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ABSTRACT

Online discussion forums have become an integral part of education and are large

repositories of valuable information. They facilitate exploratory learning by allowing

users to review and respond to the work of others and approach learning in diverse

ways. This research investigates the different comment semantic features and the

effect they have on the quality of a post in a large-scale discussion forum. We survey

the relevant literature and employ the key content quality identification features.

We then construct comment semantics features and build several regression models

to explore the value of comment semantics dynamics. The results reconfirm the

usefulness of several essential quality predictors, including time, reputation, length,

and editorship. We also found that comment semantics are valuable to shape the

answer quality. Specifically, the diversity of comments significantly contributes to the

answer quality. In addition, when searching for good quality answers, it is important

to look for global semantics dynamics (diversity), rather than observe local differences

(disputable content). Finally, the presence of comments shepherd the community to

revise the posts by attracting attentions to the posts and eventually facilitate the

editing process.
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Chapter 1

INTRODUCTION

Online discussion forums have become an integral part of education and are

large repositories of valuable information. They facilitate exploratory learning by

allowing users to review and respond to the work of others and approach learning in

diverse ways [4]. For decades, discussion forums have been widely used as a

communication medium in and outside classrooms to facilitate learning. The

benefits derived from such platforms have extended to open, free & fast-growing

online communities (homework-help sites, discussion forums for MOOCs courses

etc.) These sites have grown steadily over the past few years and have formed

sizable repositories of problem solving-solutions. They are filled with thousands of

problem-solving tips such as how-to questions [28],people-valued examples as well as

the examples explanations [25]. To better support information seeking and learning,

a majority of these sites utilize social mechanisms to filter and point out the best

solutions/answers instead of providing the set of steps or scaffolds required for

learning [27, 26]. In large-scale discussion forums like StackOverflow where solutions

are crowd-sourced, the role of social interactions in the form of comments plays a

vital role in shaping a post. The research presented in this paper originates from

trying to connect the dots between the social interaction features and the post

content quality. We investigate the different comment semantic features and employ

key quality identification features from relevant literature survey to find the effect

they have on the quality of a post in a large-scale discussion forum.
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In a broader sense, the work aims to understand how students use (or could

use) these sites to learn to program. Particularly, we focus on how assorted levels of

content on StackOverflow can be used to better support scaffolding. StackOverflow

is one of the biggest online programming Q&A communities and currently hosts a

massive amount of heterogeneous definitions, solutions, and examples in various

programming languages.

Today, data mining techniques have noticeably enhanced the ability to

organize and analyze the mass amount of content. For instance, sentiment analysis

has been widely explored and applied in mining large-scale social media data.

Opinion mining can successfully detect trends, assist decision-making, discover spam

reviews [16, 21, 12] etc. Q&A sites have social features that focus on finding the

best answers, however, they emphasize less on highlighting the diverse points of

views among the content sea. For instance, unclear questions might tend to raise

doubts amongst users leading to the usage of controversial words such as “I‘m not

sure”, “I doubt that”, etc; duplicate questions may lead to contentious arguments

between experts and novices. On the other hand, a healthy argument between

experts commenting on a post could also incorporate controversial phrases; a

constructive criticism or a debate leading to editing a post a number of times in

order to improve the quality of the post. However, widely-used social mechanisms,

such as crowd-sourced evaluation typically ranks all solutions, are useful to point

out the best and the worst contents, but they do not necessarily help to discern the

gray area. For instance, often times there is more than one “correct” answer,

especially for code review questions [25]. Even though the social metrics (votes,

acceptance, favorite) point to the correctness of a possible solution, readers have

differing backgrounds and varying degrees of previous knowledge which influence

which answer is the best for that particular individual. Therefore, these quality
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indicators may not be universally applied to all users. For example, an accepted

answer may be too complicated for a novice to understand.

A low-ranked answer can approximately indicate a low quality of its content as

a solution to the problem, but this can also overlook the learning-value of showing

obvious mistakes. In the context of learning to program, students can learn by

constantly being exposed to similar or different solutions. This enables them to

compare and contrast alternatives in order to identify what is important in a

problem, distinguish different features of code, and paint a road-map to the problem

[20, 17]. Multiple pieces of code can allow a novice to construct patterns and

schemas [14], and even erroneous examples may assist learning at various levels [16].

Therefore, in this work, we aim to harness the controversy dynamics along with

other comment semantic features in discussion forums to help us explore and

understand the quality of a post.

1.1 Motivation

There are primarily three kinds of users in StackOverflow, i) Users who ask

questions ii) Users who answer the questions i.e the experts and iii) Users who are

looking for answers; normally not involve in the discussions. It can be observed that

these discussions are mainly held by the first two categories of users and in many

cases, help in re-structuring the questions. For instance, questions that are

ambiguous in nature are often clarified by a back and forth exchange of comments.

A “poor” quality question is scrutinized by a group of experts until the question is

either edited or removed. The exchange of comments thus provides insight into the

quality of the post itself. Figure 1.1 illustrates a scenario where a user is criticized

for asking a bad quality question.
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Figure 1.1: Stackoverflow Snippet Illustrating a Poor Quality Post. The Figure

Highlights the Fact That Poor Quality Post’s Are Down-voted and Receive Negative

Comments by Users.

