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ABSTRACT 

Kinetic inductance springs from the inertia of charged mobile carriers in 

alternating electric fields and it is fundamentally different from the magnetic 

inductance which is only a geometry dependent property. The magnetic inductance is 

proportional to the volume occupied by the electric and magnetic fields and is often 

limited by the number of turns of the coil. Kinetic inductance on the other hand is 

inversely proportional to the density of electrons or holes that exert inertia, the unit 

mass of the charge carriers and the momentum relaxation time of these charge 

carriers, all of which can be varied merely by modifying the material properties. 

Highly sensitive and broadband signal amplifiers often broaden the field of study in 

astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric 

amplifiers offer a noise figure of around 0.5 K ± 0.3 K as compared to 20 K in HEMT 

signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz 

– 115 GHz).  

The research cumulating to this thesis involves applying and exploiting kinetic 

inductance properties in designing a W-band orthogonal mode transducer, quadratic 

gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. 

The phase shifter will help in measuring the maximum amount of phase shift 

∆𝜙max(𝐼) that can be obtained from half a meter transmission line which helps in 

predicting the gain of a travelling wave parametric amplifier. In another project, a 

microstrip to slot line transition is designed and optimized to operate at 150 GHz and 

220 GHz frequencies, that is used as a part of horn antenna coupled microwave 

kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the 

final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, 
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simulation, fabrication and experimentation. A transmission line model of a 2DEG 

proposed by Burke (1999), is simulated and verified experimentally by fabricating a 

capacitvely coupled 2DEG mesa structure. Low temperature experiments were done 

at 77 K and 10 K with photo-doping the 2DEG. A circuit model of a 2DEG coupled 

co-planar waveguide model is also proposed and simulated.  
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CHAPTER 1. 

INTRODUCTION AND THESIS ORGANIZATION 

This thesis revolves around three applications of kinetic inductance (directly 

and indirectly). The thesis is divided into three parts (Chapter 2, 3, 4) each part 

elucidating each individual distinct (though not completely disconnected) projects.  

First part of the research work in this thesis deals with travelling wave kinetic 

inductance parametric amplifier and phase shifter. We have designed and simulated a 

kinetic inductance phase shifter which is the initial step in realizing a W-band 

parametric amplifier. Chapter 2 goes through the basics of parametric amplification, 

non-linear current controlled phase shift, kinetic inductance and how it plays a part in 

the phase shift, an orthogonal mode transducer (OMT) that employs a W-band circular 

waeguide to microstrip transition and proposes a fabrication and testing procedure. 

Second part of the thesis details the second project which involves a microstrip 

(MS) -to-slot line (SL) transition for a microwave kinetic inductance detector coupled 

to a horn coupled antenna operating from 138 GHz to 250 GHz. We design and optimize 

the MS to SL optimization using Sonnet Suite EM simulator to obtain high transmission 

coefficient and low reflection loss at 150 GHz and 220 GHz. 

Third part of the thesis elaborates the last project which involves theorizing and 

verification of 2D electron gas (2DEG) coupling to transmission lines & co-planar 

structures. We design, simulate, fabricate and experimentally verify a capacitively 

coupled 2DEG mesa structure whose circuit model is proposed by Burke (1999). The 

chapter goes through the source of kinetic inductance in a 2DEG system, transmission 

line model of a 2DEG, Sonnet simulations of 2DEG capacitve coupling and finally 
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experimental verification of the circuit model. Finally, attempts are made to theorize 

and simulate a circuit model of a 2DEG coupled to a co-planar waveguide (2DEG-

CPW). It is analytically shown that the simulation results match with theoretical 

relations.   
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CHAPTER 2. 

PART I 

TRAVELLING WAVE KINETIC INDUCTANCE PARAMETRIC 

AMPLIFIERS AND PHASE SHIFTER 

 

2.1 Introduction 

 Many astronomical objects are not only observable in visible light but also 

emit radiation at radio and microwave frequencies. In fact, the cosmic microwave 

background (CMB) has its spectral radiance peaking at 160.2 GHz [2] in the 

microwave range of frequencies. Besides observing energetic objects such as pulsars 

and quasars, radio astronomy enables to “image” most astronomical objects such 

galaxies, nebulae and even radio emissions from planets. One such astronomical 

instrumentation that images radio frequencies is the Atacama Large 

Millimeter/Submillimeter Array (ALMA) The ALMA is an astronomical 

interferometer of radio telescopes situated in the desert of northern Chile that observes 

and provides insight on star birth during the early universe and detailed imaging of 

local star and planet formation [3]. RF and microwave receivers are a crucial part of 

these astronomical instrumentation. Some of the crucial characteristics that qualify a 

good receiver are  

a) Efficiency - which indicates how much of the incident EM radiation photons are 

converted into detectable signals. Efficiency is often limited by the signal-to-noise 

ratio of the receiver.  

b) Dynamic range - which indicates the ratio between the strongest signal falling on 
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the receiver and the weakest measureable signal (or noise level). 

c) Resolution – this can be thought of as the area over which an infinitely narrow signal 

is spread. Resolution is limited by the number of detectors and the baseline noise level 

of each detector. 

d) Dark current and readout noise – often emerging from leakage and dissipation 

within the receiver. 

In general, the noise of the receiver plays an extremely crucial and a limiting 

factor in astronomical instrumentation and especially in signal amplification. 

