lifschitz et al. (2001) is an important notion that allows us to

substitute one subformula for another subformula without affecting the stable models.

The theorem on strong equivalence can be extended to formulas with intensional

functions as follows.

About first-order formulas F and G we say that F is strongly equivalent to G if,

for any formula H, any occurrence of F in H, and any list c of distinct predicate and

function constants, SM[H; c] is equivalent to SM[H ′; c], where H ′ is obtained from H

by replacing the occurrence of F by G. In this definition, H is allowed to contain

function and predicate constants that do not occur in F , G; Theorem 5 below shows,

however, that this is not essential.

Theorem 5 Let F and G be first-order formulas, let c be the list of all constants

occurring in F or G and let ĉ be a list of distinct predicate and function variables

corresponding to c. The following conditions are equivalent to each other.

• F and G are strongly equivalent to each other;

• Formula

(F ↔ G) ∧ (ĉ < c→ (F ∗(ĉ)↔ G∗(ĉ)))

is logically valid.
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According to the theorem, formula {F} (shorthand for F ∨¬F ) is strongly equiv-

alent to ¬¬F → F . This allows us to rewrite the formula representing inertia in

Example 7

(amount1=Y ) ∨ ¬(amount1=Y ) ← amount0=Y +1

as

(amount1=Y )← ¬¬(amount1=Y ) ∧ amount0=Y +1.

This is useful for putting formulas in a standard form called Clark Normal Form,

which is necessary for extending the Theorem on Completion from Ferraris et al.

(2011) to our semantics. This is discussed in detail later in Section 5.5.

5.4 Splitting Theorem

For more complex formulas, it would be convenient to break the formula into sep-

arate smaller formulas for readability, modularity, and even efficiency of computation.

However, arbitrarily breaking up a formula does not necessarily result in stable mod-

els that can then be composed to obtain the stable models of the original formula.

Example 11 We will consider two possibilities:

• Simply taking the stable models with respect to all function constants in the

signature common to both of the smaller formulas, and

• Taking the common stable models with respect to only function constants in the

signature that appear in the head of a rule common.

Consider the formula F that is

(f = 1← g = 1) ∧ g = 1
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which has one stable model: {f = 1, g = 1}. However, if we utilize the first option

and break the formula into

(f = 1← g = 1)

and

g = 1

The former has no stable models w.r.t. f, g and so there are no common stable models.

This demonstrates that the first method is incorrect.

Consider the formula G that is

(f = 1← g = 1) ∧ (g = 1← f = 1)

which has no stable models w.r.t. f, g. However, if we utilize the second option and

break the formula into

(f = 1← g = 1)

and

(g = 1← f = 1)

we obtain a common stable model (w.r.t. f for the first and g for the second): {f =

1, g = 1}. This illustrates that the second method is incorrect.

The second approach described in the example does work for the first example

where there is no cyclic dependency among the function constants. In fact, it is

precisely this notion that we will formally capture to ensure that the second approach

will allow splitting the formula.

Definition 2 Let f be a function constant. A first-order formula is called f -plain 2

if each atomic formula

2The notion of f -plain comes from Lifschitz and Yang (2011).
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• does not contain f , or

• is of the form f(t) = u where t is a tuple of terms not containing f , and u is a

term not containing f .

For example, f=1 is f -plain, but each of p(f), g(f) = 1, and 1=f are not f -plain.

For a list c of predicate and function constants, we say that F is c-plain if F

is f -plain for each function constant f in c. Roughly speaking, c-plain formulas do

not allow the functions in c to be nested in another predicate or function, and at

most one function in c is allowed in each atomic formula. For example, f = g is not

(f, g)-plain, and neither is f(g) = 1→ g = 1.

A rule of a first-order formula F is a strictly positive occurrence of an implication

in F .

Let F be a c-plain formula. The dependency graph of F (relative to c), denoted

by DGc[F ], is the directed graph that

• has all members of c as its vertices, and

• has an edge from c to d if, for some rule G→ H of F ,

– c has a strictly positive occurrence in H, and

– d has a positive occurrence in G that does not belong to any subformula

of G that is negative on c.

A loop of F (relative to a list c of intensional predicates) is a nonempty subset l

of c such that the subgraph of DGc[F ] induced by l is strongly connected.

The following theorem extends the Splitting Lemma from Ferraris et al. (2009) to

allow intensional functions.
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Theorem 6 Let F be a c-plain formula, and let c be a list of constants. If l1, . . . , ln

are all the loops of F relative to c then

SM[F ; c] is equivalent to SM[F ; l1] ∧ · · · ∧ SM[F ; ln].

The following theorem extends the splitting theorem from Ferraris et al. (2009)

to allow intensional functions.

Theorem 7 Let c, d be finite disjoint lists of distinct constants and let F , G be

cd-plain first-order sentences. If

(a) each strongly connected component of the dependency graph of F ∧G relative to

c, d is either a subset of c or a subset of d,

(b) F is negative on d, and

(c) G is negative on c

then

SM[F ∧G; c ∪ d]↔ SM[F ; c] ∧ SM[G; d]

is logically valid.

It is clear that Theorem 3 is a special case of Theorem 7, when d is empty.

5.5 Completion

In Section 4.2, we presented a characterization of the functional stable model

semantics in terms of second order logic. However, this does not provide much clarity

of the relationship between classical logic and this formalism. As mentioned earlier,
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simple axioms from classical logic such as F ∨¬F being a tautology do not necessarily

hold in the functional stable model semantics so it is natural to consider a formal

relationship between this semantics and classical logic. This section extends the

Theorem on Completion from Ferraris et al. (2011) to the functional stable models

semantics, providing a method to capture a class of formulas under our semantics in

classical logic.

We say that a formula F is in Clark normal form (relative to the list c of intensional

constants) if it is a conjunction of sentences of the form

∀x(G→ p(x)) (5.1)

and

∀xy(G→ f(x)=y) (5.2)

one for each intensional predicate p and each intensional function f , where x is a list

of distinct object variables, y is an object variable, and G is an arbitrary formula that

has no free variables other than those in x and y.

The completion of a formula F in Clark normal form (relative to c) is obtained

from F by replacing each conjunctive term (5.1) with

∀x(p(x)↔ G)

and each conjunctive term (5.2) with

∀xy(f(x)=y ↔ G).

An occurrence of a symbol or a subformula in a formula F is called strictly positive

in F if that occurrence is not in the antecedent of any implication in F . The t-

dependency graph of F (relative to c) is the directed graph that
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• has all members of c as its vertices, and

• has an edge from c to d if, for some strictly positive occurrence of G→ H in F ,

– c has a strictly positive occurrence in H, and

– d has a strictly positive occurrence in G.

We say that F is tight (on c) if the t-dependency graph of F (relative to c) is

acyclic. For example,

((p→ q)→ r)→ p

is tight on {p, q, r} because its t-dependency graph has only one edge, which goes

from p to r. On the other hand, the formula is not tight according to Ferraris et al.

(2011) because, according to the definition of a dependency graph in that paper, there

is an additional edge that goes from p to itself.

The following theorem is similar to the main theorem of Lifschitz and Yang (2013),

which describes functional completion in nonmonotonic causal logic. Due to our more

general definition of tightness, this theorem generalizes the Theorem on Completion

in Ferraris et al. (2011) even when only predicates are allowed to be intensional.

Theorem 8 For any formula F in Clark normal form that is tight on c, an inter-

pretation I that satisfies ∃xy(x ̸= y) is a model of SM[F ; c] iff I is a model of the

completion of F relative to c.

Example 1 continued

We can represent the factors that affect the speed of the car at time point 1 (the
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full description of this domain will be shown in 9.2.2) as

speed(1)=Y ← accel(0)=t ∧ speed(0)=X ∧ duration(0)=D

∧ (Y = X + a×D)

speed(1)=Y ← decel(0)=t ∧ speed(0)=X ∧ duration(0)=D

∧ (Y = X − a×D)

speed(1)=Y ← speed(0)=Y ∧ ¬¬(speed(1)=Y )

(recall that c=v ∨¬(c=v)← G is strongly equivalent to c=v ← G∧¬¬(c=v)) and

the completion with respect to the function speed(1) will be the following equivalence.

speed(1) = Y ↔ ∃XD( (accel(0)=t ∧ speed(0)=X ∧ duration(0)=D

∧ (Y = X + a×D))

∨ (decel(0)=t ∧ speed(0)=X ∧ duration(0)=D

∧ (Y = X − a×D))

∨ (speed(0) = Y ) )

The assumption ∃xy(x ̸= y) in the statement of Theorem 8 is essential. For

instance, take F to be ⊤ and c to be an intensional function constant f . If the

universe |I| of an interpretation I is a singleton, then I satisfies SM[F ], but does not

satisfy the completion of F , which is ∀xy(f(x) = y ↔ ⊥).
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5.6 Proofs

5.6.1 Proof of Theorem 3

Lemma 5 The formula

(ĉ < c) ∧ F ∗(ĉ)→ F

is logically valid.

Proof: by induction on F .

Lemma 6 Formula

ĉ < c→ ((¬F )∗(ĉ)↔ ¬F )

is logically valid.

Proof: immediate from Lemma 5.

Theorem 3 For any first-order formulas F andG, ifG is negative on c, SM[F ∧G; c]

is equivalent to SM[F ; c] ∧G.

Proof. By Lemma 6,

SM[F ∧ ¬G; c]

= F ∧ ¬G ∧ ¬∃ĉ((ĉ < c) ∧ (F ∧ ¬G)∗(ĉ))

⇔ F ∧ ¬G ∧ ¬∃ĉ((ĉ < c) ∧ F ∗(ĉ) ∧ ¬G)

⇔ F ∧ ¬∃ĉ((ĉ < c) ∧ F ∗(ĉ)) ∧ ¬G

= SM[F ; c] ∧ ¬G.
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Lemma 7 Choice(c)∗(ĉ) is equivalent to

(cpred ≤ ĉpred) ∧ (cfunc = ĉfunc).

Proof. Choice(c) is the conjunction for each predicate p in cpred of ∀x(p(x)∨¬p(x))

and for each function f in cfunc of ∀xy(f(x) = y ∨ ¬f(x) = y).

Now,

[∀x(p(x) ∨ ¬p(x))]∗(ĉ)

is equivalent to

∀x(p̂(x) ∨ ¬p(x)),

which is further equivalent to

∀x(p(x)→ p̂(x)),

or simply p ≤ p̂.

Next,

[∀xy(f(x) = y ∨ ¬(f(x) = y))]∗(ĉ)

is equivalent to

∀xy((f(x) = y ∧ (f̂(x) = y)) ∨ ¬(f(x) = y)),

which is further equivalent to

∀xy(f(x) = y → f̂(x) = y),

or simply f = f̂ .

Thus, Choice(c)∗(ĉ) is the conjunction for each predicate p in cpred of p ≤ p̂ and

for each function f in cfunc of f = f̂ , or simply Choice(c)∗(c) is

(cpred ≤ ĉpred) ∧ (cfunc = ĉfunc).
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5.6.2 Proof of Theorem 4

Theorem 4 For any first-order formula F and any disjoint lists c, d of distinct

constants, the following formulas are logically valid:

(i) SM[F ; cd]→ SM[F ; c]

(ii) SM[F ∧ Choice(d); cd]↔ SM[F ; c].

Proof. The proof is not long, but there is a notational difficulty that we need to

overcome before we can present it. The notation F ∗(ĉ) does not take into account

the fact that the construction of this formula depends on the choice of the list c

of intensional predicates. Since the dependence on c is essential in the proof of

Theorem 4, we use here the more elaborate notation F ∗[c](ĉ). For instance, if F

is p(x) ∧ q(x) then

F ∗[p](p̂) is p̂(x) ∧ q(x),

F ∗[pq](p̂, q̂) is p̂(x) ∧ q̂(x).

It is easy to verify by induction on F that for any disjoint lists c, d of distinct

predicate constants,

F ∗[c](ĉ) = F ∗[cd](ĉ,d). (5.3)

(i) In the notation introduced above, SM[F ; c] is

F ∧ ¬∃ĉ((ĉ < c) ∧ F ∗[c](ĉ)).

By (5.3), this formula can be written also as

F ∧ ¬∃ĉ((ĉ < c) ∧ F ∗[cd](ĉ,d)),
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which is equivalent to

F ∧ ¬∃ĉ(((ĉ,d) < (c,d)) ∧ F ∗[cd](ĉ,d)).

On the other hand, SM[F ; cd] is

F ∧ ¬∃ĉd̂(((ĉ, d̂) < (c,d)) ∧ F ∗[cd](ĉ, d̂)).

To prove (ii), note that, by (5.3) and Lemma 7, the formula

∃ĉd̂(((ĉ, d̂) < (c, d)) ∧ F ∗[cd](ĉ, d̂) ∧ Choice(d)∗[cd](ĉ, d̂))

is equivalent to

∃ĉd̂(((ĉ, d̂) < (c, d)) ∧ F ∗[cd](ĉ, d̂) ∧ (d = d̂)).

It follows that it can be also equivalently rewritten as

∃ĉ((ĉ < c) ∧ F ∗[cd](ĉ,d)).

By (5.3), the last formula can be represented as

∃ĉ((ĉ < c) ∧ F ∗[c](ĉ)).

5.6.3 Proof of Theorem 5

Recall that about first-order formulas F and G we say that F is strongly equivalent

to G if, for any formula H, any occurrence of F in H, and any list c of distinct

predicate and function constants, SM[H; c] is equivalent to SM[H ′; c], where H ′ is

obtained from H by replacing the occurrence of F by G.
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Lemma 8 Formula

(F ↔ G) ∧ ((F ∗(ĉ)↔ G∗(ĉ))→ (H∗(ĉ)↔ (H ′)∗(ĉ)))

is logically valid.

Proof. By induction on H.

The following lemma is equivalent to the “only if” part of the theorem. In these

proofs, we will refer to the following formula

(F ↔ G) ∧ (ĉ < c→ (F ∗(ĉ)↔ G∗(ĉ))) (5.4)

Lemma 9 If the formula (5.4) is logically valid, then F is strongly equivalent to G.

Proof. Assume that (5.4) is logically valid. We need to show that

H ∧ ¬∃ĉ((ĉ < c) ∧H∗(ĉ)) (5.5)

is equivalent to

H ′ ∧ ¬∃ĉ((ĉ < c) ∧ (H ′)∗(ĉ)). (5.6)

Since (5.4) is logically valid, the first conjunctive term of (5.5) is equivalent to the

first conjunctive term of (5.6). By Lemma 8 it also follows that the same relationship

holds between the two second conjunctive terms of the same formulas.

Lemma 10 If F is strongly equivalent to G then (5.4) is logically valid.

Proof. Let C be the formula Choice(c). Let E stand for F ↔ G, and E ′ be F ↔

F . Since F is strongly equivalent to G, the formula SM[E ↔ C] is equivalent to

SM[E ′ ↔ C].
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Note that by Lemma 7, Choice(c)∗(ĉ), which we abbreviate as C∗, is equivalent

to

(cpred ≤ ĉpred) ∧ (cfunc = ĉfunc).

On the other hand, ĉ < c can be equivalently written as

(ĉpred < cpred) ∨ ((ĉpred = cpred) ∧ (ĉfunc ̸= cfunc)).

It follows that

ĉ < c→ (C∗ ↔ ⊥)

is logically valid.

It is easy to see that (E ↔ C)∗ can be rewritten as

E ∧ (E∗(ĉ)↔ C∗),

and that E∗(ĉ) is equivalent to

E ∧ (F ∗(ĉ)↔ G∗(ĉ)).

Using these two facts and Lemma 5, we can simplify SM[E ↔ C] as follows:

SM[E ↔ C]

⇔ (E ↔ C) ∧ ¬∃ĉ((ĉ < c) ∧ E ∧ (E∗(ĉ)↔ C∗))

⇔ E ∧ ¬∃ĉ((ĉ < c) ∧ (E∗(ĉ)↔ ⊥))

⇔ E ∧ ¬∃ĉ((ĉ < c) ∧ ¬E∗(ĉ))

⇔ E ∧ ¬∃ĉ((ĉ < c) ∧ ¬(F ∗(ĉ)↔ G∗(ĉ)))

= (F ↔ G) ∧ ∀ĉ((ĉ < c)→ (F ∗(ĉ)↔ G∗(ĉ)))

Similarly, SM[E ′ ↔ C] is equivalent to

(F ↔ F ) ∧ ∀ĉ((ĉ < c)→ (F ∗(ĉ)↔ F ∗(ĉ))),
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which is logically valid. Consequently, (5.4) is logically valid also.

Theorem 5 Let F and G be first-order formulas, let c be the list of all constants

occurring in F or G and let ĉ be a list of distinct predicate/function variables corre-

sponding to c The following conditions are equivalent to each other.

• F and G are strongly equivalent to each other;

• Formula (5.4) is logically valid.

Proof.

Immediate from Lemma 9 and Lemma 10.

5.6.4 Proof of Theorem 6

The proof of this theorem uses a reduction from functional SM to predicate SM.

This is the topic of Chapter 7 but the necessary terminology and results required for

this proof are presented here.

Lemma 11 Given two lists of predicate and function constants c and d whose ele-

ments are in one-to-one correspondence, a formula F of signature σ ⊇ c ∪ {f} that

is f -plain, and an interpretation I over a signature σ′ ⊇ σ∪d∪{p, q, g} that satisfies

∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y), (5.7)

I |= F ∗(gd) iff I |= (F f
p )

∗(qd).

Proof. By induction on F .
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Case 1: F is an atomic formula not containing f .

F f
p is exactly F thus F ∗(gd) is exactly (F f

p )
∗(qd) so certainly the claim holds.

Case 2: F is f(t) = c.

F ∗(gd) is f(t) = c ∧ g(t) = c.

F f
p is p(t, c).

(F f
p )

∗(qd) is q(t, c).

Since I |= (5.7), it immediately follows that I |= F ∗(gd) iff I |= (F f
p )

∗(qd).

Case 3: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 4: F is G→ H.

By I.H. on G and H.

Case 5: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

Lemma 12 Given two lists of predicate and function constants c and d whose ele-

ments are in one-to-one correspondence, two functions f and g and an interpretation

I over a signature σ′ ⊇ c ∪ d ∪ {p, q, f, g} that satisfies

∀xy(p(x, y)↔ f(x) = y) (5.8)

and

∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y), (5.9)
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I |= gd < fc iff I |= qd < pc.

Proof. (⇒) Assume I |= gd < fc. By definition, it follows that I |= (gd)pred ≤

(fc)pred and since g and f are not predicates, we have I |= dpred ≤ cpred. Since we

assume I |= (5.9), it follows that I |= ∀xy(q(x, y) → f(x) = y). Then from the

assumption that I |= (5.8), it follows that I |= ∀xy(q(x, y)→ p(x, y)) or simply that

I |= q ≤ p, from which it follows that I |= (qd)pred ≤ (pc)pred.

Now since I |= gd < fc, it follows that I |= ¬(gd = fc). We consider two cases

• If I |= ¬(d = c) for some corresponding d and c in d and c respectively, then

we have I |= ¬(d = c) and further, I |= ¬(qd = pc).

• Otherwise, it must be that I |= ¬(g = f). That is, for some ξ and ξ, I ̸|=

f(ξ) = ξ ↔ g(ξ) = ξ. For a given ξ, I maps f(ξ) to exactly one ξ and similarly

for g(ξ) and so it follows that I ̸|= f(ξ) = ξ ∧ g(ξ) = ξ for every ξ. Since

I |= (5.9), I ̸|= q(ξ, ξ) for every ξ. However, since I |= f(ξ) = ξ for some ξ,

from I |= (5.8), we know I |= p(ξ, ξ) for some ξ. Thus, I |= ¬(q = p) and

further I |= ¬(qd = pc).

From either case, we then conclude that I |= qd < pc.

(⇐) Assume I |= qd < pc. By definition, it follows that I |= (qd)pred ≤ (pc)pred and

further, we have I |= dpred ≤ cpred. Then, since f and g are not predicates, we have

I |= (gd)pred ≤ (fc)pred.

Now since I |= qd < pc, it follows that I |= ¬(qd = pc). We consider two cases

• If I |= ¬(d = c) for some corresponding d and c in d and c respectively, then

we have I |= ¬(d = c) and further, I |= ¬(gd = fc)
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• Otherwise, it must be that I |= ¬(q = p). That is, for some ξ and ξ, I ̸|=

q(ξ, ξ) ↔ p(ξ, ξ). Since I |= (5.8), there is exactly one ξ and ξ such that

I |= p(ξ, ξ), which further means that I |= f(ξ) = ξ. Thus since I |= q < p,

it must be that I ̸|= q(ξ, ξ), and since I |= (5.9), it follows that I ̸|= g(ξ) = ξ.

Thus, I |= ¬(g = f) and further I |= ¬(gd = fc).

From either case, we then conclude that I |= gd < fc.

Lemma 13 For any f -plain formula F ,

∀xy(p(x, y)↔ f(x) = y) (5.10)

and ∃xy(x ̸= y) entail

SM[F ; fc]↔ SM[F f
p ; pc].

Proof.

For any interpretation I = ⟨I,X⟩ of signature σ ⊇ {f, p, c} satisfying (5.10),

it is clear that I |= F iff I |= F f
p since F f

p is simply the result of replacing all

f(x) = y with p(x, y). Thus it only remains to be shown that I |= ¬∃f̂ ĉ((f̂ ĉ <

fc) ∧ F ∗(f̂ ĉ)) iff I |= ¬∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ)) or equivalently, I |= ∃f̂ ĉ((f̂ ĉ <

fc) ∧ F ∗(f̂ ĉ)) iff I |= ∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ)).

(⇒) Assume I |= ∃f̂ ĉ((f̂ ĉ < fc)∧F ∗(f̂ , ĉ)). We wish to show that I |= ∃p̂ĉ((p̂ĉ <

pc) ∧ (F f
p )

∗(p̂ĉ))

That is, take any function g of the same arity as f and any list of predicates

and functions d of the same length c. Now let I ′ = ⟨I ∪ Jfc
gd , X ∪ Y c

d ⟩ be from an

extended signature σ′ = σ∪{g, q,d} where J is an interpretation of functions from the

signature σ and I and J agree on all symbols not occurring in {f, c}. Jfc
gd denotes the

interpretation from σfc
gd (the signature obtained from σ by replacing f with g and all
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elements of c with all elements of d) obtained from the interpretation J by replacing

f with g and the functions in c with the corresponding functions in d. Similarly, Y c
d is

the interpretation from σ′ obtained from the interpretation Y by replacing predicates

from c by the corresponding predicates from d. We assume

I ′ |= (gd < fc ∧ F ∗(gd))

and wish to show that there is a predicate q of the same arity as p such that

I ′ |= (qd < pc ∧ (F f
p )

∗(qd)).

We define the new predicate q in terms of f and g as follows:

qI
′
(ξ⃗, ξ′) =

 1 if I ′ |= f(ξ⃗) = ξ′ ∧ g(ξ⃗) = ξ′

0 otherwise.

Clearly I ′ |= ∀xy(q(x, y) ↔ f(x) = y ∧ g(x) = y) and we assumed I ′ |= (5.10)

so by Lemma 12, it follows that I ′ |= qd < pc. By Lemma 11, it follows that

I ′ |= (F f
p )

∗(qd).

(⇐) Assume I |= ∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ)). We wish to show that I |=

∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ ĉ))

That is, take any predicate q of the same arity as p and any list of predicates and

functions d the same length as c and let I ′ = ⟨I ∪ Jfc
gd , X ∪ Y c

d ⟩ is defined as before.

We assume

I ′ |= (qd < pc ∧ (F f
p )

∗(qd))

and wish to show that there is a function g of the same arity as f such that

I ′ |= (gd < fc ∧ F ∗(gd)).
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We define the new function g in terms of p and q as follows:

gI
′
(ξ⃗) =

 ξ′ if I ′ |= p(ξ⃗, ξ′) ∧ q(ξ⃗, ξ′)

ξ′′ if I ′ |= p(ξ⃗, ξ′) ∧ ¬q(ξ⃗, ξ′) where ξ′ ̸= ξ′′.

Note that the assumption that there are at least two elements in the universe is essen-

tial to this definition. This is a well-defined function by (5.10) entailing ∀ξ⃗∃ξ′(p(ξ⃗, ξ′)).

We show that I ′ |= ∀xy(q(x, y) ↔ f(x) = y ∧ g(x) = y). Since we assume

I ′ |= (5.10), it follows that for any given ξ, there is only one ξ such that I ′ |= p(ξ, ξ).

Then, since we assume I ′ |= q ≤ p, we know I ′ ̸|= q(ξ, ξ′) for any ξ′ ̸= ξ. If

I ′ |= q(ξ, ξ), then I ′ |= g(ξ) = ξ. Otherwise, I ′ |= g(ξ) = ξ′ for some ξ′ ̸= ξ. Since

this is true for any ξ, it follows that I ′ |= ∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y).

We assumed I ′ |= (5.10) so by Lemma 12, it follows that I ′ |= qd < pc. By

Lemma 11, it follows that I ′ |= (F f
p )

∗(qd).

Lemma 14 Let F be an f -plain sentence. (a) An interpretation I of the signature

of F that satisfies ∃xy(x ̸= y) is a model of SM[F ; fc] iff Ifp is a model of SM[F f
p ; pc].

(b) An interpretation J of the signature of F f
p that satisfies ∃xy(x ̸= y) is a model of

SM[F f
p ∧ UEC p; pc] iff J = Ifp for some model I of SM[F ; fc].

Proof.

For two interpretations I of signature σ1 and J of signature σ2, by I∪J we denote

the interpretation of signature σ1∪σ2 and universe |I|∪|J | that interprets all symbols

occurring only in σ1 in the same way I does and similarly for σ2 and J . For symbols

appearing in both σ1 and σ2, I must interpret these the same as J does, in which

case I ∪ J also interprets the symbol in this way.

(a⇒) Assume I |= SM[F ; fc]∧∃xy(x ̸= y). Since I |= ∃xy(x ̸= y), I ∪ Ifp |= ∃xy(x ̸=
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y) since by definition of Ifp , I and Ifp share the same universe. By definition of Ifp ,

I ∪ Ifp |= (5.10). Thus by Lemma 13, I ∪ Ifp |= SM[F ; fc]↔ SM[F f
p ; pc].

(a⇐) Assume I |= ∃xy(x ̸= y) and Ifp |= SM[F f
p ; pc]. Since I |= ∃xy(x ̸= y),

I ∪ Ifp |= ∃xy(x ̸= y) since by definition of Ifp , I and Ifp share the same universe.

By definition of Ifp , I ∪ Ifp |= (5.10). Thus by Lemma 13, I ∪ Ifp |= SM[F ; fc] ↔

SM[F f
p ; pc].

Since we assume Ifp |= SM[F f
p ; pc], it is the case that I ∪ Ifp |= SM[F f

p ; pc] and

thus it must be the case that I ∪ Ifp |= SM[F ; fc]. Therefore since the signature of Ifp

does contain f , we conclude I |= SM[F ; fc].

(b⇒) Assume J |= ∃xy(x ̸= y) and J |= SM[F f
p ∧ UECp; pc]. Let I = Jp

f where Jp
f

denotes the interpretation of the signature of F obtained from J by replacing the set

pJ with the function f such that f I(ξ1, . . . , ξk) = ξk+1 for all tuples ⟨ξ1, . . . , ξk, ξk+1⟩

in pJ . This is a valid definition of a function since we assume J |= SM[F f
p ∧UECp; pc],

from which we obtain by Theoreom 3 that J |= SM[F f
p ; pc] ∧ UECp and specifically,

J |= UECp. Clearly, J = Ifp so it only remains to be shown that I |= SM[F ; fc].

Since I and J have the same universe and J |= ∃xy(x ̸= y), it follows that

I ∪J |= ∃xy(x ̸= y). Also by the definition of Jp
f I ∪J |= (5.10). Thus by Lemma 13,

I ∪ J |= SM[F ; fc]↔ SM[F f
p ; pc].

Since we assume J |= SM[F f
p ; pc], it is the case that I ∪ J |= SM[F f

p ; pc] and thus

it must be the case that I ∪ J |= SM[F ; fc]. Now since the signature of J does not

contain f , we conclude I |= SM[F ; fc].

(b⇐)Take any I such that J = Ifp and I |= SM[F ; fc]. Since J |= ∃xy(x ̸= y) and

I and J share the same universe, I ∪ J |= ∃xy(x ̸= y). By definition of J = Ifp ,
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I ∪ J |= (5.10). Thus by Lemma 13, I ∪ J |= SM[F ; fc]↔ SM[F f
p ; pc].

Since we assume I |= SM[F ; fc], it is the case that I ∪ J |= SM[F ; fc] and thus it

must be the case that I ∪ J |= SM[F f
p ; pc]. Further, due to the nature of functions,

(5.10) entails UECp so I ∪ J |= UECp. However since the signature of I does not

contain p, we conclude J |= SM[F f
p ; pc] ∧ UECp and since UECp is comprised of

constraints, by Theorem 3 J |= SM[F f
p ∧ UECp; pc].

Theorem 6 Let F be a c-plain formula, and let c be a list of constants. If l1, . . . , ln

are all the loops of F relative to c then

SM[F ; c] is equivalent to SM[F ; l1] ∧ · · · ∧ SM[F ; ln].

Proof.

The proof is by reduction to predicate SM.

By repeated applications of Lemma 14 we can obtain F f
p ∧UECp where f are all

the functions in c and p is a list of new predicates and the stable models of F f
p ∧UECp

will coincide with the stable models of F .

The dependency graph of F is isomorphic to the dependency graph of F f
p ∧UECp

by the obvious isomorphism that maps p to p for each predicate p ∈ c and maps f to

q for each function f ∈ f and the corresponding q ∈ p.

Then the claims follow by Splitting Lemma, Version 1 in Ferraris et al. (2009).
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5.6.5 Proof of Theorem 7

Theorem 7 Let c, d be finite disjoint lists of distinct constants and let F , G be

cd-plain first-order sentences. If

(a) each strongly connected component of the predicate dependency graph of F ∧G

relative to c, d is either a subset of c or a subset of d,

(b) F is negative on d, and

(c) G is negative on c

then

SM[F ∧G; c ∪ d]↔ SM[F ; c] ∧ SM[G; d]

is logically valid.

Proof.

The proof is by reduction to predicate SM.

By repeated applications of Lemma 14, we can obtain (F ∧G)fgpq ∧ UECpq where

f are all the functions in c and p is a list of new predicates of the same length and

g are all the functions in d and q is a list of new predicates of the same length. The

stable models of (F ∧G)fgpq ∧ UECpq will coincide with the stable models of F ∧G.

Similarly, by repeated applications of Lemma 14, we can obtain F fg
pq ∧ UECpq

whose stable models will coincide with those of F . Again, by repeated applications

of Lemma 14, we can obtain Gfg
pq ∧ UECpq whose stable models will coincide with

those of G.

The dependency graph of F ∧ G is isomorphic to the dependency graph of (F ∧

G)fgpq ∧ UECpq by the obvious isomorphism that maps p to p for each predicate

p ∈ c ∪ d and maps f to q for each function f ∈ f ∪ g and the corresponding
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q ∈ p∪q. Similar for the dependency graphs of F and F fg
pq ∧UECpq as well as those

of G and Gfg
pq ∧ UECpq. In particular, we note that since UECpq is negative on pq,

we have that F fg
pq ∧ UECpq is negative on dg

q and that Gfg
pq ∧ UECpq is negative on

cfp

Then the claims follow by Splitting Lemma, Version 2 in Ferraris et al. (2009).

5.6.6 Proof of Theorem 8

Lemma 15 For an infinitary ground formula F , a set of constants c and two inter-

pretations I and J such that J <c I, if I |= grI(F )I and J ̸|= grI(F )I , then there is

some constant d occurring strictly positively in grI(F )I such that d(ξ)I ̸= d(ξ)J for

some tuple ξ of elements from |I|.

Proof.

The proof of this claim is by induction:

• Case 1: F is an atomic formula. In this case grI(F )I = F since I |= grI(F )I .

And since J ̸|= grI(F )I , there must be at least one constant in grI(F )I that

I and J disagree on and since grI(F )I is an atomic formula, this is a strictly

positively occurrence.

• Case 2: F is H∧. Since I |= grI(F )I , grI(F )I is H′∧ (and not ⊥) where

H′ = {grI(G)I |G ∈ H}. Since J ̸|= grI(F )I , J ̸|= grI(G)I for at least one

G ∈ H so the claim follows by induction on whichever subformula J does not

satisfy since in any case, the subformula occurs strictly positively.

72



• Case 3: F is H∨. Since I |= grI(F )I , grI(F )I is H′∨ (and not ⊥) where

H′ = {grI(G)I |G ∈ H}. Since J ̸|= grI(F )I , J ̸|= grI(G)I for every G ∈ H.

Now it could be that I ̸|= grI(G)I for some G ∈ H but not all of them. In

such a case grI(G)I would be ⊥, which I also does not satisfy. Thus the claim

follows by induction on whichever of G ∈ H whose reduct I satisfies.

• Case 4: F is G → H. grI(F )I is grI(G)I → grI(H)I (and not ⊥). Since

J ̸|= grI(F )I , J |= grI(G)I and J ̸|= grI(H)I . Note that it must be the case

then that I |= grI(G)I since if not, it must be that grI(G)I is ⊥ and thus it

is impossible for it to be that J |= grI(G)I . Consequently, it also follows that

I |= grI(H)I since I |= grI(F )I so the claim follows by induction on H since

the subformula occurs strictly positively.

Theorem 8 For any sentence F in Clark normal form that is tight on c, an

interpretation I that satisfies ∃xy(x ̸= y) is a model of SM[F ; c] iff I is a model of

the completion of F relative to c.

Proof.

In this proof, we use Theorem 1 and refer to the reduct characterization.

(⇐) Take an interpretation I that is a model of the completion of F . We wish to

show that for any interpretation J where J <c I, J ̸|= grI [F ]I . Let S be a subset

of c such that I and J disagree on all constants in S–that is, those constants c for

which there exists some tuple ξ such that c(ξ)I ̸= c(ξ)J . Now let s0 be a constant

from S such that there is no edge in the dependency graph from s0 to any constant

in S. Such an s0 is guaranteed to exist since F is tight on c.

If s0 is a predicate, then for some ξ, s0(ξ)
I = 1 and s0(ξ)

J = 0 by definition of
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J <c I. If s0 is a function, let v be s0(ξ)
I . Note that since I is a model of the

completion of F and since F is in clark normal form, there must be a rule in grI [F ]

of the form B → s0(ξ
⋄) if s0 is a predicate (B → s0(ξ

⋄) = v if s0 is a function)

where B may be ⊤. Further it must be that I |= B since if not, I would not be a

model of the completion of F . Thus, the corresponding rule in grI [F ]I is BI → s0(ξ
⋄)

(BI → s0(ξ)
⋄ = v if s0 is a function).

Now there are two cases to consider:

• Case 1: J |= BI . In this case, J ̸|= BI → s0(ξ
⋄) (or J ̸|= BI → s0(ξ

⋄) = v if s0

is a function) and so J ̸|= grI [F ]I .

• Case 2: J ̸|= BI . By Lemma 15, there is a constant d occurring strictly posi-

tively in B that I and J disagree on. However, this means there is an edge from

s0 to d and since I and J disagree on d, d belongs to S which contradicts the

fact that s0 was chosen so that it had no edge to any element in S. Thus this

case cannot arise.

(⇒) Assume I |= SM[F ; c]. Now for every rule r in F of the form ∀x(H(x) ←

G(x)), for each of the ground rules in grI [F ] corresponding to r of the form H(ξ)←

G(ξ) there are two cases:

• Case 1: I |= G(ξ).

In this case, since I |= F , it must also be that I |= H(ξ). Thus, I |= H(ξ) ↔

G(ξ).

• Case 2: I ̸|= G(ξ).

The corresponding rule in the reduct grI [F ]I is either

H(ξ)← ⊥
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or

⊥ ← ⊥

depending on if I |= H(ξ). However, since F is in clark normal form, H(ξ)

appears in the head of no other rule. Thus, if I |= H(ξ), I ̸|= SM[F ; c] since

we can take J <c I (I |= ∃xy(x ̸= y) means there are at least two elements

in the universe so this is possible) that differs from I only in that J ̸|= H(ξ)

which will satisfy F I . Thus, it must be that I ̸|= H(ξ). It then follows that

I |= H(ξ)↔ G(ξ).

75



Chapter 6

ELIMINATING INTENSIONAL PREDICATES IN FAVOR OF INTENSIONAL

FUNCTIONS

6.1 Embedding 1988 Definition of a Stable Model

Before considering the general case of eliminating intensional predicates in favor

of intensional functions, we first explore a special case. We will see how to turn

propositional logic programs under the semantics in Gelfond and Lifschitz (1988)

into formulas under the functional stable model semantics which have no predicate

constants.

Let Π be a finite set of rules of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An (6.1)

(n ≥ m ≥ 0), where each Ai is a propositional atom from the signature σ. The stable

models of Π in the sense of Gelfond and Lifschitz (1988) can be characterized in terms

of SM, in the same way as is handled in IF programs Lifschitz (2012). Lifschitz 2012

defines the functional image of Π as follows. First, reclassify all propositional atoms

as intensional object constants, and add to the σ two non-intensional object constants

0 and 1 to obtain a new signature σfunc. Each rule (6.1) is rewritten as

A0 = 1← A1 = 1 ∧ · · · ∧ Am = 1 ∧ Am+1 ̸= 1 ∧ · · · ∧ An ̸= 1

(A ̸= 1 is shorthand for ¬(A = 1)). For each atom A in the signature of Π we add

the default rule

A = 0← ¬¬(A = 0)
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(by default, atoms get the value false). Finally, we add constraints

0 ̸= 1,

x = 0 ∨ x = 1.
(6.2)

The resulting program is called the functional image of Π. Clearly, the models of (6.2)

can be viewed as sets of propositional atoms. Given a program Π whose signature

is σ and interpretation I of the functional image of Π, the corresponding set XI of

propositional atoms is

{p|pI = 1 where p is an object constant in σfunc }.

Inversely, given a program Π whose signature is σ and a set of propositional atoms

X, the corresponding interpretation IX is defined such that

pIX =

 1 p ∈ X

0 otherwise

for each atom p in σ. The following theorem is similar to Proposition 5 from Lifschitz

(2012), but applies to the functional stable model semantics presented here.

Theorem 9 Let Π be a program of signature σ.

• If X is a stable model of Π, then IX is a stable model of the functional image

of Π.

• If I is a stable model of the functional image of Π, then XI is a stable model of

Π.

Example 12 Consider the program Π:

p ← q.

q ← p.
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This has X = ∅ as its only stable model. We now consider the functional image of

Π:

p = 1 ← q = 1.

q = 1 ← p = 1.

p = 0 ← ¬¬(p = 0).

q = 0 ← ¬¬(q = 0).

0 ̸= 1.

x = 0 ∨ x = 1.

We can see that in the functional image, the idea of minimizing predicates is made

explicit by the third and fourth lines establishing that p and q should both be 0 (signi-

fying false) by default. Consider the interpretation I such that |I| = {0, 1}, pI = 0,

qI = 0, 1I = 1, 0I = 0 (the interpretation corresponding to X). We can see that the

reduct of the functional image of Π w.r.t. to I is equivalent to

p = 1 ← q = 1.

q = 1 ← p = 1.

p = 0 ← ⊤.

q = 0 ← ⊤.

x = 0 ∨ x = 1.

and no other interpretation different from I on p, q satisfies this reduct. Thus, I is a

stable model of the functional image of Π which corresponds to the only stable model

of Π.

On the other hand, we can see that for the interpretation J such that |J | = {0, 1},

pJ = 1, qJ = 1, 1J = 1, 0J = 0, the reduct of the functional image of Π w.r.t. to J is
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equivalent to

p = 1 ← q = 1.

q = 1 ← p = 1.

x = 0 ∨ x = 1.

however, the interpretation I which is different from J on p and q is a model of

this reduct and so J is not a stable model of the functional image of Π just as the

corresponding set Y = {p, q} is not a stable model of Π.

6.2 Eliminating Intensional Predicates

The process in the previous section can be extended to eliminate intensional predi-

cates in favor of intensional functions. Given a formula F and an intensional predicate

constant p, formula F p
f is obtained from F as follows:

• in the signature of F , replace p with a new intensional function constant f of

arity n, where n is the arity of p, and add two non-intensional object constants

0 and 1;

• replace each subformula p(t) in F with f(t) = 1.

By FC f (“Functional Constraint on f”) we denote the conjunction of the following

formulas, which enforces f to behave like predicates:

0 ̸= 1, (6.3)

¬¬∀x(f(x) = 0 ∨ f(x) = 1). (6.4)
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where x is a list of distinct object variables. By DF f (“Default False on f”) we

denote the following formula:

∀x(¬¬(f(x) = 0)→ f(x) = 0). (6.5)

Example 13 Let F be the conjunction of the universal closures of the following for-

mulas, which describes the effect of a monkey moving:

loc(monkey , 0) = l1,

loc(monkey , 1) = l2,

move(monkey , L, T )→ loc(monkey , T + 1) = L

We eliminate the intensional predicate move in favor of an intensional function movef

to obtain Fmove
movef

∧FCmovef∧DFmovef , which is the conjunction of the universal closures

of the following formulas:

loc(monkey , 0) = l1,

loc(monkey , 1) = l2,

movef (monkey , L, T ) = 1→ loc(monkey , T + 1) = L,

0 ̸= 1,

¬¬∀xyz(movef (x, y, z) = 0 ∨movef (x, y, z) = 1)

∀xyz(¬¬(movef (x, y, z) = 0)→ movef (x, y, z) = 0).

Theorem 10 Formulas ∀x(f(x) = 1 ↔ p(x)), FC f entail SM[F ; pc] ↔ SM[F p
f ∧

DF f ; fc].

The following corollary shows that there is a 1–1 correspondence between the

stable models of F and the stable models of its “functional image” F p
f ∧DF f ∧FC f .

For any interpretation I of the signature of F , by Ipf we denote the interpretation
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with universe |I| and with the signature of F p
f obtained from I by replacing the set

pI with the function f I such that

f I(ξ1, . . . , ξn) = 1 if pI(ξ1, . . . , ξn) = 1

f I(ξ1, . . . , ξn) = 0 otherwise .

where each ξi ∈ |I|. A further constraint on Ipf is that Ipf |= 1 ̸= 0. Consequently, Ipf

satisfies FC f .

Corollary 1 (a) An interpretation I of the signature of F is a model of SM[F ; pc]

iff Ipf is a model of SM[F p
f ∧DF f ; fc]. (b) An interpretation J of the signature of F p

f

is a model of SM[F p
f ∧ DF f ∧ FC f ; fc] iff J = Ipf for some model I of SM[F ; pc].

6.3 Relating Strong Negation to Boolean Functions

6.3.1 Representing Strong Negation in Multi-Valued Propositional Formulas

The notion of strong negation (or classical negation) has been useful in logic

program. In particular, in combination with default negation (or negation as failure)

in solving the frame problem–that the world does not arbitrarily change.

Example 14 Consider the program that describes a simple transition system con-

sisting of two states depending on whether fluent p is true or false, and an action a

that makes p true (subscripts 0 and 1 represent time stamps).
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Figure 6.1: Transition System

p1 ← a

p1 ← p0,not ∼p1

∼p1 ← ∼p0,not p1

p0 ← not ∼p0

∼p0 ← not p0

a ← not ∼a

∼a ← not a.

