
Analysis and Visualization of OpenFlow Rule Conflicts

by

Janakarajan Natarajan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2016 by the
Graduate Supervisory Committee:

Dijiang Huang, Co-Chair
Violet R. Syrotiuk, Co-Chair

Gail-Joon Ahn

ARIZONA STATE UNIVERSITY

May 2016

ABSTRACT

In traditional networks the control and data plane are highly coupled, hindering de-

velopment. With Software Defined Networking (SDN), the two planes are separated,

allowing innovations on either one independently of the other. Here, the control

plane is formed by the applications that specify an organization’s policy and the data

plane contains the forwarding logic. The application sends all commands to an SDN

controller which then performs the requested action on behalf of the application.

Generally, the requested action is a modification to the flow tables, present in the

switches, to reflect a change in the organization’s policy. There are a number of ways

to control the network using the SDN principles, but the most widely used approach

is OpenFlow.

With the applications now having direct access to the flow table entries, it is easy

to have inconsistencies arise in the flow table rules. Since the flow rules are structured

similar to firewall rules, the research done in analyzing and identifying firewall rule

conflicts can be adapted to work with OpenFlow rules.

The main work of this thesis is to implement flow conflict detection logic in Open-

Daylight and inspect the applicability of techniques in visualizing the conflicts. A hi-

erarchical edge-bundling technique coupled with a Reingold-Tilford tree is employed

to present the relationship between the conflicting rules. Additionally, a table-driven

approach is also implemented to display the details of each flow.

Both types of visualization are then tested for correctness by providing them with

flows which are known to have conflicts. The conflicts were identified properly and

displayed by the views.

i

DEDICATION

I dedicate this work to my mother, father and brother.

ii

ACKNOWLEDGEMENTS

I am extremely grateful to my advisors Dr. Dijiang Huang and Dr. Violet R. Syrotiuk

for their support and encouragement. My work would not have been possible without

the help of Sandeep Pisharody and Dr. Chun-Jen Chung. I am glad to have had the

opportunity to work with them.

Attending the SNAC talks and learning about others’ works was truly an eye

opener. I was able to see first-hand some really innovative solutions to complex

problems. It was great to have been part of the SNAC and I will take this experience

with me wherever I go.

Finally, I would like to thank Dr. Gail-Joon Ahn for providing me with feedback

on my work.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Conflicting Rules . 3

1.2 Related Work . 6

1.3 Research Outline . 9

2 OFANALYZER ARCHITECTURE . 10

2.1 Flow Extraction . 11

2.2 Conflict Detection . 11

2.3 Conflict Visualization . 12

3 BACKGROUND . 13

3.1 Overview. 13

3.2 OSGi . 14

3.3 Apache Karaf . 15

3.4 OpenDaylight Bundles . 16

3.5 RESTCONF . 17

3.5.1 NETCONF . 17

3.5.2 YANG . 18

3.6 Model Driven-Service Abstraction Layer . 19

3.6.1 Service Abstraction Layer . 19

3.6.2 Model Centric Applications . 20

3.7 MD-SAL Application . 20

3.8 Data Trees . 22

iv

CHAPTER Page

4 FLOW EXTRACTION . 25

4.1 Flow Listener . 25

4.2 Flow Structure . 27

4.3 Flow Extraction Algorithm . 27

5 CONFLICT DETECTION . 29

5.1 Conflict Detection Algorithm . 29

5.2 Transferring Rules . 32

5.3 Send All Conflicts . 32

5.4 Use Encoding Scheme . 33

5.5 Compilation Process . 35

6 CONFLICT VISUALIZATION . 37

6.1 Fetch Rules . 38

6.2 WebSocket Listener . 38

6.3 REST API . 39

6.4 Process Retrieved Rules . 41

6.5 Transforming the Rules . 42

6.5.1 D3 - JavaScript Library . 42

6.6 Visualization of OpenFlow Rule Conflicts . 44

6.6.1 Tabular Visualization . 44

6.6.2 Hierarchical Edge Bundle . 45

6.6.3 Reingold-Tilford Trees. 46

7 EVALUATION . 49

8 CONCLUSION AND FUTURE WORK . 53

8.1 Conclusion . 53

v

CHAPTER Page

8.2 Future Work . 53

REFERENCES . 55

vi

LIST OF TABLES

Table Page

1.1 Example Flow Table . 4

5.1 Rule Conflicts . 32

5.2 Types of Rule Conflicts . 33

5.3 Conflict Type Assignment . 34

5.4 Encoded Table . 35

7.1 Test Flows . 52

vii

LIST OF FIGURES

Figure Page

1.1 Traditional Network . 1

1.2 OpenFlow Network . 2

2.1 OFAnalyzer Architecture . 10

3.1 OpenDaylight Lithium Architecture (Reduced) . 14

3.2 Apache Karaf . 16

3.3 MD-SAL Application Generation . 21

3.4 OpenDaylight Trees . 23

4.1 Flow Structure . 26

6.1 POSTMAN REST Invocation . 40

6.2 Landing Page . 43

6.3 Tabular View . 44

6.4 Hierarchical Edge Bundling . 46

6.5 Reingold-Tilford Tree . 47

7.1 Test Topology . 49

7.2 Test Flows Landing Page . 50

7.3 Reingold-Tilford Relationship . 51

viii

Chapter 1

INTRODUCTION

A network can comprise of numerous switches where each can have many hosts

connecting to it. All packets to and from these hosts have to be routed correctly to

ensure proper functioning of the network. The routing decisions are made based on

a variety of parameters such as number of hops, traffic along the hops, Quality of

Service guarantees etc., along with the equally important business logic parameter

which reflects an organization’s policies regarding resource use. The switch is tasked

with performing the routing based on such parameters.

Figure 1.1: Traditional Network

Generally, the business logic is implemented in the control plane. Here the require-

ments, as specified by an organization, are translated into system level instructions.

The actual routing of packets along with the full implementation details of packet han-

dling are part of the data plane. In this way the control plane dictates and governs

the access to the network while the data plane handles the actual packet routing.

1

An example network can be seen in Figure 1. Here the network comprises of a

Cisco and a Juniper switch, providing access to the server and printer respectively.

In order to prevent the laptop from accessing the server and printer, changes must be

made to the Access Control Lists of both the switches separately. Hence, any change

in the organization’s policy will require work to be duplicated for each switch. This

is a big problem as it prevents the organization from having its requirements applied

generically throughout its network which may comprise of elements from different

vendors. Moreover, since the traditional networks have the two planes tightly coupled,

the network administrator will not be able to make changes to the network rapidly.

Figure 1.2: OpenFlow Network

OpenFlow [1] aims to solve this issue. It does this by decoupling the control and

data plane thereby allowing each to be manipulated independent of the other. The

data plane, comprising of the switch flow tables, is controlled by applications that

form the control plane. The communication with the flow table takes place through

the OpenFlow protocol. Generally, the application specifies its requirements to an

OpenFlow controller which then uses the protocol to push the requests down to the

switches. An example of an OpenFlow enabled network is shown in Figure 2.

Here the applications 1 and 2 run on top of the OpenFlow controller and directly

2

indicate their requirement to it. The controller then uses the OpenFlow protocol to

push the necessary changes to the flow table. The switches under the controller are

OpenFlow enabled which indicates that the flow table is accessible from the outside

world.

1.1 Conflicting Rules

With the applications now having access to the internal flow tables of the switches,

there is a high probability that the flows may conflict with one another. This can be

caused by a number of reasons such as logical errors in the application, misbehaving

programs and applications being generally unaware of the intentions of its peers.

It is preferred to always have a conflict-free flow table to ensure the network reflects

the requirements set by the organization. For example, packets from legitimate clients

to use a resource may be dropped due to a conflicting rule. Another scenario may

involve creating security holes in the network wherein unauthorized clients may gain

privileged access to services offered.

Conflicts come in a variety of flavours. A number of works such as [1], [2] have

classified the conflicts present in firewalls into five categories. They are:

• Shadowing

• Generalization

• Correlation

• Redundancy

• Overlap

Since the flows in an OpenFlow architecture are a superset of the firewall rules,

these classifications are applicable here as well.