Although advances in semiconductor technology is reducing the overall noise figure 

in solid-state detectors and amplifiers, their noise levels increase with frequency of 

operation simultaneously decreasing the gain-bandwidth product. The most recent 

development in high electron mobility transistors (HEMT) reports a noise figure of 

1.3 K at 5.2 GHz [4] while ≤ 20 K noise over 6 GHz to 50 GHz frequency range is 

reported for indium phosphide (InP) low noise amplifiers (LNA) [5]. 

Superconductor-insulator-superconductor junctions (SIS) and other 

superconductor based amplifier circuits have always shown low noise characteristics 

in comparison to semiconductor amplifiers. Figure 2.1 shows an early (1990) 

comparison of Schottky mixer receiver noise temperature and SIS mixer receiver in 

the GHz range. 
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Figure 2.1 Early comparison of semiconductor schottky mixer receiver and a 

superconductor-insulator-superconductor mixer receiver [6] 

 

2.2 DC-RF Power Amplification vs. RF-RF Power Amplification 

 In field effect transistor (FET) amplifiers, gain is achieved by increasing the 

current by modulating the channel of the active device and thus decreasing the 

transconductance of the transistor. The power in FET amplifiers is flown at DC to 

amplify signals either at DC or RF frequencies. One of the other ways to achieve 

amplification is to let the power flow at RF frequencies and thus achieving a RF-RF 

power conversion. To achieve RF-RF power amplification, parametric amplification 

is one of the ways and the main theme of this part of the thesis. Parametric power 

amplifiers being based on amplification using reactive elements in the circuit, they are 
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capable of having a near perfect RF-RF power conversion. Also, parametric amplifiers 

are not limited by the gain-bandwidth product of the transconductance based 

amplifiers. Such advantages of parametric amplifiers over transconductance 

amplifiers are particularly exploited in radio astronomy [7] & [8]. In the rest of the 

chapter travelling wave kinetic inductance parametric amplifiers will be discussed in 

details. 

 

2.3 Scientific Motivation for W-band Frequency 

The W-band (75 GHz to 115GHz) portion of the electromagnetic spectrum is 

a rich field for observing astrophysical phenomena of inter-galactic, extragalactic and 

cosmological origin. The lower frequency range contains the CMB foreground 

minimum (70 - 100 GHz), where the dust and synchrotron spectral energy distributions 

reach their lowest magnitudes. This region of the spectrum is frequently used to study the 

CMB polarization anisotropies [9]. Several instruments and surveys have studied the 

thermal and kinematic Sunyaev-Zeldovich (SZ) effect in W-band [8] & [10]. The SZ 

effect is a CMB temperature anisotropy caused by inverse Compton scattering of 

CMB photons passing through the hot intra-cluster medium of galaxy clusters. The 

scale of the effect is independent of redshift, and can be used to probe structure 

formation in the early universe, as well as to constrain cosmological parameters, 

including dark energy. ALMA Band 3 (84 - 116 GHz), which covers most of W-

band, contains a variety of molecular lines, including CO, which are used as 

molecular hydrogen tracers. These lines probe the kinematics, temperatures and 

densities at sub-arc second scales in nearby molecular clouds. The continued study 

of the small scale dynamics around dark cores and protostellar disks will lead to a 
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better understanding of the energy balance between turbulence and magnetic fields, 

and their role in determining Galactic star formation rates [11]. Line surveys with 

ALMA can also be carried out to search for previously undetected organic species, 

and to characterize the complex chemistry that exists around protostars and 

protoplanetary disks. Cold molecular gas in the interstellar medium can also be 

studied in absorption of radiation from extragalactic sources, and redshifted CO lines 

falling in W-band can be used to study the gas, dust and star formation history in sub-

millimeter galaxies (SMGs) between 1 ≤ z ≤ 3 [12]. 

 

2.4 Parametric Excitation 

2.4.1 Harmonic Oscillator 

In a system that exhibits harmonic oscillations, it typically consists of an entity 

displaced from its equilibrium and then a restoring force acting on the entity to bring it 

back to equilibrium. The simplest example would that be of a pendulum (Figure 2.2) in 

which the tension in the string and gravity are both in equilibrium when the pendulum 

is stationary in a vertical position. As soon as the pendulum is disturbed from the 

vertical position in either direction, the equilibrium between the tension in the string 

and gravity is disturbed. The force of tension in the string now acts at an angle to the 

gravitational force and only the parallel component of tension is counterbalanced by 

gravity. The perpendicular component of the tension is now unbalanced and acts as the 

restoring force in the system. However, due to the inertia of the pendulum, it continues 

to swing to the other side of the equilibrium and the restoration force due to the 

perpendicular component of tension now changes direction which makes the pendulum 

swing back again towards the equilibrium position. This back and forth movement of 
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the pendulum can be thought of as oscillations of the relative position of the pendulum 

from its mean vertical position. An amplitude and frequency can be associated with this 

simple oscillator accounting for the maximum displacement of the pendulum from its 

mean position and the time it takes for one complete back and forth swing, respectively. 

Considering no damping forces such as friction and relatively small displacement from 

its mean position, the motion of the pendulum can be described to be a simple 

“harmonic” oscillation in a sense that the angular acceleration is directly proportional 

to the displaced angle measured from the vertical position. 

 

Figure 2.2 Forces of string tension and gravity acting upon the pendulum bob. 

Component of the gravitational pull counteracts the tension in the string. 