(6.6)

The program has four answer sets, each of which corresponds to one of the four

edges of the transition system. For instance, {∼p0, a, p1} is an answer set.

However, strong negation in the stable model semantics is not a primitive connec-

tive 1 . We provide an alternate characterization of the notion of strong negation by

translating a propositional logic program into a multi-valued propositional formula

in which all constants are Boolean.

Given a traditional propositional logic program Π of a signature σ Gelfond and

Lifschitz (1991), we identify σ with the multi-valued propositional signature whose

constants are the same symbols from σ and every constant is Boolean. By Πmv we

mean the multi-valued propositional formula that is obtained from Π by replacing

1Strong negation can only appear in front of an atom so that ∼(p ∨ q) is not a valid formula.
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negative literals of the form ∼p with p = 0 and positive literals of the form p with

p = 1.

We say that a set X of literals from σ is complete if, for each atom a ∈ σ, either

a or ∼a is in X. We identify a complete set of literals from σ with the corresponding

multi-valued propositional interpretation.

Theorem 11 A complete set of literals is an answer set of Π in the sense of Gelfond

and Lifschitz (1991) iff it is a stable model of Πmv in the sense of the functional stable

model semantics.

The theorem tells us that checking the minimality of positive and negative liter-

als under the traditional stable model semantics is essentially the same as checking

the uniqueness of corresponding function values under the functional stable model

semantics.

Example 14 continued According to Theorem 11, the stable models of this pro-

gram are the same as the stable models of the following multi-valued propositional

formula (written in a logic program style; ‘¬’ represents default negation):

p0=1 ← ¬(p0=0)

p0=0 ← ¬(p0=1)

a=1 ← ¬(a=0)

a=0 ← ¬(a=1)

p1=1 ← a=1

p1=1 ← p0=1 ∧ ¬(p1 = 0)

p1=0 ← p0=0 ∧ ¬(p1 = 1)
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6.3.2 Representing Strong Negation Using Boolean Functions in the First-Order

Case

Theorem 11 can be extended to the first-order case as follows. However, we first

define a syntactic restriction for the extension.

Let F be a formula possibly containing strong negation. Formula F
(p,∼p)
b is ob-

tained from F as follows:

• in the signature of F , replace p and ∼p with a new intensional function constant

b of arity n, where n is the arity of p (or ∼p), and add two non-intensional object

constants 1 and 0;

• replace every occurrence of ∼p(t), where t is a list of terms, with b(t) = 0, and

then replace every occurrence of p(t) with b(t) = 1.

By BC b (“Boolean Constraint on b”) we denote the conjunction of the following

formulas, which enforces b to be a Boolean function:

1 ̸= 0, (6.7)

¬¬∀x(b(x) = 1 ∨ b(x) = 0). (6.8)

where x is a list of distinct object variables.

Theorem 12 Let c be a set of predicate and function constants, and let F be a

c-plain formula. Formulas

∀x((p(x)↔ b(x)=1) ∧ (∼p(x)↔ b(x)=0)), (6.9)

and BC b entail

SM[F ; p,∼p, c]↔ SM[F
(p,∼ p)
b ; b, c] .
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Example 14 continued Consider the simple transition system from before. We

obtain F
(p,∼p)
b

b1 = 1 ← a

b1 = 1 ← b0 = 1, not b1 = 0

b1 = 0 ← b0 = 0, not b1 = 1

b0 = 1 ← not b0 = 0

b0 = 0 ← not b0 = 1

a ← not ∼a

∼a ← not a.

We can see that the interpretation I such that

(b0)
I = 0, (∼p0)I = t, (p0)

I = f ,

aI = 0,

(b1)
I = 1, (p1)

I = t, (∼p1)I = f

satisfies 6.9 and BC b. Then we can see that I |= SM[F ; p,∼p, c]↔ SM[F
(p,∼p)
b ; b, c]

since I |= SM[F ; p,∼p, c] and I |= SM[F
(p,∼p)
b ; b, c].

If we drop the requirement that F be c-plain, the statement does not hold as the

following example demonstrates.

Example 15 Take c to be (f, g) and let F be p(f)∧ ∼ p(g). F
(p,∼ p)
b is b(f) =

1 ∧ b(g) = 0. Consider the interpretation I whose universe is {1, 2} such that I

contains p(1),∼p(2) and with the mappings bI(1) = 1, bI(2) = 0, f I = 1, gI = 2. I

certainly satisfies BC b and (6.9). I also satisfies SM[F ; p,∼p, f, g] but does not sat-

isfy SM[F
(p,∼ p)
b ; b, f, g]: we can take I such that b̂I(1) = 0, b̂I(2) = 1, f̂ I = 2, ĝI = 1

to satisfy both (̂b, f̂ , ĝ) < (b, f, g) and (F
(p,∼ p)
b )∗(̂b, f̂ , ĝ), which is

b(f) = 1 ∧ b̂(f̂) = 1 ∧ b(g) = 0 ∧ b̂(ĝ) = 0.
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Note that any interpretation that satisfies both (6.9) and BC b is complete on p.

Theorem 12 tells us that for any interpretation I that is complete on p, minimizing

the extents of both p and ∼p has the same effect as ensuring that the corresponding

Boolean function b has a unique value.

The following corollary shows that there is a 1–1 correspondence between the

stable models of F and the stable models of F
(p,∼p)
b . We say an interpretation I is

coherent if for every predicate p in the signature of I, we have I |= ∀x(¬p(x) ∨ ¬ ∼

p(x)). For any coherent interpretation I of the signature of F that is complete on p,

by I
(p,∼p)
b we denote the interpretation of the signature of F

(p,∼p)
b obtained from I by

replacing the relation pI with function bI such that

bI(ξ1, . . . , ξn) = 1I if pI(ξ1, . . . , ξn) = t;

bI(ξ1, . . . , ξn) = 0I if (∼p)I(ξ1, . . . , ξn) = t .

Since I is complete on p and coherent, bI is well-defined. We also require that I
(p,∼p)
b

satisfy (6.7). Consequently, I
(p,∼p)
b satisfies BC b.

Corollary 2 Let c be a set of predicate and function constants, and let F be a c-

plain sentence. (I) A coherent interpretation I of the signature of F that is complete

on p is a model of SM[F ; p,∼p, c] iff I
(p,∼ p)
b is a model of SM[F

(p,∼ p)
b ; b, c]. (II) An

interpretation J of the signature of F
(p,∼ p)
b is a model of SM[F

(p,∼ p)
b ∧ BC b; b, c] iff

J = I
(p,∼ p)
b for some model I of SM[F ; p,∼p, c].

The other direction, eliminating Boolean intensional functions in favor of sym-

metric predicates, is similar as we show in the following.

Let F be a (b, c)-plain formula such that every atomic formula containing b has

the form b(t) = 1 or b(t) = 0, where t is any list of terms. Formula F b
(p,∼p) is obtained

from F as follows:
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• in the signature of F , replace b with predicate constants p and ∼p, whose arities

are the same as that of b;

• replace every occurrence of b(t) = 1, where t is any list of terms, with p(t), and

b(t) = 0 with ∼p(t).

Theorem 13 Let c be a set of predicate and function constants, let b be a function

constant, and let F be a (b, c)-plain formula such that every atomic formula containing

b has the form b(t) = 1 or b(t) = 0. Formulas (6.9) and BC b entail

SM[F ; b, c]↔ SM[F b
(p,∼ p); p,∼p, c] .

The following corollary shows that there is a 1–1 correspondence between the

stable models of F and the coherent stable models of F b
(p,∼p). For any interpretation

I of the signature of F that satisfies BC b, by I b
(p,∼p) we denote the interpretation of

the signature of F b
(p,∼p) obtained from I by replacing the function bI with predicate

pI such that

pI(ξ1, . . . , ξn) = t iff bI(ξ1, . . . , ξn) = 1I ;

(∼p)I(ξ1, . . . , ξn) = t iff bI(ξ1, . . . , ξn) = 0I .

Corollary 3 Let c be a set of predicate and function constants, let b be a function con-

stant, and let F be a (b, c)-plain sentence such that every atomic formula containing

b has the form b(t) = 1 or b(t) = 0. (I) A coherent interpretation I of the signature

of F is a model of SM[F ∧ BC b; b, c] iff I b
(p,∼ p) is a model of SM[F b

(p,∼ p); p,∼p, c].

(II) An interpretation J of the signature of F b
(p,∼ p) is a model of SM[F b

(p,∼ p); p,∼p, c]

iff J = I b
(p,∼ p) for some model I of SM[F ∧ BC b; b, c].
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6.4 Proofs

6.4.1 Proof of Theorem 9

Theorem 9 Let Π be a program of signature σ.

• If X is a stable model of Π, then IX is a stable model of the functional image

of Π.

• If I is a stable model of the functional image of Π, then XI is a stable model of

Π.

Proof. Let p denote all of the atoms in σ and let f denote all of the corresponding

object constants in the signature of the functional image of Π. We first note that IX

is the same as Ipf . We also note that the added rules

{A=0}ch

and

0 ̸= 1,

x = 0 ∨ x = 1.

are precisely DF f ∧ FC f when considering their first-order representation. Finally,

we note then that the first-order representation of functional image of Π is exactly

F p
f ∧DF f∧FC f where F is the first-order representation of Π. Then, the claim follows

from multiple applications of Corollary 1 for each p in p and the corresponding f in

f .
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6.4.2 Proof of Theorem 10

Theorem 10 Formulas

∀x(f(x) = 1↔ p(x)), (6.10)

and FC f entail SM[F ; pc]↔ SM[F p
f ∧ DF f ; fc].

Proof.

For any interpretation I = ⟨I,X⟩ of signature σ ⊇ {f, p, c} satisfying (6.10), it is

clear that I |= F iff I |= F p
f ∧DF f since DF f is a tautology and F p

f is equivalent to

F under (6.10). Thus it only remains to be shown that

I |= ¬∃p̂ĉ((p̂ĉ < pc) ∧ F ∗(p̂, ĉ))

iff

I |= ¬∃f̂ ĉ((f̂ ĉ < fc) ∧ (F p
f )

∗(f̂ , ĉ) ∧ DF ∗
f (p̂ĉ))

or equivalently,

I |= ∃p̂ĉ((p̂ĉ < pc) ∧ F ∗(p̂, ĉ))

iff

I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ (F p
f )

∗(f̂ , ĉ) ∧ DF ∗
f (f̂ ĉ)).

(⇒) Assume I |= ∃p̂ĉ((p̂ĉ < pc)∧F ∗(p̂, ĉ)). We wish to show that I |= ∃f̂ ĉ((f̂ ĉ <

fc) ∧ (F p
f )

∗(f̂ , ĉ) ∧ DF ∗
f (f̂ ĉ)).

That is, take any predicate q of the same arity as p and any list of predicates

and functions d of the same length as c. Now let I ′ = ⟨I ∪ Jfc
gd , X ∪ Y c

d ⟩ be from an

extended signature σ′ = σ ∪ {g, q,d} where J is an interpretation of functions from

the signature σ and I and J agree on all functions not in {f, c}. Jfc
gd denotes the

interpretation from σfc
gd (the signature obtained from σ by replacing f with g and all

elements of c with all elements of d) obtained from the interpretation J by replacing
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f with g and the functions in c with the corresponding functions in d. Similarly, Y c
d is

the interpretation from σc
d obtained from the interpretation Y by replacing predicates

from c by the corresponding predicates from d. We assume

I ′ |= (qd < pc ∧ F ∗(qd))

and wish to show that there is a function g of the same arity as f such that

I ′ |= (gd < fc ∧ (F p
f )

∗(gd) ∧ DF ∗
f (gd)).

We define the new function g in terms of q as follows:

gI
′
(ξ⃗) =

 1 if I ′ |= q(ξ⃗)

0 otherwise

We now show I ′ |= gd < fc:

Case 1: I ′ |= (q = p).

Since I ′ |= qd < pc, by definition I ′ |= dpred ≤ cpred and I ′ |= ¬(qd = pc) and since

in this case, I ′ |= (q = p), I ′ |= ¬(d = c). From this, we conclude I ′ |= ¬(gd = fc).

Further, since I ′ |= dpred ≤ cpred, we conclude I ′ |= gd < fc.

Case 2: I ′ |= ¬(q = p).

Since I ′ |= qd < pc, by definition, I ′ |= dpred ≤ cpred and I ′ |= (q ≤ p). Thus, since

in this case I ′ |= ¬(q = p), then it follows that I ′ |= ∃x(p(x) ∧ ¬q(x)). From the

definition of g and from (6.10), this is equivalent to I ′ |= ∃x(f(x) = 1 ∧ g(x) = 0).

Thus, we conclude I ′ |= ¬(f = g) and since I ′ |= dpred ≤ cpred, we further conclude

that I ′ |= gd < fc.

We now show I ′ |= DF ∗
f (gd):

Since I ′ |= qd < pc, by definition, I ′ |= (q ≤ p), or equivalently I ′ |= ∀x(q(x) →

p(x)) and by contraposition, I ′ |= ∀x(¬p(x)→ ¬q(x)). Finally, by (6.10),FCf , and

the definition of g, I ′ |= ∀x(f(x) = 0→ g(x) = 0) or simply I ′ |= DF ∗
f (gd).
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We now show I ′ |= (F p
f )

∗(gd) by proving that I ′ |= (F p
f )

∗(gd) iff I ′ |= F ∗(qd):

Case 1: F is an atomic formula not containing p.

F p
f is exactly F thus F ∗(qd) is exactly (F p

f )
∗(gd) so certainly the claim holds.

Case 2: F is p(t) where t contains an intensional function constant from c.

F ∗(qd) is p(t) ∧ q(t′)

where t′ is the result of replacing all intensional functions from c occurring in t with

the corresponding function from d.

F p
f is f(t) = 1.

(F p
f )

∗(gd) is f(t) = 1 ∧ g(t′) = 1.

Since I ′ |= p(t)∧ q(t′), it follows from (6.10) and the definition of g that I ′ |= f(t) =

1 ∧ g(t′) = 1.

Case 3: F is p(t) where t does not contain any intensional function constant from c.

F ∗(qd) is q(t).

F p
f is f(t) = 1.

(F p
f )

∗(gd) is f(t) = 1 ∧ g(t) = 1.

Now, since I ′ |= (q ≤ p), if I ′ |= q(t), then I ′ |= p(t). From (6.10), it follows that

I ′ |= f(t) = 1 and from the definition of g, it follows that I ′ |= g(t) = 1.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.
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By I.H. on G.

(⇐) Assume I |= ∃f̂ ĉ((f̂ ĉ < fc)∧ (F p
f )

∗(f̂ , ĉ)∧DF ∗
f (f̂ ĉ)). We wish to show that

I |= ∃p̂ĉ((p̂ĉ < pc) ∧ F ∗(p̂, ĉ)).

That is, take any function g of the same arity as f and any list of predicates and

functions d of the same length c and let I ′ = ⟨I ∪ Jfc
gd , X ∪ Y c

d ⟩ be defined as before.

We assume

I ′ |= (gd < fc ∧ (F p
f )

∗(gd) ∧ DF ∗
f (gd))

We wish to show that there is a predicate q of the same arity as p such that

I ′ |= (qd < pc ∧ F ∗(qd)).

We define the new predicate q in terms of g as follows:

qI
′
(ξ⃗) =

 1 if I ′ |= g(ξ⃗) = 1

0 otherwise

We now show I ′ |= qd < pc:

Case 1: I ′ |= (g = f).

By definition of q and by (6.10), in this case, I ′ |= q = p and in particular, I ′ |= q ≤ p.

Since I ′ |= gd < fc, by definition I ′ |= dpred ≤ cpred and I ′ |= ¬(gd = fc) and

since in this case, I ′ |= (g = f), then I ′ |= ¬(d = c). From this, we conclude

I ′ |= ¬(qd = pc). Finally, we conclude I ′ |= qd < pc.

Case 2: I ′ |= ¬(g = f).

Since I ′ |= DF ∗
f (gd), then I ′ |= ∀x(f(x) = 0 → g(x) = 0). From this, we conclude

by definition of q, FC f (note that 0 ̸= 1 is essential here) and (6.10) that I ′ |=

∀x(¬p(x)→ ¬q(x)). Equivalently, this is I ′ |= ∀x(q(x)→ p(x)) or simply I ′ |= q ≤

p.
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Now, since I ′ |= FCf , then I ′ |= ∀x(f(x) = 0 ∨ f(x) = 1). Thus, for the

assumption in this case that I ′ |= ¬(g = f) to hold, it must be that I ′ |= ∃x(f(x) =

1∧¬(g(x) = 1)). By defintion of q and (6.10), it follows that I ′ |= ∃x(p(x)∧¬q(x)).

Thus, since I ′ |= ¬(q = p), then I ′ |= ¬(qd = pc). Also, since I ′ |= gd < fc, by

definition I ′ |= dpred ≤ cpred, and thus we conclude that I ′ |= qd < pc.

We now show I ′ |= F ∗(qd) by proving that I ′ |= (F p
f )

∗(gd) iff I ′ |= F ∗(qd):

Case 1: F is an atomic formula not containing p.

F p
f is exactly F thus F ∗(qd) is exactly (F p

f )
∗(gd) so certainly the claim holds.

Case 2: F is p(t) where t contains an intensional function constant from c.

F ∗(qd) is p(t) ∧ q(t′)

where t′ is the result of replacing all intensional functions from c occurring in t with

the corresponding function from d

F p
f is f(t) = 1.

(F p
f )

∗(gd) is f(t) = 1 ∧ g(t′) = 1.

Since I ′ |= f(t) = 1 ∧ g(t′) = 1, by definition of q and (6.10), I ′ |= p(t) ∧ q(t′) and

thus I ′ |= F ∗(qd).

Case 3: F is p(t) where t does not contain any intensional function constant from c.

F ∗(qd) is q(t).

F p
f is f(t) = 1.

(F p
f )

∗(gd) is f(t) = 1 ∧ g(t) = 1.

By definition of q and since I ′ |= f(t) = 1∧g(t) = 1, I ′ |= q(t) and thus I ′ |= F ∗(qd)

in this case.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.
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By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

6.4.3 Proof of Corollary 1

Corollary 1 (a) An interpretation I of the signature of F is a model of SM[F ; pc]

iff Ipf is a model of SM[F p
f∧DF f ; fc]. (b) An interpretation J of the signature of F p

f

is a model of SM[F p
f ∧ DF f ∧ FC f ; fc] iff J = Ipf for some model I of SM[F ; pc].

Proof.

(a⇒) Assume I of the signature of F is a model of SM[F ; pc]. By definition of Ipf ,

I∪Ipf |= ∀x(f(x) = 1↔ p(x)). Now, since I |= SM[F ; pc] by our assumption, it must

be that I ∪ Ipf |= SM[F ; pc] and further by Theorem 10, since I ∪ Ipf |= SM[F ; pc]↔

SM[F p
f ∧ DF f ; fc], it must be that I ∪ Ipf |= SM[F p

f ∧ DF f ; fc]. Finally, since the

signature of I does not contain f , we conclude Ipf |= SM[F p
f ∧ DF f ; fc].

(a⇐) Assume Ipf is a model of SM[F p
f ∧ DF f ; fc]. By definition of Ipf , I ∪ Ipf |=

∀x(f(x) = 1 ↔ p(x)). Now, since Ipf |= SM[F p
f ∧ DF f ; fc] by our assumption, it

must be that I ∪ Ipf |= SM[F p
f ∧DF f ; fc] and further by Theorem 10, since I ∪ Ipf |=
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SM[F ; pc] ↔ SM[F p
f ∧ DF f ; fc], it must be that I ∪ Ipf |= SM[F ; pc]. Finally, since

the signature of Ipf does not contain p, we conclude I |= SM[F ; pc].

(b⇒) Assume an interpretation J of the signature of F p
f is a model of SM[F p

f ∧

FC f ∧DF f ; fc]. Let I = Jf
p , where Jf

p denotes the interpretation of the signature F

obtainted from J by replacing fJ with the set pI that consists of the tuples ⟨ξ1, . . . , ξn⟩

for all ξ1, . . . , ξn from the universe of J such that f(ξ1, . . . , ξn) = 1. By definition of

I, I ∪ J |= ∀x(f(x) = 1 ↔ p(x)). Now, since J |= SM[F p
f ∧ FC f ∧ DF f ; fc] by

our assumption, it must be that I ∪ J |= SM[F p
f ∧ FC f ∧ DF f ; fc]. Since FC f

is comprised of constraints, by Theorem 3, I ∪ J |= SM[F p
f ∧ DF f ; fc] ∧ FC f . In

particular, I ∪J |= SM[F p
f ∧DF f ; fc] and further by Theorem 10, I ∪J |= SM[F ; pc].

Finally, since the signature of J does not contain p, we conclude I |= SM[F ; pc].

(b⇐) Take any I such that J = Ipf and I |= SM[F ; pc]. By definition of Ipf , I ∪ J |=

∀x(f(x) = 1 ↔ p(x)). Now, since I |= SM[F ; pc] by our assumption, it must be

that I ∪ J |= SM[F ; pc] and further by Theorem 10, since I ∪ J |= SM[F ; pc] ↔

SM[F p
f ∧DF f ; fc], it must be that I ∪ J |= SM[F p

f ∧DF f ; fc]. Since the signature of

I does not contain f , we conclude J |= SM[F p
f ∧DF f ; fc]. Finally, since by definition

of Ipf , J |= FC f , and since FC f is comprised of constraints, by Theorem 3 we conclude

J |= SM[F p
f ∧ FC f ∧ DF f ; fc]
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6.4.4 Proof of Theorem 11

Theorem 11 A complete set of literals is an answer set of Π in the sense of Gelfond

et al. (1991) iff it is a stable model of Πmv in the sense of Bartholomew and Lee

(2012).

Proof. Let I be the interpretation formed from including all of the literals from X

and all the assignments from the multi-valued view of X. Let us denote the set of all

predicate symbols from X as p and their negative counterparts as ∼p and all of the

function symbols from the multi-valued view of X as b. Clearly I satisfies

∀x((p(x)↔ b(x)=1) ∧ (∼p(x)↔ b(x)=0)),

for each p ∈ p and the corresponding b ∈ b. From this and since X is complete,

it follows that I |= BCb for each b ∈ b. Thus, we can apply Theorem 12 (multiple

times) to conclude that SM[ΠFOL; p ∼p]↔ SM[(Πmv)FOL; b].

6.4.5 Proof of Theorem 12

Theorem 12 Let c be a set predicate and function constants, and let F be a c-plain

formula. Formulas

∀x((p(x)↔ b(x)=1) ∧ (∼p(x)↔ b(x)=0)),

and BC b entail

SM[F ; p,∼p, c]↔ SM[F
(p,∼p)
b ; b, c] .
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Proof. For any interpretation I = ⟨I,X⟩ of signature σ ⊇ {b, p, c} satisfying (6.9),

it is clear that I |= F iff I |= F p∼p
b since F p∼p

b is simply the result of replacing

all p(t) with b(t) = 1 and all ∼ p(t) with b(t) = 0. Thus it only remains to be

shown that I |= ¬∃b̂, ĉ((̂b, ĉ < b, c) ∧ (F
(p,∼p)
b )∗(̂b, ĉ)) iff I |= ¬∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼

p, p, c)∧F ∗(∼̂p, p̂, ĉ)) or equivalently, I |= ∃b̂, ĉ((̂b, ĉ < b, c)∧(F (p,∼p)
b )∗(f̂ , ĉ)) iff I |=

∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼p, p, c) ∧ F ∗(∼̂p, p̂, ĉ)).

(⇒) Assume I |= ∃b̂, ĉ((̂b, ĉ < b, c) ∧ (F
(p∼p)
b )∗(̂b, ĉ)). We wish to show that

I |= ∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼p, p, c) ∧ F ∗(∼̂p, p̂, ĉ))

That is, take any function a of the same arity as b and any list of predicates

and functions d of the same length c. Now let I ′ = ⟨I ∪ J
(b,c)
(a,d), X ∪ Y c

d ⟩ be from

an extended signature σ′ = σ ∪ {a, q,d} where J is an interpretation of functions

from the signature σ and I and J agree on all symbols not occurring in {b, c}. J (b,c)
(a,d)

denotes the interpretation from σ
(b,c)
(a,d) (the signature obtained from σ by replacing b

with a and all elements of c with all elements of d) obtained from the interpretation

J by replacing b with a and the functions in c with the corresponding functions in

d. Similarly, Y c
d is the interpretation from σ′ obtained from the interpretation Y by

replacing predicates from c by the corresponding predicates from d. We assume

I ′ |= (a,d < b, c ∧ (F
(p,∼p)
b )∗(a,d))

and wish to show that there are predicates ∼q, q of the same arity as ∼p, p such that

I ′ |= (∼q, q,d <∼p, p, c ∧ F ∗(∼q, q,d)).

We define the new predicates ∼q, q in terms of b and a as follows:

∼q(x)↔ a(x) = 0 ∧ b(x) = 0

q(x)↔ a(x) = 1 ∧ b(x) = 1
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We first show if I ′ |= (a,d < b, c) then I ′ |= (∼q, q,d <∼p, p, c):

Observe that from the definition of ∼q and q, it follows that I ′ |= ∀x(∼q(x)→ b(x) =

0) ∧ ∀x(q(x) → b(x) = 1) and from (6.9), this is equivalent to I ′ |= ∀x(∼q(x) →∼

p(x))∧∀x(q(x)→ p(x)) or simply I ′ |=∼q, q ≤∼p, p. Thus, since I ′ |= dpred ≤ cpred,

it follows that I ′ |=∼q, q,dpred ≤∼p, p, cpred.

Case 1: I ′ |= ∀x(b(x) = a(x)).

In this case it then must be that I ′ |= d ̸= c. Thus it follows that I ′ |=∼q, q,d ̸=∼

p, p, c. Consequently we conclude that

I ′ |= (∼q, q,dpred ≤∼p, p, cpred)∧ ∼q, q,d ̸=∼p, p, c

or simply, I ′ |= (∼q, q,d <∼p, p, c).

Case 2: I ′ |= ¬∀x, y(b(x) = a(x)).

That is, since I ′ |= BCb, there is some list of object names t such that either I ′ |=

b(t) = 0 ∧ a(t) ̸= 0 or I ′ |= b(t) = 1 ∧ a(t) ̸= 1.

Subcase 1: I ′ |= b(t) = 0 ∧ a(t) ̸= 0

By (6.9), I ′ |=∼p(t) and by definition of ∼q, I ′ |= ¬ ∼q(t) so I ′ |=∼q ̸=∼p.

Subcase 2: I ′ |= b(t) = 1 ∧ a(t) ̸= 1

By (6.9), I ′ |= p(t) and by definition of q, I ′ |= ¬q(t) so I ′ |= q ̸= p.

Therefore, no matter which subcase holds, we have ∼q, q ̸=∼p, p and thus ∼q, q,d ̸=∼

p, p, c. Consequently we conclude

I ′ |= (∼q, q,dpred ≤∼p, p, cpred)∧ ∼q, q,d ̸=∼p, p, c

or simply, I ′ |= (∼q, q,d <∼p, p, c).
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We now show by induction that I ′ |= F ∗(∼q, q,d):

Case 1: F is an atomic formula not containing p.

F
(p,∼p)
b is exactly F thus (F

(p,∼p)
b )∗(a,d) is exactly F ∗(∼q, q,d) so certainly the claim

holds.

Case 2: F is ∼p(t), where t contains no intensional function constants.

F ∗(∼q, q,d) is ∼q(t).

F
(p,∼p)
b is b(t) = 0.

(F
(p,∼p)
b )∗(a,d) is b(t) = 0 ∧ a(t) = 0.

By the definition of ∼q, it is clear that I ′ |= F ∗(∼q, q,d) so certainly the claim holds.

Case 3: F is p(t), where t contains no intensional function constants.

F ∗(∼q, q,d) is q(t).

F
(p,∼p)
b is b(t) = 1.

(F
(p,∼p)
b )∗(a,d) is b(t) = 1 ∧ a(t) = 1.

By the definition of q, it is clear that I ′ |= F ∗(∼q, q,d) so certainly the claim holds.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.
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Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

(⇐) Assume I |= ∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼p, p, c) ∧ F ∗(∼̂p, p̂, ĉ)). We wish to show

that I |= ∃b̂, ĉ((̂b, ĉ < b, c) ∧ (F
(p,∼p)
b )∗(̂b, ĉ))

That is, take any predicates ∼q, q of the same arity as ∼p, p and any list of

predicates and functions d of the same length as c and let I ′ = ⟨I ∪ J
(b,c)
(a,d), X ∪ Y c

d ⟩

is defined as before. We assume

I ′ |= (∼q, q,d <∼p, p, c ∧ F ∗(∼q, q,d))

and wish to show that there is a function a of the same arity as b such that

I ′ |= (a,d < b, c ∧ (F
(p,∼p)
b )∗(a,d)).

We define the new function a in terms of ∼p, p, ∼q, and q as follows:

I ′ |= a(x) = 1 iff I ′ |= ((p(x) ∧ q(x)) ∨ (∼p(x) ∧ ¬ ∼q(x)))

I ′ |= a(x) = 0 iff I ′ |=↔ ((∼p(x)∧ ∼q(x)) ∨ (p(x) ∧ ¬q(x)))

Note that since I ′ |= (6.9), I ′ |= BCb and I ′ |=∼q, q,d <∼p, p, c this is a well-

defined function. This is because I ′ |= (6.9) and I ′ |= BC b guarantee that I ′ is

complete on p. In addition to this, I ′ |=∼q, q,d <∼p, p, c guarantees that the four

cases covered in this definition are the only ones possible; for any given t exactly one

of p(t) and ∼p(t) is true. Wlog, assume p(t) then I ′ |=∼q, q,d <∼p, p, c gives us that

∼q(t) must be false and q(t) may be true or false. The other two cases are symmetric

by considering when ∼p(t) is true.

We first show if I ′ |= (∼q, q,d <∼p, p, c) then I ′ |= (a,d < b, c):

Observe that I ′ |= (∼q, q,d <∼p, p, c) by definition entails I ′ |= (∼q, q,dpred ≤∼
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p, p, cpred) and further by definition, I ′ |= (dpred ≤ cpred) and then since b and a are

not predicates, I ′ |= ((a,d)pred ≤ (b, c)pred).

Case 1: I ′ |= ∀x(p(x)↔ q(x)) ∧ ∀x(∼p(x)↔∼q(x)).

In this case, I ′ |= (∼p, p =∼q, q) so for it to be the case that I ′ |= (∼q, q,d <∼p, p, c),

it must be that I ′ |= ¬(c = d). It then follows that I ′ |= ¬(b, c = a,d). Consequently

in this case, I ′ |= ((a,d)pred ≤ (b, c)pred) ∧ ¬(b, c = a,d) or simply I ′ |= (a,d < b, c).

Case 2: I ′ |= ¬(∀xy(p(x)↔ q(x)) ∧ ∀x(∼p(x)↔∼q(x))).

Since I ′ |=∼q, q <∼p, p and I ′ |= (6.9) and since I ′ is complete on p, there is some

list of object names t such that either I ′ |= p(t) ∧ ¬q(t) or I ′ |=∼p(t) ∧ ¬ ∼q(t).

Subcase 1: I ′ |= p(t) ∧ ¬q(t).

By (6.9), I ′ |= b(t) = 1 and by definition of a, I ′ |= a(t) = 0. Thus, I ′ |= a ̸= b.

Consequently, in this case I ′ |= ((a,d)pred ≤ (b, c)pred) ∧ ¬(b, c = a,d) or simply

I ′ |= (a,d < b, c).

Subcase 2: I ′ |=∼p(t) ∧ ¬ ∼q(t).

By (6.9), I ′ |= b(t) = 0 and by definition of a, I ′ |= a(t) = 1. Thus, I ′ |= a ̸= b.

Consequently, in this case I ′ |= ((a,d)pred ≤ (b, c)pred) ∧ ¬(b, c = a,d) or simply

I ′ |= (a,d < b, c).

We now show by induction that I ′ |= (F
(p,∼p)
b )∗(a,d):

Case 1: F is an atomic formula not containing p.

F
(p,∼p)
b is exactly F thus (F

(p,∼p)
b )∗(a,d) is exactly F ∗(∼q, q,d) so certainly the claim

holds.
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Case 2: F is ∼p(t).

F ∗(q,d) is ∼q(t).

F
(p,∼p)
b is b(t) = 0.

(F
(p,∼p)
b )∗(a,d) is b(t) = 0 ∧ a(t) = 0.

By (6.9), I ′ |= b(t) = 0. By definition of a, I ′ |= a(t) = 0.

Case 3: F is p(t).

F ∗(q,d) is q(t).

F
(p,∼p)
b is b(t) = 1.

(F
(p,∼p)
b )∗(a,d) is b(t) = 1 ∧ a(t) = 1.

By (6.9), I ′ |= b(t) = 1. By definition of a, I ′ |= a(t) = 1.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

102



6.4.6 Proof of Corollary 2

Corollary 2 For any formula F and any interpretation I of the signature of F

that is complete on p, (a) I is a model of SM[F ; p,∼p, c] iff I
(p, ∼p)
b is a model of

SM[F
(p, ∼p)
b ∧ BCb; b, c]. (b) An interpretation J of the signature of F

(p, ∼p)
b is a

model of SM[F
(p, ∼p)
b ∧BCb; b, c] iff J = I

(p, ∼p)
b for some model I of SM[F ; p,∼p, c].

Proof. For two interpretations I of signature σ1 and J of signature σ2, by I ∪ J we

denote the interpretation of signature σ1∪σ2 and universe |I| ∪ |J | that interprets all

symbols occurring only in σ1 in the same way I does and similarly for σ2 and J . For

symbols appearing in both σ1 and σ2, I must interpret these the same as J does, in

which case I ∪ J also interprets the symbol in this way.

(a⇒) Assume I |= 1 ̸= 0 and I |= SM[F ; p,∼ p, c]. Since I |= 1 ̸= 0, I∪I(p∼p)
b |= 1 ̸= 0

since by definition of I
(p∼p)
b , I and I

(p∼p)
b share the same universe. By definition of

I
(p∼p)
b , I∪I(p∼p)

b |= (6.9). Therefore, since I is complete on p and by (6.9), I∪I(p∼p)
b |=

BCb. Thus by Theorem 12, I ∪ I
(p∼p)
b |= SM[F p∼p

b ∧BCb; b c]↔ SM[F ; p,∼ p, c].

Since we assume I |= SM[F ; p,∼ p, c], it is the case that I ∪ I
(p∼p)
b |= SM[F ; p,∼

p, c] and thus it must be the case that I∪I(p∼p)
b |= SM[F

(p∼p)
b ; b, c]. Since I∪I(p∼p)

b |=

BCb and BCb is a constraint, I ∪ I(p∼p)
b |= SM[F p∼p

b ∧BCb; b, c]. Therefore since the

signature of I does not contain b, we conclude I
(p∼p)
b |= SM[F

(p∼p)
b ∧BCb; b, c].

(a⇐) Assume I
(p∼p)
b |= SM[F

(p∼p)
b ∧ BCb; b, c] ∧ (1 ̸= 0). Since I

(p∼p)
b |= 1 ̸=

0, I ∪ I
(p∼p)
b |= 1 ̸= 0 since by definition of I

(p∼p)
b , I and I

(p∼p)
b share the same

universe. By definition of I
(p∼p)
b , I ∪ I

(p∼p)
b |= (6.9). Since we assume I

(p∼p)
b |=

SM[F
(p∼p)
b ∧ BCb; b, c], it follows that I

(p∼p)
b |= BCb. Thus by Theorem 12, I ∪

I
(p∼p)
b |= SM[F

(p∼p)
b ∧BCb; b, c]↔ SM[F ; p,∼ p, c].
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Since we assume I
(p∼p)
b |= SM[F

(p∼p)
b ∧BCb; b, c], it is the case that I ∪ I

(p∼p)
b |=

SM[F
(p∼p)
b ∧BCb; b, c] and thus since BCb is a constraint, it follows that I ∪ I(p∼p)

b |=

SM[F
(p∼p)
b ; b, c]. It then follows that I ∪ I(p∼p)

b |= SM[F ; p,∼ p, c]. However since the

signature of I
(p∼p)
b does not contain p, we conclude I |= SM[F ; p,∼ p, c].

(b⇒) Assume J |= 1 ̸= 0 and J |= SM[F
(p∼p)
b ∧ BCb; b c]. Let I = J b

(p∼p) where

J b
(p∼p) denotes the interpretation of the signature of F

(p∼p)
b ∧ BCb obtained from J

by replacing the boolean function b with the predicate p such that

I |= pI(ξ1, . . . , ξk) for all tuples such that bI(ξ1, . . . , ξk) = 1 and,

I |=∼pI(ξ1, . . . , ξk) for all tuples such that bI(ξ1, . . . , ξk) = 0.

Since J |= BCb, this is a well-defined function.

Clearly, J = I
(p∼p)
b so it only remains to be shown that I |= SM[F ; p,∼p, c].

Since I and J have the same universe and J |= 1 ̸= 0, it follows that I∪J |= 1 ̸= 0.

Also by the definition of J b
(p∼p) I ∪ J |= (6.9). Also, since J |= BCb, it follows that

I ∪ J |= BCb.Thus by Theorem 12, I ∪ J |= SM[F p∼p
b ; b, c]↔ SM[F ; p,∼ p, c].

Since we assume J |= SM[F
(p∼p)
b ∧ BCb; b, c], it is the case that I ∪ J |=

SM[F
(p∼p)
b ∧ BCb; b, c] and since BCb is a constraint, I ∪ J |= SM[F

(p∼p)
b ; b, c].

Thus it must be the case that I ∪ J |= SM[F ; p,∼ p, c]. Now since the signature of J

does not contain p, we conclude I |= SM[F ; p,∼ p, c].

(b⇐)Take any I such that J = I
(p∼p)
b and I |= SM[F ; p,∼ p, c]. Since J |= 1 ̸= 0

and I and J share the same universe, I ∪ J |= 1 ̸= 0. By definition of J = I
(p∼p)
b ,

I∪J |= (6.9). Since I is complete on p and I∪J |= (6.9), it follows that I∪Ibp |= BCb.

Thus by Theorem 12, I ∪ J |= SM[F p∼p
b ; b, c]↔ SM[F ; p,∼ p, c]

Since we assume I |= SM[F ; p,∼ p, c], it is the case that I ∪ J |= SM[F ; p,∼ p, c]
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and thus it must be the case that I ∪ J |= SM[F p∼p
b ; b, c]. Since BCb is a constraint,

it then follows that I ∪ J |= SM[F p∼p
b ∧BCb; b, c]. However since the signature of I

does not contain b, we conclude J |= SM[F p∼p
b ∧BCb; b, c].

6.4.7 Proof of Theorem 13

Theorem 13 Let c be a set of predicate and function constants, let b be a function

constant, and let F be a (b, c)-plain formula such that every atomic formula containing

b has the form b(t) = 1 or b(t) = 0. Formulas (6.9) and BC b entail

SM[F ; b, c]↔ SM[F b
(p,∼p); p,∼ p, c] .

Proof.

For any interpretation I = ⟨I,X⟩ of signature σ ⊇ {b, p, c} satisfying (6.9) and

BCb, it is clear that I |= F iff I |= F b
(p,∼p) since F b

(p,∼p) is simply the result of

replacing all b(x) = 1 with p(x) and all b(x) = 0 with ∼p(x). Thus it only remains

to be shown that I |= ¬∃b̂, ĉ((̂b, ĉ < b, c) ∧ F ∗(̂b, ĉ)) iff I |= ¬∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼

p, p, c)∧ (F b
(p,∼p))

∗(∼̂p, p̂, ĉ)) or equivalently, I |= ∃b̂, ĉ((̂b, ĉ < b, c)∧F ∗(f̂ , ĉ)) iff I |=

∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼p, p, c) ∧ (F b
(p,∼p))

∗(∼̂p, p̂, ĉ)).

(⇒) Assume I |= ∃b̂, ĉ((̂b, ĉ < b, c) ∧ F ∗(̂b, ĉ)). We wish to show that I |=

∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼p, p, c) ∧ (F b
(p,∼p))

∗(∼̂p, p̂, ĉ))

That is, take any function a of the same arity as b and any list of predicates

and functions d of the same length c. Now let I ′ = ⟨I ∪ J
(b,c)
(a,d), X ∪ Y c

d ⟩ be from

an extended signature σ′ = σ ∪ {a, q,d} where J is an interpretation of functions
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from the signature σ and I and J agree on all symbols not occurring in {b, c}. J (b,c)
(a,d)

denotes the interpretation from σ
(b,c)
(a,d) (the signature obtained from σ by replacing b

with a and all elements of c with all elements of d) obtained from the interpretation

J by replacing b with a and the functions in c with the corresponding functions in

d. Similarly, Y c
d is the interpretation from σ′ obtained from the interpretation Y by

replacing predicates from c by the corresponding predicates from d. We assume

I ′ |= (a,d < b, c ∧ F ∗(a,d))

and wish to show that there are predicates ∼q, q of the same arity as ∼p, p such that

I ′ |= (∼q, q,d <∼p, p, c ∧ (F b
(p,∼p))

∗(∼q, q,d)).

We define the new predicates ∼q, q in terms of b and a as follows:

∼q(x)↔ a(x) = 0 ∧ b(x) = 0

q(x)↔ a(x) = 1 ∧ b(x) = 1

We first show if I ′ |= (a,d < b, c) then I ′ |= (∼q, q,d <∼p, p, c):

Observe that from the definition of ∼q and q, it follows that I ′ |= ∀x(∼q(x)→ b(x) =

0) ∧ ∀x(q(x) → b(x) = 1) and from (6.9), this is equivalent to I ′ |= ∀x(∼q(x) →∼

p(x))∧∀x(q(x)→ p(x)) or simply I ′ |=∼q, q ≤∼p, p. Thus, since I ′ |= dpred ≤ cpred,

it follows that I ′ |= q,dpred ≤ p, cpred.

Case 1: I ′ |= ∀x(b(x) = a(x)).

In this case it then must be that I ′ |= d ̸= c. Thus it follows that I ′ |=∼q, q,d ̸=∼

p, p, c. Consequently we conclude that

I ′ |= (∼q, q,dpred ≤∼p, p, cpred)∧ ∼q, q,d ̸=∼p, p, c

or simply, I ′ |= (∼q, q,d <∼p, p, c).
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Case 2: I ′ |= ¬∀xy(b(x) = a(x)).

That is, since I ′ |= BCb, there is some list of object names t such that either I ′ |=

b(t) = 0 ∧ a(t) ̸= 0 or I ′ |= b(t) = 1 ∧ a(t) ̸= 1.

Subcase 1: I ′ |= b(t) = 0 ∧ a(t) ̸= 0

By (6.9), I ′ |=∼p(t) and by definition of ∼q, I ′ |= ¬ ∼q(t) so I ′ |=∼q ̸=∼p.

Subcase 2: I ′ |= b(t) = 1 ∧ a(t) ̸= 1

By (6.9), I ′ |= p(t) and by definition of q, I ′ |= ¬q(t) so I ′ |= q ̸= p.

Therefore, no matter which subcase holds, we have ∼q, q ̸=∼p, p and thus ∼q, q,d ̸=∼

p, p, c. Consequently we conclude

I ′ |= (∼q, q,dpred ≤∼p, p, cpred)∧ ∼q, q,d ̸=∼p, p, c

or simply, I ′ |= (∼q, q,d <∼p, p, c).

