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ABSTRACT

There has been tremendous technological advancement in the past two decades.

Faster computers and improved sensing devices have broadened the research scope in

computer vision. With these developments, the task of assessing the quality of human

actions, is considered an important problem that needs to be tackled. Movement

quality assessment finds wide range of application in motor control, health-care,

rehabilitation and physical therapy. Home-based interactive physical therapy requires

the ability to monitor, inform and assess the quality of everyday movements. Obtaining

labeled data from trained therapists/experts is the main limitation, since it is both

expensive and time consuming.

Motivated by recent studies in motor control and therapy, in this thesis an existing

computational framework is used to assess balance impairment and disease severity

in people suffering from Parkinson’s disease. The framework uses high-dimensional

shape descriptors of the reconstructed phase space, of the subjects’ center of pressure

(CoP) tracings while performing dynamical postural shifts. The performance of the

framework is evaluated using a dataset collected from 43 healthy and 17 Parkinson’s

disease impaired subjects, and outperforms other methods, such as dynamical shift

indices and use of chaotic invariants, in assessment of balance impairment.

In this thesis, an unsupervised method is also proposed that measures movement

quality assessment of simple actions like sit-to-stand and dynamic posture shifts by

modeling the deviation of a given movement from an ideal movement path in the

configuration space, i.e. the quality of movement is directly related to similarity to

the ideal trajectory, between the start and end pose. The S1 ×S1 configuration space

was used to model the interaction of two joint angles in sit-to-stand actions, and the
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R2 space was used to model the subject’s CoP while performing dynamic posture

shifts for application in movement quality estimation.
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Chapter 1

INTRODUCTION

1.1 Balance Impairment in Parkinson’s Disease

Parkinson’s disease (PD) is a chronic, progressive and idiopathic disorder of the

central nervous system, mainly affecting motor control. In the United States, about

one million people are affected by PD [1], and live with no cure. Some of the symptoms

include – degradation of motor functions, speech, behavior and thought process. These

symptoms continue and aggravate over time. It is considered to be the second most

common age related neurodegenerative disease, and with aging population worldwide,

the incidence of idiopathic PD will only increase [2]. The increasing demand for health-

care and rehabilitation for the elderly, calls for efficient management guidelines offering

effective assessment of impairment. The various motor symptoms that are shown

by people suffering from PD include: tremor, bradykinesia (slowness of movement),

rigidity and postural instability. Postural instability is the most common symptom

affecting many activities of daily living and is shown to be the leading cause of falls

in people with PD [3, 4, 5, 6].

Most widely, the research studies that investigated the impact of PD on health-

related quality of life [7, 8] and balance involved using clinical scores and balance tests

that are mainly based on visual evaluation of specified movement tasks by a trained

medical personnel. At the most, they included calculation of walking speed, maximum

time period for which one can stand quietly without taking a step on various surfaces,

how far one can lean without losing balance or take a step. For example, the Unified
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Parkinson’s Disease Rating Scale (UPDRS) [9] involves subjective clinical observation,

has been widely used by clinicians to follow the progression of the disease, especially

the severity of the motor impairments, with 0 being least severe and 180 being most

severe. Although this clinical scale has been widely used, the number of test items

used to evaluate balance control is very less compared to the number of items used

to assess various other impairments of the disease. In addition, evaluation based

on visual examination may not be sufficient to identify subtle changes in balance.

Only a minority of the studies utilized obtained sway measures (using CoP data)

during quiet standing and balance perturbations. Given this, developing automated

methods to quantitatively assess the level of impairment will be beneficial, and is

the motivation for our research to develop a framework for automatic assessment of

“quality” of posture shift movement. In this thesis, a standardized model to effectively

assess the level of balance impairment across the subjects in the study is proposed.

Towards this, analysis of the postural dynamic shifts dataset from healthy individuals

and people with PD while standing on a force platform was done.
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1.1.1 Related Work

Clinical assessment tools will be useful in assessing fall risk and to determine

different types of balance deficits in subjects with PD. In [10], the authors studied

the relevance of clinical balance assessment tools to differentiate balance deficits,

indicating that the use of wearable sensors and objective measures of balance will lead

to sensitive, specific and responsive clinical balance assessment. Schoneburg et al.[11],

described a framework to characterize balance dysfunction using four postural control

systems: balance during quiet stance; reactive postural adjustments; anticipatory

postural adjustments and dynamic balance control.

Giuberti et al.[12], investigated whether kinematic variables like angular amplitude,

speed of thighs’ motion, obtained from a leg agility task, were representative of

the UPDRS scores of subjects with PD. Lee et al.[13], used gait characteristics and

wavelet-based features to classify idiopathic PD patients and healthy subjects, and

achieved a classification accuracy of 77.33%. Khorasani et al.[14], used Hidden Markov

Model with Gaussian mixtures to classify gait data collected from 16 healthy and

15 PD subjects, with an accuracy rate of 90.3%. Leddy et al.[15], in their study

compared Functional Gait Assessment (FGA) and Balance Evaluation Systems Test

(BESTest) over the Berg Balance Scale (BBS), and found both to be reliable and

valid for assessing balance in PD subject, but with the BESTest approach being more

sensitive for identifying fallers. [16, 17] used linear, Gaussian and polynomial kernel

support vector machine (SVM) models to classify Minimum foot clearance (MFC)

gait patterns into healthy elderly and balance impaired elderly classes. Greene et

al.[18] also developed SVM models using standing balance trial information collected

from elderly subjects to classify them into subjects with or without a history of falls.
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Recent interest in the stroke rehabilitation community has been towards develop-

ment of automated methods to quantitatively assess the quality of movement to aid in

therapy treatment [19, 20, 21]. The main idea here is to extract feature representations

from the wrist trajectory data collected from stroke survivors, and assess the level

of impairment. In this thesis, we take this idea to assess the level of impairment in

subjects with PD. The performance of various features is tested over the Dynamical

Posture Shift data.
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1.2 Movement Quality Assessment

In many applications for health-care, the ability to monitor, inform, and asses the

quality of our movements, plays a key role. This ability can enable the creation of

systems that one could use on an everyday basis while reducing the time and effort

required on the part of trained physical therapist. Home based systems are also more

intimate, and reduce the need to travel elsewhere for physical therapy. A growing class

of affordable sensing devices have led to the development of such home-based and

hospital-based systems that can provide feedback and quality ratings for movements.

