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ABSTRACT  

   

Transportation infrastructure in urban areas has significant impacts on socio-

economic activities, land use, and real property values. This dissertation proposes a more 

comprehensive theory of the positive and negative relationships between property values 

and transportation investments that distinguishes different effects by mode (rail vs. road), 

by network component (nodes vs. links), and by distance from them. It hypothesizes that 

transportation investment generates improvement in accessibility that accrue only to the 

nodes such as highway exits and light rail stations. Simultaneously, it tests the hypothesis 

that both transport nodes and links emanate short-distance negative nuisance effects due 

to disamenities such as traffic and noise. It also tests the hypothesis that nodes of both 

modes generate a net effect combining accessibility and disamenities. For highways, the 

configuration at grade or above/below ground is also tested. In addition, this dissertation 

hypothesizes that the condition of road pavement may have an impact on residential 

property values adjacent to the road segments. As pavement condition improves, value of 

properties adjacent to a road are hypothesized to increase as well. A multiple-distance-

bands approach is used to capture distance decay of amenities and disamenities from 

nodes and links; and pavement condition index (PCI) is used to test the relationship 

between road condition and residential property values. The hypotheses are tested using 

spatial hedonic models that are specific to each of residential and commercial property 

market. Results confirm that proximity to transport nodes are associated positively with 

both residential and commercial property values. As a function of distance from highway 

exits and light rail transit (LRT) stations, the distance-band coefficients form a 

conventional distance decay curve. However, contrary to our hypotheses, no net effect is 
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evident. The accessibility effect for highway exits extends farther than for LRT stations 

in residential model as expected. The highway configuration effect on residential home 

values confirms that below-grade highways have relatively positive impacts on nearby 

houses compared to those at ground level or above. Lastly, results for the relationship 

between pavement condition and residential home values show that there is no significant 

effect between them. 

Some differences in the effect of infrastructure on property values emerge 

between residential and commercial markets. In the commercial models, the accessibility 

effect for highway exits extends less than for LRT stations. Though coefficients for short 

distances (within 300m) from highways and LRT links were expected to be negative in 

both residential and commercial models, only commercial models show a significant 

negative relationship. Different effects by mode, network component, and distance on 

commercial submarkets (i.e., industrial, office, retail and service properties) are tested as 

well and the results vary based on types of submarket. 

Consequently, findings of three individual paper confirm that transportation 

investments mostly have significant impacts on real-estate properties either in a positive 

or negative direction in accordance with the transport mode, network component, and 

distance, though effects for some conditions (e.g., proximity to links of highway and light 

rail, and pavement quality) do not significantly change home values. Results can be used 

for city authorities and planners for funding mechanisms of transport infrastructure or 

validity of investments as well as private developers for maximizing development profits 

or for locating developments. 
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CHAPTER 1 

INTRODUCTION 

Overview 

 Transportation infrastructure in urban areas has significant impacts on socio-

economic activities, land use, and real property values. Real property values are sensitive 

to investment of transportation infrastructure such as highway and light rail transit 

because transportation investment improves accessibility of nearby properties, which is 

capitalized in real property values according to classical economic geography theories 

(Von Th nen 1826; Weber 1929; Alonso 1964; Adams 1970). Transportation 

infrastructure, however, does not always generate positive effects; it also generates 

nuisance effects such as traffic noise and air pollution. Nuisance effects have been found 

to have a negative influence on property values. Moreover, quality or condition of 

transportation infrastructure may also have an influence on property values along the 

transportation network, such as by reducing noise or improving aesthetic conditions of 

the neighborhood. 

 Numerous empirical studies have been performed to test impacts of transportation 

investment on real-estate values (Vessali 1996). Hedonic price models using multiple 

regression are a widely used and powerful measurement method for land-use impacts 

(Hanson and Giuliano 2004). The focus of previous studies has varied by the dependent 

variables used (e.g., residential or commercial property values), the mode of 

transportation (e.g., airport, highway, or rail), and proximity to network nodes and/or 

links. For instance, some studies measured only nuisance effects (e.g., noise and air 

pollution) of highway and/or rail transit, while others analyzed positive effects (i.e., 
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accessibility) of highway and/or rail. Some studies measured both accessibility and 

nuisance effects of highway and/or rail. Many studies used Euclidean distance to measure 

accessibility or nuisance effects, Moreover, some studies used a single buffer around 

transportation infrastructure to estimate where the effects may be felt, while others used 

multiple distance bands to estimate the decay of effects. A few studies took an alignment, 

configuration, or noise barrier of the transportation corridor into account, though most 

highways within urban areas have overpasses, underpasses, and noise barriers. To the 

best of my knowledge, no study has been published in the peer-reviewed literature that 

has estimated the relationship between road pavement condition and property values. 

Moreover, though spatial dependences in the hedonic price models are commonplace and 

may result in biased and inconsistent estimates if ignored (Anselin, 1988), only some 

recent studies took this into account. 

 To unpack the positive and negative impacts of transportation facilities on real 

property values over space, one should combine all of the key factors into a single model 

for identifying the variables of most interest. For instance, one should take both 

transportation modes into account in order to prevent omitted variable bias (Debrezion et 

al., 2007). The same principle should be applied for both accessibility and nuisance 

effects of transportation facilities in order to derive unbiased estimates (Nelson 1982).

 In addition, accessibility or nuisance effects on residential and commercial 

property markets may differ in terms of geographical extent and rate of distance decay. 

Explanatory variables, which explain property values of each market, may differ as well. 

Therefore, a market-specific and spatially disaggregated approach should be employed. 

Lastly, it is also worth investigating how road pavement condition, which is surveyed and 
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estimated for arterial and connection roads for management purpose, affects property 

values along the corridor.  

 In this regard, the City of Phoenix is a suitable case study area to test the models 

for combined impacts of highways and light rail transit on residential and commercial 

property value because multiple modes of transportation infrastructure (i.e., highways 

and light rail transit) exist. For the impacts of pavement condition on residential property 

values, Solano County, California was selected because Solano Transportation Authority 

(STA) requested a consulting project to analyze impacts of road pavement condition on 

residential property values to get policy implications and this falls in the research scope 

of this dissertation. This fact confirms the broader impact of this type of modeling and its 

real-world utility.   

Problem Statement: Research Questions and Hypotheses  

 Positive and negative effects of transportation investment create relative 

advantages and disadvantages for different kinds of real estate at different distances from 

the nodes and links of different types of transportation networks. All other things being 

equal, based on these relative advantages and disadvantages, the locations of socio-

economic activities may shift, changes of land use and urban structure may follow, and 

values of the property may change accordingly. Thus, the overarching research question 

for this dissertation is "how does transportation investment affect real property values?" 

The detailed research questions are as follows: 

 How do real property markets (i.e., single-family housing and commercial 

property) value the positive effects of accessibility provided by highway and 

light rail nodes and links? 
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 How do real property markets value disamenities of proximity to the highway 

and light rail nodes and links? 

 How do these positive and negative effects decay with distance from highway 

and light rail transit infrastructure? 

 Do the commercial submarkets (i.e., industrial, office, service and retail 

properties) have dissimilar effects on the sale prices? 

 Do the specific types of highway configurations—elevated or below-grade 

alignments—influence residential property values differently. 

 How does the residential property market value the condition of road pavement?  

 On the basis of urban economic theories and empirical studies, this dissertation 

hypothesizes that transportation investment generates improvements in accessibility that 

accrue only to the nodes such as highway exits and light rail stations because vehicles 

cannot access highways between exits and rail passengers cannot access trains between 

stations. Simultaneously, both transport nodes and links may emanate negative effects 

such as noise and air pollution but possibly transport nodes may emanate more negative 

effects than links because of heavy traffic and/or crimes. Both positive and negative 

effects should decay with increasing distance, but the property value gradient should be 

steeper and less extended for light rail than for highway because of non-motorized travel 

to light rail stations. In addition, this study also hypothesizes that transportation 

investment (i.e., repair, rehabilitation, or re-pavement) for pavement condition could 

increase positive effects on values of residential properties adjacent to improved arterial, 

neighborhood connector, and residential roads due to the reduction of noise level and 
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improved aesthetic condition in neighborhood. Positive impacts on residential property 

values where pavement condition is improved by repair or rehabilitation may appreciate 

more than property values with a bad pavement condition. 

Significance 

 This dissertation supports classical urban economic theory, such as bid-rent 

curves for urban residents and commercial firms, which differ in gradient and extent due 

to the location of utility maximization for each market (Alonso 1964). It also empirically 

tests this urban economic theory on real-world transportation infrastructure, which 

changes the relative location of utility maximization by improving accessibility. 

 In addition, while most hedonic price studies took only selected factors (e.g., 

positive and negative effects of single transportation mode, positive or negative effects of 

multiple transportation modes) into consideration, this dissertation takes all these key 

factors into account for estimating combined impacts of transportation infrastructure. 

Theoretically, it unifies a number of disparate previous findings in the hedonic price 

literature into a single, general, idealized schematic model incorporating road and rail, 

nodes and links, amenities and disamenities, and distance decay of all of these effects. An 

additional methodological contribution is how to design a hedonic regression model to 

measure and test these effects statistically and spatially in a single model.   

 The results may be useful to private and public sectors in terms of buying and 

constructing real property and transportation planning. For instance, property buyers may 

be able to identify the location where net benefit of accessibility is maximized. Property 

construction companies also may be able to decide where to build real property for 
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maximizing profit and sales. Transportation planning authorities, on the other hand, may 

be able to secure and distribute tax revenue based on the accessibility benefit and/or 

nuisance effects captured by this study. This study can inform policy makers on 

designing tax-increment financing (value capture) mechanisms for funding new public-

sector transportation investments (Anderson 1990; Medda 2012). 

Dissertation Structure 

 This dissertation is composed of three individual articles with an overarching 

introduction and conclusions. Chapter 1 has introduced the dissertation. Chapter 2 and 3 

investigate impacts of highway and light rail transit on residential and commercial 

property values in Phoenix, Arizona, respectively. Chapter 4 examines impacts of road 

pavement condition on residential property values along the arterial and connection roads 

in Solano County, California. Chapter 5 offers overarching conclusions for the 

dissertation. 
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CHAPTER 2 

IMPACTS OF HIGHWAYS AND LIGHT RAIL TRANSIT ON RESIDENTIAL 

PROPERTY VALUES 

Abstract 

This study analyzes the positive and negative relationships between housing prices and 

proximity to light rail and highways in Phoenix, Arizona. We hypothesize that the 

accessibility benefits of light rail transit (LRT) and highways accrue at nodes (stations 

and highway exits specifically), while disamenities emanate from rail and highway links 

as well as from nodes. Distance decay of amenities is captured using multiple distance 

bands, and the hypotheses are tested using a spatial hedonic model using generalized 

spatial two-stage least squares estimation. Results show that proximity to transport nodes 

was significantly and positively associated with single-family detached home values. As 

a function of distance from highway exits and LRT stations, the distance-band 

coefficients form a classic distance decay curve, but we do not find the hypothesized net 

effect in which the positive effect of accessibility close to the node is reduced by a 

disamenity effect of traffic and noise. The positive accessibility effect for highway exits 

extends farther than for LRT stations as expected. Coefficients for the distance from 

highway and LRT links, however, are not significant. We also test the effect of highway 

design on home values and find that below-grade highways have relatively positive 

impacts on nearby houses compared to those at ground level or above. 

Keywords: highway, light rail, spatial hedonic regression, node, link, home value 
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Introduction 

 Highway systems and light rail transit (LRT) in and around cities have significant 

impacts on human activity and quality of life that bring both positive (i.e., accessibility of 

a highway exit or a light rail station) and negative (i.e., noise and air pollution) effects 

that are reflected to some degree in the market prices of nearby real estate (Bowes and 

Ihlanfeldt, 2001; Poulos and Smith, 2002; Ryan, 2005; Armstrong and Rodriguez, 2006; 

Hess and Almeida, 2007; Kilpatrick et al., 2007; Giuliano et al., 2010; Golub et al., 

2012). It is difficult, however, to estimate how real-estate markets value accessibility (in 

distance or minutes), traffic noise (in decibels), or air pollution (in ppm) because market 

responses may vary in different ways with increasing spatial distance from the effects in 

question (Nelson, 1982). In addition, the amenities and disamenities may not accrue or 

decay equally with increasing distance from transport nodes such as rail stations or 

highway exits as they do from the arcs or links of the networks. It is thus important to 

investigate how the costs and benefits are distributed geographically in relation to 

highway and rail networks and nodes. 

 In this paper, we propose a theoretical model for how amenity and disamenity 

should decay differently from links and nodes of rail and road networks. We then use 

hedonic regression models to measure the net impacts on single-family home values with 

respect to their distance from highways and exits, and light-rail stations and lines, in 

Phoenix, Arizona. Our core research questions include: How does the single-family 

housing market value the positive effects of accessibility provided by highway exits and 

light rail stations, respectively? How does the market value the disamenities of proximity 

to the freeway and rail links? Finally, how do these effects decay with distance? We also 
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test whether specific types of highway configurations, such as elevated and below-grade 

alignments, influence property values differently. 

Literature Review 

 The prior research on hedonic housing price models of transportation impacts is 

quite extensive: see for instance review papers such as Vessali (1996) and Diaz (1999) 

for rapid transit and Bateman et al. (2001) for roads. To help situate our paper within that 

literature, Table 1 summarizes previous studies in terms of the transportation-related 

factors they considered:  

 amenity (accessibility) and disamenity (noise, air pollution, crime) or both 

 distance decay of amenity or disamenity;  

 mode(s) of transport studied;  

 whether distance effects are measured from the nodes or links of the network.  
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Table 1 

Summary of Selected Literature on Road and Rail Impacts in Hedonic Price Models. 

Authors Study Focus 

Measurement Method Transport Mode 
Network 

Element 

Decibel/Traffic 

Volume 

Distance 

Measure 

Highway or 

Road 

Rail or 

LRT 
Links Nodes 

Gamble et al., 

1974 
Disamenity O  O  O  

Langley 1976 Disamenity  Single-band O  O  

Nelson 1978 Disamenity O  O  O  

Bowes and 

Ihlanfeldt, 2001 

Accessibility 

& disamenity 
 Multi-band O O  O 

Ryan 2005 Accessibility  
Actual 

distance 
O O  O 

Clark 2006 Disamenity  

Single-band 

(link) 

Multi-band 

(rail crossing) 

 O O  

Armstrong and 

Rodriguez 

2006 

Accessibility  

Travel 

time/Single-

band 

O O  O 

Hess and 

Almeida 2007 
Accessibility  

Actual 

distance 
 O  O 

Kilpatrick et 

al., 2007 

Accessibility 

& disamenity 
 

Actual 

distance 
O  O O 

Kim et al., 

2007 
Disamenity  

Actual 

distance 
O  O  

Andersson et 

al., 2010 
Disamenity O (link) 

Actural 

distance 

(node) 

O O O O 

Golub et al. 

2012 

Accessibility 

& disamenity 
 

Actual 

distance 
 O O O 

Li and 

Saphores 2012 
Disamenity O Multi-band O  O  

This paper 
Accessibility 

& disamenity 
 Multi-band O O O O 

 

 The earliest work on transportation impacts in hedonic models focused more on 

disamenities than amenities (Gamble et al., 1974; Langley, 1976; Nelson, 1978). Traffic 

noise was the most studied disamenity in the hedonic literature with respect to 

transportation facilities such as roads and railways (Gamble et al., 1974; Langley, 1976; 

Nelson, 1978; Clark, 2006; Kim et al., 2007; Andersson et al., 2010; Li and Saphores, 

2012). Early hedonic price models in the 1970s used noise measurements based on a 
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fixed distance (usually 1,000 feet or less) from highways. Models using cross-sectional or 

time-series data generally concurred that residential property values are negatively 

affected by the level of noise (Nelson, 1982). 

 Actual noise levels, however, are quite expensive to measure at the parcel level, 

which led to the use of distance as a fairly good proxy for field measurement of actual 

noise levels (Bailey, 1977). While many studies considered a single fixed distance area 

(e.g., within 1000 ft. or a quarter mile) considered to be an impact zone of noise pollution 

(Langley 1976; Kim et al., 2007), some studies used dummy variables for multiple 

distance bands (Bowes and Ihlanfeldt, 2001; Clark, 2006; Li and Saphores, 2012). 

Multiple distance bands allow hedonic models to capture non-linear relationships 

between price impacts and distance from a transportation facility that may result from 

distance decay and/or the net effects of accessibility and disamenities (De Vany, 1976). 

For instance, Golub et al. (2012) showed that while proximity to LRT stations generally 

has a positive effect on property values that decays with distance from the station, 

extremely close proximity (i.e., within 200 ft.) is penalized by the market for single-

family home values (Golub et al., 2012). This type of “donut” effect for residential 

property values is something we investigate further in the present paper. 

More recently, thanks to the growing use of geospatial data, geographic 

information systems (GIS) and spatial analysis techniques, researchers have been able to 

calculate actual distance to highways from each parcel to use as an explanatory variable 

(Geoghegan et al., 1997; Hess and Almeida, 2007). Researchers have tested which of 

several distance metrics has the closest statistical relationship with property values 

(Thériault et al., 1999). Hess and Almeida (2007) found that a network distance model 



  12 

returned more significant parameter estimates, while a Euclidean distance model returned 

higher but more uncertain parameter estimates. Both of their models concluded that 

accessibility has a positive effect on residential property values in general, and the value 

of property located in the study area decreases by $2.31 per foot of Euclidian distance 

from a light rail station, compared with $0.99 per foot of network distance. 

Since noise is a function of both distance and traffic volume, Li and Saphores 

(2012) used distance buffers interacting with different traffic count metrics. Their study 

of residential property values in Southern California not only confirmed that the negative 

impact on sales prices was larger for the 100-200m band than the 200-400m band, but 

also that sale prices were more sensitive to truck flow volume specifically than to overall 

traffic volume (Li and Saphores, 2012). 

Accessibility effects on residential property values for highway exits and railway 

stations have also been studied. Many researchers, however, used actual distance or travel 

time measurements from the highway exits and railway stations to investigate the price 

effect by each measurement unit (Ryan, 2005; Armstrong and Rodriguez 2006; Hess and 

Almeida, 2007), which can restrict the relationships between price impacts and distance 

from highway exits or railway stations. In addition, studies mentioned above did not take 

into account traffic noise, air pollution, or crime rate as disamenity factors that might negatively 

influence property values near highway exits and/or railway stations. 

While many researchers have modeled the price effects of a single type of 

transportation infrastructure on either proximity or disamenity, relatively few have 

considered the effects of multiple transportation modes such as rail and road 

simultaneously. Ryan (2005) found that accessibility to highways plays a more important 
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role than accessibility to LRT for non-residential property values. Andersson et al. (2010) 

found that road noise impacts on property values are larger than railway noise impacts. 

These two studies partially support our theoretical framework in the next section, in that 

both accessibility and noise impacts are larger for road than for railway, though Ryan 

(2005) studied non-residential property and neither study used distance bands to test the 

non-linearity of the relationships.  