Moreover, users rely on StackOverflow’s social features like ‘votes’, ‘accepted

answer’ and ‘reputation’ when selecting an answer. The number of votes is directly

proportional to its chance of being picked. An ’accepted answer’ essentially implies

that it worked for the user asking the question and thus prompts other users to pick

the answer. These quality features are crowd-sourced and they stabilize over a

period of time. Comments appear instantly due to the vast multitude of people

using StackOverflow; roughly 5,395,936. Our evaluation reveals that a comment

appears approximately fifteen minutes after a post has been rendered by a user. In

4



order to gain reputation, a user needs to answer unanswered questions. This

motivates the experts to answer these questions as soon as it is posted thus the

average time a comment appears was observed to be less than fifteen minutes. The

time taken for prediction thus provided further incentive to analyze the quality of

the post.

This paper investigates if comments semantic features like comment sentiment

and controversies along with StackOverflow’s social and syntactic features can help

establish certain patterns for interpreting post quality. Broadcasting this

information on the forum could increase the confidence of the user in electing an

answer until StackOverflow’s features have stabilized.

StackOverflow follows a crowd-sourced model where every time a user’s answer

gets up-voted, his points aggregation, labeled as “reputation”, increases. Reputation

is of significant value in the community, indirectly indicating the level of expertise of

a user. This system might negatively impact the users encouraging them to give

quick but low-quality answers for the sake of gaining reputation, falling prey to

gaming [9, 19]. Moreover, the rating systems in online discussion forums are

subjected to malicious behavior [30]; users might individually or collectively

promote or demote a post resulting in unfair rating scores. We are aware of these

discrepancies that crowd-sourced models such as StackOverflow contain but this

remains out of the scope of the current research.

1.2 Research Questions

As of today, content quality assessment of online forums is gauged either by a

group of experts or is crowd-sourced. There lacks a system that automatically

determines quality solely based on semantic and syntactic features. This research
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work is a step towards filling this void by exploring the effect of various components,

like the presence of controversial comments, on post quality. To achieve this feat, we

aim to answer the following questions:

• Can comment semantic features predict quality as good as the crowd-sourced

metrics?

• Can we rely on the crowd-sourced evaluation metric for instance, ’votes’, to

assess our model?

• Can we find universal norms and patterns in current data in the form of

comment features that users could follow, eventually enhancing post quality?

• How can we extract more generalizable features that can be extended to other

online forums?

1.3 Contribution

• Identifying and engineering comment semantic features that contribute in

detecting post quality.

• Utilizing data mining techniques like sentiment analysis to predict post quality.

• Ciphering a number of benchmarks, inferences and features that directly

impact post quality, for instance, a) Higher the number of commenters per

post, higher is the post quality b) Entropy is a better indicator of finding good

content than controversy c) Reconfirming the literature survey that Edit count

strongly facilitates content quality.

We extract representative quality features based on surveyed relevant literature

in StackOverflow content modeling and construct new models in capturing

6



disputative forum posts semantics. The rest of the research is structured with

reviewing two streams of related work: StackOverflow content quality modeling and

sentiment analysis in Q&A forums. We then present the methodology by describing

data collection and feature engineering. Finally, we present the evaluation results

and draw conclusions on the findings.
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Chapter 2

LITERATURE REVIEW

2.1 Quality of the Content on Stackoverflow

StackOverflow has been defined as the epitome of Q&A sites and has been

extensively studied. Previously a lot of research has gone into investigating its

design [13], its value for software development [29] and content quality [6]. The

thesis closely lines with the latter group. Hence, the literature review is focused on

this strand of research

Prior research [6] has already classified the many studies on the quality of

content into three categories: (1) finding the best answer, (2) ranking all answers,

and (3) assessing the quality of the questions. Given that the focus of this research

is on identifying different points of views in the answers can be a valuable learning

opportunity, related work that examines the quality of answers (categories 1 and 2)

have been the most informative for purposes this research. Extensive data mining

has been used to identify the main factors that are significantly associated with an

answers ranking, which is given by the votes that the answer has received on the

site. These factors can be grouped according to the entity they describe, such as the

user who provided the answer (e.g., reputation, expertise), the answers’ text (e.g.,

length, structure, style) and the amount of review the answer has had (e.g. edits,

comments). Hasan et al., in their paper [6], exploit user feedback to learn how

answers can be ranked in Q & A websites. Their research attempts to automate the

process of identifying loose edits that could arise due to the feature of free edit in
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discussion forums. They propose a learning to rank (L2R) approach for ranking

answers in Q&A forums that uses Random Forests. The model was trained with

user feedback given to answers in Q&A forums. Factors related to the user and the

review process were found the most relevant to predict ranking. Finally, their

research performs a comprehensive study showing that text features are useful in

assessing the quality of answers, hence bolstering the foundation of the hypothesis

of the thesis. Rather than taking a data mining approach to replicate these findings,

the proposed research aims to extend this line of research by further understanding

the impact of the review process, while controlling for other aspects that are known

to affect the perceived quality of an answer. Beyond these factors, contextual factors

such as the number of alternative answers and the time that the answers were

provided have also been found related to the number of votes an answer gets [2, 23].

A major stumbling block for large-scale Q&A forums is of having questions

without an accepted answer or having answers with low votes. As a result, users are

hesitant in selecting answers for such questions. In some cases, the question is

deleted from the forum’s database resulting in loss of could-be valuable information.