Sensors for motion capture (e.g. Optitrack, Microsoft Kinect), accelerometers and

gyroscopes are often used in such systems. Similar ideas are also being studied in the

context of sports and athletics [22].

In the effort to build autonomous systems, a large body of work combines features

obtained from the sensor data with machine learning techniques to predict quality

scores similar to a physical therapist/experts. This involves obtaining labeled data

from therapists, which is used to train a model [23, 24, 22, 25]. Obtaining such labels

is not easy, since domain knowledge is very essential in most applications for movement

quality assessment. Additionally, physical therapists ratings may be subjective, with

wide variability in rating across different therapists. One approach to decouple the

inherent subjectivity of rating vs the true quality is via a combination of crowd

sourcing platforms such as Amazon MTurk [26], with computational methods such

as non-negative matrix factorization. This approach has been difficult to pursue in

fields where experts are required to label data such as in physical therapy and medical

imaging, and where sharing of patient data raises many concerns.

The role of geometric constraints in human body, and associated metrics for
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measuring movement quality were considered. The proposed approach is based on

recent studies which suggest that the most efficient movement between two poses, in

certain well defined cases, is often the geodesic path in the pose-space [27]. Some of

these results have been reported in other forms, such as showing that the optimal

reaching movements in the Euclidean space appear curved [28, 29]. Recent work in

motor control suggests that, when presented with visual feedback of the configuration

space of two joints (more specifically, a torus), as applied to a reaching movement,

subjects’ movements tend to converge to geodesics on the torus [30].

These results suggest that the geometry of the configuration space may have

an important role to play in creating effective, scalable algorithms for a variety

of applications in interactive rehabilitation and physical therapy. While the basic

scientific results reviewed above suggest a clear unifying framework in terms of optimal

paths and geodesics, there are several engineering research problems that arise in

practical implementation. Firstly, in order to create a general algorithmic framework,

one needs to have a modular approach to plug in different kinds of configuration

spaces as available from different sensing modalities: such as product-space of circles

for joint angles obtained from motion-capture devices, or shape silhouettes from video

sensors. Secondly, a study of the correlation between geometrically derived measures

of quality, with other clinical measures of quality such as those obtained from force

plates etc. is needed to throw light on the possibility of using them as surrogates of

clinical measures. In this thesis, promising results are shown for quality analysis of

human movement in the following case – a) movement quality of sit-to-stand actions

performed by 4 healthy subjects; b) quality of dynamic postural shifts performed by

43 healthy and 17 Parkinson’s disease impaired subjects. For the sit-to-stand actions,

we consider the important feature to be the body-joint angles, measured between the

6



shoulder, hip and knee joints on the left and right side of the body. A pair of such

angles is represented on the product space of two circles, S1 × S1, a torus. For the

dynamic postural shifts, the important feature is the centre of pressure (CoP) position

in the mediolateral and the anteroposterior directions.

1.2.1 Related Work

Assessing the quality of everyday actions has tremendous scope in applications

like sports, healthcare rehabilitation systems, exercise systems and so on. There

have been several efforts to evaluate the performance of specific actions by using

trajectory-based evaluation metrics [31, 32, 33]. Recent work has investigated the

use of spatio-temporal pose features from video segments, for estimating quality of

sports actions, such as diving and figure-skating [22]. This is based on learning a

regression function from pose-features to quality scores, which does not give much

insight into what constitutes good movement quality. Another line of work, in the field

of stroke rehab therapy, the computational score is made more intuitive by breaking

into interpretable components for assessment of reach movements of stroke survivors

[20]. However, this analysis requires pre-specification of components from domain

knowledge, and may not generalize to other domains.

Dynamical system theory and geometric techniques have also been employed for

analysis of movement quality. Shape distribution functions of the reconstructed phase

space have been used for classifying movements of unimpaired/healthy and stroke-

impaired subjects [24]. This approach also requires training sets for regressing shape

distributions to movement quality. Recently, Tao et al. [25] developed a method for

online movement quality assessment of gait movement via hidden Markov modeling
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of normal movements using Kinect skeleton data. Both these approaches required

machine learning methodologies, and generally lack interpretability.

Recent work in biomechanics suggests that what constitutes good movement quality

may have something to do with geodesicness of the movement in the configuration

space. The idea that movements need not necessarily lie on straight line trajectories,

but instead evolve along curved paths was suggested by Biess et al. [27]. These ideas

were also demonstrated for finger tapping, while representing hand pose as a point on

a product space of angles – in other words a torus [30].

1.3 Contributions

The contributions made in this thesis are listed below, that will be discussed in

detail in further sections:

(a) Proposed a computational framework that utilizes attractor-shape descriptors of

the reconstructed phase space from postural shits performed by subjects to –

• Perform three class classification of subjects into one of the following classes –

healthy young, healthy old and subjects suffering from Parkinson’s disease;

• Assess the level of disease severity and balance impairment in subjects having

Parkinson’s disease.

(b) Proposed to model the deviation of a given trajectory w.r.t. an ideal path as a

measure of quality, on the S1 × S1 pose-space for sit-to-stand actions and on the R2

space for the dynamic posture shifts movement.

• The proposed movement quality measure is evaluated by studying the correlation

between the proposed method and other clinical movement quality measures.
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1.4 Organization

Chapter 2 talks about dynamic modeling in computer vision, traditional dynamical

invariant measures, shape distribution functions and describes the dataset, features

and experimental results of the framework proposed for balance impairment assessment

in subjects suffering from Parkinson’s disease.

Chapter 3 describes the mathematical preliminaries of our other proposed movement

quality measure for the sit-to-stand actions and the dynamic posture shift actions. It

also gives details of the dataset used, experiments carried out and the visualization of

the movement on the S1 × S1 representation space.