 A factor that has not received enough attention to date is whether the effects of 

proximity vary depending on whether distance is measured from the nodes (i.e., exits or 

stations) or the links of the network. Many studies have investigated one or the other, but 

few have tried to disentangle the price effects of nodes vs. links. Of the papers reviewed, 

only Golub et al. (2012) distinguished between distance from the nodes and the links for 

rail, while Kilpatrick et al. (2007) did so for highways. Anderssson et al. (2010) 

conducted perhaps the most comprehensive analysis: they used actual distance from the 

nodes for rail and highway but decibels for noise measure of the links for rail and 

highway.  

 Although not shown in  Table 1, some studies have investigated whether the noise 

discount may be affected by highway configurations such as tunnels, noise barriers, over- 

or underpasses, and sound berms. A study in Montreal, Canada showed that construction 

of noise barriers generated a small negative effect in the short run (6% decrease in sale 

prices) but generated a relatively large negative effect in the long run (11% decrease) 

(Julien and Lanoie, 2008). Another study in South Korea showed that residential property 

values are negatively associated with highway overpasses (Kim et al., 2007).  
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The final paper reviewed here is excluded from Table 1 because it dealt with 

airports rather than rail or highway. Nevertheless, De Vany (1976) provides an important 

theoretical foundation for our work because it hypothesized an idealized relationship of 

price with distance that separates out a positive accessibility premium and a negative 

noise discount, each of which decays at a different rate with increasing distance from the 

airport. The two curves are added to form a hypothetical net effects, inverted U-shaped, 

curve. De Vany (1976) then developed an empirical model with multiple distance bands 

around Love Field airport in Dallas, Texas and plotted their coefficients against distance, 

which proved consistent with his proposed theoretical framework. Specifically, he found 

that the negative noise externalities were larger than the accessibility effect within one 

mile, while the net effect was positive for the 2-3 mile band. 

  In this study, we build on De Vany’s (1976) theoretical and empirical approach 

to studying airports, and adapt it to modeling the net accessibility and disamenity effects 

of rail and highway. As Table 1 shows, our study will differ from previous work on 

highway and rail by combining the effects of links and nodes for both highways and LRT 

using multiple distance bands. Our approach also controls for whether the highways are 

above, at, or below grade, in addition to other more commonly used structural and 

neighborhood control variables as well as proximity to several categories of open space 

amenities.  

Theoretical Model 

 In this section, we expand De Vany’s theoretical net effects model for airports 

into a 2x2 schematic diagram for the effects of the nodes and links of rail and highway 

networks. In doing so, one must consider the difference between accessibility and 
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disamenities such as noise and air pollution, the difference in how their effects decay 

with distance from nodes and links, and the difference between highway and rail. The 

following observations guided the development of the theoretical model. 

First, accessibility accrues only to the nodes because travelers cannot access 

limited-access freeways and light-rail trains except at exits and stations respectively. 

Thus, if the effects of nodes and links are treated separately, the positive externalities of 

accessibility should be maximized at the nodes themselves and decay from there. 

Second, disamenity, primarily noise, should emanate from both nodes and links 

and decay with increasing distance (Nelson, 1982). Other particular disamenities can 

depress housing values to varying extents, such as crime or traffic around rail stations 

(Bowes and Ihlanfeldt, 2001), or air pollution around highways (Bae et al., 2007). 

Third, nodes should generate net benefits resulting from the sum of the positive 

and negative impacts at each distance from the exit or station. Links, on the other hand, 

logically should generate only negative disamenities.  

Fourth, the negative disamenities diffusing from the nodes and links should 

theoretically decay more steeply with distance than the positive benefits of accessibility. 

We hypothesize this first because noise falls off rapidly and the health effects of air 

pollution are not well understood by the general public and the perception of it can be 

subjective and inconsistent (Nelson, 1982). Second, accessibility benefits extend farther 

geographically due to extended access provided by motor vehicles. 

Fifth, rail stations should generate a steeper decay of accessibility and earlier 

leveling off to negligible levels because access modes include slower forms of 

transportation such as walking, bicycling, or bus. Highway exits should generate a more 
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gradual decay and extended range because access is almost exclusively by private 

automobile. 

Sixth, highway links and nodes should generate higher levels of disamenity 

because the traffic noise and pollution is constant, and the spatial extent of that 

disamenity should reach to farther distance bands. Rail links and nodes may generate 

lower levels of disamenity because the traffic and noise are intermittent, although 

perceptions of crime and/or loud voices and train horns from the station area could alter 

this hypothesis. 

 These explanations are combined in the 2x2 diagram in Fig. 1. Network links 

should experience only the disamenity, with a medium negative effect decaying towards 

zero more quickly for rail than for highway. For nodes, the net benefit from adding the 

steep negative disamenity curve to the higher and more gradual positive accessibility 

decay curve should theoretically yield a reverse-U shaped curve (i.e., a donut effect) that 

could be positive at all distances and skewed to the right, more so for highway than for 

rail. Next we introduce the hedonic regression method we used to test this hypothesis. 
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Fig. 1. Conceptual Framework for Net Benefit of Combined Impacts of Accessibility and 

Disamenity  

 

Methods 

 The term “hedonic modeling” was coined by Court in 1939 and popularized by 

researchers such as Griliches (1961) and Rosen (1974)—see Goodman (1998). Hedonic 

modeling is designed to estimate the implicit value of differences in property 

characteristics, which includes amenities and disamenities. Thus, hedonic modeling is 

well suited to estimating the market value of externalized costs such as noise or pollution, 

or externalized benefits such as access to freeways or light rail. Empirical hedonic models 

using house sales prices as the dependent variable are widely accepted because housing is 

a commonly traded and commonly understood good that has a specific set of 

characteristics (Champ et al., 2003; Morancho, 2003). Housing prices can be determined 
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by internal and external characteristics such as structural characteristics (e.g., lot size, 

interior square footage, number of rooms, number of stories, age, presence of a garage or 

pool), neighborhood characteristics (e.g., proximity to central business district, highways, 

and bodies of water), and environmental characteristics (e.g., urban open spaces and 

amount of greenness nearby).  

 Nonlinear relationships are common in hedonic pricing models. Housing prices 

are known to increase at a decreasing rate with lot size and interior square footage, for 

instance (Champ et al 2003). Neighborhood characteristics may also be non-linear 

because of distance decay (Andersson et al 2010). In this paper, we tested linear, semi-

log, and translog (ln-ln) functional forms (Malpezzi, 2003). The translog model was 

selected based on comparing the linearity of scatterplots for the transformed variables and 

the results of adjusted R-squared, Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC). In addition, heteroskedasticity was evaluated using the 

Koenker-Bassett test (Kim et al., 2003; Drukker et al., 2013).  

 Spatial effects, in the form of spatial dependence, spatial heterogeneity, or both, 

are another common issue with hedonic real estate models. Spatial dependence or spatial 

autocorrelation implies spatial correlation among observations in cross-sectional data that 

are assumed to be independent, while spatial heterogeneity implies spatial correlation of 

the error terms (Anselin, 1988). To obtain unbiased, consistent, and efficient estimates, 

spatial dependences and heteroskedasticity should be tested and addressed with proper 

methods if either one or both spatial effects exist (Anselin, 1988; Kim et al., 2003). 

Moran's I statistics and Lagrange multiplier tests were used to test for presence of spatial 

effects (Champ et al., 2003).  
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A number of approaches have been developed to deal with spatial effects. One 

widely used approach is to add spatial fixed-effects dummy variables (e.g., zip code 

zones, school districts, or census block groups) in a hedonic regression model to 

represent neighborhood effects or housing submarkets (Kuminoff et al, 2010). A more 

recently developed alternative, which we take in this paper, is the spatial econometric 

approach (Anselin, 1988; Anselin and Florax, 1995; Anselin and Bera, 1998). The spatial 

econometric approach directly incorporates data about the contiguity of observations and 

does not require any preconceived assumptions about which fixed-effects zonation 

system best matches housing submarkets (Anselin and Arribas-Bel, 2013, p. 7).  

 Given that test results confirm the presence of both spatial dependences and 

heteroskedasticity in our dataset (see Results, below), we, thus, applied combined spatial 

lag and spatial error model using the generalized spatial two-stage least squares 

(GS2SLS) estimator with the heteroskedasticity option using GeoDaSpace software 

(Arraiz et al., 2010; Drukker et al., 2013). Queen contiguity was used to generate the 

spatial weights matrix. Equation (1) and (2) provide the general form of combined spatial 

lag and error model used in this paper: 

                                                                                                              (1) 

                                                                                                                            (2) 

where   is a vector of house sales prices;   is the constant term;   is the coefficient of the 

spatial autocorrelation; W is the standardized spatial weights m×m matrix with zero 

diagonal terms that assigns the potential spatial correlation; the product    is the 

spatially lagged dependent variable; X is the m×n matrix of explanatory variables;   is 

the n×1 vector of the coefficients of the explanatory variables;   is the n×1 vector of 
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spatial autoregressive error term;   is the coefficient of the spatially correlated error term; 

   is the spatially lagged error terms; and   is independent but heteroskedastically 

distributed error. Thus, if there are no spatial effects in the dependent variable, the 

coefficients of the spatially correlated lag and error (i.e.,   and  ) become zero, and then 

both equations (1) and (2) reduce to a standard OLS model.  

 In this paper, we estimate and report results for the combined spatial lag and error 

model using the GS2SLS estimator with positive and significant   and  . We also 

distinguish between direct and indirect effects in interpreting the coefficients, as 

recommended for models that use a spatial lag term (Kim et al., 2003; Fischer and Wang, 

2011).   

Study Area and Data 

 The study area is the City of Phoenix, Arizona, located in the Sonoran Desert in 

the southwestern US and incorporated as a city in 1881. It is the capital and largest city 

(517 square miles) in the State of Arizona. It is the sixth most populous city (1.4 million), 

situated in the 14
th

 largest Metropolitan Statistical Area (4.2 million) in the US. Because 

much of its growth occurred in the mid to late 20
th

 century, it features a moderately dense 

urban land-use structure well connected by arterials and freeways, which lowers the 

public transportation mode share compared to other US cities of a similar size. 

Transportation mode shares to work for the Phoenix MSA are 89.1% by motor vehicles 

(solo driver and carpool), 0.7% by bicycle, 2.3% by public transit (half of the rate for the 

US overall), 6.3% by non-motorized modes, and 1.6% by other (Kuby and Golub, 2009, 

p. 37). Phoenix is a prototypical example of cities largely built up in automobile era; if 
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this research shows significant price effects of proximity to light rail, a stronger case can 

be made for investing in public transit in similar cities.  

Data for this study were gathered from various sources (Fig. 2). The dependent 

variable is the sales price of single-family detached homes in 2009 obtained from the 

Maricopa County Assessor's Office (MCAO). The Assessor’s dataset included various 

attributes of each house that were incorporated as structural explanatory variables, such 

as lot size, interior living space, number of bathroom fixtures (bathtubs, toilets, etc.), 

presence of a swimming pool, and construction year. Other attributes in the Assessor’s 

dataset such as number of rooms, number of stories, size of patio, size of garage, and date 

of sale were not included in the model because of missing information and 

multicollinearity.  

 For the spatial regression models, we created a spatial weights matrix using 

Thiessen polygons based on the centroids of all parcels sold in 2009. We also added a 

monthly home price index variable to control for the volatile housing market of 2009. 

Despite the volatility, we focus on 2009 because it is the first full year of light rail 

operation, which opened in December 2008. 

 



  22 

 
Fig. 2. Key Dataset Used for Extracting Explanatory Variables for Hedonic Regression 

 



  23 

 For neighborhood characteristics of a home, tract-level median household income 

and population density were collected from the 2010 U.S. Census. Neighborhood 

amenities such as green urban parks, desert parks, and golf courses were collected from 

available GIS data sources and used to create a proximity measure to each. We measured 

the distance between downtown Phoenix and each residential property from the 

intersection of Central Avenue and Washington Street, representing the central point of 

the Central Business District (CBD). Distance from highways was measured in three 

bands up to 350m (about .21 miles). Distances from highway exits to parcels were 

measured in 400m bands, up to 3200m (about 1.92 miles). Distances from the LRT 

stations to individual parcels were measured in 300m bands out to 3000m (about 1.8 

miles), and distances from the LRT track were measured in 100m bands, out to 300m (.18 

miles). All distances were measured in Euclidean terms. 

 For the environmental characteristics, we used land-cover classification data 

produced by the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) 

project based on 2005 and 2009 high-resolution QuickBird imageries (Fig. 3). The 

percentage of land area covered by trees or grass within a 200m buffer around each 

individual property sold were extracted to estimate neighborhood greenery. In addition, 

the highway configurations (below grade, elevated, or at grade) were manually analyzed 

using the Google Earth street view and assigned as dummy variables to each home 

according to the characteristic of the nearest highway link. 
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Fig. 3. Phoenix Land Cover Classification Map Using Quickbird Imageries (Source: 

Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER), National 

Science Foundation Grant No. BCS-1026865).  
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 There were 24,155 single-family home sales in 2009 in the County Assessor’s 

database. Of these, 4,006 observations were dropped due to missing data, improper 

attribute values, and outliers such as lot sizes much larger than usual (e.g., lot size over 

50,000 sq ft or sale price over $2 million), leaving 20,149 observations. APPENDIX A 

describes the summary statistics of the variables. 

Results 

 Multiple regression analysis was initially conducted using SPSS Statistics 20 for 

Windows. A best fit was found using a translog form, likely due to the non-linear 

relationships between many of the independent variables and sales prices. The resulting 

model fit is quite strong with an adjusted R
2
 of 0.766. As noted in the Methods section, 

however, presence of spatial dependence and spatial heterogeneity was confirmed by the 

robust Lagrange multiplier test value of 272.27 (p=.000) for lag, 1498.32 (p=.000) for 

error, and a Koenker-Bassett test value of 1,607.97 (p=.000) for heteroskedasticity. To 

take spatial effects into consideration, we applied a combined spatial lag and spatial error 

model using GeoDaSpace to estimate the coefficients of the explanatory variables. 
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Table 2 

Estimation Results. 

Variable  Coef Std. Err. z-stat Sig. 

(Constant) 1.4248 0.204 6.99 0.000 

Structural Variables (  )    

Sqm (ln) 0.6276 0.0163 38.56 0.000 

Area_sqm (ln) 0.1726 0.0099 17.44 0.000 

Bathfix 0.0381 0.0023 16.41 0.000 

Age -0.0060 0.0003 -21.96 0.000 

Pool 0.0815 0.0063 12.87 0.000 

Neighborhood Variables (  )    

N_GPark (ln) 0.0012 0.0039 0.31 0.759 

N_DPark (ln) -0.1491 0.0039 -38.36 0.000 

N_Golf (ln) -0.0342 0.0033 -10.37 0.000 

N_CBD (ln) 0.0794 0.0114 6.98 0.000 

Hway_150m -0.0271 0.0265 -1.02 0.306 

Hway_250m 0.0013 0.0242 0.05 0.959 

Hway_350m -0.0204 0.0228 -0.90 0.369 

LT_100m -0.0246 0.1480 -0.17 0.868 

LT_200m -0.0155 0.1080 -0.14 0.886 

LT_300m -0.1202 0.0850 -1.41 0.157 

Exit_400m 0.1455 0.0300 4.85 0.000 

Exit_800m 0.0980 0.0132 7.45 0.000 

Exit_1200m 0.1161 0.0106 10.95 0.000 

Exit_1600m 0.1097 0.0114 9.66 0.000 

Exit_2000m 0.1064 0.0121 8.79 0.000 

Exit_2400m 0.0528 0.0118 4.48 0.000 

Exit_2800m 0.0859 0.0122 7.05 0.000 

Exit_3200m 0.0705 0.0125 5.64 0.000 

S_300m 0.8835 0.1225 7.21 0.000 

S_600m 0.6597 0.0693 9.52 0.000 

S_900m 0.5477 0.0506 10.82 0.000 

S_1200m 0.4296 0.0446 9.63 0.000 

S_1500m 0.4089 0.0440 9.30 0.000 

S_1800m 0.2398 0.0497 4.82 0.000 

S_2100m 0.2435 0.0326 7.46 0.000 

S_2400m 0.1885 0.0323 5.83 0.000 

S_2700m 0.1647 0.0301 5.47 0.000 

S_3000m 0.1010 0.0250 4.04 0.000 

M_income (ln) 0.4102 0.0159 25.88 0.000 

Pop_dens (ln) -0.0275 0.0061 -4.53 0.000 

Environmental Variables (  )    

P_trees 2.3515 0.0607 38.75 0.000 

P_grass 0.4088 0.0432 9.47 0.000 

Above 0.0010 0.0541 0.02 0.986 

Below 0.1695 0.0332 5.11 0.000 

H_Index -0.0006 0.0003 -1.97 0.049 

Rho     0.1297 0.0089 14.65 0.000 

Lambda     0.3915 0.0115 33.94 0.000 

Pseudo R² 0.782    

Spatial Pseudo R² 0.769    
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 Table 2 shows the coefficients, significance levels, and Pseudo R
2
 for the spatial 

lag and error model. While the Pseudo R
2
 (.782) cannot be interpreted exactly as one 

would interpret an OLS R
2
, a higher Pseudo R

2
 still can be interpreted as better model fit 

than a lower one (Anselin, 1988). The spatial hedonic regression results partially validate 

our theoretical model of the accessibility and amenity impacts of highway and LRT 

nodes on the residential property values, but are not validated for the highway and LRT 

links. 

Overall, most of the independent “control” variables are highly significant at the 

0.001 level except distance to nearest green parks, and highways above grade. All of the 

coefficients for the structural variables have the expected signs. Measures of living area, 

lot size, number of bathroom fixtures, and presence of a pool are positively related to 

housing prices, while the age of the house is negatively related. For instance, marginal 

willingness to pay (MWTP) for one m² increment of living area is $596, which includes 

indirect effect of $77 captured through a spatial multiplier (i.e.,         ), while 

MWTP for a year increment of house age is -$857, which also includes indirect effect of 

-$111. The signs of the socioeconomic and neighborhood coefficients are as expected, 

with a few exceptions. The coefficient of median household income is positive as 

expected, and that for population density is negative as expected, and both are significant 

at the 0.001 level. The effect of proximity to green parks is not significant. This is 

somewhat corroborated by the literature, which has shown mixed results, both positive 

and negative, for the price effects of proximity to green parks (e.g., Tyrväinen, 1997; 

Shultz and King, 2001). Neighborhood characteristics such as proximity to nearest large 

desert preserve and golf courses have a positive effect on the property values, while 
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distance from the CBD has a negative effect. The amount of green space with trees and 

grass in the neighborhood positively affect property values as expected. The land fraction 

covered with trees is more valuable than for grass, which makes sense considering the 

shade and cooling benefits of trees compared with grass. Thus, MWTP for one percent 

increment of tree coverage is $3,364, which includes indirect effects of $436 because of 

the spatially weighted average of housing prices in a neighborhood, while MWTP for one 

percent increment of grass coverage is $585 including indirect effects of $76. 

