
 

Transonic Flow Around Swept Wings: 

Revisiting Von Kármán’s Similarity Rule 

by 

Jeffrey J Kirkman 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment  
of the Requirements for the Degree 

Master of Science 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved April 2016 by the 
Graduate Supervisory Committee: 

 
Timothy Takahashi, Chair 

Valana Wells 
Marcus Herrmann 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 
 

May 2016 



 

i 

ABSTRACT 

 Modern aircraft are expected to fly faster and more efficiently than their predecessors. To 

improve aerodynamic efficiency, designers must carefully consider and handle shock wave 

formation. Presently, many designers utilize computationally heavy optimization methods to 

design wings. While these methods may work, they do not provide insight. This thesis aims to 

better understand fundamental methods that govern wing design. In order to further understand 

the flow in the transonic regime, this work revisits the Transonic Similarity Rule. This rule 

postulates an equivalent incompressible geometry to any high speed geometry in flight and 

postulates a “stretching” analogy. This thesis utilizes panel methods and Computational Fluid 

Dynamics (CFD) to show that the “stretching” analogy is incorrect, but instead the flow is 

transformed by a nonlinear “scaling” of the flow velocity. This work also presents data to show the 

discrepancies between many famous authors in deriving the accurate Critical Pressure 

Coefficient (Cp*) equation for both swept and unswept wing sections. The final work of the thesis 

aims to identify the correct predictive methods for the Critical Pressure Coefficient. 
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INTRODUCTION 

In the modern era of aircraft travel, speed and efficiency are vital aspects to the overall 

design. Aircraft are expected to fly faster, further and cheaper than their predecessors. Oddly, 

many of the fundamental aerodynamic principles to achieving these goals have not been revisited 

since the 1940s. This paper builds upon previous work done investigating simple sweep theory. It 

explores further into transonic flow effects using modern Computational Fluid Dynamics (CFD) 

analysis.  

Traditionally designed transonic wings meet drag divergence criteria through spanwise 

variation of camber, incidence, and thickness. The formation of shock waves on the wing can 

have a multitude of effects that impact the performance of the aircraft. Weak shocks forming near 

the leading edge of the airfoil, if handled carefully, can increase the leading edge suction of the 

airfoil at the Critical Mach Number. If utilized properly, a shock wave, typically undesired due to 

the potential shock induced flow separation, can actually decrease drag due to favorable 

compressibility effects on axial pressure1. If the designer does not handle the shock wave 

properly, a strong shock may form that will separate the flow behind the shock wave, a 

phenomena known as shock induced flow separation. Because shock induced flow separation 

dramatically increases overall drag, wing designers take great care to ensure the formation of 

shock waves are carefully handled. 

One approach to delaying the onset of the shock formation is to incorporate leading edge 

sweep. Wing sweep was first postulated in 1935 by the German, Adolf Busemann2. Busemann 

argued leading edge sweep could be used as a design option to delay the onset compressibility 

effects on the wing2. R.T. Jones was the first to present wing sweep in the United States3. Jones 

also postulated the advantages to wing sweep on compressibility effects, but hand waved through 

his explanations of the proper transformations3,4. 

In the work presented at the 2014 AIAA AVIATION conference, Takahashi, Dulin & Kady 

found inconsistencies in Busemann’s Simple Sweep Theory5. In a continuation of this work, 

presented in 2015 AIAA AVIATION conference, Takahashi & Kamat employed modern CFD to 

revisit the inconsistencies6. They found evidence that the published methods to predicting the 
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onset of shock waves were inadequate. The data provided from the CFD runs did not inspire 

confidence that the classical theoretical predictions were applicable to real world swept wings. 

In this current work, research starts with the effects of Von Kármán’s7 Transonic Similarity 

Rule, as explained by Schlichting8, compares diverse author’s research into the Critical Pressure 

Coefficient and Critical Mach number, and verifies the accurate sweep correction to the Mach 

dependent pressure coefficient. The end goal of this research is to determine the correct 

explanation and corrections for the flow characteristics around swept wings in transonic flight 

regimes.  

The Transonic Similarity Rule holds that, for sub-critical flows, high speed flow around 

any arbitrary body may be represented by the incompressible, low speed flow, around a body 

with transformed geometry8. Over the years, many authors3,4,7,8,9,10,11,12 have described this effect 

in terms of a geometrical “stretching” phenomenon. In this work, it became clear that the 

phenomenon exists, but that common explanations are logically inconsistent. This raises the 

question as to whether the mathematics of the Transonic Similarity Rule really means that a high 

speed aircraft is actually being “stretched” in the equivalent incompressible flow. 

This paper documents evidence that shows that the Transonic Similarity Rule is a major 

oversimplification. Rather than stretching, there appears to be a Mach number dependent scaled 

velocity element. 

In order to determine the correct formula for the Critical Pressure Coefficient, and 

therefore predict the Mach number associated with incipient supersonic flow, this work employed 

a variety of computational tools including commercial CFD (ANSYS Fluent)13, 3D vortex lattice 

(VORLAX)14, and popular 2D airfoil codes (JAVAFOIL)15. This paper will explore the fundamental 

works of Hermann Schlichting8, Dietrich Küchemann1, Eastman Jacobs7 and Theodore Von 

Kármán7 from a 2D perspective. The work done by modern authors11,12,16,17 merely explain the 

research already performed and parrot the equations of these early authors. Although there are 

inconsistencies between the equations, there has not been much published work into further 

investigating on these estimations. 



 

3 

This work sets forth to determine the correct derivation for the Critical Pressure 

Coefficient. It finds that various published derivations lead to very different answers; although 

they all imply the same general physical trends. The inconsistencies between the various 

formulas at the Mach numbers in which real aircraft fly at, are significant enough to explain at 

least some of the problems noted by Takahashi & Kamat6. 

The final work done in this research overviews the sweep transformation for sheared 

wings. In the previous works of Takahashi, Dulin & Kady5, and Takahashi & Kamat6, there were 

inconsistencies from the simple sweep theory of Busemann2. Many authors such as 

Küchemann1, Jones3,4, Schlichting8, and Neumark18 have broadly agreed with Busemann2 on his 

early findings, yet have found various equations and explanations for the critical conditions on 

swept wings. This thesis attempts to bring all the works of these famous authors together and 

determine which explanation is correct. 

 

PRIOR ART 

The early work of this thesis set forth the gather published work into transonic flows and 

their applicability to aircraft flight and performance. 

 

Transonic Similarity Rules 

 In NACA Technical Memorandum 805, Prandtl addressed the flow of compressible 

fluids9. He postulates a geometric transformation to compare an incompressible flow, to a 

compressible flow9. Prandtl argued a Mach number dependent “stretching” on the components in 

transonic flow. This geometrical “stretching” has been used as the explanation for the increased 

effectiveness of aircraft components in the transonic regime. This work provides a conceptual 

path to design aircraft that operate in the transonic regime. It is also the basis of many general 

purpose potential flow aerodynamic flow solvers.  

Prandtl’s key equation for transonic potential flow can be found in equation 10 in the 

original manuscript (reproduced here as equation 1): 
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𝛿𝑢

𝛿𝑥
(1 −

𝑢0
2

𝑐2 ) +
𝛿𝑣

𝛿𝑦
+

𝛿𝑤

𝛿𝑧
= 0     (1) 

In this equation, u, v, and w refer to components of velocity in the x, y, and z directions 

respectively. This becomes the basis of modified potential flow equations. The u0 refers to the 

freestream flow velocity in the x direction and c is the speed of sound of the flow. This equation 

provides a freestream velocity dependent (Mach number) correction on the flow in the x-direction.  

This is a powerful equation. The only assumptions are that the velocities derived are 

small compared to the flow, u0, and that the velocity in the v and w direction are small relative to 

the speed of sound, c. This thesis does not dispute the utility of this equation, merely challenges 

the popular physical explanations of its action. 

Four possible physical explanations can arise from this equation (see Figure 1). All 

invoke the famous, Prandtl-Glauert (P-G) scaling parameter: (equation 2)  

 

Figure 1. Possible geometry implications of the Prandtl-Glauert potential flow equation. 

𝛽 = √1 −
𝑢0

2

𝑐2 = √1 − 𝑀∞
2     (2) 

One interpretation (represented by Figure 1A) says that the scaling term acts upon the x 

axis dimension of the geometry terms, in other words, P-G scales the longitudinal geometry in the 

axis of on-coming flow by a factor proportional to the reciprocal of β, 1/√1 − 𝑀∞
2 . Here, the inflow 

velocity is exactly aligned with the x axis; thus a wing at angle-of-incidence must be represented 

by an inclined geometry. Therefore, the x axis stretching results in the equivalent incompressible 

shape being longer in the x, or chordwise direction but no longer in the y, or thickness direction. 

Such a transformation implies that the equivalent incompressible shape has greater effective 
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area, a lower effective thickness-to-chord ratio (t/c), and a lower incidence (α) than the actual 

high-speed shape. 

A second possible interpretation (represented by Figure 1B) says that the scaling term 

acts upon the x axis dimension of the geometry terms. In other words, P-G scales the longitudinal 

geometry in the axis of on-coming flow by a factor proportional to the reciprocal of β, 1/√1 − 𝑀∞
2 . 

In this view, the geometry is exactly aligned with the x axis; but the inflow velocities comprise a 

steady flow in both the x and y directions; u and v are non-zero. Thus, the x axis stretching results 

in the equivalent incompressible shape being longer in the x, or chordwise direction but no longer 

in the y, or thickness direction. Such a transformation implies that the equivalent incompressible 

shape has greater effective area, a lower effective thickness-to-chord ratio (t/c), and the same 

incidence (α) than the actual high-speed shape. 

The third interpretation (represented by Figure 1C) says that the scaling term acts upon 

the u dimension of the flow terms, in other words, P-G scales the effective flow speed by a factor 

proportional to β, simply √1 − 𝑀∞
2 . In this view, the inflow perfectly aligns itself with the x axis. 

The geometry is inclined to represent incidence; however, no Mach number dependent 

“stretching” takes place. A velocity scaling viewpoint has the equivalent incompressible shape 

maintain the same area, incidence and thickness-to-chord ratio as the actual high-speed shape. 

However, the scaled effective velocity means that the actual pressure coefficients (along with 

lifting forces, pressure drag forces and pitching moments) increase in a manner proportional to 

1/√1 − 𝑀∞
2 .  

The final interpretation (represented by Figure 1D) says that the scaling term acts upon 

the y axis dimension of the geometry terms, in other words, P-G scales the transverse geometry 

in the axis of on-coming flow by a factor proportional to β, √1 − 𝑀∞
2 . Thus, the y axis stretching 

results in the equivalent incompressible shape being shorter in the y, or spanwise direction but no 

longer in the x, chordwise or, z, thickness direction. Such a transformation implies that the 

equivalent incompressible shape has the same incidence and thickness-to-chord ratio (t/c) as the 

actual high-speed shape, but a smaller area and lower aspect ratio. 
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Prandtl9 solves the modified form of this equation, an elliptic equation for subsonic 

velocities and hyperbolic for supersonic velocities, to explain the geometric transformation implied 

by high-speed, compressible (but subcritical) flows. Prandtl states that in order for a contour in a 

compressible fluid to maintain the same result as in an incompressible fluid, the “contour must be 

made thinner”9 and likewise, the angle of attack must decrease. This is, in essence interpretation 

1A as stated above.  

It is interesting to note that Prandtl describes this work as being a geometrical change. 

He of course talks about comparing a compressible solution back to an incompressible one, 

where as other authors (Göthert10, Schlichting8, and Drela12) view it in reverse; taking an 

incompressible solution and correcting to a compressible one. Prandtl’s primary discussion is how 

it relates to a contour thickness as well as an angle of attack change. It appears to be an attempt 

to make sense of the work he laid out with only a slight comment on the correction factor being 

related to the velocities themselves. Prandtl “hand waves” the discussion to relate a mathematical 

model to some form of a physical relationship. 