Finally, chapter 4 presents conclusions and scope for future work.
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Chapter 2

ASSESSMENT OF BALANCE IMPAIRMENT IN PARKINSON’S DISEASE

2.1 Dynamic Modeling in Computer Vision

Methods to model the dynamical properties of signals from various sensing plat-

forms have been the foundation for various applications in computer vision, like

human activity recognition and analysis [34], dynamical scene recognition [35] and

so on. Human movements like walking, running, consist of periodic action sequences

that repeat themselves with some variability [36]. Such properties of human move-

ment that are descriptive of a complex nonlinear chaotic system have driven re-

searchers to use the theory of nonlinear dynamical systems to model human movement

[36, 37, 38, 39, 40, 41, 42, 43]. Capturing the changes of actions in both the spatial

and temporal domain, can be achieved by defining a state space, and by learning

a function that can map the current state space to the next one [44, 45]. Recent

attempts have been made to obtain a direct representation of the dynamical system

from the observed data by using tools from chaos theory. [37] try to estimate the

dynamical system parameters like number of independent variables, degrees of freedom

and other parameters, directly from the data. Traditional methods approximate the

true-dynamics of the system by attempting to fit a model to the observed data. The

method in [37] can help generalize representation without any strong assumptions,

and is suitable for analyzing a wide range of dynamical phenomenon.
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2.1.1 Analysis of Dynamical Systems

Dynamical systems are governed by a set of functions that define the variation in

the behavior of the system over time. If these functions are linear or nonlinear, then

the dynamical systems are linear or nonlinear respectively. State variables can be used

to represent the state of a dynamical system at a given time t. A dynamical system is

termed deterministic if there exists a unique future state for a given current state and

is termed stochastic if the future state is derived from a probability distribution of

possible states.

A chaotic system is a dynamical system with deterministic behavior that shows

high sensitivity to initial conditions. The states in a chaotic system are comparable

to an n-dimensional manifold, also known as the phase space. The chaotic system

evolves over time in its phase space based on the system variables that govern the

dynamics of the system. A trajectory is defined as the path traversed by the system

over time and the phase space where the trajectories settle down as time approaches

infinity is denoted as an attractor. An ideal scenario would be to have access to all

independent variables of the system and their relationships in order to have a complete

understanding of the system. However, in a real-world case, the data recorded if of

low-dimension and in most cases is insufficient to model the underlying dynamics of

the system. In addition, model-based parametric approaches like the Linear Dynamical

System (LDS) assume an underlying mapping function f to describe the system’s

dynamics. For complex systems like that of human movement, it has been established

that such approaches may not be suitable due to simplification of assumptions [46].

Chaotic systems help determine certain invariants of the function f without making

any assumptions about the system.
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2.1.2 Phase Space Reconstruction

All the possible states of a system can be represented on the phase space [47, 48].

For a deterministic dynamical system that can be mathematically modeled, the future

states of the system can be determined using information of the present and past

states. However, it gets more complex in the case of understanding human actions

and dynamic scenes. In addition, sensing systems do not allow us to observe all the

variables of the system. To address these problems, methods that reconstruct the

attractor to obtain a phase space which preserves the important topological properties

of the original dynamical system are required. We must find a function that can map

between the 1-dimensional time series data and the m-dimensional attractor, with

the assumption that all the variables of the system influence one another. The phase

space reconstruction concept was explained in the embedding theorem proposed by

Takens, called Takens’ embedding theorem [49]. For a discrete dynamical system with

a multidimensional phase space, the time-delay or embedding vectors are obtained by

concatenating the time-delayed samples given by the following equation

xi(n) = [xi(n), xi(n+ τ), ..., xi(n+ (m− 1)τ)]T (2.1)

Here m is the embedding dimension and τ is the embedding delay. Careful

selection of these parameters can help facilitate a good phase space reconstruction.

If m is sufficiently large, then the important topological properties of the unknown

multidimensional system can be reproduced in the reconstructed phase space [47].

The embedding method provides a way to apply theoretical concepts of nonlinear

dynamical systems onto the observed time series data generated from low-dimensional

deterministic dynamical systems. However, it does not provide us with a method to

12



estimate the optimal values of m and τ . The false nearest neighbors [50] approach

can be used to estimate m and the first zero-crossing of the autocorrelation function

[51] can be used to estimate τ .

2.1.3 Embedding Dimension

The embedding dimension m refers to the number of time-delayed samples concate-

nated to form the time-delay vector. The value of the integer embedding dimension

must be estimated such that it can unfold the attractor thereby removing any self-

overlaps due to projection of the attractor onto a lower dimensional space. Thus,

the embedding dimension can also be defined as the minimum dimension required to

completely unfold the attractor. Let us consider a vector in the reconstructed phase

space in dimension m at time instant k, is given by

x(k) = [x(k), x(k + τ), ..., x(k + (m− 1)τ)]T (2.2)

The nearest neighbor in the reconstructed phase space is given by

xNN(k) = [xNN(k), xNN(k + τ), ..., xNN(k + (m− 1)τ)]T (2.3)

If the vector xNN(k) is a false neighbor of x(k), then the embedding dimension m is

unable to unfold the attractor. This can be avoided by moving to the next m + 1

dimension, and this may move the false neighbor out of the neighborhood of x(k).

The processing of finding false neighbors for every vector xi(k), not only removes

self-overlaps but also helps identify m where the attractor is completely unfolded. For

human action trajectories the embedding dimension was found to be around 3 or 4

using the false nearest neighbor algorithm.
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2.1.4 Embedding Delay

The embedding delay τ is the integer time delay used to construct the time-delay

vector. In theory, the embedding process allows any value of τ , if one has access to

accurate infinite data. The practical approach is to try finding a value for τ that makes

the components of the vector [x(k), x(k+ τ), x(k+ 2τ)]T in the embedding sufficiently

independent. A low τ value makes adjacent components to be correlated and hence

they cannot be considered as independent variables. However, a high τ value makes

the adjacent components uncorrelated and almost independent, and thus it cannot

be considered as part of the system that supposedly generated them. The shape of

the embedded time series critically depends on the choice of τ . A good selection of τ

should ensure that the data are maximally spread in phase space resulting in smooth

phase space reconstruction. For strongly periodic data, the first zero crossing of the

auto-correlation function is a suitable method to estimate the choice of τ .
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2.2 Traditional Dynamical Invariants

2.2.1 Largest Lyapunov Exponent

The largest Lyapunov exponent (LLE) measures the average rate of divergence

or convergence of initially closely-spaced trajectories over time [47, 48]. A positive

Lyapunov exponent indicates orbital divergence and hence chaos in the system. A

negative Lyapunov exponent indicates orbital convergence and hence a dissipative

system. Chaos theory finds its applications in the analysis of chaotic dynamical systems.

The LLE is a widely used measure of chaos in various fields like computer vision and

biomechanics to model human actions, to quantify chaos in the reconstructed phase

space and so on [36, 52, 35, 43, 38, 37]. Human movement is believed to exhibit a

chaotic structure. The basic assumption here is that different action classes exhibit

different levels of chaos, and quantification using LLE can help in the classification of

these action classes.