Finally we turn to the transportation infrastructure variables of greatest interest in 

this study. Our hypotheses concerning the disamenity of proximity to highway and light 

rail links are not validated in this study. The results indicate that while five of the six 

coefficients on the dummy variables for the distance bands from highways (up to 350m) 

and light-rail (up to 300m) have negative signs as hypothesized, none are even close to 

being significant, even at the 0.1 level. Thus, disamenities such as noise, represented by 

distance from both highway and light rail track, appear to have no significant effect on 

residential property values.  

 Accessibility effects, on the other hand, are very significant at the 0.001 level for 

all distance bands. As shown in Figs. 4 and 5, both accessibility relationships exhibit a 

distance decay functional form consistent with Fig. 1—but  without the hypothesized 

"donut" effect. Both curves begin at the highest benefit level for the closest distance 

around exits and stations and decay towards zero at longer distances. For highway exits, 

benefits are highest for residences within 400m (1/4 mile) from a highway exit, and 

decrease very gradually from there (Fig. 4). For LRT stations, the coefficients are again 

positive and highest for homes within 300m away (0.19 mile), and gradually decrease 
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from there (Fig. 5). Contrary to our hypotheses, the “donut” effects based on nuisance 

effects at short distances around the highway exits and rail stations are not evident in 

either graph. Thus, MWTP for a median priced home in the 400m band of highway exit is 

$22,405, which includes indirect effects of $2,906 because of the spatially weighted 

average of housing prices in a neighborhood, while MWTP for one in the 300m band of 

LRT station is $203,055 including indirect effects of $26,336. 

 
Fig. 4. Coefficients of Distance from the Highway Exit 
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Fig. 5. Coefficients of Distance from the Light Rail Station 

The results partially validate our hypotheses that higher-speed vehicles (cars) 

travel longer distance in a short period of time and thus dramatically extend the range of 

accessibility benefits. However, in addition to the greater extent of the highway 

accessibility effect, the absolute size of the coefficients for highway is lower than for rail 

across the impact range. We speculate that this may be due to Phoenix’s extensive 

highway network that shares the impacts across the city, whereas only a small portion of 

the city shares the light rail benefit. On the other hand, it makes intuitive sense and 

validates our hypothesis that the benefit of LRT stations decline steeper than that of 

highway because residents access LRT stations via numerous modes, including slower 

ones such as walking, biking, or bus. However, it is surprising that the geographical range 

of impacts of LRT station reaches up to 3000m.    
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Although we do not have clear evidence why there are no disamenity impacts for 

both highway and light rail links, there are a couple of possible explanations. First, 

properties adjacent to highway links are protected by sound walls, which reduces noise 

disamenity, and possibly reduces some air-pollution as well. Second, the data used for 

measuring distance from highway links is a road centerline feature, which creates 

inaccurate distance bands because highway link has non-negligible width. Third, noise 

nuisance of light rail may not exceed noise generated by traffic on the same road because 

light rail tracks are built mostly in the middle of road way and light rail operates less 

frequently than cars do. Fourth, light rail is operated by electricity, so it does not emit 

polluted air.   

The lack of evidence for a donut effect around nodes may be explained in similar 

ways. Noise and air-pollution may be reduced by sound barriers near highway exits and 

point feature class used for measuring distance bands for the exits does not create 

accurate distance variables. Moreover, noise nuisance and air pollution near light rail 

stations may be too small to capture for the same reasons with the light rail link.    

Lastly, the regression result of the variable representing the highways situated 

below grade is statistically significant at the level of 0.001 with a positive coefficient as 

expected, presumably due to their reduced noise levels and visibility. The estimated 

coefficient of the elevated highways, however, is not significant.   

Conclusions 

The purpose of this study was to measure the net effects of the nodes and links of 

road and rail infrastructure on single-family home values using spatial hedonic regression 

techniques with distance bands. Previous studies have developed separate models of 
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some subset of these relationships, such as between housing prices and highway noise 

(Gamble et al., 1974; Langley, 1976), noise of both road and rail (Andersson, 2010), rail 

accessibility (Cervero, 1996; Hess and Almeida, 2007; Golub et al., 2012), or 

accessibility of both highway and light rail (Ryan, 2005). To our knowledge, however, no 

hedonic pricing study of the effect of highway and LRT on house prices has attempted to 

disentangle the positive and negative distance-decay effects of proximity to the 

infrastructure of light rail and highway nodes and links simultaneously. We hypothesized 

that the accessibility benefits of light rail and highway accrue to the LRT stations and 

highway exits (i.e., the network nodes) specifically, while the disamenities of noise and 

pollution should emanate from the rail and highway links as well as the nodes. Using 

distance buffers, we have tested the significance of the distance from the nodes and links 

and plotted the coefficients as a function of the distance from the infrastructure to 

estimate the distance decay of net amenities and disamenities. Numerous other 

independent variables were included to control for structural characteristics of the house 

and of the neighborhoods, including several measures of green space and distance from 

different kinds of parks. In addition, a monthly home sales price index was added to 

control for the volatility of the housing market over the course of 2009 immediately 

following the opening of the Valley Metro LRT, and a spatial regression model was used 

to test and control for spatial effects.   

 The main results of the study show that distances from both kinds of transport 

nodes (LRT stations and highway exits) show a typical exponential decay curve 

consistent with the theorized model for benefit. Unexpectedly, however, they are not 

consistent with our hypothesis of a negative disamenity effect in the immediate vicinity 
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of stations and exits. The greater range of highway accessibility benefits is also consistent 

with our hypothesis based on the faster speed of travel to and from highway exits using 

motor vehicles compared with the slower speed of some of the modes of transport used to 

access LRT stations. However, magnitude of accessibility benefit of LRT stations is 

much larger than that of highway exits, contrary to our hypothesis. The effects of 

proximity to the road and rail links were not significant. Below-grade highways had a 

relatively positive impact on nearby houses compared with highways at ground level or 

above. 

 Further research is required to investigate why proximity to the nodes and links—

which theoretically should have a primarily negative disamenity from noise and air 

pollution—was not statistically significant for both highway and rail. One possible 

explanation is that local highway authorities have properly installed sound walls or sound 

berms along the highway adjoining residential areas and applied noise dampening 

pavements to reduce noise impact, and the relevant laws such as the US Noise Control 

Act work well in Phoenix, Arizona
1
. Another possible explanation is that the number of 

properties located very close to exits or rail stations is very small and this may bias the 

statistical relationship between distance bands one way or the other.  

 Results for the highway links might be improved with more accurate data. For 

instance, highways have non-negligible width, and some have more lanes than others. 

Using the centerlines of highways is not an exact measure of the distance from houses to 

the edge of the highway. Representing highways as polygons rather than lines might 

                                                 
1
 Almost all residential houses adjacent to the highway in Phoenix are protected by noise barriers or sound 

berms.  
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produce more accurate and significant results. We leave the further investigation of these 

and other explanations to future research.  

Finally, this paper focused on single-family detached housing values. It would be 

useful to apply the multi-band, node-link approach developed here to multi-family 

housing and commercial real estate, as this would provide useful information to 

developers, planners, and policy-makers concerned with infill and transit-oriented 

development.  
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CHAPTER 3 

IMPACTS OF HIGHWAYS AND LIGHT RAIL TRANSIT ON COMMERCIAL 

PROPERTY VALUES 

Abstract 

This study investigates the impacts of positive and negative externalities of highways and 

light rail on commercial property values in Phoenix, Arizona. We hypothesize that the 

positive externality (i.e., accessibility) of highway and light rail accrues at exits and 

stations, whereas nodes and links of highways and light rail emanate negative effects. 

Positive and negative effects decay with increasing distance and are captured by multiple 

distance bands. Hypotheses are tested using a spatial error regression model. Results 

show that accessibility benefits of transport nodes are positively and significantly 

associated with all commercial property values. The distance-band coefficients form a 

typical distance decay curve for both modes with no detectable donut effect immediately 

around the nodes. Unexpectedly, impacts of light rail stations extend farther than those of 

highway exits. As hypothesized, the links of highway and light rail are negatively 

associated with property values. When the sample is subdivided by type of commercial 

property, the magnitude and extent of impacts of distance are surprisingly consistent, 

with light rail stations having more positive impact than highway exits on all three classes 

of commercial property: industrial, office, and retail and service. Rail links have a 

significant negative impact on price for all three types of commercial property, but 

highways have a significant negative impact only on industrial and retail/service 

properties. 

Keywords: highway, light rail, spatial error model, node, link, commercial property value 
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Introduction 

 Numerous studies have focused on transportation facilities as an important 

determinant of property values because they provide accessibility as well as nuisance 

effects that may alter property values (Vessali 1996; Bateman et al, 2001). While a 

considerable body of hedonic literature has investigated residential property values, fewer 

studies have addressed non-residential or commercial property values (Weinberger 2001; 

Ryan 2005). Of these, even fewer have considered the impacts of multiple modes of 

transportation, such as rail and highway, and fewer still have attempted to disentangle the 

separate effects of transportation nodes and links in their models so that they can capture 

the distance decay of positive and negative impacts. Seo et al. (2014) built a hedonic 

price model with this comprehensive set of factors (i.e., distance decay around the nodes 

and links of highways and light rail transit) for residential property values in Phoenix, 

Arizona. This study extends that work to an analysis of commercial property.  

 The purpose of this study is to use the theoretical framework of Seo et al. (2014) 

to estimate the net impacts of network nodes and links of rail and road facilities on 

commercial property values in Phoenix, AZ. This study may help locating commercial 

property to maximize accessibility and profit based on the distance from transport nodes. 

This study may also inform policy makers on designing tax-increment financing
2
 

mechanisms for funding new public transportation investments (Anderson 1990; Medda 

2012). We utilize hedonic regression models to estimate the impacts at various distances 

of nodes and links of highways and light rail networks on commercial property values. 

We also subdivide commercial properties  into office, industrial, and retail and service 

                                                 
2
 Tax increment financing (TIF) is a special funding tool used as a subsidy for infrastructure and 

community-improvement projects such as redevelopment in urban core and new road construction. 
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categories to test whether transportation facilities have dissimilar effects on the sale 

prices of different types of commercial property. Hence, the specific research questions 

are: 

 How do commercial property markets (i.e., as a whole and by type) value the 

positive and negative effects of proximity to highway compared with light rail 

facilities?  

 How do commercial property markets value amenities and disamenities of 

proximity to transport nodes compared with transport links?  

 How do these positive and negative effects decay (or increase) with distance to 

transportation infrastructure? 

 How do such effects vary by type  of commercial property? 

 We compare the results of our model with Seo et al.’s results for residential 

property values in the same city and time period. 

Literature Review  

 As noted earlier, the literature on hedonic studies of transportation infrastructure 

impacts on residential property values is quite extensive. In contrast, a relatively smaller 

body of literature exists on the determinants of commercial property values, and only a 

handful of studies focused on the transportation-related factors (Weinberger 2001; Ryan 

2005; Billings 2011; Golub et al., 2012). Many studies focused mainly on the impacts of 

access to the central business district (CBD), but some of these studies also included 

transportation-related factors as explanatory variables (Clapp 1980; Brennan et al., 1984; 

Sivitanidou 1995; Sivitanidou 1996; Dunse and Jones 1998). APPENDIX B summarizes 
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selected hedonic studies of commercial property values with regard to the transportation-

related factors they considered: 

 dependent variables (type of commercial property) 

 amenity (accessibility) and disamenity (noise, traffic, air pollution, crime) or both 

 distance decay of these effects;  

 mode(s) of transport studied;  

 whether distance effects are measured from the nodes or links of the network.  

 time frame (single- or multi-year) 

 Dependent variables used for the studies on commercial property vary based on 

availability (i.e., sales transaction data, actual transacted rents or effective rents, asking 

rents, and assessed property or land values). Although actual transacted sales prices are 

preferred (Ihlanfeldt and Martinez-Vazquez 1986) because they capture the real property 

market behaviors, commercial property sales prices or effective rents are hard to obtain 

because these data are often not open to public use (Mills 1992; Wheaton and Torto 

1994; Landis and Loutzenheiser 1995; Bollinger et al., 1998).The majority of studies 

utilized asking rents as the dependent variable, which were usually provided by large 

commercial real-estate consulting or brokerage firms such as CoreLogic, Coldwell 

Banker, and TRI Commercial Real Estate Services for academic research (Mills 1992; 

Landis and Loutzenheiser 1995; Bollinger et al., 1998; Ryan 2005). The use of asking 

rents is supported by Glascock et al. (1990), who found an extremely close relationship 

between effective rents and asking rents. However, both actual transacted rents and 

asking rents from the databases of commercial real estate service firms may yield biased 
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samples. For instance, some databases of commercial real estate firms are limited to a 

specific size of office spaces (Landis and Loutzenheiser 1995). Moreover, sometimes the 

number of cases was too small for estimating a model (Dunes and Jones 1998; Nelson 

1982). Brennan et al. (1984) used actual transacted office rents as a dependent variable 

with only 29 cases. As an alternative, Sivitanidou (1996) and Cervero and Duncan (2002) 

used assessed property values as the dependent variable. 

 The use of assessed or estimated property values has an advantage over the use of 

actual sales prices, effective rents, and asking rents. The assessed property values are not 

a sample but rather the whole population, meaning that sampling error is greatly reduced 

(Champ et al., 2003). Sivitanidou (1996) found a correlation between sales prices and 

assessed values on office-commercial firms of 0.98 for office-commercial firms, which 

led her to use assessed values in order to cope with spatial collinearity issues with a larger 

number of cases. Transit-related hedonic research by Cervero and Duncan (2002) used 

estimated land values, which were apportioned from total taxable property values 

including improvements by the county assessor's office. They argued that there is no 

evidence that estimated land values are biased in a certain direction. However, despite 

these advantages, the use of assessed property value as the dependent variable is still 

problematic, because the way some assessor offices estimate property values can be 

similar to hedonic regression (Arizona Department of Revenue 2009), making circular 

reasoning a concern. 

In addition, most studies have considered only one type of commercial property, 

such as office property (Landis and Loutzenheiser 1995; Dunse and Jones 1998), 

industrial property (Sivitanidou and Sivitanides 1995), or retail property (Damm et al, 
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1980). In contrast, Ryan (2005) studied two types of commercial properties (i.e., office 

and industrial properties), while others have analyzed commercial property as a whole 

(Cervero and Duncan 2002; Golub et al, 2012). Effects may differ across commercial 

property categories: in Ryan’s 2005 study, while highway accessibility had a positive 

influence on office property values, neither highway nor light rail transit had a significant 

relationship with industrial property values. Thus, one should consider estimating impacts 

of both commercial property as a whole and each type of commercial property.  

 Most of the previous studies of the relationship between transportation 

infrastructure and commercial property value focused on testing hypotheses related to the 

positive effects of accessibility (Damm et al., 1980; Landis and Loutzenheiser 1995; 

Sivitanidou 1995; Bollinger et al., 1998; Ryan 2005). Only one study took nuisance 

effects into consideration for commercial property (Golub et al., 2012). If a study does 

not consider nuisance effects but considers only positive effects with respect to the 

transportation infrastructure located in the study area, it may cause omitted variable bias 

(Nelson 1982; Champ et al., 2003; Debrezion et al., 2007). While some may argue that 

nuisance effects have no influence on the commercial property values, factors including 

nuisance effects that may have impact on property values should be tested (Damm et al. 

1980). 

 Accessibility of commercial properties to transportation nodes and/or links has 

been measured in several different ways in previous studies: 

 Euclidean distance (Sivitanidou 1996; Ryan 2005; Golub et al., 2012) 

 a single Euclidean distance band as the impact zone (Bollinger et al. 1998; 

Cervero and Duncan 2002) 
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 multi-band distance (Landis and Loutzenheiser 1995; Weinberger 2001) 

 mixed measurement methods such as Euclidean distance for highway exits and a 

single-band distance for the rail stations (Damm et al. 1980), a multi-band 

distance for light rail transit stations and a single-band distance for highway exits 

(Sivitanidou 1995) 

 number of passing highways within the study area (Weinberger 2001) 

 How a researcher operationalizes distance as a proxy for transportation 

accessibility in a regression model is a critical decision. Ideally, the method should 

capture the impacts of accessibility on property values in terms of geographical extent 

with non-linearity. The method should also capture the net effects of accessibility and 

disamenities (De Vany 1976). The multi-band approach is a way of capturing a non-

linear relationship between price impacts and distance from a transportation network. In a 

study of residential values, Seo et al. (2014) captured the benefits of nodes of highways 

and light rail transit using 400-meter and 300-meter multiple distance bands up to 3200 

meters and 3000 meters, respectively. The benefit peaks at 400-meter band from the 

highway exits and 300-meter band from the light rail stations, which are the closest 

distance bands for both nodes. In an another study of residential values, Salon et al. 

(2014) also captured the benefits of nodes of the bus rapid transit (BRT) and the Metro 

rail using multiple distance bands in Guangzhou, China. They found that no disamenity 

effect for the Metro, but substantial disamenity value for the BRT. In contrast, Cervero 

and Duncan (2002) showed that commercial land values within 1/2 mile of highway 

interchange are unexpectedly penalized by being close to the highway access points. 

These results confirm the usefulness of a multiple bands approach for determining the 
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potential non-linear decay of the net effects of transportation infrastructure on 

commercial property values. 

 As shown in APPENDIX B, only Golub et al.(2012) included proximity to 

network links as a disamenity variable in a hedonic model for commercial properties. To 

the best of our knowledge, there have been no studies that analyzed both nodes and links 

of both highways and rail transit for all types of commercial property values (i.e., office, 

industrial, retail and service properties), though some studies dealt simultaneously with 

nodes of both modes (Bollinger et al. 1998; Weinberger 2001; Billings 2001; Ryan 

2005).  

 Property values, including for commercial property, are known to be influenced 

by the value of surrounding properties. This kind of an external neighborhood effect is 

called spatial dependence or autocorrelation and the spatial autocorrelation can be present 

in both the dependent variable and the error term of a regression model. To incorporate 

external neighborhood effects, researchers are more frequently testing and adjusting for 

spatial dependence using alternative hedonic models (e.g., spatial lag and/or error model) 

for residential hedonic models (Partridge et al., 2012). Spatial approaches, however, do 

not seem to be common yet in commercial hedonic models. Bollinger et al. (1998) is the 

only commercial study we found that tested for spatial dependence, but they found no 

evidence of spatial effects using the Cliff-Ord test. Nevertheless, testing for spatial 

dependence is important, because hedonic modeling with spatial dependence in the 

dependent variable produces inconsistent estimates, while spatial dependence in the error 

term causes inefficient parameter estimates (LeSage and Pace 2009; Anselin 1988). 
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 Based on this review of the hedonic literature, we reach a number of conclusions 

about how to analyze the amenity and disamenity effects of transportation infrastructure 

on commercial property values. First, the ideal dependent variable is the actual transacted 

sale prices of commercial property. Second, in addition to analyzing commercial property 

as a whole, it is valuable to subdivide the sample into types of commercial property if the 

sample size in each category is large enough. Third, the study method should allow for 

the possibility of both accessibility and nuisance effects of transportation infrastructure. 