We now show by induction that I ′ |= (F b
(p,∼p))

∗(∼q, q,d):

Case 1: F is an atomic formula not containing b.

F b
(p,∼p) is exactly F thus F ∗(a,d) is exactly (F b

(p,∼p))
∗(∼q, q,d) so certainly the claim

holds.

Case 2: F is b(t) = 0.

F ∗(a,d) is b(t) = 0 ∧ a(t) = 0.

F b
(p,∼p) is ∼p(t).

(F b
(p,∼p))

∗(∼q, q,d) is ∼q(t).

By the definition of ∼q, it is clear that I ′ |= (F b
(p,∼p))

∗(∼q, q,d) so certainly the claim

holds.
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Case 3: F is b(t) = 1.

F ∗(a,d) is b(t) = 1 ∧ a(t) = 1.

F b
(p,∼p) is p(t).

(F b
(p,∼p))

∗(∼q, q,d) is q(t).

By the definition of q, it is clear that I ′ |= (F b
(p,∼p))

∗(∼q, q,d) so certainly the claim

holds.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

(⇐) Assume I |= ∃∼̂p, p̂, ĉ((∼̂p, p̂, ĉ <∼p, p, c) ∧ (F b
(p,∼p))

∗(∼̂p, p̂, ĉ)). We wish to

show that I |= ∃b̂, ĉ((̂b, ĉ < b, c) ∧ F ∗(̂b, ĉ))

That is, take any predicates ∼q, q of the same arity as ∼p, p and any list of

predicates and functions d of the same length as c and let I ′ = ⟨I ∪ J
(b,c)
(a,d), X ∪ Y c

d ⟩

is defined as before. We assume

I ′ |= (∼q, q,d <∼p, p, c ∧ (F b
(p,∼p))

∗(∼q, q,d))

and wish to show that there is a function a of the same arity as b such that

I ′ |= (a,d < b, c ∧ F ∗(a,d)).
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We define the new function a in terms of ∼p, p, ∼q, and q as follows:

a(x) = 1↔ ((p(x) ∧ q(x)) ∨ (∼p(x) ∧ ¬ ∼q(x)))

a(x) = 0↔ ((∼p(x)∧ ∼q(x)) ∨ (p(x) ∧ ¬q(x)))

Note that since I ′ |= (6.9) and I ′ |=∼ q, q,d <∼ p, p, c this is a well-defined

function.

We first show if I ′ |= (∼q, q,d <∼p, p, c) then I ′ |= (a,d < b, c):

Observe that I ′ |= (∼q, q,d <∼p, p, c) by definition entails I ′ |= (∼q, q,dpred ≤∼

p, p, cpred) and further by definition, I ′ |= (dpred ≤ cpred) and then since b and a are

not predicates, I ′ |= ((a,d)pred ≤ (b, c)pred).

Case 1: I ′ |= ∀x(p(x)↔ q(x)) ∧ ∀x(∼p(x)↔∼q(x)).

In this case, I ′ |= (∼p, p =∼q, q) so for it to be the case that I ′ |= (∼q, q,d <∼p, p, c),

it must be that I ′ |= ¬(c = d). It then follows that I ′ |= ¬(b, c = a,d). Consequently

in this case, I ′ |= ((a,d)pred ≤ (b, c)pred) ∧ ¬(b, c = a,d) or simply I ′ |= (a,d < b, c).

Case 2: I ′ |= ¬(∀xy(p(x)↔ q(x)) ∧ ∀x(∼p(x)↔∼q(x))).

Since I ′ |=∼q, q <∼p, p and I ′ |= (6.9), there is some list of object names t such that

either I ′ |= p(t) ∧ ¬q(t) or I ′ |=∼p(t) ∧ ¬ ∼q(t).

Subcase 1: I ′ |= p(t) ∧ ¬q(t).

By (6.9) I ′ |= b(t) = 1 and by definition of a, I ′ |= a(t) = 0. Thus, I ′ |= a ̸= b.

Consequently, in this case I ′ |= ((a,d)pred ≤ (b, c)pred) ∧ ¬(b, c = a,d) or simply

I ′ |= (a,d < b, c).

Subcase 2: I ′ |=∼p(t) ∧ ¬ ∼q(t).

By (6.9) I ′ |= b(t) = 0 and by definition of a, I ′ |= a(t) = 1. Thus, I ′ |= a ̸= b.
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Consequently, in this case I ′ |= ((a,d)pred ≤ (b, c)pred) ∧ ¬(b, c = a,d) or simply

I ′ |= (a,d < b, c).

We now show by induction that I ′ |= F ∗(a,d):

Case 1: F is an atomic formula not containing b.

F b
(p,∼p) is exactly F thus F ∗(a,d) is exactly (F b

(p,∼p))
∗(∼q,d) so certainly the claim

holds.

Case 2: F is b(t) = 0.

F ∗(a,d) is b(t) = 0 ∧ a(t) = 0.

F b
(p,∼p) is ∼p(t).

(F b
(p,∼p))

∗(q,d) is ∼q(t).

By (6.9), I ′ |= b(t) = 0. By definition of a, I ′ |= a(t) = 0.

Case 3: F is b(t) = 1.

F ∗(a,d) is b(t) = 1 ∧ a(t) = 1.

F b
(p,∼p) is p(t).

(F b
(p,∼p))

∗(q,d) is q(t).

By (6.9), I ′ |= b(t) = 1. By definition of a, I ′ |= a(t) = 1.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.
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By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

6.4.8 Proof of Corollary 3

Corollary 3 Let c be a set of predicate and function constants, let b be a function

constant, and let F be a (b, c)-plain sentence such that every atomic formula contain-

ing b has the form b(t) = 1 or b(t) = 0. (a) A coherent interpretation I of the signature

of F is a model of SM[F ∧BC b; b, c] iff Ib(p,∼p) is a model of SM[F b
(p,∼p); p,∼p, c]. (b)

An interpretation J of the signature of F b
(p,∼p) is a model of SM[F b

(p,∼p); p,∼ p, c] iff

J = Ib(p,∼p) for some model I of SM[F ∧ BC b; b, c].

Proof.

For two interpretations I of signature σ1 and J of signature σ2, by I∪J we denote

the interpretation of signature σ1∪σ2 and universe |I|∪|J | that interprets all symbols

occurring only in σ1 in the same way I does and similarly for σ2 and J . For symbols

appearing in both σ1 and σ2, I must interpret these the same as J does, in which

case I ∪ J also interprets the symbol in this way.

(a⇒) Assume I |= SM[F ; b, c] ∧ (1 ̸= 0). Since I |= 1 ̸= 0, I ∪ Ibp |= 1 ̸= 0

since by definition of Ibp, I and Ibp share the same universe. By definition of Ibp,

I ∪ Ibp |= (6.9). Since we assume I |= SM[F ∧ BFb; b, c], it follows that I |= BFb

which further means that I |= BCb and so I ∪ Ibp |= BCb. Thus by Theorem 13,
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I ∪ Ibp |= SM[F ∧BFb; b, c]↔ SM[(F ∧BFb)
b
p; p,∼ p, c].

Since we assume I |= SM[F∧BFb; b, c], it is the case that I∪Ibp |= SM[F∧BFb; b, c]

and thus it must be the case that I ∪ Ibp |= SM[(F ∧ BFb)
b
p; p,∼ p, c]. However since

the signature of I does not contain p, we conclude Ibp |= SM[(F ∧BFb)
b
p; p,∼ p, c].

(a⇐) Assume I |= 1 ̸= 0 and Ibp |= SM[(F ∧ BFb)
b
p; p,∼ p, c]. Since I |= 1 ̸= 0,

I∪Ibp |= 1 ̸= 0 since by definition of Ibp, I and Ibp share the same universe. By definition

of Ibp, I ∪ Ibp |= (6.9). Therefore, since Ibp |= (BFb)
b
p, it follows that I |= BFb and thus,

I∪Ibp |= BCb. Thus by Theorem 13, I∪Ibp |= SM[F ∧BFb; b, c]↔ SM[(F ∧BFb)
b
p; p,∼

p, c].

Since we assume Ibp |= SM[(F∧BFb)
b
p; p,∼ p, c], it is the case that I∪Ibp |= SM[(F∧

BFb)
b
p; p,∼ p, c] and thus it must be the case that I∪Ibp |= SM[F∧BFb; b, c]. Therefore

since the signature of Ibp does not contain b, we conclude I |= SM[F ∧BFb; b, c].

(b⇒) Assume J |= 1 ̸= 0 and J |= SM[(F ∧BFb)
b
p; pc]. Let I = Jp

b where Jp
b denotes

the interpretation of the signature of F obtained from J by replacing the predicate p

with the boolean function b such that

bI(ξ1, . . . , ξk) = 1 for all tuples such that I |= pI(ξ1, . . . , ξk),

bI(ξ1, . . . , ξk) = 0 for all tuples such that I |=∼pI(ξ1, . . . , ξk). Since J |= (BFb)
b
p, this

is a well-defined function.

Clearly, J = Ibp so it only remains to be shown that I |= SM[F ∧BFb; b, c].

Since I and J have the same universe and J |= 1 ̸= 0, it follows that I∪J |= 1 ̸= 0.

Also by the definition of Jp
b I ∪ J |= (6.9). Also, since J |= (BFb)

b
p, it follows that

I |= BFb and thus, I ∪ J |= BCb. Thus by Theorem 13, I ∪ J |= SM[F ∧BFb; b, c]↔

SM[(F ∧BFb)
b
p ∧ CC p; pc]

Since we assume J |= SM[(F ∧ BFb)
b
p; p,∼ p, c], it is the case that I ∪ J |=
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SM[(F ∧BFb)
b
p; p,∼ p, c] and thus it must be the case that I ∪J |= SM[F ∧BFb; b, c].

Now since the signature of J does not contain b, we conclude I |= SM[F ∧BFb; b, c].

(b⇐)Take any I such that J = Ibp and I |= SM[F ∧ BFb; b, c]. Since J |= 1 ̸= 0

and I and J share the same universe, I ∪ J |= 1 ̸= 0. By definition of J = Ibp,

I ∪ J |= (6.9). Since we assume I |= SM[F ∧ BFb; b, c], it follows that I |= BFb

which further means that I |= BCb and so I ∪ Ibp |= BFb. Thus by Theorem 13,

I ∪ J |= SM[F ∧BFb; b, c]↔ SM[(F ∧BFb)
b
p;∼p, p, c]

Since we assume I |= SM[F ; b, c], it is the case that I ∪ J |= SM[F ; b, c] and thus

it must be the case that I ∪ J |= SM[F b
(p,∼p) ∧ CC p; p,∼ p, c]. However since the

signature of I does not contain p, we conclude J |= SM[F b
(p,∼p) ∧ CC p; p,∼ p, c].
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Chapter 7

ELIMINATING INTENSIONAL FUNCTIONS IN FAVOR OF INTENSIONAL

PREDICATES

7.1 Multi-valued Propositional Formulas

We first consider the simpler task of turning multi-valued propositional formulas

into propositional formulas. We show that multi-valued stable model semantics can

be viewed as a special case of the propositional stable model semantics. Let σ be

a multi-valued signature, and let σprop be the propositional signature consisting of

all propositional atoms c = v where c ∈ σ and v ∈ Dom(c). For example, for

σ in Example 7, σprop is the set {Amount0 = 0, . . . ,Amount0 = 10, Amount0 =

1, . . . ,Amount1 =10, FillUp = t, FillUp = f}, where each element is understood as

a propositional atom. 1 We identify a multi-valued interpretation of σ with the

corresponding set of propositional atoms from σprop. It is clear that a multi-valued

interpretation I of signature σ satisfies a multi-valued propositional formula F iff

I satisfies F when F is viewed as a propositional formula of signature σprop. Also,

it is not difficult to show that multi-valued formulas can be turned into standard

propositional formulas having the same classical models. Less obvious is whether

such a translation exists while keeping same stable models. Theorem 14 below shows

such a translation.

Given a multi-valued signature σ, by UC σ (“Uniqueness Constraint”) we denote

1We could have included in σprop different expressions such as c(v) in place of c= v. Viewing
c= v as both multi-valued atoms and propositional atoms under different signatures simplifies the
formal statements.
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the conjunction of ∧
v ̸=w | v,w∈Dom(c)

¬(c = v ∧ c = w) (7.1)

for all c ∈ σ, and by EC σ (“Existence Constraint”) we denote the conjunction of

¬¬
∨

v∈Dom(c)

c = v , (7.2)

for all c ∈ σ. By UEC σ we denote the conjunction of (10.1) and (7.2) for all c ∈ σ.

The following theorem tells us that the functional stable model semantics for

multi-valued propositional formulas can be reduced to the stable model semantics

for classical propositional formulas in Ferraris (2005). In other words, checking the

uniqueness of functions coincides with checking the minimality of propositional atoms

under the stable model semantics.

Theorem 14 Let F be a multi-valued propositional formula of signature σ, which

can be also viewed as a propositional formula of signature σprop.

(a) If an interpretation I of σ is a multi-valued stable model of F , then I can be

viewed as an interpretation of σprop that is a propositional stable model of F ∧

UEC σ in the sense of Ferraris (2005).

(b) If an interpretation I of σprop is a propositional stable model of F ∧ UEC σ in

the sense of Ferraris (2005), then I can be viewed as an interpretation of σ that

is a multi-valued stable model of F .

Example 6 continued UEC σ is

¬¬(c=1 ∨ c=2 ∨ c=3) ∧ ¬(c=1 ∧ c=2)

∧¬(c=2 ∧ c=3) ∧ ¬(c=1 ∧ c=3) .
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Note that the presence of ¬¬ in (7.2) is essential for Theorem 14 to be valid.

For instance, consider the signature containing only one constant d whose domain is

{1, 2} and F to be ⊤. F has no multi-valued stable models, but F ∧ ¬(d=1 ∧ d=

2) ∧ (d=1 ∨ d=2) has two propositional stable models: {d=1} and {d=2}.

7.2 Eliminating Intensional Functions from c-Plain Formulas

We now show how to eliminate intensional functions in favor of intensional predi-

cates. Doing so yields two useful results. First, we can compute models of a formula

under the functional stable model semantics using state-of-the-art ASP solvers. Sec-

ond, results established for the first-order stable model semantics Ferraris et al. (2011)

can be established for the functional stable model semantics by eliminating the in-

tensional functions.

Unlike the previous chapter, the result is first established for f -plain formulas,

and then extended to allow “synonymity” rules.

Recall the definition of f -plain from Section 5.4

For a function constant f , a first-order formula is called f -plain if each atomic

formula

• does not contain f , or

• is of the form f(t) = u where t is a tuple of terms not containing f , and u is a

term not containing f .

For a list f of function constants, we say that F is f -plain if F is f -plain for each

member f of f .

Let F be an f -plain formula, where f is an intensional function constant. Formula

F f
p is obtained from F as follows:
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• in the signature of F , replace f with a new intensional predicate constant p of

arity n+ 1, where n is the arity of f ;

• replace each subformula f(t) = c in F with p(t, c).

By UEC p we denote the following formulas that enforce the functional image on

the predicates:

∀xyz(y ̸= z ∧ p(x, y) ∧ p(x, z)→ ⊥),

¬¬∀x∃y p(x, y),
(7.3)

where x is a n-tuple of variables, and all variables in x, y, and z are pairwise distinct.

Note that each formula is a constraint. Clearly, UEC p is strongly equivalent to

¬¬∀x∃!y p(x, y) (7.4)

and also classically equivalent to

∀x∃!y p(x, y) . (7.5)

Example 13 continued

Recall the example from Section 6.2 that describes the effect of a monkey moving.

We eliminate the function Loc in favor of an intensional predicate Locp to obtain

F Loc
Locp
∧ UEC Locp , which is the conjunction of the universal closures of the following

formulas:

Locp(Monkey , 0, L1),

Locp(Monkey , 1, L2),

Move(Monkey , l, t)→ Locp(Monkey , t+ 1, l),

∀wxyz(y ̸= z ∧ Locp(w, x, y) ∧ Locp(w, x, z)→ ⊥),

¬¬∀wx∃y(Locp(w, x, y)).
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Theorem 15 For any f -plain formula F , formulas ∀xy(p(x, y) ↔ f(x) = y),

∃xy(x ̸= y) entail

SM[F ; fc]↔ SM[F f
p ; pc].

The following corollary shows that there is a simple 1–1 correspondence between

the stable models of F and the stable models of F f
p ∧UEC p. Recall that the signature

of F f
p is obtained from the signature of F by replacing f with p. For any interpretation

I of the signature of F , by Ifp we denote the interpretation of the signature of F f
p

obtained from I by replacing the function f I with the set pI that consists of the tuples

⟨ξ1, . . . , ξn, f I(ξ1, . . . , ξn)⟩

for all ξ1, . . . , ξn from the universe of I.

Corollary 4 Let F be an f -plain sentence. (a) An interpretation I of the signature

of F that satisfies ∃xy(x ̸= y) is a model of SM[F ; fc] iff Ifp is a model of SM[F f
p ; pc].

(b) An interpretation J of the signature of F f
p that satisfies ∃xy(x ̸= y) is a model of

SM[F f
p ∧ UEC p; pc] iff J = Ifp for some model I of SM[F ; fc].

Theorem 15 and Corollary 4 are similar to Theorem 3 and Corollary 5 from Lif-

schitz and Yang (2011), which are about eliminating explainable functions in non-

monotonic causal logic in favor of explainable predicates.

The method above eliminates only one intensional function constant at a time, but

repeated applications can eliminate all intensional functions f from a given f -plain

formula. This allows us to represent the f -plain formula by a logic program.

7.3 Non-c-plain formulas

We expect that many domains can be described by f -plain formulas, but we know

of some concepts where f -plain formulas are limited. One limitation is in capturing
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the many-sorted functional stable model semantics within the nonsorted functional

stable model semantics, which will be described in detail in Section 8.4. Another is

when we want to express “synonymity” rules Lee et al. (2010); Lifschitz and Yang

(2011) that have the form

B → f1(t1) = f2(t2), (7.6)

where f1, f2 are intensional function constants in f , and t1, t2 are tuples of terms not

containing members of f . This rule expresses that we believe f1(t1) to be “synony-

mous” to f2(t2) under condition B. We can eliminate f1 and f2 in favor of predicate

constants p1 and p2 as follows.

We consider a more general case than an f -plain formula. We define a new class

of f -plain-syn formulas in which every atomic formula

• does not contain any member of f , or

• is of the form f(t) = u where f is in f , symbol t is a tuple of terms not

containing any member of f , and u is a term not containing any member of f ,

or

• is of the form f1(t1) = f2(t2) where f1, f2 are in f , symbols t1 and t2 are tuples

of terms not containing any member of f .

Example 16 Consider the Gears World domain in which there are two gears, and

one is attached to a motor which turns the gear at 1 revolution per minute. If the

gears are moved close together, the gears spin at the same rate. We can describe using
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the following f -plain-syn formula.

gear1speed(t) = 1

Choice(gear2speed(t) = 0)

Choice(moveGearsTogether(0))

moveGearsTogether(0)→ gearsConnected(1)

gearsConnected(t)→ gear1speed(t) = gear2speed(t)

One stable model of this is I where

gear1speed(0)I = 1, gear1speed(1)I = 1,

gear2speed(0)I = 0, gear2speed(1)I = 1,

moveGearsTogether(0)I = t, moveGearsTogether(1)I = f

gearsConnected(0)I = f , gearsConnected(1)I = t.

Let F be an f -plain-syn formula. The elimination is done by extending the

previous method by turning atomic formulas of the form f1(t1) = f2(t2) into

∀y(p1(t1, y)↔ p2(t2, y)),

where p1, p2 are new intensional predicate constants corresponding to f1, f2.

F f
p is defined similar to F f

p except that it applies to the list of symbols.

Theorem 16 For any f -plain-syn formula F , the set of formulas ∀xy(p(x, y) ↔

f(x) = y) for each f ∈ f and the corresponding p, and ∃xy(x ̸= y) entail

SM[F ;fq]↔ SM[F f
p ;pq].

Unlike in Theorem 15, the elimination in Theorem 16 applies to the list of in-

tensional functions simultaneously. Applying the result of Theorem 10 to F f
p results

in an f -plain formula, and so the composition of these two translations reveals that

f -plain-syn formula F can actually be transformed into f -plain formulas.
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Example 16 continued Using Theorem 16, we can eliminate the functions in the

Gears World example in favor of predicates to get the formula F

gear1speed(t, 1)

Choice(gear2speed(t, 0))

Choice(moveGearsTogether(0))

moveGearsTogether(0)→ gearsConnected(1)

gearsConnected(t)→ ∀x(gear1speed(t, x)↔ gear2speed(t, x))

Then, the interpretation I with |I| = {0, 1} satisfying

∀tx(gear1speed(t) = x↔ gear1speed(t, x))

∀tx(gear2speed(t) = x↔ gear2speed(t, x))

∃xy(x ̸= y)

such that both 0 and 1 mapped to themselves and

gear1speed(0, 1)I = t, gear1speed(1, 1)I = t,

gear2speed(0, 0)I = t, gear2speed(1, 1)I = t,

moveGearsTogether(0)I = t, moveGearsTogether(1)I = f

gearsConnected(0)I = f , gearsConnected(1)I = t.

is a stable model of F .

7.4 Unfolding

In an attempt to relax the syntactic restrictions in the previous two sections, we

have investigated transformations that turn non-c-plain formulas into c-plain formu-

las. In this section, we present one such method which we call “unfolding”.
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The process of unfolding F w.r.t. c, denoted by UF c(F ), is formally defined as

follows.

• If F is of the form p(t1, . . . , tn) (n ≥ 0) such that tk1 , . . . , tkj are all the terms

in t1, . . . , tn that contain some members of c, then UF c(p(t1, . . . , tn)) is

∃x1 . . . xj

(
p(t1, . . . , tn)

′′ ∧
∧

1≤i≤j

UF c(tki = xi)
)

where p(t1, . . . , tn)
′′ is obtained from p(t1, . . . , tn) by replacing each tki with the

variable xi.

• If F is of the form f(t1, . . . , tn) = t0 (n ≥ 0) such that tk1 , . . . , tkj are all the

terms in t0, . . . , tn that contain some members of c, then UF c(f(t1, . . . , tn) = t0)

is

∃x1 . . . xj

(
(f(t1, . . . , tn) = t0)

′′ ∧
∧

0≤i≤j

UF c(tki = xi)
)

where (f(t1, . . . , tn) = t0)
′′ is obtained from f(t1, . . . , tn) = t0 by replacing each

tki with the variable xi.

• UF c(F ⊙G) is UF c(F )⊙ UF c(G) where ⊙ ∈ {∧,∨,→}.

• UF c(QxF ) is Qx UF c(F (x)) where Q ∈ {∀,∃}.

It is clear that UF c(F ) is equivalent to F under classical logic. However, in

general, UF c(F ) and F do not have the same stable models.

Example 17 Consider when F is p(f) ∧ p(1) ∧ p(2). UF f (F ) is ∃x(p(x) ∧ f =

x) ∧ p(1) ∧ p(2). For an interpretation I such that f I = 1 and the universe |I| is

{1, 2}, I is a stable model of UF f (F ) but not of F , which we can easily see observing

the reducts with respect to I.

F I is p(f) ∧ p(1) ∧ p(2), while
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UF f (F )I is equivalent to f = 1 ∧ p(1) ∧ p(2).

Then, we can see that the interpretation J such that fJ = 2 and |J | = |I| = {1, 2}

satisfies J <(f,g) I. Now, J |= F I but J ̸|= UF (f,g)(F )I .

The following corollary shows that this method does preserve the stable models

of formulas that are tight and in Clark Normal Form. And from this, combined with

Theorem 15, we see another class of formulas for which we can eliminate intensional

functions in favor of intensional predicates.

Corollary 5 Let F be a formula in Clark Normal Form that is tight on c. SM[F ; c]↔

SM[UF c(F ); c].

7.5 Attempts at Generalizing Unfolding

While the syntactic restrictions in the previous sections–f -plain, f -plain-syn, and

tight formulas in Clark Normal Form–are suitable for expressing many domains, it

would be ideal to have a single general result that reveals how intensional functions

may be eliminated in terms of intensional predicates. However, all attempts to convert

non-c-plain formulas into c-plain formulas while preserving the stable models have

proven fruitless.

In del Cerro et al. (2013), an attempt was made at establishing a Gentzen-style

system for the functional stable model semantics. Theorem 2 in del Cerro et al. (2013)

claimed that formulas that could be shown to be equivalent through the Gentzen-style

system were strongly equivalent to each other. However, we were able to show that

the formula p(f) and ∃x(p(x)∧f = x) could be shown to be equivalent in the Gentzen-

style system. Example 17 in the previous section, demonstrates that these formulas
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are not strongly equivalent. The authors revised the Gentzen-style system in Cabalar

et al. (2014) so that it no longer had this defect. Unfortunately, the new system no

longer hinted at a way to convert non-c-plain formulas into c-plain formulas while

preserving the stable models.

In fact, we are able to make a strong claim about the inability to find such a trans-

formation. A modular translation is one that can be performed on conjunctive sub-

formulas independently of each other. This is important for supporting elaboration-

tolerance; if an elaboration E is introduced to a formula F , a modular translation T

is one such that T (F ∧ E) is strongly equivalent to T (F ) ∧ T (E).

Theorem 17 There is no modular, signature-preserving translation that turns any

sentence F into a c-plain sentence F ′ such that SM[F ; c] is equivalent to SM[F ′; c]

for any list c of constants.
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7.6 Proofs

7.6.1 Proof of Theorem 14

Lemma 16 Assume that K and X are multi-valued interpretations of σ and Y is a

propositional interpretation of σprop which is a subset of X such that

K(c) = X(c) iff c = X(c) ∈ Y.

We have that K |= FX (when we view F as a multi-valued formula of σ) iff Y |= FX

(when we view F as a propositional formula of σprop).

Proof. By induction on F. We show only the case of atoms. The other cases are

straightforward.

Let F be an atom c = v. If X |= c = v, then FX is F . The claim follows from

the assumption since K |= c = v iff Y |= c = v. If X ̸|= c = v, then FX is ⊥, which

neither K nor Y satisfies.

Theorem 14 Let F be a multi-valued propositional formula of signature σ, which

can be also viewed as a propositional formula of signature σprop.

(a) If an interpretation I of σ is a multi-valued stable model of F , then I can

be viewed as an interpretation of σprop that is a propositional stable model

of F ∧ UEC σ in the sense of Ferraris (2005).

(b) If an interpretation I of σprop is a propositional stable model of F ∧ UEC σ in

the sense of Ferraris (2005), then I can be viewed as an interpretation of σ that

is a multi-valued stable model of F .

Proof. (a) Assume X of signature σ is a stable model of F . This means X |= F

and no multi-valued interpretation K different from X satisfies FX . Now since X is
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a multi-valued intepretation, X |= UECσ. Then clearly X |= F when viewed as a

propositional formula of signature σprop.

So, we wish to show that there is no interpretation Y of signature σprop such that

Y ⊂ X when X is viewed as a set of propositional atoms and Y |= (F ∧ UECσ)
X

when viewed as a propositional formula of signature σprop. To do so, we prove the

contrapositive. We will show that if there is an interpretation Y of signature σprop

such that Y ⊂ X when X is viewed as a set of propositional atoms and Y |= (F ∧

UECσ)
X when viewed as a propositional formula of signature σprop, then there is an

interpretation K different from X that satisfies FX when viewed as a multi-valued

formula of signature σ.

Given such an interpretation Y , we create K as follows. For each c ∈ σ,

K(c) =

 v if c = v ∈ Y

mc(v) : if c = v ∈ X and c = v /∈ Y

where mc is any mapping from m : Dom(c) → Dom(c) such that m(x) ̸= x. Note

that this requires that every Dom(c) have at least two elements. Note that since

Y ⊂ X, there is at least one c ∈ σ and v ∈ Dom(c) such that c = v ∈ X but

c = v /∈ Y . For this c, K(c) = m(X(c)) ̸= X(c) so K and X are different.

In addition, we have that K(c) = X(c) iff c = X(c) ∈ Y . Now, since Y |=

(F ∧ UECσ)
X , it follows that Y |= FX . Thus, from Lemma 16 it follows that since

Y |= FX , then K |= FX .

(b) Assume X of signature σprop is a stable model of F ∧ UECσ. This means that

X |= F ∧ UECσ and no interpretation Y such that Y ⊂ X satisfies (F ∧ UECσ)
X .

Since X |= UECσ, then X can be viewed as a multi-valued interpretation. Then

clearly, X |= F .
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Now, we wish to show that there is no interpretation K of signature σ that is

different from X satisfying FX . To do so, we prove the contrapositive. We will show

that if there is an interpretation K of signature σ different from X and K |= FX ,

then there is an interpretation Y such that Y ⊂ X that satisfies (F ∧UECσ)
X . Now

since we already have seen that X |= UECσ, then (UECσ)
X is equivalent to ⊤ so we

need only show that there is an interpretation Y such that Y ⊂ X that satisfies FX .

Given such an interpretation K, we create Y as follows. Let us view K as a set

of propositional atoms. We will take Y = X ∩K. Clearly Y ⊂ X. In addition, we

have that K(c) = X(c) iff c = X(c) ∈ Y . Thus, from Lemma 16 it follows that since

Y |= FX , then K |= FX .

7.6.2 Proof of Theorem 15

Theorem 15 For any f -plain formula F ,

∀xy(p(x, y)↔ f(x) = y) (7.7)

and ∃xy(x ̸= y) entail

SM[F ; fc]↔ SM[F f
p ; pc].

Proof.

This is precisely the statement of Lemma 13.
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7.6.3 Proof of Corollary 4

Corollary 4 Let F be an f -plain sentence. (a) An interpretation I of the signature

of F that satisfies ∃xy(x ̸= y) is a model of SM[F ; fc] iff Ifp is a model of SM[F f
p ; pc].

(b) An interpretation J of the signature of F f
p that satisfies ∃xy(x ̸= y) is a model of

SM[F f
p ∧ UEC p; pc] iff J = Ifp for some model I of SM[F ; fc].

Proof.

This is precisely the same statement as Lemma 14.

7.6.4 Proof of Theorem 16

Lemma 17 Given two lists of predicate and function constants c and d whose ele-

ments are in one-to-one correspondence, two lists of predicate constants p and q and

two lists of function constants f and g all of the same length, a formula F of signature

σ ⊇ c∪f that is f -plain, and an interpretation I over a signature σ′ ⊇ σ∪d∪p∪q∪g

that satisfies

∀xy(p(x, y)↔ f(x) = y) (7.8)

for each corresponding p and f in p and f respectively,

∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y) (7.9)

for each corresponding q, f , and g in q, f , and g respectively, and

∀xy(f1(x) = f2(y)→ g1(x) = g2(y) (7.10)

for each corresponding f1,f2 and g1,g2 in f and g respectively, if I |= (F f
p )

∗(qd), then

I |= F ∗(gd).
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Proof. By induction on F .

Case 1: F is an atomic formula not containing any f from f .

F f
p is exactly F thus F ∗(gd) is exactly (F f

p )
∗(qd) so certainly the claim holds.

Case 2: F is f(t) = c where f ∈ f and t and c contain no elements from f .

F ∗(gd) is f(t) = c ∧ g(t) = c.

F f
p is p(t, c).

(F f
p )

∗(qd) is q(t, c).

Since I |= (7.9) for every corresponding q, f , and g in q, f , and g respectively, it

immediately follows that I |= F ∗(gd) iff I |= (F f
p )

∗(qd).

Case 3: F is of the form f1(t1) = f2(t2) where f1 and f2 are intensional and neither

t1 nor t2 contains intensional constants.

F ∗(gd) is f1(t1) = f2(t2) ∧ g1(t1) = g2(t2).

F f
p is ∀y(p1(t1, y)↔ p2(t2, y)).

(F f
p )

∗(gd) is ∀y((p1(t1, y)↔ p2(t2, y)) ∧ (q1(t1, y)↔ q2(t2, y))).

which is further equivalent to ∀y(p1(t1, y)↔ p2(t2, y)) ∧ ∀y(q1(t1, y)↔ q2(t2, y)).

Since I |= (7.8) for every corresponding p and f in p and f respectively, it is clear

that I |= f1(t1) = f2(t2) iff I |= ∀y((p1(t1, y)↔ p2(t2, y)). We consider two cases.

• If I ̸|= f1(t1) = f2(t2), then clearly, I ̸|= F ∗(gd) and by the previous observation

I ̸|= (F f
p )

∗(gd) so the claim holds.

• Otherwise, I |= f1(t1) = f2(t2). Now, since I |= (7.10) for each corresponding

f1,f2 and g1,g2, we have that I |= g1(t1) = g2(t2) and so I |= F ∗(gd). If f1(t1) =

g1(t1) (and thus f2(t2) = g2(t2)), then since I |= (7.9) for each corresponding q,
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f , and g in q, f , and g respectively, I |= q1(t1, ξ) for f1(t1)
I = ξ and similarly

I |= q2(t2, ξ). If on the other hand f1(t1) ̸= g1(t1) (and thus f2(t2) ̸= g2(t2)),

then I ̸|= q1(t1, ξ) for any ξ. In either case, we conclude I |= ∀y(q1(t1, y) ↔

q2(t2, y)).

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

Lemma 18 Given two lists of predicate and function constants c and d whose ele-

ments are in one-to-one correspondence, two lists of predicate constants p and q and

two lists of function constants f and g all of the same length, a formula F of signature

σ ⊇ c∪f that is f -plain, and an interpretation I over a signature σ′ ⊇ σ∪d∪p∪q∪g

that satisfies

∀xy(p(x, y)↔ f(x) = y) (7.11)

for each corresponding p and f in p and f respectively,

∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y) (7.12)

for each corresponding q, f , and g in q, f , and g respectively, if I |= F ∗(gd), then

I |= (F f
p )

∗(qd).
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Proof. By induction on F .

Case 1: F is an atomic formula not containing any f from f .

F f
p is exactly F thus F ∗(gd) is exactly (F f

p )
∗(qd) so certainly the claim holds.

Case 2: F is f(t) = c where f ∈ f and t and c contain no elements from f .

F ∗(gd) is f(t) = c ∧ g(t) = c.

F f
p is p(t, c).

(F f
p )

∗(qd) is q(t, c).

Since I |= (7.12) for every corresponding q, f , and g in q, f , and g respectively, it

immediately follows that I |= F ∗(gd) iff I |= (F f
p )

∗(qd).

Case 3: F is of the form f1(t1) = f2(t2) where f1 and f2 are intensional and neither

t1 nor t2 contains intensional constants.

F ∗(gd) is f1(t1) = f2(t2) ∧ g1(t1) = g2(t2).

F f
p is ∀y(p1(t1, y)↔ p2(t2, y)).

(F f
p )

∗(gd) is ∀y((p1(t1, y)↔ p2(t2, y)) ∧ (q1(t1, y)↔ q2(t2, y))).

which is further equivalent to ∀y(p1(t1, y)↔ p2(t2, y)) ∧ ∀y(q1(t1, y)↔ q2(t2, y)).

Since I |= (7.11) for every corresponding p and f in p and f respectively, it is clear

that I |= f1(t1) = f2(t2) iff I |= ∀y((p1(t1, y)↔ p2(t2, y)). We consider two cases.

• If I ̸|= f1(t1) = f2(t2), then clearly, I ̸|= F ∗(gd) and by the previous observation

I ̸|= (F f
p )

∗(gd) so the claim holds.

• Otherwise, I |= f1(t1) = f2(t2). Now, if I |= f1(t1) = g1(t1), then since we

assume I |= F ∗(gd), we have I |= f2(t2) = g2(t2). Thus, since I |= (7.12), it

follows that I |= q1(t1, ξ) ∧ q2(t2, ξ)) for f1(t1)
I = ξ and for all other ξ′ ̸= ξ,
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I |= ¬q1(t1, ξ)∧¬q2(t2, ξ)). If on the other hand I ̸|= f1(t1) = g1(t1), then since

we assume I |= F ∗(gd), we have I ̸|= f2(t2) = g2(t2). Thus, since I |= (7.12),

it follows that I |= ¬q1(t1, ξ) ∧ q2(t2, ξ)) for all ξ. In either case we conclude

I |= ∀y(q1(t1, y)↔ q2(t2, y)) so the claim holds.

Case 4: F is G⊙H where ⊙ ∈ {∧,∨}.

By I.H. on G and H.

Case 5: F is G→ H.

By I.H. on G and H.

Case 6: F is QxG(x) where Q ∈ {∀, ∃}.

By I.H. on G.

Lemma 19 Given two lists of predicate and function constants c and d whose ele-

ments are in one-to-one correspondence, two lists of predicate constants p and q and

two lists of function constants f and g all of the same length, a formula F of signature

σ ⊇ c∪f that is f -plain, and an interpretation I over a signature σ′ ⊇ σ∪d∪p∪q∪g

that satisfies

∀xy(p(x, y)↔ f(x) = y) (7.13)

for each corresponding p and f in p and f respectively and

∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y) (7.14)

for each corresponding q, f , and g in q, f , and g respectively, I |= gd < fc iff

I |= qd < pc.

132



Proof. (⇒) Assume I |= gd < fc. By definition, it follows that I |= (gd)pred ≤

(fc)pred and since g and f contain no predicates, we have I |= dpred ≤ cpred.

The following arguments are made for corresponding tuples of p, q, f , and g from

p, q, f , and g respectively. Since we assume I |= (7.14), it follows that I |=

∀xy(q(x, y) → f(x) = y). Then from the assumption that I |= (7.13), it follows

that I |= ∀xy(q(x, y)→ p(x, y)) or simply that I |= q ≤ p, from which it follows that

I |= (qd)pred ≤ (pc)pred.

Now since I |= gd < fc, it follows that I |= ¬(gd = fc). We consider two cases

• If I |= ¬(d = c) for some corresponding d and c in d and c respectively, then

we have I |= ¬(d = c) and further, I |= ¬(qd = pc).

• Otherwise, it must be that I |= ¬(g = f) for some corresponding g and f in g

and f respectively. That is, for some ξ and ξ, I ̸|= f(ξ) = ξ ↔ g(ξ) = ξ. For

a given ξ, I maps f(ξ) to exactly one ξ and similarly for g(ξ) and so it follows

that I ̸|= f(ξ) = ξ ∧ g(ξ) = ξ for every ξ. Since I |= (7.14), I ̸|= q(ξ, ξ) for

every ξ. However, since I |= f(ξ) = ξ for some ξ, from I |= (7.13), we know

I |= p(ξ, ξ) for some ξ. Thus, I |= ¬(q = p) and further I |= ¬(qd = pc).

From either case, we then conclude that I |= qd < pc.

(⇐) Assume I |= qd < pc. By definition, it follows that I |= (qd)pred ≤ (pc)pred and

further, we have I |= dpred ≤ cpred. Then, since f and g do not contain predicates,

we have I |= (gd)pred ≤ (fc)pred.

Now since I |= qd < pc, it follows that I |= ¬(qd = pc). We consider two cases

• If I |= ¬(d = c) for some corresponding d and c in d and c respectively, then

we have I |= ¬(d = c) and further, I |= ¬(gd = fc)
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• Otherwise, it must be that I |= ¬(q = p) for some corresponding q and p from

q and p respectively. That is, for some ξ and ξ, I ̸|= q(ξ, ξ) ↔ p(ξ, ξ). Since

I |= (7.13), there is exactly one ξ and ξ such that I |= p(ξ, ξ), which further

means that I |= f(ξ) = ξ. Thus since I |= q < p, it must be that I ̸|= q(ξ, ξ),

and since I |= (7.14), it follows that I ̸|= g(ξ) = ξ. Thus, I |= ¬(g = f) and

further I |= ¬(gd = fc).

From either case, we then conclude that I |= gd < fc.

Theorem 16 For any f -plain-syn formula F , the set of formulas ∀xy(p(x, y) ↔

f(x) = y) for each f ∈ f and the corresponding p, and ∃xy(x ̸= y) entail

SM[F ;fq]↔ SM[F f
p ;pq].

Proof. We will show that the conjunction over all pairs of corresponding f and p

from f and p of

∀xy(p(x, y)↔ f(x) = y) (7.15)

entails

SM[F ;fc]↔ SM[F f
p ;pc].

Claim 1:For any interpretation I = ⟨I,X⟩ of signature σ ⊇ {f ,p, c} satisfying (7.15),

I |= F iff I |= F f
p . We show this by showing that every atomic formula A in F is

classically equivalent to the corresponding formula Af
p in F f

p :

• A contains no intensional function constants. Then A is identical to Af
p .

• A is of the form f(t) = c where f is an intensional function constant and neither

t nor c contains intensional function constants. The corresponding formula Af
p

is p(t, c) and under (7.15) it is clear that these are equivalent.
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• A is of the form f1(t1) = f2(t2) where f1 and f2 are intensional function con-

stants and neither t1 nor t2 contains intensional function constants. The corre-

sponding formula Af
p is p1(t1, y)↔ p2(t2, y) and under (7.15), this is equivalent

to f1(t1) = y ↔ f2(t2) = y which is equivalent to A.

Claim 2:

I |= ¬∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ ĉ))

iff

I |= ¬∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ))

or equivalently,

I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ ĉ))

iff

I |= ∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ)).

(⇒) Assume I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ ĉ)). We wish to show that I |=

∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ)).

That is, take any list of functions g of the same arities as the corresponding

functions in f and any list of predicates d of the same length c. Now let I ′ =

⟨I ∪ Jf
g , X ∪ Y c

d ⟩ be from an extended signature σ′ = σ ∪ {g,d} where J is an

interpretation of functions from the signature σ and I and J agree on all symbols

not occurring in f . Jf
g denotes the interpretation from σf

g (the signature obtained

from σ by replacing f ∈ f with the corresponding g ∈ g and all elements of c with

all elements of d) obtained from the interpretation J by replacing f ∈ f with the

corresponding g ∈ g. Similarly, Y c
d is the interpretation from σc

d obtained from the
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interpretation Y by replacing c ∈ c by the corresponding d ∈ d. We assume

I ′ |= (gd < fc ∧ F ∗(gd))

and wish to show that there is a list of predicates q of the same arities as the corre-

sponding predicates in p such that

I ′ |= (qd < pc ∧ (F f
p )

∗(qd)).

We define each new predicate q in terms of the corresponding f and g as follows:

qI
′
(ξ⃗, ξ) =

 1 if I ′ |= f(ξ⃗) = ξ ∧ g(ξ⃗) = ξ

0 otherwise

We assume I ′ |= (7.15) for each corresponding f and p from f and p respectively.

It is clear from the definition of q that I ′ |= ∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y) for

each corresponding q, f , and g from q, f and g respectively. Thus, by Lemma 19,

I ′ |= qd < pc. From Lemma 18, we conclude I ′ |= F f
p )

∗(p̂ĉ).

(⇐) Assume I |= ∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )

∗(p̂ĉ)). We wish to show that I |=

∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ ĉ)).

That is, take any list predicates q of the same arities as the corresponding predi-

cates in p and any list of predicates d the same length as c such that

I ′ |= (qd < pc ∧ (F f
p )

∗(qd)).