2.2.1.1 Estimation of LLE (λ1)

Rosentein [53] proposed a method to practically estimate LLE from time series

data that quantifies chaos by monitoring the rate of divergence or convergence of

closely spaced trajectories over time. The proposed algorithm is claimed to be easy,

fast and robust to changes in embedding dimension, dataset size, embedding delay and

noise. Rosentein’s algorithm was developed to address the limitations of the Wolf’s

algorithm [54]. The flowchart for the Rosentein’s algorithm can be seen in Figure 1.

The largest Lyapunov exponent is given by
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dj(i) = dj(0)eλ1(i∆t) (2.4)

Here dj(0) is the initial separation in the phase space and dj(i) is the separation

after i time steps of ∆t. λ1 is the largest Lyapunov exponent principal axes. The

minimum number of data samples suggested by both Rosentein and Wolf, for accurate

estimation of LLE is 10m, where m is the embedding dimension. Hence, LLE may not

be a suitable method to model short-duration time series data.

2.2.2 Correlation Sum

The correlation sum [47] is a chaotic invariant measure that is used to quantify

density of points in the reconstructed phase space. For a point in the reconstructed

phase space, a circle of radius r is drawn around it, and the number of points that

lie inside the circle is counted. This procedure is repeated for all the points in the

reconstructed phase space and can be mathematically represented by the following

equation

C(r) =
2

N(N − 1)

N∑
j=1

N∑
i=j+1

Θ(r − d(x(i),x(j))) (2.5)

where:

Θ(a) =


1, if a ≥ 0

0, otherwise

and

d(x(i),x(j)) =

√√√√m−1∑
k=0

(Xi−k −Xj−k)2
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Figure 1. Rosentein’s algorithm for estimation of LLE from experimental time series
data.
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Here Θ is the Heaviside function, C(r) is called the correlation sum which converges

to correlation integral when N →∞. This method of estimating the correlation sum

is called the Grassberger-Procaccia algorithm. C(r) refers to the probability that two

randomly chosen vectors will be closer than r in the reconstructed phase space.

2.2.3 Correlation Dimension

One would expect the correlation sum C(0) = 0 for a chaotic system, as the points

in the reconstructed phase space never repeat in a nonperiodic system embedded

without false nearest neighbors. A plot of log C(r) versus log r should given an

approximately straight line whose slope in the limit of small r and large N is called

as the correlation dimension [47] and is given by

D2 = lim
r→0

lim
N→∞

log C(r)

log r
(2.6)

2.2.4 Drawbacks of Traditional Chaotic Invariants

The traditional chaotic invariant measures have been applied to model several

visual dynamical phenomenon like video-based recognition of human actions [37],

recognition of dynamical scenes [35]. However, these methods require large number of

data samples of the order of 10m − 30m [52, 53] (m is the embedding dimension), for

accurate estimation and with typical values of m = 3 and above, corresponding to a

minimum of 1000 data samples.

The traditional chaotic invariants suffer from at least one of the following draw-
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backs:(a) unreliable method in the case of small datasets, (b) computationally intensive,

(c) relatively difficult to implement [53].
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2.3 Shape Distribution Functions

In this section we will talk about the features that give information about the

shape of the reconstructed phase space. The process of phase space reconstruction

preserves certain topological properties. We consider the attractor as having its own

characteristic shape in the high-dimensional phase space. The analysis of the shape of

3D surfaces is a well-studied problem in the computer vision community. Osada et al.

[55] present a method for finding a similarity measure between 3D shapes. They do

this by computing the shape distributions of the 3D surface sampled from the shape

function by measuring their global geometric properties. For the experiments in this

chapter, we will use the shape distribution of the reconstructed phase space as the

dynamical feature representation. Some of the shape distribution functions [55] that

are based on the geometric properties like distance, area are listed below:

(a) D1: measures the distance between one fixed point and one random point

sampled from the reconstructed phase space. The fixed point is selected as the centroid

of the attractor.

(b) D2: measures the distance between two random points in the phase space

represented as ||xi−xj||2. Here xi and xj are the random points or embedding vectors

in the reconstructed phase space.

(c) D3: measures the square root of the area of the triangle formed by three

random points on the attractor

A set of these distances for randomly chosen embedding vector pairs are computed.

A histogram is constructed from this set of distances by counting the number of

samples which fall into each of B = 50 fixed sized bins, in order to get the shape

distribution of the attractor. Studies [56] have shown that the D2 global geometric
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shape function performs better than the traditional chaotic invariant measures (LLE,

correlation dimension and correlation sum).
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2.4 Dataset for Evaluation

2.4.1 Subject Characteristics

The dynamical posture shifts dataset utilized for this study was collected as a part

of a different study by Krishnamurthi et al. [57]. Regarding the dataset obtained from

subjects with PD, the data was collected during medication-off state (12 hours after

the last dosage of antiparkinsonian medication) from 17 patients (9 female, 8 male)

with a mean age of 63.7 ± 4.9 years; ranging from 53 - 72 years with mild to moderate

PD according to UK brain bank criteria with Hoehn & Yahr (H&Y) score from 2.5 to

3.0 with a stable medication regimen. Subjects were excluded from the study if they

developed any of the following symptoms: dementia as defined by DSM-IV criteria;

significant hepatic, renal, cardiovascular, cardiopulmonary, endocrinological issues;

significant dyskinesia or on/off fluctuation; freezing-of-gait (FoG) leading to falls; other

medical condition which would affect subjects’ safety or compliance with the study

procedures. For healthy individuals, the data was collected from a total of 43 young

and elderly subjects with no known neurological or orthopedic disorders. Subjects

less than 35 years were assigned to the young category and subjects older than 50

were assigned to the elderly category. 21 of the subjects (12 female, 9 male) fell in the

young category (19-32 years) and had a mean age of 23.0 ± 3.8 years. 22 subjects (12

female, 10 male) fell in the elderly category (50-75 years) with a mean age of 62.7 ±

8.5 years at the time of enrollment. Approvals from appropriate Institutional Review

Boards were obtained for data collection.
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Figure 2. A subject with PD standing on the force platform during dynamic shifts
looking at the monitor in front of him (not shown) at his eyes level; (b) The radius of
the center and outward targets and distance between the center of starting circle and
the target circle were chosen 10% and 30% of subjects’ limits-of-stability (LoS) to
facilitate comparison across subjects; (c) The targets along with typical CoP tracings
during dynamic posture shifts of a trial were shown. The sequence of presentation of
outward targets were randomized but the presentation of each outer target location
was followed by presentation of the center target.