The forces balancing on the string are, weight of the bob (𝑊) acting vertically 

downward and tension in the string (T) acting along the string. The weight of the bob 

can be resolved into two rectangular components - 𝑊𝑐𝑜𝑠 𝜃, along the string and 

𝑊𝑠𝑖𝑛 𝜃, perpendicular to the string. Since there is no motion along the string, the 
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component 𝑊𝑐𝑜𝑠 𝜃 must balance tension T, therefore 𝑊𝑐𝑜𝑠 𝜃 = 𝑇. So only 𝑊𝑠𝑖𝑛 𝜃 

component is the net force which is responsible for the acceleration in the bob of the 

pendulum. Therefore, by Newton’s second law of motion, 

 −𝑊𝑠𝑖𝑛 𝜃 = 𝑚 × 𝑎 (2.1) 

But since 𝑊 = 𝑚𝑔, we have 𝑚 × 𝑎 = −𝑚 × 𝑔 sin 𝜃 or  

 𝑎 = −𝑔 𝑠𝑖𝑛 𝜃 (2.2) 

𝜃 being very small for small displacements, we can assume sin 𝜃 = 𝜃, therefore  

 𝑎 = −𝑔 𝜃 (2.3) 

 If 𝑥 is the linear displacement in the bob from its mean position, the arc AB is nearly 

equal to 𝑥. Therefore, from Figure 2.2, we can say 𝜃 = 𝑥/𝑙. Substituting the value of 𝜃 

in (2.1) we get, 

 𝑎 = −𝑔
𝑥

𝑙
 (2.4) 

And thus, 

 𝑎 ∝ −𝑥 (2.5) 

satisfying a simple harmonic oscillator condition. 

 

2.4.2 Parametric Oscillation 

Extending further from the concept of a simple harmonic oscillator and the 

analogy of a pendulum suspended by a string, now consider if the length of the string 

was increased as the pendulum passes through the centre and decreased as the pendulum 

reaches the maximum side on either side of the centre. This change in the length of the 
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string or a “parameter” of the pendulum system causes the amplitude of the pendulum 

swing to increase progressively. The change or the “forcing” of the parameter now has 

to be done at twice the frequency of the pendulum swing, once when the pendulum is 

at either maximum deflection from the centre and once when the pendulum is at the 

centre. So often the parametric amplification works at a frequency different than the 

natural oscillating frequency of a system since we want to amplify the output of a 

system before every oscillation of the system. However, to this system of the pendulum 

is a nonlinear system since the gravitational force which is the restoration force here, is 

directly proportional to the sine of the angle of deflection rather than just the angle 

itself. The parametric oscillator principle will be best understood by looking at the 

parametric resonance in a linear resonator [13] elaborated as follows. Figure 2.3 shows 

a rigid rod suspended on a freely rotating axis. Two identical weights are balanced on 

the rod at equal distance from the centre of the rod. 

 

Figure 2.3 A torsion spring oscillator with a balanced rotor whose moment of inertia 

is forced to vary periodically [12]. 
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 A spiral spring with one of its ends attached to the rod and other fixed to an immovable 

support provides the restoring torque –D𝜑 to the rod when it displaces by an angle 𝜑 

with respect to the initial angle. The two identical weights can be shifted towards and 

away from the axis on the rod which then changes the moment of inertia J of the rod-

weights-spring system which we can call it as a rotor. When the weights are balanced 

nearer to the axis, the moment of inertia J of the rotor decreases and when the weights 

are balanced away from the axis the moment of inertia increases. So, for a certain 

position of the balanced weights, the moment of inertia J will cause the rotor to oscillate 

at a natural frequency given by 𝜔0 = √
𝐷

𝐽
. This means as the moment of inertia J is 

changed so is the natural frequency. Now, in this system the distance of the balanced 

weights from the axis, and therefore the moment of inertia J,  is the “parameter” which 

can be modulated periodically to cause progressively growing oscillations with a 

natural frequency of 𝜔0. 

 

Figure 2.4 Analogous LCR-circuit with a coil whose inductance can be modulated 

Building on this, parametric oscillators are also possible in electromagnetic circuits. For 

example, is a LCR circuit (Figure 2.4), oscillations can be induced by changing the 
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capacitor by moving its two plates closer or away from each other or by changing the 

inductance by moving its core in and out of the coil.  

 

2.4.3 Parametric Amplification in RF Circuits 

The procedure of parametric amplification is best described in [14]. In a LC tank circuit, 

for a given plate spacing of the capacitor C, the tank will oscillate at its natural resonant 

frequency. At the voltage maxima during one of its oscillations, if we pull apart the 

plates on the capacitor or when the electrostatic force between the plates is maximum, 

we essentially do work against the electric field. If no dissipative losses are considered, 

this work is injected in the form of energy into the tank circuit and thus amplifies the 

amplitude of the oscillation. In a similar manner, at the voltage minima, the capacitor 

plates can be pushed together and since voltage is zero at this time, no work is done. 

This push and pull of the plates on the capacitor can be repeated twice every oscillation 

to continue amplification of the oscillating signal.  

 In practice, a separate oscillator provides a “pump” energy into the system. A 

RF input signal is amplified by a pump signal (Figure 2.5), nominally oscillating at 

twice the signal frequency. A typical variable capacitor is a varactor diode and an 

example of a variable inductor can be superconducting kinetic inductance transmission 

line (discussed later). The pump signal modulates the diode or the kinetic inductance 

causing it to produce negative reactance at the signal frequency. 
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Figure 2.5 A simple Parametric Amplifier [13] 

 In RF circuits (and even in optical systems), parametric amplification can be 

achieved by pumping a nonlinear reactance with a large pump signal in order to achieve 

mixing of frequencies with gain or to achieve negative resistance in the circuit. 