3

Rule Priority Src IP Dst IP Prot Src Port Dst Port Action

1 10 10.10.*.* 11.11.1.* TCP 6001 6002 Forward

2 99 10.10.1.* 11.11.1.2 TCP 7867 7868 Deny

3 100 10.11.1.2 11.12.1.1 TCP 23 23 Deny

4 101 10.11.1.* 11.12.1.* TCP * * Forward

5 102 10.10.1.* 11.11.1.* * * * Deny

6 200 10.10.1.1 11.11.1.1 UDP 40 40 Deny

Table 1.1: Example Flow Table

A point of interest is that in firewalls the order of rules in the table inherently

indicates the priority of the rules. Hence a rule rx has a higher priority than a rule ry

if rx is higher in the table than ry. In OpenFlow there is a separate field called priority

that is used to indicate the priority of each rule. This Priority field is explicitly used

when classifying the OpenFlow rules into one of the following five types:

Shadowing

A rule ry is said to have a shadowing conflict with rx if rx matches the same packet

space as ry but has a different action and a higher priority compared to ry. In Table

1, rule 2 is shadowed by rule 1. Here the packet space of rule 1 is a superset of rule

2. All packets belonging to the space 10.10.1.* will also be under 10.10.*.*. Hence

rule 2 will never be utilized. This is a conflict because the action of rule 2 is to Deny

while rule 1 will allow it. This can create a security hole if the network administrator

is not careful.

4

Generalization

A rule ry is said to have a generalization conflict with rx if rx matches a subset of

ry’s packet space and rx has a higher priority and different action compared to ry. In

Table 1, rule 3 matches a subset of rule 4 and has a different action when compared

to rule 4. Since 10.11.1.2 is a subset of the packet space of 10.11.1.* and the rule

has a different action when compared to rule 4, this is a generalization conflict. This

type of conflict may not be an error. Network administrators use this type of flow to

blacklist particular hosts from accessing the network. In this case, all hosts except

10.11.1.2 are allowed to reach their destination.

Correlation

A rule ry correlates with another rule rx if ry’s packet space intersects with rx’s

packet space but rys’ action differs from rxs’. Hence any packet that matches this

intersection will be either allowed or denied based on the priority of the correlating

rules. In Table 1, rule 1 and rule 5 have a correlation conflict. Rule 5 denies all

packets from 10.10.1.* to 11.11.1.* with any protocol and source, destination ports.

However, rule 1 allows all packets from 10.11.*.* to 11.11.1.* with TCP protocol and

6001 and 6002 as source and destination ports respectively. If rule 5 had a higher

priority then all packets from 10.10.1.* to 11.11.1.* would be denied. Since rule 1

has higher priority all TCP packets from 10.10.1.* to 11.11.1.* are allowed in, again

creating a security hole.

Redundancy

A rule ry is redundant if there exists another rule rx which matches the same

packet space or is a more general rule of ry and has the same action. In Table 1, rule

5

5 and rule 6 have a redundancy conflict. Rule 5 is much more general than rule 6,

hence all packets matched by rule 5 will also be matched by rule 6. Since both rules

have the same action, the packets will not be affected by the priority.

Overlap

A rule ry overlaps another rule rx if rx matches the same address space of ry and

both their actions are the same. Overlap conflicts are , in essence, correlation conflicts

when the actions are the same between the two compared rules.

1.2 Related Work

The OpenFlow rules have a number of fields such as Priority, VLAN-ID, Source

MAC, Destination MAC, Source IP, Destination IP, Source Port, Destination Port,

Protocol and Action with many types of actions supported in each version of Open-

Flow. This is startlingly similar to firewall rules. Since OpenFlow rules are a super-set

of firewall rules, the techniques used to identify conflicts among the firewall rules can

be adapted to work with OpenFlow as well.

One of the earliest works on identifying conflicts or errors in the firewall is the

work done by Mayer et al. in [2]. Their tool called Fang reads in the vendor specific

configuration files and converts it into an internal representation. It also presents a

GUI to the network administrator, where queries can be presented to the system and

the results displayed in a tabular format. From an OpenFlow perspective Fang can

be considered, but it would not fit the need to display the relation between conflicting

rules. Since the onus is on the user to query the system, conflicts will show up only

if the right query is presented.

Al-Shaer and Hamed in [3] provide one of the most comprehensive tools to identify

conflicts in firewalls. Here the rules are internally represented in a policy tree which

6

aids in the conflict identification process. Their classification of the firewall conflicts

forms the basis of a number of further works in this area and can be applied to

OpenFlow as well. A major drawback of their tool Firewall Policy Advisor is that the

conflict information is displayed as text in their GUI. Presenting details in a textual

format can make it difficult to visualize the relationship between the conflicting rules.

In [4] Hu et al. describe a tool called FAME which identifies the conflicts among

the firewall rules and displays them in a tabular format. The conflicts are placed into

segments, grouping of conflicts based on their type. This segmentation aids in the

visualization of the relationship between the conflicting rules. Moreover, this tool also

provides conflict resolution based on action constraint generation and rule reordering.

This thesis models the tabular format view for the OpenFlow rules after the approach

followed by FAME.

Al-Shaer and Hamed have recognized the viability of using firewall conflict detec-

tion techniques for OpenFlow conflict detection. They have provided a tool FlowChecker

in [5]. Here the OpenFlow rules are internally represented using a structure called

Binary Decision Diagram (BDD). The BDD encodes the location of the packet in

the network along with each field of the flow rule. With this representation, reducing

the BDD into a Reduced Ordered Binary Decision Diagram assists in the detection of

conflicts among the flows. However, no effective visualization technique is discussed

to give the network administrator an overall picture of the network.

Another tool that uses BDDs for identifying firewall rule inconsistencies is [6]. The

tool takes into consideration the blacklists and whitelists that the network adminis-

trator may have setup and models all paths that a packet may take in a network.

Since many networks have firewalls from different vendors, the configuration files

are represented internally in a vendor-neutral manner. This tool also considers the

firewalls which are stand-alone as well as those that are distributed firewalls.

7

Finally, different conflict detection techniques for OpenFlow rules are discussed

in [7]. Two different approaches are analyzed. The first approach is to internally

represent the flows using a combination of a hash and a radix trie. Apart from the

Source and Destination IP address fields the remaining fields in an OpenFlow rule

are encoded in a hash trie. The hash trie is used for this purpose as these fields are

exact match fields. A radix trie is chosen for the IP headers because these headers

are prefix-based and according to [8] is the preferred data structure for representing

prefix-based fields. The advantage of this structure is the highly compressed nature

of the nodes, where a large amount of information is presented with minimal tree

elements. Moreover, this trie is used internally in routers to match packets to their

respective flows when performing Quality of Service control. The output of the hash

and radix tries is then utilized to identify the conflicts among the flow rules. The

second approach is an Ontology based Conflict Detection. According to [7] a logic

system is used to provide an effective way to infer the conflicts from the added flow

rules.

The main aim of this thesis is to provide an array of options to visualize the

relationship between the conflicting flow rules. A number of works have focused on the

visualization of conflicts as well. PolicyVis [9] also utilizes Binary Decision Diagrams

to segment the rules based on accepted or denied actions. A two dimensional graph

is used to visualize the firewall rules, where the co-ordinate axes can be controlled. A

third dimension is used by placing special shapes inside the graphs, signifying another

value of the firewall rule e.g. TCP, UDP etc. This helps the user to choose the required

scope when viewing the firewall rules or segments. PolicyVis also provides support for

viewing distributed firewall rules and segments. The major drawback of this approach

is that the conflict visualization depends on the user choosing the right dimension for

the graph axes.

8

Frequently, a large number of factors are considered when making predictions for

any event. The same is true for college football. In [10], a website from Ed Fang

visualizes the predictions for the NCAA championships using a unique circular tree

structure. This makes it easier to identify the relationship between the predictions

and their probability to win the championship. This thesis uses a similar approach

to visualizing the flow rule conflicts by employing the Reingold-Tilford tree and hier-

archical edge bundle.