Although less famous than Prandtl, Göthert made considerable contributions to the 

theory of three-dimensional flows at high subsonic speeds. In NACA TM-1105 from 194610, 

Göthert discussed the effects of apparent geometric “stretching” and incompressible solution in 

order to obtain the compressible flow solution. Reproduced as equation 3 is Göthert’s version of 

the potential flow equation: 

𝜕2𝜙𝑐

𝜕𝑥𝑐
2 +

𝜕2𝜙𝑐

(√1−M∞2 × 𝜕𝑦𝑐)2
+

𝜕2𝜙𝑐

(√1−M∞2 × 𝜕𝑧𝑐)2
= 0    (3) 

Göthert claims that the streamlines of a compressible flow are distortions of the 

streamlines of the incompressible by a “Prandtl Factor” of 1/√1 − 𝑀∞
2 , but in the y and z 

directions (as opposed to a reciprocal transformation in the x direction). Göthert argues that the 

compressible flow is comparable to the incompressible flow by a decrease in the y and z 

contours. Therefore, his “stretching” of the incompressible profile is actually a contraction along 

the y and z coordinates (the x coordinate is defined in the free stream direction). 
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R.T Jones first approached Prandtl’s transformation in NACA TR-8633. He refined these 

ideas in High Speed Wing Theory4 co-authored by Cohen. He explains transonic similarity as a 

transformation in two dimensions as a stretching in the x-direction by the factor of 1/√1 − 𝑀∞
2 . 

Therefore, it is the chord of the airfoil that the Mach number dependent stretching is applied to. 

This explanation is purely geometrical and only occurs in the x-direction. Jones & Cohen go on to 

argue the transformation is applicable to a three-dimensional wing as well4. 

 

Figure 2. Jones & Cohen explanation of the Prandtl-Glauert stretching. Reproduced from Jones, 

R. T., & Cohen, D. (1960). High speed wing theory. Princeton, NJ: Princeton University Press. 

According to Jones & Cohen4, the compressible flow relationships that govern a two-

dimensional wing sections apply broadly to three-dimensional wings (see Figure 2). They state 

that, geometrically, the longitudinal stretching means that the equivalent area increases while the 

span remains the same. Thus both the effective sweep angle and the aspect ratio of the 

equivalent incompressible wing will vary due to the “stretching” in the chord. They hold that the 

aspect ratio of a compressible wing is comparable to a smaller aspect ratio wing in 

incompressible flow. Thus the effective incompressible area increases by the Prandtl-Glauert 

factor, 1/√1 − 𝑀∞
2 , while the effective incompressible aspect ratio declines by a factor of 

√1 − 𝑀∞
2 . Jones does not expressly differentiate between Figure 1A and Figure 1B physical 

analogies in either work 3,4. Because he does not discuss angle-of-attack effects directly, either 

explanation could fit his reasoning.  

Hermann Schlichting also approaches the “stretching” transformation as a similarity rule8. 

Schlichting holds that the following geometrical transformations apply to compare a wing in 
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compressible flow to an equivalent wing in incompressible flow. First, he applies a “stretching” on 

the spanwise, y, direction: 

𝑥𝑖𝑛𝑐 = 𝑥      (4a) 

𝑦𝑖𝑛𝑐 = 𝑦 ∙ √1 − 𝑀∞
2      (4b) 

𝑧𝑖𝑛𝑐 = 𝑧      (4c) 

Thus, he implies the following properties of a transformed wing: that the span, b, scales 

with increasing Mach number but the chord remains constant. 

𝑏𝑖𝑛𝑐 = 𝑏 ∙ √1 − 𝑀∞
2      (5a) 

𝑐𝑖𝑛𝑐 = 𝑐      (5b) 

This means that the aspect ratio, AR, declines with increasing Mach number, while the 

taper ratio, TR, thickness-to-chord ratio, t/c, and effective angle of attack, α, all remain constant:  

𝐴𝑅𝑖𝑛𝑐 = 𝐴𝑅 ∙ √1 − 𝑀∞
2     (6) 

𝑇𝑅𝑖𝑛𝑐 = 𝑇𝑅      (7) 

(
𝑡

𝑐
)

𝑖𝑛𝑐
= (

𝑡

𝑐
)      (8) 

𝛼𝑖𝑛𝑐 = 𝛼      (9) 

 Unlike Prandtl1, Schlichting transforms the wing at compressible flow speeds into an 

equivalent incompressible wing by transforming the y coordinate; he does not discuss the z 

coordinate in his transformations. Mathematically it is algebraic rearrangement of terms first 

shown by Prandtl1 that follows the method proposed by Göthert2. Although the explanation differs 

from Prandtl, the physical implications remain the same. 

Similar to Jones & Cohen4, Schlichting5 indicates that the effective sweep of the 

incompressible wing increases with increasing Mach number although for different reasons 

(stretching in the spanwise as opposed to chordwise direction):  

cot (𝜑𝑖𝑛𝑐) = cot(𝜑) ∙ √1 − 𝑀∞
2     (10) 

The effects of these transformations may be seen in Figures 3, 4 and 5. These figures 

show the Mach depended transformations on the Aspect Ratio and sweep as postulated by 

Jones & Cohen4 and independently by Schlichting8. 
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Figure 3 plots equation 6 and finds, at higher Mach numbers, that the equivalent 

incompressible wing has a lower Aspect Ratio than the physical wing. Therefore as the Mach 

number increases the wing in the compressible flow acts as a incompressible wing with a larger 

Aspect Ratio. 

 

Figure 3. Schlichting / Jones & Cohen explanation of the Prandtl-Glauert stretching effects on 

Aspect Ratio. 

Figure 4 demonstrates how equation 10 affects the effective sweep. As the Mach number 

increases, Schlichting’s rule finds that swept wings behave as if they were incompressible wings 

of greater sweep (and smaller span). Therefore, as the Mach number increases the equivalent 

sweep of the wing increases as well. 

 

Figure 4. Schlichting / Jones & Cohen explanation of the Prandtl-Glauert stretching effects on 

sweep. 
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Figure 5 shows the geometric transformations described by Schlichting8. This figure may 

be interpreted to illustrate how a “given” physical wing can be represented by a series of 

“transformed” or equivalent incompressible wings. Because Schlichting holds that 𝑦𝑖𝑛𝑐 = 𝑦 ∗

√1 − 𝑀∞
2 , his equivalent incompressible wing is of a smaller wingspan (and area) than that of the 

physical wing in compressible flow. This is a key point where Jones and Schlichting differ. 

Jones3,4 implies that an increase in Mach number leads to an equivalent incompressible wing of 

greater effective area. Schlichting8 states that an increase in Mach number leads to an equivalent 

incompressible wing of lesser effective area. Clearly, both analogies cannot be correct! 

 

Figure 5. Schlichting’s graphical explanation of the Transonic Similarity Rule. Adapted from 

Schlichting, H., & Truckenbrodt, E. (1979). Aerodynamics of the Airplane (H. J. Ramm, Trans.). 

McGraw-Hill. Pg. 266 

Thus, Schlichting’s argument indicates that he basically follows the guidelines of Figure 

1D; changes in Mach number impact the effective span and area of the wing, but not the 

incidence or thickness.  

In other areas, Schlichting’s8 transformations agree with the work of Jones & Cohen3,4. 

They both argue an equivalent incompressible wing has a lower aspect ratio compared to the 
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compressible wing. The difference occurs is how the incompressible solution is “stretched”. 

Schlichting states that the stretching occurs along the y-axis, therefore changing the aspect ratio, 

the span, and even changing an equivalent sweep angle.  

One major point that Schlichting makes is: for the unchanged profile (airfoil) between 

incompressible and compressible flow, the angle of attack will be the same. This is an interesting 

point that Schlichting makes. Many of these ideas are similar to Jones. Although Jones does not 

talk specifically about the angle of attack transformations, he agrees with Schlichting on the 

changes in sweep and Aspect Ratio.  

Schlichting8 continues in his derivations of the transformation of the lift coefficient, 

pressure coefficient, and moment coefficient of the incompressible wing to those of the 

compressible wing. He does not give an explanation as to the reason for this, but he also does 

not consider a z-direction transformation in any of his work. Schlichting only concerns himself with 

the x-y plane in his transformations. This is similar to the work of Prandtl9, Göthert10, and Jones3,4. 

Prandtl only considers the transformation in the x-axis with an assumption that the velocities in 

the y and z axes are small relative to the speed of sound. Göthert reverses this explanation 

slightly and argues that the transformation occurs on the y and z axis. Either way the early works 

into transonic flow transformations made simplifying assumptions to remain in a two dimensional 

plane. 

Schlichting also holds the following transformation formulas to hold for an “inclined wing 

of finite span in subsonic flow” where 𝛼 =  𝛼𝑖𝑛𝑐 where the geometry at incompressible speeds is 

otherwise identical to that at compressible speeds:  

𝐶𝑝 =
1

√1−𝑀∞
2

∙ 𝐶𝑝𝑖𝑛𝑐      (11) 

𝐶𝐿 =
1

√1−𝑀∞
2

∙ 𝐶𝐿𝑖𝑛𝑐      (12) 

𝑑𝐶𝐿

𝑑𝛼
=

1

√1−𝑀∞
2

∙ (
𝑑𝐶𝐿

𝑑𝛼
)

𝑖𝑛𝑐
      (13) 

𝛼0 = 𝛼0𝑖𝑛𝑐
      (14) 
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𝐶𝑚 =
1

√1−𝑀∞
2

∙ 𝐶𝑚𝑖𝑛𝑐      (15) 

𝐶𝐷𝑖 =
1

√1−𝑀∞
2

∙ 𝐶𝐷𝑖 𝑖𝑛𝑐
      (16) 

That is, the pressure coefficients at high speeds increase inversely proportional to the Prandtl-

Glauert scaling parameter, β; the lift coefficient at any given angle-of-attack increase inversely 

proportional to β; the slope of the lift coefficient with respect to angle-of-attack increases inversely 

proportional to β; the zero-lift-angle of attack remains unchanged, and the induced drag 

coefficient increases inversely proportional to β. It therefore follows that the inviscid aerodynamic 

efficiency at a given angle of attack, 𝐶𝐿 𝐶𝐷𝑖⁄  should not change as a function of Mach number 

because both the lift and induced drag coefficient scale directly with the reciprocal of β. 

Schlichting’s arguments are inconsistent with those shown earlier in his book; they more closely 

follow the transformation implied by Figure 1C. 

The works of Prandtl9, Göthert10, Jones3,4 and Schlichting8 have been revisited more 

recently. Various authors, such as McLean11 and Drela12, agree that a Mach number dependent 

“stretching” transformation occurs, yet they disagree on which explanation is correct.  

The explanation given by Doug McLean in his book Understanding Aerodynamics11 very 

briefly covers “stretching” as Jones and Prandtl would call it. McLean states that the pressure 

disturbances produced by an airfoil will maintain the general characteristics, however they will 

gradually increase. He does not call this a “stretching”, but instead just points out the increase in 

the pressure distribution in a compressible flow, compared to an incompressible flow.  
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Figure 6. McLean’s description of relationship between shock wave formation and Cp*. 

Reproduced from McLean, D. (2013). 7.4.8 Airfoils in Transonic Flow. In Understanding 

Aerodynamics (pp. 342-350). John Wiles & Sons.  

Thus, McLean11 circumstantially implied that flow behaves along the lines of Figure 1C. 

Figure 6 from Mclean11, shows the effect of the Mach number on the pressure distributions. The 

airfoil remains at a constant angle of attack; however, the pressure distributions appear as though 

the airfoil is “thicker” as the Mach number increases. This is the perfect example to McLean’s 

discussion on the change in the pressure coefficient in compressible flow. These arguments also 

seem to imply the existence of an effective dynamic pressure transformation, more than any 

formal geometric morphing.  