2.4.2 Dynamical Posture Shifts Data Collection

First, the subjects were instructed to stand on the force platform with their hands

by their side and feet separated by hip-width. All subjects wore comfortable shoes.

Once the subjects stood comfortably, the position of their feet on the force plate

was traced to maintain consistent placement of the feet across trials. Previously

developed LabVIEW-based graphical user interface was utilized to provide real-time

visual feedback of the position of the subject’s CoP [57]. At the start of the trial,

the CoP of the subject was taken as the center of the center target. The subject

viewed his/her CoP on the monitor placed in the front of the subject at eye level

which provided real-time visual feedback. The goal for the subject is to move their

CoP cursor from the center of the starting circle to the target circle and hold the
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cursor as close as possible to the center of the target circle for 2 seconds. During the

course of the trials, the outward targets were displayed in different positions, each

separated by an angle of 45◦.

The distance of the target circle from the center was set to 30% of the distance

between the hip and the ankle, which has been demonstrated to be related to the

LoS [58]. The radius of the center and target circles was set at 10% of the distance

between the hip and the ankle. These facilitate comparison of performance across

subjects. The subject was instructed to move their CoP, displayed in a form of red

circular cursor, to the target circle position by leaning without lifting their feet off the

ground. Once the subject maintained their CoP position as close as possible to the

center of the target circle within the target for at least 2 seconds, the current target

circle disappeared and the center target appeared which became the new target. If

the subject was unable to stay within the target for at least 2 seconds, then the new

target appeared automatically in 10 seconds. If the subject stayed inside the target for

at least 2 seconds, the target was considered successfully achieved. The five different

angles at which the targets presented were 0, 45, 90, 135, and 180 degrees. After

reaching towards each target, the subject came back to the center target position

before moving towards the next outward target. Thus, a total of ten targets were

provided during the trial- O-0◦, 0◦-O, O-45◦, 45◦-O, O-90◦, 90◦-O, O-135◦, 135◦-O,

O-180◦, 180◦-O, where O represents the origin or center target. During a single

trial, 20 targets were presented, i.e. each of the ten targets were presented twice.

The sequence of outward targets was randomly presented within and across trials to

minimize learning effects or anticipation of the target. A total of five and three trials

were performed by healthy subjects and subjects with PD, respectively, with sufficient

rest periods in-between. For each trial, the following data were collected at 100 Hz:
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CoP in mediolateral direction; CoP in anteroposterior direction; forces generated

in x, y and z directions; and moments generated in x, y and z directions. Figure 2

shows an illustration of the real-time feedback paradigm used for data collection while

performing dynamic posture shifts.
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2.5 Features

2.5.1 Stabilogram Postural Indices

For each trial, a two-dimensional stabilogram was obtained from the CoP in

the mediolateral and the anteroposterior directions. Many postural indices were

calculated from three phases of each target presentation namely, (a) Initiation phase,

(b) Movement Phase, and (c) Hold Phase. From the initiation and movement phases,

corresponding time taken, path-length, and velocity were obtained [57]. From the

hold phase, number of reentries, inaccuracy and unsteadiness (the mean and standard

deviation, respectively, of the distances between the center of the target circle and the

position of the CoP during the hold phase) were calculated. In addition, the peak

velocity of CoP during the entire presentation was calculated.

The peak velocity is defined as the maximum velocity value that is calculated

between two adjacent samples, from the time the CoP cursor leaves the starting

point and completes the target reach. It is a sensitive measure that was found to

distinguish postural control in people with PD for different deep brain stimulation

(DBS) conditions. The peak velocity index can also help distinguish between healthy

people and people suffering from PD. Bradykinesia and rigidity of movement is

exhibited by people having PD. Healthy people do not exhibit Bradykinesia and

therefore show higher peak velocity compared to people with PD.
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2.5.2 Largest Lyapunov Exponent (LLE)

LLE is a widely used measure of chaos in various engineering applications, including

biomechanics to model human movements for applications such as gait analysis [38].

It is a measure of average rate of divergence (or convergence) of initially closely-spaced

trajectories over time [59]. The largest Lyapunov exponent is given by

dj(i) = dj(0)eλ1(i∆t) (2.7)

where dj(0) is the initial separation in the phase space and dj(i) is the separation

after i time steps of ∆t. λ1 is the largest Lyapunov exponent principal axes. Rosen-

stein’s algorithm [53] was used to estimate LLE from real data in our experiments. The

parameters of this feature include the embedding dimension (m) and the embedding

delay (τ). In our experiments, the LLE features were extracted at m = 3 and τ = 5.

2.5.3 D2 Shape Distribution

LLE requires a large number of data samples (of the order of 10m – 30m) for

accurate estimation (where m is a parameter used in the estimation procedure called

as the embedding dimension), with typical values of m = 3 and above, corresponding

to a minimum of 1000 data samples. A recent approach proposed utilized ideas from

shape analysis to achieve better classification and regression results in human activity

analysis tasks [56, 60]. Using D2 shape function from [55], the distance between two

random vectors of the reconstructed phase space which is defined as

Dij = ||xi − xj||2 (2.8)
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where xi and xj are embedding vectors in the reconstructed phase space. A set

of these distances for randomly chosen embedding vector pairs are computed. From

this set, a histogram is constructed by counting the number of samples which fall into

each of B = 50 fixed sized bins. The parameters that are required to be estimated

include the embedding dimension (m) and the embedding delay (τ). The embedding

dimension was fixed m = 3, and used the first zero-crossing of the auto-correlation

function to estimate the value of τ [51].

28



2.6 Experiments and Results

2.6.1 3-class Classification

A total of 266 posture shift trials were collected, with each of the 17 PD subjects

carried out 3 trials and each of the 43 healthy subjects (21 young and 22 elderly)

carried out 5 trials. The extracted features in section IV were first passed through

a k-Nearest Neighbor (K-NN) classifier. 3-class classification was done, with the

three classes being PD, OLD and YNG. To assess the classifier’s performance, 59

subjects were considered for the training set, 1 subject for the test set, and performed

a round-robin leave-one-subject-out cross-validation. The advantage of using the

K-NN classifier is that it does not have any hidden parameters that require tuning,

thereby making it a very transparent technique for comparing different algorithms.

The number of neighbors k was varied from 1, 2, ..., 51. The classification accuracy

of the K-NN classifier over the D2 shape distribution features is higher than LLE

and peak velocity index features at all values of k, as seen in Figure 3. The best

classification performance for D2 features was found at k = 13.