1.3 Research Outline

With a basic understanding of the OpenFlow architecture, the types of conflicts

that may arise and the work done to minimize, correct and in some cases visualize

them the next chapters deal with architecture of the tool presented in this thesis

called OFAnalyzer. Chapter 2 takes a closer look at the overall architecture of the

tool.

In Chapter 3, the open-source OpenFlow controller - OpenDaylight - is elaborated

upon. An introduction is provided of its internal workings along with its associated

tools and technologies. In subsequent chapters the three major tasks, i.e., flow ex-

traction, flow conflict detection and flow visualization is explained in detail. Chapter

4 discusses the flow extraction process in detail. In Chapter 5, the conflict detec-

tion technique used in OFAnalyzer is described. The types of conflicts and the data

structures that are used are explained in detail.

In Chapter 6, the visualization of the conflicts is presented. In Chapter 7, the tool

is evaluated and its function is checked against a set of rules that are known to have

conflicts among them. Chapter 8 presents the future work, where the many ways this

tool can be used is described.

9

Chapter 2

OFANALYZER ARCHITECTURE

Figure 2.1: OFAnalyzer Architecture

The architecture of the OFAnalyzer is shown in 2.1. The OFAnalyzer performs

10

three important tasks. They are:

• Flow Extraction

• Conflict Detection and

• Conflict Visualization

The following sections briefly describe each task.

2.1 Flow Extraction

The OpenDaylight controller is connected to the OpenFlow switches. As packets

arrive at these switches, if a flow rule is not present then the packet is forwarded to

the controller to be processed. The controller then injects flow rules into the switch

so that future packets that match the flow are processed by the switch itself. The

flow rules can also be proactively installed by applications running on the controller.

The flow rules installed from any source are extracted by the OFAnalyzer back-

end as the first step. It does this by listening to the flow rule tree maintained by the

OpenDaylight controller. These flows are stored in an internal HashMap.

2.2 Conflict Detection

The flows that OFAnalyzer receives may conflict with flows existing in the internal

HashMap. An O(n2) algorithm is used to identify the conflicts among the rules. n

represents the number of flows in the flow table. This algorithm is similar to the one

used in [11]. The conflict detection algorithm used here compares each flow rule as

it arrives at the OFAnalyzer listener with the rules that came before it. As each rule

is compared, any conflict detected is encoded into a field called Conflict-Type. This

field is a semi-colon separated string holding the conflict information of each rule with

all the other rules in the flow table.

11

2.3 Conflict Visualization

The OFAnalyzer front-end is a module under the DLUX UI [12]. Here the module

performs a REST Request to get the flow rules along with the conflict information.

The back-end responds to this REST Request by sending all the available flows as

a list of JSON objects. With the JSON objects, JavaScript conversion routines are

applied to prepare the flow rules for visualization.

Once these flows are received by the front-end, the flow rules are formatted using

JavaScript routines and various visualization techniques are applied to this data. The

information is then presented in a GUI inside the DLUX project, as a sub module.

The information displayed can be viewed in a number of ways.

The subsequent chapter goes into detail about the tools and languages used for

each task listed above.

12

Chapter 3

BACKGROUND

OFAnalyzer uses the OpenDaylight controller to listen for changes to the Open-

Flow switch flow tables. Before the flow extraction process is examined in detail,

it is necessary to have an overview of OpenDaylight and its associated tools and

technologies.

3.1 Overview

OpenDaylight is an open-source project under The Linux Foundation [13]. The

stable version Lithium of OpenDaylight is used in this thesis. Its architecture can be

seen in 3.1. OpenDaylight has REST API’s which are used by external applications.

Applications that exist inside of OpenDaylight make use of the Service Abstraction

Layer to communicate with different types of devices. They do so by using the

various communication protocols such as OpenFlow, Netconf, CAPWAP etc. that

are supported in Lithium.

There are a number of SDN controllers such as NOX, Floodlight and Beacon that

support OpenFlow as its southbound plugin but OpenDaylight is regarded by many

as the industry standard SDN controller. Apart from open-source flavors there are

commercial alternatives such as Big Switch’s Switch Light, Brocade’s Vyatta Con-

troller, Ericsson’s SDN Controller and many more as listed in [14]. The OpenDaylight

project is home to a number of sub-projects which when combined together provide

a vast array of features under a single package. Some examples of such projects

are openflowplugin, controller, dlux, l2switch and yangtools. These sub-projects are

available in Gerrit mirrored in GitHub [15], a code review platform for Git.

13

Figure 3.1: OpenDaylight Lithium Architecture (Reduced)

The division of functionality among different projects helps in simplifying the

design of the controller. If, for example, the OpenFlow specification is updated to

provide newer action types, the openflowplugin project alone can be updated to reflect

this change. This separation of functionality is possible due to the use of the Open

Services Gateway Initiative (OSGi) specification.

3.2 OSGi

The OSGi specification [16] and [17] is used predominantly for Java projects to

provide modularity and reduction of code complexity by promoting code reuse. In

14

OSGi, the applications are run in a container that provides a basic framework for

inter-application communication, runtime handling of modular needs and much more.

To run projects in an OSGi container, the code is built as a combination of bundles

with an accompanying manifest file that specifies all the requirements of the bundle.

Bundles here refer to the application’s logic which can either be built from scratch or

from a combination of other available bundles.

The advantage of OSGi is that the bundles can be loaded or unloaded at runtime

and be stopped, started and restarted without affecting the other running bundles.

This a major feature when one considers the time it takes to deploy a solution, test

it, unload it, make changes and then reload it again.

Applications are generally built either as consumers or producers of some func-

tionality. When a producer is added to the OSGi container and started, it registers

the service it provides with the central service registry. Consumers can then look-up

this service and make use of it. This provides a way to build applications from ex-

isting technologies without rewriting code. When a service provider is stopped, the

OSGi framework informs all the clients and from then on the clients cannot expect

to use that particular service.

The glue here is the OSGi framework that provides the Bundle activator, service

object initiator, graceful exit procedure for the consumers and producers, communi-

cation between applications and dynamic module handling.

3.3 Apache Karaf

There are a number of OSGi containers available such as Equinox, Felix, Eclipse

Gemini and Concierge [18]. OpenDaylight uses Apache Karaf [19], a sub-project

under Apache Felix, as its OSGi container. There are a number of advantages to

using Karaf. The most important feature is that Karaf provides command completion

15

Figure 3.2: Apache Karaf

similar to that of Linux. An example karaf console is shown in Figure 3.2.

Applications and bundles can be installed and started from the command line

presented by Karaf and hot deployment of bundles is also possible by placing the .jar

files under the deploy directory. It is important to have a stable and well supported

OSGi container to ensure seamless deployment of applications in the platform and

Karaf provides this as it is part of the Apache ecosystem.

3.4 OpenDaylight Bundles

With an overview of the OSGi bundles and the Apache Karaf container, one

can understand the way the OpenDaylight sub-projects work with each other. Each

sub-project is usually a set of bundles that makes use of the bundles from other sub-

projects. For example, the l2switch project [20] uses openflowplugin, openflowjava,

yangtools and dlux to provide a complete implementation of a Layer 2 Switch. This

l2switch application installs flows into any OpenFlow switch which connects to the

OpenDaylight controller. The switch can either be a hardware switch or a virtualized

16

switch created as part of a Mininet [21] network. These models are defined in YANG

and can be accessed using RESTCONF. The next few sections provide an overview

of RESTCONF and YANG.

3.5 RESTCONF

According to the RESTCONF RFC draft [22], RESTCONF is an HTTP based

protocol to access models defined in YANG by using the data-stores defined in NET-

CONF.

3.5.1 NETCONF

Configuring the network devices can be done by CLI (Command Line Interface).

However, CLI configuration will become cumbersome as the changes to the network

become far too frequent. Network configuration can therefore be automated by script-

ing the CLI commands. However, this too can become difficult to manage as the

scripts are tightly coupled to the CLIs themselves. Any new CLI command or a

change to an existing command will break the scripts. To mitigate this, a standard

called SNMP - Simple Network Management Protocol can be used. SNMP [23] was

created to make the configuration and management of network devices generic with

the use of MIB - Management Information Base modules for each network element.