This scenario bolsters the purpose of this research work and asks for the existence of

a system that could predict the presence of quality answers at times when the

community-based features of StackOverflow might fail. Tian et al., in their paper

[23] address the above-mentioned issue by predicting the best answer in the lot

using semantically and syntactically tailored features. Their work’s first

contribution is towards identifying the features that could lead to an answer

achieving the feat of the best answer. They assess three major qualities 1) quality of

the answer content 2) whether the answer solves the question or not 3) how it

competes with other answers. Their second contribution involves designing and

evaluating a learning approach using these features.
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Yao et al., in their paper [32] express the concern of asking good questions and

how they could attract good quality answers. They hypothesize that quality of a

question could correlate to that of its answers. An interesting question might obtain

more attention from potential answerers and possibly have a better chance to

receive high-quality answers. Moreover, predicting the quality of existing questions

and answers, especially soon after they are posted, becomes an essential task for

both information producers and consumers. From the perspective of information

producer (e.g., who asks or answers questions), predicting the quality as early as

possible could help the questions that are potentially of high quality to attract more

high-quality answers by recommending these questions to experts. Users are always

looking forward to answering good questions and identifying question quality would

accelerate the process also as an aftereffect, indicate useless and spam posts. The

work presented by Yao et al., further fosters the basis of this research.

One of the prime motivations of carrying out this research was to find a way to

rank new answer posts before they received any community reputation. Tian et al.,

in their paper [24] expresses similar concerns. Their approach predicts the best

answerer for a new question. Users of CQA sites post their questions and wait for

other users to post answers to the question, which may take several days. Even if

there are answers, without votes it is difficult for the user to show confidence in

using it. The asker is sometimes not satisfied with the quality of the answer. In

both cases, a system that could recommend questions to experts who have a higher

likelihood of answering them is needed. Their method considers both user interest

and user expertise relevant to the topics of the given question. User interests on

various topics are learned by applying topic modeling to the previously answered

questions while his expertise is learned by leveraging collaborative voting mechanism

of CQA sites. They claim to outperform the state of the art approach of TF-IDF .

10



2.2 Sentiment Analysis in Q&A Forums

Sentiment analysis has been widely applied in social media datasets in order to

detect trends, assist decision-making, discover spam reviews [16, 21, 12] etc. Most of

the sentiment classification approaches are based on linguistic language structures

(i.e Linguistic Inquiry and Word Count ), semantic network relations (i.e. WordNet,

sentiWordNet [3]), or build a domain-specific opinion dictionary by defining positive

and negative adjectives relevant to the corpora [11, 7]. There is only a few explored

opinion mining in open discussion forums with students’ learning. Wen et al. [31]

investigated students’ opinions towards a course. The researchers introduced

subjectivity and sentiment mining based on educational data mining findings, such

as boredom was associated with poorer learning; frustration was less associated with

poorer learning, which attitude, in general, played an important factor in effective

learning. The authors found a correlation between sentiment ratio on daily forum

posts and student drop out each day. Munezero et al. [15] coded eight derivative

human emotions from Plutchiks emotion psycho-evolutionary theory [18] to track

emotions in a students learning diaries, which are made available for instructors as a

source of informative feedback. They further visualized the variations of students

emotions over a period of time and helped faculty narrow down those students

whose anxiety/frustration levels seem increasing.

Our research work can be considered as an extension to Hsiao’s et al., work in

[11]. Their paper aims to study automatic methods for identifying useful content to

learn to program from a discussion forum. The hypothesis of their paper is that

identifying learning-inductive content in large scale programming discussions will

prevent learners from searching for a needle in the haystack and reading a mess of

new detail. Their research shows that preexisting forum quality indicators might
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(votes, acceptance, favorite) point to the correctness of a possible solution but,

readers have differing backgrounds and varying degrees of previous knowledge which

could influence which answer is the best for that particular individual. Therefore,

these quality indicators may not be universally applied to all users. They further

explain this with an example; an accepted answer may be too dense for a novice to

grasp. They delve into discovering artificially intelligent methods to evaluate

content quality that could provoke learning in CQA. Their approach involves them

building a constructive lexicon library to capture comparing & contrasting words,

explanation, and justification & elaboration words. They then identify useful

content that might evoke learning by constructing a model to capture the quality of

the contents that signal constructive behavior. In our research work, we make use of

the constructive measure used in this paper to investigate into the constructiveness

of the comments to reveal post quality.

In this work, in order to investigate the effects of disputable perspectives

among social interactions, we incorporate SentiWordNet3 [8] to compute the generic

language sentiments from discussions. It is an enhanced version of SentiWordNet

[3]. SentiWordNet3 is a lexical resource explicitly devised for supporting sentiment

classification and opinions mining applications. More than 300 research groups and

a variety of research projects use it. It is the result of automatic annotation of all

the synsets of WORDNET according to the notions of positivity, negativity, and

neutrality. Each of the synsets s is correlated to three numerical scores: Pos(s),

Neg(s) and Obj(s), which indicate respectively the positivity, negativity and

neutrality of the terms contained in the synset. Each of the three scores range in

the interval [0.0,1.0], and the sum is 1 for each synset.
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Our research uses Somasundaran et al’s., work [22] label controversial

semantics. Their work includes analyzing opinion categories like sentiments and

arguments in meetings. They use the AMI corpus consisting of 6504 sentences to

carry out all their analysis. Their research hovers around identifying arguments in

conversations as little research has been done in this field compared to identifying

sentiments. First, they manually annotated categories and then developed

genre-specific lexicons using interesting function word combinations for detecting

the opinions. They developed an arguing lexicon as a new knowledge source for

automatically recognizing the argument category. Their work resulted in them

proving that dialog structure interacts with the expression of opinions and they

confirmed this through machine learning experiments.