Fourth, the multiple bands approach is well suited to determine the geographical extent of 

impacts of transportation investments and network nodes. Fifth, both highways and rail 

transit should be included simultaneously if both modes exist in the study area. Sixth, 

multi-year (from 2009 to 2014) data can be used to secure enough observations. Seventh, 

the presence of spatial dependence should be tested explicitly. 

Theoretical Framework 

As a theoretical framework, this study incorporates the seven factors identified 

above by adopting the net effects model of Seo et al. (2014) for highways and light rail 

transit, which was expanded from De Vany’s (1976) theoretical net effects model for 

airports. The theoretical model shown in Fig. 6 is based on the following underlying 

hypotheses (Seo et al. 2014). First, accessibility should accrue only to the nodes of a rail 

or freeway network and decay from there, because travelers can only access the network 

at the stations and highway entrances. Second, negative disamenities such as noise, 

crime, pollution, or traffic should have a more limited spatial impact that decays more 

steeply with distance from the network nodes and links than the positive benefits of 

accessibility. Third, network nodes should therefore exhibit net effects resulting from the 
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sum of the positive and negative impacts. Lastly, highway exits should generate a more 

gradual decay and extended range than rail stations do because of the different travel 

speeds of their dominant modes of access (motorized vs. non-motorized).   

 

Fig. 6.Conceptual Framework for Net Benefit of Combined Impacts of Accessibility and 

Disamenities (Source: Seo et al., 2014 - Modified for Commercial Property) 

 

In Seo et al. (2014), this theory was tested on residential property values in 

Phoenix, Arizona. For highway exits, benefits peaked at the closest distance (400m) from 

a highway exit, and decreased steadily from there, but the magnitude of impacts was 

small in general. For LRT stations, the coefficients were again positive for homes close to 

a station, peaked within 300m, and gradually decreased from there. Unexpectedly, the 

hypothesized “donut” effects around nodes were not evident in results for either mode for 
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residential property. The proximity to nodes of highways and light rail were highly 

significant at the level of 0.001, while the proximity to links of highways and light rail 

were not significant even at the level of 0.1. This companion paper tests this model on 

commercial property.  

Theoretically, we might expect some differences between the effects on 

residential and commercial property. First, nuisance effects on commercial property are 

hypothesized to be less negative compared with residential property because activities on 

commercial property may themselves cause a considerable amount of noise nuisance 

(e.g., mechanical noise in industrial property, customer-caused traffic and noise in retail 

and service properties) and commercial activities take place in the daytime when 

nuisances are more acceptable. In addition, crowds near transportation nodes that may 

generate nuisances can be favorable to commercial property but not to residential 

property markets. Thus, peaks of the net benefit curves in the Fig. 6 should be skewed 

more to the left or there may be no donut effects.  

Commercial property can be subdivided into office, industrial, and retail/service 

categories, and the impacts of transportation infrastructure are likely to vary by type 

(Ryan 1995). According to industrial location theory, transportation cost of inputs and 

outputs is one of the most important factors with labor cost and agglomeration economies 

(Weber 1929). Thus, for industrial property, it may be more important to locate for 

minimizing transportation cost of shipping products and materials rather than to be near 

light rail stations
3
. On the other hand, office property generally does not ship much in the 

way of materials and/or products, but employees benefit from light-rail access for daily 

                                                 
3
 However, if a freight rail network exists in the study area, industrial property may be found near freight 

rail stations to reduce transport cost of inputs and outputs based on the traits of industry.  
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commuting and customers benefit from occasional access as well. Hence, we hypothesize 

that office property will put a higher premium on locating near light-rail stations and 

highway exits to minimize transportation costs of both customers and employees. Lastly, 

retail and service properties need easy access for their employees and customers to 

minimize labor cost and maximize profits. Thus, retail and service properties may be 

willing to pay more to be located near highway exits and light rail transit stations. In 

addition, retail and service properties may prefer to locate in or near a shopping mall for 

multi-purpose shopping agglomeration economies. 

Methods 

 This paper extends the methodology developed by Seo et al. (2014) for residential 

property to commercial property. This methodology utilizes hedonic regression analysis 

to capture the relationships between proximity of transportation infrastructure and 

commercial property values while controlling for other determinants of value. To select a 

suitable functional form, scatter plots for the variables and log-transformed variables 

were analyzed for linearity, and the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were examined to compare relative quality of models. To 

avoid multicollinearity, the variance inflation factor (VIF) was also examined. For the 

goodness of fit, adjusted R² values were compared. Consequently, we selected the 

double-log functional form, which has an advantage in estimating price elasticities. It is 

expressed as:  

                                                                                        (1) 

where    is the price of commercial property i;   is a constant;    are structural 

characteristics for property i;   are neighborhood characteristics for property i;    are 
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locational characteristics for property i; and    are distance band dummies for property i; 

and                 represent the coefficients of    ,   ,   , and    respectively; and    is 

random error for property i. The dependent variable is the sale price of commercial 

property adjusted by the monthly home price index (HPI; S&P Dow Jones Indices) to 

enable use of a multi-year dataset from 2009 to 2014. 

Spatial effects were tested with the Lagrange Multiplier (LM) statistic using 

spatial weight matrices (Anselin and Rey 2014). To identify and select a suitable spatial 

regression model, we tested two different spatial weighting schemes such as contiguity 

(i.e., rook and queen contiguity using Thiessen polygons) and distance-based approaches 

(i.e., k-nearest neighbor or the Euclidean distance using property points data). These were 

compared using pseudo R² and Lagrange Multiplier test results and the model with the 

spatial weight matrix using the Euclidean distance approach was selected. The LM error 

test value of 15.117 (p = .000) confirmed the presence of spatial dependence in the error 

term, while the LM lag test value of 0.328 (p = .57) rejected the presence of spatial 

dependence in dependent variable. The Koenker-Bassett test value of 52.815 (p = .000) 

confirmed the heteroscedasticity in the dataset. Thus the spatial error model with 

heteroscedasticity option was selected for this study. Equation (2) and (3) provide the 

general forms of spatial error model: 

                                                                                                                       (2) 

                                                                                                                            (3) 

where   is a vector of property sales prices;   is the constant term;   is the n×1 vector of 

the coefficients of the explanatory variables;   is the n×1 vector of spatially 
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autoregressive errors;   is the coefficient on the spatially lagged error;    is the spatially 

lagged portion of the error; and   is an independent but heteroscedastically distributed 

error. Regression analyses were carried out separately for commercial property as a 

whole, office property, industrial property, and retail and service properties because 

impacts of the proximity of highways and LRT may differ by type of commercial market.  

Study Area and Data  

Study Area 

 The City of Phoenix, Arizona was selected as the study area because one of the 

study purposes is to compare the results for commercial property to Seo et al. (2014)’s 

residential property model. The City of Phoenix is the center of commercial property 

markets in the Greater Phoenix Area, where most of the high-rise office buildings are 

located (Fig. 7). Phoenix is also the most active industrial property market in the Greater 

Phoenix Area (Colliers International 2015). As of 2014 there were 47,882 commercial 

property parcels within the city limits, excluding some properties categorized as 

commercial but used for residential purposes (e.g., apartment, condos, and multifamily 

homes). 

 Phoenix is an automobile-centered city that is well connected by highways and 

grid-style arterials. Though there are multiple strong commercial centers across the city, 

downtown Phoenix is the original core of the city and some cultural, commercial, and 

governmental activities are still concentrated there. Light rail transit (LRT) opened in 

2008 and runs east and north of the central business district (CBD) through job-rich 

corridors. Freeways encircle the CBD and extend east, west, and north from downtown. 

Phoenix Sky Harbor Airport is one of the most centrally located major airports in the 
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United States, just a few miles east of the CBD and connected to the light rail by an 

elevated, automated rubber-tired people mover. Thus, many commercial properties are 

located along these arterials, highways, and LRT networks, but relatively more 

commercial properties are located near the CBD and airport. In terms of noise 

disamenity, commercial properties along the highways are not protected by sound walls, 

while all the residential properties are protected by sound walls or earth berms. 

Data 

 Commercial property sales data were obtained from the Maricopa County 

Assessor’s Office for use as the dependent variable for this study. This dataset contains 

sale prices and dates for commercial properties that were sold between 2009 and 2014, 

and also includes structural characteristics such as parcel size, total interior area, a 

number of stories, building condition, and construction year. Initially, 8,159 commercial 

properties were extracted from the Assessor’s 2015 data. We first removed from the 

dataset 3,280 properties used for residential purposes. We also removed some 

commercial properties that sold for less than $50,000, which we considered outliers. We 

also removed properties with insufficient information. Lastly, we found many cases of 

duplicated prices for groups of neighboring properties were sold as a bundle with a single 

combined sale price. Rather than delete them from the study, we assigned a proportional 

sale price to each parcel prorated by limited property value (LPV) for each member 

parcel provided by Assessor's office.     

 The remaining 3,642 observations were further divided into 1,214 office 

properties, 360 industrial properties, and 2,068 retail and service properties. For the 

dependent variable, inflation-adjusted sale prices were calculated by using the home price 
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index (HPI) for the city of Phoenix (S&P Dow Jones Indices). The 2010 tract-level 

median household income and population density were obtained from the U.S. Census 

Bureau to represent neighborhood characteristics. Locational characteristics such as 

Euclidean distance to downtown Phoenix, Sky Harbor Airport, shopping malls, and major 

arterials were measured using ArcGIS 10.2.2 software and readily available GIS datasets 

(see Table 3 for summary of variables).  

 To develop the best model for testing the transportation amenity/disamenity 

hypotheses, many different distance measurements in terms of distance bands and 

distance extended ranges were tested (Table 4 and Fig.8 for multiple distance band 

approach). Euclidean rings were used to measure all distances. Distances from highway 

links were measured in three bands, out to 350m as the noise disamenity zone (Nelson 

1982).
4
 The distance from a highway exit to each commercial property was measured in 

sixteen 300m bands, out to 4800m (about 3 miles). The distance from LRT stations to 

individual commercial properties was measured in five 300m bands, out to 1500m (about 

0.94 miles), and distances from the LRT track were measured in 100m bands, out to 

300m (0.18 miles).  

                                                 
4
 In Nelson (1982)’s review paper, 300m or 1000feet is considered as a noise zone. However, we used 

350m as the impact zone because highway centerline was used to measure distance. Thus three multiple 

bands are 0-150m, 150-250m, and  250-350m. 
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Fig. 7. Study Area and Distribution of All Commercial Properties. 
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Table 3 

Summary of Main Variables (Observations = 3,642). 

Variable Description Mean Std. Dev. Min Max 

Dependent variable     

Adj_Price Sale price ($) adjusted by HPI 2,615,819 8342126 142 151,000,000 

 

Structural variables 

Lot Parcel size (sqft)  75,698 255913 51 6,973,608 

T_Interior Total interior area (sqft) 32,782 80942 2 1,267,498 

Stories Number of stories 1 1 1 22 

Age Age of property (years) 27 20 0 123 

Neighborhood variables     

Median_HH Median household income ($) 45,288 21585 9,668 151,603 

Pop_Dens Population density (per km²) 1,592 1097 74 9,052 

Locational variables 
    

Dist_CBD Nearest distance from city center 

(m) 

13,555 9724 200 48,875 

Dist_Air Nearest distance from airport (m) 12,301 6496 952 36,314 

Dist_Mall Nearest distance from shopping 

mall (m) 

2,406 1494 6 8,436 

Dist_Arterial Nearest distance from arterial 

road (m) 

178 173 19 1,327 

Dist_Exit Nearest distance from freeway 

exit (m) 

1,746 1,612 73 13,938 

Dist_Station Nearest distance from light rail 

station (m) 

9,101 7,901 49 40,688 
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Fig. 8. Map of Multiple Distance Band Approach. Black Dots Represent Sold 

Commercial Properties. 

 

Table 4 

Percentage of Observations in Distance Dummy Variables. 

Dummy variable Description % 

Exit_300m Less than 300m from highway exit  5 

Exit_600m 300-600m from highway exit 17 

Exit_900m 600-900m from highway exit 17 

S_300m Less than 300m from light rail station 1.2 

S_600m 300-600m from light rail station 1.4 

S_900m 600-900m from light rail station 5 

S_1200m 900-1200m from light rail station 17 

S_1500m 1200-1500m from light rail station 17 

S_1800m 1500-1800m from light rail station 2.4 

S_2100m 1800-2100m from light rail station 4.4 

Hwy_150m Less than 150m from highway link 3.2 

Hwy_250m 150-250m from highway link 3.1 

Hwy_350m 250-350m from highway link 1.5 

LT_100m Less than 100m from light rail track 2.3 

LT_200m 100-200m from light rail track 2.4 

LT_300m 200-300m from light rail track 5.9 
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Results 

All Commercial Property 

 Table 5 shows the coefficients, significance levels, Pseudo R², and Lambda (   

for the spatial error models for all commercial properties and for three commercial 

property submarkets (see APPENDIX C to F for details)
 5

. The Pseudo R² (.792) of 

spatial error model and the R² (.791) of standard OLS model are similar and exceed the 

range of published results (i.e., R² of 0.33 – 0.73) of other hedonic studies of commercial 

property (Clapp 1980; Ryan 1995; Dunse and Jones 1998; Golub et al., 2012). Overall, 

most of the control variables are highly significant at the 0.001 level and the signs are as 

expected except for population density. 

  

                                                 
5
 Hedonic models were estimated with and without the 2009 data because of the sharp fluctuations of the 

real estate market caused by financial crisis. Results, however, did not differ substantially, and therefore the 

final results included all years of data. 
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Table 5 

Estimation Results of Commercial Markets. 

 
All commercial 

(N=3,642) 

Industrial 

(N=360) 

Office 

(N=1,214) 

Retail & Service 

(N=2,068) 

Variable Coef Coef Coef Coef 

(Constant) 6.313 5.191 7.48 6.258 

Structural Variables (  )    

Lot (ln) 0.646*** 0.530*** 0.570*** 0.649*** 

T_Interior (ln) 0.254*** 0.485*** 0.321*** 0.234*** 

Stories 0.089*** -2.143*** 0.060*** 0.187*** 

Age -0.014*** -0.012*** -0.013*** -0.012*** 

     

Neighborhood Variables (  )    

Median_HH (ln) 0.227*** 0.149 0.171*** 0.214*** 

Pop_Dens (ln) -0.011 0.031 0.025 -0.012 

     

LocationalVariables (  )    

Dist_CBD (ln) -0.073** 0.085 -0.068 -0.105** 

Dist_Air (ln) -0.135*** -0.193*** -0.225*** -0.078* 

Dist_Mall (ln) -0.178*** -0.009 -0.215*** -0.136*** 

Dist_Arterial (ln) -0.092*** 0.006 -0.018 -0.163*** 

Exit_300m 0.448*** 0.273** 0.485*** 0.141 

Exit_600m 0.129*** 0.296*** 0.103 0.083 

Exit_900m -0.018 0.083 -0.006 -0.014 

S_300m 1.138*** n/a 0.761*** 1.081*** 

S_600m 0.614*** 1.701*** 0.543*** 0.411*** 

S_900m 0.382*** 0.515** 0.291*** 0.339*** 

S_1200m 0.288*** 0.271 0.437*** 0.147 

S_1500m 0.225** n/a 0.197 n/a 

S_1800m 0.161* n/a n/a n/a 

S_2100m 0.060 n/a n/a n/a 

Hwy_150m -0.372*** -0.499*** -0.139 -0.353*** 

Hwy_250m -0.411*** -0.626*** 0.070 -0.332*** 

Hwy_350m -0.159*** -0.321*** 0.043 -0.226*** 

LT_100m -0.474*** -0.112 -0.483*** -0.425* 

LT_200m -0.610*** -1.252*** -0.137 -0.611*** 

LT_300m -0.611*** -1.928*** -0.438*** -0.444** 

     

Lambda     0.1*** 0.211*** 0.22*** 0.547 

Pseudo R² 0.792 0.871 0.83 0.782 

*** Significant at 0.01 level; ** Significant at 0.025 level; * Significant at 0.05 level 
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Not surprisingly, all structural variables are significant at the 0.001 level. For the 

neighborhood variables, median household income is highly significant at the 0.001 level, 

while population density is not statistically significant. For the locational variables, 

proximities to CBD, airport, shopping malls, and arterial streets are positively associated 

with the price and all are significant at the 0.01 level.  

Proximities to highway exits and LRT stations, which are the variables of greatest 

interest, are highly significant mostly at the 0.001 level and positively associated with the 

price except in the 900m band away from highway exits and in the 2,100m band away 

from a LRT station. In addition, distance bands from both highway and LRT links are all 

significant and negatively associated with the commercial property values as 

hypothesized. Thus, although the price impact of light rail station itself is positive, the 

sales price of commercial properties located distance bands of a light rail station can vary 

based on the sections intersected with distance bands of light rail link because negative 

coefficients of distance bands of light rail link should be summed up (see Fig 9 for 

details). For instance, the sales price of properties located in a section that is intersected 

with 300m band of light rail station and 100m band of light rail link increased around 

185%, while the sales price of properties located in a section that is intersected with 

600m band of light rail station and 100m band of light rail link increased around 51%. 

However, contrary to our hypothesis, the geographical range of the impact of highway 

exits is less extended than that of light rail station. Surprisingly, the accessibility benefits 

of being close to a light rail station are much larger than those of being close to a 

highway exit.    
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Fig. 9. Summed Up Price Impacts Near Light Rail Station Area. Black Dots Represent 

Sold Properties. 

 

One possible explanation for this could be that high speed of motorized vehicles 

used for highway access overcomes the physical distance barrier over quite a long range 

(e.g., 2-3miles and this covers 88-96% of observations) and this makes accessibility 

benefit of most area fairly similar, which in turn lessens the impact except for areas very 

close to highway exit (i.e., within 600m). In contrast, access to light rail station is mostly 
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made by non-motorized modes (walk and bike), meaning that distance really matters for 

those who live near light rail station for commuting, shopping, and other activities. Thus 

the price premium of being close to light rail station accrues right at the station and 

declines steeply from there. Surprisingly, the geographical extent of the effect of LRT 

stations reaches much farther (i.e., 1800m or 1.12mile) and the magnitude of impacts are 

much larger than we expected.  

Compared with the results of Seo et al.’s (2014) residential model, the coefficients 

of accessibility of commercial property to highway exits are much less extended 

geographically and there is no "donut" effect for both results. Impacts of accessibility to 

LRT stations are also less extended for commercial than for residential property (see Fig. 

10 and Fig. 11). 