Parametric amplifiers can be broadly classified into two distinct types: phase-

incoherent up converting parametric amplifiers and negative-resistance parametric 

amplifiers. Phase-incoherent up converting parametric amplifiers employ a fixed 

incoherent incommensurate pump frequency 𝑓𝑝 to mix with a small signal RF source 

frequency 𝑓𝑠 and produce an output with a higher frequency and gain. Whereas in the 

negative resistance parametric amplifiers, the pump frequency lies in between the signal 

frequency 𝑓𝑠 and 2𝑓𝑠 and the idler frequency is less than 𝑓𝑠. In a degenerate parametric 

amplifier case (which will be discussed later on), the idler frequency can also be equal 

to the signal frequency 𝑓𝑠 and the pump is set at 2𝑓𝑠. But to understand the origins of 

the parametric amplification, we first need to look at the Manley-Rowe relations [15] 
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2.4.4 Manley-Rowe Power Relations 

J.M. Manley and H.E. Rowe theorized and analysed the input and output flow 

of power in a nonlinear reactive element at its different frequencies. They concluded 

with an expression that quantifies how much of the total output power gets distributed 

among the harmonics. Following properties [16] of the Manley-Rowe relations give a 

general outline on how these relations can be put in context: 

1] The Manley-Rowe relations are independent of the nature of the voltage-capacitance 

or voltage-inductance relations for a nonlinear reactance 

2] Power of various driving sources does not affect the gain of the amplifier 

3] Any external circuit in series or parallel to the nonlinear reactance does not affect the 

power distribution in the harmonic frequencies 

Manley-Rowe relations for power distribution provide the metrics for ideal 

performance of nonlinear reactance mixers and amplifiers. An abridged version of the 

basic derivation of the Manley-Rowe relations will be discussed follows and later on 

equations dealing with a specific case applicable to four-wave degenerate mixing 

employed in this project will be discussed in details. 

 

2.4.5 Deriving Manley-Rowe Relations 

Although in the original paper Manley and Rowe state that their derivation 

would had also been possible with a nonlinear inductance, nonlinear capacitance is used 

to arrive at the harmonic frequency power relations.  
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Consider two voltage sources 𝑉1 and 𝑉2 at frequencies 𝑓1 and 𝑓2 respectively 

connected in parallel with a lossless voltage dependent nonlinear capacitance 𝐶(𝑉) 

(Figure 2.6)  

 

Figure 2.6 Circuit with a voltage dependent nonlinear capacitor 𝐶(𝑉) [17] 

The two sources have 𝑍0 as their generator impedance. Bandpass filters are connected 

in each of the source branches with centering frequencies of 𝑓1 and 𝑓2 respectively. The 

bandpass filter is assumed to have an ideal frequency response passing only a single 

frequency and with an open circuit for out-of-band. An infinite number of resistive 

loads are connected across the nonlinear capacitor and with ideal bandpass filters in 

series of each one of the resistive loads. The passband frequency response of each of 

the bandpass filters is centred at a specific harmonic combination of the two driving 

frequencies 𝑓1 and 𝑓2. These harmonic frequencies are a result of nonlinear mixing in 

the nonlinear capacitance of 𝑓1 and 𝑓2. The only assumption made here is that 𝑓1 and 𝑓2 

are incommensurate which means that the ratio of the two is not a whole integer and 

will always satisfy 

 𝜔1
𝜔2

∉ 𝑄 (2.6) 
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Considering the total charge q to be flowing in and out of the nonlinear capacitor. It can 

be expressed in the Fourier series as 

 
𝑞 = ∑ ∑ 𝑞𝑚,𝑛𝑒

𝑗(𝑚𝜔1+𝑛𝜔2)𝑡

∞

𝑚=−∞

∞

𝑛=−∞

 (2.7) 

where the series coefficients of charge, 𝑞𝑚,𝑛 are expressed as  

 
𝑞𝑚,𝑛 =

1

4𝜋2
∫ ∫ 𝑉. 𝐶(𝑉)𝑒−𝑗(𝑚𝑥+𝑛𝑦)𝑑𝑥𝑑𝑦

𝜋

−𝜋

𝜋

−𝜋

 (2.8) 

Where 𝑥 = 𝜔1𝑡 and 𝑦 = 𝜔2𝑡. Taking the time derivatives of the charge series 

coefficients, we can get the total current, 𝐼𝑚,𝑛 through C(V), 

 
𝐼𝑚,𝑛  =  

𝑑𝑞𝑚,𝑛
𝑑𝑡

=
𝜕𝑞𝑚,𝑛
𝜕𝑡

+
𝜕𝑞𝑚,𝑛
𝜕𝜔1

𝜕𝜔1
𝜕𝑡

+
𝜕𝑞𝑚,𝑛
𝜕𝜔2

𝜕𝜔2
𝜕𝑡

 (2.9) 

But with the incommensurability of 𝑓1 and 𝑓2 or 𝜔1 and 𝜔2 we have 
𝜕𝑞𝑚,𝑛

𝜕𝜔1
=

𝜕𝑞𝑚,𝑛

𝜕𝜔2
= 0 

since there will be no time-average power due to interacting harmonics Therefore, the 

total current reduces to the partial time derivative of the charge series term 

 
𝐼 =

𝑑𝑞

𝑑𝑡
= ∑ ∑ 𝐼𝑚,𝑛𝑒

𝑗(𝑚𝜔1+𝑛𝜔2)𝑡

∞

𝑚=−∞

∞

𝑛=−∞

 (2.10) 

the individual harmonic current being  

 𝐼𝑚,𝑛  =  𝑗(𝑚𝜔1  +  𝑛𝜔2)𝑞𝑚,𝑛. (2.11) 