Next, the same experiment was performed using better classifiers like the linear-

kernel Support Vector Machine (SVM) classifier. The parameter C was varied from

2−9, 2−7, ..., 215. The classification accuracy over the D2 shape features is higher than

LLE and peak velocity index features at almost all values of C, as seen in Figure 4.

The linear-kernel SVM classifier was found to give best results at C = 2−5. In Table

1, the classification accuracy of the K-NN classifier at k = 13, and the SVM classifier

at C = 2−3, after observing a recovery in the SVM’s classification performance over

the LLE features is shown. D2 shape distribution features gave the best classification

29



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of neighbors (k)

35

40

45

50

55

60

65

70

75

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

D2

LLE

Peak velocity index

Figure 3. Classification accuracy of the K-NN classifier over the D2, LLE and peak
velocity index features with k varying from 1, 2, ..., 51.

result of 70.30% using the K-NN classifier at k = 13, and 73.68% using the SVM

classifier at C = 2−5. The confusion matrix for the 3-class classification of D2 features

using the K-NN classifier can be seen in Table 2 and using the SVM classifier in Table

3.

Table 1. Classification accuracy of classifying PD, OLD and YNG classes, using
K-NN classifier (k = 13) and linear-kernel SVM classifier (C = 0.125)

Feature K-NN (%) SVM (%)
Peak Velocity Index 50.38 53.01

LLE 47.37 47.37
D2 70.30 71.43
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Figure 4. Classification accuracy of the linear-kernel SVM classifier over the D2, LLE
and peak velocity index features with C varying from 2−9, 2−7, ..., 215.

Table 2. The confusion matrix for the three-class classification problem using D2
shape distribution features over the K-NN classifier (k = 13)

Predicted PD Predicted OLD Predicted YNG
Actual PD 0.61 0.33 0.06

Actual OLD 0.03 0.78 0.19
Actual YNG 0.01 0.32 0.67

Table 3. The confusion matrix for the three-class classification problem using D2
shape distribution features over the linear-kernel SVM classifier (C = 0.0313)

Predicted PD Predicted OLD Predicted YNG
Actual PD 0.80 0.16 0.04

Actual OLD 0.06 0.72 0.22
Actual YNG 0.01 0.27 0.72

2.6.2 PD Severity Assessment

To assess the level of PD severity for the 17 PD subjects, a linear-kernel SVM

regression model [61] was used. The total UPDRS score and the motor exam score
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(part of the total UPDRS score) was used as an appropriate high level measure for

the movement quality of the subjects, and also used to train two different regression

models respectively. The total UPDRS score and motor exam score for all 43 healthy

subjects was set to zero. Here too, a round-robin leave-one subject-out cross validation

was carried out, by considered 59 subjects for the training set and 1 subject for the

test set. The parameter C was varied from 2−9, 2−7, ..., 215. The best regression model

using the total UPDRS score and the motor exam score was obtained at C = 10 and

C = 4 respectively. Negative predicted scores were forced to zero. Pearson correlation

coefficient and p-values were calculated between the clinical and predicted scores, to

quantify the performance of the regression model. The correlation coefficient and

p-value pairs using the total UPDRS score and the motor exam score, for D2; LLE

and peak velocity index features, can be seen in Table 4 and Table 5 respectively.

Figure 5 displays the clinical and predicted total UPDRS scores, and Figure 6 displays

the clinical and predicted motor exam scores for all 60 subjects.

Table 4. Pearson correlation coefficient and p-values between the predicted and
clinical total UPDRS scores, using a Linear-kernel SVM regression model (C = 10)

Feature Correlation P-value
Peak Velocity Index 0.8135 2.8227e−15

LLE 0.6449 2.6707e−08

D2 0.9006 1.1847e−22
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Figure 5. Comparison between clinical total UPDRS score and the predicted score,
obtained using the D2 shape distribution feature, for 17 PD and 43 healthy subjects.

Table 5. Pearson correlation coefficient and p-values between the predicted and
clinical motor exam scores, using a Linear-kernel SVM regression model (C = 4)

Feature Correlation P-value
Peak Velocity Index 0.6140 1.8127e−07

LLE 0.6134 1.8773e−07

D2 0.8811 1.6320e−20
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Figure 6. Comparison between clinical motor exam score and the predicted score,
obtained using the D2 shape distribution feature, for 17 PD and 43 healthy subjects.
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Chapter 3

MOVEMENT QUALITY ASSESSMENT OF SIT-TO-STAND ACTIONS

3.1 Mathematical Preliminaries

Here, we describe the geometric properties of the S1 × S1 representation space.

3.1.1 Body-joint Angles on S1 × S1

For this study, we considered the hip angles on the left and right side of the body

as shown in Figure 7. The reason for using the left and right sides of the hip is

to incorporate the symmetry of the action. It has been observed that symmetrical

distribution of body weight under the feet, significantly improves STS actions in

subjects suffering from hemiplegic stroke [62]. In other studies, improvements in

postural stance was found to be correlated to postural symmetry as well [63].

Each of these angles can be represented equivalently on the circle, S1, and the

angles computed from both the left and right side can be represented in the product

space S1 × S1 which is the torus T2. This space possesses a Riemannian structure

obtained by inheriting the Riemannian metric from R2 on the circle S1 ⊂ R2. Although

the geodesics are inherited from the geodesic on S1, the actual metric on T2 is a design

choice. We will use a simple combination of the sum of the length of the shortest arc

on the individual circles as our metric. This distance is defined as d : S1 × S1 → R

dS(θ1, θ2) = arccos(cos(θ1 − θ2)), (3.1)
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Right shoulder
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Left shoulder
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Left knee

Figure 7. Illustration of the angles computed between different body joints in sit
position.

Next, the distance on the torus between points p1 = (φ1, θ1) and p2 = (φ2, θ2) is

given by dT(p1, p2) =
√
dS(φ1, φ2)2 + dS(θ1, θ2)2.
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3.2 Measure of Quality

In this section, we outline the proposed approach that is used to quantify movement

quality. We will refer to this approach as the summative measure. It requires observing

the full trajectory of movement.

3.2.1 Summative Quality Measure

The idea of summative quality centers around measuring the deviation of a

given trajectory compared to an idealized trajectory. Here, the idealized trajectory

corresponds to the simple geodesic. To keep things simple, we will make it specific to

the torus, where the idealized trajectory is fixed to the geodesic between the start

and the end pose.