Although SNMP solves some problems, it is still plagued by a few core issues

such as the difficulty in finding MIBs, committing configuration changes and use

of insecure communication over UDP, as indicated in [24]. To handle the problems

mentioned and much more, the NETCONF [25] protocol was designed. Some of the

advantages of NETCONF over SNMP are:

• Distinction between the configuration and operational data.

17

• Retrieving data selectively. With SNMP, one has to walk through the whole

data-set to get the required information.

• RPC and event notifications [24].

The main aim of NETCONF is to provide a means to configure the network elements

in a vendor independent manner. Models of each network device, defined in a model-

ing language called YANG, can be loaded and changes can be made to them. These

changes will then be propagated to the devices themselves.

3.5.2 YANG

Given the advantages of NETCONF it is important to define the models accessed

using an expressive language. Although there are a number of contenders such as

XML, UML and SMI (used by SNMP), these languages were not inherently created

for the sole purpose of configuration management. This is the purpose of the YANG

modelling language [26]. YANG was to be used specifically by NETCONF and was

developed from the ground up with that aim in view. Some of the advantages of

YANG are:

• Support for versions.

• Support for augmentation. This is an important feature as it allows other

developers to augment models to suit their needs.

• Specification of Remote Procedure Calls (RPC).

• Grouping common data elements under structure which promotes code reuse.

It is to be noted that YANG, while used to define models for network devices,

can also be used to define models of applications that will eventually run on the

18

OpenDaylight platform. The applications in OpenDaylight do not just use statically

generated APIs but rather use APIs generated from the models. This is the founda-

tion of MD-SAL programming, which will be touched upon in the next section. Since

the applications defined can either be consumers or producers, access to the services

offered or consumed is provided using RESTCONF [22]. The advantage of REST-

CONF is that it greatly simplifies the various operations available in NETCONF.

It also provides a RESTful API to perform CRUD (Create, Retrieve, Update and

Delete) operations. RESTCONF thus hides the details of NETCONF while provid-

ing the same functionality but with a REST interface.

3.6 Model Driven-Service Abstraction Layer

With a basic understanding of OpenDaylight, its internal representation of data

and the means to access data, we take a closer look at the programming paradigms

used in OpenDaylight.

3.6.1 Service Abstraction Layer

Applications in OpenDaylight interact with network elements by employing a

communications protocol. In its initial releases OpenFlow was the only protocol that

was supported. In order to simplify the use of the southbound protocols a layer called

the Service Abstraction Layer (SAL) was created. This layer was used to provide a

simplified API to the protocol plugins. Any application that wants to talk with a

device use SAL API’s to invoke requests to the network devices.

This was simple when only OpenFlow was supported. As more protocols like

OVSDB, NETCONF, BGP, SNMP, etc., became supported, the APIs started to

become too complex. Hence the SAL was redesigned to use models instead of APIs

to communicate with the devices. Here the models are tasked with communicating

19

to the devices and the application only deals with the models which are defined for

each protocol plugin that is supported.

3.6.2 Model Centric Applications

Models are not restricted to the southbound plugins. As mentioned before, appli-

cations can be producers or consumers. If one application wishes to use the services

offered by another application, a contract between the two in the form of an interface

used for communication is required. This approach is too unwieldy as the interfaces

are not consistent across different applications. To prevent a host of individual APIs,

the YANG modeling language is used to generate the models for the applications

themselves which would be accessible by using RESTCONF. To support this, the

SAL was redesigned and called Model-driven Service Abstraction Layer (MD-SAL)

[27].

The process of creating an application in OpenDaylight has many steps. To sim-

plify this process there are a number of automated tools available.

3.7 MD-SAL Application

Each MD-SAL application has a number of components that it needs in order to

work with Karaf. Instead of starting from scratch, the OpenDaylight developers have

created a template which can serve as the starting point. To use this template one

must use the maven archetype created specifically for this. maven archetype:generate

is used to get the template from the Nexus [28] repositories which holds all the

artifacts of the OpenDaylight project. With the template in hand the developers can

then begin working on their code.

It can be seen from Figure 3.3 that the primary work of the application developer is

to define their application’s model using YANG. After that the yangtools project takes

20

Figure 3.3: MD-SAL Application Generation

the model and generates the RESTCONF API and the models that the OpenDaylight

platform needs. The REST APIs that get generated as part of the compilation process

are used by programs running outside of OpenDaylight to use the service provided

by the application. Additionally, the models that get loaded by OpenDaylight can be

used by other applications running inside the platform. This allows the developers

to create code that performs a specific task and reuse them as needed later on. For

example, to access the nodes in a Mininet network, the flow-node-inventory YANG

model [29] inside the openflowplugin project can used.

Once the basic code skeleton is generated by using the YANG tools, one can go in

21

and code their implementation. There is a file called the ProjectNameProvider.java

which serves as the entry point for all applications. If any RPC’s are defined in the

YANG model, then the application must register itself as the RPC provider in the

central service registry.

An important point to note is the way the data is arranged inside the OpenDay-

light platform. The arrangement is explained in the next section.

3.8 Data Trees

OpenDaylight maintains data stores similar to that of NETCONF. The data stores

are classified into two based on the type of data maintained in them. They are:

• Configuration Data Store

• Operational Data Store

Configuration Data Store

When configuring the network elements, data that describe the changes to be

made on the devices are referred to as configuration data. These are sent to the

devices using one of the many communication protocols and applied. In Figure 3.4

the configuration tree structure can be seen. The nodes represents all the types of

devices that are supported by OpenDaylight. The node may represent a device that

uses one of the many available communication plugins. In 3.4 of:1, of:2 and of:n

represent OpenFlow devices. Each OpenFlow device can have many tables and each

table can have many flows. The requests sent by all applications reside in this tree

before they are sent to the devices. If the request is a flow, then the details are placed

under the appropriate table in the tree.

22

Figure 3.4: OpenDaylight Trees

Operational Data Store

Similarly, the operational data tree can also be seen from the Figure 3.4. It

matches the configuration tree in structure and holds the same information. The

difference between the two trees is that the Operational tree holds the information

that it discovers about the network. The OpenDaylight controller periodically queries

all the network elements to get their statistics, flow tables etc., and populates the

operational data store with this information. This is done so as to maintain an

accurate view of the network.

23

It may be argued that the configuration tree should suffice and its contents could

be considered the configuration that actually exists in the network but there are

times when two separate trees help. Consider the scenario where the configuration

request arrives at the controller and is forwarded to the network elements. Along the

way due to some unforeseen reason a few packets, which are flow add requests, get

dropped. With these dropped, the configuration tree will become incorrect. This is

the reasoning behind maintaining two different trees.

Data Access

The data in the trees can be accessed in two ways. One way, called Binding-

Aware format, is where the data and function calls are accessed based on the Java

APIs generated during compile time. The other way, called Binding-independent

format, is where the data and functions are based on a neutral Document Object

Model (DOM) notation. When one intends to access any data on one of the trees

an InstanceIdentifier is required. This is the object that is used to specify the exact

node in the tree to access, in a Binding-aware or Binding-independent format.

With an overview of OpenDaylight, its associated tools and technologies, the flow

extraction process can be explained in detail.

24

Chapter 4

FLOW EXTRACTION

The OpenDaylight controller provides RESTful API’s to add, update and delete

flows. The API’s can be accessed through DLUX [12] , a User Interface (UI) sub-

project under OpenDaylight, or by using any external RESTful client like POSTMAN

[30]. The flows that are pushed to the controller using one of the two mentioned

methods are then forwarded to the specified switch by using the OpenFlow protocol.

4.1 Flow Listener

OFAnalyzer listens for changes in the flows present in the operational data tree.