Another one of the relevant works was by Agrawal et al., [1] where they address

confusions in MOOC Discussion Forums. They developed a system (YouEDU)

which presents a unified pipeline that automatically classifies forum posts across

multiple dimensions. They particularly detect the presence of confusion and then

present the users in that post with one-minute-resolution video snippets that are

likely to help address the confusion. Besides describing the extent of confusion, each

entry in the MOOCPosts set indicates whether a particular post was a question, an

answer or an opinion, and gauges the post’s sentiment and urgency for an instructor

to respond. Evaluation of their system showed that YouEDU performed well and

addressed the issue of manifestation of confusions in MOOC discussion forums.
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Chapter 3

METHODOLOGY

3.1 Research Platform

Unlike discussion forums like Yahoo! Answers and Quora that cater to a broad

range of interests, StackOverflow is a question and answer forum designed mainly

for professional and enthusiast programmers. It is an aggregated library known to

contain the widest range of programming questions and answers. The most striking

(aspect) is the largely engaged user community that collaboratively manages and

edits the posts on the site. As the questions in StackOverflow require an in-depth

knowledge of various domains in the programming field, a large part of this

community comprises of experts in the domain. The quality of the content is

actively conserved through this community; any question which is of questionable

quality is generally detected by an expert and put on a hold. These questions then

stack up in a review queue from where it goes to experts to decide its existence. The

popularity of StackOverflow is largely based on the numerous features it provides to

its users. Through membership and active participation, the website allows its users

to up-vote or down-vote posts. Users of StackOverflow can earn reputation points

and ”badges”; for example, a person is awarded 10 reputation points for receiving

an up-vote on an answer given to a question, and can receive badges for their

contributions [17], which represents a kind of gamification of the traditional Q&A

forum. The feature of closing questions 3.2 differentiates other discussion forums

from StackOverflow. Figure 3.1 shows a snippet from the discussion forum.
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Figure 3.1: Snippet of a Page from Stackoverflow.com - The Image Displays a

Question Post, Comments on the Question Post, an Answer Post and Comments

under the Answer Post.

3.2 Data

The focus of this study is in the comments of the posts. The comments section

in SO is utilized when users have something worth saying about the post that could

raise a discussion, asking the questioner for clarity or having a procedural point to
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Figure 3.2: Snippet of a Page from Stackoverflow.com - The Image Displays a

Question Post That Has Been Closed by Users Having Enough Reputation.

make about the existing post. Below is a sample list of data fields used to scrape

StackOverflow data from Stack Exchange API.

<post_id>: numeric value

<parent_id>: numeric value

<posttypeid>: integer
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<post_body>: varchar

<post_title>: varchar

<acceptedanswerid>: numeric value

<comment_text>: varchar

<post_creation_date>: date

We show that the presence of controversial comments under a post strengthens

the prediction of post quality (#Votes). We use the MPQA (Multiple Perspective

Question Answering) opinion corpus developed by University of Pittsburgh and

adopt the arguing lexicon to investigate the existence of controversial phrases in a

comment [22]. The arguing lexicon consists of 17 arguing lexicons of which our

prime focus is on the presence of 3 strongly controversy lexicons (doubt,

inconsistency, and contrast). Table 3.2 shows a sample of comments being tagged

with lexicons. Lexicon entries are in the form of regular expression patterns. We

perform our analysis on 8038 unique posts from StackOverflow, 5025 of these are

question posts. Table 3.1 depicts the frequencies of the occurrence of Lexicons in

the comments of posts in our data set. Java being the most popular of the

programming languages, for our analysis we have used posts that have been tagged

with ‘java’ in SO, dated January 01, 2014 to January 10, 2014. We queried a list of

features using StackExchange Data Explorer API from the StackOverflow database.

Since our research is centered towards regulating the importance of controversial

comments under a post, we divide our data into post level and comment level.

In order to retrieve the value of comment sentiment, we used sentiWordNet

which is an opinion mining resource. It uses the principle of automatic annotation

of all synsets of WORDNET according to the notions of “positivity”, “negativity”,

and “neutrality”.
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Lexicon Frequency Lexicon Frequency

1 assessment 395 9 generalization 66

2 authority 49 10 inconsistency 945

3 causation 2947 11 inyourshoes 41

4 conditionals 354 12 necessity 3314

5 contrast 1472 13 possibility 1450

6 difficulty 0 14 priority 408

7 doubt 166 15 rhetorical question 171

8 emphasis 802 16 wants 0

Table 3.1: Arguing Lexicon Frequency

Comment Lexicon

I feel sorry for you. If it’s due in a few

hours then you are not going to get it

working, and SO most definitely won’t

help you cheat.

possibility; emphasis; causation

@JimGarrison I’m not trying to cheat!!

I just want to figure out what I’m doing

wrong.

contrast

Thanks @Jeroen, I changed it back but

it still gives the error.
inconsistency

@user1973167: I am not convinced you

are doing it,correctly from your

description of the problem.

doubt

Table 3.2: Lexicon Tagging of Comments
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3.3 Feature Engineering

The content semantic features in the analysis are extracted from either the

literature in the field or through observational inferences. The syntactic features, as

well as the social features inherent to StackOverflow, were also considered. The

above categorization of features was applied to the post as well as comment level.