Mark Drela’s12 work in Flight Vehicle Aerodynamics explains the Prandtl-Glauert 

Transformation in a modified form. Drela defines the scaling factor as 𝛽 =  √1 − 𝑀∞
2  and uses this 

β to define the geometrical transformations, but instead of Prandtl’s transformation in the x-

direction, or Schlichting’s transformation in the spanwise, y, direction, he applies transformations 

in both the y and z-directions. 
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Drela12 applies these transformations to the y and z-directions, because he transforms 

the compressible flow back to the incompressible solution. Therefore, he argues that the y and z 

coordinates decrease in the incompressible flow, when compared to the compressible flow 

solution. The incompressible angle of attack is decreased as well as the aspect ratio. In the figure 

below, Drela shows the real flow transformed into a mathematically equivalent flow  

Drela12 sketches the geometric transformations in his writings, reproduced here in Figure 

7. Drela shows that the real flow (compressible) can be transformed to an incompressible flow 

through a decrease in the angle of attack, a decrease in the z-direction (including airfoil 

thickness), and the x-direction remaining untouched.  

 

Figure 7. Drela’s sketch of the transformed equivalent incompressible geometry showing an 

increase in area and decrease in angle-of-attack. Reproduced from: Drela, M. (2014). 8.6 Prandtl-

Glauert Analysis. In Flight Vehicle Aerodynamics (pp. 173-180). MIT Press. 

Each author above has a different explanation on the stretching and how it applies to the 

equivalent incompressible geometry. Although many of the transformations are mathematically 

equivalent, there is a disconnect between the explanations of this “stretching”. Jones and 

Schlichting appear to agree with one another on many of the “stretching” transformations in the 

end, however their axes differ slightly. In terms of the sweep and Aspect Ratio the two authors 

agreed upon the final result, yet Schlichting argues a stretching on the span and Jones argues a 

stretching on the chord. Although the final result is the same, these two cannot both be right! 

Prandtl and Göthert fundamentally agree in the stretching, yet provide explanations for stretch on 

different axes! Göthert’s10 transformations, backed by Drela12, are applied to the y and z axis 

where Prandtl9 only applies the transformation on the x axis. McLean11 disagrees with everyone’s 
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explanation of a geometrical transformation and argues that the differences in the flow is due to a 

dynamic pressure “stretching”.  

Even when the authors cite another as the source of their “stretching”, they come out as 

different interpretations! This starts to make one wonder, who is right on the transformation and 

what is the correct physical explanation?  

This thesis will validate many of these relationships using modern computational 

methods. 

 

Critical Pressure Coefficient 

 To properly design transonic wings, engineers must pay careful consideration to match 

the flight conditions where incipient shock wave occurs with the planned operating characteristics 

of the airplane. This is due to the large drag impact that a shock wave can produce when it 

induces flow separation.  

The point where a shock wave begins to form is the Critical Mach Number of the wing, 

the Mach number in which sonic flow is first attained somewhere on the wing.  

Traditionally, this phenomenon is associated with the speed where the peak 

underpressure of the local airflow falls below the Critical Pressure Coefficient (Cp*). It is critical to 

precisely capture the speed and lift coefficient where this occurs because the overall design of a 

wing hangs in the balance of being able to properly meet design performance targets in terms of 

lift and drags well as the necessary volume for structure, fuel and other components. 

Theodore Von Kármán, in his famous paper on compressibility effects7, uses Glauert’s 

approximation19 to derive his equation for the Critical Pressure Coefficient. Glauert’s 

approximation allows the mathematician to linearize the perturbation velocities under an 

argument that holds that while higher order perturbation terms exist, they are negligible. This 

leads Von Kármán, to derive his equation for the Critical Pressure Coefficient: 

𝐶𝑝∗ =
2[(1−𝑀∞

2 )
3

2⁄
 ∙ (1+𝑀∞

2 )
1

2⁄
]

𝑀∞
    (17) 
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Kármán goes on to state that the equation above may not be exact due to the derivation from the 

linear theory.  

Kármán7 suggests that Eastman Jacobs’ derivation from the thermodynamic relationship 

is a good starting point for an improved prediction method.  

𝐶𝑝∗ =

2[1−(
2+(𝛾−1)𝑀∞

2

𝛾+1
)

𝛾 (𝛾−1)⁄

]

𝛾𝑀∞
2     (18) 

Kármán points out that Jacobs included some necessary corrections to errors introduced by the 

linearized theory. Interestingly, a direct source has not been found of this derivation on 

scholar.google.com. None of Eastman Jacobs’ authored papers seem to explain his rationale. 

Interestingly, while Jacobs worked for the NACA, the Critical Mach Number lines in the 

famous NACA TR-82420 airfoil guide follow Von Kármán’s equation (equation 17) to infer the 

Critical Mach Number from the peak recorded underpressure found during low speed testing.  

John Anderson, in Introduction to Flight, approached the Critical Pressure Coefficient 

using thermodynamic relationships16. Anderson derives equation 19 as an estimate of the 

pressure coefficient and the isentropic relationships between the static pressure and total 

pressure. 

𝐶𝑝∗ = −
2

𝛾𝑀∞
2 {[

2+(𝛾−1)𝑀∞
2

𝛾+1
]

𝛾 (𝛾−1)⁄

− 1}     (19) 

This relationship is valid for any flow for a given freestream Mach number. As the Freestream 

Mach number approaches 1, the critical pressure coefficient in this equation approaches 0, as 

expected.  

Schlichting’s8 definition of the Critical Pressure Coefficient relies on the knowledge of the 

Critical Mach Number. Schlichting argues that if the Critical Mach Number is known, then the 

Critical Pressure Coefficient can be easily determined by the minimum pressure coefficient on the 

surface. He does make a correction to his equation as well into include the sweepback of the 

wing. Reproduced below is Schlichting’s derivation for the Critical Pressure Coefficient on the 

wing: 
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𝐶𝑝∗ = −
2

𝛾+1

1−𝑀𝑎∞𝑐𝑟
2 (cos 𝜑)2

𝑀𝑎∞𝑐𝑟
2      (20a) 

For simple two-dimensional flow, Schlichting’s equation reduces to: 

𝐶𝑝∗ = −
2

𝛾+1

1−𝑀𝑎∞𝑐𝑟
2

𝑀𝑎∞𝑐𝑟
2      (20b) 

This is a notably simpler equation than proposed by either von Kármán or Jacobs. 

Küchemann1 in his famous book, The Aerodynamic Design of Aircraft, describes the 

critical conditions through the use of isobars on a swept wing. He argues that on a swept wing the 

critical condition occurs where the flow normal to the isobars reaches the local speed of sound. 

Küchemann uses his swept wing example to derive through the thermodynamic relationships 

between pressure, velocity, and total head to reach the equation below. 

𝐶𝑝∗ =
2

𝛾𝑀∞
2 {(

2

𝛾+1
)

𝛾

𝛾−1
(1 +

𝛾−1

2
𝑀∞

2 (cos 𝜑)2)

𝛾

𝛾−1
− 1}   (21a) 

Which, when simplified for simple two-dimensional flow, reduces to: 

𝐶𝑝∗ =
2

𝛾𝑀∞
2 {(

2

𝛾+1
)

𝛾

𝛾−1
(1 +

𝛾−1

2
𝑀∞

2 )

𝛾

𝛾−1
− 1}    (21b) 

Although argued from a different perspective, and algebraically distinctive, Küchemann’s 

equation (21b) turns out to be numerically identical to the Eastman Jacobs equation (18) cited by 

Kármán7. 

An accurate estimate of the Critical Pressure Coefficient is crucial to predict incipient 

shock wave formation on a transonic wing. Although many prior authors above apply similar, if 

not identical basic governing physics, each author follows a personal path to arrive at 

fundamentally different final equations which supposedly estimate Cp*.  

The inconsistencies between each derivation inspires no hope in the design process to 

accurately predict the shock wave formation.  

These famous equations (Schlichting (20b), von Kármán (17), Küchemann (21b), E. 

Jacobs (18) and Anderson (19)) are plotted together as Figure 8. Although the equations vary, 

they each maintain the basic physical constraints. For example, each equation approaches zero 

as the Mach number approaches one. Therefore, as the freestream flow approaches sonic 
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velocity, the pressure coefficient relating to the sonic flow point is zero. When the free stream flow 

is at Mach 1, any disturbance that leads to increased velocities and reduced pressures triggers a 

shock wave. It is also interesting to note that for two dimensional flow, Küchemann, Eastman 

Jacobs, and Anderson’s Critical Pressure Coefficients are mathematically equivalent. This is 

expected since they are all derived through thermodynamic relationships. 

 

Figure 8. Comparison of Cp* equations (Schlichting, Von Kármán, Küchemann, E. Jacobs and 

Anderson) as a function of Mach number. 

Although these equations approach zero as the Mach number approaches 1, they differ 

significantly at lower Mach numbers. Because real aircraft wings must develop lift to sustain flight, 

incipient shock formation typically occurs in the Mach 0.6 to 0.7 range (for swept wings, this is in 

terms of Mach number normal to the leading edge). Figure 9 shows the variation of the Critical 

Mach number implied by the different formulas that occur in this range. A given pressure 

coefficient can imply a variation of Critical Mach Number as much as M~ 0.03 in this region. It is 

enough of discrepancy to cause performance figures to not be met; if a wing section ostensibly 

designed for 𝑀𝑐𝑟 = 0.66 actually has a 𝑀𝑐𝑟 = 0.63, the speed corresponding to the onset of drag 

divergence will likely diminish proportionately. 
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Figure 9. Detailed comparison of Cp* equations (Schlichting, von Kármán, Küchemann, E. 

Jacobs and Anderson) as a function of Mach at a typical airfoil design point. 

To determine the correct Critical Pressure Coefficient, this thesis turns to computation to 

compare the equations of Schlichting8, Von Kármán7, Küchemann1, Eastman Jacobs7, and 

Anderson16. Since the equations of Küchemann, E. Jacobs, and Anderson are all mathematically 

equivalent for zero sweep, there is no differentiation in the two-dimensional equation. The final 

differentiation between these equations will be determined with the sweep corrections. 

 

Sweep Corrections 

The effects of swept wings on aircraft have been studied since its introduction by Adolf 

Busemann at the 1935 Volta Congress2. Although it has been 81 years since conception, the 

predictors for shock formation on a swept wing remain inconsistent between authors. Many 

authors show the original data from the tests inspired by Busemann and explain briefly how 

sweep delays the onset of compressibility effects on the wing, but refrain from calculating the 

actual Critical Mach Number, and therefore the Critical Pressure Coefficient for swept and 

sheared wings. 

Busemann’s early work shows how the swept wing delays the onset of drag rise. He 

argues that the sweep decreases the Mach number of the flow normal to the leading edge of the 
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wing, therefore the Mach dependent compressibility effects follow the leading edge Mach 

number. 

Busemann2 postulated that a swept wing, of angle φ, acts like an infinite span wing 

yawed at angle φ to the wind. This indicates that the two-dimensional airfoil section is defined 

normal to the leading edge instead of a “sheared” wing where the airfoil section is defined in the 

wind axis. Figure 10 shows the swept wing concept from Busemann. In the early works, 

Busemann provided the theoretical background to sweep theory, which was then carried out in 

tests performed by Hurbert Ludwieg21. 

 

Figure 10. Busemann’s original sketch of the swept wing. Reproduced from Busemann, A. 

(1935). Aerodynamischer Auftrieb bei Überschallgeschwindigkeit. 

In 1939, 4 years after Busemann2 first presented his work on swept wings, Hubert 

Ludwieg21 began preparations for tests in the newly operational supersonic wind tunnel in 

Göttingen. Ludwieg, deputized by Albert Betz, built two models of the same airfoil section, but 

with different sweep angles. The first was a trapezoidal wing without sweep, and the second a 

trapezoidal wing with 45 degrees of sweep (see Figure 11). Their work was done on a low-speed 

airfoil in order to ensure the improvements of sweep postulated by Busemann were easily 

visable.  
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Figure 11. Ludwieg’s sketch of the original test wings. Reproduced from Meier, H. (Ed.). (2010). 

Chapter 1: Historic Review of the Development of High-Speed Aerodynamics (E. Stanewsky, 

Trans.). In German Development of the Swept Wing (pp. 1-68). American Institute of Aeronautics 

and Astronautics. 