The operational tree is selected as it represents the view of the network with the con-

figuration applied and not the view of the configuration tree where the configuration

has not been applied to the network. To listen for changes, OFAnalyzer first creates

an InstanceIdentifier object pointing to the Flow.class under the opendaylight-flow-

types YANG model [31] which represents OpenFlow flows in the data trees. With

this InstanceIdentifier object, OFAnalyzer registers itself as a listener using the reg-

isterDataChangeListener function found in the DataBroker. As the name suggests,

DataBroker is responsible for brokering the data between applications and their lis-

teners. An application can register itself as a listener only if it implements the Dat-

aChangeListener interface and defines the onDataChanged function. When register-

ing as a listener, OFAnalyzer specifies the type of change as subtree - a way to be

informed of any addition or modification of Flows. There are a number of options

available to customize the time when the application is informed of changes. They

are:

25

• one - Listen to only changes to one node and its children.

• base - Listen to changes to one particular node.

• subtree - Listen to changes to any node and its subtree.

Figure 4.1: Flow Structure

26

4.2 Flow Structure

The flows that have been mentioned are structured as shown in Figure 4.1. The

structure of the flow is based on the OpenFlow specification [32]. The flow structure

is a grouping of the match and list groupings respectively. The match grouping

itself is a grouping of structures defined for each layer. This is the way the flow is

arranged in the configuration and operational tree. The flow is defined in the YANG

file opendaylight-flow-types under the openflowplugin project. If another project were

to use this YANG file, YANG’s augment option be used to add functionality without

defining the whole structure again. The YANG file when passed to yangtools will

create the necessary java interfaces under the api/generated-classes directory.

4.3 Flow Extraction Algorithm

The application is informed of any change to the subtree by having the onDat-

aChanged function invoked and a Java Data Transfer Object (DTO) passed to it. The

DTO passed to OFAnalyzer has all the new flows that are added to the flow table to

any OpenFlow switch in the network. With the map extracted from the DTO, OF-

Analyzer extracts the flows from the entry-set value and stores it in a local HashMap

of its own. The algorithm to extract the flow elements is shown in Algorithm 1.

The basic check in each invocation of the onDataChanged call is to see if the Map

contains elements of the Flow.class object. This is the class that corresponds to a flow

rule. If the element is indeed an instanceof flow, the algorithm then steps through

each layer, i.e., Layer 2, Layer 3 and Layer 4 to get the respective flow elements.

Since the Layer 4 can be either TCP, UDP or ICMP, the type of Layer 4 protocol

is extracted first and then used to further obtain the Layer 4 Source and Destination

details. Finally, the action field is extracted, if available, or set to drop since Open

27

Algorithm 1: Flow Extraction

Data: Java DTO containing flows
1 Get Map entry − set in DTO as flow;
2 if flow instanceof Flow.class then
3 Get Priority ;
4 Get L2, L3 and L4 Match objects;
5 if L2Match 6= NULL then
6 Get ETH-SRC and ETH-DST;
7 end
8 if L3Match 6= NULL then
9 Get IP-SRC and IP-DST;

10 end
11 if L4Match neq NULL then
12 Get L4Match Type;
13 if L4Match = TCP then
14 Get TCP-SRC and TCP-DST;
15 else if L4Match = UDP then
16 Get UDP-SRC and UDP-DST;
17 end
18 end
19 Get Instruction object;
20 if Instruction 6= NULL then
21 Set Action;
22 else
23 Set Drop;
24 end
25 end

vSwitch does not set an action if the flow action is set to drop during flow installation.

Once the flows have been extracted, each flow is given a specific identifier, making

it easier to track the flow when analyzing for conflicts and during visualization trans-

formations in the front-end module. As each flow is stored in the HashMap it is also

checked with the previously existing flows in the HashMap for conflicts. The conflict

information for each flow is stored as a separate element in the HashMap with each

flow rule.

28

Chapter 5

CONFLICT DETECTION

With the flow rules collected and with its own unique identifier, OFAnalyzer passes

it on to the conflict detection engine. This engine is responsible for detecting any

conflicts which may exist between each rule as it comes in with all the rules that

came in before it.

5.1 Conflict Detection Algorithm

The algorithm to detect conflicts among the rules is shown in Algorithm 2. The

process begins with adding the incoming rule to an ArrayList which holds all the rules

that came before it. The addition of a rule involves changing the IP addresses, both

source and destination, from its dotted notation to an integral value. This conversion

helps in setting the range of IP addresses that each particular rule targets. With this

range set, it will become easier to check if the IP range of future rules fall within it.

With the conversion performed and each rule added to the ArrayList, the engine

can begin locating conflicts. The process begins with a rule selected from the Ar-

rayList. Let this rule be r. r is then compared with all the rules present in ArrayList

except r. The comparison is done by taking into account the IP Addresses, protocol,

ports, action and the priority.

Let the comparison be between rules r and r’ where r’ ε ArrayList - r. If r and

r’ have differing protocols, then there exists no conflicts between the two rules and

the loop continues to the next iteration. If the protocols are the same and Priority(r)

>Priority(r’) then the engine uses the other parameters in its check. The conflict

identified is one of 5 types:

29

Algorithm 2: Conflict Detection

Input: FlowTable f
Output: Conflict-identified FlowTable f’

1 for Rule r in f do
2 for Rule r′ in f-r do
3 if Protocol(r) == Protocol(r’) ∧ Priority(r) > Priority(r’) then
4 if Addr(r) ⊂ Addr(r’) then
5 if Action(r) == Action(r’) then
6 Conflict = Redundancy;
7 else
8 Conflict = Generalization;
9 end

10 end
11 if Addr(r’) ⊂ Addr(r) then
12 if Action(r) == Action(r’) then
13 Conflict = Redundancy;
14 else
15 Conflict = Shadowing;
16 end
17 end
18 if Addr(r) ∩ Addr(r’) 6= ∅ then
19 if Action(r) == Action(r’) then
20 Conflict = Overlap;
21 else
22 Conflict = Correlation;
23 end
24 end
25 end
26 end
27 end

• Redundancy

• Generalization

• Shadowing

• Correlation

• Overlap

The next sections describe the algorithm followed to identify each type of conflict.

30

Redundancy

If Priority(r) <Priority(r’), AddressSpace(r) ⊂ AddressSpace(r’) and Action(r)

= Action(r’) then the type of conflict is detected as Redundancy. This is true even

if AddressSpace(r’) ⊂ AddressSpace(r).

Generalization

If Priority(r) <Priority(r’), Action(r) 6= Action(r’) but AddressSpace(r’) ⊂ Ad-

dressSpace(r) then r has a Generalization conflict with r’. This is due to the fact

that r’ represents the packet space of r even though its address space is a subset of

r ’s address space. Any packet that falls in the address space of r will also fall in r’

and will use the action of r’. If the priorities are reversed the actions change as well.

Shadowing

If Priority(r) <Priority(r’), AddressSpace(r’) ⊆ AddressSpace(r) but Action(r)

6= Action(r’) then r is said to be shadowed by r’. A rule is completely shadowed

since the priority of the rule is less and the address space is a subset of another rule.

Correlation

If Priority(r) <Priority(r’), Action(r) 6= Action(r’) but AddressSpace(r) ∩ Ad-

dressSpace(r’) 6 ε ∅ and the AddressSpaces of r and r aren’t subsets of each other

then the rule r has a Correlation conflict with rule r’.

Overlap

If Priority(r) <Priority(r’), Action(r) = Action(r’) but AddressSpace(r) ∩ Ad-

dressSpace(r’) 6∈ ∅ and the AddressSpaces of r and r are not subsets of each other

31

then the rule r has an Overlap conflict with rule r’. The packets that fall in the

intersection of the address space of both r and r’ will have the action of the higher

priority.