 
Fig. 10. Coefficients of Distance to Highway Exits. 
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Fig. 11. Coefficients of Distance to Light Rail Stations. 

 The disamenity impacts of highway and light rail links are highly significant and 

negatively associated with the sale price as hypothesized (Fig. 12). Contrary to the 

residential model, commercial properties near highway links are exposed directly to 

traffic noise and air-pollution because noise barriers are not built to project them. In 

addition, even though light rail emits no air pollution and only a small amount of noise, 

light rail track significantly hinders employees, shoppers and service beneficiaries to 

access their destination by car driving because the rail track lies in the middle of arterial 

road. 
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Fig. 12. Coefficients of Distance to Highway and Light Rail Links (Residential Results 

are not Shown because Coefficients were not Significantly Different from Zero). 

Industrial Property 

For industrial property, the resulting model fit is quite strong with the adjusted R  

of 0.86 for standard OLS and pseudo R  of 0.87 for spatial error models. As with the 

model for all commercial property, structural variables such as lot square footage, interior 

square footage, number of stories, and age of property are all significant at the 0.001 level 

and unexpectedly the number of stories is negatively associated with the price (see Table 

5). All neighborhood variables factored insignificantly in the price. For the locational 

variables, only some distance bands are statistically significant. For instance, 300m – 

600m distance bands from highway exits and 600m – 900m distance bands from light rail 

stations are significant and positively associated with the price, though size of impact of 

light rail stations are larger than that of highway exits, partially validating our hypothesis. 
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Disamenity impacts of highways and light rail links are negative and statistically 

significant except for the rail_100 dummy variable. In terms of dollar value change, 

industrial properties, for instance, located between 300m and 600m from highway exit 

that is not intersected with distance bands of highway link increased 34% in property 

value, which is equivalent to a $203,295, increase for a property with the median value of 

$590,807. Impact ranges of highway exits are similar with other commercial submarkets, 

while light rail stations are relatively shorter in extent than other commercial submarkets. 

Office Property 

The resulting model fit for office property is quite strong with the adjusted R  and 

pseudo R  of 0.83 for both standard OLS and spatial error models. Coefficients of all 

structural variables such as lot square footage, interior square footage, number of stories, 

and age of property are all highly significant at 0.001 level and the signs are as expected. 

For the neighborhood variables, median income is positive and statistically significant at 

0.001 level as expected but population density is statistically insignificant. For the 

locational variables, proximity to both the airport and to shopping malls are highly 

significant and positive in determining price, while proximity to the CBD and arterial 

roads are not significant. For the transportation variables, proximity to highway exit is 

positive and significant only at the 300m band but being closer to light rail stations is 

positively associated with the price up to 1200m. Proximity to light rail links is negative 

and significant at 100m and 300m bands, while proximity to highway links is 

insignificant, partially validating our hypothesis. In this model, office properties located 

within 300m from a highway exit, where the most benefits are accrued, increased 62% in 

sale price, all else being equal.   
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Retail and Service Properties 

The resulting model fit for retail and service properties is also quite a strong with 

an adjusted R  of 0.78 for both standard OLS and spatial error models. Structural 

variables such as lot square footage, interior square footage, and age of property are again 

significant at 0.001 level and signs are as expected. Median household income is 

significant and positively associated with the price but population density is not 

significant as neighborhood characteristics.  

For the locational variables, proximity to the CBD, airport, shopping malls, and 

arterial roads are all significant and positive in determining price. Surprisingly, however, 

proximity to highway exits is not significant for any distance band, invalidating our 

hypothesis. One possible explanation for this may be that the primary travelers are 

different from other commercial submarkets. For instance, the main travelers for 

industrial and office properties are likely the employees, while for many retail and service 

properties the customers may outnumber the employees. Thus, accessibility benefits for 

commuting may be an important factor for employees as well as employers to reduce 

transportation costs. On the other hand, in an automobile-centered city like Phoenix, 

shoppers and service beneficiaries may care less whether the destination property is 

located near a highway exit, because high speed of car driving and grid-like arterial 

networks overcome physical distance of 1 or 2miles quite easily, though accessibility is 

still important to all travelers. Contrary to highway exits, proximity to light rail stations 

are positive and highly significant at distance bands up to 900m, validating our 

hypothesis.    
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In this model, commercial properties located within 300m from a light rail station 

increased around 195% in sale price, while locating within 100m from the light rail link 

lowered the price by 35%. The net effect is +160%,  which is equivalent to an increase of 

$1,091,972 for a property with the value of $681,916. Highway and light rail links are all 

significant and negative in determining price as hypothesized.         

Conclusions 

The purpose of this paper was to identify the net effects of the nodes and links of 

highway and light rail transit on commercial property values. To do this, hedonic price 

models were built upon the foundation of De Vany's (1976) work and extended from Seo 

et al’s (2014) work. The models were devised to unify a number of disparate previous 

findings in the hedonic literature into a single model for the commercial property market 

incorporating highway and light rail, nodes and links, amenities and disamenities, and 

distance decay for all these effects. In addition, we tested how the nodes and links of the 

networks differentially impact distinct commercial submarkets, and compared the results 

between residential and commercial hedonic models.     

We hypothesized that positive impacts of accessibility accrue to the highway exits 

and light rail stations, while the nuisance effects of noise and air pollution should 

emanate from the highways and light rail nodes and links. We further hypothesized that 

the nuisance effects would be smaller for commercial property than for residential 

property. Using the multiple distance bands approach, the estimated results of the spatial 

error regression model confirmed that distance from the nodes and links was a significant 

determinant of commercial property values and plotted coefficients showed distance 

decay of amenities, which has a typical exponential decay curve for highway and light 
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rail nodes and almost same shape as hypothesized curve for light rail stations. 

Unexpectedly the light rail stations have larger impacts with greater geographic reach 

than highway exits. The results for industrial property confirmed that both highway exits 

and light rail stations have significantly positive impacts on the price in closer distance 

bands. For office property values, proximity to the highway exits and light rail stations 

have positive impacts but the impact of light rail stations extend further. Proximity to the 

light rail links has negative impacts, while proximity to the highway links has no effect, 

contrary to expectations. For the retail and service properties, proximity to the light rail 

stations has positive impacts, while unexpectedly proximity to the highway exits has no 

effect. Finally, the magnitude and extent of effects of distance vary based on the types of 

infrastructure and the types of commercial property. For instance, price bonuses from 

distance (e.g., 300-600m from highway exit that does not intersect with distance bands of 

highway link) for industrial property is 34% while that of the office property is 11%. 

Thus, the impacts of highway accessibility are larger for industrial properties than for 

office properties in that specific area.  

Comparing these commercial results with Seo et al.’s (2014) residential hedonic 

model, our hypothesis was confirmed that the accessibility benefits reach farther for 

residential property than for commercial property. Theoretically, the results of the spatial 

hedonic model support a bid rent theory for commercial firms that would differ in 

gradient and extent from the results of residential model due to location of utility 

maximization for each market (Alonso 1964). Empirically, our model has tested the bid 

rent theory for commercial property markets’ responses to real world transportation 

facilities, which changes the relative location of utility maximization by improving 
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accessibility. Together with Seo et al’s (2014) residential model, this study may 

contribute to unify a number of disparate previous findings in the hedonic price literature 

into a single, general idealized schematic model incorporating road and rail, nodes and 

links, amenities and disamenities, and the distance decay functions for all of these effects. 

 Lastly, the results of this study may be useful to commercial property buyers to 

identify the location where net benefit of accessibility is maximized. Commercial 

property construction companies may be able to decide where to build developments for 

maximizing profit and sales by predicting where markets will reward location the most. 

On the other hand, transportation planners may be able to secure and distribute tax 

revenue based on the positive and negative effects captured by the study. City authorities 

may possibly use these results as a basis for value capture and tax increment financing of 

transportation projects, which depend on knowing the size and extent of benefits to 

nearby property. 
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CHAPTER 4 

PAVEMENT CONDITION AND PROPERTY VALUES 

Abstract 

This paper estimates the relationship between pavement condition and residential 

property value in Solano County. We hypothesize that pavement condition impacts 

property values: directly as an indicator of neighborhood blight, and indirectly through its 

effect on traffic conditions and noise. Both effects are expected to be in the same 

direction; as pavement condition declines, property values are expected to decline as 

well. Hedonic regression models are used to estimate the contribution of road pavement 

condition to home sales value. We developed regression models for the County as a 

whole and each city, because Solano County as a whole and each city have different 

locational and neighborhood characteristics, which should be addressed for developing 

best model specification and figured out whether individual city has a different 

relationship between pavement condition and residential home prices. Results for Solano 

County models with a full dataset and a surveyed PCI dataset confirm that there is no 

significant relationship between pavement condition and residential sales price. However, 

separate estimates for the each city are mixed with positive, negative, and zero effects. 

Because the contribution of road pavement condition to the value of a home is 

inconsistent by models, results cannot be conclusively estimated.  

Keywords: PCI, residential home value, hedonic model, pavement condition  
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Introduction 

Road pavement condition is directly related to generation of nuisances such as 

traffic noise and air pollution, which cause an unpleasant environment and heath issues of 

neighborhood adjacent to a road. Pavement management agency spends significant 

amount of public expenditure every year to maintain and to reduce the impacts of 

nuisances caused by pavement deterioration (Pellecuer et al., 2014). Thus, it may be 

worth investigating how pavement condition can influence on the neighborhood welfare 

in monetary terms.       

Many studies aim to estimate the impacts of environmental or nonmarket goods 

on human welfare. A number of economic valuation methods have been developed and 

used to estimate these impacts, including contingent valuation models, travel cost models, 

and hedonic price models (Champ et al., 2003). In this study, we used the hedonic 

approach to estimate the influence of pavement condition on residential property value 

using Pavement Condition Index (PCI). PCI represents the structural and material 

integrity of a pavement in a numerical value (Gharaibeh et al., 2010). The PCI is 

expressed on a scale between 0 and 100, where a value of 100 represents the best possible 

condition (Shahin et al., 1978). We develop a hedonic model of property value as a 

function of various characteristics of the property, including the PCI on the street. There 

are two ways that pavement condition might impact property values: directly as an 

indicator of neighborhood blight, and indirectly through its effect on traffic conditions 

and noise, which in turn impacts property values. Both effects are expected to be in the 

same direction; as pavement condition declines, property values are expected to decline 

as well. 
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In the following sections we present the data used and more details about the 

model, and its results. First, we reflect on existing work in this area as it informs this 

study. Then, after we describe study area, data processing, and examination of PCI data, 

we formulate our general regression model and present specific results for the selected 

models that can represent relationships between residential property values and PCI. We 

finish with a discussion and conclusions.  

Literature Review 

In this section, we first review the hedonic price model and then review on 

existing work in relation to this study. Although we reviewed a research report that is 

directly related to this study, we mostly reflected on works that are closely related to this 

area such as relationship between pavement condition and traffic noise, impacts of traffic 

noise on residential property values, and impacts of traffic speed and noise on health 

because there is no peer-reviewed paper in literature. 

Hedonic Price Model 

The hedonic price model is the most widely used approach. These models 

estimate the economic value of nonmarket goods by separating the total value of the good 

(for example, real estate) – for which a market price is known – into the value of each of 

its characteristics, including “nonmarket” characteristics. Real estate has both 

differentiated characteristics (e.g., lot size, living area, number of stories, and number of 

rooms) and a location. Variation in the location of real property relative to environmental 

amenities (“benefits” i.e. local parks, schools, or transportation accessibility) or 

disamenities (“negative impacts” i.e. noise, crime, pollution, or neighborhood blight) 

provides the information needed to estimate the impact of those amenities and 
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disamenities on the property’s value. The existing literature generally supports the 

hypothesis that neighborhood amenities – including high quality transportation 

infrastructure – have a positive influence on property values (e.g., Shultz and King, 2001; 

Boyle and Kiel, 2001; Bateman et al., 2001; Salon et al., 2014; Seo et al., 2014), and that 

disamenities have a negative impact (e.g., Hite et al., 2001; Nelson, 1982; Li and 

Saphores, 2012). 

Relationship between Pavement Condition and Property Value 

 To the best of our knowledge, there is no peer-reviewed study that has directly 

estimated the relationship between pavement condition and property values. In one 

unpublished study, Rasmussen and Yang (2012) used a hedonic model with regression 

analysis to determine the relationship between pavement condition and residential 

property values. They investigated whether 1) street improvements resulted in an increase 

in property value and 2) the benefits to homeowners outweighed the cost of 

pavement/street improvements.  

 Initially they found that property values decreased with increasing 

street/pavement condition and it was significant at the 0.1 level. Then they created home 

price indicator variables (i.e., above and below sample mean: $178,384) and interacted 

these indicator variables with Street Condition Index (SCI) variable. This interaction 

model resulted that property values increased with increasing street/pavement condition 

when the home sale prices are above the sample mean (e.g., 1 point increase in SCI 

causes to 0.07% increase in home price). However, using the home price indicator 

dummy variables in their hedonic models is not valid. The problem is that this introduces 

a dummy variable for being in the top half (or bottom half) of the sample, which of 
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course is positively correlated with higher home values. Thus, interacting with these top 

or bottom half dummy variables with SCI naturally produces a positive or negative effect 

based on the home price indicator variables. Instead of using home price indicator 

dummy variables, they should ran an interaction model with a dependent variable of top 

half or bottom half to avoid this issue. 

Relationship between Pavement Condition and Traffic Noise 

 Many studies have investigated the impact of traffic noise on property values 

(e.g., Nelson 1978; Nelson 1982; Bateman et al., 2001). Traffic noise is closely related to 

the pavement condition because one of the two main components
6
 of traffic noise is the 

friction between vehicle tires and the paved road surface (Mun et al., 2007). 

 There is substantial evidence that traffic noise increases with declining pavement 

condition, which happens as pavements age (Bendtsen et al., 2010a; ADOT, 2012; TRB, 

2013). The PCI provides information about pavement aging by including measures of 

distress, levels of severity, and distress density. That said, it is important to note that 

pavement-related traffic noise is also influenced by factors such as pavement materials 

(e.g., asphalt concrete, Portland cement concrete or rubberized asphalt concrete), 

pavement texture types (e.g., longitudinal or transverse tine), traffic volume, vehicle 

types (e.g., truck or passenger car), and vehicle speed (Mun et al., 2007). In areas where 

these additional factors do not vary substantially but pavement quality does, the PCI may 

be a good proxy for measures of traffic noise. 

                                                 
6
The other component is the vehicle power-train operation. In recent years, power-train noise has been 

substantially reduced due to consumer demand for quieter vehicles (Sandberg 2001). 
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Impact of Road Noise on Residential Property Value 

 The hedonic modeling literature includes many studies of the traffic noise impacts 

on property values (e.g., Vessali 1996; Bateman et al., 2001). In fact, traffic noise near 

the highway network was the main focus of many of the first transportation related 

hedonic studies. Nelson (1982) reviewed and summarized nine empirical hedonic studies 

focusing on the nuisance of traffic noise, with the result that highway traffic noise is 

estimated to have a negative impact on residential property values. Studies that included 

the traffic noise from arterial roads came to the same conclusion (Kawamura and 

Mahajan 2005; Sebastian and Wolfgang 2011).  

 Hedonic studies typically use property sales prices as the dependent variable as 

well as explanatory variables representing characteristics of the properties (e.g., lot size, 

living area size, number of rooms, number of stories, age of building), the neighborhoods 

where they are located (e.g., median household income, population density, proximity of 

neighborhood park or open space), and the location of that neighborhood within a larger 

region (e.g., school district, distance to the central business district, proximity of 

transportation infrastructure) (Bateman et al., 2001). However, since there are no 

predetermined characteristics that are suitable for all hedonic models, knowledge of the 

local property markets and prior empirical studies are essential to define potentially 

important factors (Champ et al., 2003). Especially important factor is how variables of 

interest (i.e., pavement condition index in this study) are measured and how that may 

affect models using those data.  

 To measure traffic noise, some researchers used field measurement data in 

decibels (dB) or traffic volumes (Gamble, 1974; Sebastian and Wolfgang 2011; Li and 
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Saphores, 2012), while others used a certain distance from the roads (i.e., 1000ft or 

300m) as a noise impact zone (Langley 1976; Kim et al., 2007; Seo et al., 2014). Noise 

levels measured in decibels are clearly more accurate than other approaches such as 

traffic counts or impact zones. However, measuring actual decibels of noise at the parcel 

level is expensive. This issue led to the use of alternative approaches such as distance 

measures as a proxy for field measurement of the noise nuisance (Bailey, 1977); the 

traffic noise effect decays with distance according to a logarithmic scale and fades away 

within 1000ft of the noise source (Nelson, 1982). Traffic noise emanates not only from 

link of network but node (e.g., highway exits and rail stations) as well, though negative 

noise effects of node are usually offset by benefit of accessibility (Seo et al 2014). These 

two sources of noise nuisance should be considered simultaneously when impacts 

analyses including these factors are done.    

 Although previous studies revealed 1000ft or 300m as an impact zone along road 

links, the actual extent of the impact zone depends on the road configuration (i.e., 

overpass or underpass), the presence of a sound wall or earth berm, the traffic volume, 

the types of vehicles passing by, and the pavement condition. Seo et al. (2014) included 

both the highway configuration and the distance from the road in their hedonic model to 

determine whether residential property values respond differently to elevated, below-

grade, or at-grade highways. Their results showed that below-grade highways have less 

impact than at-grade highways, though the impact from elevated highways was not 

statistically significant (Seo et al., 2014). Li and Saphores (2012) examined impacts of 

truck traffic along highway links in Los Angeles, CA using a multiple distance band 

approach (i.e. within100m, 100-200m, and 200-400m) to identify impact zones. Their 
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results show that the residential properties located within the 100-200m band experience 

more negative impact than those located within the 200-400m band, though the effect on 

properties closest to the highway (within 100m) was not statistically significant (Li and 

Saphores, 2012).  

Impact of Traffic Speed and Traffic Noise on Health 

One mechanism for connecting pavement condition to community impacts and 

conditions is through health impacts. Degraded pavement condition may lead to reduced 

speeds, and/or increased incidence of deceleration and acceleration. Either of these 

occurrences could lead to increased vehicle emissions (Zhang et al., 2011). Vehicle 

emissions are a primary source of air pollutants in urban and suburban areas (TRB, 2002) 

and these emissions can contribute to a wide range of health impacts, from cardiovascular 

problems to adverse birth outcomes and diminished male fertility (WHO, 2005). Indoor, 

residential air quality is related to distance from roads (Lawson et al., 2011), which 

means that health impacts from degraded air quality will be greatest near roads with 

heavy or congested traffic. It is likely that improved pavement condition and other factors 

affecting free circulation of traffic could reduce these emissions and incidence of related 

health impacts.     

Based on the literature review, we found that there is no peer-reviewed study on 

relationship between pavement condition and home sales price. Pavement condition, 

however, is related to other factors such as noise nuisance that has been studied. In 

addition, PCI differs from most transportation infrastructure that has been studied in 

hedonic literature, such as rail or highway, because PCI is estimated on every street. 
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Thus, it is not a question of how far away is the transport network, but what is its 

condition. 