The results of Ludwieg’s testing can be found in Figure 12. In these results, it can be 

seen that the swept wing does provide advantage in the higher subsonic regime. This data is 

taken at 𝑀∞ = 0.7 and 𝑀∞ = 0.9 with the most notable advantages being seen in the Lift vs. Drag 

curves. In the straight wing data, there is an obvious increase in drag, that is not present in the 

swept wing data. This data here confirms Busemann2 and his work into the advantages of wing 

sweep. 
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Figure 12. Ludwieg’s data from his first swept wing tests. Reproduced from Meier, H. (Ed.). 

(2010). Chapter 1: Historic Review of the Development of High-Speed Aerodynamics (E. 

Stanewsky, Trans.). In German Development of the Swept Wing (pp. 1-68). American Institute of 

Aeronautics and Astronautics. 

Due to many skeptics to the test program, Ludwieg further expanded these tests21. Figure 

13 shows the expansion of the test wings for the second round of testing21. This time testing 

included various sweep angles, and a wing with forward sweep. Since Busemann’s theory 

postulated that the Mach number normal to the leading edge was the driving factor, there is no 

differentiation between a forward swept wing or a swept back wing, in terms of delaying the drag 

divergence. 
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Figure 13. Ludwieg’s wings for the expansion of the test program. Reproduced from Meier, H. 

(Ed.). (2010). Chapter 1: Historic Review of the Development of High-Speed Aerodynamics (E. 

Stanewsky, Trans.). In German Development of the Swept Wing (pp. 1-68). American Institute of 

Aeronautics and Astronautics. 

Once again, Ludwieg found that the effects of sweep postulated by Busemann were 

correct. The drag coefficient decreases with increasing sweep angle for the flow at 𝑀 = 0.8 as is 

seen in figure 14. Ludwieg also found that the forward swept wing had almost the same 

aerodynamic qualities of the swept back wing. These findings prove that Busemann was 

qualitatively correct in his initial work. However, these tests do not provide the full story. 
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Figure 14. Ludwieg’s results from the second round of testing. Reproduced from Meier, H. (Ed.). 

(2010). Chapter 1: Historic Review of the Development of High-Speed Aerodynamics (E. 

Stanewsky, Trans.). In German Development of the Swept Wing (pp. 1-68). American Institute of 

Aeronautics and Astronautics. 

Jakob Ackeret addressed wing sweep briefly in NACA TM 132022. In this report Ackeret 

discusses the wind tunnel set up and corrections done in order to test four different sections. The 

four sections are: 1) unswept 12% thick wing, 2) unswept 9% thick wing, 3) 12% thickness 

section with 35 degrees sweep, and 4) 9 % thickness section with 35 degrees sweep. Figure 15 

shows the results from Ackeret’s work.  
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A)  B)  

Figure 15. Ackeret test data on A) 12% wing sections and B) 9% wing sections. Reproduced from 

Ackeret, J., Degen, M. & Rott N. (1951) Investigations on Wings with and without Sweepback at 

High Subsonic Speeds. (National Advisory Committee for Aeronautics TM 1320). 

 Ackeret22 does not provide an analytical explanation to the sweep correction. Instead 

Ackeret provides an experimental fit to the data collected.  

Jones4 cites back to Busemann2 and Betz21 (Ludwieg worked for Betz) in his work on 

High Speed Wing Theory. Jones goes further into the explanation into how the swept wing 

geometry effects the flow. He argues that the pressure forces on the wing will act normal to its 

axis and therefore both the pressure drag and the lift should be reduced by (cos 𝜑)2 4. Jones 

places a broad transformation here into how the swept wing affects the lift and drag, compared to 

a straight wing. 

 The trio of Takahashi, Dulin & Kady5 employed potential flow solvers to determine the 

pressure coefficient across swept wings and to correlate the data from Busemann’s2 work to the 

explanation from R.T. Jones4. In their work, Takahashi, Dulin & Kady5 found that there were some 

inconsistencies between Jones4 and Busemann2. Instead of the typical cosine squared 
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transformation, they found that the data fits more to a cosine. However, this work left more 

questions than answers. 

Takahashi & Kamat6 set to validate Busemann’s findings for infinitely swept wings, 

determine the correction for sheared wings, and further test the findings of Takahashi, Dulin, & 

Kady5. This work employed modern CFD methods to validate the results of the potential flow 

solvers and determine the correct sweep transformation. For the yawed wing, the authors found 

that the cosine squared correction matched the data. This indicates that the original description 

by Busemann2 was correct. This differs from the results on the sheared wing. 

Takahashi & Kamat6 found that the sheared wing data does not collapse to the 

explanation given by Busemann2. They also find that the cosine correction given by Takahashi, 

Dulin & Kady5 does not quite fit the data either. The final works of this paper left more questions 

unanswered. This thesis set to further investigate the sheared wing sweep comparison based 

upon this data. 

Schlichting8 approaches the critical pressure coefficient for a sweptback wing of constant 

chord and infinite span. He argues that the critical condition is dependent upon the flow normal to 

the leading edge of the wing. This leads to his derivation of the critical pressure coefficient for a 

swept wing (equation 20a) which is reproduced here. 

𝐶𝑝∗ = −
2

𝛾+1

1−𝑀𝑎∞𝑐𝑟
2 (cos 𝜑)2

𝑀𝑎∞𝑐𝑟
2      (20a) 

The sweep angle enters the numerator of this equation here. The critical conditions are 

manifested based upon the flow normal to the leading edge and the freestream Mach number. 

Küchemann’s equation, shown in equation 21a, estimates the critical pressure coefficient 

for a swept wing.  

𝐶𝑝∗ =
2

𝛾𝑀∞
2 {(

2

𝛾+1
)

𝛾

𝛾−1
(1 +

𝛾−1

2
𝑀∞

2 (cos 𝜑)2)

𝛾

𝛾−1
− 1}   (21a) 

Küchemann derives this equation through the thermodynamic relationships between the static 

pressure and total head and the local velocity and the sweep of the isobars. In equation 21a the 

freestream Mach number is found in the numerator and denominator (as seen in the various 
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equations) yet only applies a sweep transformation to the numerator. The denominator remains 

dependent upon the freestream Mach number, without the sweep transformation, similar to 

Schlichting. 

 Küchemann’s1 sweep transformation is based upon his equation for the local velocity of 

sound. Shown here in equation 22, Küchemann states that the local sonic velocity is based upon 

the sweep of the isobars (and therefore the sweep of the wing). 

(
𝑉

𝑉0
)∗ = {1 +

2

(𝛾+1)𝑀∞
2 (1 − 𝑀∞

2 (cos 𝜑)2}
1

2     (22) 

This equation shows that the sonic conditions of the flow are dependent upon the freestream flow 

Mach number and the sweep angle of the wing.  

In 1949, Stefan Neumark published work on Critical Mach predictions for swept wings18. 

He derived the Critical Mach number for straight untampered wings and then adds his correction 

of cos 𝜑 to each Mach number in the equation, therefore indicating the Critical condition is only 

dependent upon the Mach number normal to the leading edge.  

This differs from Küchemann’s and Schlichting’s derivation, where the critical condition is 

defined not only by the Mach number normal to the leading edge, but also the freestream Mach 

number. This research refers to Neumark’s proposed modification in determining the Critical 

Mach Number, and therefore the Critical Pressure Coefficient, as the “Neumark Modification”.  

The “Neumark Modification” implies that the sweep corrections should be applied to each 

Mach number term to the pressure coefficient equation. Equation 23 shows the implied 

transformation. 

𝐶𝑝(𝑀) = 𝐶𝑝(𝑀 ∗ cos 𝜑)     (23) 

This differs from Küchemann and Schlichting’s derivations of the critical Pressure coefficient. 

Both authors derived the Pressure Coefficient for a swept wing aircraft, and they both agree that 

the transformation only occurs to the Mach number in the numerator. This is a major difference 

that creates the variation in the Critical Pressure Coefficient for a swept wing. 

Anderson’s9 equation for the Critical Pressure Coefficient (reproduced in this work as 

equation 19) does not have a sweep correction.  
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𝐶𝑝∗ = −
2

𝛾𝑀∞
2 {[

2+(𝛾−1)𝑀∞
2

𝛾+1
]

𝛾 (𝛾−1)⁄

− 1}     (19) 

This equation is derived based upon thermodynamic relationships, but does not consider its 

applicability to swept wings. In this work, this equation was modified with the “Neumark 

Modification” in order to properly transform it into the correct axis frame.  

 Equation 24 shows Anderson’s equation with the “Neumark Modification” for swept 

wings. 

𝐶𝑝∗ = −
2

𝛾𝑀∞
2 (cos 𝜑)2 {[

2+(𝛾−1)𝑀∞
2 (cos 𝜑)2

𝛾+1
]

𝛾 (𝛾−1)⁄

− 1}    (24) 

In this equation the sweep correction is applied to the numerator and denominator, per Neumark. 

With this sweep correction, the equation is equivalent to the Eastman Jacobs derivation7 with the 

“Neumark Modification”. 

 The derivation from Eastman Jacobs is shown in equation 18, with the sweep correction 

shown in equation 25. 

𝐶𝑝∗ =

2[1−(
2+(𝛾−1)𝑀∞

2 (cos 𝜑)2

𝛾+1
)

𝛾 (𝛾−1)⁄

]

𝛾𝑀∞
2 (cos 𝜑)2      (25) 

This equation has the sweep correction in the numerator and the denominator. Unlike the 

equations for no sweep, this equation differs from Küchemann. However, this equation is still 

mathematically equivalent to Anderson’s equation with the Neumark Modification. 

Von Kármán does not address sweep in his derivation of the critical pressure coefficient 

in his work dating from 19417. Although it was following the Volta Congress, it predates R.T 

Jones’ work in the United States. 

In order to apply Von Kármán’s equation to sweep the “Neumark Modification” was used 

in this research (equation 26). 

𝐶𝑝∗ =
2[(1−𝑀∞

2 (cos 𝜑)2)
3

2⁄
 ∙ (1+𝑀∞

2 (cos 𝜑)2)
1

2⁄
]

𝑀∞ cos 𝜑
     (26) 

Once again the sweep correction applies to each Mach number term, in the numerator and the 

denominator. 
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Bertin & Cummings17 addressed swept wings all too briefly in their book Aerodynamics 

for Engineers. The pair reproduced the data from the original swept wing testing and only 

discussed the effects of sweep. There is no discussion in designing an aircraft for specified 

sweep or on the predictors to shock formation on the swept wing. 

McLean address wing sweep in his book Understanding Aerodynamics11. In his 

discussion of the swept wing, McLean states that the critical conditions are dependent upon the 

Mach number perpendicular to the isobars of the wing. Although the isobars should more or less 

follow the sweep of the wing, this is not always the case and is a distinction from the sweep 

corrections of various authors.  

McLean11 states that the pressure coefficient of the three-dimensional wing is the two-

dimensional data transformed by (cos 𝜑)2.  

𝐶𝑝3𝐷 = 𝐶𝑝2𝐷(cos 𝜑)2     (27) 

This equation by McLean argues that the transformation to the pressure coefficient is the (cos 𝜑)2 

but doesn’t explain how it is applied. Neumark applies his transformation to the flow normal to the 

leading edge of the swept wing. McLean suggests that the transformation to the pressure 

coefficient is a broad application.  

 

Figure 16. Critical Pressure Coefficient equations for 40 degrees of sweep. 
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To understand the practical differences between the various Critical Pressure Coefficient 

equations, each equation was plotted as a function of Mach number and for 40 degrees of sweep. 

As can be seen in Figure 16, each equation differs significantly between one another. Between 

these equations, a wing with 40 degrees of sweep, and a minimum pressure coefficient of -1, has 

a Critical Mach Number range of ~0.72 to ~ 0.84. This is a large discrepancy that could mean the 

difference in making or missing cruise and performance guarantees for an aircraft. It is this 

discrepancy that this work set to sort out. 

To further understand how the sweep theory applies to gas dynamics, this work turned to 

the theory of oblique shocks. Although there are some consistencies across authors, many 

authors do not agree in the explanation in the formation of the oblique shock. 