We wish to show that there is a function g of the same arity as f such that

I ′ |= (gd < fc ∧ F ∗(gd))

where I ′ = ⟨I ∪ Jf
g , X ∪ Y c

d ⟩ is defined as before. Take any mapping m : |I ′| → |I ′|

such that ∀x(m(x) ̸= x). We define each new function g in terms of the corresponding

f , p, and q as follows:
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gI
′
(ξ⃗) =

 fI′
(ξ⃗) if I ′ |= ∃y(p(ξ⃗, y) ∧ q(ξ⃗, y))

m(fI′
(ξ⃗)) otherwise

Note that the assumption that there are at least two elements in the universe is

essential to this definition. We assume I ′ |= (7.15) for each corresponding f and p

from f and p respectively. It is clear from the definition of g that I ′ |= ∀xy(f1(x) =

f2(y) → g1(x) = g2(y) for each corresponding f and g from f and g respectively.

We now show that I ′ |= ∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y) for each corresponding

q, f , and g from q, f and g respectively.

Since we assume I ′ |= (7.7), it follows that for any given ξ, there is only one ξ such

that I ′ |= p(ξ, ξ). Then, since we assume I ′ |= q ≤ p, we know I ′ ̸|= q(ξ, ξ′) for any

ξ′ ̸= ξ. If I ′ |= q(ξ, ξ), then I ′ |= g(ξ) = ξ. Otherwise, I ′ |= g(ξ) = ξ′ for some ξ′ ̸= ξ.

Since this is true for any ξ, it follows that I ′ |= ∀xy(q(x, y)↔ f(x) = y ∧ g(x) = y).

Thus, by Lemma 19, I ′ |= qd < pc. From Lemma 17, we conclude I ′ |= F f
p )

∗(p̂ĉ).

7.6.5 Proof of Corollary 5

Corollary 5 Let F be a formula in Clark Normal Form that is tight on c.

SM[F ; c]↔ SM[UF c(F ); c].

Theorem 8 from section 5.5 tells us that the stable models relative to c of a formula

F in Clark Normal Form that is tight on c are in one-to-one correspondence with the

classical models of the completion of F relative to c, which we will denote G. Further,

since unfolding is a classically equivalent transformation, the stable models of F are
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in one-to-one correspondence with classical models of UF c(G).

To apply Theorem 8 to UF c(F ), we must first establish that UF c(F ) is tight on

c. This follows immediately from the fact that UF c does not affect strictly positively

occurring atomic formulas since F is in Clark Normal Form and so these are of the

form p(x) or f(x)=y and so are already c plain. Further, for any implication B → H

of F , any atomic formula A occuring strictly positively in B, then since UF c does

not affect the number of implications that have A in the antecedent. Thus, UF c(F )

is tight on c.

So by Theorem 8, the stable models of UF c(F ) are in one-to-one correspondence

with the classical models of the completion of UF c(F ) relative to c. All that remains

to shown is that UF c(G) is the same formula as the completion of UF c(F ) relative

to c.

Consider any implication B → H in F . The corresponding equivalence in the

completion of F is B ↔ H. Now, applying unfolding here yields UF c(B) ↔ H

since as noted before, H is already c-plain. On the other hand, the corresponding

implication in G is UF c(B) → H and further, the corresponding equivalence in the

completion of G is UF c(B)↔ H and so we conclude that UF c(G) is the same formula

as the completion of UF c(F ) relative to c.

7.6.6 Proof of Theorem 17

For a formula F involving function f and g, we call it fg-indistinguishable if every

occurrence of f or g in F has the form (f = t) ∧ (g = t), where t is a term. For 2

interpretations I and J of F, define the relation R(I, J) as R(I, J) if
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• I(f) ̸= I(g);

• J(f) ̸= J(g);

• For every symbol s other than f or g, I(s) = J(s).

Lemma 20 If F is fg-indistinguishable, then for any I and J satisfying R(I, J),

F I = F J .

Proof. By induction on F .

• F is an atom a (or ⊥ or ⊤), where a does not involve f or f ′. Obvious.

• F is (f = t)∧ (f ′ = t) for some t. Clearly since I(f) ̸= I(f ′) and J(f) ̸= J(f ′),

F I = F J = 0.

• F is ¬G, where G is f -indistinguishable. For any I and J satisfying R(I, J),

by I.H., GI = GJ , so F I = F J .

• F is G ⊙H, where G and H are both f -indistinguishable and ⊙ ∈ {∧,∨,→}.

For any I and J satisfying R(I, J), by I.H, GI = GJ and HI = HJ , so F I = F J

.

Theorem 17 There is no modular, signature-preserving translation that turns any

sentence F into a c-plain sentence F ′ such that SM[F ; c] is equivalent to SM[F ′; c]

for any list c of constants.

Proof.

Assume there is such a translation T that can turn a sentence F into a c-plain

sentence F ′ such that SM[F ; c] is equivalent to SM[F ′; c] for any list c of constants.
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We first consider a formula G that is p(f)∧ p(1) and a list c that is {f}. It is not

hard to verify that for I = {p(1), f = 1}, we have I |= SM[G; f ]. Thus we will have

that I |= SM[G′; f ].

In particular, for a new function constant g and interpretation K = {p(1), f =

1, g = 2}, we have that K ̸|= G′∗(g).

Further, we consider a formula H that is p(2). Now since T is modular, we have

that (G ∧ H)′ = G′ ∧ H ′. Further, since H is already f -plain, H ′ = H and so

(G ∧H)′ = G′ ∧H. We will proceed by referring to G ∧H as F .

We first note that by definition of SM, we will be showing that F ∧ ¬∃ĉ(ĉ <

c ∧ F ∗(ĉ)) is equivalent to F ′ ∧ ¬∃ĉ(ĉ < c ∧ F ′∗(ĉ)).

Now, when we let c be empty, this is simply to show that T is such that F is

equivalent to F ′. Thus, we only need to show that ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)) is equivalent

to ¬∃ĉ(ĉ < c ∧ F ′∗(ĉ)) or equivalently, the contrapositive ∃ĉ(ĉ < c ∧ F ∗(ĉ)) is

equivalent to ∃ĉ(ĉ < c ∧ F ′∗(ĉ)).

That is, we will show that for some list of predicates and function constants d

corresponding to c,

Now consider when F is the formula

p(f) ∧ p(1) ∧ p(2)

and where c = {f}. Consider a new function constant g. F ∗(g) is

p(f) ∧ p(g) ∧ p(1) ∧ p(2).

Consider two interpretations I = {p(1), p(2), f = 1, g = 2} and J = {p(1), p(2), f =

1, g = 3}. Clearly I |= F ∗(g) and J ̸|= F ∗(g). Note that R(I, J). Observe that I

serves to show that for J = {p(1), p(2), f = 1}, we have that J ̸|= SM[F ; g]. Now,
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since I |= F and we already observed that T is such that F is equivalent to F ′,

I |= F ′.

Now, recall that F is G ∧H and that F ′ = G′ ∧H. Then, we have that F ′∗(g) is

G′∗(g)∧H. Now since K ̸|= G′∗(g) certainly, I ̸|= G′∗(g) (recall K = {p(1), f = 1, g =

2}) and further I ̸|= G′∗(g) ∧ H 2 . Now since F ′ is c-plain, it must be that every

occurrence of f is in a term of the form f = t where t does not contain f . Then, in

F ′∗(g), every occurrence of f and g has the form (f = t)∧ (g = t). Therefore, we can

apply Lemma 20 and conclude that F ′∗(g)I = F ′∗(g)J for any interpretations such

that R(I, J). Thus, for every J that is fg-indistinguishable, J ̸|= G′∗(g) ∧H. So we

conclude that J |= SM[F ′; g] but J ̸|= SM[F ; g]. Thus, no such translation can exist.

2Splitting Theorem is the basis of this claim.
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Chapter 8

MANY-SORTED FSM

Under the functional stable model semantics described in Chapter 4, in any in-

terpretation I, each function f is understood as f : |I| × · · · × |I| → |I|. When

describing real-world domain, this is unnatural; while velocity(car) is certainly a

value of interest, velocity(17) is not. To allow functions to map to and from sets

other than the universe, in this chapter we present the many-sorted functional stable

model semantics.

8.1 Extending FSM to Many-sorted FSM

To extend FSM to many-sorted logic, we use the same definition of a signature

as in many-sorted logic; a signature σ is comprised of a list of function and predicate

constants and a list of sorts. To each function and predicate of arity n, we assign

argument sorts s1, . . . , sn and to function constants of arity n, we assign a value sort

sn+1. We assume that we have an infinite number of variables for each sort. Atomic

formulas are built similar to standard logic with the restriction that in f(t1, . . . , tn) (

p(t1, . . . , tn)), the sort of ti must be a subsort of the ith argument of f (p). In addition

t1 = t2 is an atomic formula if the sorts and t1 and t2 have a common supersort.

A many-sorted interpretation I has a non-empty universe |I|s for each sort s.

When s1 is a subsort of s2, then an interpretation must satisfy |I|s1 ⊆ |I|s2 . The notion

of satisfaction is similar to classical logic with the restriction that an interpretation

142



map a term to an element in its associated sort.

For predicate symbols (constants or variables) u and c that have the same assigned

argument and value sorts, we define u ≤ c as ∀x(u(x) → c(x)) where each x ∈ x is

of the appropriate sort. We define u = c as ∀x(u(x) ↔ c(x)) where each x ∈ x is

of the appropriate sort if u and c are predicate symbols, and ∀x(u(x) = c(x)) where

each x ∈ x is of the appropriate sort if they are function symbols.

Let c be a list of distinct predicate and function constants and let ĉ be a list of

distinct predicate and function variables corresponding to c such that each ĉ ∈ ĉ and

corresponding c ∈ c have the same assigned argument and value sorts.

By cpred we mean the list of the predicate constants in c, and by ĉpred the list of

the corresponding predicate variables in ĉ. We define ĉ < c as

(ĉpred ≤ cpred) ∧ ¬(ĉ = c)

and SM[F ; c] as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where F ∗(ĉ) is defined as follows.

• When F is an atomic formula, F ∗ is F ′ ∧ F , where F ′ is obtained from F

by replacing all intensional (function and predicate) constants in it with the

corresponding (function and predicate) variables;

• (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF )∗ = ∀xF ∗; (∃xF )∗ = ∃xF ∗.
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When F is a many-sorted sentence, the many-sorted interpretations that are mod-

els of SM[F ; c] are called the c-stable models of F . They are the models of F that

are “stable” on c.

Note that the second-order characterization of the many-sorted functional stable

model semantics is only different from the definition in Chapter 4 in that the formula

F and interpretation I are many-sorted and every variable ĉ in the list of variables ĉ

must have the same assigned sorts as the corresponding constant c in c.

8.2 Reduct characterization of Many-sorted FSM

As was the case for the nonsorted functional stable model semantics, we can also

define a characterization of the many-sorted functional stable model semantics in

terms of grounding and reduct.

We first present a natural extension of the process of grounding with respect to

many-sorted interpretations.

Let F be any first-order sentence of a many-sorted signature σ, and let I be a

(many-sorted) interpretation of σ. By grI [F ] we denote the infinitary ground formula

w.r.t. I that is obtained from F by the following process:

• If F is an atomic formula, grI [F ] is F ;

• grI [G⊙H] = grI [G]⊙ grI [H] (⊙ ∈ {∧,∨,→});

• grI [∃xG(x)] = {grI [G(ξ⋄)] | ξ ∈ |I|s}∨ where s is the sort of the variable

x;

• grI [∀xG(x)] = {grI [G(ξ⋄)] | ξ ∈ |I|s}∧ where s is the sort of the variable
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x.

We say for two interpretations I, J of multi-valued signature σ and a set of pred-

icate and function constants c that J <c I if

• |I|s = |J |s for every sort s ∈ σ;

• I and J agree on all constants not in c;

• pJ ⊆ pI for all predicates p in c;

• I and J do not agree on c.

Example 18 Consider four interpretations I, J,K, L with universe {1, 2, 3} and sig-

nature σ = {p, q, f, s} where p and q are unary predicates, f is a unary function, and

s is a sort. Let c be {p, f}. When

I = {p(1), q(1), f = 1, s = {1, 2}}

J = {p(1), q(1), f = 2, s = {1, 2}}

K = {q(1), f = 1, s = {1, 2}}

L = {q(1), f = 1, s = {1, 2, 3}}

we can see that J <c I holds since pJ ⊆ pI (both have an extent of {1}) and J and I

do not agree on c since f I ̸= fJ . Similarly, K <c I holds since pK ⊆ pI (the former

has an empty extent while the latter has extent {1}) and K and I disagree on p. On

the other hand, L <c I does not hold since L and I do not agree on the sort s.

The reduct F I of an infinitary ground formula F relative to an many-sorted inter-

pretation I is defined as follows:

• For each atomic formula F , F I = ⊥ if I ̸|= F and F I = F otherwise;
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• (H∧)I = ⊥ if I ̸|= H∧; otherwise (H∧)I = {GI | G ∈ H}∧;

• (H∨)I = ⊥ if I ̸|= H∨; otherwise (H∨)I = {GI | G ∈ H}∨;

• (G→ H)I = ⊥ if I ̸|= G→ H; otherwise (G→ H)I = GI → HI .

The following is the many-sorted counterpart to Theorem 1.

Theorem 18 Let F be a first-order sentence of a many-sorted signature σ and let c

be a list of intensional constants. For any interpretation I of σ, I |= SM[F ; c] iff

• I satisfies F , and

• every interpretation J such that J <c I does not satisfy (grI [F ])I .

8.3 Relation to Multi-valued Propositional Formulas

In this section, we show that multi-valued propositional formulas can be expressed

naturally in terms of the many-sorted functional stable model semantics. Given a

multi-valued signature σ, we construct the many-sorted signature σ′ as follows:

• For every c ∈ σ, we have a sort sortc ∈ σ′;

• For every v ∈ Dom(c) for some c ∈ σ, we have a sort sortv ∈ σ′ that is a subsort

of every sort sortc for which v ∈ Dom(c);

• For every c ∈ σ, we include an object constant c ∈ σ′ and associate it with the

sort sortc;
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• For every v ∈ Dom(c) for some c ∈ σ, we include an object constant v ∈ σ′ and

associate it with the sort sortv.

We define the universes of these sorts as |I|sortv = {v} and |I|sortc = Dom(c)

We identify a multi-valued propositional interpretation X of signature σ with a

many-sorted interpretation of signature σ′ so that X(c) = v iff cX = v.

Theorem 19 Let F be a multi-valued propositional formula. a) If X is a stable

model of F viewed as a multi-valued formula of signature σ, then X is a stable model

of F viewed as a many-sorted formula of signature σ′.

b) If X is a stable model of F viewed as a many-sorted formula of signature σ′, then

X is a stable model of F viewed as a multi-valued formula of σ.

8.4 Reducing Many-sorted FSM to Nonsorted FSM

We can represent many-sorted FSM using nonsorted FSM as follows. Given a

many-sorted signature σ, we define the signature σns to contain every function and

predicate constant from σ. In addition, for each sort s ∈ σ, we add a unary predicate

s to σns.

Given a formula F of many-sorted signature σ, we obtain the formula F ns from

nonsorted signature σns as follows.

We replace every ∃x F (x), where x is a sorted variable whose sort is s, with the

formula

∃y(F (y) ∧ s(y))
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where y is an nonsorted variable. Similarly, we replace every ∀x F (x), where x is a

sorted variable whose sort is s, with the formula

∀y(s(y)→ F (y))

where y is an nonsorted variable.

By SFσ we denote the conjunction of

• the formulas ∀y(si(y)→ sj(y)) for every two sorts si and sj in σ such that si is

a subsort of sj,

• the formulas ∃y s(y) for every sort s in σ

• the formulas ∀y1 . . . yk(args1(y1)∧ · · · ∧ argsk(yk)→ vals(f(y1, . . . , yk))) for each

function constant f in σ where the arity of f is k and the ith argument sort of

f is argsi and the value sort of f is vals.

• the formulas ∀y1 . . . yk+1(¬args1(y1)∨· · ·∨¬argsk(yk)→ {f(y1, . . . , yk) = yk+1})

for each function constant f in σ where the arity of f is k and the ith argument

sort of f is argsi.

• the formulas ∀y1 . . . yk(¬args1(y1) ∨ · · · ∨ ¬argsk(yk)→ {p(y1, . . . , yk)}) for each

function constant f in σ where the arity of f is k and the ith argument sort of

f is argsi.

Note that only the first 3 items are necessary to turn many-sorted formulas in

classical logic to non-sorted formulas. Here, however, we need to add the fourth

and fifth item for the FSM semantics so that any constant c and the corresponding

variable ĉ in the formula SM for the nonsorted case can only disagree using values

according to the many-sorted setting (which has arguments adhering to the argument

sorts).
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Example 19 Consider σ = {f, s1, s2} where the argument and value sort of f are

both s1. Take F to be f(1) = 1 ∧ f(2) = 2. The many-sorted interpretation I such

that |I|s1 = {1, 2}, |I|s2 = {3, 4}, f(1)I = 1, and f(2)I = 2 is clearly a stable model

of F . However, if we neglect the last two items of SFσ, F
ns is

f(1) = 1 ∧ f(2) = 2∧

∃y(s1(y)) ∧ ∃y(s2(y))∧

∀y1(sort1(y1)→ sort1(f(y1)))

and K is a nonsorted interpretation such that |K| = {1, 2, 3, 4}, (s1)
K = {1, 2},

(s2)
K = {3, 4}, f(1)K = 1, f(2)K = 2, f(3)K = 3, and f(4)K = 4 is not a stable

model of F ns since we can take J that is different from K only on f(4) so that

f(4)J = 3 and J still satisfies the reduct.

Also note that the formulas in item 3 are not c-plain. This transformation illus-

trates one use of non-c-plain formulas that is unable to be expressed as a c-plain as

far as we know.

Given an interpretation I of a many-sorted signature σ, we can identify this with

the nonsorted signature Ins by taking |Ins| =
∪

s is a sort in σ

|I|s. We specify that the

sort predicates and sorts correspond by defining the sort predicate s for every sort

s ∈ σ as

sI
ns

= |I|s

For every function f in σ and every tuple ξ comprised of elements from |Ins|, we take

f(ξ)I
ns

=

 f(ξ)I if ξi ∈ |I|argsi where argsi is the ith argument sort of f

|Ins|0 otherwise

149



where |Ins|0 denotes some element in the universe (we use the same element for every

situation this case holds).

For every predicate p in σ and every ξ we take

p(ξ)I
ns

=

 p(ξ)I if ξi ∈ |I|argsi where argsi is the ith argument sort of p

f otherwise.

Note that f was arbitrarily chosen.

The choice of Ins mapping a function whose arguments are not of the intended

sort to the value |Ins|0 is arbitrary and so there are many unsorted interpretations

that correspond to the many-sorted interpretation. To characterize this many-to-one

relationship, we say two unsorted interpretations I and J are related with relation R,

denoted R(I, J), if for every predicate or function constant c, we have c(ξ1, . . . , ξk)
I =

c(ξ1, . . . , ξk)
J whenever each ξi ∈ argsi where argsi is the ith argument sort of c.

Theorem 20 Given a formula F of a many-sorted signature σ, and a set of function

and predicate constants c,

a) An interpretation I of signature σ is a model of SM[F ; c] iff Ins is a model of

SM[F ns ∧ SFσ; c].

b) An interpretation L1 of signature σns is a model of SM[F ns ∧ SFσ; c] iff there is

some interpretation L of signature σns such that R(L,L1) and L = Ins for some model

I of SM[F ; c].

8.5 ASPMT as a Special Case of Many-Sorted FSM

In this section, we present a special case of Many-Sorted FSM–answer set pro-

gramming modulo theories (ASPMT). This is a framework which extends answer set

programming analogously to how SMT extends SAT. We then present a prototype
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implementation of this framework in Section 9.2. We expect this framework to elicit

similar benefits to those that SMT provided over SAT.

Formally, an SMT instance is a formula in many-sorted first-order logic, where

some designated function and predicate constants are constrained by some fixed back-

ground interpretation. SMT is the problem of determining whether such a formula

has a model that expands the background interpretation Barrett et al. (2009).

The syntax of ASPMT is the same as that of SMT. Let σbg be the (many-sorted)

signature of the background theory bg. An interpretation of σbg is called a background

interpretation if it satisfies the background theory. For instance, in the theory of

reals, we assume that σbg contains the set R of symbols for all real numbers, the

set of arithmetic functions over real numbers, and the set {<,>,≤,≥} of binary

predicates over real numbers. Background interpretations interpret these symbols in

the standard way.

Let σ be a signature that is disjoint from σbg. We say that an interpretation I

of σ satisfies F w.r.t. the background theory bg, denoted by I |=bg F , if there is a

background interpretation J of σbg that has the same universe as I, and I∪J satisfies

F . For any ASPMT sentence F with background theory σbg, interpretation I is a

stable model of F relative to c (w.r.t. background theory σbg) if I |=bg SM[F ; c].

Example 7 continued Formula F can be understood as an ASPMT formula with

the theory of integers as the background theory. Arithmetic functions and comparison

operators belong to the background signature. Let I be an interpretation of signature

{Amount0,Amount1,FillUp} such that Amount I0 = 6, Amount I1 = 5, FillUpI = f .

We say that I |=bg SM[F ;Amount1].
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8.6 Proofs

8.6.1 Proof of Theorem 18

Given an interpretation J of many-sorted signature σ, a set of constants c ⊆ σ,

and a set of constants d that is disjoint from σ and is of the same length as c

whose corresponding elements have the same argument and value sorts, Jc
d is the

interpretation from (σ \ c) ∪ d obtained from J by replacing every constant from c

with the corresponding constant from d.

For two interpretations I and J of the same many-sorted signature σ, a set of

constants c ⊆ σ such that I and J agree on constants in σ \c and a set of constants d

of the same length as c (whose constants have the same argument / value sorts) that

is disjoint from σ, we define I ∪ Jc
d as the interpretation from the extended signature

σ ∪ d such that

• I ∪ Jc
d agrees with both I and J on constants in σ \ c

• I ∪ Jc
d agrees with I for all constants in c and

• I ∪ Jc
d agrees with Jc

d for all constants in d.

Lemma 21 If F is a sentence, I and J are interpretations of the same many-sorted

signature and J <c I, then Jc
d ∪ I |= F ∗(d) iff J |= grI(F )I .

Proof.

• Case 1: F is a variable-free atomic formula containing no intensional constants.

In this case, F ∗(d) = F so Jc
d ∪ I |= F ∗(d) iff I |= F iff J |= F (recall I and

J agree on all non-intensional constants). On the other hand, grI(F )I is F if

I |= F and ⊥ if I ̸|= F . In both cases, since I and J agree on all non-intensional

constants, J |= grI(F )I iff J |= F so the claim holds in this case.
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• Case 2: F is a variable-free atomic formula containing an intensional constant.

F ∗(d) is equivalent to F ∧ F (d).

Consider the following subcases:

– Subcase 1: I |= F . In this case, F ∗(d) = F ∧ F (d) so Jc
d ∪ I |= F ∗(d)

iff Jc
d |= F (d) iff J |= F . On the other hand, grI(F )I = F since there is

no subformula that is unsatisfied and thus J |= grI(F )I iff J |= F so the

claim holds in this case.

– Subcase 2: I ̸|= F . In this case Jc
d ∪ I ̸|= F ∧ F (d) = F ∗(d). Also in this

case, we have grI(F )I = ⊥ since the entire formula is not satisfied by I.

J ̸|= grI(F )I so the claim holds in this case.

• Case 3: F is G ∧H. By I.H. on G and H.

• Case 4: F is G ∨H. By I.H. on G and H.

• Case 5: F is G→ H.

In this case, F ∗(d) = (G → H) ∧ (G∗(d) → H∗(d)). Consider the following

subcases:

– Subcase 1: I |= G and I |= H. In this case, Jc
d ∪ I |= F ∗(d) iff Jc

d ∪ I |=

G∗(d)→ H∗(d). On the other hand, grI(F )I = G→ H so this case holds

by I.H. on G and H.

– Subcase 2: I |= G and I ̸|= H. In this case Jc
d ∪ I ̸|= F ∗(d). Also in this

case, we have grI(F )I = ⊥ since the entire formula is not satisfied by I.

J ̸|= grI(F )I so the claim holds in this case.

– Subcase 3: I ̸|= G. In this case, grI(F )I = ⊥ → H or grI(F )I = ⊥ → ⊥

depending on whether I |= H. In either case, J |= grI(F )I . On the
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other hand, Jc
d ∪ I |= F ∗(d) iff Jc

d ∪ I |= G∗(d) → H∗(d). However, since

I ̸|= G, grI(G)I = ⊥. By I.H. on G, we conclude that Jc
d ∪ I ̸|= G∗(d)

(since J ̸|= grI(G)I = ⊥). Thus Jc
d ∪ I |= G∗(d) → H∗(d) and further

Jc
d ∪ I |= F ∗(d) so the claim holds in this case.

• Case 6: F is ∃xG(x). By I.H. on G(ξ) for each ξ ∈ |I|s where s is the sort of

x. By showing Jc
d ∪ I |= G(ξ)∗(d) iff J |= grI(G(ξ))I for each ξ ∈ |I|s, we prove

that Jc
d ∪ I |= F ∗(d) iff J |= grI(F )I .

• Case 7: F is ∀xG(x). By I.H. on G(ξ) for each ξ ∈ |I|s where s is the sort of

x. By showing Jc
d ∪ I |= G(ξ)∗(d) iff J |= grI(G(ξ))I for each ξ ∈ |I|s, we prove

that Jc
d ∪ I |= F ∗(d) iff J |= grI(F )I .

Lemma 22 Given two interpretations I and J of the same many-sorted signature σ,

a set of constants c ⊆ σ, and a set of constants d disjoint from σ of the same length

as c, Jc
d ∪ I |= d < c iff J <c I.

Proof. By definition, d < c is

dpred ≤ cpred ∧ ¬(d = c)

and by definition, J <c I is

• |J |s and |I|s are the same for each sort s ∈ σ and agree on all constants not in

c;

• pJ ⊆ pI for all predicate constants p in c; and

• J and I do not agree on c.
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By definition of Jc
d ∪ I, |J |s and |I|s are the same for each sort s ∈ σ and agree on

all constants not in c.

By definition, Jc
d ∪ I |= dpred ≤ cpred is true iff for every predicate p in c

∀x(p(x)cd → p(x))

which is equivalent to saying (pcd)
Jc
d∪I ⊆ pJ

c
d∪I . Since I does not interpret any constant

from d and Jc
d does not interpret any constant from c, this is equivalent to (pcd)

Jc
d ⊆ pI

and further to pJ ⊆ pI .

Since I does not interpret any constant from d and Jc
d does not interpret any constant

from c, Jc
d ∪ I |= ¬(d = c) is equivalent to saying J and I do not agree on c.

Theorem 18 Let F be a first-order sentence of a many-sorted signature σ and let

c be a list of intensional constants. For any interpretation I of σ, I |= SM[F ; c] iff

• I satisfies F , and

• every interpretation J such that J <c I does not satisfy (grI [F ])I .

Proof.

I |= SM[F ; c] is by definition

I |= F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)). (8.1)

The first item, “I satifies F”, is equivalent to the first conjunctive term of (8.1).

By Lemma 16 and Lemma 22, the second item, “no interpretation J of σ such that

J <c I satisfies grI(F )I”, is equivalent to the second conjunctive term in (8.1).
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8.6.2 Proof of Theorem 19

The following lemma shows thatX satisfies a multi-valued formula F iffX satisfies

F when viewed as a many-sorted propositional formula of signature σ′.

Lemma 23 Let F be a multi-valued formula of signature σ. A multi-valued interpre-

tation X satisfies F iff X satisfies F when we view both to be from the many sorted

signature σ′.

Proof. By induction on F . We only show the base case of atomic formulas. When

F an atomic formula c = v, X satisfies this in the multi-valued sense when X(c) = v.

For X to satisfy F in the many-sorted sense, it must be that cX = vX . However

by definition of σ′, |X|v = {v} so vX = v. Thus it follows that cX = vX iff cX =

v. Then from the way we identify a multi-valued interpretation and a many-sorted

interpretation–X(c) = v iff cX = v–the claim follows.

Lemma 24 Assume that K and X are multi-valued interpretations of σ and Y is a

many-sorted interpretation of σ′ such that Y <c X such that for every c ∈ c, we have

K(c) = cY .

We have that K |= FX (when F is viewed as a multi-valued formula of σ) iff Y |= FX

(when F is viewed as a many-sorted formula of signature σ′).

Proof. By induction on F . We show only the case of atoms. The other cases are

straightforward.

Let F be an atom c = v. If X |= c = v, then FX is F . The claim follows from

the assumption since K |= c = v iff Y |= c = v. If X ̸|= c = v, then FX is ⊥, which

neither K nor Y satisfies.
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Theorem 19 a) If X is a stable model of F viewed as a multi-valued formula

of signature σ, then X is a stable model of F viewed as a many-sorted formula of

signature σ′.

b) If X is a stable model of F viewed as a many-sorted formula of signature σ′, then

X is a stable model of F viewed as a multi-valued formula of σ.

Proof.

Let c denote the list of constants in σ and let c′ denote the list of constants in σ′.

By Lemma 23 X satisfies a multi-valued formula F iff X satisfies F when viewed

as a many-sorted propositional formula of signature σ′. We need only show that there

is an interpretation Y that disagrees with X on σ that is a model of the reduct FX

(when viewed as a multi-valued formula) iff there is an interpretation Y such that

Y <c X that is a model of the reduct FX (when viewed as a many-sorted formula).

The proof is by considering the same identification for Y .

Take any multi-valued interpretation Y of σ and note that we identify Y with a

many-sorted interpretation of signature σ′. We consider the meaning of Y <c′ X in

this context. Since there are no predicate constants in σ′, this is equivalent to saying

that Y and X have the same universes |I|s for every sort s, I and J agree on all

constants not in c′, and I and J do not agree on c′. Further since the sorts for each

constant v ∈ Dom(c) for some c ∈ σ contain only one element, it is impossible for Y

to disagree with X on these constants. So in order for it to be the case that Y <c′ X,

it must be that Y and X disagree on some c ∈ c. However, this is precisely the same

as saying Y disagrees with X on σ when viewed as multi-valued interpetations.

So we have Y disagrees with X on σ iff Y <c′ X.

It follows from Lemma 24 that X satisfies FX when viewed as a multi-valued

formula iff X satisfies FX when viewed as a many-sorted propositional formula of
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signature σ′.

8.6.3 Proof of Theorem 20

Lemma 25 Given a formula F of many-sorted signature σ and an interpretation I

of σ, I |= grI [F ] iff Ins |= grIns [F ns].

Proof. By induction on F .

• F is p(t) where each ti in t is comprised of ground terms from the extended

signature σI . grI [F ] is also p(t).

F ns is p(t). grIns [F ns] is also p(t). By the definition of Ins, p(t)I = p(t)I
ns

since

t must be comprised of terms from the corresponding argument sorts of p and

so the claim holds.

• F is t1 = t2 where each ti is comprised of ground terms from the extended

signature σI . grI [F ] is also t1 = t2 . F ns is t1 = t2. grIns [F ns] is also t1 = t2.

By the definition of Ins, tI1 = tI
ns

1 and tI2 = tI
ns

2 since the subterms of t1 and t2

must be comprised of terms from the corresponding argument sorts and so the

claim holds.

• F is G⊙H where ⊙ ∈ {∧,∨,→}. grI [F ] is grI [G]⊙ grI [H]. F ns is Gns⊙Hns.

grIns [F ns] is grIns [Gns]⊙ grIns [Hns] so the claim follows by induction on G and

H.

• F is ∃xG(x). grI [F ] is {grI [G(ξ⋄)] : ξ ∈ |I|s}∨ where s is the sort of x.

F ns is ∃y(G(y)ns ∧ s(y)). grIns [F ns] is {grIns [G(ξ⋄)ns] ∧ s(ξ⋄) : ξ ∈ |Ins|}∨.
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(⇒) Assume I |= grI [F ]. That is, assume there is some ξ ∈ |I|s where s is the

sort of x such that I |= grI [G(ξ⋄)]. By definition of Ins, since ξ ∈ |I|s, then

Ins |= s(ξ⋄). So then, the claim follows by I.H. on G(ξ⋄).

(⇐) Assume Ins |= grIns [F ns]. That is, assume there is some ξ ∈ |Ins| such

that Ins |= grIns [G(ξ⋄)ns] ∧ s(ξ⋄). By definition of Ins, since Ins |= s(ξ⋄), then

ξ ∈ |I|s. SO then, the claim follows by I.H. on G(ξ⋄).

• F is ∀xG(x). grI [F ] is {grI [G(ξ⋄)] : ξ ∈ |I|s}∧ where s is the sort of x.

F ns is ∀y(s(y)→ G(y)ns). grIns [F ns] is {s(ξ⋄)→ grIns [G(ξ⋄)ns] : ξ ∈ |Ins|}∧.

(⇒) Assume I |= grI [F ]. That is, for every ξ ∈ |I|s where s is the sort of x,

assume that I |= grI [G(ξ⋄)]. Note that for every ξ ∈ |Ins| such that Ins ̸|= s(ξ⋄),

we have that Ins vacuously satisfies s(ξ⋄)→ grIns [G(ξ⋄)ns]. By definition of Ins,

since ξ ∈ |I|s iff Ins |= s(ξ⋄) the claim follows by I.H. on G(ξ⋄) for every ξ ∈ |I|s.

(⇐) Assume Ins |= grIns [F ns]. That is, assume for every ξ ∈ |Ins| that Ins |=

s(ξ⋄) → grIns [G(ξ⋄)ns]. This means that for every ξ such that Ins |= s(ξ⋄), it

must be that Ins |= grIns [G(ξ⋄)ns].

Now, by definition of Ins, for any ξ such that Ins |= s(ξ⋄), we have that ξ ∈ |I|s.

So then, the claim follows by I.H. on G(ξ⋄) for every ξ ∈ |I|s.

Lemma 26 Given a formula F of many-sorted signature σ, interpretations I and J

of σ and an interpretation K of σns such that

• for every sort s in σ, |I|s = |J |s = sK,
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• for every predicate and function constant c and for every tuple ξ composed of

elements from |Ins| such that ξi ∈ |I|argsi for every ξi ∈ ξ , where argsi is the

ith argument sort of c, we have c(ξ)K = c(ξ)J ,

• for every predicate and function constant c and for every tuple ξ composed of

elements from |Ins| such that ξi /∈ |I|argsi for some ξi ∈ |I|argsi, where argsi is

the ith argument sort of c, we have c(ξ)K = c(ξ)I
ns
,

J is a model of grI [F ]I iff K is a model of grIns [F ns]I
ns
.

Proof. By induction on F .

• F is p(t) where each ti in t is comprised of ground terms from the extended

signature σI .

F ns is p(t).

We consider two cases:

– If I |= p(t), then grI [F ]I is p(t). By Lemma 25 , it follows that Ins |= p(t)

and so grIns [F ns]I
ns

is p(t). Thus, in this case, J is a model of grI [F ]I iff

K is a model of grIns [F ns]I
ns
.

– If I ̸|= p(t), then grI [F ]I is ⊥. By Lemma 25 , it follows that Ins ̸|= p(t)

and so grIns [F ns]I
ns

is also ⊥. Thus, in this case, J is not a model of

grI [F ]I and K is not a model of grIns [F ns]I
ns

so the claim follows.

• F is t1 = t2 where each ti is comprised of ground terms from the extended

signature σI .

F ns is t1 = t2.

We consider two cases:
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– If (t1)
I = (t2)

I , then grI [F ]I is t1 = t2. By Lemma 25 , it follows that

(t1)
Ins

= (t2)
Ins

and so grIns [F ns]I
ns

is t1 = t2. Thus, in this case by the

second item in the requirement of this lemma, J is a model of grI [F ]I iff

K is a model of grIns [F ns]I
ns
.

– If (t1)
I ̸= (t2)

I , then grI [F ]I is ⊥. By Lemma 25 , it follows that (t1)
Ins ̸=

(t2)
Ins

and so grIns [F ns]I
ns

is also ⊥. Thus, in this case, J is not a model

of grI [F ]I and K is not a model of grIns [F ns]I
ns

so the claim follows.

• F is G⊙H where ⊙ ∈ {∧,∨,→}.

F ns is Gns ⊙Hns. We consider two cases:

– If I |= G ⊙ H, then grI [F ]I is grI [G]I ⊙ grI [H]I . By Lemma 25, Ins |=

Gns⊙Hns and so grIns [F ns]I
ns

is grIns [Gns]I
ns ⊙ grIns [Hns]I

ns
so the claim

follows by induction on G and H.

– If I ̸|= G⊙H then grI [F ]I is ⊥. By Lemma 25, Ins ̸|= Gns ⊙Hns and so

(F ns)I
ns

is ⊥. Thus, in this case, J is not a model of grI [F ]I and K is not

a model of grIns [F ns]I
ns

so the claim follows.

• F is ∃x(G(x)) where the sorted variable x has sort s.

F ns is ∃y(G(y)ns ∧ s(y)) (the variable here is unsorted ).

grI [F ] is {grI [G(ξ⋄)] : ξ ∈ |I|s}∨.

grIns [F ns] is {grIns [G(ξ⋄)ns] ∧ s(ξ⋄) : ξ ∈ |Ins|}∨.

grI [F ]I is equivalent to

{grI [G(ξ⋄)]I : ξ ∈ |I|s and I |= grI [G(ξ⋄)]}∨.
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grIns [F ns]I
ns

is equivalent to

{grIns [G(ξ⋄)ns]I
ns ∧ s(ξ⋄) : ξ ∈ |Ins| and Ins |= grIns [G(ξ⋄)ns] ∧ s(ξ⋄)}∨.

Further, since Ins |= s(ξ⋄) iff ξ is from |I|s and by the first item in the require-

ment of this lemma, K |= grIns [F ns]I
ns

iff

K |= {grIns [G(ξ⋄)ns]I
ns

: ξ ∈ |I|s and Ins |= grIns [G(ξ⋄)ns]}∨.

Then, by I.H. on each G(ξ⋄) such that ξ ∈ |I|s and I |= G(ξ⋄), we have that

J |= grI [G(ξ⋄)]I iff K |= grIns [G(ξ⋄)ns]I
ns
, from which the claim then follows.

• F is ∀x(G(x)) where the sorted variable x has sort s.

F ns is ∀x(s(y)→ G(y)) (the variable here is unsorted ).

grI [F ] is {grI [G(ξ⋄)] : ξ ∈ |I|s}∧.

grIns [F ns] is {s(ξ⋄)→ grIns [G(ξ⋄)ns] : ξ ∈ |Ins|}∧.

We consider two cases:

– If I |= G(ξ⋄) for every ξ ∈ |I|s, then grI [F ]I is equivalent to

{grI [G(ξ⋄)]I : ξ ∈ |I|s}∧.

For every ξ /∈ |I|s, Ins ̸|= s(ξ⋄) and so in grIns [F ns]I
ns
, the implications cor-

responding to such ξ are vacuously satisfied and so grIns [F ns]I
ns

is equiv-

alent to

{s(ξ⋄)Ins → grIns [G(ξ⋄)ns]I
ns

: ξ ∈ |I|s and Ins |= grIns [G(ξ⋄)ns]}∧.

Since ξ ∈ |I|s iff Ins |= s(ξ⋄) and since by Lemma 25, Ins |= grIns [G(ξ⋄)ns]

for every ξ ∈ |I|s, K |= grIns [F ns]I
ns

iff

K |= {grIns [G(ξ⋄)ns]I
ns

: ξ ∈ |I|s}∧.
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Then, by I.H. on each G(ξ⋄) such that ξ ∈ |I|s, we have that J |=

grI [G(ξ⋄)]I iff K |= grIns [G(ξ⋄)ns]I
ns
, from which the claim then follows.

– If I ̸|= G(ξ⋄) for some ξ ∈ |I|s, then grI [F ]I is ⊥. Since ξ ∈ |I|s, Ins |= s(ξ⋄)

but by Lemma 25, Ins ̸|= grIns [G(ξ⋄)ns] so grIns [F ns]I
ns

is ⊥. In this case,

J is not a model of grI [F ]I and K is not a model of grIns [F ns]I
ns

so the

claim follows.

Lemma 27 Given a formula F of many-sorted signature σ and two interpretations

L and L1 of σns such that R(L,L1), if L |= F ns ∧ SFσ, then L1 |= F ns ∧ SFσ.

Proof. We first show that L1 |= SFσ. Since R(L,L1), L and L1 agree on all sort

predicates s corresponding to sorts s ∈ σ. Thus, L1 clearly satisfies the first two items

of SFσ. We now consider the third item of SFσ. For tuples ξ1, . . . , ξk such that each

ξi ∈ argsi where argsi is the ith argument sort of f , since R(L,L1), L and L1 agree

on f(ξ1, . . . , ξk) so L1 satisfies the implication. For all other tuples, the implication

is vacuously satisfied. Finally, the fourth and fifth items of SFσ are tautologies in

classical logic so we conclude that L1 |= SFσ.

We now show that L1 |= F ns by induction on F ns.

• F ns is pt where t is a ground term from the extended signature σI . Since every

ti ∈ t must be from the ith argument sort of p, it follows from R(L,L1) that

L1 |= F ns.

• F ns is t1 = t2 where t1 and t2 are ground terms from the extended signature

σI . Since every subterm of t1 and t2 must be from the the appropriate sort, it

follows from R(L,L1) that L1 |= F ns.
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• F ns is Gns ⊙Hns where ⊙ ∈ {∧,∨,→}. The claim follows by I.H. on Gns and

Hns.

• F ns is ∃y(G(y)∧ s(y)). Since we assume there L |= F ns, there is some ξ ∈ |Ins|

such that L |= G(ξ⋄) ∧ s(ξ⋄). Further, since L |= s(ξ⋄) iff ξ ∈ |I|s, the claim

follows by I.H. on G(ξ⋄).

• F ns is ∀y(s(y) → G(y)). Since we assume there L |= F ns, for every ξ ∈ |Ins|

we have L |= s(ξ⋄) → G(ξ⋄). For every ξ /∈ |I|s, L1 vacuously satisfies s(ξ⋄) →

G(ξ⋄). For every ξ ∈ |I|s, since L1 |= s(ξ⋄) iff ξ ∈ |I|s, the claim follows by I.H.

on every G(ξ⋄) such that ξ ∈ |I|s.

Lemma 28 Given a formula F of many-sorted signature σ, a set of function and

predicate constants c from σ and two interpretations L and L1 of σns such that

R(L,L1), if L is a stable model of F ns ∧ SFσ w.r.t. c, then L1 is a stable model

of F ns ∧ SFσ w.r.t. c.

Proof. We first note c contains function and predicate constants from σ and thus

contains none of the sort predicates introduced in σns.

We assume that L is a stable model of F ns ∧ SFσ, and wish to show that L1 is

a stable model of F ns ∧ SFσ. That is, given that L |= F ns ∧ SFσ and there is no

interpretation K such that K <c L and K |= grL[F
ns ∧ SFσ]

L, we wish to show

that there is no interpretation K1 such that K1 <
c L1 and K1 |= grL1 [F

ns ∧ SFσ]
L1 .

Equivalently, we will show that if there is an interpretation K1 such that K1 <c L1

and K1 |= grL1 [F
ns ∧ SFσ]

L1 , then there is an interpretation K such that K <c L

and K |= grL[F
ns ∧ SFσ]

L.

Assume that there is an interpretationK1 such thatK1 <
c L1 andK1 |= grL1 [F

ns∧

SFσ]
L1 , we construct K as follows.
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• |K| = |K1|,

• sK = sK1 for every s corresponding to a sort s ∈ σ,

• c(ξ1, . . . , ξk)
K = c(ξ1, . . . , ξk)

K1 for every tuple ξ1, . . . , ξk such that ξi ∈ si where

si is the ith argument sort of c,

• c(ξ1, . . . , ξk)
K = c(ξ1, . . . , ξk)

L for every tuple ξ1, . . . , ξk such that ξi /∈ si for

some i where si is the ith argument sort of c.