5.2 Transferring Rules

Once the conflicts have been identified, OFAnalyzer sends this information with

each rule to the visualization module. If, for example, rule r has 5 shadowing conflicts,

3 generalization conflicts and 7 overlapping conflicts then the total number of rules

that r conflicts with is 15. There are two ways to transfer this information to the

visualization module:

• Send all the conflicts with each rule

• Use an encoding scheme

Table 5.1: Rule Conflicts

Rule Conflicts-with

Rule 1 Rule2, Rule3, Rule4

Rule 2 Rule5, Rule4, Rule3, Rule1

Rule 3 –

Rule 4 Rule1, Rule5, Rule3

Rule 5 Rule2, Rule3, Rule1

5.3 Send All Conflicts

Sending all the conflicts with each rule has some diadvantages. Each rule can have

all the rules that it conflicts with appended to its JSON object and transmitted. This

32

JSON object can then be used by the visualization module to display the relationship

between a rule and its conflicts. This scheme works when the rules and its conflicts

are small in number. As the number of rules increase, the probability of conflicts

among them will also increase. This may exponentially expand the number of rules

that has to be transferred with each rule. With this growth, the time and bandwidth

required to transfer the rules to the visualization module increases. From Table 5.1,

if all the rules are to be transmitted, then each rule is duplicated at least once when

sent.

Rule Conflicts-with

Rule 1 Shadowing:Rule2, Redundancy:Rule3, Shadowing:Rule4

Rule 2 Generalization:Rule5, Overlap:Rule4, Shadowing:Rule3, Shadowing:Rule1

Rule 3 –

Rule 4 Correlation:Rule1, Shadowing:Rule5, Shadowing:Rule3

Rule 5 Overlap:Rule2, Correlation:Rule3, Overlap:Rule1

Table 5.2: Types of Rule Conflicts

5.4 Use Encoding Scheme

Instead of sending all the conflicting rules with a particular rule, an encoding

scheme can be used. This takes advantage of the fact that all the rules in the internal

flow table are sent to the visualization module.

The unique identifier that is assigned to each rule during the flow extraction

process is used. It is enough to just encode the rule identifier in a field called conflict-

type in each rule’s JSON object. This field is semi-colon separated list of unique

identifier’s which specifies the conflicting rule list.

From Table 5.2 it can be seen that some rules can have multiple rules that have

33

Type of Conflict Assigned number

Generalization 1

Shadowing 2

Redundancy 3

Correlation 4

Overlap 5

Table 5.3: Conflict Type Assignment

the same type of conflict. For example, rule 1 has shadowing conflicts with rule 2 and

rule 4. To be able to extract this information in the front-end without any confusion,

the conflict type is encoded as well.

The encoding scheme works as follows:

• Use the assignment from Table 5.3.

• Specify the type of conflict and the rule, using an x.y notation where x is the

conflict type and y is the unique identifier of the rule.

– For example, shadowing conflict with rule x which has unique identifier 3

is encoded as 2.3

• Encode using the x.y scheme for each rule in conflict list.

• Use a semi-colon to separate each unit.

– This separates units during processing in the visualization module.

Given this encoding scheme the conflict information in Table 5.2 is encoded as in

Table 5.4.

34

Rule Conflicts-with

Rule 1 2.2;3.3;2.4

Rule 2 1.5;5.4;2.3;2.1

Rule 3 –

Rule 4 4.1;2.5;2.3

Rule 5 5.2;4.3;5.1

Table 5.4: Encoded Table

Once each rule has its own conflict information encoded in the conflict-type field,

the resulting rule is stored in a HashMap. After this step, the conflict detection engine

passes the map back to the main application.

5.5 Compilation Process

The flow extraction module and the conflict detection engine together make up

the OFAnalyzer back-end. The application with all its logic has to be compiled and

loaded onto the OpenDaylight platform to execute. OpenDaylight uses maven [33],

an Apache build manager for Java projects. Using maven to compile and create the

executable JAR requires some changes to the basic project skeleton that is generated

using the maven:archetype command [34].

Since OFAnalyzer uses the code from opendaylight-model-base to listen to flows,

this module must be referenced in the features.xml file. The purpose of this file is to

let OpenDaylight know of the requirements of an application. Before OFAnalyzer is

loaded onto the platform, the modules listed in the features.xml file are loaded first.

This ensures that no consumer runs until all the producers that it depends on are

loaded. This step can be skipped provided the module dependencies are taken care

of before loading OFAnalyzer.

35

Once the code is compiled, the jar files are located under the maven m2 direc-

tory. The application can be imported into the OpenDaylight platform by using the

mvn:repo-add command. This is used to bring the jar, from the m2 directory and

install all the dependencies in the features.xml file. After this process, the application

can be installed using the mvn:install command.

The work done by the back-end to identify the conflicts is used by the visualization

module to display the relationship between the rules. The next chapter takes a

detailed look at the visualization module.

36

Chapter 6

CONFLICT VISUALIZATION

The visualization module takes the rules with their conflict-type details and dis-

plays them in a manner that is both intuitive and concise. A number of works have

focused on identifying the conflicts present in the flow table but have not looked at

displaying this information in a suitable format.

OFAnalyzer has a front-end user interface which is a stand alone application under

the DLUX project. This project is home to a number of UI modules that provide in-

formation to the user. The developers of the DLUX project have created an archetype

that allows developers to add modules to the project. Essentially they have created

a platform that can be extended by developers. OFAnalyzer takes advantage of this

fact and uses the libraries and support provided by DLUX to visualize the data col-

lected by the back-end. This has the added advantage of being compliant with the

OpenDaylight platform while adhering to the best practices followed in UI design.

Hence, the need to create a separate front-end outside of the OpenDaylight environ-

ment is not necessary. This saves a lot of work that is done when setting up a server

to host the webpage and ensuring that the front-end runs only when the back-end is

available.

The visualization in OFAnalyzer involves four steps. They are:

• Fetch rules from the back-end.

• Process retrieved rules.

• Apply transformations.

• Display rules using visualization techniques.

37

– Tabular form with rule detail

– Reingold-Tilford tree with hierarchical edge bundling for rule relationship

6.1 Fetch Rules

The first task that OFAnalyzer performs on initialization is to try and fetch the

rules present in the back-end HashMap. To perform this task the OFAnalyzer uses

the REST API that has been created specifically for this application. The REST

API on return provides a list of rules with all the information gathered during the

flow extraction and flow conflict detection phases. The rules are also fetched after

initialization using a WebSocket listener.

6.2 WebSocket Listener

OpenDaylight allows applications to subscribe to data change event notifications.

Notifications are generated when there is a change on either one of the two trees in

OpenDaylight. This feature is taken advantage of by OFAnalyzer to get the flow

details in real-time i.e. as and when they arrive at the back-end. However, it is not

feasible to listen to the flow nodes on the tree directly since these nodes get updated

frequently with statistics and other miscellaneous data.

Hence, the location that the front-end listens to is a node in the configuration tree

that will be updated by the back-end. This node is the synchronization mechanism

that is used between the front-end and the back-end. The node is updated only after

all extraction and conflict detection phases run to completion for the new flows.

Use of the OpenDaylight change event notification feature involves the following

steps:

• Create a stream by invoking the stream creator

38

– Use the REST API /restconf/operations/sal-remote:create-data-change-event-

subscription

– Output of the REST call will be the created stream named stream-name

• Subscribe to the created stream using REST call /restconf/streams/stream/

– The output of the REST call will be the WebSocket location that can be

parsed from the header of the response

• Use the AngularJS [35] websocket listener to listen to the WebSocket location

With this setup, the new flows arrive at the front-end automatically and get passed

to the AngularJS controller for further processing.

6.3 REST API

The REST APIs, apart from the ones used to create the WebSocket listener,

are generated by the yangtools as it compiles the back-end application. The basic

structure of the REST RPC is specified using YANG as follows:

• Input

– Specify the name of API call

– Append the type of conflict

• Output

– List of rules with conflict details

This REST RPC is not restricted to the OpenDaylight platform. Using curl [36],

POSTMAN and other REST clients the call can be made and the output can be

processed as required.