The post-level syntactic features extracted were ‘Post Length’, ‘Timestamp’

and ‘Type of Post’. It is observed that question posts have a distinguishing

characteristic from answer posts in terms of edit counts, the median time of

comments etc., hence, it becomes necessary to distinguish an answer post from a

question post, justifying our use of the feature. The above is evaluated in the later

part of the thesis. ’Timestamp’ is of the essence as it helps us understand the

swiftness with which questions get answered on StackOverflow. From the literature

survey, it was found that ’Post Length’ and ’Code Percentage’ could be crucial

predictors of content quality, our analysis ascertains the following. ’Votes’ and

’Constructiveness Score’ formed the basis of our evaluation metric.

Votes is a crowd-sourced metric to measure the quality of a post, from relevant

literature survey it is proven to be an effective way of measuring post quality.

Therefore, we employ this as one of the dependent variables while conducting

regression.

“Constructing meaningful posts that require cognitive thinking is a

constructive activity” [11]. Based on the ICAP (Interactive, Constructive, Active,

Passive) framework [5] the measure of constructive activity include the following

possible underlying cognitive processes: inferring, creating, integrating new

information with prior knowledge, elaborating, comparing, contrasting, analogizing,
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generalizing, including, reflecting on conditions and explaining why something

works. According to these cognitive processes, Hsiao et al., in their paper [11] build

a constructive lexicon library to capture comparing & contrasting words,

explanation, justification & elaboration words. Adding few of their own models they

extended an opinion mining technique [10] to automatically identify post

constructiveness based on the constructive lexicon library. We harness this model in

this research to produce the constructiveness scores of a post which forms the

second dependent variable we perform regression on.

Our consideration of ’Edit Counts’ relied on Observational inference and

relevant literature survey, implying towards it being an important variable in

detecting quality content. Correlating the existence of controversial comments to

post quality forms the hypothesis of this research and we later go on to prove that

controversial comments can be imperative to post quality. Table 3.3 lists down all

the post-level features alongside their definitions.

Analogous to post-level syntactic features we consider ’Comment Length’ and

’Timestamp’ as comment-level syntactic features. ’Comment Score’ and ’User

Reputation’ formed the comment-level social features, their contribution towards

predicting the quality of post remained unsubstantial. These two features were

considered as a result of observational inferences. ’No. of Interactions’ in a comment

initially gave out an impression that it might be a useful predictor, but it proved else

wise. The literature survey was consistent in suggesting ’Comment Sentiment’ and

’Entropy’ being critical assets in assessing post quality. We relate the term ‘Entropy’

as a global measure as it’s value is calculated on the basis of other comments under

the considered post. On the other hand ’Controversy Score’ which is a subset of the

post-level semantic feature ’No. of Controversial comments’ is termed as a local
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measure due to calculation of controversy being independent of other comments.

Table 3.4 lists down all the comment-level features alongside their definitions.

Features Description

Syntactic Features

Post Length Number of words including Code words

Timestamp Creation date and time of the post

Type of Post
Post could be a question, answer or

an accepted answer post.

User Characteristics and Social features

Votes
Crowd-sourced content quality evaluation

metric.

Edit Count Number of Edits a post has,encountered

Content Semantic Features

Constructiveness Score

The number of constructive word counts

that associate with constructive learning

activities per post; the underlying

cognitive processes are described

in detail in [11].

Code Percentage The amount of code text in a post.

No. of Unique users
Number of unique users commenting on

a post.

No. of Controversial comments
The amount of controversial comments

per post.

Table 3.3: Post Level Features

21



Features Description

Syntactic Features

Comment Length Number of words including code words.

Timestamp Creation date and time.

User Characteristics and Social Features

Comment Score
Crowd-sourced comment quality

evaluation metric.

User Reputation Crowd-Sourced trust measurement.

Content Semantic Features

Median User Reputation
Median value of reputation of unique

users under a post.

No. of Interactions
Number of @ mentions that a user has

been referenced in a post.

Comment Sentiment SentiWordNet value of comment text [3]

Controversy Score
Number of controversy lexicon matches

in a comment.

Entropy
Shannon Entropy to represent comment

diversity.

Table 3.4: Comment Level Features
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3.4 Descriptive Statistics

Our dataset includes 5,025 questions and 3,013 answers, which sum up a total

of 8,038 posts. Table 3.5 and figure 3.3 show the descriptive statistics by each kind

of posts. Compared to questions, a larger proportion of answers had positive counts

of votes. About two-thirds of all answers had a positive count of votes (more than

one vote) and a majority of them (60%) had a total count of one and four positive

votes.

Figure 3.3: Votes Distribution

Variable Answers Questions

Post with negative votes 78 (2.59%) 424 (8.44%)

Post with zero votes 932 (30.93%) 1,750 (34.83%)

Post with between zero and four votes 1,801 (59.77%) 1,250 (24.88%)

Post with more than four votes 202 (6.70%) 1,601 (31.86%)

Table 3.5: Votes by Kind of Post

Questions and answers had similar constructiveness scores on average, but

Questions tend to have more words than answers (83.1 vs. 78.9, p = 0.03) and are
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edited more often (1.8 vs. 0.7, p <0.001) on average (see Table 3.6 and 3.7). The

median time of comments are shorter for questions (15 mins), which means that

people comment questions quicker than answers (29 mins). We consider the median

time of comments instead of mean because the distribution of the timing of

comments is very skewed.

A possible explanation can be the most of the comments to questions are

clarification type of comments, as a result, they tend to be easier to attend to and

result in question askers frequent edits to enhance the content presentation.