We first show that K <c L. By definition |K| = |K1|. From K1 <
c L1, it follows

that |K| = |L1|. Then since R(L1, L), it follows that |K| = |L|. By definition of K, it

follows that sK = sK1 for every s corresponding to a sort s ∈ σ. Then, since K1 <
c L1

and since R(L1, L), it follows that s
K = sL. Now, for any function or predicate c and

any tuple ξ1, . . . , ξk such that ξi /∈ si for some i where si is the ith argument sort of c,

by definition, c(ξ1, . . . , ξk)
K = c(ξ1, . . . , ξk)

L. Finally, for every function or predicate

c and every tuple ξ1, . . . , ξk such that ξi ∈ si where si is the ith argument sort of

c, since R(L,L1), it is clear that c(ξ1, . . . , ξk)
L1 = c(ξ1, . . . , ξk)

L. We also have by

definition, c(ξ1, . . . , ξk)
K = c(ξ1, . . . , ξk)

K1 for such predicate (functions) and tuples.

Now since we assume that K1 <c L1, there must be some function or predicate

constant c and some tuple ξ1, . . . , ξk such that c(ξ1, . . . , ξk)
K1 ̸= c(ξ1, . . . , ξk)

L1 . Now

by definition of K1 <c L1, K1 and L1 agree on all of the sort predicates s com-

ing from sorts s ∈ σ. Further, since K1 |= (SFσ)
L1 , the fourth and fifth items of

(SFσ)
L1 force K1 to agree with L1 on all functions (predicates) and tuples such that

some tuple is not of the correct sort. Thus, it must be that the tuple ξ1, . . . , ξk

such that c(ξ1, . . . , ξk)
K1 ̸= c(ξ1, . . . , ξk)

L1 has that every ξi belongs to the appropri-

ate sort. Thus, by the observation before that c(ξ1, . . . , ξk)
L1 = c(ξ1, . . . , ξk)

L and

c(ξ1, . . . , ξk)
K = c(ξ1, . . . , ξk)

K1 , it follows that K <c L.
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Now, we show that K |= grL[SFσ]
L by considering each item of SFσ. We first note

that since K1 |= grL1 [SFσ]
L1 , it must be that L1 |= grL1 [SFσ]. Thus by Lemma 27,

we have that L |= grL[SFσ].

• Item 1: ∀y(si(y) → sj(y)) for every two sorts si and sj in σ such that si is a

subsort of sj.

From K1 <c L1, it follows that si(ξ)
K1 = si(ξ)

L1 for every predicate s corre-

sponding to a sort s ∈ σ and for every ξ in |L1| = |K1|. By definition of K, and

since R(L,L1), we then have that si(ξ)
K = si(ξ)

K1 = si(ξ)
L1 = si(ξ)

L so clearly

the claim holds for this item.

• Item 2: ∃y(s(y)) for every sort s in σ.

By the same argument in Item 1, si(ξ)
K = si(ξ)

K1 = si(ξ)
L1 = si(ξ)

L so clearly

the claim holds for this item.

• the formulas ∀y1 . . . yk(args1(y1)∧· · ·∧argsk(yk)→ vals(f(y1, . . . , yk))) for each

function constant f in σ where the arity of f is k and the ith argument sort of

f is argsi and the value sort of f is vals.

By R(L,L1), for every ξ1, . . . , ξk such that ξi ∈ argsi, we have that

f(ξ1, . . . , ξk)
L = f(ξ1, . . . , ξk)

L1). Then, by definition of K, f(ξ1, . . . , ξk)
K =

f(ξ1, . . . , ξk)
K1) so the claim holds for this item.

• the formulas ∀y1 . . . yk+1(¬args1(y1) ∨ · · · ∨ ¬argsk(yk) → {f(y1, . . . , yk) =

yk+1})

for each function constant f in σ where the arity of f is k and the ith argument

sort of f is argsi.
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By definition of K, f(ξ1, . . . , ξk)
K = f(ξ1, . . . , ξk)

L and since the reduct of these

formulas is only satisfied when K agrees with L for these tuples, the claim holds

for this item.

• the formulas ∀y1 . . . yk(¬args1(y1)∨· · ·∨¬argsk(yk)→ {p(y1, . . . , yk)}) for each

function constant f in σ where the arity of f is k and the ith argument sort of

f is argsi.

By definition of K, p(ξ1, . . . , ξk)
K = p(ξ1, . . . , ξk)

L and since the reduct of these

formulas is only satisfied when K agrees with L for these tuples, the claim holds

for this item.

Finally, we show that K |= grL[F
ns]L iff K1 |= grL1 [F

ns]L1 by induction on F ns

and will conclude that since we assume K1 |= grL1 [F
ns]L1 , that K |= grL[F

ns]L.

• F ns is p(t) where each element of t is a ground term from the extended signature

σI and belongs to the corresponding argument sort of p.

grL[F
ns]L is the same as grL1 [F

ns]L1 by Lemma 27. If L1 ̸|= p(t) then grL1 [F
ns]L1

is ⊥ neitherK norK1 satisfy this reduct so the claim holds. If instead L1 |= p(t)

then grL1 [F
ns]L1 is p(t).

Then, by definition of K, since p(t)K = p(t)K1 , clearly the claim holds.

• F ns is f1(t1) = f2(t2) where each element of t1 and t2 is a ground term of the

extended signature σI and belongs to the corresponding argument sort of f1

and f2 respectively.

grL[F
ns]L is the same as grL1 [F

ns]L1 by Lemma 27. If L1 ̸|= f1(t1) = f2(t2)

then grL1 [F
ns]L1 is ⊥ neither K nor K1 satisfy this reduct so the claim holds.

If instead L1 |= f1(t1) = f2(t2) then grL1 [F
ns]L1 is f1(t1) = f2(t2).

167



Then, by definition of K, since f1(t1)
K = f1(t1)

K1 and f2(t2)
K = f2(t2)

K1 ,

clearly the claim holds.

• F ns is Gns⊙Hns where ⊙ ∈ {∧,∨,→}. grL[F ns]L is grL[G
ns]L⊙ grL[H

ns]L and

grL1 [F
ns]L1 is grL1 [G

ns]L1 ⊙ grL1 [H
ns]L1 so the claim follows by I.H. on Gns and

Hns.

• F ns is ∃y(G(y)ns ∧ s(y)).

grL[F
ns]L is equivalent to {grL[G(ξ⋄)ns]L : L |= s(ξ⋄)}∨ and

grL1 [F
ns]L1 is equivalent to {grL1 [G(ξ⋄)ns]L1 : L1 |= s(ξ⋄)}∨. Since R(L,L1), we

have that sL = sL1 and so the claim follows by I.H. on each G(ξ⋄)ns such that

L |= s(ξ⋄).

• F is ∀y(s(y)→ G(y)ns). We consider two cases:

– If L ̸|= G(ξ⋄)ns for some ξ such that L |= s(ξ⋄), then grL[F
ns]L is ⊥. By

Lemma 27, we have that L1 ̸|= G(ξ⋄)ns and so grL1 [F
ns]L1 is ⊥. Thus

neither K nor K1 satisfies the reduct and so the claim holds in this case.

– Otherwise, L |= G(ξ⋄)ns for every ξ such that L |= s(ξ⋄).

grL[F
ns]L is equivalent to {grL[G(ξ⋄)ns]L : L |= s(ξ⋄)}∧ and

grL1 [F
ns]L1 is equivalent to {grL1 [G(ξ⋄)ns]L1 : L1 |= s(ξ⋄)}∧. SinceR(L,L1),

we have that sL = sL1 and so the claim follows by I.H. on each G(ξ⋄)ns

such that L |= s(ξ⋄).

Theorem 20 Given a formula F of a many-sorted signature σ, and a set of function

and predicate constants c,

a) If an interpretation I of signature σ is a model of SM[F ; c], then Ins is a model of

SM[F ns ∧ SFσ; c].
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b) If an interpretation L of signature σns is a model of SM[F ns∧SFσ; c] then there is

some interpretation I of signature σ such that I is a model of SM[F ; c] and R(L, Ins).

Proof.

a) Consider an interpretation I (of many-sorted signature σ) that is a stable model

of F w.r.t. c. This means that I |= F and there is no interpretation J such that

J <c I and J |= grI [F ]I . We wish to show that Ins |= F ns ∧ SFσ and there is no

(unsorted) interpretation K such that K <c Ins and K |= grIns [F ns ∧ SFσ]
Ins

. From

Lemma 25, I |= F iff Ins |= F ns. It follows from the definition of Ins that Ins |= SFσ

so we conclude that I |= F iff Ins |= F ns ∧ SFσ. For the second item, we will prove

the contrapositive; if there is an (unsorted) interpretation K such that K <c Ins and

K |= grIns [F ns ∧ SFσ]
Ins

, then there is a (many-sorted) interpretation J such that

J <c I and J |= grI [F ]I .

Assume there is an interpretation K such that K <c Ins and K |= grIns [F ns ∧

SFσ]
Ins

. We obtain the interpretation J as follows.

For every sort s in σ, |J |s = |I|s. For every predicate or function c in σ and every

tuple ξ⃗ such that ξi ∈ |I|si where si is the sort of the ith argument of c, c(ξ)J = c(ξ)K .

For predicates, it is not hard to see that this is a valid assignment as atoms are either

true or false whether considering many-sorted or unsorted logic.

However, for functions, we argue that this assignment is valid. That is, K does

not map a function f to a value outside of |I|s where s is the value sort of f . This

follows from the fact that Ins |= SFσ and in particular, the third item of SFσ. Thus,

since K |= grIns [F ns ∧ SFσ]
Ins

, it follows that K too maps functions to elements of

the appropriate sort.

We now show that J <c I. Since K |= grIns [SFσ]
Ins

, the fourth and fifth rules

in SFσ are choice formulas that force K to agree with Ins on every predicate and
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function c for every tuple that has at least one element outside of the corresponding

sort. For every predicate and function c and all tuples that have all elements in the

appropriate sort, K and J agree. Further, since I and Ins agree on these as well, it

follows immediately since K <c Ins, that J <c I.

To apply Lemma 26, it is clear that the second condition is satisfied. The first

condition follows from the definition of K <c Ins; since the sort predicates are not

in c, K and Ins agree on these predicates. The third item follows from the fact that

since K |= grIns [F ns∧SFσ]
Ins

it follows that K |= grIns [SFσ]
Ins

. The fourth and fifth

rules in SFσ are choice formulas that force K to agree with Ins for every tuple that

has at least one element outside of the corresponding sort. Thus, by Lemma 26, since

K |= grIns [F ns ∧ SFσ]
Ins

and thus, K |= grIns [F ns]I
ns
, it follows that J |= grI [F ]I .

b) Given an interpretation L that is a stable model of F ns ∧SFσ w.r.t. c, we first

obtain the interpretation L1 of σns as follows.

• |L1| = |L|,

• sL1 = sL for every s corresponding to a sort s from σ,

• c(ξ1, . . . , ξk)
L1 = c(ξ1, . . . , ξk)

L for every tuple ξ1, . . . , ξk such that ξi ∈ si where

si is the ith argument sort of c,

• c(ξ1, . . . , ξk)
L1 = |L1|0 for every tuple ξ1, . . . , ξk such that ξi /∈ si for some i

where si is the ith argument sort of c.

It is easy to see that R(L,L1). By Lemma 28, L1 is a stable model of F ns ∧ SFσ

w.r.t. c. We then obtain the interpretation I of signature σ as follows.

For every sort s in σ, |I|s = sL1 . For every predicate or function c in σ and every

tuple ξ⃗ such that ξi ∈ |L|si where si is the sort of the ith argument of c, c(ξ)I = c(ξ)L1 .
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For predicates, it is not hard to see that this is a valid assignment as atoms are either

true or false whether considering many-sorted or unsorted logic.

However, for functions, we argue that this assignment is valid. That is, I does

not map a function f to a value outside of |I|s where s is the value sort of f . This

follows from the fact that L1 |= SFσ (by Lemma 27) and in particular, the third item

of SFσ. Thus, it follows that I too maps functions to elements of the appropriate

sort.

Now it is clear that L1 = Ins and so we have R(L, Ins). We now show that I is a

stable model of F .

We have an interpretation I (of many-sorted signature σ) such that Ins is a stable

model of F ns ∧ SFσ w.r.t. c. This means that Ins |= F ns ∧ SFσ and there is no

interpretation K such that K <c Ins and K |= grIns [F ns ∧SFσ]
Ins

. We wish to show

that I |= F and there is no interpretation J such that J <c I and J |= grI [F ]I . From

Lemma 25, I |= F iff Ins |= F ns so we conclude that I |= F . For the second item,

we will prove the contrapositive; if there is a (many-sorted) interpretation J such

that J <c I and J |= grI [F ]I , then there is an (unsorted) interpretation K such that

K <c Ins and K |= grIns [F ns ∧ SFσ]
Ins

.

Assume there is an interpretation J such that J <c I and J |= grI [F ]I . We obtain

the interpretation K as follows. K = Jns.

We now show that K <c Ins. For every predicate and function c for every tuple

that has at least one element outside of the corresponding sort, by definition of

K = Jns, cK = cI
ns

= |Ins|0 if c is a function and cK = cI
ns

= 0 if c is a predicate.

That is, for every predicate and function c for every tuple that has at least one

element outside of the corresponding sort, K and Ins agree. For every predicate and

function c and all tuples that have all elements in the appropriate sort, K and J
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agree. Further, since I and Ins agree on these as well, it follows immediately since

J <c I, that K <c Ins.

To apply Lemma 26, we must verify the conditions of the lemma. It is clear

that the second condition is satisfied. The first condition follows from the definition

of K = Jns. The third item follows from the observation above; by definition of

K = Jns, cK = cI
ns

= |Ins|0 if c is a function and cK = cI
ns

= 0 if c is a predicate.

Thus, by Lemma 26, since J |= grI [F ]I , it follows that K |= grIns [F ns]I
ns
.

Then, it is easy to see that by definition of Ins, Ins |= SFσ. Then, by definition

of K = Jns, it is clear that K |= SFσ. We show that K |= (SFσ)
Ins

.

Since K and Ins agree on all sort predicates, it is clear that K models the first

two items of (SFσ)
Ins

.

Since K and Ins agree on all functions f for tuples ξi, . . . , ξk such that each ξi is

in |I|si where si is the ith argument sort of f , it is clear that K models the third item

of (SFσ)
Ins

.

The last two items of (SFσ)
Ins

are only satisfied if K agrees with Ins on all

predicates (functions) c and all tuples ξ1, . . . , ξk such that some ξi is not in |I|si where

si is the ith argument sort of c. However, by definition of K = Jns and Ins, both K

and Ins map this to |Ins|0 if c is a function or 0 if c is a predicate so K satisfies these

items. So we conclude that K |= grIns [F ns ∧ SFσ]
Ins

.
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Chapter 9

IMPLEMENTATIONS

9.1 MVSM

System MVSM 1 is a prototype implementation of multi-valued propositional

formulas under the stable model semantics. In fact, it is a script that invokes the fol-

lowing software: mvpf2lpCompiler, f2lp, gringo, claspD, and as2transition.

The component mvpf2lpCompiler is an implementation of the translations in The-

orem 14 from Chapter 7 and Theorem 23 from Chapter 10, which translates total and

partial multi-valued propositional formulas respectively into standard propositional

formulas under the stable model semantics. As the theorems show, the translations

are very similar, and the user can choose which translation to use. Then, f2lp

transforms the propositional formula into an ASP program in the input language of

gringo. Systems gringo, claspD ground and solve the ASP program respectively.

Finally as2transition processes the output of claspD and produces propositional

atoms in the form of multi-valued atoms. The composition of these software is de-

1http://reasoning.eas.asu.edu/mvsm/

Figure 9.1: Architecture of mvsm
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picted in Figure 9.1.

Shown below is a description of the blocks world domain in the language ofMVSM

assuming the functional stable model semantics. The syntax of declarations follows

the one in the input language of the Causal Calculator V2 2 . Compared to the usual

ASP encoding, explicit declaration of sorts and type checking help reduce user error.

The inertia and exogeneity assumptions in the last three rules have a simple reading,

once we understand {F} (the encoding of Choice(F ) in MVSM) as representing

defaults. There is no need to use both strong negation and default negation.

% F i l e ’bw ’ : The b locks world

:− s o r t s

s tep ; astep ;

l o c a t i o n >> block .

:− ob j e c t s

0 . . maxstep : : s t ep ;

0 . . maxstep−1 : : as tep ;

1 . . 6 : : b lock ;

t ab l e : : l o c a t i o n .

:− va r i a b l e s

ST : : s tep ;

T : : astep ;

Bool : : boolean ;

2http://www.cs.utexas.edu/~tag/cc/
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B,B1 : : b lock ;

L : : l o c a t i o n .

:− cons tant s

l o c ( block , s tep ) : : l o c a t i o n ;

move( block , l o ca t i on , astep ) : : boolean .

% two b locks can ’ t be on the same block at the same time

<− l o c (B1 ,ST)=B & lo c (B2 ,ST)=B & B1!=B2 .

% e f f e c t o f moving a block

l o c (B,T+1)=L <− move(B,L ,T) .

% a block can be moved only when i t i s c l e a r

<− move(B,L ,T) & l o c (B1 ,T)=B.

% a block can ’ t be moved onto a block that i s be ing

% moved a l s o

<− move(B,B1 ,T) & move(B1 ,L ,T) .

% i n i t i a l l o c a t i o n i s exogenous

{ l o c (B,0)=L} .

% ac t i on s are exogenous

{move(B,L ,T)=Bool } .
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% f l u e n t s are i n e r t i a l

{ l o c (B,T+1)=L} <− l o c (B,T)=L .

9.2 ASPMT2SMT

9.2.1 Variable Elimination

Some SMT solvers do not support variables at all (e.g. iSAT) while others suffer

in performance when handling variables (e.g. z3). While we can partially ground

the input theories, some variables have large (or infinite) domains and should not

(cannot) be grounded. Thus, we consider two types of variables; ASP variables–

variables which should be grounded–and SMT variables–variables which should not

be grounded. Eliminating ASP variables is simply done by grounding the original

ASPMT theory. Then, we consider the problem of equivalently rewriting the comple-

tion of the partially ground ASPMT theory so that the result contains no variables.

To ensure that variable elimination can be performed, we impose some syntactic

restrictions on ASPMT instances. We first impose that no SMT variable appears in

the argument of an uninterpreted function.

We consider ASPMT2SMT programs comprised of rules of the form H ← B

where

• H is ⊥ or an atom of the form f(t) = v, where v is a variable;

• B is a conjunction of atomic formulas possibly preceded with ¬.

We define the variable dependency graph of a conjunction of possibly negated
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atomic formulas C1 ∧ · · · ∧ Cn as follows. Nodes of the graph are variables occuring

in C1 ∧ · · · ∧ Cn. There is a directed edge from v to u if there is a Ci that is v = t

or t = v for some term t such that u appears in t. We say a variable v depends on a

variable u if there is a directed path from v to u in the variable dependency graph.

We say a rule H ← B is variable isolated if every variable v in it occurs in an equality

t = v or v = t that is positive in B and for the dependency graph of B, v does not

depend on v.

Example 20 The formula f = X ← g = 2 ∗ X is not variable isolated because X

does not occur in an equality X = t or t = X. Instead, we write this as f = X ←

g = Y ∧ Y = 2 ∗X which is variable isolated.

Example 21 The formula f = X ← 2 ∗X = Y ∧ 2 ∗ Y = X is not variable isolated;

although Y occurs in an equality of the form t = Y , Y depends on Y (through X).

The variable elimination is performed modularly so the process need only be

described for a single equivalence. Any equivalence in the completion of an ASPMT

program with no variables occurring in arguments of uninterpreted functions that is

variable isolated will be of the form

∀v(f = v ↔ ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)))

where each Bi is a conjunction of possibly negated literals and has v = t as a non-

negated subformula and within Bi, v does not depend on v. In the following, the

notation F v
t denotes the formula obtained from F by replacing every occurrence of

the variable v with the term t. We define the process of eliminating variables from

such an equivalence E as follows.
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1. Given an equivalence E = ∀v(f = v ↔ ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)))

F := ∀v(f = v → ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)))

G := ∀v(∃x(B1(v,x) ∨ · · · ∨Bk(v,x))→ f = v)

2. Eliminate variables from F as follows

(a) F := ∃x(B1(v,x)
v
f ∨ · · · ∨Bk(v,x)

v
f ) and then equivalently,

F := ∃x(B1(v,x)
v
f ) ∨ · · · ∨ ∃x(Bk(v,x)

v
f )

(b) Fi := ∃x(Bi(v,x)
v
f )

(c) Eliminate variables from Fi as follows

i. Di := Bi(v,x)
v
f

ii. While there is a variable x still inDi, select a conjunctive term x = t or

t = x (such that no variable in t depends on x) inDi, thenDi := (Di)
x
t .

iii. Fi = Di (drop the existential quantifier since there are no variables in

Di).

(d) F := F1 ∨ · · · ∨ Fk.

3. Eliminate variables from G as follows

(a) G := ∀vx((B1(v,x) ∨ · · · ∨Bk(v,x))→ f = v) and then equivalently,

G := ∀vx(B1(v,x)→ f = v) ∧ · · · ∧ ∀vx(Bk(v,x)→ f = v)

(b) Gi := ∀vx(Bi(v,x)→ f = v)

(c) Eliminate variables from Gi as follows

i. Di := Bi(v,x)→ f = v

ii. While there is a variable x still in Di, select a conjunctive term x = t

or t = x (such that no variable in t depends on x) from the body of

Di, then Di := (Di)
x
t .
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iii. Gi = Di (drop the universal quantifier since there are no variables in

Di).

(d) G := G1 ∨ · · · ∨Gk.

4. E := F ∧G.

The following proposition asserts the correctness of this method. Note that the

absence of variables in arguments of uninterpreted functions can be achieved by

grounding ASP variables and enforcing that no SMT variable occurs nested inside

uninterpreted functions.

Proposition 1 For any completion of a variable isolated ASPMT program with no

variables in arguments of uninterpreted functions, applying variable elimination method

repeatedly results in a classically equivalent formula that contains no variables.

Example 1 continued Recall the equivalence

speed(1) = Y ↔ ∃XD( (accel(0)=1 ∧ speed(0)=X ∧ duration(0)=D

∧ (Y = X + a×D))

∨ (decel(0)=1 ∧ speed(0)=X ∧ duration(0)=D

∧ (Y = X − a×D))

∨ (speed(0) = Y ) )

Step 2a) turns the implication from left to right into the formula

∃XD( (accel(0)=1 ∧ speed(0)=X ∧ duration(0)=D ∧

(speed(1)=X + a×D))

∨ (decel(0)=1 ∧ speed(0)=X ∧ duration(0)=D∧

(speed(1)=X − a×D))

∨ (speed(0) = speed(1)))
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And then step 2d) produces

(accel(0)=1 ∧ speed(1)=speed(0) + a× duration(0))∨

(decel(0)=1 ∧ speed(1) = speed(0)− a× duration(0))∨

(speed(0) = speed(1)).

To see why variable isolation is required, consider the formula f = X ↔ 2 ∗X =

Y ∧ 2 ∗ Y = X. One step of 3c) produces the formula

2 ∗ 2 ∗ Y = Y ∧X = X → f = 2 ∗ Y.

We can drop X = X and then perform another step of 3c) to get

2 ∗ 2 ∗ (2 ∗ 2 ∗ Y ) = 2 ∗ 2 ∗ Y → f = 2 ∗ (2 ∗ 2 ∗ Y ).

Then, at this point, no conjunctive term exists of the form x = t so the procedure

terminates but the variable Y still remains in the formula.

9.2.2 Syntax of Input Language

System ASPMT2SMT imposes three syntactic restrictions on input

ASPMT2SMT theories comprised of rules of the form H ← B where B is a con-

junction of possibly negated literals and H is ⊥ or f(t) = v: they must be variable

isolated (defined in Section 9.2.1), av-separated, and f -plain (defined in Section 5.4).

It should also be noted that the only background theories considered in this version

of the implementation are arithmetic over reals and integers.

We require that input formulas be c-plain. As Theorem 8 indicates, this condition

can be relaxed if F is tight. Relaxing this restriction is left for a future version of this

system.
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We call a variable v in a rule an argument variable if it occurs in an argument t

of some uninterpreted function f(t) in the rule. We call a variable v in a rule a value

variable if it occurs in

• f(t) = v for any term where f is an uninterpreted function, or

• t1 = t2 where t1, t2 are terms consisting of interpreted symbols (i.e., from σbg)

and at least one other value variable (different from v) in the rule.

A rule is said to be av-separated (argument-value separated) if it contains no

variable that is both an argument variable and a value variable. This is a stronger

condition than the condition described in Section 9.2.1 concerning ASP and SMT

variables and will be relaxed in future versions of the system.

Example 22 In f(x) = y ← y = m ∗m ∧m = z + 1 ∧ g(x) = z, x is an argument

variable as it occurs as an argument of functions g and f . Both y and z occur as v

in some f(t) = v so they are value variables. Since m occurs in m = z+1 and z is a

value variable, m is also a value variable. This rule is av-separated since no variable

is both an argument variable and a value variable.

Example 23 In f(x) = y ∧ y = x, y is a value variable and since x appears in

y = x, x is also a value variable. At the same time, x is also an argument variable.

Consequently, this rule is not av-separated.

Example 24 To see why this condition is imposed, consider the formula

f(x) = 1← g = y ∧ y = x.

The system sets the equality y = x aside and grounds the formula and then replaced

the equality y = x to get

f(1) = 1← g = y ∧ y = x
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f(2) = 1← g = y ∧ y = x

rather than the intended

f(1) = 1← g = y ∧ y = 1

f(2) = 1← g = y ∧ y = 2

System ASPMT2SMT uses a syntax similar to system cplus2asp Babb and

Lee (2013) for the declarations and a syntax similar to system f2lp Lee and Palla

(2009) for the theory itself.

There are declarations of four kinds, sorts, objects, constants, and variables. The

sort declarations specify user data types (note: these cannot be used for value sorts).

The object declarations specify the elements of the user-declared data types. The

constant declarations specify all of the (possibly boolean) function constants that

appear in the theory. The variables declarations specify the user-declared data types

associated with each variable. A declaration for the car example is shown below.

:− s o r t s

s tep ; astep .

:− ob j e c t s

0 . . s t : : s t ep ;

0 . . st−1 : : as tep .

:− cons tant s

time ( s tep ) : : r e a l [ 0 . . t ] ;

durat ion ( astep ) : : r e a l [ 0 . . t ] ;

a c c e l ( astep ) : : boolean ;
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dec e l ( astep ) : : boolean ;

speed ( s tep ) : : r e a l [ 0 . . ms ] ;

l o c a t i o n ( s tep ) : : r e a l [ 0 . . l ] .

:− va r i a b l e s

S : : as tep ;

B : : boolean .

Only propositional connectives are supported in this version of ASPMT2SMT

and these are represented in the system as follows:

∧ ∨ ¬ → ←

& — not − > < −

Comparison and arithmetic 3 operators are represented as usual:

< ≤ ≥ > = ̸= add subtract multiply divide

< <= >= > = ! = + − ∗ /

a ! = b is understood as ¬(a = b). To abbreviate the formula A ∨ ¬A (or

Choice(A)), which is useful for expressing defaults and inertia, we write {A}. The

rest of the car example is shown below.

% Actions and durat ions are exogenous

{ a c c e l (S)=B} .

{ dec e l (S)=B} .

{durat ion (S)=X} .

3Note that the type of division (integer or real) is based on context; for atomic formulas not
containing value variables, the division is understood as integer division whereas for atomic formulas
containing value variables, the division is instead understood as real division.

183



% nonconcurrency o f a c t i on s

<− a c c e l (S)=true & dec e l (S)=true .

%e f f e c t s o f a c c e l and dec e l

speed (S+1)=Y <− a c c e l (S)=true & speed (S)=X & durat ion (S)=D

& Y = X+ar∗D.

speed (S+1)=Y <− dec e l (S)=true & speed (S)=X & durat ion (S)=D

& Y = X−ar∗D.

% pre cond i t i on s o f a c c e l and dec e l

<− a c c e l (S)=true & speed (S)=X & durat ion (S)=D

& Y = X+ar∗D & Y > ms .

<− dec e l (S)=true & speed (S)=X & durat ion (S)=D

& Y = X−ar∗D & Y < 0 .

% i n e r t i a o f speed

{ speed (S+1)=X} <− speed (S)=X.

l o c a t i o n (S+1)=Y <− l o c a t i o n (S)=X & speed (S)=A &

speed (S+1)=C & durat ion (S)=D & Y = X+(A+C)/2∗D.

time (S+1)=Y <− time (S)=X & durat ion (S)=D & Y=X+D.

% problem in s tance
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time (0)=0.

speed (0)=0.

l o c a t i o n (0)=0.

<− l o c a t i o n ( s t ) = Z & Z != l .

<− speed ( s t ) = Z & Z != 0 .

<− time ( s t ) = Z & Z != t .

This description can be run by the command

$aspmt2smt car −c s t=3 −c t=4 −c ms=4 −c ar=3 −c l=10

which yields the output

a c c e l (0 ) = true a c c e l (1 ) = f a l s e a c c e l (2 ) = f a l s e

de c e l (0 ) = f a l s e de c e l (1 ) = f a l s e de c e l (2 ) = true

durat ion (0 ) = 1.1835034190 durat ion (1 ) = 1.6329931618

durat ion (2 ) = 1.1835034190 l o c a t i o n (0 ) = 0 .0

l o c a t i o n (1 ) = 2.1010205144 l o c a t i o n (2 ) = 7.8989794855

l o c a t i o n (3 ) = 10 .0 speed (0 ) = 0 .0

speed (1 ) = 3.5505102572 speed (2 ) = 3.5505102572

speed (3 ) = 0 .0 time (0 ) = 0 .0 time (1) = 1.1835034190

time (2 ) = 2.8164965809 time (3 ) = 4 .0

z3 time in m i l l i s e c ond s : 30

Total time in m i l l i s e c ond s : 71
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Figure 9.2: ASPMT2SMT System Architecture

9.2.3 Architecture

The architecture of the system is shown in Figure 9.2.3 The ASPMT2SMT sys-

tem first converts the ASPMT description to a propositional formula containing only

predicates. In addition, this step substitutes auxiliary constants for value variables

and necessary preprocessing for f2lp and gringo to enable partial grounding of argu-

ment variables only. f2lp transforms the propositional formula into a logic program

and then gringo performs partial grounding on only the argument variables. The

ASPMT2SMT system then converts the predicates back to functions and replaces

the auxiliary constants with the original expressions. Then the system computes the

completion of this partially ground logic program and performs variable elimination

on that completion. Finally, the system converts this variable-free description into

the language of z3 and then relies on z3 to produce models which correspond to

stable models of the original ASPMT description.
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Example 1 continued Consider the result of variable elimination on the portion

of the completion related to speed(1) of the running car example:

(Accel(0)=1 ∧ Speed(1)=Speed(0) + A× Duration(0))∨

(Decel(0)=1 ∧ Speed(1) = Speed(0)− A× Duration(0))∨

(Speed(0) = Speed(1)).

In the language of z3, this is

( a s s e r t ( or ( or

( and (= a c c e l 0 t rue ) (= speed 1

(+ speed 0 (∗ dura t i on 0 a ) ) ) )

( and (= d e c e l 0 t rue ) (= speed 1

(− speed 0 (∗ dura t i on 0 a ) ) ) ) )

(= speed 1 speed 0 )

) )

The system is available at http://reasoning.eas.asu.edu/aspmt/.

9.2.4 Experiments

The following experiments demonstrate the capability of the ASPMT2SMT sys-

tem to perform nonmonotonic reasoning about continuous changes. In addition, this

shows a significant performance increase compared to ASP systems for domains in

which only value variables have large domains. However, when argument variables

have large domains, similar scalability issues arise as comparable grounding still oc-

curs.
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We also provide a comparison to system clingcon which loosely integrates logic

programming and constraint satisfaction. While this performs well, these representa-

tions are either not elaboration tolerant or require new auxiliary abnormality symbols

to represent the notions of inertia and default behaviors. Additionally, this system

does not support continuous reasoning.

These experiments were performed on an Intel Core 2 Duo 3.00 GHZ CPU with

4 GB RAM running Ubuntu 13.10.

Leaking Bucket

Consider a leaking bucket with maximum capacity c that loses one unit of water

every time step by default. The bucket can be refilled to its maximum capacity by

the action fill. The initial capacity is 5 and the desired capacity is 10. Here, the

argument variable corresponding to the length of the plan increases so both systems

suffer scalability issues.

:− s o r t s

atime ; time .

:− ob j e c t s

0 . . c : : s t ep ;

0 . . c−1 : : astep .

:− cons tant s

amt( s tep ) : : i n t [ 0 . . c ] ;
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f i l l ( as tep ) : : boolean .

:− va r i a b l e s

T : : s tep ;

ST : : astep ;

X : : i n t [ 0 . . c ] .

{amt(ST+1) = X−1} <− amt(ST) = X.

{ f i l l (ST) = true } .

{ f i l l (ST) = f a l s e } .

amt(ST+1) = X <− f i l l (ST) = true & X = c .

<− amt(T) = X & X < 2 .

amt (0 ) = 5 .

<− not (amt( c ) = 10 ) .

c ASP (clingo 4.3.0) ASPMT2SMT 1.0 clingcon 2.0.3

Run Time Run Time Run Time

(Grounding + Solving) (Preprocessing + Solving) (Preprocessing + Solving)

10 0s (0s+0s) .037s (.027s + .01s) 0s(0s + 0s)

50 .03s (03s + 0s) .089s (.079s + .01s) 0s(0s + 0s)

100 .15s (.15s + 0s) .180s (.170s + .01s) 0.1s(0.1s + 0s)

500 3.95s (3.95s + 0s) 1.731s (1.661s + .07s) 0.3s(0.3s + 0s)

1000 19.01s (18.99s+ .02s) 35.326s (35.206s + .12s) 0.6s(0.6s + 0s)
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We see that in this experiment, ASPMT2SMT does not yield better results than

clingo. The reason for this is that the scaling of this domain takes place in the num-

ber of timesteps. Thus, since ASPMT2SMT uses gringo (the grounder for both

clingo and ASPMT2SMT) to obtain functions for each of these timesteps, the

ground descriptions given to clasp (the solver in system clingo) and z3 are of simi-

lar size. Consequently, we see that the majority of the time taken for ASPMT2SMT

is in preprocessing.

Car Example

Recall the domain in Example 1.

The first half of the experiments are done with the values L = 10k, A = 3k, MS =

4k, T = 4k, which yields solutions with irrational values and so cannot be solved by

systems clingo and clingcon. The second half of the experiments are done with

the values L = 4k, A = k, MS = 4k, T = 4k, which yields solutions with integral values

and so can be solved by systems clingo and clingcon. In this example, only the

value variables have increasing domains but the argument variable domain remains

the same. Consequently, the ASPMT2SMT system scales very well compared to

the ASP system which can only complete the two smallest size domains.
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k ASP (clingo 4.3.0) ASPMT2SMT 1.0 clingcon 2.0.3

Run Time Run Time Run Time

(Grounding + Solving) (Preprocessing + Solving) (Preprocessing + Solving)

1 n/a .084s (.054s + .03s) n/a

5 n/a .085s (.055s + .03s) n/a

10 n/a .085s (.055s + .03s) n/a

50 n/a .087s (.047s + .04s) n/a

100 n/a .088s (.048s + .04s) n/a

1 .22s (.22s + 0s) .060s (.050s + .01s) 0s(0s + 0s)

2 62.11s (62.10s + .01s) .07s (.050s + .02s) 0s(0s + 0s)

3 > 30 minutes .072s (.052s + .02s) 0s(0s + 0s)

5 > 30 minutes .068s (.048s + .02s) 0s(0s + 0s)

10 > 30 minutes .068s (.048s + .02s) 0s(0s + 0s)

50 > 30 minutes .068s (.048s + .02s) 0s(0s + 0s)

100 > 30 minutes .072s (.052s + .02s) 0s(0s + 0s)

Here, the results for ASPMT2SMT are much more favorable. In this problem,

the scaling lies only in the size of the value of the functions involved in the descrip-

tion. Consequently, we see no scaling issues in either ASPMT2SMT or clingcon.

Neither clingcon nor clingo is able to handle the first set of configurations since

these parameters yield non-integral solutions. On the other hand, ASPMT2SMT

handles these configurations with comparable execution time to the performance in

the second set of configurations.
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Space Shuttle Example

The following example is from Lee and Lifschitz (2003), which represents cumulative

effects on continuous changes. A spacecraft is not affected by any external forces. It

has two jets and the force that can be applied by each jet along each axis is at most

4k. The initial position of the rocket is (0,0,0) and its initial velocity is (0,1,1). How

can it get to (0,3k,2k) within 2 seconds? Assume the mass is 2.

:− s o r t s

s tep ; astep ; ax i s .

:− ob j e c t s

0 . . s t : : s t ep ;

0 . . st−1 : : as tep ;

x , y , z : : a x i s .

:− cons tant s

durat ion ( astep ) : : r e a l [ 0 . . 2 ] ;

time ( s tep ) : : r e a l [ 0 . . 2 ] ;

mass : : r e a l [ 0 . .m] ;

speed ( axis , s t ep ) : : r e a l [ 0 . . v ] ;

pos ( ax is , s t ep ) : : r e a l [ 0 . . p ] ;

j e t 1 f i r e ( ax i s , as tep ) : : r e a l [ 0 . . f ] ;

j e t 2 f i r e ( ax i s , as tep ) : : r e a l [ 0 . . f ] .

:− va r i a b l e s

S : : s t ep ;
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AS : : astep ;

AX,AX1 : : ax i s .

mass = m.

speed (x , 0 ) = 0 .

speed (y , 0 ) = 1 .

speed ( z , 0 ) = 1 .

time (0 ) = 0 .

pos (x , 0 ) = 0 .

pos (y , 0 ) = 0 .

pos ( z , 0 ) = 0 .

{durat ion (AS) = X} .

{ j e t 1 f i r e (AX,AS) = X} .

{ j e t 2 f i r e (AX,AS) = X} .

<− j e t 1 f i r e (AX,AS) = X & j e t 1 f i r e (AX1,AS) = X1 &

X != 0 & X1 != 0 & AX != AX1.

<− j e t 2 f i r e (AX,AS) = X & j e t 2 f i r e (AX1,AS) = X1 &

X != 0 & X1 != 0 & AX != AX1.

pos (AX,AS+1) = Z <− pos (AX,AS) = X & durat ion (AS) = T &
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speed (AX,AS) = S0 & speed (AX,AS+1) = S1 &

Z = X + T∗( S0+S1 ) /2 .

speed (AX,AS+1) = Z <− j e t 1 f i r e (AX,AS) = X1 &

j e t 2 f i r e (AX,AS) = X2 & durat ion (AS) = T & mass = M &

speed (AX,AS) = Y & Z = Y+T∗(X1+X2)/M.

time (AS+1) = X <− time (AS) = Y & durat ion (AS) = T &

X = Y+T.

<− pos (x , s t ) = X & X != 0 .

<− pos (y , s t ) = X & X != 3∗k .

<− pos ( z , s t ) = X & X != 2∗k .

k ASP (clingo 4.3.0) ASPMT2SMT 1.0 clingcon 2.0.3

Run Time Run Time Run Time

(Grounding + Solving) (Preprocessing + Solving) (Preprocessing + Solving)

1 0.01s (0.01s + 0s) .048s (.038s + .01s) 0s(0s + 0s)

5 .08s (.06s + .02s) .047s (.037s + .01s) 0s(0s + 0s)

10 .35s (.24s + .11s) .053s (.043s + .01s) 0s(0s + 0s)

50 13.40s (6.64s + 6.76s) .050s (.040s + .01s) 0s(0s + 0s)

100 39.17s (30.71s + 8.46s) .051s (.041s + .01s) 0s(0s + 0s)

Again in this problem, the scaling lies only in the size of the value of the func-

tions involved in the description. Consequently, we see no scaling issues in either

ASPMT2SMT or clingcon.
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Bouncing Ball Example

The following example is from Chintabathina (2008). Consider an agent acting in a

domain consisting of a ball. The ball is held above the ground by the agent. The

actions available to the agent are drop and catch. Dropping the ball causes the height

of the ball to change continuously with time as defined by Newton’s laws of motion.

As the ball accelerates towards the ground it gains velocity. If the ball is not caught

before it reaches the ground it hits the ground with speed s and bounces up into

the air with speed r ∗ s where r = .95 is the rebound coefficient. The bouncing ball

reaches a certain height and falls back towards the ground due to gravity. A robot is

holding a ball at height 100k. We want to have the ball hit the ground and caught

at height 50.

:− s o r t s

s tep ; astep .

:− ob j e c t s

0 . . s t : : s t ep ;

0 . . st−1 : : as tep .

:− cons tant s

pos ( s tep ) : : r e a l [ 0 . . p ] ;

speed ( s tep ) : : r e a l [ −5000 . . 5 000 ] ;

drop ( astep ) : : boolean ;

catch ( astep ) : : boolean ;

durat ion ( astep ) : : r e a l [ 0 . . 1 0 0 0 ] ;

g r av i ty : : r e a l [ − 5 0 . . 5 0 ] ;
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c o e f f i c i e n t : : r e a l [ 0 . . 1 ] ;

ho ld ing ( s tep ) : : boolean .

:− va r i a b l e s

S : : s t ep ;

AS : : astep .

c o e f f i c i e n t = 95/100.

g rav i ty = −98/10.

pos (0 ) = p .

ho ld ing (0 ) = true .

speed (0 ) = 0 .

{durat ion (AS) = X} .

{drop (AS) = true } .

{drop (AS) = f a l s e } .

{ catch (AS) = true } .

{ catch (AS) = f a l s e } .

<− drop (AS) = true & catch (AS) = true .

<− drop (AS) = true & hold ing (AS) = f a l s e .

<− catch (AS) = true & hold ing (AS) = true .

<− drop (AS) = true & durat ion (AS) = X & X != 0 .
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<− catch (AS) = true & durat ion (AS) = X & X != 0 .

ho ld ing (AS+1) = true <− catch (AS) = true .

speed (AS+1) = 0 <− catch (AS) = true .

ho ld ing (AS+1) = f a l s e <− drop (AS) = true .

ho ld ing (AS+1) = true <− ho ld ing (AS) = true &

drop (AS) = f a l s e .

ho ld ing (AS+1) = f a l s e <− ho ld ing (AS) = f a l s e &

catch (AS) = f a l s e .

{ speed (AS+1) = X} <− speed (AS) = Y & durat ion (AS) = T &

grav i ty = G & X = Y+T∗G & hold ing (AS) = f a l s e .

speed (AS+1) = X <− speed (AS) = X & hold ing (AS) = true .

speed (AS+1) = X <− speed (AS) = Y & c o e f f i c i e n t = C &

X = −1∗Y∗C & pos (AS) = 0 & hold ing (AS) = f a l s e .