Study Area and Data  

Study Area 

 Solano County, CA is located in the northeastern part of San Francisco Bay Area 

and contains 7 incorporated cities: Vallejo, Vacaville, Fairfield, Suisun City, Benicia, 

Dixon, and Rio Vista (see Fig. 13). Solano County had a population of 413,344 according 

to the 2010 U.S. Census Bureau and has 105,249 single family residential parcels in 2015 

based on the County Assessor's data. Interstate highway 80 and an Amtrak rail line cut 

through the County. The pavement condition of road segments is surveyed at regular 

intervals. Estimated values are also available for the months between surveys, and are 

based on a pavement deterioration model.  

Data Processing 

Data come from multiple sources including Solano County assessor's office, 

Solano Transportation Authority (STA), and ESRI web maps. Full details provided in 

Table 6.  

To conduct this analysis, it is necessary to obtain sales price, assessor-based 

single family parcel and home characteristics, and nearby road PCI for all included 

properties. The STA provided GIS data necessary to discover relationships between 

single family home sales prices and PCI. With these GIS data sets variables were created 

for hedonic regression analysis. Additional data sets were created using satellite imagery 

for explanatory variables such as highway exits, central business district (CBD), and 

water feature classes.  
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 For the dependent variable of home price, we used the property sales records 

provided by STA. The original dataset contained 34,000 property sales records that 

included addresses, sale prices, and sale dates, but were not connected by parcel number 

to the assessor dataset that contains detailed information about each property. Through a 

text-based address-matching routine, 31,038 of these records were successfully merged 

with the assessor data. Records of non-single family homes were removed.  

Table 6 

List of Data Provided 

Data File type Feature type Core attributes Source 

34,000 home sales 

price 

.shp Point  Property address 

 Sold date 

 Sold price 

STA 

Parcel_2015 .shp Polygon  APN 

 X, Y coordinates 

 Structural characteristics 

 Property address 

Assessor's 

Office 

Road PCIs .shp Line  PCI date 

 PCI 

 Estimated PCI (2009-

2015) 

STA 

County boundary .shp Polygon  STA 

City boundary .shp Polygon  STA 

Park .shp Point 

/Polygon 

 STA 

TransitHub .shp Point  STA 

Airports .shp Point  STA 

Landfills .shp Point  STA 

School .shp Point  STA 

Capitol station .shp Point  STA 

Highway .shp Line  STA 

Amtrak Corridor .shp Line  STA 

Express bus route .shp Line  STA 

Contour .shp Line  STA 
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 Additional challenges required us to discard approximately one-third of the 

remaining sales observations. These included missing structural information about the 

property, lack of PCI values for the road segments adjacent to the property, and 

properties that were sold multiple times in the study period were removed. The reason 

that multiple sales of the same property cannot be used in this analysis is that our work 

uses spatial econometrics to control for spatial error dependence. Using these methods, 

spatially identical observations would have complicated the analysis. After cleaning, 

19,608 observations remained in the data set (see Fig.13 for study area).          

 

Fig. 13. Study Area and Data Used   
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 In addition to these characteristics, tract-level population density and median 

household income from the U.S. Census Bureau were included as control neighborhood 

characteristics in the analysis. For the locational characteristics, the “near” function in 

ArcGIS was used to calculate the Euclidean distance between each property and the 

closest Central Business District (CBD), highway exit, highway link, rail station, rail 

track, airport, water, park, and landfill. PCI, the variable of most interest in this study, 

was assigned to adjacent properties by first creating a buffer around each road, and then 

performing a spatial join with the property sale point data. Year and city dummy 

variables were created using attributes from the property sales data and city boundary 

polygon feature class, respectively. It is important to note that the dependent variable was 

adjusted by the home price index (HPI) for San Francisco and San Jose area to control for 

the volatility of the real estate market from 2009 to 2015. Table 7 provides descriptive 

statistics for the main variables used in this analysis and Table 8 provides a percentage of 

observations for each city and year. 
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Table 7 

Descriptive Statistics of Main Variables (N = 19,608) 

Variable Description Mean Std. Dev. Min Max 

HPI_adj_Price Dependent variable 338895.74 153793.99 39584.25 1562303.16 

Structural Variable     

LOT_Sqft Square footage of 

parcel 

6901.98 3365.71 650 194277 

Living_Sqf Square footage of 

interior area 

1659.43 628.93 424 6051 

Age Age of house 34.43 21.52 0 149 

FirePlc_du Fire place (dummy) 0.83 0.38 0 1 

N_Rooms Number of rooms  5.57 1.29 2 13 

N_Story Second story = 1 

(dummy) 

0.39 0.49 0 1 

Pooldum Presence of Pool 0.0679 0.2515 0 1 

GARAGE Square footage of 

garage 

440.53 149.93 0 4320 

Neighborhood Variable     

M_HH_Income Median household 

income 

73887.39 23698.85 14965 145625 

POP_dens Population 

density/sqml 

4418.97 2973.97 36.39 12228.51 

PCI_Year_Same Estimated PCI 

same year home 

sold 

61.37 27.01 0 98.40 

Locational Variable     

CBD Distance to nearest 

CBD 

3894.47 2119.89 92.22 12236.66 

Station Distance to Amtrak 

Station 

10622.20 5366.96 246.62 32344.42 

All_Arterial Arterial road 

dummy 

0.0214 0.145 0 1 

Hwy_exit Distance to 

highway exit 

2356.92 3631.32 89.93 33623.88 

Park Distance to 

regional park 

551.28 534.27 0.06 5340.33 

Rail_300 300m within rail 

track 

0.02 0.14 0 1 

Hwy320 320m within 

highway center line 

0.10 0.30 0 1 
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Table 8 

Percent of Observations for Each City and Year  

City % of observations Year % of observations 

Vacaville 26 2009 11 

Rio Vista 1 2010 19 

Dixon 1 2011 19 

Vallejo 31 2012 19 

Suisun City 8 2013 13 

Benicia 5 2014 11 

Fairfield 25 2015 9 

Solano County 1   

PCI Examination 

 Substantial effort was put into thoroughly examining the PCI data to understand 

the relationship between PCI and the other variables used in the hedonic models, and to 

diagnose inconsistent PCI coefficients (i.e., sign changes in different models) in the 

results of the selected regression models. The data included an estimated PCI value for 

each road segment for each year from 2009 to 2015. As explained above, these estimates 

are based on periodic field surveys of pavement condition. A pavement condition 

deterioration model is used to estimate PCI for any years between field surveys. The data 

also included the date and surveyed pavement condition value for the most recent PCI 

survey. In the remainder of this section, we highlight some data quality issues that we 

encountered when using these PCI data. 

 First, surveyed PCI values may have measurement errors that could affect the 

results of hedonic regressions (Champ et al., 2003). An expert in grading the pavement 

condition of each road segment provides the PCI values in years when a road condition 

survey was done. The problem is that the same expert does not survey all of the roads in 

the County, leading to the possibility of inconsistency in surveyed PCI values. There has 
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recently been a training program for pavement condition surveyors that aims to address 

this issue. However, the data we are using spans the period both before and after the 

training program. 

 Second, we found large changes in PCI values between estimated values in one 

year and surveyed values in the next. In the case of large PCI increases, it would make 

sense that road maintenance and/or capital improvement operations substantially 

improved the pavement condition, and then a new pavement survey confirmed it (e.g., an 

estimated PCI of 37 in 2013 and a surveyed PCI of 100 in 2014). However, changes in 

the opposite direction (e.g., an estimated PCI of 65 in 2010 and a surveyed PCI of 27 in 

2011) are problematic because there is no reasonable explanation for them, and one or 

both of those PCI values are likely to be far from correct. If the estimated PCI is incorrect 

in these cases, it casts doubt on all estimated PCI values in the dataset. There are 

891cases in our data where PCI values “jump” downward by more than 20 points from 

one year to the next, not including those cases where we know that the reason is a new 

PCI survey.  

 Because of these doubtful estimated PCI values, we ran two regression 

models―one with the full dataset including estimated PCI (i.e., 19,608 cases) and 

another that is restricted in surveyed PCI dataset (i.e., 2,960 cases). We have identified 

cases where year-to-year increases occurred, and marked them as likely additional survey 

years. We have also marked year-to-year drops of more than 7 PCI points as likely 

additional survey years. This increases our sample size of homes sold in years with 

surveyed PCI to more than 5000. 
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Methods 

Specifying the Hedonic Model 

To select the best functional form for a regression model, scatter plots between 

the dependent and explanatory variables were examined. Scatter plots of log-transformed 

variables were also compared. The variance inflation factor (VIF) was also examined 

because of the high likelihood of multi-collinearity among some proximity variables such 

as highway exits, transit hub, and Amtrak station. Multi-collinearity was found, and as a 

result, proximity to airports, landfill, and transit hubs were removed from the model. The 

double-log functional form was selected for this study and is expressed as 

                                                                                        (1) 

Where: 

   is the price of property i 

  is a constant 

   are structural characteristics for property i 

   are neighborhood characteristics for property i 

   are locational characteristics for property i 

   are proximity band dummies for property i 

               represent the coefficients of    ,   ,   , and    respectively, and  

   is random error for property i.  

 

 In addition to general hedonic model for this study represented above, a hedonic 

model for individual city was developed because each city has different characteristics 

for the location and/or neighborhood variables as well as different pavement expenditure 

and PCI trends. For instance, because Vallejo and Benicia are adjacent to the coastline, 

which usually has a positive impact on property value near coastline, this characteristic 

are included in the hedonic model for these cities.  
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Spatial Autocorrelation 

 Recently, it is becoming more common to recognize inherent spatial effects (e.g., 

spatial autocorrelation) among parcels in hedonic models (Patridge et al., 2012). When 

home prices exhibit spatial autocorrelation, a hedonic model will generate inconsistent 

estimates. The presence of spatial autocorrelation in the error term produces inefficient 

parameter estimates (LeSage and Pace, 2009).  

Spatial dependence was tested with the current data set. Thiessen polygon and 

binary distance using point data for houses sold were used to create spatial weight 

matrices for the spatial dependence test. Lagrange Multiplier (LM) test statistics, which 

allow us to identify presence of either spatial autocorrelation in the dependent variable or 

spatial autocorrelation in the error term or both (Anselin and Rey 2014), were used as the 

testing method. In the current data set, LM test statistics specified presence of spatial 

autocorrelation in the error term only, and this was confirmed through mapping of 

regression residuals. Thus, the spatial error model, which can control for spatial 

autocorrelation in the error term, was used for the final regression analysis. The general 

form of the spatial error model is shown in Equations (2) and (3) 

                                                                                                                       (2) 

                                                                                                                           (3) 

where: 

  is a vector of property prices 

  is the constant term;  

   is the n×1 vector of the coefficients of the explanatory variables 

X is the m×n matrix of explanatory variables 

  is the n×1 vector of spatial autoregressive error term 

  is the coefficient of the spatially correlated error term 

W is the standardized spatial weights m×m matrix with zero diagonal terms that 

 assigns the potential spatial correlation 
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   is the spatially lagged error terms, and 

  is independent but heteroskedastically distributed error 

 

 

Results 

 All Properties 

 Initial regression analysis was performed using StataSE 12 for Windows to 

determine the best model. The Lagrange Multiplier (LM) test value of 0.056 (p = 0.81) 

for lag and 56.21 (p = 0.000) for error confirmed spatial dependence in error term. A 

Koenker-Bassett test value of 2203.51 (p = 0.000) confirmed spatial heterogeneity in the 

data. Thus, we applied a spatial error model with heterogeneity option using GeoDaSpace 

to estimate the coefficients of the independent variables. Table 9 shows the coefficients, 

standard error, z-Stat, and significance for the spatial error model. The resulting model fit 

is fairly strong with a Pseudo R² of 0.79
7
 and an OLS adjusted R² of 0.79.  

 Structural variables are all statistically significant at the 0.001 level and all signs 

of coefficients are as expected. For instance, number of stories and age of house are 

negative and significant, while other structural variables such as home square footage, lot 

size, number of rooms, number of fireplaces, presence of pool, and square footage of 

garage are all positive and significant as expected.  

 For neighborhood variables, median household income is positively associated 

with property value and highly significant at the 0.001 level, while population density is 

negatively associated with property value and highly significant at the 0.001 level. Signs 

of the coefficients are as expected. 

                                                 
7 Pseudo R² cannot be interpreted as one would interpret an OLS R², however, a higher Pseudo R² 

still can be interpreted as better model fit than a lower one (Anselin 1988). 
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 Overall, most of the locational variables are highly significant at the 0.001 level 

except distance from highway exit and some of the city dummy variables. For instance, 

proximity to the central business district (CBD) and arterial roads, which represent the 

accessibility of jobs and transportation, are positively associated with the property values.  

 Finally, the coefficient of PCI, the variable of the greatest interest, is not 

statistically significant. This means that with our data, we cannot detect a relationship 

between residential property values and pavement condition adjacent to the home. As 

noted earlier, however, the PCI data may contain errors. We also analyze subsamples of 

the data set. 
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Table 9 

Estimation Results of All Properties (N = 19,608) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 5.982954 0.114775 52.128 0.000 

Structural variables 
    

ln_LivinSq 0.607351 0.011209 54.184 0.000 

ln_LotSqft 0.100787 0.005948 16.945 0.000 

N_Rooms 0.014791 0.002364 6.256 0.000 

N_Story -0.022165 0.004415 -5.020 0.000 

Age -0.003681 0.000175 -21.023 0.000 

FIREPLC 0.061121 0.005251 11.639 0.000 

pooldum 0.061718 0.005626 10.970 0.000 

ln_Garage 0.011299 0.001813 6.231 0.000 

Neighborhood  variables 
    

ln_M_incom 0.151992 0.008438 18.013 0.000 

ln_PopDens -0.035832 0.001538 -23.296 0.000 

PCI_Year_Same -0.000085 0.000080 -1.056 0.291 

Locational variables 
    

ln_CBD -0.018795 0.003904 -4.815 0.000 

ln_Exit -0.008250 0.003262 -2.530 0.011 

All_Arterial -0.058370 0.011953 -4.883 0.000 

ln_Park 0.012945 0.001522 8.506 0.000 

Hwy320 -0.050669 0.006406 -7.910 0.000 

Benicia 0.429382 0.030476 14.089 0.000 

Dixon 0.049858 0.030987 1.609 0.108 

Fairfield -0.004017 0.029677 -0.135 0.892 

Rio Vista -0.254982 0.036022 -7.078 0.000 

Suisun City -0.086364 0.030381 -2.843 0.004 

Vacaville 0.099618 0.029713 3.353 0.001 

Vallejo -0.000263 0.029755 -0.009 0.993 

Y_09 -0.032701 0.007157 -4.569 0.000 

Y_10 -0.061449 0.005679 -10.821 0.000 

Y_11 -0.122764 0.005694 -21.560 0.000 

Y_12 -0.119231 0.005538 -21.530 0.000 

Y_13 -0.064783 0.006109 -10.604 0.000 

Y_14 0.026119 0.005962 4.381 0.000 

Lambda 0.079738 0.011013 7.240 0.000 

     Pseduo R² 0.79 
   

OLS Adjusted R² 0.79 
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Properties with Surveyed PCI 

 Because the estimated PCI may include errors due to the road deterioration 

prediction model over or underestimating the true pavement condition, we estimate our 

model on the subset of home sales that occurred in a year when PCI was surveyed. This 

subsample includes both home sales that occurred in the year when the PCI was most 

recently surveyed – as listed in the dataset – as well as home sales that occurred in a year 

for which we presume that the PCI must have been surveyed – based on the year-to-year 

patterns of estimated PCI values. Like the full sample, spatial autocorrelation for the error 

term was detected in this subsample, confirmed by the LM test value of 0.639 (p = 0.4) 

for lag and 80.5 (p = 0.000) for error. A Koenker-Bassett test value of 671.99 (p = 0.000) 

also confirmed the presence of heterogeneity in the subsample. Thus, we again applied a 

spatial error model with heterogeneity option using GeoDaSpace. Table 10 shows the 

results of analysis. The resulting model fit is fairly strong with a Pseudo R² of 0.8 and an 

OLS adjusted R² of 0.8.  

 Overall, the results are not different from the All Property model. For instance, 

structural variables are all statistically significant at the 0.01 level except N_Story which 

is still statistically significant at the 0.05 level and all coefficients signs are as expected. 

For the neighborhood variables, median household income is positively associated with 

property value and highly significant at the 0.001 level, while population density is 

negatively associated with property value and highly significant at the 0.001 level. Signs 

of both coefficients are as expected. For the locational variables, however, some variables 

are less significant than the same variables are in the All property model. For instance, 

distance to Hwy320 dummy variable is significant at the 0.05 level and distance to 
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All_Arterial is not significant even at the 0.05 level. However, all signs are consistent 

with the All property model. The coefficient of PCI is not significant even at the 0.1 

level, thus there is no detectable relationship between residential property values and 

pavement condition. 
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Table 10 

Estimation Results of the Properties with Surveyed PCI (N = 5,121) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 6.604103 0.236379 27.939 0.000 

Structural variables 
    

ln_LivinSq 0.629901 0.022041 28.579 0.000 

ln_LotSqft 0.097577 0.011482 8.498 0.000 

N_Rooms 0.017324 0.004777 3.626 0.000 

N_Story -0.017726 0.008291 -2.138 0.033 

Age -0.004154 0.000338 -12.306 0.000 

FIREPLC 0.052614 0.009586 5.488 0.000 

pooldum 0.059255 0.011109 5.334 0.000 

ln_Garage 0.009597 0.003700 2.594 0.009 

Neighborhood variables 
    

ln_M_incom 0.100088 0.017196 5.820 0.000 

ln_PopDens -0.040270 0.003077 -13.088 0.000 

PCI_Year_Same 0.000093 0.000168 0.552 0.581 

Locational variables 
    

ln_CBD -0.022683 0.007942 -2.856 0.004 

ln_Exit 0.003356 0.006611 0.508 0.612 

All_Arterial -0.026363 0.021123 -1.248 0.212 

ln_Park 0.010028 0.003005 3.337 0.001 

Hwy320 -0.026573 0.012152 -2.187 0.029 

Benicia 0.535993 0.046990 11.407 0.000 

Dixon 0.078867 0.046617 1.692 0.091 

Fairfield 0.104530 0.044737 2.337 0.019 

Rio Vista -0.284656 0.062014 -4.590 0.000 

Suisun City -0.050384 0.046704 -1.079 0.281 

Vacaville 0.143726 0.044860 3.204 0.001 

Vallejo 0.057584 0.044455 1.295 0.195 

Y_09 -0.243667 0.077953 -3.126 0.002 

Y_10 -0.364392 0.076756 -4.747 0.000 

Y_11 -0.323492 0.077158 -4.193 0.000 

Y_12 -0.364124 0.077115 -4.722 0.000 

Y_13 -0.292879 0.076594 -3.824 0.000 

Y_14 -0.266451 0.076820 -3.468 0.001 

Lambda 0.140602 0.017833 7.884 0.000 

     Pseduo R² 0.8 
   

OLS Adjusted R² 0.8 
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Properties of Each City 

 As noted previous section, both neighborhood and locational characteristics as 

well as pavement related expenditure are different in each city. Thus, some control 

variables in specific cities should be removed or added. For example, Rio Vista is a very 

small city and around 98% of sold homes are located within 2 miles of one another. This 

means that certain neighborhood (e.g., population density) or locational (e.g., distance to 

water front) characteristics in Rio Vista are essentially the same for all properties. Thus, 

these control variables should be excluded in the regression model.  