However, even both answers and questions received comments from 1.9 users on

average, users who commented answers provided slightly more comments than those

who commented questions (1.6 vs. 1.3 comments per user, p <0.001). In addition,

Answers comments also have larger average entropy than questions answers. These

reasons lead us to focus on only Answer posts’ comments, and how they affect its

quality, if any. One interesting note is that Answers in our dataset often included

code, and was provided quickly after a question was posted and had few alternative

answers. Overall, four out of five answers included code (80%). The average answer

appeared 4.5 minutes after a question is posted on the site. However, the number of

alternative answers appeared in a skewed distribution and ranged from 0 to 9, with

a mean of 0.8 answers. Contrasting to their comments statistics, it indicates the

challenge to provide solutions to programming-related problems.

To further investigate the value of comments to answers, we randomly sample

22,756 comments with posts topic Java in the year 2014. These comments are

associated with 8,038 posts. 13,189 comments were related to 5,025 questions and

9,567 comments were associated with 3,013 answers. On average, a question

received fewer comments than an answer (2.6 vs 3.2, p <0.001). The descriptive

24



Answers

Variable mean sd min max

Post constructiveness 3.6 2.4 1 23

Post length 78.9 98 2 1

Edit count 0.7 1.2 0 19

With code 0.8 0.4 0 1

Time to answer the question 273.2 167.6 1 578

Alternative answers 0.8 1.1 0 9

Number of unique commenters 1.9 0.9 0 11

time of comments (seconds) 876881.7 4726272 0 5.25e+07

Median reputation of commenters 2088.2 1222.56 2 4207

Ratio comments to commenters 1.6 1.1 1 14.5

Ratio negative comments to comments 0.1 0.2 0 1

Mean entropy of comments 4.2 0.2 2.6 5.1

Table 3.6: Descriptive Statistics of Post Variables by Kind of Post:Answers

statistics of our comment variables are shown in Table 5. While 30% of the

questions comments had, at least, one positive vote, only 10% of the answers votes

have positive votes. Nevertheless, the constructiveness score of answers’ comments

is larger than questions comments, on average (1.9 vs 1.3, p <0.001). Compared to

answers’ comments, questions’ comments are more positively voted; however, they

have a lower score of constructiveness. The mismatch between voting patterns and

constructiveness scores again shows that questions comments’ can be easier to

attend to, but answers’ comments may require more cognitive processes (i.e.

arguing, contrasting, comparing, etc.) We dig deeper into Answers’ comments
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Questions

Variable mean sd min max

Post constructiveness 3.5 1.9 1 9

Post length 83.1 86.4 1 1

Edit count 1.8 2 0 15

With code 0.8 0.4 0 1

Number of unique commenters 1.9 1.7 0 18

time of comments (seconds) 400689.9 3218941 0 5.24e+07

Median reputation of commenters 2114.1 1230.2 1 4209

Ratio comments to commenters 1.3 0.7 0.5 10.5

Ratio negative comments to comments 0.1 0.2 0 1

Mean entropy of comments 3.2 0.7 2.3 5

Table 3.7: Descriptive Statistics of Post Variables by Kind of Post:Questions

Answers Questions

Variable mean sd min max mean sd min max

Comment with positive votes 0.1 0.3 0.0 1.0 0.3 0.4 0.0 1.0

Comment constructiveness 1.9 1.2 1.0 10.0 1.3 1.2 0.0 9.0

Comment length (words) 24.8 20.7 0 276.0 16.3 17.9 1.0 216.0

Time to comment (seconds) 780583.5 4795113 0.0 5.38e+07 356365.5 3209177 0.0 5.39e+07

Controversy 0.2 0.9 -5.9 6.8 0.1 0.7 -5.6 5.7

Entropy 4.2 0.3 0.8 5.5 3.7 0.9 0.9 5.9

Table 3.8: Descriptive Statistics of Comment Variables by Kind of Post
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semantics. We found that Answers comments are more controversial and have more

entropy than questions comments. On average, an answers comment is twice as

controversial as a questions comment (0.2 vs. 0.1, p <0.001). Answers comments

are having more distinctive content (higher entropy) than questions comments (4.2

vs. 3.2, p <0.001). Therefore, even eventually the answers are not accepted, the

associated comments left traces of commenters efforts. Such traces can be valuable

resources for readers, for instance, commenters trial and error experiences.
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Chapter 4

EVALUATION RESULTS

To address our research questions, we conducted regression analysis to model

the quality of answers in terms of votes (see Table 4.1) and constructiveness (Table

4.2).

Regression for both votes and constructiveness was carried out for two cases,

column one represents regression with post semantic features and column two

includes post semantic features with comment semantic features. The reason for

considering the above mentioned cases while building the regression model was to

highlight the effect comments have on post quality. We used a linear regression to

model the number of votes, which could take negative and positive values.

Regarding constructiveness, we conducted logistic regression analysis to estimate a

binary dependent variable that represented a median split of the constructiveness

score.

4.1 The Value of Comments

4.1.1 More Heads Are Better than One

Regarding the comments, we found that the number of unique users who

provide comments is associated with the votes an answer received. The more users

comment, the higher the number of votes the answer gets. An increase of one unit

in the number of commenters increases the number of votes by 0.295. Additionally,

the timing of comments is also plays a role. The longer the median time of
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comments, the more votes the answer is expected to get. The effect size of this

measure of time is an increase of 0.098 by every second after the answer is provided.