In NACA 1135 the formation of the oblique shock is described as a normal shock to the 

component of flow perpendicular to the shock wave (Figure 17)23. This description lends itself to 

the sweep principles of Busemann and Jones, where the flow normal to the leading edge (or in 

this case the shock wave) is important. An interesting point made in NACA 1135 is that the 

strength of the shock wave is determined from the flow perpendicular to the oblique shock, yet 

the tangential flow still influences the speed of sound. This important relationship is where further 

derivations of the oblique shock relationships are found.  

 

Figure 17. Oblique shock diagram. Reproduced from Milne-Thomson, L. M. (1973). 16.4 Shock 

Waves. In Theoretical Aerodynamics (pp. 302-304). NY: Dover Publications.  
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COMPUTATIONAL METHODS 

In this thesis, necessary computations are performed through legacy open-source 

aerodynamic codes as well as using commercial computational fluid dynamics (CFD). These 

computations included running various wings and airfoils at various Mach numbers and angles of 

attack. The purpose was to gather data to clarify the mysterious phenomena of “stretching” and to 

determine the “most correct” equation for the Critical Pressure Coefficient of both and unswept, 

and swept section. 

 

VORLAX 

VORLAX is a compressibility-corrected subsonic/supersonic potential flow solver 

developed by Lockheed-California (now Lockheed Martin) under contract from NASA14. The code 

allows the user to input geometry in three forms: 1) simple, thin flat panels, 2) thin, cambered 

panels, or 3) a thickness simulating “sandwich panels.” 14 VORLAX outputs a variety of flow 

solution data: 1) overall force and moment coefficients suitable to build an aerodynamic database 

(lift, drag, side force, pitching moment, rolling moment, and yawing moment), 2) surface panel net 

differential pressure coefficients (for thin flat and cambered panels), 3) surface panel actual 

pressure coefficients (for thickness simulated “sandwich panels), and 4) off-body wake survey 

velocity vectors. VORLAX was used to determine the correct forms of the various transformations 

proposed by Schlichting. VORLAX is also used alongside CFD to investigate Critical Mach 

Number predictive capabilities of the various equations. Because VORLAX is incapable of 

simulating a shock wave, it can only identify regions of incipient sonic flow where the VORLAX 

solution will diverge significantly from both reality and a CFD solution. 

 

JAVAFOIL 

JAVAFOIL is a simple program built upon a potential flow analysis and a boundary layer 

analysis15. JAVAFOIL uses a higher order panel method to solve the potential flow equations and 

to obtain an inviscid flow velocity on the airfoil in question. It also implements the criteria set forth 

by Eppler, to solve the boundary layer differential equations.  
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JAVAFOIL does not directly simulate supersonic flow. It handles mild transonic Mach 

numbers through the scaling of the basic potential flow solution through the Kármán-Tsien 

correction15. Although JAVAFOIL includes Critical Mach Number predictive capability; the 

documentation does not identify the specific equation used to infer either Cp* or Mcr. 

The JAVAFOIL applet was used to verify some of the CFD results in low speed 

conditions, as well as to compare the transonic solutions to the potential flow model. 

 

ANSYS Fluent 

ANSYS Fluent software solves the Navier-Stokes equations through either a density-

based or pressure-based solver13. Due to the analysis of airfoils being in the transonic regime, the 

density-based solver was used. 

In the density based solver of ANSYS, the flow properties are calculated simultaneously. 

This differs from the pressure based solver, where each of the flow properties are solved 

individually. The other difference between these equations is the derivation of the governing 

equations. The pressure based solver derives the continuity equation with the velocity field, 

where as the density based solver is based upon the continuity, momentum, and energy 

equations. For transonic flow and shock waves, the governing equations to the density based 

solver are preferred. 

The initial CFD runs were performed using a three-dimensional C-grid with the inlet and 

outlet placed a large distance from the airfoil in order to prevent interference of the boundaries 

with the solution. To impose a two-dimensional effect on the airfoil a periodic boundary was 

applied to the left and right walls. Figure 18 shows the initial three dimensional grid used to 

calculate the pressure across the airfoil. 
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Figure 18. Isometric view of the three-dimensional c-grid. 

These runs were done with the steady-state solution option in ANSYS Fluent. This option 

provides automated solution steering to provide a converged steady solution. The solution 

steering allows for the code to converge quicker. Ideally this option provides the steady-state 

solution of the transonic flow properties. 

The early runs were set up to verify the Critical Pressure Coefficient equations on an 

unswept, two-dimensional airfoil section. In these solutions a full three-dimensional grid is 

unnecessary. Because the grid refinements increased the runtime beyond acceptable limits, the 

solutions were then switched to run on a 2D grid. 

The 2D grid was a C-grid, similar to the 3D grid, with the inlet and outlet boundaries a 

significant distance from the airfoil itself. Figure 19 shows the two-dimensional grid used for the 

unswept tests. The grid in this figure shows one of the early grid sizes run in the testing. 
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Figure 19. Image of the two-dimensional c-grid used for the unswept airfoil sections. 

The 2D runs were also run with the steady-state option. Further grid refinement was done 

in order to verify the initial solutions. In these grid refinements, the steady-state solution became 

unstable, providing inconsistent and noisy data. This led to a transient solution to be setup, in 

search of a stable converged solution. 

In calculating the transient solution, a new source of error occurs. In order to calculate an 

accurate solution, the grid must be refined not only in the step size but also the time step. These 

solutions were iterated until steady-state, defined where the data over multiple time steps did not 

vary, was achieved in the flow. The transient setup allowed much finer grids to converge to a 

stable solution. The final grid around the airfoil is shown in Figure 20. This shows the grid density 

that was required for the two-dimensional pressure coefficient data to be converged.  
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Figure 20. ANSYS Fluent refined grid for the transient solutions. 

Once the two-dimensional data provided confident results, the next solutions were done 

on a three-dimensional C-grid, similar to the first grid run. The goal of these solutions were to 

apply sweep, however to do so on a quasi 2D airfoil section. The grid was setup normal to the 

leading edge of a “sheared” wing. This means that the actual airfoil tested is a transformed 

version of the NACA 64-01220 airfoil tested.  

Figure 21 shows the sweep transformation on the airfoil. In this image the original airfoil 

is shown as the sketched spline. This airfoil is defined in the wind axis of the wing. The cutout in 

the figure below shows the airfoil defined off the leading edge of the swept wing. In this figure it 

can be seen that the thickness form does not change due to sweep, however the airfoil chord is 

transformed by the cosine of the sweep.  

 

Figure 21. Swept airfoil geometry. 
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To define the flow velocities in the solution reference frame, the freestream velocities had 

to be transformed. The coordinate system transformations are shown as equations 28a through 

28d. The coordinate system being defined as 1) x is the chord wise direction normal to the 

leading edge, 2) y is the spanwise direction, and 3) z is the vertical direction, with positive z 

pointing towards the upper surface of the airfoil. 

𝑉𝑥 = 𝑉 cos 𝜑 cos 𝛼     (28a) 

𝑉𝑦 = 𝑉 sin 𝜑 cos 𝛼    (28b) 

𝑉𝑧 = 𝑉 sin 𝛼     (28c) 

Where: 

𝑉 = 𝑀 ∗ 𝑎     (28d) 

These equations are dependent upon an angle of attack, α, and a sweep angle, φ. Due to 

the geometry effects of the sweep angle on the grid, only the angle of attack and Mach number 

were varied for each grid setup. For this work, only 40 degrees of sweep was considered, due to 

the large variance between the Critical Pressure Coefficient equations at this sweep angle. 

For each of the solution setups described, the grid refinements followed the same 

process. The accuracy of the solutions was checked by decreasing the step size, h, by a factor of 

1.5 from the original grid, and a second time to the modified grid. For the swept sections, 

computational memory and time were limited, therefore the step size was reduced by a factor of 

1.34. This process provided three distinct solutions of the same flight condition, each with a finer 

grid than the previous. Using a Grid Convergence Index, the accuracy of the coarsest grid can be 

determined. The process was repeated for each new grid tested, and is not done on each 

individual flight condition. Since this testing is only done on the actual grid size, it is acceptable to 

use the same grid across the flight conditions with great confidence. 

 

TRADE STUDIES 

 This thesis used calculations to run various trades studies to verify the transonic 

1relationships described, as well as the correct Critical Pressure Coefficient equations. 
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The first trades were run to determine the correct transformation of incompressible flow 

solutions into compressible solutions starting with the Mach number dependent relationships 

proposed by Schlichting’s Aerodynamics of the Airplane8. (These were given in this thesis as 

equations 6 through 16.) 

 

Prandtl-Glauert Effect on Pressure Distribution 

The first transformation examined was the transformation on the pressure distribution. 

According to Schlichting the compressible pressure distribution is related to the incompressible 

pressure by the inverse of the Prandtl-Glauert parameter: 
1

√1−𝑀∞
2
. 

Figure 22 shows the Mach number dependence of pressure coefficients as computed 

using a VORLAX sandwich panel model. Here, the model is an aspect ratio 20 NACA 0006 

section wing. VORLAX is run at three Mach numbers: 0.0, 0.6 and 0.8 and at a variety of angles-

of-attack. From the converged solutions, the centerline pressure profiles are extracted. In each 

case, the pressure coefficients predicted at high speed are compared against an application of 

equation 11 (𝐶𝑝 =
1

√1−𝑀∞
2

∙ 𝐶𝑝𝑖𝑛𝑐) to the pressure coefficients predicted at 𝑀∞ = 0 (pure 

incompressible). In Figure 22a, the effects of 𝑀∞ = 0.8 flow on the non-lifting wing are shown. 

The Schlichting approximation matches the VORLAX computation closely, but not exactly. Figure 

22b, shows the effects of 𝑀∞ = 0.6 oncoming flow to the wing at incidence. Here, the Schlichting 

approximation matches the VORLAX computation extremely closely, but not exactly.  
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A)  B)  

Figure 22. VORLAX sandwich panel solutions. NACA 0006 section. VORLAX run at A) 𝑀∞ = 0.6, 

B) 𝑀∞ = 0.8. Prandtl-Glauert predictions based upon VORLAX solutions at 𝑀∞ = 0.0. 

In the ANSYS Fluent 2-D inviscid compressible flow solution of a NACA 64-012 airfoil 

section, the results show the Prandtl-Glauert correction to be almost exact for the low transonic 

flows (around 𝑀∞ = 0.6) and a reasonable but imperfect approximation for flow at the higher 

Mach numbers. Here, the high speed compressible flow solution is compared with an 𝑀∞ = 0.1 

solution as transformed by equation 11. With the exception of the stagnation point at the leading 

edge, where Prandtl himself said the correction would be inconsistent9, the simplified correction 

provides a good estimation for the compressible solution. 

Both VORLAX and ANSYS Fluent agree in many respects. Both solutions find that the 

induced pressures from thickness follow the Schlichting / Prandtl-Glauert rule; they are all 

stronger at high speeds than their incompressible equivalents (refer Figure 22a and Figure 23a). 

For the lifting cases (refer to Figure 22b and Figure 23b), the induced pressures due to incidence, 

camber and thickness follow the Prandtl-Glauert scaling rule. Thus, both upper and lower high-

speed pressure coefficients are noticeably greater than those predicted in incompressible flow; as 

speed increases the actual wing feels “thicker” than it does at low speeds; it also feels “larger” 

than it does at low speeds. However, the shape of the incidence dependent pressure profile does 

not change as expected if there were an effective change in incidence due to “stretching.” 
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A)  B)  

Figure 23. ANSYS FLUENT 2D solutions. NACA 64-012 section. FLUENT run at A) 𝑀∞ = 0.59, 

B) 𝑀∞ = 0.73. The Prandtl-Glauert predictions are based upon FLUENT solutions at 𝑀∞ = 0.1. 

From this evidence, Schlichting’s transformation is confirmed from equation 11. At the 

same time, this evidence refutes “stretching” analogies 1A, 1B and 1D. To explain the noted 

effects, it is evident that analogy 1C must be true; the “stretching” effect must manifest itself as a 

non-linear transformation of magnitude of the incoming flow. 