 Table 11 shows a summary of the results for all cities. Some cities such as 

Vallejo, Vacaville, Fairfield, Suisun City, and Rio Vista required the spatial error model 

with heterogeneity option, while other cities did not. The resulting model fits are 

generally strong, with R-squared statistics ranging from 0.64 to 0.86. The relationship 

between PCI and property value seemed to differ by city. Like the County-level models 

presented earlier, some city models yielded statistically insignificant results such as 

Vallejo, Vacaville, and Solano County. PCI results for Dixon and Rio Vista are negative 

and significant at the 0.01 and 0.05 level respectively, while Fairfield’s is positive and 

highly significant at the 0.001 level. In Suisun City, the relationship between PCI and 

home values are positive and somewhat significant at the 0.1 level, while in Benicia the 

relationship between PCI and home values are negative and somewhat significant at the 

0.1 level (see APPENDIX G to N for full city-specific results tables).  
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Table 11 

Estimation Results of Cities 

City N = 

19608 

Model Adj- R² 

/Pseudo 

R² 

PCI 

Coef. Std.err z-Stat Sig. 

Vallejo 6127 Spatial error/Het 0.70 -0.000199 0.000127 -1.568 0.117 

Vacaville 5165 Spatial error/Het 0.77 -0.000135 0.000173 -0.781 0.435 

Fairfield 4962 Spatial error/Het 0.86 0.000692 0.000184 3.766 0.000 

Suisun 

City 

1645 Spatial error/Het 0.69 0.000292 0.000159 1.837 0.066 

Benicia 971 OLS (no spatial 

autocorrelation) 

0.75 -0.000409 0.000242 -1.689 0.091 

Dixon 279 OLS (no spatial 

autocorrelation) 

0.81 -0.003663 0.000678 -5.404 0.000 

Rio Vista 243 Spatial error/Het 0.64 -0.000931 0.000405 -2.298 0.022 

Solano 

County 

216 OLS (no spatial 

autocorrelation) 

0.85 0.001273 0.000881 1.444 0.150 

 

Discussion and Conclusions 

 The purpose of this study was to identify the relationship between residential 

property values and pavement condition. We hypothesized that higher PCI is positively 

associated with property values. Although there is no peer reviewed literature directly 

related to this study, many previous studies have developed hedonic models of 

neighborhood blight (Anderson, 1990; Man and Rosentraub, 1998; Dye and Merriman, 

2000). We developed hedonic regression models for all properties, properties assigned 

surveyed PCI, and for each city. In general, structural, neighborhood, and locational 

variables for all models are not significantly different in sign except for in some of the 

city-specific models. 

 However, in terms of PCI, results vary across all models (i.e., positive in 2 cities, 

negative in 3 cities, and zeros in 2 cities). We have tried many different combinations 
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such as time periods (2009 - 2011/2012 - 2015), focusing on certain ranges of property 

values (high / low), and adding other neighborhood characteristics, but the results 

remained basically unchanged. According to this model, pavement condition as 

represented by PCI does not appear to have a strong and consistent relationship with 

home values in Solano County. Further, the negative signed results are troubling because 

there is no reasonable explanation for them – a better road should never diminish the 

value of a house. The fact that we obtain these counterintuitive results suggests one or 

both of the following: (1) there may be a problem in the data or (2) road pavement 

condition is closely related to characteristics of the home or neighborhood that do 

diminish the value of a house. 



  92 

CHAPTER 5 

CONCLUSIONS 

Overview 

This dissertation examined the relationship between transportation infrastructure 

and property values using spatial hedonic regression models. This dissertation proposed a 

generalized and more comprehensive theory of the positive and negative relationships 

between transportation infrastructure and real property values, which disentangles 

different effects by road and rail, by nodes and links, and by distance from them. A 

distance band approach was used to capture effects of non-linear distance function and 

distance ranges. None of previous studies have conducted a unified approach as 

developed here to differentiate all these effects.  

The strongest conclusion drawn from the results of the Chapter 2 and 3 is that 

proximity to transport nodes was associated positively with both residential and 

commercial property values. As a function of distance from highway exits and LRT 

stations, the distance-band coefficients formed a typical positive longer-range distance   

decay pattern of accessibility effect but there is no shorter range distance   decay of 

disamenity effect. As hypothesized, the accessibility effect for highway exits extended 

farther than for LRT stations in residential property model, but for commercial property 

models the distance range of the two modes was reversed and effect of LRT stations 

extended farther than that of highway exits. For both types of property, the magnitude of 

accessibility effect for highway exits is smaller than for LRT stations. Unexpectedly, the 

hypothesized negative effect on property values immediately surrounding rail stations 

and highway exits was not evident for either mode or either property type. As speculated 
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in the relevant chapters, these results may be explained by the inherent characteristics of 

property type (tolerance of noise: resident vs. commercial), features not controlled for 

(noise barrier), and inaccurately estimated data (point for nodes and centerline for links). 

These explanations need to be further investigated. 

Coefficients for the distance from highway and LRT links were generally 

negative but not significant in the residential model. However, in the all-commercial 

model, the coefficients for the distance from highway and LRT links were significant and 

negative, as expected. However, coefficients for the distance from highway and LRT 

links vary based on the submarket of commercial property. Another results of Chapter 2 

for the effect of highway configuration on home values showed that below-grade 

highways have relatively positive impacts on nearby houses compared to those at ground 

level or above in Phoenix, Arizona. Lastly, the main conclusion that can be drawn from 

the results of the analyses presented in Chapter 4 is that pavement condition had no 

relationship with the residential property values in Solano County, California. 

Implications 

 This dissertation contributes to the hedonic literature in that Chapter 2 and 3 have 

unified a number of disparate previous findings in the hedonic literature into a single 

model for residential and commercial property markets (Golub et al, 2012), incorporating 

highway and light rail (Bowes and Ihlanfeldt 2001; Ryan 2005; Andersson et al, 2010), 

nodes and links (Kilpatrick et al, 2007; Andersson et al, 2010), and distance decay of all 

these effects. Theoretically, the results of Chapter 2 and 3 support Alonso's bid rent 

theory for residential and commercial property markets, and also support a bid rent theory 

for commercial properties that differs somewhat in gradient and extent from the results of 
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residential property model due to location of utility maximization for each market 

(Alonso 1964). The results of Chapter 2 and 3 may be useful to property buyers to 

identify the location where net benefit of accessibility is maximized. Real-estate 

developers may be able to decide where best to build real estate for maximizing benefit 

by predicting where markets will reward location the most. Transportation planners, on 

the other hand, may be able to secure and distribute tax revenue based on the positive and 

negative effects captured by this dissertation. City authorities could use these results as a 

basis for value capture and tax increment financing of transportation projects, which 

depend on knowing the size and extent of benefits to nearby property.  

Chapter 4 contributes to the hedonic literature by analyzing the relationship 

between home values and road pavement condition, which has not been published in the 

peer-reviewed literature yet. A small but positive effect of pavement condition on home 

values was hypothesized. Despite testing several different model formulations, no 

significant positive relationship was found. These non-significant results need to be 

confirmed by other studies, which would be important for public policy in terms of 

whether housing values are a valid justification for street maintenance. 

Future Research 

 The three individual articles presented in this dissertation untangled relationships 

between property values and transportation infrastructure that is invested for 

accessibility, mobility, and economic development. However, not all results are as 

hypothesized and there may be reasons why some results are not correspond with 

hypotheses. Specifically, donut effect from highway exits and LRT stations has not been 

found in both residential and commercial property models. Besides, negative effect from 
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highways and LRT links was not captured in residential property model, while it was 

captured in commercial property model. One possible reason is the data used for highway 

links and exits, which have non-negligible width (e.g., width of highway links is about 

35-90m and width of some highway interchanges is about 160m), and the traffic noise 

effect decays with distance based on a logarithmic scale and fades away within 300m of 

the noise source (Nelson, 1982). Using the centerlines of highway and the points of exit 

cannot measure the exact distance from the properties to the edge of the highway nodes 

and links. Thus, further research may be required to investigate with more accurate data 

why proximity to the links—which theoretically should have a primarily negative 

disamenity from noise and air pollution and no positive accessibility effect— and 

proximity to the exits—which theoretically should have a net effect of accessibility and 

disamenity— was not captured for highway and rail in Chapter 2. 

 Since light rail transit is a new type of transport investment in Phoenix, it may be 

interesting to study how this investment influences land use, population, employment, 

walkability, and property values in geographical extent. By comparing those factors in 

terms of pre-LRT and post-LRT periods, impacts and service area of stations might be 

identified and validity of LRT investment might be supported. Furthermore, it may be 

valuable to investigate whether sidewalk or bike infrastructure positively impacts on 

property markets including single- and multi-family home and commercial property, 

because walkability has been proved to increase home values in some cities in the U.S. 

and Canada where walkability is increased (Cortright 2009; Chad 2012; Li et al, 2015).

 In relation to road pavement, the City of Phoenix has applied new pavement 

material (e.g., rubberized asphalt) to roads to reduce traffic noise. This can be an 
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interesting subject of future study. Because quiet pavement can reduce traffic noise about 

5.1 dB, reduction of noise level may positively affect residential property values. Quiet 

pavement projects are still being evaluated whether they can be used as an alternative or 

supplement to noise barriers (Donavan et al., 2013). No study has examined the impact of 

quiet pavement on property values. 
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APPENDIX A  

SUMMARY OF MAIN VARIABLES 
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 (Observations = 20,149) 

Variable Description Mean Std. Dev. Min Max 

Structural variables     

Price  Sale price ($) - dependent variable 124,499 122,915 10,000 1,950,000 

Sqm Living area (m²) 150.639 56.757 33.445 662.956 

Area_sqm Lot size (m²) 7,210 3,556 1,542 46,282 

Bathfix Number of bathroom fixtures 6.567 2.335 2 25 

Age Age of house (years) 31.4 19.3 1 101 

Pool Presence of pool (dummy) 0.254 0.4353 0 1 

Neighborhood variables     

N_GPark Nearest green park (m) 1,092 957.7 11.17 7522.98 

N_DPark Nearest t desert park (m) 6,735 5,675 11.88 21,649 

N_Golf Nearest golf course (m) 2,594 1,859 6.59 17,519 

N_DCenter 
Nearest distance from city center 

(m) 
15,129 7,521 961 47,505 

Hway_150m < 150m from highway (dummy) 0.01816 0.13355 0 1 

Hway_250m 150-250m from highway (dummy) 0.02308 0.15016 0 1 

Hway_350m 250-350m from highway (dummy) 0.02209 0.14697 0 1 

Exit_400m < 400m from highway exit (dummy) 0.01906 0.13673 0 1 

Exit_800m 400-800m from highway exit 

(dummy) 

0.10194 0.30258 0 1 

Exit_1200m 800-1200m from highway exit 

(dummy) 

0.13872 0.34566 0 1 

Exit_1600m 1200-1600m from highway exit 

(dummy) 

0.11385 0.31764 0 1 

Exit_2000m 1600-2000m from highway exit 

(dummy) 

0.09291 0.29031 0 1 

Exit_2400m 2000-2400m from highway exit 

(dummy) 

0.09345 0.29107 0 1 

Exit_2800m 2400-2800m from highway exit 

(dummy) 

0.08308 0.27601 0 1 

Exit_3200m 2800-3200m from highway exit 

(dummy) 

0.06765 0.25114 0 1 

S_300m < 300m from light rail station 

(dummy) 

0.00104 0.03227 0 1 

S_600m 300-600m from light rail station 

(dummy) 

0.00382 0.06170 0 1 

S_900m 600-900m from light rail station 

(dummy) 

0.00819 0.09012 0 1 

S_1200m 900-1200m from light rail station 

(dummy) 

0.01003 0.09963 0 1 

S_1500m 1200-1500m from light rail station 

(dummy) 

0.00928 0.09589 0 1 

S_1800m 1500-1800m from light rail station 0.00744 0.08596 0 1 
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(dummy) 

S_2100m 1800-2100m from light rail station 

(dummy) 

0.01658 0.12768 0 1 

S_2400m 2100-2400m from light rail station 

(dummy) 

0.01544 0.12328 0 1 

S_2700m 2400-2700m from light rail station 

(dummy) 

0.01653 0.12749 0 1 

S_3000m 2700-3000m from light rail station 

(dummy) 

0.01806 0.13318 0 1 

LT_100m < 100m from light rail track 

(dummy) 

0.00025 0.01575 0 1 

LT_200m 100-200m from light rail track 

(dummy) 

0.00099 0.03149 0 1 

LT_300m 200-300m from light rail track 

(dummy) 

0.00194 0.04395 0 1 

M_income Median household income ($) 53,387 21,650 9,668 231,500 

Pop_dens Population density (per km²) 2,233 1,070 4 6,377 

Environmental variables     

P_Trees 
Portion of 200m buffer covered by 

trees 
0.10047 0.0663 0.0008 0.5491 

P_Grass Portion of 200m buffer covered by 

grass 

0.12513 0.0789 0 0.5714 

Above 
Highway lies above ground level 

(dummy) 
0.00913 0.0951 0 1 

Below Highway lies below ground level 

(dummy) 

0.01295 0.1131 0 1 

H_Index Monthly home sales Index  173.292 7.9949 163.4 194.7 

 

  



  108 

APPENDIX B  

SUMMARY OF SELECTED LITERATURE ON ROAD AND RAIL IMPACTS IN 

HEDONIC PRICE MODELS FOR COMMERCIAL PROPERTIES 
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Authors Dependent 

Variable 

Study Focus Distance 

Measure 

Transport 

Mode 

Network 

Element 

Time 

frame 

Highway 

or Road 

Rail or 

LRT 

Links Nodes 

Damm et al., 

1980 

Assessed 

landvalues 

(Retail) 

Accessibility  Actual 

distance/0.

1 mile 

dummy 

 O  O Multi-year 

(1969-

1976) 

Landis and 

Loutzenheis

er 1995 

Asking rents 

(Office) 

Accessibility Multi-band 

(200m 

bands up to 

1/2 mile) 

 O  O Single-

year 

(1993) 

Sivitanidou 

1995 

Effective 

rents 

(Office) 

Accessibility # of 

passing 

highway/A

ctual 

distance 

from 

Airport 

O Airport  O Single-

year 

(1990) 

Sivitanidou 

1996 

Assessed 

property 

values 

(Office) 

Accessibility Actual 

distance 

O  O  Single-

year 

(1992) 

Bollinger et 

al., 1998 

Asking rents 

(Office) 

Accessibility Single-

band 

(1/4 mile 

for rail 

transit, 1 

mile for 

Hwy) 

O O  O Multi-year 

(1990, 

1994, 

1996) 

Weinberger 

2001 

Effective 

rents 

(Commercial 

whole) 

Accessibility Multi-band 

(1/4 mile 

bands for 

LRT & 1 

mile bands 

for Hwy) 

O O  O Multi- 

Year 

(1984-

2000) 

Cervero and 

Duncan 

2002 

Assessed 

land values 

(Commercial 

whole) 

Accessibility Single-

band 

(1/4 mile 

for rail & 

1/2 mile for 

Hwy) 

 O  O Two-year 

(1998-

1999) 
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Ryan 2005 Asking rents 

(Office/ 

Industrial) 

Accessibility Actual 

distance  

O O  O Multi-year 

(1986-

1995) 

Billings 

2001 

Sale 

Prices 

(Commercial 

whole) 

Accessibility Single band 

(1 mile for 

rail)/Actual 

distance 

(Hwy) 

O O  O Multi-year 

(1994-

2008) 

Golub et al., 

2012 

Sale 

Prices 

(Commercial 

whole) 

Accessibility 

&disamenity 

Actual 

distance 

 O O O Multi-year 

(1988-

2010) 

This study Sale 

Prices 

(Commercial 

Whole/Office

/Industrial 

/Retail) 

Accessibility 

&disamenity 

Multi-band O O O O Multi-year 

(2000-

2014) 
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APPENDIX C 

ESTIMATION RESULTS FOR THE WHOLE COMMERCIAL PROPERTIES 
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 (N = 3,642) 

Variable Coef Std. Err. z-stat Sig. 

(Constant) 6.3127 0.5180 12.19 0.000 

Structural Variables (  )    

Lot(ln) 0.6457 0.0091 70.80 0.000 

T_Interior (ln) 0.2540 0.0139 18.31 0.000 

Stories 0.0886 0.0163 5.43 0.000 

Age -0.0140 0.0011 -13.15 0.000 

     

Neighborhood Variables (  )    

Median_HH (ln) 0.2265 0.0354 6.40 0.000 

Pop_Dens (ln) -0.0109 0.0137 -0.80 0.426 

     

LocationalVariables (  )    

Dist_CBD (ln) -0.0732 0.0317 -2.31 0.021 

Dist_Air (ln) -0.1350 0.0229 -5.89 0.000 

Dist_Mall (ln) -0.1782 0.0165 -10.79 0.000 

Dist_Arterial (ln) -0.0919 0.0179 -5.13 0.000 

Exit_300m 0.4481 0.0769 5.83 0.000 

Exit_600m 0.1287 0.0403 3.19 0.001 

Exit_900m -0.0176 0.0341 -0.52 0.605 

S_300m -0.6099 0.1197 -5.09 0.000 

S_600m -0.6107 0.1280 -4.77 0.000 

S_900m -0.0732 0.0317 -2.31 0.021 

S_1200m -0.1350 0.0229 -5.89 0.000 

S_1500m -0.1782 0.0165 -10.79 0.000 

S_1800m -0.0919 0.0179 -5.13 0.000 

S_2100m 0.4481 0.0769 5.83 0.000 

Hwy_150m 0.1287 0.0403 3.19 0.001 

Hwy_250m -0.0176 0.0341 -0.52 0.605 

Hwy_350m 1.1380 0.1367 8.32 0.000 

LT_100m 0.6137 0.0765 8.02 0.000 

LT_200m 0.3819 0.0749 5.10 0.000 

LT_300m 0.2878 0.0797 3.61 0.000 

     

Lambda     0.1004 0.0271 3.70 0.000 

     

Pseudo R² 0.792    
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APPENDIX D 

ESTIMATION RESULTS FOR THE INDUSTRIAL PROPERTIES 
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 (N = 360) 

Variable Coef Std. Err. z-stat Sig. 