The voltage across the nonlinear capacitor can also be expressed as a two dimensional 

Fourier series, 

 
𝑉𝑚,𝑛 = ∑ ∑ 𝑉𝑚,𝑛𝑒

𝑗(𝑚𝜔1+𝑛𝜔2)𝑡

∞

𝑚=−∞

∞

𝑛=−∞

 (2.12) 

where the series coefficients can be expressed as  
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𝑉𝑚,𝑛 =

1

4𝜋2
∫ ∫ 𝑉𝑒−𝑗(𝑚𝑥+𝑛𝑦)𝑑𝑥𝑑𝑦

𝜋

−𝜋

𝜋

−𝜋

 (2.13) 

By combining the above equations to form the products of 𝐼𝑚,𝑛 and 𝑉𝑚,𝑛 to obtain the 

series coefficients for power 𝑃𝑚,𝑛, we get  

 
∑ ∑

𝑚𝑉𝑚,𝑛𝐼𝑚,𝑛
∗

𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= ∑ ∑
𝑚2ℜ{𝑉𝑚,𝑛𝐼𝑚,𝑛

∗ }

𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= ∑ ∑
𝑚𝑃𝑚,𝑛

𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

 

(2.14) 

where 𝑃𝑚,𝑛 are the power coefficients flowing in and out of the nonlinear capacitor at 

frequencies 𝑛𝑓1  +  𝑚𝑓2. The average power at the frequency 𝑚𝑓1 + 𝑛𝑓2 is given by the 

following  

 𝑃𝑚,𝑛 = 𝑉𝑚,𝑛𝐼𝑚,𝑛
∗ + 𝑉𝑚,𝑛

∗ 𝐼𝑚,𝑛 = 𝑉𝑚,𝑛𝐼𝑚,𝑛
∗ + 𝑉−𝑚,−𝑛𝐼−𝑚,−𝑛

∗ = 𝑃−𝑚,−𝑛  (2.15) 

since, 

 {𝑉𝑚,𝑛𝑒
𝑗(𝑚𝜔1+𝑛𝜔2) + 𝑉−𝑚,−𝑛𝑒

𝑗(𝑚𝜔1+𝑛𝜔2)}

× {𝐼𝑚,𝑛𝑒
𝑗(𝑚𝜔1+𝑛𝜔2) + 𝐼−𝑚,−𝑛𝑒

−𝑗(𝑚𝜔1+𝑛𝜔2)}

= 𝑉𝑚,𝑛𝐼−𝑚,−𝑛 + 𝑉−𝑚,−𝑛𝐼𝑚,𝑛 = 𝑉𝑚,𝑛𝐼𝑚,𝑛
∗ + 𝑉𝑚,𝑛

∗ 𝐼𝑚,𝑛

= 𝑉𝑚,𝑛𝐼𝑚,𝑛
∗ + 𝑉−𝑚,−𝑛𝐼𝑚,𝑛

∗  

(2.16) 

 But by conservation of energy, the power through a nonlinear reactance is  

 
∑ ∑ 𝑃𝑚,𝑛

∞

𝑛=−∞

∞

𝑚=−∞

= 0  (2.17) 

Multiplying each term of (2.16) by (𝑚𝜔1 + 𝑛𝜔2)/(𝑚𝜔1 + 𝑛𝜔2)  and then separating 

them, we can write the following equation 
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𝜔1 ∑ ∑

𝑚𝑃𝑚,𝑛
𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

 + 𝜔2 ∑ ∑
𝑛𝑃𝑚,𝑛

𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= 0 (2.18) 

Now from (2.11) we have, 

 𝐼𝑚,𝑛
𝑚𝑓1 + 𝑛𝑓2

= 𝑗𝑞𝑚,𝑛 (2.19) 

So from equations (2.11), (2.15), (2.16) and (2.19) we can write the following relation 

 𝑃𝑚,𝑛
𝑚𝑓1 + 𝑛𝑓2

=
(𝑉𝑚,𝑛𝐼𝑚,𝑛

∗ + 𝑉−𝑚,−𝑛𝐼−𝑚,−𝑛
∗ )

𝑚𝑓1 + 𝑛𝑓2
=

𝑉𝑚,𝑛𝐼𝑚,𝑛
∗

𝑚𝑓1 + 𝑛𝑓2
+
𝑉−𝑚,−𝑛𝐼𝑚,𝑛
𝑚𝑓1 + 𝑛𝑓2

 (2.20) 

or  

 𝑚𝑃𝑚,𝑛
𝑚𝑓1 +  𝑛𝑓2

= 𝑉𝑚,𝑛(−𝑗𝑞𝑚,𝑛
∗ ) + 𝑉−𝑚,−𝑛(𝑗𝑞𝑚,𝑛)

= −𝑗𝑉𝑚,𝑛𝑞𝑚,𝑛
∗ + 𝑗𝑉−𝑚,−𝑛𝑞−𝑚,−𝑛

∗  

(2.21) 

Equation (2.21) implies that the factor 𝑃𝑚,𝑛/(𝑚𝑓1 + 𝑛𝑓2) is independent of 𝑓1 and 𝑓2. 