<− pos (S) = X & X < 0 .

pos (AS+1) = X <− pos (AS) = Y & durat ion (AS) = T &

speed (AS+1) = S2 & speed (AS) = S1 &

X = Y + T∗( S1+S2 )/2 & ( ( catch (AS) = f a l s e &

ho ld ing (AS) = f a l s e ) | drop (AS) = true ) .

pos (AS+1) = X <− pos (AS) = X &

(( ho ld ing (AS) = true & drop (AS) = f a l s e ) |
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catch (AS) = true ) .

<− pos ( st−2) = X & X != 0 .

<− pos ( s t ) = X & X != 50 .

k ASP (clingo 4.3.0) ASPMT2SMT 1.0 clingcon 2.0.3

Run Time Run Time Run Time

(Grounding + Solving) (Preprocessing + Solving) (Preprocessing + Solving)

1 n/a .072s (.062s + .01s) n/a

10 n/a .072s (.062s + .01s) n/a

100 n/a .071s (.061s + .01s) n/a

1000 n/a .075s (.065s + .01s) n/a

10000 n/a .082s (.062s + .02s) n/a

Again, clingo and clingcon are unable to find solutions to this domain since

solutions are not integral. Also, we see that ASPMT2SMT suffers no scaling issues

here again due to the fact that in this problem the scaling lies only in the size of the

value of the functions involved in the description.
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9.3 Proofs

9.3.1 Proof of Proposition 1

The proof relies on the following lemmas.

Lemma 29

∀vx(t(x) = v ∧H(vx)→ G(vx))

is equivalent to

∀x(H(vx)→ G(vx))vt(x).

Proof. Given an interpretation I

I |= ∀vx(t(x) = v ∧H(vx)→ G(vx)) iff

I |= t(ξ⃗) = ξ ∧H(ξξ⃗)→ G(ξξ⃗) for every ξξ⃗ from |I| iff

I |= H(ξξ⃗) → G(ξξ⃗) where ξ = t(ξ⃗)I for every ξξ⃗ from |I|, (when ξ ̸= t(ξ⃗)I , the

implication is trivially satisfied) iff

I |= ∀x(H(t(x)x)→ G(t(x)x)) iff

I |= ∀x(H(vx)→ G(vx))vt(x).

Lemma 30

∃zx(D(zx) ∧ z = t(x))

is equivalent to

∃x(D(zx)zt(x)).

Proof. Given an interpretation I

I |= ∃zx(D(zx) ∧ z = t) iff

I |= D(ξξ⃗) ∧ ξ = t(ξ⃗) for some ξξ⃗ from |I| iff

I |= D(ξξ⃗) where ξ = t(ξ⃗)I for some ξξ⃗ from |I|, (if t(ξ⃗)I ̸= ξ, then clearly I ̸|=
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D(ξξ⃗) ∧ ξ = t(ξ⃗)) iff

I |= ∃x(D(t(x)x)) iff

I |= ∃x(D(zx)zt(x))

Lemma 31 Consider a conjunction of possibly negated atomic formulas C1∧· · ·∧Cn

such that for every variable v occurring in the conjunction, there is some Ci such that

Ci is v = t or t = v for some term t such that within C1 ∧ · · · ∧ Cn, no variable

in t depends on v. Given such a v and t, (C1 ∧ · · · ∧ Cn)
v
t , for every variable u in

(C1 ∧ · · · ∧ Cn)
v
t , there is some Ci such that Ci is u = t′ or t′ = u for some term t′

such that within C1 ∧ · · · ∧ Cn, no variable in t′ depends on u.

Proof. Consider any variables v and u in C1 ∧ · · · ∧ Cn. We start with the fact

that there is some Ci that is v = t1 or t1 = v for some term t1 such that within

C1 ∧ · · · ∧Cn, no variable in t1 depends on v and that there is some Cj that is u = t2

or t2 = u for some term t2 such that within C1 ∧ · · · ∧ Cn, no variable in t2 depends

on u. Now we consider the effect of replacing v with t1 in C1 ∧ · · · ∧ Cn. This yields

(C1 ∧ · · · ∧ Cn)
v
t1
. There are two possibilities for Cj.

• Cj does not contain v. Then (Cj)
v
t1
is exactly Cj and so this still satisfies that

no variable in t2 depends on u.

• Cj does contain v. Then (Cj)
v
t1

is u = (t2)
v
t1

or (t2)
v
t1
= u we must check that

(t2)
v
t1
does not contain any variable that depends on u. However, in this case u

depends on v and since we assumed that t2 contained no variable that depends

on u, we know v does not depend on u. Consequently, no variable in t1 depends

on u and so we conclude that (t2)
v
t1
does not contain any variable that depends

on u.
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Proposition 1 For any completion of an av-separated, variable isolated ASPMT

program, applying variable elimination method repeatedly results in a classically

equivalent formula that contains no variables.

Proof.

Consider the completion of an av-separated, variable isolated ASPMT program,

which is a conjunction of equivalences of the form

E = ∀v(f = v ↔ ∃x(B1(x) ∨ · · · ∨Bk(x)))

where each Bi(x) is a conjunction of possibly negated atomic formulas and has v = t

or t = v as a non-negated subformula for some term t such that within Bi(x), no

variable in t depends on v. The proof is by induction on each equivalence E and n,

the number of variables in the E.

• E contains no variables. The variable elimination leaves E unchanged and since

there are no variables in F , the claim holds.

• E is

∀v(f = v ↔ ∃x(B1(x) ∨ · · · ∨Bk(x)))

where each Bi(x) is a conjunction of possibly negated atomic formulas and has

v = t or t = v as a non-negated subformula for some term t such that within

Bi(x), no variable in t depends on v. Step 1 produces two formulas F and G

where

F := ∀v(f = v → ∃x(B1(x) ∨ · · · ∨Bk(x)))

G := ∀v(∃x(B1(x)∨ · · · ∨Bk(x))→ f = v) Clearly E is equivalent to F ∧G so

the claim follows by induction on F and G.
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• E is ∀v(f = v → ∃x(B1(x) ∨ · · · ∨ Bk(x))) where each Bi(x) is a conjunction

of possibly negated atomic formulas and has v = t or t = v as a non-negated

subformula for some term t such that within Bi(x), no variable in t depends on

v. Step 2(a) of the variable elimination method produces the formula

F := ∃x(B1(x)
v
f ) ∨ · · · ∨ ∃x(Bk(x)

v
f ). F is equivalent to E by Lemma 29. F

does not contain the variable v since v is replaced by f . The claim follows by

induction on each ∃x(Bi(x)
v
f ).

• E is ∃yx(B(yx)) where B(yx) is a conjunction of possibly negated atomic

formulas and has y = t or t = y as a non-negated subformula for some term t

such that within B(yx), no variable in t depends on y. One iteration of step 2(c)

will produce the formula F := ∃x(B(x)yt ). F is equivalent to E by Lemma 30.

F does not contain the variable y since y is replaced by t and no variable in t

depends on y. Further, by Lemma 31 F has the property that for every variable

z in F , F has z = t′ or t′ = z as a non-negated subformula for some term t′

such that within B(x)yt , no variable in t′ depends on z. So, the claim follows

by induction on F .

• E is ∀y(∃x(B1(x) ∨ · · · ∨ Bk(x))→ f = v) (for k ≥ 2). Step 3(a) will produce

the formula

F := ∀vx(B1(x) → f = v) ∧ · · · ∧ ∀vx(Bk(x) → f = v). E is classically

equivalent to F so the claim holds by induction on each ∀vx(Bi(x)→ f = v).

• E is ∀yx(B(x)→ f = v) (y and v may be the same) where B(yx) is a conjunc-

tion of possibly negated atomic formulas and has y = t or t = y as a non-negated

subformula for some term t such that within B(yx), no variable in t depends on

y. One iteration of step 3(c) produces the formula F := ∀x(B(x) → f = u)yt .
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F is equivalent to E by Lemma 29. F does not contain the variable y since y

is replaced by t and no variable in t depends on y. Further, by Lemma 31 F

has the property that for every variable z in F , F has z = t′ or t′ = z as a

non-negated subformula for some term t′ such that within B(x)yt , no variable

in t′ depends on z. So, the claim follows by induction on F .
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Chapter 10

CABALAR SEMANTICS

10.1 Reduct Characterization

The Cabalar semantics reviewed in Chapter 3 can also be reformulated in terms of

grounding and reduct. A theorem similar to Theorem 1 can be stated for the Cabalar

semantics.

Theorem 21 Let F be a first-order sentence of signature σ and let c be a list of

intensional constants. For any partial interpretation I of σ, ⟨I, I⟩ is a partial equi-

librium model of F iff

• I |=
p
F , and

• for every partial interpretation J of σ such that J ≺c I, we have J ̸|=
p
grI [F ]I .

Example 3 continued Recall the example that describes the inertia of the location

of a box. The reduct F I1 is

at(box, 0, l1)∧

((at(box, 1, l1) ∨ ⊥) ← at(box, 0, l1))∧

((⊥ ∨ ¬⊥) ← ⊥)

Recall the three partial interpretations J1, J2, J3 that satisfy Ji ≺at I1 which agree

with I1 except that

• at(box, 0, l1)J1 = u;
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• at(box, 1, l1)J2 = u;

• at(box, 0, l1)J3 = u and at(box, 1, l1)J3 = u.

Now it is easy to see that J1 and J3 fail to satisfy the first conjunction of the reduct

while J2 fails to satisfy the second conjunction of the reduct. Thus, this characteri-

zation corresponds to the equilibrium logic style definition for this case.

On the other hand, the reduct F I2 is

at(box, 0, l1)∧

((⊥ ∨ ¬⊥) ← at(box, 0, l1))∧

((at(box, 1, l2) ∨ ⊥) ← ⊥)

Consider again the partial interpretation J4 that agrees with I2 except that

at(box, 1, l2)J4 = u. We can see that J4 satisfies this reduct. Thus, this characteriza-

tion corresponds to the equilibrium logic style for this case.

Interestingly, this reformulation of the Cabalar semantics is closely related to the

language ASP{f} Balduccini (2012). We discuss the details in Section 11.2.

Comparing the reformulation of the Cabalar semantics in Theorem 21 and the

reformulation of the functional stable model semantics semantics in Theorem 1 tells

us that the reducts are defined in the same way, whereas interpretations we consider

for stability checking and the notions of satisfaction are different. That is, if the

intensional constants are function constants only, under the functional stable model

semantics, the interpretations J we consider for stability checking are all other classi-

cal interpretations that are different from I, while under the Cabalar semantics, they

are partial interpretations that are “smaller” than I. For instance, in Example 7,

there are many such Js that are different from I1 for the functional stable model se-

mantics semantics depending on the size of the universe, while there are only 3 such

J for the Cabalar semantics.
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Later in this chapter, we present some syntactic classes of formulas on which the

two semantics coincide despite these differences.

10.2 Second-Order Logic Characterization

The Cabalar semantics can also be formulated in the style of second-order logic.

We extend the formulas to allow predicate and function variables as in the standard

second-order logic, but consider partial interpretations in place of classical interpre-

tations. Similar to the definition of ĉ < c, we define ĉ ≼ c as

(ĉpred ≤ cpred) ∧ (ĉfunc ≤ cfunc) ,

where ĉpred ≤ cpred is as defined in Section 4.2–the conjunction of ∀x(p̂(x)→ p(x)) for

each predicate constant p ∈ cpred and the corresponding predicate variable p̂ ∈ ĉpred.

ĉfunc ≤ cfunc is defined as the conjunction of

∀x((f̂(x) ̸= f̂(x)) ∨ (f̂(x) = f(x))) .

for all function constants f in cfunc and the corresponding function variables f̂ in

ĉfunc. As explained earlier, the first disjunctive term is satisfiable under a partial

interpretation, meaning that f̂ is undefined on x; the second disjunctive term means

that f̂ and f are both defined on x and map to the same element in the universe.

We define ĉ ≺ c as (ĉ ≼ c) ∧ ¬(c ≼ ĉ).

We reformulate the Cabalar semantics by using the expression CBL that looks

similar to SM. It is defined as:

CBL[F ; c] = F ∧ ¬∃ĉ(ĉ ≺ c ∧ F †(ĉ)) ,

where F †(ĉ) is defined the same as F ∗(ĉ) in Section 4.2 except for the base case:
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• When F is an atomic formula, F †(ĉ) is F (ĉ) where F (ĉ) is the result of replacing

each occurrence of each constant c ∈ c with the corresponding variable ĉ ∈ ĉ.

1

The following theorem states the correctness of the reformulation.

Theorem 22 For any sentence F , a PHT-interpretation ⟨I, I⟩ is a partial equilib-

rium model of F relative to c iff I |=
p
CBL[F ; c].

Note the similarity between this reformulation of the Cabalar semantics given

in Theorem 22 and the definition of SM in Section 4.2. The differences are in the

comparison operators ≺ vs. <, and whether to consider partial interpretations or

classical interpretations.

Neither semantics is stronger than the other. The following example presents a

formula that has a stable model under the Cabalar semantics, but not under the

functional stable model semantics.

Example 25 SM[f = g; f, g] has no models if the universe contains more than one

element. Take any I such that I |= f = g. The reduct of f = g relative to I is f = g

itself, and there are other models of the reduct. Since I is not the unique model of

the reduct, I is not a (f, g)-stable model of f = g. On the other hand, assuming that

the universe is {1, 2, 3}, an interpretation I that assigns 1 to both f and g satisfies

CBL[f = g; f, g]. The reduct is the same as before, but any interpretation J smaller

than I maps either or both f and g to u, and hence does not satisfy the reduct.

Similarly, there are two other models of CBL[f = g; f, g] with the same universe.

1In fact, F ∗(ĉ) can be also used in place of F †(ĉ) for defining CBL[F ; c] as well, without affecting
the models.
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On the other hand, in the following example, the formula has a stable model under

the functional stable model semantics, but not under the Cabalar semantics.

Example 26 Let F be the formula f(1) = 1∧ f(2) = 1∧ (f(g) = 1→ g = 1), and I

be an interpretation such that the universe is {1, 2}, and 1I = 1, 2I = 2, f(1)I = 1,

f(2)I = 1, gI = 1. One can check that I is a model of SM[F ; f, g], but not a model

of CBL[F ; f, g].

10.3 Correspondence on Multi-valued Propositional Formulas

We first present the simpler relationship between the two semantics in the context

of multi-valued propositional formulas.

Similar to Theorem 14, the following theorem tells us that the partial stable models

of a multi-valued propositional formula can be identified with the stable models of a

propositional formula.

Recall that given a multi-valued signature σ, by UC σ (“Uniqueness Constraint”)

we denote the conjunction of

∧
v ̸=w | v,w∈Dom(c)

¬(c = v ∧ c = w) (10.1)

for all c ∈ σ. The only difference between the two transformations is that we only

impose UC σ and omit EC σ (the existence constraint).

Theorem 23 Let F be a multi-valued propositional formula of signature σ, which

can be also viewed as a propositional formula of signature σprop.
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(a) If a partial interpretation I of σ is a partial multi-valued stable model of F , then

I can be viewed as an interpretation of σprop that is a propositional stable model

of F ∧ UC σ (in the sense of Ferraris (2005)).

(b) If an interpretation I of σprop is a propositional stable model of F ∧ UC σ (in

the sense of Ferraris (2005)), then I can be viewed as a partial interpretation

of σ that is a partial multi-valued stable model of F .

The following corollary immediately follows from Theorems 14 and 23. It tells us

that the stable model semantics can be fully embedded into the partial multi-valued

stable model semantics.

Corollary 6 For any multi-valued propositional formula F of signature σ and any

partial interpretation I, we have that I is a multi-valued stable model of F iff I is a

partial multi-valued stable model of F ∧ EC σ.

Let σ be a multi-valued signature, and let σnone be the signature that is the same

as σ except that the domain of each constant has an additional new value none.

Given a partial multi-valued interpretation I of σ, by Inone we denote a multi-valued

interpretation of σnone that agrees with I on all defined constants, and maps undefined

constants to none.

Theorem 24 Let F be a multi-valued propositional formula of signature σ.

(a) If an interpretation I of σ is a partial multi-valued stable model of F , then Inone

is a multi-valued stable model of F ∧
∧

c∈σ

(
c=none ∨ ¬(c=none)

)
.

(b) If an interpretation J of σnone is a stable model of F ∧
∧

c∈σ

(
c=none ∨ ¬(c=

none)
)
then J = Inone for some partial multi-valued stable model I of F .
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10.4 Correspondence on f -plain Sentences

This section presents the correspondence on f -plain sentences between the func-

tional stable model semantics and the Cabalar semantics coincide when we consider

“total” interpretations only. Recall that a partial interpretation I is called total if I

does not map any function constant to u. Obviously, a total interpretation can be

identified with the classical interpretation.

Recall that for any function constant f , a first-order formula F is called f -plain

if each atomic formula in F

• does not contain f , or

• is of the form f(t) = t1 where t is a list of terms not containing f , and t1 is a

term not containing f ,

and for a list c of predicate and function constants, we say that F is c-plain if F is

f -plain for each function constant f in c.

The following theorem states that the two semantics coincide on c-plain formulas.

Theorem 25 For any c-plain sentence F of signature σ, any list c of intensional

constants, and any total interpretation I of σ satisfying ∃xy(x ̸= y), I |= SM[F ; c] iff

I |=
p
CBL[F ; c].

Examples 25 and 26 above demonstrate why the restriction to c-plain formulas is

necessary in Theorem 25.
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The requirement in Theorem 25 that every occurrence of every atomic formula be

c-plain can be relaxed if the formula is tight and in Clark Normal Form. 2

Theorem 26 For any sentence F of signature σ in Clark Normal Form that is tight

on c, and any total interpretation I of σ satisfying ∃xy(x ̸= y), I |= SM[F ; c] iff

I |=
p
CBL[F ; c].

10.4.1 Correspondence on non-f -plain Sentences

Theorem 25 can be extended to non-c-plain formulas by first unfolding F using

the same process presented in Section 7.4 that we review here:

• If F is of the form p(t1, . . . , tn) (n ≥ 0) such that tk1 , . . . , tkj are all the terms

in t1, . . . , tn that contain some members of c, then UF c(p(t1, . . . , tn)) is

∃x1 . . . xj

(
p(t1, . . . , tn)

′′ ∧
∧

1≤i≤j

UF c(tki = xi)
)

where p(t1, . . . , tn)
′′ is obtained from p(t1, . . . , tn) by replacing each tki with the

variable xi.

• If F is of the form f(t1, . . . , tn) = t0 (n ≥ 0) such that tk1 , . . . , tkj are all the

terms in t0, . . . , tn that contain some members of c, then UF c(f(t1, . . . , tn) = t0)

is

∃x1 . . . xj

(
(f(t1, . . . , tn) = t0)

′′ ∧
∧

0≤i≤j

UF c(tki = xi)
)

where (f(t1, . . . , tn) = t0)
′′ is obtained from f(t1, . . . , tn) = t0 by replacing each

tki with the variable xi.

2Recall these definitions from Section 5.5.
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• UF c(F ⊙G) is UF c(F )⊙ UF c(G) where ⊙ ∈ {∧,∨,→}.

• UF c(QxF ) is Qx UF c(F (x)) where Q ∈ {∀,∃}.

Recall that UF c(F ) is equivalent to F under classical logic. Similarly, Theorem 27

below shows that the Cabalar semantics preserves stable models when unfolding is

applied. However, this is not the case under the functional stable model semantics.

Theorem 27 For any sentence F , any list c of constants, and any partial interpre-

tation I, we have I |=
p
CBL[F ; c] iff I |=

p
CBL[UF c(F ); c].

This theorem generalizes Theorem 1 in Cabalar (2011) that turns programs with

functions to programs without functions using a notion similar to unfolding.

Example 27 Let F be f = g. Recall that UF c(F ) is ∃xy(x = y ∧ f = x ∧ g = y).

Let I1, I2, I3 be interpretations whose universe is {1, 2, 3}, and each Ii maps f and g

to i (1 ≤ i ≤ 3). Each of them satisfies CBL[F ; f, g] and CBL[UF (f,g)(F ); f, g], but

as we observed, none of them is a model of SM[F ; f, g].

However, since UF c(F ) is c-plain, the following corollary follows from Theo-

rems 25 and 27.

Corollary 7 For any sentence F , any list c of constants, and any total interpretation

I satisfying ∃xy(x ̸= y), we have I |=
p
CBL[F ; c] iff I |=

p
CBL[UF c(F ); c] iff I |=

SM[UF c(F ); c].

For example, SM[UF (f,g)(f = g); f, g] has the same models as CBL[f = g; f, g].

These theorems have established several relationships between the two semantics

for total interpretations but in the next sections we consider partial interpretations

that may map functions to u.
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10.5 Comparing the Cabalar Semantics and FSM for Partial Stable Models

Let F be a first-order sentence of signature σ. F none is the formula of signature

σ∪{none} (where none is a new object constant) that is obtained from F as follows.

• for any atomic formula F , F none = F ;

• (G⊙H)none = (Gnone ⊙Hnone) where ⊙ ∈ {∧,∨,→};

• ∀xG(x)none is ∀x(x ̸= none→ G(x)none);

• ∃xG(x)none is ∃x(G(x)none ∧ x ̸= none).

Given a partial interpretation I, we define the total interpretation Inone as

• |Inone| = |I| ∪ {none};

• noneInone
= none;

• for every function constant f ∈ σ and ξ ∈ |Inone|n where n is the arity of f ,

f Inone

(ξ) =

 f I(ξ) if ξ is in |I|n and f I(ξ) is defined;

none otherwise;

• For every predicate p ∈ σ and ξ ∈ |Inone|n where n is the arity of p,

pI
none

(ξ) =

 pI(ξ) if ξ is in |I|n;

f otherwise.

Theorem 28 For any sentence F of signature σ,
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(a) If I is a Cabalar stable model of F relative to c, then Inone is a stable model of

(UF σ(F ))none ∧
∧
f∈c

∀x⟨f(x) = none⟩ (10.2)

relative to c.

(b) If an interpretation J such that noneJ = none is a stable model of (10.2)

relative to c, then J = Inone for some Cabalar stable model I of F relative to c.

Example 28 Let F be f = f , and let c be f . Assuming that the universe is {1, 2},

F has two Cabalar stable models: {f = 1} and {f = 2}. The translation (10.2) yields

the formula

∃x(f = x ∧ x ̸= none) ∧ {f=none},

and, in accordance with Theorem 28, its stable models are the same as the Cabalar

stable models.

For ¬F , set ∅ is the only Cabalar stable model. Accordingly, (UF σ(¬F ))none∧{f=

none} has only one stable model which maps f to none.

Theorem 28 becomes incorrect if we do not apply unfolding, i.e., if we replace

UF σ(F ) in the statement with F . Indeed, for formula f = f above, the modification

of (10.2) yields f = f ∧ ⟨f = none⟩, which has {f=none} as the only stable model.

Also, Theorem 28 becomes incorrect if the unfolding is restricted to c only rather

than to the whole σ, i.e., if we replace UF σ(F ) with UF c(F ). Indeed, consider F

to be a = b where neither a nor b is intensional (i.e., a, b ̸∈ c). Formula (10.2)

is still a = b. I = ∅ is not a Cabalar stable model of a = b relative to ∅, but

Inone = {a = none, b = none} is a stable model of a = b relative to ∅.

To see why we need the condition that noneJ = none in part (b), consider the

following example.
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Example 29 Consider the formula ⊤ with signature σ = {c} and the universe {1}.

The only Cabalar stable model I is undefined on c. On the other hand, formula (10.2)

yields f =none ∨ f ̸= none. Here, without the condition, we have a stable model J

such that noneJ = 1 and fJ = 1 but this does not correspond to the Cabalar stable

model.

10.6 Capturing FSM in the Cabalar Semantics

Theorem 25 tells us that for any c-plain sentence F , the complete Cabalar stable

models of F are precisely the stable models of F . The following corollary shows that

the restriction to complete interpretations can instead be expressed in the sentence

itself.

Corollary 8 For any c-plain sentence F and any partial interpretation I that satis-

fies ∃xy(x ̸= y), I is a stable model of F relative to c iff I is a Cabalar stable model

of F ∧ ¬¬
∧
f∈c
∀x(f(x) = f(x)) relative to c.

However, the restriction that the sentence is c-plain remains. We consider two

examples of non-c-plain sentences below.

Example 30 Consider the very simple problem of restricting the function f to a

certain domain. To express that f is a member of dom1 with the universe {1, 2, 3}, we

can simply write dom1(f) where c = {f} (dom1 is non-intensional) which alone has

no stable models as long as dom1 has more than one element. However, this has among

its Cabalar stable models {dom1(1), dom1(2), f = 1} and {dom1(1), dom1(2), f = 2}.
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We can try writing this as a constraint ¬¬dom1(f) and no longer are there any

Cabalar stable models. However, this does not work in general.

Example 31 Consider the extension to the previous example in which we know that f

belongs to two different domains. To express that f is a member of dom1 and a mem-

ber of dom2 with universe {1, 2, 3}, we can simply write dom1(f)∧dom2(f) where c =

{f} (dom1 and dom2 are non-intensional) which has a stable model in the case that the

intersection of dom1 and dom2 is of size 1; e.g. {dom1(1), dom1(2), dom2(2), dom2(3), f =

2} is a stable model. Now the approach to capture this in the Cabalar semantics in

the previous example would write this ¬¬dom1(f)∧¬¬dom2(f) which has no Cabalar

stable models.

It remains an open question whether this behavior can be captured in the Cabalar

semantics.
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10.7 Proofs

10.7.1 Proof of Theorem 21

Recall the definition: J ≼c I if

• J and I have the same universe and agree on all constants not in c;

• pJ ⊆ pI for all predicate constants in c; and

• fJ(ξ) = u or fJ(ξ) = f I(ξ) for all function constants in c and all lists ξ of

elements in the universe.

As before, let d be a list of constants that is similar to c and is disjoint from

σ. The notion of Jc
d ∪ I is straightforwardly extended to the case when J and I are

partial interpretations.

Lemma 32 For any partial interpretations I and J of signature σ, we have J ≼c I

iff Jc
d ∪ I |=

p
d ≼ c.

Proof. By definition of Jc
d ∪ I, J and I have the same universe and agree on all

constants in σ \ c, which is the first condition of J ≼c I.

Recall the definition: d ≼ c is

(dpred ≤ cpred) ∧ (dfunc ≤ cfunc).

Jc
d ∪ I |=

p
dpred ≤ cpred iff, for every predicate constant p in c,

Jc
d ∪ I |=

p

∀x(p(x)cd → p(x)),

which is equivalent to saying that (pcd)
Jc
d∪I ⊆ pJ

c
d∪I . Since I does not interpret any

constant from d and Jc
d does not interpret any constant from c, this is equivalent to

(pcd)
Jc
d ⊆ pI and further to pJ ⊆ pI , which is the second condition of J ≼c I.
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Jc
d ∪ I |=

p
(dfunc ≤ cfunc) iff, for every function constant f in c,

Jc
d ∪ I |=

p

∀x((f(x)cd ̸= f(x)cd) ∨ (f(x)cd = f(x))),

which is equivalent to saying that fJ(ξ) = u or fJ(ξ) = f I(ξ) for all ξ, the third

condition of J ≼c I.

Lemma 33 For any partial interpretations I and J of signature σ, we have J ≺c I

iff Jc
d ∪ I |=

p
d ≺ c.

Proof. Immediate from Lemma 32 since

• J ≺c I iff J ≼c I and not I ≼c J , and

• Jc
d ∪ I |=

p
d ≺ c iff Jc

d ∪ I |=
p
d ≼ c and Jc

d ∪ I ̸|=
p
c ≼ d.

Lemma 34 For any sentence F of signature σ and any partial interpretations I and

J of σ such that J ≼c I,

(a) if Jc
d ∪ I |=

p
F †(d), then I |=

p
F .

(b) if ⟨J, I⟩ |=
pht

F , then ⟨I, I⟩ |=
pht

F .

Proof. Each of (a) and (b) can be proved by induction on F .

We will show only the case when F is an atomic sentence. The other cases are

straightforward:

Part (a): Let F be an atomic sentence. Assume Jc
d ∪ I |=

p
F †(d), i.e., J |=

p
F .

• Subcase 1: F is of the form p(t). Since J ≼c I, it follows that I |=
p
F .
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• Subcase 2: F is of the form t1 = t2. Since Jc
d ∪ I |= F (d), tJ1 = tJ2 ̸= u. From

J ≼c I, it follows that tI1 = tI2 ̸= u, i.e., I |=
p
F .

Part (b): Let F be an atomic sentence. Assume ⟨J, I⟩ |=
pht

F , i.e., ⟨J, I⟩, h |=
pht

F

• Subcase 1: F is of the form p(t). Since J ≼c I, it follows that ⟨J, I⟩, t |=
pht

F .

• Subcase 2: F is of the form t1 = t2. Since ⟨J, I⟩, h |=
pht

F , tJ1 = tJ2 ̸= u. From

J ≼c I, it follows that tI1 = tI2 ̸= u, i.e., ⟨J, I⟩, t |=
pht

F .

Lemma 35 Let F be a sentence of signature σ, and let I and J be partial interpre-

tations of σ such that J ≼c I. We have J |=
p
grI [F ]I iff ⟨J, I⟩ |=

pht
F .

Proof. By induction on F .

Case 1: F is an atomic sentence. Clearly, grI [F ] is F .

• Subcase 1: I ̸|=
p
F . Then grI [F ]I is ⊥, which J does not satisfy. Further, since

⟨I, I⟩ ̸|=
pht

F , by Lemma 34 (b), it follows that ⟨J, I⟩ ̸|=
pht

F .

• Subcase 2: I |=
p
F . Then grI [F ]I is F . It is clear that J |=

p
F iff ⟨J, I⟩ |=

pht
F .

Case 2: F is G∧H or G∨H. The claim follows immediately from I.H. on G and H.

Case 3: F is G→ H. Consider the following subcases:

• Subcase 1: I ̸|=
p
G→ H. grI [G→ H]I is ⊥, which J does not satisfy. Further,

⟨I, I⟩ ̸|=
p
G→ H. By Lemma 34 (b), ⟨J, I⟩ ̸|=

p
G→ H.

• Subcase 2: I |=
p
G → H. grI [G → H]I is equivalent to grI [G]I → grI [H]I .

Further, ⟨J, I⟩ |=
pht

G → H is equivalent to ⟨J, I⟩ ̸|=
pht

G or ⟨J, I⟩ |=
pht

H. Then

the claim follows from I.H. on G and H.
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Case 4: F is ∀xG(x), or ∃xG(x). By induction on G(ξ⋄) for each ξ in the universe.

Theorem 21 Let F be a first-order sentence of signature σ and let c be a list

of intensional constants. For any partial interpretation I of σ, ⟨I, I⟩ is a partial

equilibrium model of F iff

• I |=
p
F , and

• for every partial interpretation J of σ such that J ≺c I, we have J ̸|=
p
grI [F ]I .

Proof. Clearly, I |=
p
F iff ⟨I, I⟩ |=

pht
F . By Lemma 35, for every partial interpretation

J of σ such that J ≺c I, J ̸|=
p
grI [F ]I iff ⟨J, I⟩ ̸|=

pht
F .

10.7.2 Proof of Theorem 22

Lemma 36 Let F be a sentence of signature σ, and let I and J be partial interpre-

tations of σ. We have Jc
d ∪ I |=

p
F †(d) iff ⟨J, I⟩ |=

pht
F .

Proof. By induction on F .

Case 1: F is an atomic sentence. F †(d) is F (d). Jc
d ∪ I |=

p
F (d) iff J |=

p
F iff

⟨J, I⟩, h |=
pht

F iff ⟨J, I⟩ |=
pht

F .

Case 2: F is G ∧H or G ∨H. Follows by I.H. on G and H.

Case 3: F is G→ H. Consider the following subcases:

• Subcase 1: I ̸|=
p
G→ H. Clearly, Jc

d ∪ I ̸|=
p
G→ H and ⟨J, I⟩ ̸|=

pht
G→ H.
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• Subcase 2: I |=
p
G → H. Then Jc

d ∪ I |=
p
(G → H)†(d) iff Jc

d ∪ I |=
p
G†(d) →

H†(d). Further, ⟨J, I⟩ |=
pht

G → H iff ⟨J, I⟩ ̸|=
pht

G or ⟨J, I⟩ |=
pht

H. Then the

claim follows from I.H. on G and H.

Case 4: F is ∀xG(x), or ∃xG(x). By induction on G(ξ⋄) for each ξ in the universe.

Theorem 22 For any sentence F , a PHT-interpretation ⟨I, I⟩ is a partial equilibrium

model of F relative to c iff I |=
p
CBL[F ; c].

Proof. By definition, CBL[F ; c] is

F ∧ ¬∃ĉ(ĉ≺c ∧ F †(ĉ)).

Clearly, I |=
p
F iff ⟨I, I⟩ |=

pht
F . From Lemma 33 and Lemma 36, it follows that

I |=
p
¬∃ĉ(ĉ≺ c ∧ F †(ĉ)) iff there is no interpretation J of σ such that J ≺c I and

⟨J, I⟩ |=
pht

F .

10.7.3 Proof of Theorem 23

Lemma 37 Assume that K and X are partial multi-valued interpretations of σ and

Y is a propositional interpretation of σprop which is a subset of X such that

K(c) = X(c) iff either c = X(c) ∈ Y or X(c) = undef.

We have that K |= FX (when we view F as a multi-valued formula of σ) iff Y |= FX

(when we view F as a propositional formula of σprop).
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Proof. By induction on F. We show only the case of atoms. The other cases are

straightforward.

Let F be an atom c = v. If X |= c = v, then FX is F and it cannot be that

X(c) = undef . The claim follows from the assumption sinceK |= c = v iff Y |= c = v.

If X ̸|= c = v, then FX is ⊥, which neither K nor Y satisfies.

Theorem 23 Let F be a multi-valued formula of signature σ, which can be also

viewed as a propositional formula of signature σprop.

(a) If a partial interpretation I of σ is a partial multi-valued stable model of F ,

then I can be viewed as an interpretation of σprop that is a propositional stable

model of F ∧ UC σ (in the sense of Ferraris (2005)).

(b) If an interpretation I of σprop is a propositional stable model of F ∧ UC σ (in

the sense of Ferraris (2005)), then I can be viewed as a partial interpretation

of σ that is a partial multi-valued stable model of F .

Proof. (a) Assume X of signature σ is a partial multi-valued stable model of F .

This means X |= F and no partial multi-valued interpretation K that is a subset of

X satisfies FX . Now since X is a partial multi-valued intepretation, X |= UCσ. Then

clearly X |= F when viewed as a propositional formula of signature σprop.

So, we wish to show that there is no interpretation Y of signature σprop such that

Y ⊂ X when X is viewed as a set of propositional atoms and Y |= (F ∧ UCσ)
X

when viewed as a propositional formula of signature σprop. To do so, we prove the

contrapositive. We will show that if there is an interpretation Y of signature σprop such

that Y ⊂ X when X is viewed as a set of propositional atoms and Y |= (F ∧ UCσ)
X

when viewed as a propositional formula of signature σprop, then there is a partial

222



interpretation K that is a subset of X that satisfies FX when viewed as a multi-

valued formula of signature σ.

Given such an interpretation Y , we create K as follows. For each c ∈ σ,

K(c) =

 v if c = v ∈ Y

undef : if c = v /∈ Y for any v

Note that this no longer requires there to be two explicit elements in Dom(c)

Note that since Y ⊂ X, there is at least one c ∈ σ and v ∈ Dom(c) such that

c = v ∈ X but c = v /∈ Y . For this c, K(c) = undef ̸= X(c) so K and X are

different. Further, when c = v ∈ Y , then c = v ∈ X and so X(c) = K(c), thus K is

a subset of X.

In addition, we have that K(c) = X(c) iff c = X(c) ∈ Y or X(c) = undef . Now,

since Y |= (F ∧ UCσ)
X , it follows that Y |= FX . Thus, from Lemma 37 it follows

that since Y |= FX , then K |= FX .

(b) Assume X of signature σprop is a stable model of F ∧ UCσ. This means that

X |= F ∧UCσ and no interpretation Y such that Y ⊂ X satisfies (F ∧UCσ)
X . Since

X |= UCσ, then X can be viewed as a partial multi-valued interpretation. Then

clearly, X |= F .

Now, we wish to show that there is no partial interpretation K of signature σ that

is a subset of X satisfying FX . To do so, we prove the contrapositive. We will show

that if there is a partial interpretation K of signature σ that is a subset of X and

K |= FX , then there is an interpretation Y such that Y ⊂ X that satisfies (F∧UCσ)
X .

Now since we already have seen that X |= UCσ, then (UCσ)
X is equivalent to ⊤ so

we need only show that there is an interpretation Y such that Y ⊂ X that satisfies

FX .
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Given such an interpretation K, we create Y as follows. Let us view K as a set

of propositional atoms. We will take Y = X ∩K. Clearly Y ⊂ X. In addition, we

have that K(c) = X(c) iff c = X(c) ∈ Y or X(c) = undef . Thus, from Lemma 16 it

follows that since Y |= FX , then K |= FX .

10.7.4 Proof of Corollary 6

Corollary 6 For any multi-valued formula F of signature σ and any partial

interpretation I, we have that I is a multi-valued stable model of F iff I is a partial

multi-valued stable model of F ∧ EC σ.

Proof. By Theorem 14, we have that the multi-valued propositional stable models of

F and the propositional stable models of F ∧UEC σ are in one-to-one correspondence.

On the other hand, Theorem 23 tells us that the partial multi-valued stable models

of F ∧EC σ and the propositional stable models of F ∧EC σ ∧UC σ are in one-to-one

correspondence. The corollary follows then by the fact that F ∧EC σ∧UC σ is exactly

F ∧ UEC σ.

10.7.5 Proof of Theorem 24

Given a multi-valued interpretation I, we define the partial first-order interpreta-

tion Ipfo as follows:

• |Ipfo| = {v | v ∈ Dom(c) for some c ∈ σ};
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• Ipfo(v) = v for each v ∈ Dom(c) for each c ∈ σ;

• Ipfo(c) = I(c) for each multi-valued constant c ∈ σ.

Lemma 38 For any MVP-formula F of signature σ, and any partial

MVP-interpretation I of σ whose multi-valued constants are c, I is a partial multi-

valued stable model of F iff Ipfo is a partial stable model of F with respect to c viewed

as a first-order formula of signature σpfo.

Proof. (⇒) Consider any partial multi-valued stable model I of F . This means that

I satisfies F and no subset K of I satisfies F I . It is clear by induction that Ipfo |=p F ;

the base case is when F is an atomic formula c = v and clearly by definition of Ipfo,

we have I |= c = v iff Ipfo |= c = v.

Thus, we must show that there is no J ≺bfc Ipfo such that J |=p F
I pfo . To do so,

we will show that if there is such a J , then we can create a partial MVP-interpreation

K such that K ⊂ I and K |=p F
I .

Assume there is some J such that J ≺bfc Ipfo and J |=p F
I pfo . We create K from

J as follows. For each c ∈ σ

K(c) =

 I(c) if cJ = I(c)

u otherwise

We first show that K ⊂ I. Since J ≺bfc Ipfo, there must be some constant c ∈ σ

such that cJ = u and cI
pfo ̸= u. However, since cI

pfo
= I(c) by definition of Ipfo, we

have that cJ ̸= I(c) and so K(c) = u but I(c) ̸= u. Thus, K ⊂ I.

We now show that K |=p F
I iff J |=p F

I pfo by induction on F . From this, we will

conclude that since we assume I is a partial multi-valued stable model, then no such

K exists and so it follows that no such J exists, which means Ipfo is a partial stable

model of F with respect to c.

225



• Case 1: F is an MVP atom c = v. If I |=p F then by definition, Ipfo |=p F pfo

and so we have F I pfo and F I are both c = v. Then, by definition of J , we have

K |=p F
I iff J |=p F

I pfo .

On the other hand, if I ̸|=p F then by definition, Ipfo ̸|=p F
pfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

• Case 2: F is G∧H. If I |=p F then by definition, Ipfo |=p F
pfo and so we have

F I pfo and F I are GI pfo ∧ HI pfo and GI ∧ HI so the claim follows by induction

on GI , GI pfo and HI pfo , HI .

On the other hand, if I ̸|=p F then by definition, Ipfo ̸|=p F
pfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

• Case 3: F is G∨H. If I |=p F then by definition, Ipfo |=p F
pfo and so we have

F I pfo and F I are GI pfo ∨ HI pfo and GI ∨ HI so the claim follows by induction

on GI , GI pfo and HI pfo , HI .

On the other hand, if I ̸|=p F then by definition, Ipfo ̸|=p F
pfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

• Case 4: F is G → H. If I ̸|=p G then by definition, Ipfo ̸|=p Gpfo and so we

have F I pfo and F I are ⊥ → HI pfo and ⊥ → HI . Then we have K |=p F I and

J |=p F
I pfo .

If I |=p H and I |=p G then by definition, Ipfo |=p H
pfo and Ipfo |=p G

pfo. Then

we have F I pfo and F I are GI pfo → HI pfo and GI → HI so the claim follows by

induction on GI , GI pfo and HI pfo , HI .
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If I ̸|=p H and I |=p G then by definition, Ipfo ̸|=p H
pfo and Ipfo |= Gpfo. Then

we have F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so

in this case, the claim holds.

• Case 5: F is ¬G. If I |=p G then by definition, Ipfo |=p Gpfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

On the other hand, if I ̸|=p G then by definition, Ipfo ̸|=p G
pfo and so we have

F I pfo and F I are both ¬⊥. Then we have K |=p F I and J |=p F I pfo so in this

case, the claim holds.

(⇐) Consider any partial stable model Ipfo of F . This means that Ipfo |= F and there

is no interpretation J such that J ≺c Ipfo and J |= F I pfo . It is clear by induction that

I |=p F ; the base case is when F is an atomic formula c = v and clearly by definition

of Ipfo, we have I |= c = v iff Ipfo |= c = v.

Then it only remains to be shown no partial MVP-interpretation K that is a

subset of I satisfies F I . To show this, we will show that if there is such a K, then we

can create an interpretation J such that J ≺bfc Ipfo and J |= F I pfo .

Assume such a K exists and let J = Kpfo.

We first show that J ≺bfc Ipfo. Since K is a subset of I, there must be some

constant c ∈ σ such that I(c) ̸= u but K(c) = u. Then, by definition of J = Kpfo,

we have that cJ = u but cI
pfo ̸= u. Thus, J ≺bfc Ipfo.

We now show that K |=p F
I iff J |=p F

I pfo by induction on F . From this, we will

conclude that since we assume Ipfo is a partial stable model with respect to c, then

no such J exists and so it follows that no such K exists, which means I is a partial

227



multi-valued stable model of F .

• Case 1: F is an MVP atom c = v. If I |=p F then by definition, Ipfo |=p F pfo

and so we have F I pfo and F I are both c = v. Then, by definition of J , we have

K |=p F
I iff J |=p F

I pfo .

On the other hand, if I ̸|=p F then by definition, Ipfo ̸|=p F
pfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

• Case 2: F is G∧H. If I |=p F then by definition, Ipfo |=p F
pfo and so we have

F I pfo and F I are GI pfo ∧ HI pfo and GI ∧ HI so the claim follows by induction

on GI , GI pfo and HI pfo , HI .

On the other hand, if I ̸|=p F then by definition, Ipfo ̸|=p F
pfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

• Case 3: F is G∨H. If I |=p F then by definition, Ipfo |=p F
pfo and so we have

F I pfo and F I are GI pfo ∨ HI pfo and GI ∨ HI so the claim follows by induction

on GI , GI pfo and HI pfo , HI .