(Constant) 5.1911 1.4664 3.54 0.000 

Structural Variables (  )    

Lot(ln) 0.5300 0.0252 21.05 0.000 

T_Interior (ln) 0.4849 0.0417 11.64 0.000 

Stories -2.1428 0.4318 -4.96 0.000 

Age -0.0123 0.0028 -4.33 0.000 

     

NeighborhoodVariables (  )    

Median_HH (ln) 0.1494 0.1019 1.47 0.142 

Pop_Dens (ln) 0.0312 0.0317 0.99 0.324 

     

Locational Variables (  )    

Dist_CBD (ln) 0.0848 0.0739 1.15 0.251 

Dist_Air (ln) -0.1928 0.0679 -2.84 0.004 

Dist_Mall (ln) -0.0094 0.0494 -0.19 0.850 

Dist_Arterial (ln) 0.0061 0.0359 0.17 0.865 

Exit_300m 0.2735 0.1217 2.25 0.025 

Exit_600m 0.2957 0.0870 3.40 0.001 

Exit_900m 0.0831 0.0817 1.02 0.309 

S_600m 1.7012 0.4288 3.97 0.000 

S_900m 0.5148 0.2349 2.19 0.028 

S_1200m 0.2707 0.3929 0.69 0.491 

Hwy_150m -0.4986 0.1108 -4.50 0.000 

Hwy_250m -0.6264 0.1096 -5.72 0.000 

Hwy_350m -0.3208 0.1291 -2.48 0.013 

LT_100m -0.1123 0.4200 -0.27 0.789 

LT_200m -1.2516 0.2502 -5.00 0.000 

LT_300m -1.9279 0.7329 -2.63 0.009 

     

Lambda     0.2111 0.0512 4.12 0.000 

     

Pseudo R² 0.871    
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APPENDIX E 

ESTIMATION RESULTS FOR THE OFFICE PROPERTIES 
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 (N = 1,214) 

Variable Coef Std. Err. z-stat Sig. 

(Constant) 7.4797 0.8121 9.21 0.000 

Structural Variables (  )    

Lot (ln) 0.5704 0.0155 36.79 0.000 

T_Interior (ln) 0.3212 0.0254 12.66 0.000 

Stories 0.0600 0.0178 3.36 0.001 

Age -0.0131 0.0015 -8.50 0.000 

     

Neighborhood Variables (  )    

Median_HH (ln) 0.1715 0.0536 3.20 0.001 

Pop_Dens (ln) 0.0248 0.0217 1.14 0.253 

     

Locational Variables (  )    

Dist_CBD (ln) -0.0678 0.0433 -1.57 0.117 

Dist_Air (ln) -0.2253 0.0357 -6.32 0.000 

Dist_Mall (ln) -0.2150 0.0280 -7.69 0.000 

Dist_Arterial (ln) -0.0180 0.0226 -0.80 0.426 

Exit_300m 0.4852 0.1272 3.82 0.000 

Exit_600m 0.1026 0.0595 1.72 0.085 

Exit_900m -0.0064 0.0482 -0.13 0.895 

S_300m 0.7605 0.1704 4.46 0.000 

S_600m 0.5427 0.0929 5.84 0.000 

S_900m 0.2913 0.1121 2.60 0.009 

S_1200m 0.4369 0.1222 3.58 0.000 

S_1500m 0.1974 0.1559 1.27 0.205 

Hwy_150m -0.1386 0.1290 -1.07 0.283 

Hwy_250m 0.0703 0.1121 0.63 0.530 

Hwy_350m 0.0425 0.0879 0.48 0.628 

LT_100m -0.4832 0.1469 -3.29 0.001 

LT_200m -0.1370 0.1829 -0.75 0.454 

LT_300m -0.4380 0.1452 -3.02 0.003 

     

Lambda     0.2197 0.0388 5.66 0.000 

     

Pseudo R² 0.83    
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APPENDIX F 

ESTIMATION RESULTS FOR RETAIL AND SERVICE PROPERTIES 
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 (N = 2,068) 

Variable Coef Std. Err. z-stat Sig. 

(Constant) 6.2584 0.8042 7.78 0.000 

Structural Variables (  )    

Lot (ln) 0.6492 0.0180 36.00 0.000 

T_Interior (ln) 0.2341 0.0197 11.88 0.000 

Stories 0.1872 0.0502 3.73 0.000 

Age -0.0122 0.0012 -10.35 0.000 

     

Neighborhood Variables (  )    

Median_HH (ln) 0.2137 0.0621 3.44 0.001 

Pop_Dens (ln) -0.0116 0.0251 -0.46 0.644 

     

Locational Variables (  )    

Dist_CBD (ln) -0.1048 0.0457 -2.29 0.022 

Dist_Air (ln) -0.0781 0.0406 -1.92 0.054 

Dist_Mall (ln) -0.1364 0.0268 -5.08 0.000 

Dist_Arterial (ln) -0.1626 0.0280 -5.80 0.000 

Exit_300m 0.1408 0.1216 1.16 0.247 

Exit_600m 0.0830 0.0641 1.29 0.195 

Exit_900m -0.0144 0.0580 -0.25 0.804 

S_300m 1.0809 0.2232 4.84 0.000 

S_600m 0.4114 0.1257 3.27 0.001 

S_900m 0.3393 0.1273 2.67 0.008 

S_1200m 0.1473 0.1138 1.29 0.196 

Hwy_150m -0.3532 0.1066 -3.31 0.001 

Hwy_250m -0.3318 0.1015 -3.27 0.001 

Hwy_350m -0.2262 0.0810 -2.79 0.005 

LT_100m -0.4247 0.1905 -2.23 0.026 

LT_200m -0.6110 0.1987 -3.08 0.002 

LT_300m -0.4440 0.1861 -2.38 0.017 

     

Lambda     0.5474 0.0335 16.32 0.000 

     

Pseudo R² 0.782    
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APPENDIX G 

DETAILED RESULTS FOR VALLEJO 
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 (N = 6,127) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 6.017576 0.264061 22.789 0.000 

Structural variables 
    

ln_LivinSq 0.427330 0.023678 18.048 0.000 

ln_LotSqft 0.073282 0.011486 6.380 0.000 

N_Rooms 0.038432 0.004267 9.007 0.000 

N_Story 0.043093 0.011087 3.887 0.000 

Age -0.004024 0.000331 -12.174 0.000 

FIREPLC 0.088164 0.009613 9.171 0.000 

pooldum 0.082147 0.022325 3.680 0.000 

ln_Garage 0.015765 0.002424 6.503 0.000 

Neighborhood  variables 
    

ln_M_incom 0.272882 0.018122 15.058 0.000 

ln_PopDens 0.002007 0.005805 0.346 0.729 

PCI_Year_Same -0.000199 0.000127 -1.568 0.117 

Locational variables 
    

ln_CBD -0.165956 0.014277 -11.624 0.000 

ln_Exit 0.065236 0.007834 8.328 0.000 

All_Arterial -0.064767 0.019322 -3.352 0.001 

ln_Park 0.044381 0.004495 9.873 0.000 

Hwy320 -0.010824 0.012022 -0.900 0.368 

In_Water 0.041894 0.004868 8.607 0.000 

Y_09 -0.160042 0.015318 -10.448 0.000 

Y_10 -0.199754 0.012974 -15.396 0.000 

Y_11 -0.277327 0.013000 -21.333 0.000 

Y_12 -0.262691 0.012442 -21.113 0.000 

Y_13 -0.181814 0.013709 -13.262 0.000 

Y_14 -0.032750 0.013965 -2.345 0.019 

Lambda 0.197763 0.014103 14.022 0.000 

     
Pseduo R² 0.6975 

   
OLS Adjusted R² 0.6968 
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APPENDIX H 

DETAILED RESULTS FOR VACAVILLE 
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 (N = 5,165) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 7.323418 0.192834 37.978 0.000 

Structural variables 
    

ln_LivinSq 0.592843 0.019064 31.097 0.000 

ln_LotSqft 0.139476 0.010687 13.051 0.000 

N_Rooms 0.002322 0.003805 0.610 0.542 

N_Story -0.031342 0.006297 -4.977 0.000 

Age -0.006558 0.000351 -18.679 0.000 

FIREPLC 0.028646 0.007788 3.678 0.000 

pooldum 0.070016 0.006079 11.517 0.000 

ln_Garage 0.004628 0.003618 1.279 0.201 

Neighborhood  variables 
    

ln_M_incom 0.053484 0.015073 3.548 0.000 

ln_PopDens -0.032788 0.003319 -9.880 0.000 

PCI_Year_Same -0.000135 0.000173 -0.781 0.435 

Locational variables 
    

ln_CBD -0.069189 0.008111 -8.530 0.000 

ln_Exit 0.027390 0.006860 3.993 0.000 

All_Arterial -0.021555 0.017183 -1.254 0.210 

ln_Park -0.001989 0.002515 -0.791 0.429 

Hwy320 -0.081328 0.023540 -3.455 0.001 

Y_09 0.068406 0.009486 7.211 0.000 

Y_10 0.003586 0.007541 0.476 0.634 

Y_11 -0.044223 0.008097 -5.461 0.000 

Y_12 -0.051043 0.007302 -6.990 0.000 

Y_13 -0.010513 0.008366 -1.257 0.209 

Y_14 0.040298 0.007075 5.696 0.000 

Lambda 0.213770 0.015327 13.947 0.000 

     
Pseduo R² 0.7742 

   
OLS Adjusted R² 0.7734 
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 (N = 4,962) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 5.970766 0.206266 28.947 0.000 

Structural variables 
    

ln_LivinSq 0.614502 0.020017 30.699 0.000 

ln_LotSqft 0.137969 0.010184 13.548 0.000 

N_Rooms 0.017865 0.003817 4.681 0.000 

N_Story -0.055483 0.006912 -8.027 0.000 

Age -0.006447 0.000455 -14.161 0.000 

FIREPLC 0.005869 0.008483 0.692 0.489 

pooldum 0.050344 0.009756 5.160 0.000 

ln_Garage 0.004081 0.003764 1.084 0.278 

Neighborhood  variables 
    

ln_M_incom 0.136661 0.015741 8.682 0.000 

ln_PopDens -0.035981 0.003214 -11.194 0.000 

PCI_Year_Same 0.000692 0.000184 3.766 0.000 

Locational variables 
    

ln_CBD 0.000764 0.007800 0.098 0.922 

ln_Exit -0.032463 0.004951 -6.557 0.000 

All_Arterial -0.027879 0.021930 -1.271 0.204 

ln_Park -0.000687 0.002571 -0.267 0.789 

Hwy320 -0.036053 0.007892 -4.568 0.000 

Rail_300 -0.047694 0.019161 -2.489 0.013 

Y_09 -0.079683 0.011119 -7.167 0.000 

Y_10 -0.053059 0.009912 -5.353 0.000 

Y_11 -0.092784 0.008800 -10.544 0.000 

Y_12 -0.097514 0.009059 -10.764 0.000 

Y_13 -0.058329 0.010119 -5.764 0.000 

Y_14 0.036923 0.011120 3.320 0.001 

Lambda 0.302072 0.018920 15.966 0.000 

     
Pseduo R² 0.8595 

   
OLS Adjusted R² 0.8591 

   

 

 

 

  



  125 

APPENDIX J 

DETAILED RESULTS FOR SUISUN CITY 

  



  126 

 (N = 1,645) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 6.646483 0.445893 14.906 0.000 

Structural variables 
    

ln_LivinSq 0.541919 0.032842 16.501 0.000 

ln_LotSqft 0.076824 0.019962 3.849 0.000 

N_Rooms 0.005695 0.006883 0.827 0.408 

N_Story 0.004021 0.011902 0.338 0.736 

Age -0.004813 0.000673 -7.155 0.000 

FIREPLC 0.030999 0.021440 1.446 0.148 

pooldum -0.030921 0.025837 -1.197 0.231 

ln_Garage -0.019370 0.009480 -2.043 0.041 

Neighborhood  variables 
    

ln_M_incom 0.158558 0.045066 3.518 0.000 

ln_PopDens -0.022626 0.003959 -5.715 0.000 

PCI_Year_Same 0.000292 0.000159 1.837 0.066 

Locational variables 
    

ln_CBD 0.063991 0.025976 2.463 0.014 

ln_Exit -0.079662 0.075862 -1.050 0.294 

All_Arterial 0.006775 0.026849 0.252 0.801 

ln_Park 0.008232 0.007400 1.112 0.266 

Rail_300 0.048228 0.019632 2.457 0.014 

Y_09 -0.012626 0.016503 -0.765 0.444 

Y_10 -0.042801 0.012676 -3.377 0.001 

Y_11 -0.132169 0.012437 -10.627 0.000 

Y_12 -0.128496 0.012322 -10.428 0.000 

Y_13 -0.089400 0.015582 -5.737 0.000 

Y_14 0.014054 0.014192 0.990 0.322 

Lambda 0.187196 0.052399 3.573 0.000 

     
Pseduo R² 0.6884 

   
OLS Adjusted R² 0.6845 
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 (N = 971) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 9.677788 0.394037 24.561 0.000 

Structural variables 
    

ln_LivinSq 0.370596 0.032714 11.328 0.000 

ln_LotSqft 0.130883 0.019022 6.881 0.000 

N_Rooms 0.031007 0.006182 5.016 0.000 

N_Story -0.033080 0.012277 -2.695 0.007 

Age -0.002529 0.000778 -3.251 0.001 

FIREPLC 0.030715 0.017734 1.732 0.084 

pooldum 0.036694 0.021116 1.738 0.083 

ln_Garage 0.012369 0.005299 2.334 0.020 

Neighborhood  variables 
    

ln_M_incom -0.017523 0.034474 -0.508 0.611 

ln_PopDens 0.027344 0.006047 4.522 0.000 

PCI_Year_Same -0.000409 0.000242 -1.689 0.091 

Locational variables 
    

ln_CBD -0.073841 0.017193 -4.295 0.000 

ln_Exit 0.048054 0.016273 2.953 0.003 

All_Arterial 0.569833 0.155511 3.664 0.000 

ln_Park 0.005921 0.005772 1.026 0.305 

Hwy320 -0.067580 0.021376 -3.162 0.002 

ln_Water -0.052992 0.008896 -5.957 0.000 

Y_09 0.152637 0.022313 6.841 0.000 

Y_10 0.059731 0.018831 3.172 0.002 

Y_11 0.012265 0.017994 0.682 0.496 

Y_12 0.007036 0.017623 0.399 0.690 

Y_13 0.003733 0.018209 0.205 0.838 

Y_14 0.012183 0.020224 0.602 0.547 

     
OLS Adjusted R² 0.7453 
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 (N = 279) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 8.420707 1.192911 7.059 0.000 

Structural variables 
    

ln_LivinSq 0.452588 0.049480 9.147 0.000 

ln_LotSqft 0.112033 0.029315 3.822 0.000 

N_Rooms -0.002657 0.009707 -0.274 0.785 

N_Story -0.000344 0.017246 -0.020 0.984 

Age 0.000324 0.000888 0.365 0.715 

FIREPLC 0.158933 0.029164 5.450 0.000 

pooldum 0.033420 0.020374 1.640 0.102 

ln_Garage 0.007918 0.014536 0.545 0.586 

Neighborhood  variables 
    

ln_M_incom -0.234321 0.089847 -2.608 0.010 

ln_PopDens -0.059096 0.019751 -2.992 0.003 

PCI_Year_Same -0.003663 0.000678 -5.404 0.000 

Locational variables 
    

ln_CBD 0.348714 0.048736 7.155 0.000 

ln_Exit 0.076687 0.028198 2.720 0.007 

ln_Park 0.003750 0.009479 0.396 0.693 

Hwy320 0.010192 0.019681 0.518 0.605 

Y_09 0.144242 0.028864 4.997 0.000 

Y_10 0.083654 0.026488 3.158 0.002 

Y_11 0.018345 0.025816 0.711 0.478 

Y_12 0.025416 0.026028 0.976 0.330 

Y_13 0.031182 0.027046 1.153 0.250 

Y_14 0.065733 0.026933 2.441 0.015 

     
OLS Adjusted R² 0.8149 
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 (N = 243) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 6.346067 0.638800 9.934 0.000 

Structural variables 
    

ln_LivinSq 0.705706 0.091025 7.753 0.000 

ln_LotSqft 0.129136 0.070403 1.834 0.067 

N_Rooms 0.034533 0.017685 1.953 0.051 

N_Story -0.139873 0.039638 -3.529 0.000 

Age -0.003281 0.000791 -4.146 0.000 

FIREPLC -0.029101 0.031292 -0.930 0.352 

pooldum 0.086338 0.086198 1.002 0.317 

ln_Garage -0.008615 0.007140 -1.207 0.228 

Neighborhood  variables 
    

PCI_Year_Same -0.000931 0.000405 -2.298 0.022 

Y_09 -0.138584 0.048934 -2.832 0.005 

Y_10 -0.151194 0.036412 -4.152 0.000 

Y_11 -0.207345 0.036211 -5.726 0.000 

Y_12 -0.188465 0.036254 -5.198 0.000 

Y_13 -0.103171 0.033410 -3.088 0.002 

Y_14 0.048593 0.046521 1.045 0.296 

     
Lambda -0.610613 0.191054 -3.196 0.001 

     
Pseduo R² 0.6398 

   
OLS Adjusted R² 0.6180 

   

 

 

  



  133 

APPENDIX N 

DETAILED RESULTS FOR SOLANO COUNTY 

  



  134 

 (N = 216) 

Variable Coef. Std.err z-Stat Sig. 

(CONSTANT) 4.280763 2.052283 2.086 0.038 

Structural variables 
    

ln_LivinSq 0.443149 0.100598 4.405 0.000 

ln_LotSqft 0.089109 0.039804 2.239 0.026 

N_Rooms 0.058248 0.024582 2.370 0.019 

N_Story -0.032097 0.073511 -0.437 0.663 

Age -0.001703 0.001392 -1.224 0.222 

FIREPLC 0.105739 0.048151 2.196 0.029 

pooldum 0.163395 0.097167 1.682 0.094 

ln_Garage 0.012484 0.008900 1.403 0.162 

Neighborhood  variables 
    

ln_M_incom 0.435086 0.160509 2.711 0.007 

ln_PopDens -0.121374 0.035711 -3.399 0.001 

PCI_Year_Same 0.001273 0.000881 1.444 0.150 

Locational variables 
    

All_Arterial -0.099721 0.096433 -1.034 0.302 

Y_09 -0.220836 0.107073 -2.062 0.040 

Y_10 -0.260180 0.089342 -2.912 0.004 

Y_11 -0.228775 0.090660 -2.523 0.012 

Y_12 -0.126993 0.097208 -1.306 0.193 

Y_13 -0.156346 0.090474 -1.728 0.086 

Y_14 -0.111331 0.093819 -1.187 0.237 

     
OLS Adjusted R² 0.8455 
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