 

Prandtl-Glauert Rule applied to 2D Lift Curve Slope 

According to Schlichting’s transformations shown in equations 12 and 13, both the lift and 

the lift curve slope will also contain a Prandtl-Glauert correction. Schlichting argues, since the 

pressure distribution experiences a transformation in compressible flows, and since the lift is 

direct integration of the pressures, the lift and lift curve slope will receive the same transformation: 

𝜕𝐶𝐿

𝜕𝛼
=

1

√1−𝑀∞
2

𝜕𝐶𝐿

𝜕𝛼 𝑖𝑛𝑐
. 
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Figure 24. VORLAX solutions on flat plate AR=20 model. The Prandtl-Glauert predictions are 

based upon VORLAX solutions at 𝑀∞ = 0.0. 

It can be seen, in Figure 24, how well the lift curve slope of the VORLAX computed 

compressible solution is approximated by the Prandtl-Glauert correction. One distinction that is 

found in the VORLAX finite wing data comes from the fact that neither the overall wing lift slope 

nor the centerline section lift slope of the AR=20 attains the theoretical 2D value. Thus, to make a 

fair assessment of Schlichting’s equations the transformations must “pivot” about the 

incompressible (𝑀∞ = 0) centerline lift coefficient found in the numerical solution. Following such 

a procedure, Schlichting’ s approximation is nearly exact for the low transonic speeds (around 

𝑀∞ = 0.6) and slightly differs at higher transonic speeds.  

 

Figure 25. JAVAFOIL solutions of NACA 64-012 2-D model. The Prandtl-Glauert predictions are 

based upon JAVAFOIL solutions at 𝑀∞ = 0.0. 
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Figure 25 shows the lift curve results from JAVAFOIL for a NACA 64-012 airfoil. Here the 

code was run at 𝑀∞ = 0 and the solution transformed using Schlichting’s relationship, comparing 

it against a solution found running this code at 𝑀∞ = 0.8. Because the solution of JAVAFOIL is 

not a pure inviscid solver, some inconsistencies form between the two solutions due to the Eppler 

boundary layer model used by this code. However, these results demonstrate that Schlichting’s 

version of the Prandtl-Glauert correction factor on both lift and lift-slope is reasonable. 

From this evidence, Schlichting’s transformations predicted using equations 12 and 13 

are confirmed. At the same time, this evidence refutes the “stretching” analogy 1A. Such a 

transformation would increase the effective area, but diminish the effective incidence of the wing. 

There is no such evidence here that analogy 1C is wrong; if the “stretching” effect manifests itself 

as a non-linear transformation of magnitude of the incoming flow, both the lift and lift-slope of the 

wing would scale in lockstep with the local pressure coefficients (as Figures 22, 23, 24 and 25 all 

demonstrate). 

 

Schlichting’ s rule for zero lift angle and pitching moment  

Schlichting’s Transonic Similarity rule includes a correction for the zero-lift angle of the 

compressible wing; 𝛼0 = 𝛼0𝑖𝑛𝑐
. His transformation states that the angle of attack for the 

compressible wing does not change, and includes that the zero lift angle of the wing should be 

the same as well.  
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Figure 26. VORLAX solutions of Lift vs. Angle of Attack, on AR=6 thin cambered wing with NACA 

23 camber form. 

Figure 26 shows the VORLAX solution of a thin cambered wing (NACA 23 camber form) 

at various Mach numbers and angles of attack with the moment reference point chosen at the 

wing quarter-chord area centroid. These results, plotting lift as a function of incidence, 

demonstrate that the zero lift angle of the wing does not vary with Mach number. Schlichting’s 

transformation, or lack of transformation, appears to be correct regarding the zero lift angle.  

From this evidence, it is clear that VORLAX continues to substantiate the Figure 1C 

physical analogy. When the “stretching” effect manifests itself as a non-linear transformation of 

magnitude of the incoming flow held at a prescribed incidence with respect to the body.  
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Figure 27. VORLAX solutions of the Pitching Moment vs. Lift on an AR=6 thin cambered wing 

with NACA 23 camber form. 

Schlichting also states that the Transonic Similarity rule should apply the Prandtl-Glauert 

scaling term to the zero-lift pitching moment as well; that 𝐶𝑚 =
1

√1−𝑀∞
2

𝐶𝑚 𝑖𝑛𝑐. In Figure 27, the 

quarter-chord reference pitching moment coefficient against the lift coefficient is plotted. At a first 

glance the zero-lift pitching moment appears to follow the Prandtl-Glauert correction factor. Under 

close scrutiny, it becomes clear that the proposed correction is dreadfully wrong. The 

computational results show a Mach dependent effect that decreases the aerodynamic stability of 

the wing (moving the aerodynamic center forwards) as the incoming flow increases in speed. In 

Figures 24 and 26 it can be seen that 𝜕𝐶𝐿 𝜕𝛼⁄  closely follows the Prandtl-Glauert scaling law, the 

change in the slope of 𝜕𝐶𝑚 𝜕𝐶𝐿⁄  with Mach number implies that pitching moment cannot follow the 

same law. In Figure 28, the high speed VORLAX solutions are examined as opposed to 

incompressible results transformed by 
1

√1−𝑀∞
2
. Here there is a strong disagreement between the 

direct solution and Schlichting’s transformation; Schlichting’s method8 is clearly incorrect. 

From this new evidence, there is a situation where VORLAX does not substantiate any 

proposed physical analogy. If the “stretching” effect manifests itself as a non-linear transformation 

of magnitude of the incoming flow held at a prescribed incidence with respect to the body, both lift 

and pitching moment would scale by the same effect and no change in stability would occur. 
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Figure 28. VORLAX solutions of Pitching Moment vs. Angle of Attack on an AR=6 thin cambered 

wing with NACA 23 camber form. 

 

Schlichting’s Rule for Induced Drag 

Schlichting’s8 transformation on the induced drag derives from the transformation on the 

lift as well as his purported spanwise scaling of the wing span; physical analogy 1D. Schlichting 

also claims that: 𝐶𝐷𝑖 =
1

√1−𝑀∞
2

𝐶𝐷𝑖𝑖𝑛𝑐
; thus both Lift and Induced Drag scale in lockstep. 

Figure 29 plots drag polars of an AR=6 flat-plate wing modelled with 100% analytical 

credit for leading edge suction. Figure 29A plots, the incompressible solution that builds a drag 

polar with 𝜕𝐶𝐷𝑖 𝜕𝐶𝐿
2 = 0.0555⁄ ; pure lifting line theory would predict 𝜕𝐶𝐷𝑖 𝜕𝐶𝐿

2 = 0.0530⁄ . Thus, the 

untwisted wing has a theoretical efficiency of 96%. In Figure 29B, the 𝑀∞ = 0 incompressible 

solution corrected to 𝑀∞ = 0.9 using equation 16 is compared against the direct 𝑀∞ = 0.9 

solution. It can be seen that the correction quickly deviates from the VORLAX solution. 

Something is dreadfully wrong with Schlichting’s rule. 



 

45 

A)  B)  

Figure 29. VORLAX solutions on AR=6 thin flat plate wing with 100% credit for leading-edge 

suction. 

 

Figure 30. VORLAX solutions on AR=6 thin flat plate wing with 100% credit for leading-edge 

suction. 

Indeed, in Figure 30 𝜕𝐶𝐷𝑖/𝜕𝐶𝐿
2(𝑀) is plotted as derived from a series of fully converged 

VORLAX solutions. Although the slope of 𝜕𝐶𝐿 𝜕𝛼⁄  changes with Mach number, the value 

𝜕𝐶𝐷𝑖 𝜕𝐶𝐿
2⁄  remains remarkably constant. In order to match this data, an alternative relationship is 

proposed as equation 29: 

𝐶𝐷𝑖 =
1

(1−𝑀∞
2 )

∙ 𝐶𝐷𝑖𝑖𝑛𝑐
      (29) 

This is because 𝐶𝐷𝑖 is predominately a function of 𝐶𝐿
2 if 𝐶𝐿 follows a 1 √1 − 𝑀∞

2⁄  

relationship,  𝐶𝐿
2 must follow a 1 (1 − 𝑀∞

2 )⁄  relationship. 

From this evidence, VORLAX substantiates the Figure 1C physical analogy. When the 

“stretching” effect manifests itself as a non-linear transformation of magnitude of the incoming 
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flow held at a prescribed incidence with respect to the body, lift increases proportionally to the 

square of enhanced velocity and drag increases proportionally to the square of the lift. 

 

Critical Mach / Critical Pressure Coefficient 

As discussed in the Prior Art section of this thesis, many famous authors derived differing 

equations to estimate the Critical Pressure Coefficient (refer to Figures 8 and 9). Because the 

equations diverge from one another at lower Mach numbers; where they predict higher critical 

underpressures (more negative values of Cp*), this work sets to “experimentally” and 

“computationally” determine which equations are clearly incorrect and which equations have 

positive predictive value.  

For the transonic 3D wing design problem, designers employ wing sweep to reduce the 

Mach number normal to the leading edge to approximately 𝑀∞~0.6. It is precisely in this region 

that the classic equations differentiate themselves from one another. Since real wings carry lift 

and must contain structure, the designer is particularly interested in the interplay between 

underpressures created by lift generation (incidence and camber) and those created by 

thickness. For example, if an initial design relies upon an overly optimistic value of Cp*, drag 

divergence will onset early. The aircraft designer will either be forced to live with reduced 

performance or will need to accept a schedule slip to redesign a thinner (potentially structurally 

unfavorable) wing. 

To begin, wind tunnel pressure test data of a NACA 0012 section was examined25. C. D. 

Harris tested two dimensional flow over a NACA 0012 section at the NASA/LaRC 8-foot transonic 

pressure tunnel. These tests were performed holding flow velocity constant and changing the 

Mach number by lowering the static temperature, hence lowering the speed of sound of the flow. 

The 2D airfoil section was positioned at varying angles of attack to gather upper and lower 

surface pressure data 

High quality published test data confirms the broad utility of all the all the analytical 

estimation formulas but cannot differentiation between them. Figure 31 examines experimental 

data collected at 𝑀∞ = 0.601 for two different incidences (α=3.86o and α=5.86o). The classic 
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equations predict Cp* to be: 1) Schlichting: Cp*=-1.474, 2) Anderson: Cp*=-1.288; 3) Jacobs: 

Cp*=-1.288; 4) Küchemann: Cp*=-1.288; 5) Von Kármán, Cp*= -1.328. Here it is seen that while 

the equations do differ slightly from one another, the test data cannot differentiate between them. 

Experiment finds no major shock wave at α=3.86o and a noticeable shock at α=5.86o. Among the 

analytical predictions, Schlichting’s Cp* equation predicts subcritical flow α=3.86o, while the 

others predict marginally supercritical flow at that condition. All five equations predict supercritical 

flow at α=5.86o. 

 

Figure 31. Wind tunnel test data of a NACA 0012 airfoil (2D) at 𝑀∞ = 0.601. Adapted from Harris, 

C. D. (1981). Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the 

Langley 8-foot Transonic Pressure Tunnel. (National Aeronautics and Space Administration TM 

81927). 
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This thesis turns to computation in light of limited available test data, to use this basic 

procedure to find the best equation suitable to determine the Critical Mach Number, and therefore 

the Critical Pressure Coefficient. 

The calculations in this study used ANSYS Fluent to model a symmetric NACA 64-012 

airfoil. Solutions were run varying Mach numbers at two angles of incidence: α=0o and α=4o. The 

calculations began with a low speed solution to estimate the critical condition based upon the 

equations in the Prior Art section. These solutions were run with a fine sweep of high speed 

solutions varying the Mach number in 0.01 increments around the predicted critical point to 

determine the actual conditions associated with the onset of locally supersonic flow. 

The process here was slow and methodical. It is crucial to take small increments in Mach 

number to truly capture the incipient shock formation. Since there is the likelihood of shockless, 

supercritical flow developing right around the sonic point and there is some difficulty to track the 

shock wave in the CFD solution, there was careful consideration to document the local Mach 

number of the near surface flow.  