So for any arbitrary selection of 𝑓1 and 𝑓2, we can always keep the circuit adjusted to 𝐶 

so that the resultant current keeps all the voltage amplitudes (𝑉𝑚,𝑛) unchanged. Since 

𝑞𝑚,𝑛 is a function of 𝑉𝑚,𝑛, it will also remain unchanged. Therefore, even with arbitrary 

𝑓1 and 𝑓2, the term 𝑃𝑚,𝑛/( 𝑚𝑓1 +  𝑛𝑓2), will remain unchanged. Therefore, to satisfy 

(2.18) we have, 

 
∑ ∑

𝑚𝑃𝑚,𝑛
𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= 0 (2.22) 

and for the power flow with respect to the index n, 

 
∑ ∑

𝑛𝑃𝑚,𝑛
𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= 0 (2.23) 
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Ideal metrics for gain and stability and the parametric systems can be quantified by 

these Manley-Rowe relations. For example, consider voltage V1 a small signal from 

one of the voltage generator and V2 a large pump signal from the other voltage 

generator. Both the signals drive the nonlinear capacitance. The power flows in and out 

of the capacitor at a frequency 𝑓3  =  𝑓1  +  𝑓2. The above power equations (2.22) and 

(2.23) then reduce to 

 𝑃1
𝑓1
+ 
𝑃3
𝑓3
= 0 (2.24) 

 𝑃2
𝑓2
+ 
𝑃3
𝑓3
= 0 (2.25) 

Power flowing into the nonlinear capacitance can be considered as positive and the 

power flowing out of the nonlinear capacitor. Rearranging the terms in (2.16) and (2.17) 

we can get the following relation for the ratio of output power to the input power 

extracted at 𝑓3  

 
𝑔𝑎𝑖𝑛 =  

𝑓3
𝑓1

 (2.26) 

This equation essentially gives the maximum gain possible of a parametric amplifier 

when up converting a signal of frequency f1 to a frequency f3. In the case when the 

parametric amplifier is down converting the input signal to a lower frequency, the 

Manley-Rowe relations give the maximum gain possible to be  

 
𝑔𝑎𝑖𝑛 =  

𝑓1
𝑓3

 (2.27) 

which is always less than one or in other terms is always at a loss. 

In practical cases, the voltage generator on an average maintains a frequency of 

ω over a sufficiently long time but does not have a single frequency resonance. The 



20 
 

frequency response is spread over a band of frequency, usually with ω having the 

highest response. The voltage the generated can be modelled as  

 𝑉 =  𝑉0𝑒
𝑗(𝜔𝑡+𝜙) (2.28) 

where ϕ is an arbitrary phase that varies with time and has a zero mean value. 

 

2.4.6 Negative Resistance Parametric Amplifiers 

 Figure 2.7 shows a negative resistance parametric amplifier in which a current 

flows at signal frequency 𝑓𝑠 and with a pump frequency 𝑓𝑝 and idler frequency 𝑓𝑖 =

𝑓𝑝 − 𝑓𝑠. The non-linear voltage dependent time varying capacitor can be defined as  

 𝐶(𝑡) = 𝐶0{1 + 2𝑀𝑐𝑜𝑠(𝜔𝑝𝑡)} (2.29) 

 

 

Figure 2.7 Equivalent circuit of a negative-resistance parametric amplifier [13] 

The voltage  

 
𝑣𝑖 =

1

2
{𝑉𝑖𝑒

𝑗(𝜔𝑝−𝜔𝑠)𝑡 − 𝑉𝑖
∗𝑒𝑗(𝜔𝑝−𝜔𝑠)𝑡} (2.30) 

and the idler current 

 
𝑖𝑖 =

1

2
{𝐼𝑖𝑒

𝑗(𝜔𝑝−𝜔𝑠)𝑡 − 𝐼𝑖
∗ 𝑒−𝑗(𝜔𝑝−𝜔𝑠)𝑡} (2.31) 

then we can write, 
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[
𝐼𝑖
𝐼𝑖
∗] = [

𝑗𝜔𝑖𝐶0 𝑗𝜔𝑖𝐶0𝑀
−𝑗𝜔𝑠𝐶0𝑀 −𝑗𝜔𝑠𝐶0

] [
𝑉𝑖
𝑉𝑖
∗] (2.32) 

and  

 

[
𝑉𝑖
𝑉𝑖
∗] =

1

1 −𝑀2

[
 
 
 

1

𝑗𝜔𝑖𝐶0

𝑀

𝑗𝜔𝑠𝐶0

−
𝑀

𝑗𝜔𝑖𝐶0
−

1

𝑗𝜔𝑠𝐶0]
 
 
 

[
𝐼𝑖
𝐼𝑖
∗] (2.33) 

For the input and output circuits to the non-linear capacitor 𝐶(𝑡), we can write  

 
𝑉1 = 𝐼𝑠[𝑅1 + 𝑅𝑠 + 𝑗𝜔𝑠(𝐿𝑠 + 𝐿𝑖) +

1

𝑗𝜔𝑠(𝐶𝑝 + 𝐶𝑖)
+

1

𝑗𝜔𝑠(1 −𝑀2)𝐶0

+
𝑀𝐼𝑖

∗

𝑗𝜔𝑖(1 − 𝑀2)𝐶0
 

(2.34) 

and  

 
𝑉2 = 𝐼𝑖 [𝑅2 + 𝑅𝑠 + 𝑗𝜔𝑖(𝐿𝑠 + 𝐿2) +

1

𝑗𝜔𝑖(𝐶𝑝 + 𝐶2)
+

1

𝑗𝜔𝑖(1 − 𝑀2)𝐶0

+
𝑀𝐼𝑠

∗

𝑗𝜔𝑖(1 − 𝑀2)𝐶0
] 

(2.35) 