39

Figure 6.1: POSTMAN REST Invocation

40

With the API defined and type of conflict information required appended to the

API call, the REST call can be made to the OpenDaylight platform. The value

returned by the call is a JSON object that contains a list of all the flow rules. An

example of the retrieved flow rules using POSTMAN is shown in Figure 6.1. The

name of the API call can be seen at the top of Figure 6.1. OFAnalyzer has only one

API call - get-conflicts. The type of conflict required is specified in the raw JSON field

as input. It can be seen from the bottom part of Figure 6.1 that the conflict-type field

consists of the semi-colon separated encoded values of the conflicts detected by the

conflict detection engine. This field is integral in displaying the relationship between

the rules. However, they cannot be used in this format.

6.4 Process Retrieved Rules

With the encoded list of conflicting rules available at the front-end, the decoding

phase can begin. The decoding phase is where the rules are converted from an x.y

notation into an array of rules. This process involves the use of a string splitter to

first identify the type of conflict from the x.y notation and appending that data to a

list which will hold all the details of that particular rule. This list will then be held

in a multidimensional array for future use. For example, the values under rule 4 from

Table 5.4 in page 35 will be converted as per the following:

• Create array in the multidimensional array with index = rule.id

• Start processing x.y elements from conflict-type field for rule 4

• For each x.y, retrieve conflict type = Map(x)

• Map converts the integer into a String indicating the type of conflict

• Iterate through the whole JSON list received to get the rule where

41

– y is the rule’s identifier

• Append identified rule to the created array with the conflict information listed

as the one identified

At the end of this process, each rule will have its own array containing all its con-

flicts. Additionally, the appropriate conflicting information is also appended. Once

this array has been filled, the tabular form of visualization can be displayed. To per-

form rule relation visualization the rules present in the output from the REST call

and the multidimensional array holding the conflicting rules will have to be converted

into a different format.

6.5 Transforming the Rules

The visualization of rule relationships require the use of D3.js, a JavaScript library

from Bostock [37].

6.5.1 D3 - JavaScript Library

D3 is JavaScript library that allows binding data to the elements of a document.

The data can be bound to the elements of a DOM and styled using CSS, SVG, etc.

The advantage of D3 is the ease of modifying the elements of a document using its

built-in API. The APIs are extremely useful in creating DOM elements based on the

data. An example is creating svg elements in the body element based on the dataset.

If the dataset is [1,2,3,4,5] then 5 svg elements can be added using a loop over the

dataset.

This advantage of using datasets and binding them to the elements make D3 a

valuable library to have when attempting to visualize the flow rules and the rela-

tionship among them. To leverage the inherent power of D3, the data fed to its

42

Figure 6.2: Landing Page

API must be formatted in a particular way. For example, the Reingold-Tilford tree

API will take in a list of JSON objects in a parent-child format and append (x,y)

co-ordinates that satisfy the Reingold-Tilford algorithm [38]. The Reingold-Tilford

algorithm helps in creating tidy trees that can be used to display relationships. The

relationship depends on the relative position of the nodes in the tree.

The flow table rules, however, are not ordered in a parent-child relationship. OF-

Analyzer transforms the JSON flow rule list procured from the back-end along with

the multidimensional array into a format suitable to be used with D3’s API. Once

the transformation step is finished, the data can be fed into the routines that perform

the visualization.

43

Figure 6.3: Tabular View

6.6 Visualization of OpenFlow Rule Conflicts

The visualization of OpenFlow conflicts in OFAnalyzer is done in two ways. The

first provides a detailed view of the flows displayed in a tabular format with controls

to filter the table. The network administrator would, at times, prefer to have a closer

look at the flow entries. This tabular view is useful in such scenarios. The second is

to highlight the overall relationship between all the flow entries in the table. This is

achieved by making use of a hierarchical edge bundle [39] and a Reingold-Tilford tree.

Hierarchical edge bundle is a generic method of bundling adjacent edges together to

reduce clutter. This is useful in a list where there are multiple edges between flow

rules. A partial view of the OFAnalyzer landing page is shown in Figure 6.2. Here,

the number of conflicts of each type for each rule is listed in a tabular format. The

tabular view is obtained by clicking on any of the rules and the relationship view is

navigated to by clicking on the appropriate tab.

6.6.1 Tabular Visualization

The tabular view presented to the network administrator is shown in Figure 6.3.

This view provides all the details with regards to a particular flow. The rule that is

44

selected from the landing page is placed at the top. Below this are the query controls

that allows a user to filter the conflict list that follows. The query controls include

filtering the type of conflict or action to view. Overall, a detailed look of a rule and

its associated conflict list is shown in this tabular view.

6.6.2 Hierarchical Edge Bundle

The relationship between the rules are shown using a hierarchical edge bundle,

where links are drawn between the nodes arranged in a circle. This structure is ideal

when attempting to display the relationship of each rule with the other rules present

in the flow table. An example of the hierarchical edge bundling structure is shown

in Figure 6.4. When the mouse hovers over a particular rule, all the rules that have

a conflicting relationship with it are highlighted. The color of link depends on the

relationship between the two endpoints.

Red Links

If rule x has a shadowing conflict with rule y, then rule y is included in rule x ’s

conflict list. This relation is shown by having a red line from rule x to rule y. A red

link indicates that the rule that is currently under the mouse has the other rule in its

conflict list.

Green Links

Conversely, rule y does not have rule x in its conflict list. To show that rule y

is included in rule x ’s conflict list a green line is used between them. Hence a green

link indicates that a rule , though it may not necessarily have conflicts with others,

is included in the conflict list of other rules.

Finally, this relationship is further explored by clicking on a rule on the circle.

45

Figure 6.4: Hierarchical Edge Bundling

The click will display another page where the Reingold-Tilford tree is employed.

6.6.3 Reingold-Tilford Trees

Reingold and Tilford in [38] describe an algorithm that can be used to create

an aesthetically pleasing and tidy drawing. D3’s API can be used to generate these

Reingold-Tilford trees by just specifying the data in an appropriate format. The API

46

also possesses additional functionality which allows the tree to become interactive.

The appropriate format expected by the API can be constructed by having JavaScript

routines work on the retrieved JSON flow list. An example of the Reingold-Tilford

tree is shown in Figure 6.5.

Figure 6.5: Reingold-Tilford Tree

Since the tree is interactive, a click on the conflict types will hide the corresponding

nodes. The users can view a particular type of conflict alone if they so desire. The

advantage of this is scalability. If there are a large number of nodes under each

conflict, the users can choose to hide all conflicts that are of no interest to them.

47

With just the tree, the details of each rule are not apparent. To enable a quick view

of the details of a rule, a hover box is used. The content of a hover box is illustrated

in Figure 6.5.

48

Chapter 7

EVALUATION

OFAnalyzer was evaluated for correctness by providing it with a number of rules

that were known to have conflicts. The tool was able to identify the conflicts and

display the relationship using the visualization techniques discussed in the preceding

chapters.

The flows that were presented to OFAnalyzer are shown in Table 7.1. The topology

used in the evaluation is seen in Figure 7.1. The relationship between the rules is

captured in Figure 7.2. When Rule 40 (Rule 9 in Table 7.1) is clicked the output is

Figure 7.1: Test Topology

49

Figure 7.2: Test Flows Landing Page

shown in Figure 7.3.

The evaluation was carried out in a virtual machine having the following config-

uration:

• Intel Core i7 with 2 dedicated cores

• Hardware virtualization enabled (VT-x)

• 4GB memory

• Linux kernel 3.1

50

Figure 7.3: Reingold-Tilford Relationship

51

Rule IP-Src IP-Dst L4-Src L4-Dst Action Conflict Type

1 14.14.0.0/24 14.14.0.0/24 40 40 Accept Overlap(2)

2 14.14.0.0/32 14.14.0.0/32 * * Accept -

3 13.13.0.0/24 13.13.0.0/24 60 60 Accept Correlation(4)

4 13.13.0.0/24 13.13.0.0/24 60 60 Deny -

5 12.12.0.0/16 12.12.1.0/16 41 41 Deny Generalization(6)

6 12.12.0.0/24 12.12.1.0/24 41 41 Accept -

7 11.11.0.0/24 11.11.1.0/24 63 63 Accept Redundancy(8)

8 11.11.0.0/24 11.11.1.0/24 63 63 Accept -

9 10.10.0.0/24 10.10.1.0/24 40 40 Deny Shadowing(10)

10 10.10.0.0/24 10.10.1.0/24 40 40 Accept -

Table 7.1: Test Flows

• Xubuntu Operating System 64-bit

The network was generated using Mininet [21]. The generated network had 7

switches and equal number of hosts. OpenDaylight Lithium was used as the OpenFlow

controller and the L2Switch project was employed to connect to the Mininet Open

vSwitch(OVS) switches. OVS and OpenDaylight Lithium both support OpenFlow

1.0 and OpenFlow 1.3. The L2Switch project uses the openflowplugin to connect to

the OVS using the OpenFlow protocol.