The geodesic on a circle is the shortest arc that connects two points, where the

metric is defined as in (3.1). In order to compare a movement trajectory with the

geodesic, we must first sample along the geodesic. Let γ(t) represent the trajectory for

which we wish to estimate a quality score. Further, let γ̃(t) represent the geodesic path

with the same starting and ending points as γ(t), i.e., γ(0) = γ̃(0) and γ(1) = γ̃(1). Let

us then define the geodesic discretization interval to be given by δ = dS(γ(1),γ(0))
N−1

, where

N is the number of desired samples along γ(t). Since our operations are on the circle,

S1, we are able to uniformly sample along the geodesic using δ as γ̃(t) = γ(0) + (t δ).

The sampled geodesic at ‘time’ t, is given by

γ̃(t) =


γ(0) + (t δ), if (L > π) or (−π < L < 0)

γ(0)− (t δ), else.
(3.2)

Here, L = γ(0)− γ(1).
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Figure 8. Comparison of the variation of the joint angle between the original
trajectory and the geodesic trajectory, measured between the start and end positions
of a given movement.

Once the angles for both the original and geodesic trajectory have been computed,

we solve the registration problem between the two trajectories using Dynamic Time

Warping (DTW) [64]. Figure 8 show the variation of the joint angle with time and

how the geodesic trajectory can be visualized on the S1 representation space. The

dissimilarity obtained using DTW is used as the final quality score, which is given

by q = DTW(γφ(t), γ̃φ(t)) + DTW(γθ(t), γ̃θ(t)). Where γθ(t) and γφ(t) refer to the

movement trajectories corresponding to first and second angles, θ and φ, respectively.

For the sit-to-stand experiment, we use the above approach.
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3.3 Dataset for Evaluation

3.3.1 Sit-to-stand Action Dataset

The data collected from the experimental protocol reported in [65], was obtained

using a Microsoft Kinect sensor. The data consists of the 3D position information

of the 20 body joints for four healthy subjects. Each of the subjects was first asked

to perform a few sit-to-stand (STS) actions in their normal habitual manner. Next,

each subject was asked to practice with the system for 10 minutes after being given

few verbal instructions. The subjects were instructed to perform the STS actions in

a relaxed, smooth manner, with their head guiding the whole body. They were also

instructed to make sure that they moved forward and up at the same time. These STS

actions come under the control (CT) stage. After resting for an hour, each subject was

again asked to practice with the system for 10 minutes, but this time with auditory

feedback and these STS action come under the feedback (FB) stage. On a whole, each

subject carried out 12 STS actions during the CT stage and 21 STS actions during

the FB stage. For subject 2, results are shown for only 9 STS actions in CT stage and

21 STS actions in FB stage, due to data recording problems. The findings reported in

[65], indicate that the quality performance of all the four subjects generally improved

with practice. The measure of quality was the velocity of the head trajectory. The

improvement was also greater when auditory feedback was present. Since there are no

ground truth scores in this dataset, we propose to generate quality scores for each

movement, and show that our measures depict the same trend reported in [65] which

is – movement quality becomes better with practice.
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3.3.2 Dynamic Posture Shifts Dataset

The dataset contains time-series data of dynamic postural shifts of the subjects’

Centre-of-Pressure tracings, collected from 21 healthy young subjects, 22 healthy

elderly subjects and 17 subjects suffering from Parkinson’s disease. Information on the

subjects’ characteristics and data collection procedure can be found in section 2.4.1

and section 2.4.2 respectively. We will use this dataset for the 2-class classification

experiment discussed in section 3.4.2.
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3.4 Experiments and Results

3.4.1 Sit-to-stand Movement Quality Assessment

We extract angle information from two sets of joints for each STS action. First we

compute the angles between the left and right shoulder, hip and knee joints respectively

as illustrated in 7. This ensures that the postural symmetry of the subject is considered

while calculating the quality score. The final score is measured by computing the

DTW distance between the movement trajectory and the corresponding geodesic path

between the start and end poses, as described in section 3.2.1. A smaller DTW score

is indicative of a well executed STS movement and a higher score indicates a poorer

quality of movement.

The results of this experiment are shown in Figure 9,10,11,12. We show the quality

scores across all STS movements carried out by each of the 4 subjects. To better

indicate the trends for each subject, we also show the least squares fit line for the CT

stage, FB stage and across all the STS sessions. We see no improvement for Subjects

2 and 3 during the CT stage as shown by the control group (CT) line fit. However,

both subjects improve their movements during the FB stage as shown by the FB line

fit. Subjects 1 and 4 show lower quality scores as the number of sessions in the CT

stage progresses and continue to improve their movements during the FB stage as

well. On the whole, all four subjects show a tendency to learn while performing the

STS actions with each progressing session as clearly seen from the total line fit plot

for each subject. These results follow the same trend reported in [65].
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Figure 9. Comparison between DWT score and session number for Subject 1, to
illustrate the change in quality of motion with practice. CT indicates the control
stage, receiving no feedback. FB indicates the feedback stage, where feedback is given
to enable better movement. The downward trend is clearly visible from the total line
fit.
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Figure 10. Comparison between DWT score and session number for Subject 2, to
illustrate the change in quality of motion with practice. CT indicates the control
stage, receiving no feedback. FB indicates the feedback stage, where feedback is given
to enable better movement. The downward trend is clearly visible from the total line
fit.
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Figure 11. Comparison between DWT score and session number for Subject 3, to
illustrate the change in quality of motion with practice. CT indicates the control
stage, receiving no feedback. FB indicates the feedback stage, where feedback is given
to enable better movement. The downward trend is clearly visible from the total line
fit.
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Figure 12. Comparison between DWT score and session number for Subject 4, to
illustrate the change in quality of motion with practice. CT indicates the control
stage, receiving no feedback. FB indicates the feedback stage, where feedback is given
to enable better movement. The downward trend is clearly visible from the total line
fit.
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3.4.1.1 Visualization on the S1 × S1 Representation Space

Figure 13 illustrates an example of the variation of the individual angles – θ and φ

with time, for a STS session in the CT stage, with no feedback. θ and φ correspond

to the joint angle between the left and right shoulder, hip and knee joints respectively.

The proposed summative score for this session was equal to 0.22127, indicating a

relatively low match with respect to the geodesic, i.e. a low quality movement. Figure

14 shows the variation on the S1 × S1 representation space for the same example in

the CT stage.