The initial testing on zero degrees angle of attack showed Küchemann1, Anderson16 and 

Eastman Jacobs7 were correct in the prediction of the shock wave, occurring at 𝑀∞ = 0.74. 

However, Schlichting’s8 and Kármán’s8 equations were off by a few hundredths, therefore the 

next tests set to carry lift on the airfoils in order to force the Critical Mach to occur at lower Mach 

numbers, where the difference is more noticeable. 

A)  B)  

Figure 32. ANSYS Fluent computation on NACA 64-012 airfoil at: A) M∞=0.74; B) M∞=0.75. 
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Figure 32 plots computed upper and lower surface pressure coefficients of the NACA 64-

012 airfoil at zero degrees angle of attack and 𝑀∞ = 0.74 and 𝑀∞ = 0.75 respectively. At 𝑀∞ =

0.74, the shock-wave is in the early stages of forming at the minimum pressure point. Here, the 

flow just reaches sonic conditions. The Critical Mach Number, is correctly predicted by Eastman 

Jacobs7, Anderson16 and Küchemann1, but not by Schlichting8 or Von Kármán7. The data here 

gives compelling evidence that Schlichting8 and Von Kármán7 were incorrect in their estimates of 

the Critical Pressure Coefficient. However, these results conflict with the data obtained at four 

degrees angle of attack. 

In Figure 32b, one can see the strengthening shock-wave on the airfoil. At 𝑀∞ = 0.75, 

each equation predicted the sonic flow on the airfoil section, however this strengthening shock-

wave was used to help validate the 𝑀∞ = 0.74 results with the weak shock beginning to form.  

 

Figure 33. ANSYS Fluent computation on a NACA 64-012 airfoil. Comparison of high-speed vs 

Prandtl-Glauert corrected low-speed data. 

Figure 33 demonstrates the utility and limitations of the simple Prandtl-Glauert 

transformation8,9. This figure compares the low-speed, but Prandtl-Glauert corrected data (using 
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equation 11) against to the 𝑀∞ = 0.74 compressible flow solution from ANSYS. It is possible to 

see how for high-speed, yet subcritical flow, Prandtl’s transformation on the low speed flow is 

approximate, but reasonably good. There is also evidence of a wider discrepancy around the 

location of peak underpressure, where local supersonic flow exists; here the approximation is 

poor.  

Table 1  

Pressure Coefficient data from ANSYS Fluent compared to the Cirtical Pressure Coefficient based 

upon the various famous equations. 

Mach NOTES Cp min 
CP* 

Schlichting, 

Cp* von 

Kármán 

Cp* Anderson, 

Jacobs, 

Küchemann 

0.730 Shock free -0.6218 -0.730 -0.740 -0.662 

0.735 Shock free -0.6335 -0.709 -0.721 -0.664 

0.740 Weak shock -0.64615 -0.688 -0.703 -0.626 

0.750 Weak shock -0.6980 -0.648 -0.667 -0.591 

 

Table 1 shows the tabulated results of the NACA 64-012 airfoil at zero degrees angle of 

attack. The data presented above shows the incipient shock-wave beginning to form at 𝑀∞ =

0.74. Neither Schlichting8 nor Von Kármán7 predict the sonic flow at 𝑀∞ = 0.74, based upon the 

minimum pressure coefficient from the ANSYS solution. The data in this table provides evidence 

to say Küchemann’s and Eastman Jacobs’ two-dimensional derivations are correct.  
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A)  B)  

Figure 34. ANSYS Fluent computation on a NACA 64-012 airfoil: A) 𝑀∞ = 0.590; B) 𝑀∞ = 0.600. 

The next testing was done on the NACA 64-012 airfoil at four degrees angle of attack, 

shown in Figure 34. This solution provided more interesting results. The data showed that at 

𝑀∞ = 0.59 a shock wave was not forming, and sonic flow was not occurring at the minimum 

pressure location. This data contradicts the data from the 𝑀∞ = 0.74 case. At 𝑀∞ = 0.59, only 

Schlichting’s formula does not predict sonic flow. This contradiction does not provide a clear 

answer to the correct Cp* equation. 

Upon investigation of the solutions, further refinements were done on the solution setup. 

The first change was to make the solution purely two-dimensional. The grid refinements were 

done with the steady state solution option, which caused the solutions to become unstable. This 

led to changing the solution procedure to remove the internal solution steering and calculate a 

transient solution. With the concerns on accuracy for these solutions, a much finer grid was run 

with the transient solution.  

A grid density study was run to ensure the solutions obtained were converged and 

accurate. Table 2 shows the grid convergence for the final grid run in the following solutions. The 

table shows the minimum Coefficient of Pressure, maximum Mach number, with the grid sizing 

(h) normalized to the finest grid. In the grid refinement checks, the grid is considered acceptable if 

the asymptotic value approaches 1. 
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Table 2  

Data from the grid refinement on the two-dimensional unswept airfoil sections. 

Step Size (h) Minimum Pressure (Cpmin) Maximum Mach 

1 -0.67989 0.9937 

1.5 -0.67863 0.9905 

2.25 -0.67606 0.9848 

Richardson Extrapolation -0.6811 0.9982 

   

Observed Order (p) 1.766 1.352 

GCI12 (Error band) 0.221% 0.559% 

GCI23 (Error band) 0.453% 0.970% 

Asymptote 0.99815 0.9967 

 

Figures 35 and 36 shows the results of the transient runs at zero degrees angle of attack 

at 𝑀∞ = 0.73. At this Mach number and angle of attack, the NACA 64-012 airfoil reaches it critical 

conditions. Figure 35 shows the local Mach number on the airfoil. Although it is not completely 

evident of a shock wave forming, it can be seen that the local Mach number exceeds 1 on the 

airfoil. By definition, this is the critical condition on the airfoil. 
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A)  

B)  

Figure 35. Mach number on NACA 64-012 airfoil section run at 𝑀∞ = 0.73 and zero degrees 

Angle of Attack. 
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A)  

B)  

Figure 36. Pressure Coefficient on unswept NACA 64-012 airfoil section run at 𝑀∞ = 0.73 and 

zero degrees Angle of Attack. 

Figure 36 shows the Critical Pressure Coefficients from the various equations 

(Schlichting8, Eastman Jacobs7, Küchemann1, and Kármán7) plotted with the pressure coefficient 

on the airfoil. For the zero degrees angle of attack, the results show that Küchemann’s and 

Eastman Jacobs’ formulas are correct in predicting the sonic point on the airfoil. This is similar to 

the early trades run with the coarse grids.  
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A)  

B)  

Figure 37. Pressure Coefficient on unswept NACA 64-012 airfoil section run at 𝑀∞ = 0.55 and 4 

degrees Angle of Attack. 

 

In order to further validate this data, the NACA 64-012 airfoil was run at 4 degrees angle 

of attack. At 𝑀∞ = 0.55 the data clearly shows the strengthening shock wave that forms near the 

leading edge. Figure 37 shows the results along with the Critical Pressure equations. As can be 

seen this figure, each equation predicts the critical condition and is considered inconclusive. The 

next runs set out to determine the Mach number at which the shock wave began to form. 
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A)  

B)  

Figure 38. Pressure Coefficient on unswept NACA 64-012 airfoil section run at 𝑀∞ = 0.52 and 4 

degrees Angle of Attack.  

 

Figure 38 shows the pressure coefficient at 𝑀∞ = 0.52 across the airfoil along with the 

Critical Pressure Coefficient estimations. At this Mach number, the shock wave is just beginning 

to form, which can be seen near the leading edge of the airfoil. The data here shows that 

Küchemann1, Eastman Jacobs7, and Kármán7 are correct in predicting this critical location. This 

leaves that Schlichting is incorrect in his simplified equation. 

This two-dimensional flow data proves that Küchemann1 and Eastman Jacobs7 are 

correct in their derivations, for an airfoil without sweep. This is not a complete surprise, as both 
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Küchemann and Jacobs used thermodynamic flow relationships to reach the final equations for 

the Critical Pressure Coefficient. The data here from the ANSYS Solutions supports their findings. 

 

Sweep Corrections to the Critical Pressure Coefficient 

 As discussed in Prior Art section, there are many takes on the necessary correction for 

estimating the Critical Pressure Coefficient on a swept wing. The final goal of this research is to 

determine which correction factor accurately predicts the critical conditions across a swept 

section or, if none of the current methods are found to be correct, determine a correction based 

upon the sweep of the section.  

 Figure 16 shows the four Critical Pressure Coefficient equations with 40 degrees applied 

sweep. The two-dimensional data found that only Eastman Jacobs and Küchemann were correct 

in accurately predicting the critical conditions. Therefore, only Küchemann10 and Eastman 

Jacobs8, with the Neumark Modification18, were considered for the corrections. These equations 

are shown in this paper as equation 21a (Küchemann) and equation 25 (Eastman Jacobs with 

Neumark Modification) and are reproduced here. 

𝐶𝑝∗ =
2

𝛾𝑀∞
2 {(

2

𝛾+1
)

𝛾

𝛾−1
(1 +

𝛾−1

2
𝑀∞

2 (cos 𝜑)2)

𝛾

𝛾−1
− 1}    (21a) 

𝐶𝑝∗ =

2[1−(
2+(𝛾−1)𝑀∞

2 (cos 𝜑)2

𝛾+1
)

𝛾 (𝛾−1)⁄

]

𝛾𝑀∞
2 (cos 𝜑)2      (25) 

These two equations have very different sweep transformations. Although they are equivalent for 

an unswept section, they vary vastly with the sweep corrections. In these equations, Küchemann 

transforms the pressure with the square of the cosine in the numerator only. Eastman Jacobs 

with the Neumark Modification shows the transformation with the square of the cosine in both the 

numerator and denominator. 

The differences between the equations by Küchemann1 and Eastman Jacobs7 is shown 

in Figure 39 for a sweep angle of 40 degrees. At this sweep angle, the difference is very 

noticeable, and the same pressure coefficient could mean a critical Mach number around 𝑀∞ =

0.7 or 𝑀∞ = 0.9 depending upon which equation is correct.  
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Figure 39. Küchemann and Eastman Jacobs, with the mod Neumark Modification, Cp* equations 

for 40 degrees of sweep. 

 The first sweep calculations were done ranging the Mach number from 0.6 to 0.9 by 

increments of 0.1. Figure 40 displays the results of the early runs. The shock wave begins to form 

at 𝑀∞ = 0.8 and can be seen strengthening in the 𝑀∞ = 0.9 solution. This is an early indicator to 

Küchemann’s derivation being correct. In order to verify these solutions, further refinement was 

done around 𝑀∞ = 0.7.  
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A) B)  

C) D)  

Figure 40. Coefficient of Pressure data from early trades on 40 degree swept airfoil section at 4 

degrees angle of attack. 

 To confirm which equation is correct, the next ANSYS Fluent runs were performed on 

𝑀∞ = 0.72 with 40 degrees of sweep. At this flight condition, a shock wave is evident. This 

categorically indicates that Eastman Jacobs with Neumark Modification is incorrect. Figure 41 

plots the pressure coefficient from the 𝑀∞ = 0.72 run along with the critical pressure coefficient 

values from Küchemann and Eastman Jacobs with the Neumark modification. In this data it is 

evident that Küchemann correctly predicts the shock formation. 

To further confirm the accuracy of Küchemann1, the model was reexamined at 𝑀∞ = 0.7. 
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Figure 41. 𝑀∞ = 0.72 data on NACA 64-012 airfoil section with 40 degrees sweep run at 4 

degrees angle of attack. 

 Figure 42 shows the data from the 𝑀∞ = 0.7 run, where a shock wave is just beginning to 

form (as is evident from the pressure spike at the leading edge). This figure also plots the critical 

pressure coefficient value from Küchemann1 and Eastman Jacobs7 with the Neumark 

Modification18. 

 

Figure 42. 𝑀∞ = 0.70 data on NACA 64-012 airfoil section with 40 degrees sweep run at 4 

degrees angle of attack. 