On the other hand, if I ̸|=p F then by definition, Ipfo ̸|=p F
pfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

• Case 4: F is G → H. If I ̸|=p G then by definition, Ipfo ̸|=p Gpfo and so we

have F I pfo and F I are ⊥ → HI pfo and ⊥ → HI . Then we have K |=p F I and

J |=p F
I pfo .
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If I |=p H and I |=p G then by definition, Ipfo |=p H
pfo and Ipfo |=p G

pfo. Then

we have F I pfo and F I are GI pfo → HI pfo and GI → HI so the claim follows by

induction on GI , GI pfo and HI pfo , HI .

If I ̸|=p H and I |=p G then by definition, Ipfo ̸|=p H
pfo and Ipfo |= Gpfo. Then

we have F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so

in this case, the claim holds.

• Case 5: F is ¬G. If I |=p G then by definition, Ipfo |=p Gpfo and so we have

F I pfo and F I are both ⊥. Then we have K ̸|=p F I and J ̸|=p F I pfo so in this

case, the claim holds.

On the other hand, if I ̸|=p G then by definition, Ipfo ̸|=p G
pfo and so we have

F I pfo and F I are both ¬⊥. Then we have K |=p F I and J |=p F I pfo so in this

case, the claim holds.

Theorem 24 Let F be a multi-valued formula of signature σ.

(a) If an interpretation I of σ is a partial multi-valued stable model of F , then Inone

is a multi-valued stable model of F ∧
∧

c∈σ Big(c=none ∨ ¬(c=none)
)
.

(b) If an interpretation J of σnone is a stable model of F∧
∧

c∈σ Big(c=none∨¬(c=

none)
)
then J = Inone for some partial multi-valued stable model I of F .

We first note that by Theorem 14, we can view F∧
∧

c∈σ

(
c=none∨¬(c=none)

)
of signature σnone as a first-order formula under the functional stable model semantics.

Similarly by Proposition 38, we can view F as a first-order formula under the Cabalar

semantics. Then, by Theorem 28 the claim follows.
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10.7.6 Proof of Theorem 25

Lemma 39 Let F be a c-plain sentence of signature σ, let I, K be total interpreta-

tions of σ, and let J be a partial interpretation of σ such that

• J ≺c I and K <c I;

• pJ = pK for every predicate constant;

• fJ(ξ) = u iff fK(ξ) ̸= f I(ξ) for every function constant f and every ξ ∈ |I|n

where n is the arity of f .

We have K |= grI [F ]I iff J |=
p
grI [F ]I .

Proof.

Case 1: F is an atomic sentence of the form p(t). Since F is c-plain, t contains no

constants from c, and by the assumption J ≺c I and K <c I, we have tJ = tK = tI .

Since J and K agree on p, the claim holds.

Case 2: F is an atomic sentence of the form f(t) = t1.

• Subcase 1: I ̸|= f(t) = t1. Then grI [F ]I is ⊥, so the claim holds.

• Subcase 2: I |= f(t) = t1. Then grI [F ]I is f(t) = t1. Further, from the

assumption that F is c-plain, t and t1 contain no constants from c, and by the

assumptions that J ≺c I, K <c I and that I is total, we have tJ = tK = tI ̸= u

and tJ1 = tK1 = tI1 ̸= u.

Either f(t)J ̸= u or f(t)J = u. In the first case, since J ≺c I, we have

f(t)J = f(t)I . Also, by the assumption on K, f(t)K = f(t)I . Consequently,

J |= f(t) = t1 and K |= f(t) = t1.
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In the second case, J ̸|= f(t) = t1. Also, by the assumption on K, f(t)K ̸=

f(t)I = tI1 = tK1 , so K ̸|= f(t) = t1.

The other cases are straightforward.

Recall the definitions: for two classical interpretations I,K of the same signature σ

with the same universe and a list c of distinct predicate and function constants, we

write K <c I if

K and I agree on all constants in σ \ c, (10.3)

pK ⊆ pI for all predicates p in c, and (10.4)

K and I do not agree on c. (10.5)

Similarly, for two partial interpretations J and I of the same signature σ over the

same universe |I|, and a set of constants c, J ≺c I is equivalent to

J and I agree on all constants in σ \ c, (10.6)

pJ ⊆ pI for all predicates p in c, and (10.7)

J and I do not agree on c. (10.8)

with the additional requirement that

for every function constant f ∈ c, and every ξ ∈ |I|n where n

is the arity of f , f I(ξ) = fJ(ξ) or fJ(ξ) = u.
(10.9)

If we drop (10.8), this is equivalent to J ≼c I.

Lemma 40 Let F be a c-plain sentence of signature σ, and let I be total interpre-

tation of σ that satisfies ∃xy(x ̸= y). There is a partial interpretation J such that

J ≺c I and J |=
p
grI [F ]I iff there is a total interpretation K such that K <c I and

K |= grI [F ]I .
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Proof. Left-to-right: Let J be a partial interpretation such that J ≺c I and J |=

grI [F ]I . We construct the total interpretation K as follows. For each constant d not

in c, dK = dJ = dI . For each predicate constant p in c and each ξ ∈ |I|n where n is

the arity of p,

pK(ξ) = pJ(ξ) ,

and, for each function constant f in c and each ξ ∈ |I|n where n is the arity of f ,

fK(ξ) =

 f I(ξ) if fJ(ξ) ̸= u;

m(f I(ξ)) otherwise

where m is a mapping m : |I| → |I| such that ∀x(m(x) ̸= x) (note that such a

mapping requires I |= ∃xy(x ̸= y)).

We now show that K <c I. It is immediate from the assumption J ≺c I and by

definition that (10.3) and (10.4) hold. Consider the following cases.

• Case 1: For every function constant f ∈ c and every ξ ∈ |I|n where n is the arity

of f , fJ(ξ) = f I(ξ) (note that since I is total, these cannot be u). From (10.8),

it follows that there is at least one predicate constant p in c such that pJ ⊂ pI .

However, by definition of K, pK ⊂ pI and so (10.5) holds.

• Case 2: There is some function constant f ∈ c and some ξ ∈ |I|n where n is

the arity of f such that fJ(ξ) ̸= f I(ξ). From (10.9), it follows that fJ(ξ) = u

and thus by definition of K, fK(ξ) = m(f I(ξ)) ̸= f I(ξ) and so (10.5) holds.

By Lemma 39, the fact K |= grI [F ]I follows from the assumption J |=
p
grI [F ]I .

Right-to-left: Let K be a total interpretation such that K <c I and K |= grI [F ]I .

We construct the partial interpretation J as follows. For each constant d not in c,
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dK = dJ = dI . For each predicate constant p in c and each ξ ∈ |I|n where n is the

arity of p,

pJ(ξ) = pK(ξ) ,

and, for each function constant f in c and each ξ ∈ |I|n where n is the arity of f ,

fJ(ξ) =

 f I(ξ) if fK(ξ) = f I(ξ);

u otherwise.

We now show that J ≺c I. It is immediate from the assumption that K <c I and

by definition that (10.6) and (10.7) hold. Consider the following cases.

• Case 1: For every function constant f ∈ c and every ξ ∈ |I|n where n is the

arity of f , fK(ξ) = f I(ξ). By definition of J , fJ(ξ) = f I(ξ) and so (10.9)

holds. Now since (10.5) holds, there is at least one predicate constant p such

that pK ⊂ pI . However, by definition of J , pJ ⊂ pI and so (10.8) holds.

• Case 2: There is some function constant f ∈ c and some ξ ∈ |I|n where n is

the arity of f such that fK(ξ) ̸= f I(ξ). By definition of J , it must be that

fJ(ξ) = u and thus (10.9) and (10.8) both hold.

By Lemma 39, the fact J |=
p
grI [F ]I follows from the assumption K |= grI [F ]I .

Theorem 25 For any c-plain formula F of signature σ, any list c of intensional

constants, and any total interpretation I of σ satisfying ∃xy(x ̸= y), I |= SM[F ; c] iff

I |=
p
CBL[F ; c].

Proof. We use Theorem 1 and Theorem 21 to refer to the grounding and reduct

based definitions rather than the second-order logic based definitions. The claim

follows from Lemma 40.
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10.7.7 Proof of Theorem 26

Theorem 26 For any sentence F of signature σ in Clark Normal Form that is

tight on c, and any total interpretation I of σ satisfying ∃xy(x ̸= y), I |= SM[F ; c]

iff I |=
p
CBL[F ; c].

Proof.

By Corollary 7, I |=
p
CBL[F ; c] iff I |= SM[UF c(F ); c], so it remains to check that

I |= SM[UF c(F ); c] iff I |= SM[F ; c].

It is easy to check that the completion of UF c(F ) relative to c is equivalent to the

completion of F relative to c. By Theorem 2 from Bartholomew and Lee (2013a), we

conclude that SM[UF c(F ); c] is equivalent to SM[F ; c].

10.7.8 Proof of Theorem 27

Lemma 41 For any partial interpretation I and any atomic sentence p(t1, . . . , tk)

and f(t1, . . . , tk−1) = tk,

(a) I |=
p
p(t1, . . . , tk) iff

I |=
p

∃xn1 . . . xnj
(p(t1, . . . , tk)

′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj
= xnj

)

where {n1, . . . , nj} ⊆ {1, . . . , k} and p(t1, . . . , tk)
′′ is obtained from p(t1, . . . , tk)

by replacing each tni
in p(t1, . . . , tk) with xni

.
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(b) I |=
p
f(t1, . . . , tk−1) = tk iff

I |=
p

∃xn1 . . . xnj
((f(t1, . . . , tk−1) = tk)

′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj
= xnj

)

where {n1, . . . , nj} ⊆ {1, . . . , k} and (f(t1, . . . , tk−1) = tk)
′′ is obtained from

f(t1, . . . , tk−1) = tk by replacing each tni
in f(t1, . . . , tk−1) = tk with xni

.

Proof. Consider the following cases.

Case 1: tIi = u for some i ∈ {n1, . . . , nj}. Clearly, I ̸|=
p
p(t1, . . . , tk) and I ̸|=

p

f(t1, . . . , tk−1) = tk. It is also the case that I ̸|=
p
ti = ξ⋄ for any ξ ∈ |I| so we have

I ̸|=
p

∃xn1 . . . xnj
(p(t1, . . . , tk)

′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj
= xnj

) (10.10)

and

I ̸|=
p

∃xn1 . . . xnj
((f(t1, . . . , tk−1) = tk)

′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj
= xnj

) . (10.11)

Case 2: tIi = u for some i ∈ {1, . . . , k} \ {n1, . . . , nj}. Clearly, I ̸|=
p
p(t1, . . . , tk) and

I ̸|=
p
f(t1, . . . , tk−1) = tk. Also, since ti remains in p(t1, . . . , tk)

′′ and (f(t1, . . . , tk) =

t)′′, we have I ̸|=
p
p(t1, . . . , tk)

′′ and I ̸|=
p
(f(t1, . . . , tk) = t)′′, from which (10.10) and

(10.11) follow.

Case 3: tIi ̸= u for all i ∈ {1, . . . , k}. Condition (a) clearly holds because it coincides

with classical equivalence. For Condition (b), consider two subcases:

• Subcase 1: f(t1, . . . , tk−1)
I ̸= u. Clearly, Condition (b) coincides with classical

equivalence.

• Subcase 2: f(t1, . . . , tk−1)
I = u. Clearly, I ̸|=

p
f(t1, . . . , tk−1) = tk. Now in

∃xn1 . . . xnj
((f(t1, . . . , tk−1) = tk)

′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj
= xnj

),
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there is only one set of values for xn1 . . . xnj
that satisfies the last j con-

junctive terms—when xni
is mapped to tIni

. However, for this set of values,

((f(t1, . . . , tk−1))
′′)I = f(t1, . . . , tk−1)

I = u (where (f(t1, . . . , tk−1))
′′ is obtained

from f(t1, . . . , tk−1) by replacing each tni
with xni

) so that

I ̸|=
p
∃xn1 . . . xnj

((f(t1, . . . , tk−1) = tk)
′′ ∧ tn1 = xn1 ∧ · · · ∧ tnk

= xnk
).

Lemma 42 Given a sentence F , a set of constants c, and a partial interpretation I,

we have I |=
p
F iff I |=

p
UF c(F ).

Proof. The proof is by induction on the number of unfolding that needs to be done.

More precisely, for any formula F , we define NU c(F ) (“Needed Unfolding”) as follows.

• NU c(p(t1, . . . , tk)) = 0 if p(t1, . . . , tk) is c-plain;

max(NU c(t1 = x), . . . ,NU c(tk = x)) + 1 otherwise.

• NU c(f(t1, . . . , tk−1) = tk) = 0 if f(t1, . . . , tk−1) = tk is c-plain;

max(NU c(t1 = x), . . . ,NU c(tk = x)) + 1 otherwise.

• NU c(G⊙H) = max(NU c(G),NU c(H)) + 1, where ⊙ ∈ {∧,∨,→}.

• NU c(QxG) = NU c(G) + 1, where Q ∈ {∀,∃}.

Case 1: F is a c-plain atomic sentence. F is identical to UF c(F ) so the claim holds.

Case 2: F is p(t) where t contains at least one constant from c. Let tn1 . . . tnj
be the

j terms in t containing at least one constant from c. Now UF c(F ) is

∃xn1 . . . xnj
(p(t1, . . . , tk)

′′∧UF c(tn1 = xn1)∧· · ·∧UF c(tnj
= xnj

)) where p(t1, . . . , tk)
′′
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is obtained from p(t1, . . . , tk) by replacing each tni
in p(t1, . . . , tk) with xni

. Since

NU c(F ) > NU c(tni
= ξ⋄) for each ξ ∈ |I| and each i ∈ {1, . . . , j}, by I.H. on

tni
= ξ⋄, UF c(tni

= xni
) can be replaced by tni

= xni
so that I |=

p
UF c(F ) iff

I |=
p
∃xn1 . . . xnj

(p(t1, . . . , tk)
′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj

= xnj
). By Lemma 41 the latter

is equivalent to I |=
p
F .

Case 3: F is f(t) = t1 where at least one of t and t1 contain at least one constant

from c. Let tn1 . . . tnj
be the j terms in t and t1 containing at least one constant from

c. Now UF c(F ) is ∃xn1 . . . xnj
((f(t) = t1)

′′ ∧UF c(tn1 = xn1)∧ · · · ∧UF c(tnj
= xnj

)),

where (f(t) = t1)
′′ is obtained from f(t) = t1 by replacing each tni

in f(t) = t1 with

xni
. Since NU c(F ) > NU c(tni

= ξ⋄) for each ξ ∈ |I| and each i ∈ {1, . . . , j}, by

I.H. on tni
= ξ⋄, UF c(tni

= xni
) can be replaced by tni

= xni
so that I |=

p
UF c(F ) iff

I |=
p
∃xn1 . . . xnj

((f(t) = t1)
′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj

= xnj
). By Lemma 41 the latter

is equivalent to I |=
p
F .

Case 4: F is G⊙H for ⊙ ∈ {∧,∨,→}. By I.H. on G and H.

Case 5: F is QxF (x) for Q ∈ {∀,∃}. By I.H. on F (ξ⋄) for each ξ ∈ |I|.

Theorem 27 For any sentence F , any list c of constants, and any partial interpre-

tation I, we have I |=
p
CBL[F ; c] iff I |=

p
CBL[UF c(F ); c].

Proof. By definition, CBL[F ; c] is

F ∧ ¬∃ĉ(ĉ≺c ∧ F †(ĉ))

and CBL[UF c(F ); c] is by definition

UF c(F ) ∧ ¬∃ĉ(ĉ≺c ∧ (UF c(F ))†(ĉ)).

Now, for any partial interpretation I of signature σ ⊇ c, by Lemma 42, I |=
p
F iff
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I |=
p
UF c(F ). It is sufficient to show that, for any partial interpretation J , Jc

d ∪ I |=
p

d ≺ c ∧ F †(d) iff Jc
d ∪ I |=

p
d ≺ c ∧ (UF c(F ))†(d).

Case 1: F is an atomic sentence. F †(d) is F (d), and UF c(F )†(d) is UF c(F )(d).

Jc
d ∪ I |=

p
F (d) iff J |=

p
F . Similarly, Jc

d ∪ I |=
p
UF c(F )(d) iff J |=

p
UF c(F ). By

Lemma 41, J |=
p
F iff J |=

p
UF c(F ), so the claim follows.

Case 2: F is G⊙H for ⊙ ∈ {∧,∨}. By induction on G and H.

Case 3: F is G → H. F †(d) is (G†(d) → H†(d)) ∧ (G → H) and (UF c(F ))†(d) is

(UF c(G))†(d) → (UF c(H))†(d)) ∧ (UF c(G) → UF c(H)). The equivalence between

the first conjunctive terms (under partial satisfaction) is by I.H. on G and H, and

the equivalence between the second conjunctive terms (under partial satisfaction) is

by Lemma 42.

Case 4: F is QxG(x) for Q ∈ {∀,∃}. By I.H. on F (ξ⋄) for each ξ ∈ |I|.

10.7.9 Proof of Corollary 7

Corollary 7 For any sentence F , any list c of constants, and any total interpretation

I satisfying ∃xy(x ̸= y), we have I |=
p
CBL[F ; c] iff I |=

p
CBL[UF c(F ); c] iff I |=

SM[UF c(F ); c].

Proof. The equivalence between the first and the second conditions is by Theo-

rem 27. The equivalence between the second and the third conditions is by Theo-

rem 25 since UF c(F ) is c-plain.
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10.7.10 Proof of Theorem 28

Lemma 43 Given a σ-plain formula G of signature σ, a partial interpretation I

satisfies G iff Inone satisfies Gnone.

Proof. By induction on G.

• Case 1: G is a (σ-plain) ground atomic formula of signature σ∗ which is σ

extended with object names from |I| (not including none). Gnone is the same

as G in this case.

– G is p(ξ∗). Note that since ξ∗ are object names, I does not map any of

these to u. Thus, by definition of Inone, p(ξ∗)I
none

= p(ξ∗)I so certainly the

claim holds.

– G is ξ∗1 = ξ∗2 . The claim follows immediately from the fact that (ξ∗1)
I =

(ξ∗1)
I none = ξ1 and (ξ∗2)

I = (ξ∗2)
I none = ξ2.

– G is f(ξ∗) = ξ∗. Note that since ξ∗ and ξ∗ are object names, I does not

map any of these to u. Now if f(ξ∗)I = u, then by definition of Inone,

f(ξ∗)I
none

= none. In this case, neither I nor Inone satisfy G. On the

other hand, if f(ξ∗)I ̸= u, then by definition of Inone, f(ξ∗)I
none

= f(ξ∗)I

so certainly the claim follows.

• Case 2: G is H1 ⊙H2 where ⊙ ∈ {∧,∨,→}. Gnone is (H1)
none ⊙ (H2)

none. By

I.H. on H1 and H2, the claim follows.

• Case 3: G is ∃xH(x). Gnone is ∃x(H(x)none ∧ x ̸= none).

(⇒) Assume I |=
p
G. That means there is some ξ ∈ |I| such that I |=

p
H(ξ). By

I.H. on H(ξ⋄) for every ξ ∈ |I|, we then have that there is some ξ ∈ |I| such
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that Inone |= H(ξ)none. Since ξ ̸= none for all ξ ∈ |I|, we have that there is

some ξ ∈ |I| such that Inone |= H(ξ)none∧ξ ̸= none. Finally, since |I| ⊆ |Inone|,

we further have that there is some ξ ∈ |Inone| such that Inone |= H(ξ)none ∧ ξ ̸=

none, which is the definition of Inone |= Gnone.

(⇐) Assume Inone |= Gnone. That means there is some ξ ∈ |Inone| such that

Inone |= H(ξ)none ∧ ξ ̸= none. It then follows that there is some ξ ∈ |I| such

that Inone |= H(ξ)none. By I.H. on H(ξ⋄) for every ξ ∈ |I|, it then follows that

there is some ξ ∈ |I| such that I |=
p
H(ξ), which is the definition of I |=

p
G.

• Case 4: G is ∀xH(x). Gnone is ∀x(x ̸= none→ H(x)none).

(⇒) Assume I |=
p
G. That means for every ξ ∈ |I|, we have I |=

p
H(ξ). By I.H. on

H(ξ⋄) for every ξ ∈ |I|, it follows that for every ξ ∈ |I| we have Inone |= H(ξ)none.

Since ξ ̸= none for all ξ ∈ |I|, we have that there is some ξ ∈ |I| such that

Inone |= ξ ̸= none → H(ξ)none. Finally, since |I| ⊆ |Inone| and since the

implication ξ ̸= none → H(ξ)none is trivially satisfied when ξ = none, it

further follows that for every ξ ∈ |Inone| we have Inone |= ξ ̸= none→ H(ξ)none,

which is the definition of Inone |= Gnone.

(⇐) Assume Inone |= Gnone. That means for every ξ ∈ |Inone| we have Inone |=

ξ ̸= none → H(ξ)none. Since |I| ⊆ |Inone|, it certainly follows that for every

ξ ∈ |I| we have Inone |= ξ ̸= none → H(ξ)none. Then, since ξ ̸= none is true

for every ξ ∈ |I|, it follows that for every ξ ∈ |I| we have Inone |= H(ξ)none.

Then by I.H. on H(ξ⋄) for every ξ ∈ |I| it follows that for every ξ ∈ |I| we have

I |=
p
H(ξ), which is the definition of I |=

p
G
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Note: the σ-plain assumption is only used for the atomic formulas t1 = t2 not

p(t).

Theorem 28 For any sentence F of signature σ,

(a) If I is a Cabalar stable model of F relative to c, then Inone is a stable model of

(10.2), recalling that this is

(UF σ(F ))none ∧
∧
f∈c

∀x⟨f(x) = none⟩,

relative to c.

(b) If an interpretation J such that noneJ = none is a stable model of (10.2)

relative to c, then J = Inone for some Cabalar stable model I of F relative to

c.

We first note that by Theorem 7 in Bartholomew and Lee (2013b), I is a Cabalar

stable model of F relative to c iff I is a Cabalar stable model of UFσ(F ) relative to c

(the theorem is about UFc(F ) but the same proof should hold for UFσ(F )).

For notational simplicity, let G = UFσ(F ). We will prove the theorem in terms

of G. Further, we note that the Cabalar stable models of G are precisely the Cabalar

stable models of F by Theorem 7 in Bartholomew and Lee (2013b). That is, we will

show

(a) If I is a Cabalar stable model of G relative to c, then Inone is a stable model of

Gnone ∧
∧
f∈c

∀x⟨f(x) = none⟩

relative to c.
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(b) If an interpretation J such that noneJ = none is a stable model of

Gnone ∧
∧
f∈c

∀x⟨f(x) = none⟩

relative to c then J = Inone for some Cabalar stable model I of G relative to c.

Proof. (a) Assume that I is a Cabalar stable model of G relative to c. That is, I |=
p
G

and for every partial interpretation K such that K ≺c I, we have K ̸|=
p
grI [G]I . We

wish to show that Inone is a stable model of Gnone∧
∧

f∈c ∀x⟨f(x) = none⟩ relative to

c. That is, we wish to show that Inone |= Gnone∧
∧

f∈c ∀x⟨f(x) = none⟩ and for every

interpretation L such that L <c Inone, we have L ̸|= grInone(Gnone ∧
∧

f∈c ∀x⟨f(x) =

none⟩)I none .

By Lemma 43, we have that since we assume I |=
p
G, we conclude that Inone |=

Gnone. Then, since
∧

f∈c ∀x⟨f(x) = none⟩ is a tautology in classical logic, we have

Inone |= Gnone ∧
∧

f∈c ∀x⟨f(x) = none⟩.

We now show that if for every partial interpretation K such that K ≺c I, we

have K ̸|=
p
grI [G]I then for any L such that L <c Inone, we have L ̸|= grInone(Gnone ∧∧

f∈c ∀x⟨f(x) = none⟩)I none . To do so, we prove the contrapositive; if there is some

L such that L <c Inone and L |= grInone(Gnone ∧
∧

f∈c ∀x⟨f(x) = none⟩)I none , then

there is some partial interpretation K such that K ≺c I and K ̸|=
p
grI [G]I . Given

such an L, we construct such a K as follows. First, let |K| = |I|. For every predicate

p ∈ σ, we define pK = pL. For every function f ∈ σ of arity n and every tuple of

objects ξ from (|I| ∪ {u})n, we define

fK(ξ) =


fL(ξ) if fL(ξ)̸=none, fL(ξ)=f Inone

(ξ),

and ξ ∈ |I|n;

u otherwise.

Assuming L <c Inone, we show that K ≺c I. We first show that K ≼c I.

242



• By definition, K and I both have the same universe.

• Since L and Inone agree on all constants not in c, it is easy to see by definition

of K and Inone that K and I agree on all constants not in c.

• Consider any predicate constant p ∈ c and any tuple ξ from |I|. If p(ξ)K = 1,

then by definition of K, it must be that p(ξ)L = 1. Then, since pL ⊆ pI
none

,

it must be that p(ξ)I
none

= 1. Finally, by definition of Inone, it follows that

p(ξ)I = 1. Thus it holds that pK ⊆ pI .

• Consider any function constant f ∈ c of arity n and any tuple ξ from |I|n. We

have three cases and wish to show that fk(ξ) = u or fK(ξ) = f I(ξ).

– If fL(ξ) = none, then by definition of K, fK(ξ) = u so in this case, the

claim follows.

– If fL(ξ) ̸= none and fL(ξ) = f Inone
. Then by definition of K, fK(ξ) =

fL(ξ) = f Inone
(ξ). Then, by definition of Inone, we have f Inone

(ξ) = f I(ξ)

and so fK(ξ) = f I(ξ) so in this case, the claim follows.

– If fL(ξ) ̸= none and fL(ξ) ̸= f Inone
. Then by definition of K, fK(ξ) = u

so in this case, the claim follows.

If fL(ξ) = f Inone
(ξ), then by definition of K, fK(ξ) = fL(ξ) = f Inone

(ξ).

Then, by definition of Inone, we have fK(ξ) = f I(ξ). On the other hand, if

fL(ξ) ̸= f Inone
(ξ), then by definition of K, we have fK(ξ) = u. Therefore, it

holds for every function constant f ∈ σ and every list ξ of elements from |I|

that fk(ξ) = u or fK(ξ) = f I(ξ).

Thus, we have K ≼c I.
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We now show (I ≼c K) does not hold and conclude that K ≺c I. Since L <c

Inone, we consider two cases:

• Case 1: There is some predicate p ∈ c of arity n and tuple ξ of objects from

|Inone| such that p(ξ)L = 0 but p(ξ)I
none

= 1. We first note that by definition

of Inone that if ξ is not in |I|n, then p(ξ)I
none

= 0 so it must be that ξ is in |I|n.

Then by definition of K, we have that p(ξ)K = 0 and by definition of Inone, it

follows that p(ξ)I = 1 so in this case (I ≼c K) does not hold.

• Case 2: There is some function f ∈ c of arity n and tuple ξ of objects from

|Inone| such that f(ξ)L ̸= f(ξ)I
none

. We need to show that f(ξ)I ̸= u and

f(ξ)K ̸= f(ξ)I .

We show that for this to be the case, it must be that f(ξ)I
none ̸= none. As-

sume to the contrary that f(ξ)I
none

= none, then since L |= grInone(Gnone ∧∧
f∈c ∀x⟨f(x) = none⟩)I none , and in particular L |= grInone(

∧
f∈c ∀x⟨f(x) =

none⟩)I none , which contains a conjunctive term equivalent to f(ξ) = none∨⊥

and so it must be that f(ξ)L = none which contradicts the assumption that

f(ξ)L ̸= f(ξ)I
none

.

Thus it must be that f(ξ)I
none ̸= none. By definition of Inone, this means that

ξ is in |I|n and f I ̸= u. However, by definition of K, since fL(ξ) = f Inone
(ξ)

does not hold, fK(ξ) = u and so we have fK(ξ) ̸= f I(ξ). Thus in this case

(I ≼c K) does not hold.

We now show by induction on G that K |=
p
grI [G]I iff L |= grInone(Gnone)I

none
and

then since we assume L |= grInone(Gnone∧
∧

f∈c ∀x⟨f(x) = none⟩)I none then certainly

L |= grInone(Gnone)I
none

, and then we will conclude that K |=
p
grI [G]I .
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• Case 1: G is a (σ-plain) ground atomic formula of extended signature σ∗ which

is σ extended with object names from |I| (not including none).

If I ̸|=
p
G, then Inone ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grInone(Gnone)I
none

are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

If instead I |=
p
G, then Inone |= Gnone by Lemma 43 and so the reducts grI [G]I

and grInone(Gnone)I
none

are both G, so by definition of K, K |=
p
G iff L |= G.

• Case 2: G is H1⊙H2 where ⊙ ∈ {∧,∨,→} and so grI [G]I is grI [H1]
I⊙grI [H2]

I .

Gnone is (H1)
none ⊙ (H2)

none.

If I ̸|=
p
G, then Inone ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grInone(Gnone)I
none

are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

On the other hand, if I |=
p
G, then Inone |= Gnone by Lemma 43 and so

grInone [Gnone]I
none

is

grInone [(H1)
none]I

none ⊙ grInone [(H2)
none]I

none

.

By I.H. on grI [H1]
I and grInone [(H1)

none]I
none

and grI [H2]
I and

grInone [(H2)
none]I

none
.

• Case 3: G is ∃xH(x). Gnone is ∃x(H(x)none ∧ x ̸= none).

If I ̸|=
p
G, then Inone ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grInone(Gnone)I
none

are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

On the other hand, if I |=
p
G, then Inone |= Gnone by Lemma 43 and so grI [G]I
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is

{grI [H(ξ⋄)]I : ξ ∈ |I|}∨

and grInone [Gnone]I
none

is

{grInone [H(ξ⋄)none]I
none ∧ ξ⋄ ̸= none : ξ ∈ |(Inone)|}∨.

Now we note that |(Inone)| = |I| ∪ {none}. Further, we note that since ξ⋄ ̸=

none is not satisfied when ξ = none, the latter reduct is equivalent to

{grInone [H(ξ⋄)none]I
none ∧ ξ⋄ ̸= none : ξ ∈ |I|}∨.

The further, we note that for all ξ ∈ |I|, ξ⋄ ̸= none is satisfied so that this is

further equivalent to

{grInone [H(ξ⋄)none]I
none

: ξ ∈ |I|}∨.

Thus the claim follows by induction on grI [H(ξ⋄)] and grInone [H(ξ⋄)none] for

every ξ ∈ |I|.

• Case 4: G is ∀xH(x). Gnone is ∀x(x ̸= none→ H(x)none).

If I ̸|=
p
G, then Inone ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grInone(Gnone)I
none

are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

On the other hand, if I |=
p
G, then Inone |= Gnone by Lemma 43 and so grI [G]I

is

{grI [H(ξ⋄)]I : ξ ∈ |I|}∧

and grInone [Hnone]I
none

is

{ξ⋄ ̸= none→ grInone [H(ξ⋄)none]I
none

: ξ ∈ |(Inone)|}∧.
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Now we note that |(Inone)| = |I| ∪ {none}. Further, we note that since ξ⋄ ̸=

none is not satisfied when ξ = none, the latter reduct is equivalent to

{ξ⋄ ̸= none→ grInone [H(ξ⋄)none]I
none

: ξ ∈ |I|}∧.

The further, we note that for all ξ ∈ |I|, ξ⋄ ̸= none is satisfied so that this is

further equivalent to

{grInone [H(ξ⋄)none]I
none

: ξ ∈ |I|}∧.

Thus the claim follows by induction on grI [H(ξ⋄)] and grInone [H(ξ⋄)none] for

every ξ ∈ |I|.

(b) We assume that J is an interpretation such that noneJ = none and J is a

stable model of Gnone ∧∀x⟨f(x) = none⟩. We wish to show that J = Inone for some

Cabalar stable model I of G relative to c.

We will show this by constructing such an I from J . Let I = J invnone where

J invnone is the partial interpretation obtained from J as follows:

• |J invnone| = |J | \ {none}.

• for every function constant f ∈ σ and ξ ∈ |I|n where n is the arity of f ,

fJinvnone

(ξ) =

 fJ(ξ) if fJ(ξ) ̸= none;

u otherwise;

• For every predicate p ∈ σ and ξ ∈ |I|n where n is the arity of p, pJ
invnone

(ξ) =

pJ(ξ).

We now wish to show that I |=
p
G and for every partial interpretation K such that

K ≺c I, we have K ̸|=
p
grI [G]I .
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Since we assume J |= Gnone ∧
∧

f∈c ∀x⟨f(x) it follows that J |= Gnone, then by

Lemma 43 (noting that Inone = (J invnone)none = J), we conclude that I |=
p
G.

We now show that if for any L such that L <c J , we have L ̸|= grJ(G
none ∧∧

f∈c ∀x⟨f(x)⟩J , then for every partial interpretation K such that K ≺c I, we have

K ̸|=
p
grI [G]I .

To do so, we prove the contrapositive; if there is some partial interpretation K

such that K ≺c I and K ̸|=
p
grI [G]I , then there is some L such that L <c J and

L |= grJ(G
none∧

∧
f∈c ∀x⟨f(x)⟩J . Given such an K, we construct such a L as follows.

First, let |L| = |J |. For every predicate p ∈ σ, we define pL = pK . For every function

f ∈ σ of arity n and every tuple of objects ξ from (|J |)n, we define

fL(ξ) =

 fK(ξ) if fK(ξ) ̸= u and ξ ∈ |I|n;

none otherwise.

Assuming K ≺c I, we show that L <c J .

• By definition, L and J both have the same universe.

• Since K and I agree on all constants not in c, it is easy to see by definition of

L and J that L and J agree on all constants not in c.

• Consider any predicate constant p ∈ c and any tuple ξ from |J |. We first note

by definition of L that if ξ has at least one none, then pL(ξ) = 0 so there is

nothing to be proven. Now we consider when ξ has no none. If pL(ξ) = 1, then

by definition of L, it must be that pK(ξ) = 1. Then, since pK ⊆ pI , it must be

that pI(ξ) = 1. Finally, by definition of I, it follows that pI(ξ) = 1 since ξ is

from |I|. Thus it holds that pL ⊆ pJ .

• We wish to show that L and J do not agree on c. We consider two cases
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– There is some predicate p ∈ c and some list of objects ξ from |I| such that

pK(ξ) = 0 and pI(ξ) = 1. By definition of I, we have pJ(ξ) = 1 and by

definition of L, we have pL(ξ) = 0 so in this case, the claim holds.

– There is some function f ∈ c and some list of objects ξ from |I| such that

f I(ξ) ̸= u and fK(ξ) ̸= f I(ξ). In particular, since K ≼c I, this means that

fK = u. Now since f I(ξ) ̸= u, by definition of I, we have f I(ξ) ̸= none

and by definition of L, we have fL(ξ) = none so in this case, the claim

holds.

Thus, we have L <c J .

To show that L |= grJ(
∧

f∈c ∀x⟨f(x)⟩J we first note that grJ(
∧

f∈c ∀x⟨f(x)⟩J is

equivalent to the conjunction of f(ξ) = none for every f ∈ σ and ξ from |J | such

that fJ(ξ) = none. We see that by definition of I that it must be that f I(ξ) = u.

Then, since we assume that K ≺c I, we have that fK(ξ) = u. Then, by definition of

L, we have fL(ξ) = none. Thus we have L |= grJ(
∧

f∈c ∀x⟨f(x)⟩J .

We now show by induction on G that K |=
p
grI [G]I iff L |= grJ(G

none)J and then

since we assume K |=
p
grI [G]I , we will conclude that L |= grJ(G

none)J . Finally, since

we have already seen that L |= grJ(
∧

f∈c ∀x⟨f(x)⟩J , we will concluded further that

L |= grJ(G
none ∧

∧
f∈c ∀x⟨f(x)⟩J

• Case 1: G is a (σ-plain) ground atomic formula of extended signature σ∗ which

is σ extended with object names from |I| (not including none).

If I ̸|=
p
G, then J ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grJ(G
none)J are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

If instead I |=
p
G, then J |= Gnone by Lemma 43 and so the reducts grI [G]I and
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grJ(G
none)J are both G, so by definition of K, K |=

p
G iff L |= G.

• Case 2: G is H1⊙H2 where ⊙ ∈ {∧,∨,→} and so grI [G]I is grI [H1]
I⊙grI [H2]

I .

Gnone is (H1)
none ⊙ (H2)

none.

If I ̸|=
p
G, then J ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grJ(G
none)J are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

On the other hand, if I |=
p
G, then J |= Gnone by Lemma 43 and so grJ [G

none]J

is

grJ [(H1)
none]J ⊙ grJ [(H2)

none]J .

By I.H. on grI [H1]
I and grJ [(H1)

none]J and grI [H2]
I and grJ [(H2)

none]J .

• Case 3: G is ∃xH(x). Gnone is ∃x(H(x)none ∧ x ̸= none).

If I ̸|=
p
G, then J ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grJ(G
none)J are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

On the other hand, if I |=
p
G, then J |= Gnone by Lemma 43 and so grI [G]I is

{grI [H(ξ⋄)]I : ξ ∈ |I|}∨

and grJ [G
none]J is

{grJ [H(ξ⋄)none]J ∧ ξ⋄ ̸= none : ξ ∈ |J |}∨.

Now we note that |J | = |I| ∪ {none}. Further, we note that since ξ⋄ ̸= none

is not satisfied when ξ = none, the latter reduct is equivalent to

{grJ [H(ξ⋄)none]J ∧ ξ⋄ ̸= none : ξ ∈ |I|}∨.
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The further, we note that for all ξ ∈ |I|, ξ⋄ ̸= none is satisfied so that this is

further equivalent to

{grJ [H(ξ⋄)none]J : ξ ∈ |I|}∨.

Thus the claim follows by induction on grI [H(ξ⋄)] and grJ [H(ξ⋄)none] for every

ξ ∈ |I|.

• Case 4: G is ∀xH(x). Gnone is ∀x(x ̸= none→ H(x)none).

If I ̸|=
p
G, then J ̸|= Gnone by Lemma 43 and so the reducts grI [G]I and

grJ(G
none)J are both ⊥, which neither L nor K satisfy so in this case, the

claim holds.

On the other hand, if I |=
p
G, then J |= Gnone by Lemma 43 and so grI [G]I is

{grI [H(ξ⋄)]I : ξ ∈ |I|}∧

and grJ [H
none]J is

{ξ⋄ ̸= none→ grJ [H(ξ⋄)none]J : ξ ∈ |J |}∧.

Now we note that |J | = |I| ∪ {none}. Further, we note that since ξ⋄ ̸= none

is not satisfied when ξ = none, the latter reduct is equivalent to

{ξ⋄ ̸= none→ grJ [H(ξ⋄)none]J : ξ ∈ |I|}∧.

The further, we note that for all ξ ∈ |I|, ξ⋄ ̸= none is satisfied so that this is

further equivalent to

{grJ [H(ξ⋄)none]J : ξ ∈ |I|}∧.

Thus the claim follows by induction on grI [H(ξ⋄)] and grJ [H(ξ⋄)none] for every

ξ ∈ |I|.
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10.7.11 Proof of Corollary 8

Corollary 8 For any c-plain sentence F and any partial interpretation I that

satisfies ∃xy(x ̸= y), I is a stable model of F relative to c iff I is a Cabalar stable

model of F ∧ ¬¬
∧
f∈c
∀x(f(x) = f(x)) relative to c.

Proof. First note that I |= ¬¬
∧
f∈c
∀x(f(x) = f(x)) iff I is complete. Then, the

claim follows by Theorem 5 from Bartholomew and Lee (2013b).
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Chapter 11

OTHER RELATED WORK

11.1 Loose Integrations with other Declarative Paradigms

We first examine several formalisms that loosely integrate answer set programming

with declarative paradigms that view functions as in classical logic. While these

approaches address the grounding bottleneck present in answer set programming, they

do not address the inability to perform defeasible reasoning on functions. We provide

explicit relationships between these formalisms and ASPMT. Each is effectively a

special case of ASPMT where none of the functions are seen as intensional.

11.1.1 Clingcon

A constraint satisfaction problem (CSP) is a tuple (V,D,C), where V is a set of

constraint variables with the respective domains D, and C is a set of constraints that

specify legal assignments of values in the domains to the constraint variables.

A clingcon program Π with a constraint satisfaction problem (V,D,C) is a set of

rules of the form

a← B,N,Cn, (11.1)

where a is a propositional atom or ⊥, B is a set of positive propositional literals, N is

a set of negative propositional literals, and Cn is a set of constraints from C, possibly

preceded by not.
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Clingcon programs can be viewed as ASPMT instances. Below is a reformulation

of the semantics in terms of ASPMT. We assume that constraints are expressed by

ASPMT sentences of signature V ∪σbg, where V is a set of object constants identified

with constraint variables V in (V,D,C), whose value sorts are identified with domains

in D; we assume that σbg is disjoint from V and contains all values in D as object

constants, and other symbols to represent constraints, such as +, ×, and ≥. In

other words, we represent a constraint as a formula F (v1, . . . , vn) over V ∪ σbg where

F (x1, . . . , xn) is a formula of the signature σbg and F (v1, . . . , vn) is obtained from

F (x1, . . . , xn) by substituting the object constants (v1, . . . , vn) in V for (x1, . . . , xn).

For any signature σ that consists of object constants and propositional constants,

we identify an interpretation I of σ as the tuple ⟨If , X⟩, where If is the restriction

of I on the object constants in σ, and X is a set of propositional constants in σ that

are true under I.

Given a clingcon program Π with (V,D,C), and an interpretation I = ⟨If , X⟩,

we define the constraint reduct of Π relative to X and If (denoted by ΠX
If
) as the set

of rules a ← B for each rule (11.1) is in Π such that If |=bg Cn, and X |= N . We

say that a set X of propositional atoms is a constraint answer set of Π relative to If

if X is a minimal model of ΠX
If
.

Example 7 continued Recall the leaking bucket example. The rules

(amount1=Y ) ∨ ¬(amount1=Y ) ← amount0=Y +1

amount1=10 ← fillUp

are identified with

⊥ ← not FillUp, not(Amount1+1 =$ Amount0)

⊥ ← FillUp, not(Amount1 =
$ 10)
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under the semantics of clingcon programs. Consider I in Example 7, which can be

represented as ⟨If , X⟩ where If maps Amount0 to 6, and Amount1 to 5, and X = ∅.

X is the constraint answer set relative to If because X is the minimal model of the

constraint reduct relative to X and If , which is the empty set.

Similar to the way that rules are identified as a special case of formulas Ferraris

et al. (2011), we identify a clingcon program Π with the conjunction of implications

B∧N ∧Cn → a for all rules (11.1) in Π. The following theorem tells us that clingcon

programs are a special case of ASPMT, in which the background theory is specified

by (V,D,C), and intensional constants are limited to propositional constants only,

and do not allow function constants.

Theorem 29 Let Π be a clingcon program with CSP (V,D,C), let p be the set of

all propositional constants occurring in Π, and let I be an interpretation ⟨If , X⟩ of

signature V ∪p. Set X is a constraint answer set of Π relative to If iff I |=bg SM[Π;p].

Note that a clingcon program does not allow an atom that consists of elements

from both V and p. Thus the truth value of any atom is determined by either If or

X, but not by involving both of them. This allows loose coupling of an ASP solver

and a constraint solver. On the other hand, Gebser et al. (2009a) sketches a method

to extend clingcon programs to allow predicate constants of positive arity, possibly

containing constraint variables as arguments. This however leads to some unintuitive

cases under the semantics of clingcon programs, as the following example shows.