Similarly, Figure 15 shows an example of the variation of the individual angles θ

and φ with time, for a STS session in the FB stage, where real-time auditory feedback

was given. The proposed summative score for this session was equal to 0.048226, which

is lower than the previous CT stage example and is also indicative of a close match to

the ideal geodesic, i.e. a high quality movement. Figure 16 shows the variation on the

S1 × S1 representation space for the same example in the FB stage.
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Figure 13. Variation of individual joint angles with time during CT stage. θ
represents the joint angle between the left-shoulder, left-hip and left-knee; φ
represents the joint angle between the right-shoulder, right-hip and right-knee. The
trajectory shown with blue represents the original trajectory and the trajectory
shown with red represents the geodesic.

Figure 14. STS action on the S1 × S1 configuration space during CT stage. θ
represents the joint angle between the left-shoulder, left-hip and left-knee; φ
represents the joint angle between the right-shoulder, right-hip and right-knee. The
trajectory shown with blue represents the original trajectory and the trajectory
shown with red represents the geodesic.
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Figure 15. Variation of individual joint angles with time during FB stage. θ
represents the joint angle between the left-shoulder, left-hip and left-knee; φ
represents the joint angle between the right-shoulder, right-hip and right-knee. The
trajectory shown with blue represents the original trajectory and the trajectory
shown with red represents the geodesic.

Figure 16. STS action on the S1 × S1 configuration space during FB stage. θ
represents the joint angle between the left-shoulder, left-hip and left-knee; φ
represents the joint angle between the right-shoulder, right-hip and right-knee. The
trajectory shown with blue represents the original trajectory and the trajectory
shown with red represents the geodesic.
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3.4.2 2-class Classification

Each of the 17 PD subjects performed 3 posture shift trials and each of the 43

healthy subjects (22 elderly and 21 young) performed 5 trials, thereby giving a total

of 266 posture shift trials. Each trial consisted of 20 movements of the subject’s CoP

position from the start position to the target position.

The CoP’s position in the mediolateral denoted by ‘x’and the anteroposterior

direction denoted by ‘y’, was used to calculate the DTW score. The straight path

from the start position to the end position was considered to be the ideal movement

path for each movement. The distance function used to calculate the distance between

any two points p1 = (x1, y1) and p2 = (x2, y2) in the given trajectory is given by

dT(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2. The final quality score obtained using DTW,

is given by q = DTW(x(t), x̃(t)) + DTW(y(t), ỹ(t)). Here, x(t) and y(t) refer to the

given movement trajectories; x̃(t) and ỹ(t) refer to the ideal movement trajectories.

After computing the deviation of a given movement w.r.t. the ideal trajectory for all

20 movements, the computed deviations are summed up to give the DTW score for

each trial. The final DTW score for each subject is obtained by averaging the DTW

scores across all the trials.

The DTW scores for the 17 PD and 43 healthy subjects is shown in Figure 17.

We would expect the final DTW score for PD subjects to be higher than healthy

subjects. However, from the dynamic posture shifts data, the PD subjects performed

their movements slowly and their total path length for each movement was smaller

when compared to the healthy subjects. The slowness of the PD subjects’ movement

might have led to a more direct movement, thereby resulting in the observed reduction

in their path length [57]. In agreement with the speed-accuracy trade-off effect,
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bradykinesia of PD patients may ensure accuracy of movement [66], a hypothesis

further supported by the study made by Krishnamurthi et al. [57], demonstrating that

accurate CoP targeting (i.e. reduced path lengths) correspond to longer movement

times in PD patients.
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Figure 17. DTW score plot for 17 PD and 43 healthy subjects.

The D2 shape function was used as a baseline feature. To compute the D2 shape

function, the following time-series information was used: the CoP in mediolateral

direction; CoP in anteroposterior direction; forces in x, y and z directions; moments

in x, y and z directions. The extracted features were passed through a 1-Nearest

Neighbor (1-NN) classifier. 2-class classification was done, with the two classes being

PD and Healthy. The classifier’s performance was evaluated by considering 59 subjects

for the training set and 1 subject for the test set, and performed a round-robin

leave-one-subject out cross validation. Comparison of the classification performance

48



of the 1-NN classifier using the D2 shape features and DTW scores is shown in Table

6. The confusion matrix for the 2-class classification problem using the 1-NN classifier

over the extracted D2 shape function features and computed DTW scores can be seen

in Table 7 and Table 8 respectively. The DTW score only needed the subject’s CoP

position and was able to give a better classification performance, compared to the D2

shape feature that needed more information.

Table 6. Comparison of the classification accuracy of classifying PD and Healthy
classes, using 1-NN classifier over the D2 shape and DTW score features

Feature 1-NN (%)
D2 87.97

DTW score 91.67

Table 7. The confusion matrix for the two-class classification problem using D2 shape
distribution features over the 1-NN classifier

Predicted PD Predicted Healthy
True PD 0.71 0.29

True Healthy 0.05 0.95

Table 8. The confusion matrix for the two-class classification problem using DTW
score as the feature over the 1-NN classifier

Predicted PD Predicted Healthy
True PD 0.82 0.18

True Healthy 0.05 0.95
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Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis, the use of attractor-shape descriptors to assess balance impairment

from posture shifts in subjects having PD was proposed, as described in chapter 2.

The effectiveness of the proposed descriptor was shown by the following experiments:

3-class classification of PD, old and young subjects and prediction of the total UPDRS

scores and motor exam scores. The results are promising and show that the descriptor

can significantly outperform other baseline features. In future, studies can be designed

to investigate the potential of the proposed framework to assess disease severity of

PD patients at their homes. The dynamic posture shifts data can be collected at the

home setup using wearable sensors and these new datasets can also be incorporated

to the existing datasets to improve the disease severity assessment.

In chapter 3, an unsupervised framework was proposed that uses the deviation

from the ideal path of a trajectory in an appropriate pose-space, to measure movement

quality. We apply the methodology to sit-to-stand movements, interpreted as a

curve on the torus, S1 × S1. We also applied the proposed framework to dynamic

posture shifts data collected from healthy and Parkinson’s disease impaired subjects.

Our experimental results look promising and show the effectiveness of the proposed

framework. This points the way toward more complex full-body quality assessments,

that could utilize geodesicness measures on general shape manifolds. The DTW quality

score can also be generalized to include true elastic invariant metrics such as those

developed by Su et al. [67].
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