This indicates that the amount of people who participate in the discussion of an

answer and the speed at which this discussion takes place are strongly related to the

attraction and positive perception that the answer will obtain. Such results are in

fact aligned with the literature [2, 23]. There are other findings that are also aligned

with prior research. For instance, we found evidence that the presence of code in the

answer and the number of edits of the answer have positive relationships with the

number of votes. This further suggests the importance of the community review

process (number of edits) is a significant factor. However, how do these comments

shepherd the edits and achieve higher votes? Is it due to comments diversity or

comments controversy?

4.1.2 Comments Semantics Matter to Post Quality: Diversity Is Better than

Controversy

To address the comment semantics effects based on each individuals opinions,

we evaluate comments entropy and comments controversy. We found that the mean

entropy of an answers comments is significantly and positively associated with the

answers votes. A unit of increase in the mean entropy is predicted to increase the

number of votes by 0.070 units. Yet, neither the ratio of comments to authors nor

the ratio of negative comments to total comments has significant effects. The

community would consider more diverse information as good quality and then

provide higher ratings, but the more disputable comments would actually indicate

the more questionable the contents are. The outcome confirms our hypothesis that

controversy can be an index in judging post quality, however, in order to find good

29



content, diversity will be a better indicator than controversy. In another word, when

searching for valued content, it is important to look for entropy, rather than observe

controversies in comments. Such finding can be a huge help in auto-assessing fast

growing online discussions.

4.1.3 Comments Amplify Explanatory Power

We found that the number of unique users who provide comments, their

reputation, and the timing of the comments positively relate to the constructiveness

of the answer (Table 4.2). Answers that attract more commenters, with higher

median reputation and that garner half of the comments in longer periods of time

have higher odds to have above median constructiveness. Such finding again

confirms literature that good quality content provokes cognitive process is the one

involves with the authorship. Among the control variables, the number of editions

and the answer length are also related to constructiveness. Longer answers and those

with more edits are associated with above median constructiveness. Together the

results indicate the characteristics of the comments help to explain the variability of

both the number of votes and constructiveness, thus providing support to our main

hypothesis that comments could be used as a proxy to find value in answers.

4.1.4 Comments Facilitate Editing Process

As we discussed earlier (section 3.4), users actually put in efforts in giving

answers comments, do those efforts yield in good answers that provoke learning?

We have already found that the comments semantics are associated with the

answers votes, but not with constructiveness (Table 4.1, column (2) & Table 4.2

(2)). Such results were initially counter-intuitive to our understanding. However, we
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Regression Analysis: Votes

(1) (2)

Variables Number of votes Number of votes

Post

Variables

Answer length (log) 0.035 -0.165***

With code 0.236*** 0.206***

Time to answer the question

(log)
-0.006 -0.006

Alternative answers -0.024 -0.017

Edit count 0.162*** 0.127***

Comment

Variables

Number of unique commenters 0.295***

Median time of comments

(log)
0.098***

Median reputation of

commenters (log)
-0.000

Ratio comments to

commenters
-0.027

Ratio negative comments to

comments
0.003

Mean entropy of comments 0.070**

Observations 2983 2951

Pseudo R-squared 0.094 0.155

Exponentiated coefficients

* p<0.05, ** p<0.01,***p<0.001

Table 4.1: Regression Analysis for Answers’ Votes, Column (1) Constitutes Only

Post Semantic Features, Columns (2) Considers Both Post and Comment Semantic

Features.
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Regression Analysis: Constructiveness

(1) (2)

Variables
Above Median

Constructiveness

Above Median

Constructiveness

Post

Variables

Answer length (log) 1.294*** 1.437***

With code 1.054 1.084

Time to answer the question

(log)
1.044 1.027

Alternative answers 0.961 0.983

Edit count 1.399*** 1.434***

Comment

Variables

Number of unique commenters 0.819**

Median time of comments

(log)
1.046**

Median reputation of

commenters (log)
0.934*

Ratio comments to

commenters
0.937

Ratio negative comments to

comments
1.034

Mean entropy of comments 1.166

Observations 2983 2951

Pseudo R-squared 0.046 0.054

Exponentiated coefficients

* p<0.05, ** p<0.01,***p<0.001

Table 4.2: Regression Analysis for Constructiveness, Column (1) Constitutes Only

Post Semantic Features, Columns (2) Considers Both Post and Comment Semantic

Features.
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reason that votes and comments semantics are strongly connected because both of

them represent the readers perceptions of an answer. On the other hand,

constructiveness of an answer could only be affected by the comments semantics if

the answers are edited as a result of the comments. Therefore, we now turn to

assess whether there is a connection between comments and edit count. Table 4.3

shows that indeed there is an association between the mean entropy of comments

and the edit count. The less entropy in the comments, the more the number of edit

counts. A unit of increase in the mean entropy of an answers comments is expected

to decrease the count of edits by a factor of 0.577. In plain English, when there is a

lack of point of views in the comments, answers tend to remain the way it is without

editing. Without community shepherds discussions based on the feedback from

comments, it is harder to shape answers thought-provoking content.

4.1.5 Comments Make Answers Become Attractive

Other aspects of an answers comments are also factors on the number of edits.

The number of unique commenters, the median time of comments and the ratio of

comments to commenters are expected to increase the count of edits. For example,

a unit of increase in the number of unique commenters is predicted to increase the

number of edits by a factor of 1.238. When the ratio of comments to authors

increases by one unit, the count of edits is expected to increase by a factor of 1.145.