$domain ( 1 0 0 . . 1 9 9 ) . % O f f i c e numbers

myo f f i c e ( a ) . % a i s my o f f i c e number ,

:− myof f i c e (b ) . % and b i s not .

:− not a $==b . % Neverthe l e s s , a equa l s b .
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System clingcon does not notice that this set of assumptions is inconsistent. This

is because symbols a and b in ASP atoms and the same symbols in the constraint are

not related. On the other hand, ASPMT, which allows first-order signatures, does

not have this anomaly; there is no stable model under ASPMT.

11.1.2 Lin and Wang’s Logic Programs with Functions

11.1.3 Lin-Wang Programs

Lin and Wang (2008) extended answer set semantics with functions by extending

the definition of a reduct, and also provided loop formulas for such programs. We

can provide an alternative account of their results by considering the notions there

as special cases of the definitions presented in this paper. For simplicity, we assume

non-sorted languages. 1 Essentially, they restricted attention to a special case

of non-Herbrand interpretations such that object constants form the universe, and

ground terms other than object constants are mapped to object constants. According

to Lin and Wang (2008), an LW-program P consists of type definitions and a set of

rules of the form

A← B1, . . . , Bm, not C1, . . . , not Cn (11.2)

where A is ⊥ or an atom and Bi, where 1 ≤ i ≤ m and Cj, where 1 ≤ j ≤ n are

atomic formulas.

Type definitions introduce the domains for a many-sorted signature consisting of

1Lin and Wang (2008) considers essentially many-sorted languages. The result of this section can
be extended to that case by considering many-sorted SM Kim et al. (2009).
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some object constants, and includes the evaluation of each function symbol of positive

arity that maps a list of object constants to an object constant. Since we assume here

non-sorted languages, we consider only a single domain (universe). We say that an

interpretation I is a P -interpretation if the universe is the set of object constants

specified by P , object constants are evaluated to itself, and ground terms other than

object constants are evaluated conforming to the type definitions of P .

The reduct of a ground program P with respect to a P -interpretation I is denoted

P I and is obtained from P by

1 replacing each functional term f(t1, . . . , tn) with c where f I(t1, . . . , tn) = c;

2 removing any rule with an atomic formula Bi that contains an equality and is

not satisfied by I;

3 removing any remaining equalities from the remaining rules;

4 removing any rule containing not A in the body of the rule where AI = t;

5 removing any remaining conjunctive term form not A.

A P -interpretation I is an answer set of P in the sense of Lin and Wang (2008) if I

satisfies every rule in P and the set of atoms in I is precisely the set of atoms in the

minimal model of P I .

Theorem 30 Let P be an LW-program and let F be the FOL-representation of the

set of rules in P . The following conditions are equivalent to each other:

(a) I is an answer set of P in the sense of Lin and Wang (2008);

(b) I is a P -interpretation that satisfies SM[F ;p] where p is the list of all predicate

constants occurring in F .

Thus the definition does not allow functions to be intensional.
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11.1.4 ASP(LC) Programs

Liu et al. (2012) considers logic programs with linear constraints, or ASP(LC)

programs, comprised of rules of the form

a← B,N,LC (11.3)

where a is a propositional atom or ⊥, B is a set of positive propositional literals, and

N is a set of negative propositional literals, and LC is a set of theory atoms—linear

constraints of the form Σn
i=1(ci× xi) ◃▹ k where ◃▹ ∈ {≤,≥,=}, each xi is an object

constant whose value sort is integers (or reals), and each ci, k is an integer (or real).

An ASP(LC) program Π can be viewed as an ASPMT formula whose background

theory bg is the theory of integers or the theory of reals. Let σp denote the set of

all propositional atoms occurring in Π and σf denote all object constants occurring

in Π that do not belong to the background signature. Theory atoms are essentially

ASPMT formulas of signature σf ∪ σbg. We identify ASP(LC) program Π with the

conjunction of ASPMT formulas B ∧N ∧ LC → a for all rules (11.3) in Π.

An LJN-intepretation is a pair (X,T ) where X ⊆ σp and T is a subset of theory

atoms occurring in Π such that there is some interpretation I of signature σf such

that I |=bg T ∪ T , where T is the set of negations of each theory atom occurring in Π

but not in T . An LJN-interpretation (X,T ) satisfies an atom b if b ∈ X, the negation

of an atom not c if c /∈ X, and a theory atom t if t ∈ T . The notion of satisfaction is

extended to other propositional connectives as usual.

The LJN-reduct of a program Π with respect to an LJN-interpretation (X,T ),

denoted by Π(X,T ), consists of rules a ← B for each rule (11.3) such that (X,T )

satisfies N ∧LC. (X,T ) is an LJN-answer set of Π if (X,T ) satisfies Π, and X is the

smallest set of atoms satisfying Π(X,T ).
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The following theorem tells us that there is a one-to-many relationship between

LJN-answer sets and the stable models in the sense of ASPMT.

Theorem 31 Let Π be an ASP(LC) program, and σp and σf are defined as above.

(a) If (X,T ) is an LJN-answer set of Π, then for any interpretation ⟨If , X⟩ of

signature σp ∪ σf such that If |=bg T ∪ T , we have ⟨If , X⟩ |=bg SM[Π;σp].

(b) For any interpretation I = ⟨If , X⟩ of signature σp∪σf , if ⟨If , X⟩ |=bg SM[Π;σp],

then an LJN-interpretation (X,T ) where

T = {t | t is a theory atom in Π such that If |=bg t}

is an LJN-answer set of Π.

Example 32 Let F be

a← x−z>0. b← x−y≤0.

c← b, y−z≤0. ← not a.

b← c.

The LJN-interpretation L = ⟨{a}, {x−z > 0}⟩ is an answer set of F since {(x−z >

0,¬(x−y≤ 0),¬(y−z≤ 0)} is satisfiable (e.g. take xI =2, yI =1, zI =0) and the set

{a} is the minimal model satisfying the reduct FL = (⊤ → a) ∧ c→ b. On the other

hand the interpretation I such that xI =2, yI =1, zI =0, aI = t, bI =f , cI =f satisfies

I |=bg SM[F ; abc].

As with clingcon programs, ASP(LC) programs are more restrictive than ASPMT.

ASP(LC) programs do not allow theory atoms in the head of a rule, and like clingcon

programs, cannot express intensional functions.
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11.2 Other Approaches to Intensional Functions

In Chapter 10, we explored the relationship between our semantics and the Cabalar

semantics in depth. In this section, we present three other definitions of intensional

functions–Nonmonotonic Causal Logic from Giunchiglia et al. (2004), IF-Programs

from Lifschitz (2012), and the Balduccini semantics Balduccini (2012). We show that

IF-Programs exhibit some undesirable characteristics not present in the either the

stable model semantics or the functional stable model semantics. We then show that

the Balduccini semantics is essentially a special case of the Cabalar semantics.

11.2.1 Relation to Nonmonotonic Causal Logic

A (nonmonotonic) causal theory is a finite list of rules of the form

F ⇐ G

where F and G are formulas. We identify a rule with the universal closure of the

implication G→ F . A causal model of a causal theory T is defined as the models of

the second-order sentence

CM[T ;f ] = T ∧ ¬∃f̂(f̂ ̸= f ∧ T †(f̂))

where f is a list of explainable function constants, and T †(f̂) denotes the conjunction

of the formulas

∀̃(G→ F (f̂)) (11.4)

for all rules F ⇐ G of T .
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By a definite casual theory, we mean the causal theory whose rules have the form

either

f(t) = t1 ⇐ B (11.5)

or

⊥⇐ B, (11.6)

where f is an explainable function constant, t is a list of terms that does not contain

explainable function constants, and t1 is a term that does not contain explainable

function constants. By Tr(T ) we denote the theory consisting of conjunction of the

following formulas: ∀̃(¬¬B → f(t) = t1) for each rule (11.5) in T , and ∀̃¬B for each

rule (11.6) in T . The causal models of such T coincide with the stable models of

Tr(T ).

Theorem 32 For any definite causal theory T , I |= CM[T ;f ] iff I |= SM[Tr(T );f ].

For non-definite ones, they do not coincide.

Example 33 Consider the following non-definite causal theory T :

¬(f = 1) ⇐ ⊤

¬(f = 2) ⇐ ⊤

An interpretation I where |I| = {1, 2, 3} and f I = 3 is a causal model of T . However,

the corresponding formula Tr(T ) is equivalent to

¬(f = 1) ∧ ¬(f = 2)

which has no stable models.
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11.2.2 IF-Programs

Reduct-based Characterization of IF-Programs

We first present a reformulation of IF-Programs in terms of reduct.

For any ground formula F , F I is a formula obtained from F by replacing every

maximal negated formula ¬G with

• ⊤ if I |= ¬G, and

• ⊥ if I ̸|= ¬G.

Let Π be a ground IF-program. The IF-reduct ΠI of an IF-program Π relative to

an interpretation I consists of rules

HI ← BI

for every rule H ← B in Π.

Theorem 33 Let F be the FOL-representation of a ground IF-program of signature σ

and let f be a list of intensional function constants. For any interpretation I of σ,

I |= IF[F ;f ] iff

• I satisfies Π, and

• no interpretation J of σ that disagrees with I only on f satisfies ΠI .
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Comparison

The definition of the IF operator above looks close to our definition of the SM opera-

tor. However, they often behave quite differently. Neither semantics is stronger than

the other.

Example 34 Let F be the following program

d = 2← c = 1,

d = 1

and let I be an interpretation such that |I| = {1, 2}, I(c) = 2 and I(d) = 1. I is a

model of IF[F ; cd], but not a model of SM[F ; cd].

Example 35 Let F be the following program

(c = 1 ∨ d = 1) ∧ (c = 2 ∨ d = 2)

and let I1 and I2 be interpretations such that |I1| = |I2| = {1, 2, 3} and I1(c) = 1,

I1(d) = 2, I2(c) = 2, I2(d) = 1. I1 and I2 are models of SM[F ; cd]. On the other

hand, IF[F ; cd] has no models.

Example 36 Let F be c ̸= 1 ← ⊤ and let F1 be ⊥ ← c = 1. Under our semantics,

they are strongly equivalent to each other, and neither of them has a stable model.

However, this is not the case with IF-programs. For instance, let I be an interpretation

such that |I| = {1, 2} and I(c) = 2. I satisfies IF[F1; c] but not IF[F ; c].

While ⊥ ← F is a constraint in our formalism, in view of Theorem 3, the last

example illustrates that ⊥ ← F is not considered as a constraint in the semantics

of IF-programs. Indeed, the definition of a constraint given in Lifschitz (2012) is

stronger than ours.
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Example 36 illustrates that a model of an IF-program may map a function to

a value that does not even occur in the program. For the stable model semantics,

syntactic conditions on variables ensure that the universe has no impact on the sta-

ble models whereas for IF-programs, even variable-free programs may have different

stable models for different universes.

Let T be an IF-program whose rules have the form

f(t) = t1 ← ¬¬B (11.7)

where f is an intensional function constant, t and t1 do not contain intensional func-

tion constants, and B is an arbitrary formula. We identify T with the corresponding

first-order formula.

Theorem 34 I |= SM[T ;f ] iff I |= IF[T ;f ].

11.2.3 Balduccini Semantics

Relationship to the Cabalar Semantics

It turns out that the Balduccini semantics presented in Section 3.7 is closely related

to the Cabalar semantics. This is shown by reformulating the Balduccini semantics

using the notion of partial interpretations and partial satisfaction. We identify a

consistent set of seed literals I with a partial interpretation that maps all object

constants in σ \ c to themselves. For example, for signature σ = {f, g, 1, 2} where

f, g ∈ c, we identify the consistent set of seed literals I = {f = 1} with the partial

interpretation I such that f I = 1, gI = u, 1I = 1, 2I = 2.
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The following theorem states that, in the absence of strong negation, Balduccini

semantics can be viewed as a special, ground case of the Cabalar semantics.

Theorem 35 For any ASP{f} program Π with intensional constants c and any con-

sistent set I of seed literals, if Π contains no strong negation, then I is a Balduccini

answer set of Π iff I |=
p
CBL[Π; c].

Theorem 35 can be extended to full ASP{f} programs that contain strong nega-

tion. Since the language in Cabalar (2011) does not allow strong negation, this

requires us to eliminate strong negation. It is well known that strong negation in

front of standard atoms can be eliminated using new atoms.

In order to eliminate strong negation in front of t-atoms, by Π# we denote the

program obtained from Π by replacing ∼(f = g) with (f = f) ∧ (g = g) ∧ ¬(f = g).

As we noted earlier, this formula is true iff f I and gI are defined, and have different

values. This is the same understanding as the construct f#g in Cabalar (2011).

Theorem 36 For any ASP{f} program Π with intensional constants c and any con-

sistent set I of seed literals, I is a Balduccini answer set of Π iff I is a Balduccini

answer set of Π#.
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11.3 Proofs

11.3.1 Proof of Theorem 29

Theorem 29 Let Π be a clingcon program with CSP (V,D,C), let p be the set of

all propositional constants occurring in Π, and let I be an interpretation ⟨If , X⟩ of

signature V ∪p. Set X is a constraint answer set of Π relative to If iff I |=bg SM[Π;p].

Proof.

We wish to show thatX is a constraint answer set of Π relative to If iff ⟨If , X⟩ |=bg

SM[Π;p]. That is, we wish to show that there is no set Y that is smaller than X

such that Y |= ΠX
If

iff ⟨If , X⟩ |=bg Π ∧ ¬∃p̂(p̂ < p ∧ (ΠFOL)∗(p̂)). In the case that

⟨If , X⟩ ̸|=bg Π, we have that ΠX
If

is equivalent to ⊥ and so for this case, the claim

holds. Thus, we only need to show that in the case that ⟨If , X⟩ |=bg Π, there is no set

Y that is smaller than X such that Y |= ΠX
If

iff ⟨If , X⟩ |=bg ¬∃p̂(p̂ < p∧(ΠFOL)∗(p̂)).

Equivalently, we can show that there is a set Y that is smaller than X such that

Y |= ΠX
If

iff ⟨If , X⟩ |=bg ∃p̂(p̂ < p ∧ (ΠFOL)∗(p̂)).

(⇒) Assume that there is a set Y that is smaller than X such that Y |= ΠX
If
. We

wish to show that ⟨If , X⟩ |=bg ∃p̂(p̂ < p ∧ (ΠFOL)∗(p̂)). We will consider another

interpretation of the a signature σ′ that extends σ = V ∪ p with a list q that is the

same length as p. This interpretation will be I ′ = ⟨If , Y ∪ Y p
q ⟩ where Y p

q denotes

the interpretation obtained from Y by replacing each p ∈ p with the corresponding

q ∈ q. Then, wish to show that I ′ |=bg (q < p ∧ (ΠFOL)∗(q)).

We first verify that I ′ |=bg q < p. Since we assume Y that is smaller than X,

it must be the case that for every p ∈ p, pY ⊆ pX and there is some p ∈ p such

that pY ( pX . That is, there is some tuple ξ from |⟨If , X⟩| such that p(ξ) ∈ X and

p(ξ) /∈ Y . It is immediate from the definition of q and the fact that for every p ∈ p,
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pY ⊆ pX that I ′ |=bg|= q ≤ p. Then, since p(ξ) ∈ X and p(ξ) /∈ Y , by definition of q,

we have that I ′ |=bg q < p and so we conclude that I ′ |=bg q < p.

We now show that I ′ |=bg (ΠFOL)∗(q). Since Π is a conjunction of implications

of the form a ← B,N,Cn, we simply need to show this to be the case for any such

implication. We consider the possible cases.

• If ̸|=bg Cn. In this case the rule has no corresponding presence in the reduct

ΠX
If

so certainly Y satisfies this part of the reduct. In this case

((a← B,N,Cn)FOL)∗(q) is equivalent to a∗(q)← B∗(q) ∧N ∧ Cn Now, since

If ̸|=bg Cn, it follows that I
′ ̸|=bg Cn and so I ′ trivially satisifies the implication

((a← B,N,Cn)FOL)∗(q) and so in this case, the claim holds.

• X ̸|=bg N . In this case the rule has no corresponding presence in the reduct ΠX
If

so certainly Y satisfies this part of the reduct. In this case

((a← B,N,Cn)FOL)∗(q) is equivalent to a∗(q)← B∗(q) ∧N ∧ Cn Now, since

X ̸|=bg N , it follows that I ′ ̸|=bg N and so I ′ trivially satisifies the implication

((a← B,N,Cn)FOL)∗(q) and so in this case, the claim holds.

• If |=bg Cn, X |=bg N , and X ̸|=bg B. In this case, the corresponding implication

in the reduct ΠX
If

is a ← B. Now since B is a conjunction of propositional

literals, and Y is a subset of X, it follows that Y ̸|=bg B and so Y trivially

satisfies the implication. In this case ((a← B,N,Cn)FOL)∗(q) is equivalent to

a∗(q) ← B∗(q) ∧ N ∧ Cn. Thus, since I ′ |=bg B∗(q) iff Y |=bg B, I ′ trivially

satisifies the implication ((a← B,N,Cn)FOL)∗(q) and so in this case, the claim

holds.

• If |=bg Cn, X |=bg N , X |=bg B, and X ̸|=bg a. In this case, the corresponding

implication in the reduct ΠX
If

is a ← B. Now since a is a propositional literal
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or ⊥, and Y is a subset of X, it follows that Y ̸|=bg a and so Y satisfies the

implication iff Y |=bg B. In this case ((a← B,N,Cn)FOL)∗(q) is equivalent to

a∗(q) ← B∗(q) ∧ N ∧ Cn. Now I ′ |=bg B∗(q) iff Y |=bg B and I ′ |=bg a∗(q) iff

Y |=bg a, the claim immediately follows.

• If |=bg Cn, X |=bg N , X |=bg B, and X |=bg a. In this case, the corresponding

implication in the reduct ΠX
If

is a← B. In this case, Y satisfies the implication

iff Y ̸|=bg B or Y |=bg a. In this case ((a ← B,N,Cn)FOL)∗(q) is equivalent to

a∗(q) ← B∗(q) ∧ N ∧ Cn. Now I ′ |=bg B∗(q) iff Y |=bg B and I ′ |=bg a∗(q) iff

Y |=bg a, the claim immediately follows.

(⇐) Assume that ⟨If , X⟩ |=bg ∃p̂(p̂ < p ∧ (ΠFOL)∗(p̂)). That is, there is some

interpretation I ′ of the extended signature σ′ = σ ∪ q such that I ′ |=bg (q < p ∧

(ΠFOL)∗(q)). Let this signature be ⟨If , X ∪ Y where If is the interpretation of

functions from σ′, X is the interpretation of propositional literals in p and Y is the

interpretation of propositional literals in q. We will show that Y is smaller than X

and Y |= ΠX
If
.

We first show that Z = Y q
p is smaller than than X. We assume that I ′ |=bg q < p.

From this it is immediate that for any q ∈ q, qI
′
is a subset of pI

′
for the corresponding

p ∈ p and so Z is not a superset of X. Then, since I ′ |=bg q < p there must be some

q ∈ q and some tuple in |I ′| such that q(ξ)I
′
= 0 but p(ξ)I

′
= 1 for the corresponding

p ∈ p. From this, it follows that Z is strictly smaller than X.

We now show that Z |=bg Π
X
If
. Since Π is a conjunction of implications of the form

a ← B,N,Cn, we simply need to show this to be the case for any such implication.

We consider the possible cases.

• If ̸|=bg Cn. In this case the rule has no corresponding presence in the reduct
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ΠX
If

so certainly Z satisfies this part of the reduct.

• X ̸|=bg N . In this case the rule has no corresponding presence in the reduct ΠX
If

so certainly Z satisfies this part of the reduct.

• If |=bg Cn and X |=bg N . In this case, the corresponding implication in the

reduct ΠX
If

is a ← B. In this case ((a ← B,N,Cn)FOL)∗(q) is equivalent to

a∗q ← B∗(q) ∧N ∧ Cn. Since we assume If |=bg Cn, X |=bg N , I ′ satisfies the

implication iff I ′ |=bg a
∗(q)← B∗(q). Now, since I ′ |=bg B

∗(q) iff Y |=bg B and

I ′ |=bg a
∗(q) iff Y |=bg a, the claim immediately follows.

11.3.2 Proof of Theorem 30

Lemma 44 Let P be a LW-program, F be the first-order representation of P , I be

a P -interpretation of the signature σ of P such that I is a model of P . and p be the

list of all predicates in σ. For any interpretation J such that J <p I and any set of

atoms K such that for any atom A, we have A ∈ K iff AJ = 1, then J |= F I iff K

satisfies P I .

Proof.

Since F is comprised of a conjunctions of the form

B1 ∧ · · · ∧Bm ∧ (¬ C1) ∧ · · · ∧ (¬ Cn)→ A

F I is by definition a conjunction of

(B1 ∧ · · · ∧Bm ∧ (¬ C1) ∧ · · · ∧ (¬ Cn)→ A)I

and so we will consider each conjunctive subformula Gi of F separately. Each con-

junctive term Gi corresponds to a rule ri in P of the form

A← B1, . . . , Bm, not C1, . . . , not Cn.
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and so we simply need to show that for any conjunctive subformula Gi of F and the

corresponding rule ri, we have J |= GI
i iff K |= rIi . In the context of this comparison,

we note that when a rule is removed in P I , this is equivalent to replacing the rule with

⊤. We consider the following cases for a rule r and the corresponding conjunctive

subformula G in F .

• Case 1: There is some atomic formula Bi in r such that Bi contains an equality

and is not satisfied by I.

In this case rI is replaced with ⊤ and so K |= rI . In GI , it may be the case

that some (¬ Ck) is replaced by ⊥ but Bi will certainly remain as a conjunctive

term in the precedent of the implication G and so since J agrees with I on all

functions, we have J ̸|= Bi and so J |= GI .

• Case 2: There are no atomic formulas Bi in r such that Bi contains an equality

and is not satisfied by I, but there is a conjunctive term not Ck in r such that

CI
k = 1.

In this case rI is replaced with ⊤ and so K |= rI . In GI , (¬ Ck) will be replaced

with ⊥ and so J |= GI .

• Case 3: There are no atomic formulas Bi in r such that Bi contains an equality

and is not satisfied by I, and there is no conjunctive term not Ck in r such that

CI
k = 1.

In this case, rI is obtained from r by replacing each f(t1, . . . , tm) with c where

f I(t1, . . . , tm) = c and from removing all conjunctive terms containing equality.

On the other hand, there are two cases for GI : is either ⊥ if I ̸|= G or GI is

precisely G otherwise. However, the assumption that I is a model of P means

that the former case cannot arise and so GI is precisely G.

270



Now, since J and I agree on all functions, we have that J |= GI iff J |= H where

H is obtained from GI by replacing f(t1, . . . , tm) with c where f I(t1, . . . , tm) =

c. Also since J and I agree on all functions, and since we assumed in this

case that I satisfies all conjunctive terms containing equality, we have J |= H

iff J |= H ′ where H ′ is obtained from H by removing all conjunctive terms

containing equality. Now the only remaining difference between H ′ and rI is

that every remaining conjunctive term not A in H ′ is absent in rI . Note that

since we assumed for this case that there is no conjunctive term not Ck in r

such that CI
k = 1, it must be that every such conjunctive term is such that

AI = 0. However, since we have that J <p I, it must be that AJ = 0 and so

J |= ¬A. Thus, J |= H ′ iff J |= H ′′ where H ′′ is obtained from H ′ by removing

all conjunctive terms of the form not A. Now H ′′ is exactly the first-order

representation of rI and since J and K agree on all predicates, it is clear that

J |= GI iff K |= rI .

Theorem 30 Let P be an LW-program and let F be the FOL-representation of the

set of rules in P . The following conditions are equivalent to each other:

(a) I is an answer set of P in the sense of Lin and Wang (2008);

(b) I is a P -interpretation that satisfies SM[F ;p] where p is the list of all predicate

constants occurring in F .

Proof. We will use the reduct-based characterization of the SM semantics in this

proof. When programs are restricted

(⇒) Let us assume I is an answer set of P in the sense of Lin and Wang (2008).

We wish to show that I satisfies SM[F ;p] where p is the list of all predicate constants
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occurring in F . That is, we assume I satisfies every rule in P and there is no subset

K of atoms in I such that K is a model of P I and we wish to show that I |= F

and no interpretation J such that J <p I satisfies F I . Since I is an answer set of

P , Isatisfies every rule of P and so it immediately follows that I |= F . So it only

remains to be shown that if there is no subset K of atoms in I such that K is a model

of P I , then there is no interpretation J such that J <p I satisfies F I . To show this,

we will consider the contrapositive; we assume there is some interpretation J such

that J <p I satisfies F I and will show that there is a subset K of the atoms in I such

that K is a model of P I .

We first note that since J <p I, J and I differ only predicates so that Jpred is a

subset of Ipred. Thus, we will take K = Jpred so that K is a subset of the atoms in I

and show that K is a model of P I . Then the claim follows by Lemma 44.

(⇐) Let us assume I satisfies SM[F ;p] where p is the list of all predicate constants

occurring in F . We wish to show that I is an answer set of P in the sense of Lin and

Wang (2008). That is, we assume I |= F and no interpretation J such that J <p I

satisfies F I and we wish to show that I satisfies every rule in P and there is no subset

K of atoms in I such that K is a model of P I . Since we assume I |= F , then it

follows that Isatisfies every rule of P . So it only remains to be shown that if there is

no interpretation J such that J <p I satisfies F I , then there is no subset K of atoms

in I such that K is a model of P I . To show this, we will consider the contrapositive;

we assume there a subset K of the atoms in I such that K is a model of P I and we

will show that there is some interpretation J such that J <p I satisfies F I .

We will take J such that J and I agree on all functions and such that for any

atomic formula A, we have AJ = 1 iff A ∈ K. It is clear that since K is a subset of

the atoms in I, that J <p I. The claim then follows by Lemma 44.
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11.3.3 Proof of Theorem 31

Lemma 45 Given an ASP(LC) program Π, for any LJN interpretation (X,T ) and

any interpretation I = ⟨If , Y ⟩, the following are equivalent:

• (a) I |=bg T ∪ T ,

• (b) (X,T ) |= t iff I |=bg t for every t occurring in Π.

Proof.

(a) Assume I |=bg T ∪ T .

(⇒) Assume (X,T ) |= t for some t occurring in Π. This means t ∈ T and so by the

condition on I, I |=bg t.

(⇐) Assume I |=bg t for some t occurring in Π. By the condition on I, t ∈ T and so

(X,T ) |= t.

(b) Assume (X,T ) |= t iff I |=bg t for every t occurring in Π.

By definition of (X,T ) |= t, t ∈ T iff I |=bg t for every t occurring in Π. Thus I |=bg T

and I |=bg T so I |=bg T ∪ T .

Lemma 46 Given an ASP(LC) program Π, two LJN-interpretations (X,T ) and

(Y, T ) where (X,T ) |= Π and Y ⊆ X, two interpretations I = ⟨If , X⟩ and J = ⟨If , Y ⟩

such that

• I |= Π,

• If |=bg T ∪ T ,
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we have Y |= Π(X,T ) iff J |= ΠI .

Proof.

(⇒) Assume Y |= Π(X,T ). This means that Y satisfies every rule in the reduct

Π(X,T ). For any rule r of the form (11.3) in Π, there are two cases:

• Case 1: (X,T ) |= N ∧ LC.

In this case, the corresponding rule in the reduct Π(X,T ) is

a← B.

On the other hand, rI has two cases:

– Subcase 1: I |= B.

Since we assume I |= Π, it must be that I |= a. By Lemma 45, since

(X,T ) |= t for all t in LC, so too does I and so I |= LC. In this case, rI is

a← B,⊤, . . . ,⊤, LCI .

Since I and J interpret object constants in the same way and I |= LCI ,

J |= LCI . Thus by definition of J , it follows that J |= B iff Y |= B and

J |= a iff Y |= a, so the claim holds.

– Subcase 2: I ̸|= B. The reduct rI is either a← ⊥ or ⊥ ← ⊥ and in either

case, J |= rI .

• Case 2: (X,T ) ̸|= N ∧ LC.

By the condition of I and by Lemma 45, I ̸|= N ∧LC so rI is a← ⊥ or ⊥ ← ⊥

depending on whether I |= a. Thus, J trivially satisfies rI .

(⇐) Assume J |= ΠI . This means that J satisfies every rule in ΠI . For any rule

r of the form (11.3) in Π
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• Case 1: I ̸|= N ∧ LC.

By the condition of I and by Lemma 45, (X,T ) ̸|= N ∧ LC. Thus the reduct

Π(X,T ) does not contain a corresponding rule so there is nothing for Y to satisfy.

• Case 2: I |= N ∧ LC

– Subcase 1: I |= ¬B.

By the condition of I and by Lemma 45, (X,T ) |= N ∧ LC so the reduct

r(X,T ) is a ← B. Now by the condition of I, X ̸|= B and since Y ⊆ X,

Y ̸|= B. Thus, Y |= r(X,T ).

– Subcase 2: I |= B

By the condition of I and by Lemma 45, (X,T ) |= N ∧ LC so the reduct

r(X,T ) is a ← B. Now, since I |= Π, it must be that I |= a so the reduct

rI is a ← B ∧ LCI . Now since J and I agree on every object constant

and since I |= LCI , J |= LCI . Thus, since J |= rI iff J |= a ← B so

J |= a← B. Now by definition of J , it follows that Y |= r(X,T ).

Theorem 31 Let Π be an ASP(LC) program, and σp and σf are defined as above.

(a) If (X,T ) is an LJN-answer set of Π, then for any interpretation ⟨If , X⟩ of

signature σp ∪ σf such that If |=bg T ∪ T , we have ⟨If , X⟩ |=bg SM[Π;σp].

(b) For any interpretation I = ⟨If , X⟩ of signature σp∪σf , if ⟨If , X⟩ |=bg SM[Π;σp],

then an LJN-interpretation (X,T ) where

T = {t | t is a theory atom in Π such that If |=bg t}

is an LJN-answer set of Π.

Proof.
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In this proof, we use Theorem 1 and refer to the reduct characterization.

(a) Assume (X,T ) is an LJN-answer set of Π. Take any interpretation I = ⟨If , X⟩

such that If |=bg T ∪ T .

Now for any atom p, by the condition of I, I |= p iff (X,T ) |= p. Similarly, for

any theory atom t occuring in Π, by the condition of I and by Lemma 45, I |= t iff

(X,T ) |= t. Thus, since (X,T ) |= Π, I |= Π.

We must now show that there is no interpretation J such that J <σp I and

J |= ΠI . Take any J <σp I. That is, J = ⟨If , Y ⟩ such that Y ⊂ X. By Lemma 46,

J |= ΠI iff Y |= Π(X,T ) but since (X,T ) is an LJN-answer set of Π, Y ̸|= Π(X,T ) and

thus J ̸|= ΠI so I is a stable model of Π.

(b) Assume I = ⟨If , X⟩ is a stable model of Π.

Now for any atom p, by definition of (X,T ), (X,T ) |= p iff I |= p. Similarly, for

any theory atom t occuring in Π, by the condition of I and Lemma 45, (X,T ) |= t iff

I |= t. Thus, since I |= Π, (X,T ) |= Π.

We must now show that there is no set of atoms Y such that Y ⊂ X and Y |=

Π(X,T ). Take any Y ⊂ X. By Lemma 46, Y |= Π(X,T ) iff J |= ΠI where J = ⟨If , Y ⟩.

Since J <σp
I and I is a stable model of Π, J ̸|= ΠI . Thus Y ̸|= Π(X,T ) and so (X,T )

is an LJN-answer set of Π.

11.3.4 Proof of Theorem 32

Theorem 32 For any definite causal theory T , I |= CM[T ;f ] iff I |= SM[Tr(T );f ].

Proof. Assume that, without loss of generality, the rules (11.5)–(11.6) have no free

variables. It is sufficient to prove that under the assumption that I satisfies T , for
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every rule (11.5), Jf
g ∪ I satisfies

B → g(t)= t1

iff Jf
g ∪ I satisfies

(¬¬B)∗(g) → g(t)= t1 ∧ f(t)= t1.

The claim follows since both B is equivalent to (¬¬B)∗(g), and I satisfies B.

11.3.5 Proof of Theorem 33

Theorem 33 Let F be the FOL-representation of a ground IF-program of signa-

ture σ and let f be a list of intensional function constants. For any interpretation I

of σ, I |= IF[F ;f ] iff

• I satisfies Π, and

• no interpretation J of σ that disagrees with I only on f satisfies ΠI .

Proof. First we prove that, for any implication-free formula F , Jc
d∪I satisfies F ⋄(d)

iff J |= F I . This proof is easy by induction.

• Case 1: F is a formula ¬G. Then F ⋄(d) is ¬G. Now, since the members of c

are exclusive to I and are not interpreted by Jc
d, J

c
d ∪ I |= (¬G)(d) iff I |= ¬G,

We consider two cases for the reduct F I :

– Subcase 1: I ̸|= G. Then F I is ⊤ and so J |= F I . In this case, I |= ¬G,

which we saw was equivalent to Jc
d ∪ I |= (¬G)(d) so for this subcase, the

claim holds.
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– Subcase 2: I |= G. Then F I is ⊥ and so J ̸|= F I . In this case, I ̸|= ¬G,

which we saw was equivalent to Jc
d ∪ I ̸|= (¬G)(d) so for this subcase, the

claim holds.

• Case 2: F is ⊥. Then, F ⋄(d) is ⊥ and F I is ⊥. Since both Jc
d ∪ I ̸|= F ⋄(d) and

J ̸|= F I , the claim holds in this case.

• Case 3: F is an atomic formula A not in the scope of any negation. Then F ⋄(d)

is A(d). F I is A. Now, since the members of c are exclusive to Jc
d and are

not interpreted by I, Jc
d ∪ I |= A(d) iff Jc

d |= A(d), which we can rewrite as

Jc
d ∪ I |= A(d) iff J |= A. Then it is clear that the claim holds in this case.

• Case 4: F is a formula G⊙H where ⊙ ∈ {∧,∨} that is not in the scope of any

negation. Then F ⋄(d) is G⋄(d)⊙H⋄(d). F I is G⊙H. The claim holds by I.H.

on G and H.

The claim then follows since Jc
d ∪ I satisfies B⋄ → H⋄ iff J satisfies HI ← BI .

11.3.6 Proof of Theorem 34

Let T be an IF-program whose rules have the form

f(t) = t1 ← ¬¬B (11.8)

above is (11.7)) where f is an intensional function constant, t and t1 do not contain

intensional function constants, and B is an arbitrary formula. We identify T with the

corresponding first-order formula.

Theorem 34 I |= SM[T ;f ] iff I |= IF[T ;f ].
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Proof.

We wish to show that I |= T∧¬∃f̂(f̂ < f∧F ∗(f̂)) iff I |= T∧¬∃f̂(f̂ ̸= f∧F ⋄(f̂)).

The first conjunctive terms are identical and if I ̸|= T then the claim holds.

Let us assume then, that I |= T . By definition, f̂ < f is equivalent to f̂ ̸= f .

What remains to be shown is the correspondence between F ∗(f̂) and F ⋄(f̂).

Consider any list of functions g of the same length as f . Let I = I ∪ Jf
g be from

an extended signature σ′ = σ∪g where J is an interpretation of σ and J and I agree

on functions not occurring in f .

Consider any rule f(t) = t1 ← ¬¬B from T . The corresponding rule in F ∗(g) is

equivalent to

f(t) = t1 ∧ g(t) = t1 ← B.

The corresponding rule in F ⋄(g) is equivalent to

g(t) = t1 ← B.

Now we consider cases

• I ̸|= B. Clearly, both versions of the rule are vacuously satisfied by I.

• I |= B. Then, since I |= T it must be that I |= f(t) = t1 and so the corre-

sponding rule in F ∗(g) is further equivalent to

g(t) = t1 ← B

which is equivalent to the corresponding rule in F ⋄(g) and so certainly I is

satisfies both corresponding rules or neither.

Thus, I |= F ∗(g) iff I |= F ⋄(g) and so the claim holds.
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11.3.7 Proof of Theorem 35

Given a program Π, by ΠFOL we denote the FOL representation of Π.

Lemma 47 Consider a signature σ and a set of constants c. Given an ASP{f}

program Π of signature σ not containing strong negation,

(a) For any partial interpretation I of signature σ that maps every constant in σ \c

to itself, there is a consistent set S of seed literals such that I |=
p
ΠFOL iff S |=

b
Π.

(b) For any consistent set of seed literals S, there is a partial interpretation I such

that I |=
p
ΠFOL iff S |=

b
Π.

Proof. Part (a): Given a partial interpretation I, let S be the set {f(v) = w :

f(v)I = w} ∪ {p(v) : p(v)I = 1}. We note that this is a consistent set of seed literals

since a partial interpretation maps f(v) to at most one object constant.

We also note that by the definition of S, for any atomic sentence A, we have

I |=
p
A iff S |=

b
A. Now, consider any rule r from Π. I |=

p
rFOL iff I |=

p
head(r)FOL or

I ̸|=
p
body(r)FOL. By the previous observation, this is equivalent to S |=

b
head(r) or

S ̸|=
b
body(r) since body(r) is a conjunction of atomic formulas. This is precisely the

definition of S |=
b
rFOL.

Part (b): Given a consistent set of seed literals S, let I be the partial interpretation

defined as follows:

• for every object constant v ∈ σ \ c, we have vI = v.

• for every predicate constant p ∈ c and every list of object constants v, we have

p(v)I = 1 iff p(v) ∈ S.
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• for every function constant f ∈ c and every list of object constants v, we have

f(v)I = u if S does not contain f(v), and f(v)I = w if f(v) = w is in S.

We note that the last bullet is well-defined since S is a consistent set of seed literals

so that there cannot be two distinct object constants a and b such that f(v) = a ∈ S

and f(v) = b ∈ S.

We also note that by definition of I, for any atomic sentence A, we have I |=
p
A

iff S |=
b
A. Now, consider any rule r from Π. S |=

b
r iff S |=

b
head(r) or S ̸|=

b
body(r).

By the previous observation, this is equivalent to I |=
p
head(r)FOL or I ̸|=

p
body(r)FOL

since body(r) is a conjunction of atomic formulas. This is precisely the definition of

I |=
p
r.

The proof of Lemma 47 tells us that a consistent set of seed literals can be identified

with a partial interpretation.

Lemma 48 For consistents sets of seed literals J and I of the same signature, J is

a proper subset of I iff J ≺c I when we view them as partial interpretations.

Proof. We first note that since consistent sets of literals map every object constant

in σ \ c to itself, the partial interpretation view does the same which corresponds to

the first condition for J ≺c I. The second condition of J ≺c I is pJ ⊆ pI for all

predicate constants in c, which corresponds exactly to the predicate part of J being

a subset of the predicate part of I. Finally, the third condition of J ≺c I is fJ(ξ) = u

or fJ(ξ) = f I(ξ) corresponds to the function part of J being a subset of the function

part of I since we identify a partial interpretation mapping an element to u to the

absence of that element in the set.

Theorem 35 For any ASP{f} program Π with intensional constants c and any

consistent set I of seed literals, if Π has no strong negation, then I is a Balduccini
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answer set of Π iff I |=
p
CBL[Π; c].

Proof. By definition and by using the equivalent reformulation presented and jus-

tified in Lemma 48 and Lemma 47, I is a Balduccini answer set of a program Π iff

I |=
p
Π and for any partial interpretation J such that J ≺c I, we have J ̸|=

p
ΠI . Since

this definition uses the same reduct and same notion of satisfaction, this is equivalent

to the reduct reformulation of the Cabalar semantics. Further, this is equivalent to

I |=
p
CBL[ΠFOL; c] by Theorem 21.

11.3.8 Proof of Theorem 36

Theorem 36 For any ASP{f} program Π with intensional constants c and any

consistent set I of seed literals, I is a Balduccini answer set of Π iff I is a Balduccini

answer set of Π#.

Proof. First, we show that I |=
b
∼(f = g) iff I |=

b
(f = f) ∧ (g = g) ∧ ¬(f = g).

Left-to-right: Asssume I |=
b
∼(f = g). By definition, I contains both f=c1 and g=c2

for some object constants c1 and c2 such that c1 ̸= c2. Clearly, each of I |= f = f ,

I |= g = g and I ̸|= f = g holds.

Right-to-left: I |=
b
(f = f) ∧ (g = g) ∧ ¬(f = g). Since I |=

b
f = f and I |= g = g,

it follows that I contains f = c1 and I contains f = c2 for some c1 and c2. Further,

since I |= ¬(f = g), it must be that c1 ̸= c2, from which the claim follows.

From this it is not difficult to check that ΠI is equivalent to (Π#)I , from which

the claim follows.
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Chapter 12

CONCLUSION

Reasoning about real-world domains faces several challenges among which are

performing defeasible reasoning and efficient computation in the presence of large

domains. Answer Set Programming, based on the stable model semantics, addressed

the issue of defeasible reasoning for predicates only but due to grounding based com-

putation, large domains preclude efficient computation in ASP.

Recent proposals have loosely integrated ASP with other declarative paradigms

including constraint programming, satisfiability modulo theories, and mixed integer

programming. These proposals have resulted in systems such as ACSOLVER Mel-

larkod et al. (2008), CLINGCON Gebser et al. (2009b), EZCSP Balduccini (2009),

IDP Mariën et al. (2008), and MINGO Liu et al. (2012) that have partially alleviated

the grounding bottleneck. However, the functions there were treated as in first-order

logic so that defeasible reasoning could only be performed on predicates and not

functions.

On the other hand, several recent formalisms Cabalar (2011); Lifschitz (2012);

Balduccini (2012) extend the stable model semantics to support intensional functions

so that defeasible reasoning can be performed on both functions and predicates. How-

ever, these approaches focused on rich modeling and did not address the grounding

bottleneck.

This research is a novel framework that tightly integrates ASP and SMT in order

to address the grounding bottleneck faced by ASP while still supporting defeasible

reasoning on both functions and predicates for which SMT is unsuitable. This frame-
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work is based on the newly-introduced functional stable model semantics.

The prototype implementations presented in this dissertation serve as a proof-of-

concept for this framework. We are able to perform defeasible reasoning on func-

tional fluents directly with functions rather than with predicates. This is not simply

syntactic sugar however; the ASPMT2SMT system is able to avoid the grounding

bottleneck in some domains and dramatically outperform the state-of-the-art ASP

systems. While more mature systems that loosely couple ASP with other declara-

tive paradigms are able to achieve slightly better performance, these systems lack

the ability to perform defeasible reasoning in a suitable way. The advantages of the

ASPMT2SMT system were leveraged to create a non-monotonic spatial reasoning

system described in Walega et al. (2015).

We have investigated many properties of the first-order stable model semantics

and have shown that analogous properties hold for the functional stable model seman-

tics. By defining our semantics in the style of the first-order stable model semantics

and studying the relationship between these two semantics, we were able to establish

a body of results that other formalisms would need to establish using dissimilar termi-

nology and concepts. However, by establishing formal relationships between different

definitions of intensional functions, we have been able to establish results for these

other definitions such as the generalization of the unfolding process in Theorem 1

in Cabalar (2011).

We expect that future research in this area will establish further results for the

functional stable model semantics analogous to the useful results that have made the

stable model semantics successful. We also expect that future implementations of

ASPMT will achieve similar performance improvements to those elicited by SMT for

the SAT community.
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