Using the tuning condition that, 

 
𝜔𝑠
2 =

1

𝐿𝑠 + 𝐿1
[

1

𝐶𝑝 + 𝐶1
+

1

(1 −𝑀2)𝐶0
] (2.36) 

and  

 
𝜔𝑖
2 =

1

𝐿𝑠 + 𝐿1
[

1

𝐶𝑝 + 𝐶2
+

1

(1 −𝑀2)𝐶0
] (2.37) 

in equations (2.34) & (2.35) we get the following expressions, 

 
𝑉1 = (𝑅1 + 𝑅𝑠)𝐼𝑠 −

𝑗𝑀𝐼𝑖
∗

𝜔𝑖(1 − 𝑀2)𝐶0
 (2.38) 

 and  
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𝑉2 = (𝑅2 + 𝑅𝑠)𝐼𝑖 −

𝑗𝑀𝐼𝑠
∗

𝜔𝑠(1 − 𝑀2)𝐶0
 (2.39) 

Assuming 𝑉2 = 0, we can solve (2.38) and (2.39) for 𝐼𝑖. Substituting this 𝐼𝑖 in the 

expression of gain 

 
𝐺0 =

4𝑅𝑖𝑅2|𝐼𝑖|
2

𝑉1
2  (2.40) 

and by simplifying the gain expression more, we get the following equation 

 
𝐺0 =

4𝑅1𝑅2{𝜔𝑖𝐶0𝑅𝑛(1 − 𝑀
2)}2

𝑀2(𝑅1 + 𝑅𝑠 − 𝑅𝑛)2
  (2.41) 

where  

 
𝑅𝑛 =

𝑀2

𝜔𝑖𝜔𝑠(𝑅2 + 𝑅𝑠)(1 − 𝑀2)2𝐶0
2 (2.42) 

The negative resistance 𝑅𝑛 appears in the circuit because of the following. Frequency 

mixing occurs in the circuit due to application of pump power to the non-linear 

capacitance and the idler frequency is generated. When the current flows with this 

idler frequency, further mixing of pump and idler frequency occurs which generates 𝑓𝑠 

and harmonics of 𝑓𝑝 and 𝑓𝑖. When the power generated through frequency mixing  

exceeds that of the supplied signal power at frequency 𝑓𝑠, the reactive element 

exhibits a negative resistance. 

 

2.4.7 Non-linear Inductance 

 Derivations in previous sections evolve around non-linear capacitance as the 

reactive component. However, a non-linear inductance just as well can be the non-linear 

reactive element. The non-linear inductance can stem from either magnetic materials 
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that exhibit nonlinear permeability with effects like saturation which makes the 

resulting inductance a function of the applied current or the non-linear inductance can 

also stem from kinetic inductance in in superconducting transmission lines as will be 

discussed in section 2.3.9. For now, we look at what the difference in equations will be 

in the case when a non-linear capacitance is replaced by a non-linear inductance. 

 Assuming a non-linear inductance for the non-linear reactance with a single 

valued relating between voltage 𝑉 and the time rate of change of current, 𝐼. For voltage 

amplitudes 𝑉𝑚,𝑛, the inductor generates a definite set of amplitudes 𝐼𝑚1,𝑛1. So by 

conservation of energy implies the power 𝑃𝑚,𝑛 to be  

  ∑𝑊𝑚,𝑛
𝑚,𝑛

= 0 (2.43) 

or  

 1

2
∑𝑉𝑚,𝑛𝐼𝑚,𝑛 cos𝜙𝑚,𝑛
𝑚,𝑛

= 0 (2.44) 

For the non-linear inductor case, the current 𝐼𝑚,𝑛 is replaced by 𝐼𝑚,𝑛/𝜔𝑚,𝑛  and 

differentiate with respect to 𝜔𝑠. 

 
−
1

2
∑

𝑉𝑚,𝑛𝐼𝑚,𝑛

(𝑚𝜔𝑠 + 𝑛𝜔𝑝)
2𝑚cos𝜙𝑚,𝑛

𝑚,𝑛

= 0 (2.45) 

replacing 𝐼𝑚,𝑛/(𝑚𝜔𝑠 + 𝑛𝜔𝑝) by 𝐼𝑚,𝑛 we will get back the Manley-Rowe relations 

exactly same as (2.22) and (2.23) 

 
∑ ∑

𝑚𝑃𝑚,𝑛
𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= 0 (2.46) 

and  



24 
 

 
∑ ∑

𝑛𝑃𝑚,𝑛
𝑚𝑓1 +  𝑛𝑓2

∞

𝑚=−∞

∞

𝑛=−∞

= 0 (2.47) 

 

2.4.8 Four Wave Mixing and Phase Shift 

 The pump tone for the parameter amplifier design in this research is chosen such 

that  

 2𝜔𝑝 = 𝜔𝑠 +𝜔𝑖 (2.48) 

where 𝜔𝑝, 𝜔𝑠 and 𝜔𝑖 are the pump, signal and idler frequencies. Since the phase 

velocity of the wave is given by 𝑣𝑝ℎ = 1/√𝐿𝑡𝑜𝑡𝐶, and the total inductance consists the 

geometric as well as the kinetic inductance, the phase velocity varies with the length of 

the transmission line and the current being carried.  