 In further refinement of this data, a grid convergence was attempted on the 𝑀∞ = 0.7 

data, however due to limitations on the computational memory, the grid was refined with a step 

size factor of 1.34, instead of the factor of 1.5 used on the two-dimensional data. There were 

three grids in total, and the results of the grid refinement are shown in Table 3. The step size, h, 

is normalized to the coarsest grid.  
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Table 3.  

Results of the grid refinement performed on the swept airfoil test sections. 

Step Size (h) Minimum Pressure (Cpmin) Maximum Mach 

1 -1.270 1.104 

1.34 -1.1569 1.0374 

1.80 -1.0434 0.9701 

Richardson Extrapolation -40.05 8.093 

   

Observed Order (p) 0.00995 0.2439 

GCI12 (Error Bar) 3817% 791% 

GCI23 (Error Bar) 4203% 850% 

Asymptote 0.91092 0.93966 

 

 Table 3 shows that the data from ANSYS Fluent does not provide much 

confidence. This table does show that although the convergence is slow, the data does indeed 

show convergence. For the purpose of this work, the data from the coarsest grid is used and 

analyzed. In order to better refine this data, access to improved computing power or methods is 

required. 

Table 3 shows the importance of this research. CFD is a nice tool to work with, however 

there are many steps that must be taken in order to confirm the resultant data is indeed correct. 

In the current work, the two dimensional data were able to be completed on a high performance 

desktop, however the three-dimensional data requires a significant increase in available memory. 

This means that the same system does not have the ability to build and converge a mesh of the 

same grid density, due to the three-dimensional aspects. In order to properly converge and verify 

the three-dimensional data, access to a large computing cluster is required for the necessary 

memory and computational power.  
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The data presented here indicates that Küchemann is correct in his derivation of the 

Critical Pressure Coefficient.  

To understand further the physics behind Küchemann’s derivation, this thesis revisited 

his explanations in The Aerodynamic Design of Aircraft.  

 Küchemann derives the Critical Pressure Coefficient for a swept wing in Chapter 4 of his 

book. To begin he defines the local sonic condition for a swept wing, reproduced from earlier in 

this work as equation 22.  

(
𝑉

𝑉0
)∗ = {1 +

2

(𝛾+1)𝑀∞
2 (1 − 𝑀∞

2 (cos 𝜑)2}
1

2     (22) 

This equation is derived based upon Küchemann’s equation for the local speed of sound. He 

states this as equation 2.3 in his literature, reproduced here as equation 30. 

𝑎2 = 𝑎0
2 −

1

2
(𝛾 − 1)(𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2 − 𝑉0
2)    (30) 

This is a powerful equation that becomes overlooked often. 

 Equation 30 from Küchemann, estimates the local speed of sound based upon the 

perturbation velocities. The total perturbation velocity is shown in the second portion of this 

equation as: (𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2 − 𝑉0

2). This shows that the higher the perturbation velocity, the lower 

the local speed of sound.  

Küchemann’s derivation is based upon the flow being homenergic (flow in which the sum 

of the kinetic energy, potential energy, and enthalpy per unit mass is the same at all locations and 

at all time in the fluid flow)26 and isentropic, therefore this flow does not account for shock waves. 

This equation remains valid up until a shock wave occurs in the flow, which will not occur before 

the local flow exceeds the sonic point. 

 In order to transform with the proper sweep equation Küchemann derives the equation of 

motion based upon the transformations found in equations 31a through 31c and 32a through 32c. 

𝜉 = 𝑥 cos 𝜑 − 𝑦 sin 𝜑      (31a) 

𝜂 = 𝑥 sin 𝜑 + 𝑦 cos 𝜑     (31b) 

𝜁 = 𝑧      (31c) 

𝑉𝜉0 = 𝑉0 cos 𝜑 cos 𝛼     (32a) 
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𝑉𝜂0 = 𝑉0 sin 𝜑 cos 𝛼     (32b) 

𝑉𝜁0 = 𝑉0 sin 𝛼           (32c) 

These transformations can be viewed as figure 43. This figure shows the sketches made by 

Küchemann and the transformations he makes for the swept wing. 

 

 

Figure 43. Küchemann’s sketch on the coordinate transformation for swept wings. Reproduced 

from Küchemann, D. (2012). Chapter 4: Properties of Classical and Swept Aircraft. In The 

Aerodynamic Design of Aircraft (AIAA Education Series, pp. 103-221). Reston, VA: American 

Institute of Aeronautics and Astronautics.  

 Küchemann does not dispute the claims that the sonic conditions are based upon the 

flow normal to the leading edge. Instead, he continues to support this claim. Küchemann argues 

that critical conditions are based upon the flow normal to the leading edge, yet the local speed of 

sound is still dependent upon the perturbations of the entire flow. It is an interesting claim that 

Küchemann makes, and one that is similar to the explanation of oblique shock properties from 

NACA TM- 113523. 

 Küchemann’s1 derivation of the flow around a swept wing is reproduced here as 

equations 33 through 34b. He states that the flow is governed by: 

1 −
(𝜕Φ 𝜕𝜉⁄ )2+(𝜕Φ 𝜕𝑧⁄ )2

𝑎2 = 0     (33) 

Where 𝑎2 is the local speed of sound squared and: 
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𝜕Φ

𝜕𝜉
= 𝑉𝜉 = 𝑉0 cos 𝜑 cos 𝛼 + 𝑣𝜉    (34a) 

𝜕Φ

𝜕𝑧
= 𝑉𝑧 = 𝑉0 sin 𝛼 + 𝑣𝑧     (34b) 

In these equations, 𝑉0 is the freestream flow velocity, 𝜑 is the sweep angle, 𝛼 is the angle of 

attack, and 𝑣𝜉 and 𝑣𝑧 are the perturbation velocities in the ξ and z directions respectively. 

Therefore, rearranging equation 33 and plugging in 34a for 𝜕Φ/𝜕𝜉 and 34b for 𝜕Φ/𝜕𝑧, the 

equation becomes: 

𝑉𝜉
2 + 𝑉𝑧

2 = 𝑎2 = 𝑉𝑛
2      (35) 

Or: 

𝑉2 − 𝑉𝜂
2 = 𝑉0

2(sin 𝜑)2 (cos 𝛼)2 = 𝑎2     (36) 

Küchemann indicates the velocity that determines the critical condition is the velocity normal to 

the leading edge of the wing, whereas the total velocity of the flow could indeed exceed the sonic 

point. This is shown by equation 36, where the total velocity is shown as, V, and the freestream 

velocity as, V0. 

 Küchemann’s final derivation of the Critical Pressure Coefficient fundamentally differs 

from the explanations of Busemann2 and Jones4. In this scenario, Küchemann shows that the 

Mach number normal to the leading edge does indeed matter, yet this is not the only 

consideration. With Küchemann’s derivations, it is evident he includes the perturbation velocities 

into his equation and considers a change in the local speed of sound to the flow. This derivation 

mimics results found in the CFD data gathered. 

 

CONCLUSIONS 

This thesis finds that many classical explanations and equations regarding transonic flow 

around swept wings2,3,4,7,8,21 are fundamentally inconsistent. The data presented shows that 

although many of the phenomena described do exist, the various explanations do not fully explain 

reality. 

As a first step in documenting the best formula to estimate the Critical Mach Number of a 

wing from a potential flow solution, this work revisited the Transonic Similarity Rule. Close 
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reading of the primary and secondary source literature revealed a multitude of differing 

interpretations and explanations of the physical transformation implied by the foundational 

mathematics. The famous authors2,7,8,11,12,21 all state that there is a geometrical transformation, 

causing a change in the wing area, aspect ratio, thickness and incidence. Some authors8,21 hand 

wave through the explanation to state there is only a difference in the results. These conflicting 

explanations do not give insight into the actual “stretching” that is applied to the compressible 

flow. Through the use of VORLAX, CFD (ANSYS Fluent), and some JAVAFOIL solutions, there is 

evidence to suggest that the geometrical “stretching” explanation does not properly describe the 

solutions.  

Schlichting8 summarized the Prandtl-Glauert transformations as part of the Transonic 

Similarity Rule. He provided a table of all of the transformations that should occur, including 

geometric “stretching”. In the work of this paper, Schlichting is found to have the correct 

transformation for the pressure distribution, the lift curve slope, zero lift angle, and the lift 

coefficient. These correlations imply that the “stretching” is not geometric, but instead a Mach 

dependent velocity “scaling” applied to the flow.  

Schilichting’s transformation of the coefficient of pitching moment and the induced drag 

does not match the compressible solution. The pitching moment transformation cannot follow the 

Prandtl-Glauert transformation due to the coupling of the lift transformation, as well as a Mach 

transformation on the aerodynamic center. The transformation on the induced drag is defined by 

Schlichting as the transformation on the lift as well as the transformation on the Aspect Ratio. 

This transformation is defined by a velocity “stretching” in the lift coefficient, and a geometric 

transformation through the decrease in the Aspect Ratio. The data gathered shows that this 

transformation is not correct. Instead the drag due to lift scales with the square of the high speed 

lift coefficient: an effective scaling transformation factor of a 1 (1 − 𝑀∞
2 )⁄  as opposed to 

Schlichting’s 1 √1 − 𝑀∞
2⁄  relationship. 

Evidence shows that most of the manifestations of the Prandtl-Glauert rule that have 

previously been explained by some sort of “stretching” can be better explained by a velocity 

“scaling” analogy. Data presented here shows that various proposed transformations of high 
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speed geometry into an altered, equivalent incompressible solution geometry introduce an 

effective angle of attack change, area change or aspect ratio change that has been contradicted 

by the computational results of accepted codes. Therefore, this work refutes the geometrical 

“stretching” explanation and proposes that the “stretching” is merely a “scaling” of the velocity. 

This work found many different published equations that purport to estimate the Critical 

Mach and Critical Pressure Coefficient, and hence predict the onset of sonic flow. When applied 

to a transonic aircraft design problem these equations vary significantly from one another. 

Using ANSYS Fluent to solve the Navier-Stokes equations, this work set forth to 

determine which equation is correct in estimating the Critical Pressure Coefficient. The current 

data shows that for an unswept section, the equations proposed by Küchemann, Eastman 

Jacobs, and Anderson are all correct. The equations by these three authors are mathematically 

equivalent for the unswept section and accurately show the sonic conditions forming on the airfoil 

section.  

The next step in determining the correct critical pressure coefficient equation, sweep was 

applied. In this scenario the various equations were modified either as specified by the author 

(Küchemann), or modified as postulated by Neumark (Anderson and E. Jacobs). These various 

sweep corrections provided vastly different results for the Critical Pressure Coefficient.  

The ANSYS Fluent solutions for the swept sections do not provide complete confidence 

in the data gathered. The grid refinement shows that the data does indeed converge, albeit a 

slow convergence. The issues with the data here result from a lack of memory available for the 

three-dimensional solutions. Although it is not ideal, the grid refinements were showing the 

expected trend in the data, which showed the shock wave strengthening with the finer grid 

resolutions. In order to further verify this data, further grid refinements must be completed on 

systems with improved computing power. The data must be built and run on a much finer grid and 

confirmed with the results presented here to ensure true convergence of the CFD data.  

The data presented from the swept wing sections show that Küchemann’s derivation is 

indeed correct. Küchemann1 postulated that the Critical Pressure Coefficient is depended upon 

the freestream Mach number and the Mach number normal to the leading edge. This is similar to 
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Schlichting8 but differs from the work of Neumark18. Küchemann does not dispute the claim that 

the flow normal to the leading edge must exceed the sonic condition, however he does argue that 

the sonic condition is a function of the total perturbation velocity from the freestream. Therefore, 

the freestream Mach number still has importance in determining the Critical Pressure Coefficient.  

This revelation indicates that Von Kármán’s Transonic Similarly Rule (as described by 

Schlichting8) is indeed incorrect in its explanation. Kármán does not consider the effects of a 

nonlinear scaling on the velocity perturbations and only concerns himself with the possible 

explanation of a geometric scaling. Therefore, the transformations from an incompressible to 

compressible flow is not a geometric stretching, but indeed a velocity scaling. 
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