52

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

As seen from the evaluation work carried out, OFAnalyzer is able to identify the

conflicts and visualize them using the different views present in the front-end. The

tabular view presents a detailed look at each flow and its related conflicts and the

relationship between the flows is displayed using the hierarchical edge bundle and the

Reingold-Tilford tree.

Although a large number of research works have focused on conflict detection, not

much has been done in the visualization of the conflicts. This thesis provides a number

of ways to display the conflicts using various visualization techniques. Its correctness

is also tested to see if the conflicts that are identified are displayed properly.

As can be seen from the examples provided, OFAnalyzer is very useful when the

relationship between the conflicting rules is to be understood.

8.2 Future Work

As mentioned in the flow extraction process, OFAnalyzer listens to the opera-

tional data tree of OpenDaylight. This tree will have the details of all the flows of

the network under OpenDaylight. The tree is populated after the flows have been

communicated to the switches.

In the future, the ability to stop the flows from being sent to the switches could be

added. This will allow OFAnalyzer to look at the incoming flows, compare them with

the existing flows to make an allow or reject decision on the new flow. To do this,

53

a sub-module could be added to the back-end which will listen to the configuration

data tree and compare the flow to be added with the flows in both the trees.

Additionally, the front-end could also be upgraded to provide newer features to as-

sist in scalability. A zoom-in zoom-out feature aiding in the visualization process and

graphs depicting the statistical data gathered from the switches using the OpenFlow

protocol could be added.

Moreover, the conflict detection engine could be updated to use an algorithm that

is more efficient than the currently used implementation that has a time complexity

of O(n2), where n is the number of flows in the flow table.

Finally, the work done in this thesis has been submitted as part of [40] and [41]

for publication.

54

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[2] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall analysis engine,” in Se-
curity and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on.
IEEE, 2000, pp. 177–187.

[3] E. S. Al-Shaer and H. H. Hamed, “Firewall policy advisor for anomaly discovery
and rule editing,” in Integrated Network Management, 2003. IFIP/IEEE Eighth
International Symposium on. IEEE, 2003, pp. 17–30.

[4] H. Hu, G.-J. Ahn, and K. Kulkarni, “Fame: a firewall anomaly management
environment,” in Proceedings of the 3rd ACM workshop on Assurable and usable
security configuration. ACM, 2010, pp. 17–26.

[5] E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration analysis and verification
of federated openflow infrastructures,” in Proceedings of the 3rd ACM workshop
on Assurable and usable security configuration. ACM, 2010, pp. 37–44.

[6] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra, “Fireman: A
toolkit for firewall modeling and analysis,” in Security and Privacy, 2006 IEEE
Symposium on. IEEE, 2006, pp. 15–pp.

[7] S. Natarajan, X. Huang, and T. Wolf, “Efficient conflict detection in flow-based
virtualized networks,” in Computing, Networking and Communications (ICNC),
2012 International Conference on. IEEE, 2012, pp. 690–696.

[8] P. Gupta and N. McKeown, “Algorithms for packet classification,” Network,
iEEE, vol. 15, no. 2, pp. 24–32, 2001.

[9] T. Tran, E. S. Al-Shaer, and R. Boutaba, “Policyvis: Firewall security policy
visualization and inspection.” in LISA, vol. 7, 2007, pp. 1–16.

[10] E. Fang, “The power rank,” http://thepowerrank.com/ncaa-tournament-
predictions/, 2016.

[11] A. C. C.-J. C. Sandeep Pisharody, Abdullah Alshalan and D. Huang, “Brew: A
conflict-free flow rule appliance for sdn environments,” 2016, aCM.

[12] E. K. Harman Singh, Maxime Millette Coulombe and M. Venu-
gopal, “Welcom to the opendaylight ux dlux project,”
https://wiki.opendaylight.org/view/OpenDaylight dlux Main, September
2013.

[13] “The opendaylight project,” https://www.opendaylight.org/, 2010.

55

[14] “Sdn controller comparison part 1: Sdn controller vendors,”
https://www.sdxcentral.com/resources/sdn/sdn-controllers/sdn-controllers-
comprehensive-list/, 2012-2016.

[15] “Opendaylight project hosted in gerrit mirrored in github,”
https://github.com/opendaylight/, 2013.

[16] “Open services gateway initiative architecture,”
https://www.osgi.org/developer/architecture/, 2014.

[17] S. Patil, “Osgi for beginners,” http://www.javaworld.com/article/2077837/java-
se/hello–osgi–part-1–bundles-for-beginners.html, March 2008.

[18] “Choosing an osgi distribution: Equinox, felix, gemini or others,”
http://blog.webforefront.com/archives/2010/10/choosing an osg.html, October
2010.

[19] “Apache karaf,” http://karaf.apache.org/, 2016.

[20] “L2switch project,” https://github.com/opendaylight/l2switch, May 2014.

[21] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyp-
ing for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. ACM, 2010, p. 19.

[22] A. Bierman, M. Bjorklund, K. Watsen, and R. Fernando, “Restconf protocol,”
IETF draft, work in progress, 2014.

[23] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Rfc 1157: Simple network
management protocol (snmp),” 1990.

[24] “What is netconf,” http://www.tail-f.com/education/what-is-netconf/, 2011,
overview of NETCONF and SNMP.

[25] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Rfc 6241, network
configuration protocol (netconf),” 2011.

[26] M. Bjorklund, “Yang-a data modeling language for the network configuration
protocol (netconf)(ietf rfc 6020),” 2010.

[27] “Model driven-service abstraction layer,” https://github.com/opendaylight/mdsal,
2016.

[28] “Nexus opendaylight repository holding outdated and recent artifacts,”
http://nexus.opendaylight.org/content/repositories/opendaylight.snapshot/,
2016.

[29] “Flow capable node inventory yang model in openflowplugin,”
https://github.com/opendaylight/openflowplugin/blob/master/model/model-
flow-service/src/main/yang/flow-node-inventory.yang, March 2013.

56

[30] “Postman supercharge your api workflow,” https://www.getpostman.com/,
2013.

[31] “Openflowplugin model for flow service offered in opendaylight,”
https://github.com/opendaylight/openflowplugin/blob/master/model/model-
flow-base/src/main/yang/opendaylight-flow-types.yang, October 2013.

[32] O. O. S. Specication, “Version 1.3. 0 (wire protocol 0x04)(june 25, 2012).”

[33] “Maven in 5 minutes,” https://maven.apache.org/guides/getting-
started/maven-in-five-minutes.html, March 2016.

[34] “Introduction to archetypes,” https://maven.apache.org/guides/introduction/introduction-
to-archetypes.html, March 2016.

[35] “Angularjs by google,” https://angularjs.org/, 2016.

[36] “curl.1 manpage,” https://curl.haxx.se/docs/manpage.html, 2016.

[37] M. Bostock, “D3. js,” Data Driven Documents, 2012.

[38] E. M. Reingold and J. S. Tilford, “Tidier drawings of trees,” Software Engineer-
ing, IEEE Transactions on, no. 2, pp. 223–228, 1981.

[39] D. Holten, “Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 12, no. 5, pp. 741–748, 2006.

[40] S. Pisharody, J. Natarajan, and D. Huang, “Of security policy conflicts in large
scale distributed software defined network cloud environments,” March 2016,
submitted in HotCloud 16.

[41] ——, “Security policy conflict resolution in sdn based cloud environments,”
March 2016, submitted in Special Issue: Cloud Security.

57