Additionally, the longer it takes for the answer to obtaining half of its comments,

the higher the number of edits. We interpret all of these independent variables as

attention attractors, which represent how attractive the answer is. The more people

are involved, the more comments the community can possibly provide and the

longer the answer can still receive comments. These are all hints that the answer
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Poisson Regression: Edit Count

(1) (2)

Variables
Answer’s Edit

Count

Answer’s Edit

Count

Post

Variables

Answer length (log) 1.341*** 1.120**

With code 2.497*** 2.349***

Time to answer the question

(log)
1.029 1.033

Alternative answers 1.097*** 1.048**

Comment

Variables

Number of unique commenters 1.238***

Median time of comments

(log)
1.056***

Median reputation of

commenters (log)
1.040

Ratio comments to

commenters
1.145***

Ratio negative comments to

comments
0.931

Mean entropy of comments 0.577***

Observations 2983 2951

Pseudo R-squared 0.063 0.086

Exponentiated coefficients

* p<0.05, ** p<0.01,***p<0.001

Table 4.3: Poisson Regression Analysis for Answers Number of Edits, Column (2)

Constitutes Comment Semantic Features, Column (1) Does Not.
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has attracted attention, and therefore, there is more chance that the answer is

further improved through more edits.

4.2 The Effects of Comment Quality

Finally, we conducted two regression analysis to assess the comments quality in

terms of votes and constructiveness. Given that only a small proportion of

comments had a total count of votes larger than zero, we defined a binary

dependent variable to represent whether a comment had positive votes or no. We

conducted a logistic regression to model this binary indicator. On the other hand,

comment constructiveness was a count variable, therefore, we used a Poisson

regression to estimate the effect of the independent variables on the constructiveness

score. The results indicate that the larger the entropy score of a comment, the more

likely that the comment will have a positive count of votes. A unit of increase in

entropy is expected to increase the probability of the comment to have positive

votes by a factor of 1.431 (Table 4.4 column (1)). However, the controversy score of

the comment is not significantly related to the votes. Additionally, longer and

earlier comments are more likely to have a positive count of votes. Meanwhile, the

pattern of influence of the comments semantics is the opposite. While entropy does

not have a statistically significant relationship with constructiveness, controversy

does. More controversial comments are associated with more constructive

comments. An increase of a unit in the controversy score is predicted to increase the

count of constructiveness score by a factor of 1.036 (Table 4.4 column (2)).

Together, these results mean that when searching for feedback to improve

comments, people are likely to get provoked by controversial content. However, the
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community tends to cast the votes to appreciate different points of views, but not

necessarily opposite points of view.

Regression: Votes & Constructiveness

(1) (2)

Variables Comment with positive vote? (yes/no) Comment constructiveness

Comment length (log) 1.106* 1.562***

Time to comment the question (log) 0.906*** 1.002

Controversy 1.069 1.036***

Entropy 1.431** 0.941

Observations 9569 9569

Pseudo R-squared 0.011 0.075

Exponentiated coefficients

* p<0.05, ** p<0.01, *** p<0.001”

Table 4.4: Regression Analysis of Comments Votes and Constructiveness
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Chapter 5

CONCLUSIONS

5.1 Summary

• The evaluation section of this paper provides substantial evidence in

considering comment semantic features to distinguish the quality of posts.

Comment controversy can be an index in judging quality, however, entropy

helps find the good quality content.

• By referring to some of the past research work on StackOverflow, it can be

stated that StackOveflow’s content quality detection features are reliable.

• Diverse comments attract more positive votes than controversial comments.

5.2 Conclusion

In this work, we investigate comment semantics from StackOverflow site and

how does the semantic dynamics affect Answer quality. We survey the relevant

literature and employ the key content quality identification features. We then

construct comment semantics features and build several regression models to

explore the value of comment semantics dynamics. We examine the value of

comments for large-scale of discussion forums. We not only reconfirm the usefulness

of several essential quality predictors, including time, reputation, length, and

editorship, we also found the results show that comment semantics are valuable to

shape the answer quality. They increase the model explanatory power and reassure

importance of the commenting-editing ecosystem for large-scale programming
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discussion forums. Specifically, the diversity of comments contributes to the answer

quality. More importantly, when searching for valued content, it is important to

look for global semantics dynamics (entropy), rather than observe local differences

(controversy). Although, controversial comments are not significant indicators to

post quality, the disputable comments leave traces of commenters efforts. Such

traces can be valuable resources for future readers, such as commenters trial and

error experiences. Moreover, the presence of comments shepherd the community to

revise the posts by attracting attentions to the posts and eventually facilitate the

editing process. Currently, we only consider limited set of social features, such as

reputation. We disregard several others, such as badges, tags etc. We emphasize

that the goal of this study is to understand the value of comments to the posts,

rather than predicting post quality. In the future, more comprehensive features can

be considered. Most importantly, we plan to investigate how much students can

learn by consuming different comments-supported content and what other semantics

structure will affect content quality.

5.3 Future Work

As part of the future work, we would like to address the issue of

StackOverflow’s discrepancies in the rating system by identifying such posts before

analyzing its quality.

The data considered for the analysis of this research is StackOverflow’s java

posts. Extending our method of evaluating quality to other programming language

posts would make this research further reliable.

Assessing the scope of extending this research to various other online

discussion platforms.
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[6] Dalip, D. H., M. A. Gonçalves, M. Cristo and P. Calado, “Exploiting user
feedback to learn to rank answers in q&a forums: a case study with stack
overflow”, in “Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval”, pp. 543–552 (ACM, 2013).
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