The gain produced by FWM between the three tones can be predicted by 

numerically integrating coupled mode equations over the length of transmission line, 𝑙: 

 𝑑𝐴𝑝

𝑑𝑙
=
𝐼𝑘𝑝𝛼

2𝐼∗2
 [|𝐴𝑝

2 | + 2|𝐴𝑠
2| + 2|𝐴𝑖

2|]𝐴𝑝 + 2𝐴𝑠𝐴𝑖𝐴𝑝
∗ 𝑒−𝑖∆𝛽𝑙 (2.49) 

 𝑑𝐴𝑠
𝑑𝑙

=
𝐼𝑘𝑝𝛼

2𝐼∗2
 [|𝐴𝑠

2| + 2 |𝐴𝑖
2| + 2 |𝐴𝑝

2 |] 𝐴𝑠 + 𝐴𝑖
∗𝐴𝑝

2𝑒−𝑖∆𝛽𝑙 (2.50) 

 𝑑𝐴𝑖
𝑑𝑙

=
𝐼𝑘𝑝𝛼

2𝐼∗2
 [|𝐴𝑖

2| + 2|𝐴𝑠
2| + 2|𝐴𝑝

2 |]𝐴𝑖 + 𝐴𝑠
∗𝐴𝑝

2𝑒−𝑖∆𝛽𝑙 (2.51) 

The integration is performed under the simplifying assumption that the pump remains 

un-depleted during the mixing process, 

 𝑑𝐴𝑝

𝑑𝑙
= 0 (2.52) 
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and that the idler current has zero amplitude at the beginning of the NLTL. Additional 

equations can be added to include the pump harmonic generation over the line length, 

but they are omitted here because of the un-depleted pump approximation. In actuality, 

these harmonics can be attenuated through the use of specific line geometries. In the 

absence of any applied DC or AC current, a superconducting transmission line can be 

modelled as a dispersion less line with propagation constant 𝛽(𝜔) = 𝜔/𝜈𝑝ℎ where 𝜈𝑝ℎ 

is the phase velocity given by 𝜈𝑝ℎ = 1/√𝐿𝑡𝑜𝑡𝑎𝑙𝐶. As a tone propagates along the 

transmission line, it experiences a phase shift ∆𝜙 = 𝜔𝑙/𝜈𝑝ℎ equivalent to the electrical 

length of the line, in radians. In this case, the line dispersion,  

 ∆𝛽 = 𝛽(𝜔𝑠) + 𝛽(𝜔𝑖) − 2𝛽(𝜔𝑝) = 0 (2.53) 

 Once current is applied to the circuit, the phase velocity for a given tone acquires 

a current dependence such that 

 
𝜈𝑝ℎ(𝐼) = 𝜈𝑝ℎ0 (1 − 𝛼

𝐼2

2𝐼∗2
)  (2.54) 

As a consequence, the tones experience a non-linear phase shift, 

 
∆𝜙 =

𝜙

2
 (
𝐼

𝐼∗2
) (2.55) 

which causes a phase mismatch between the pump, signal and idler tones. The signal 

gain predicted in this case is, 

 𝐺𝑠 = 1 + (𝜉∆𝜙(𝐼)2) (2.56) 

Since 𝜉𝑐𝑟𝑖𝑡 is known, ∆𝜙(𝐼) sets a limit on the maximum achievable signal gain, which 

translates into a requirement on the length of the NLTL. The phase slippage can be 

counteracted by engineering a dispersion into the line, which, at an optimal value of, 
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∆𝛽 = −

2∆𝜙

𝑙
= −

𝛼𝑘𝑝|𝐴𝑃|
2

2𝐼∗2
 (2.57) 

accesses an exponential gain regime, where [17]  

 
𝐺𝑠 =

𝑒2𝜉𝜙

4
 (2.58) 

The dispersion engineering is dual purpose. In addition to cancelling the phase 

mismatch, it prevents shock front generation that occurs when ∆𝜙 ≥ 1 [17]. The 

dispersion engineering is accomplished by periodically widening the transmission line 

to decrease the impedance at the first few pump harmonic frequencies, 𝜔𝑝, 2𝜔𝑝 and 

3𝜔𝑝 [17]. The series of three widened sections are repeated over a pattern interval  

 𝑙𝑝𝑎𝑡 = 2𝜔𝑝𝜈𝑝ℎ𝑖/2  (2.59) 

with the separation between sections being 𝑙𝑝𝑎𝑡/3 [18]. Figure 2.8 shows the results of 

numerically integrating the gain equations (2.50) – (2.52) for the case of a non-

dispersion engineered NLTL at 90 GHz.  

 

Figure 2.8 Pump, signal and idler signal levels with distance along the microstrip line 
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In the simulation, mixing was allowed to occur over a 3 m length of NbTiN NLTL. In 

this case, 34 dB of signal gain is produced. This value will increase if the periodic 

impedance structures are included in the simulation. Figure 2.9 shows signal and idler 

amplification as a function of line length, for the same geometry and circuit parameters 

used in Figure 2.8. The results shown in the figures are for 𝜔𝑠 ≈ 𝜔𝑝 = 90 𝐺𝐻𝑧. 

 

Figure 2.9 The simulated phase shift and quadratic gain of the parametric amplifier as 

a function of dc current. 

 

2.4.9 Source of Kinetic Inductance 

 Bardeen-Cooper-Schrieffer (BCS) theory predicts that in a superconductor 

cooled to below its critical temperature, 𝑇𝑐. Cooper pairs are accelerated in the presence 

of a time varying electric field with frequency less than the band gap frequency,  
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𝑓 =

2∆

ℎ
 (2.60) 

where ∆= 1.76 𝑘𝐵𝑇 is the superconducting band gap. Their inertial opposition to the 

acceleration results in a phase delay between the applied and transmitted signals, which 

is modelled as an extra distributed 'kinetic' inductance added to the geometric 

inductance, for  

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑘 + 𝐿𝑔𝑒𝑜 (2.61) 

Equating the Cooper pairs' kinetic energy with an inductive energy yields, 

 1

2
 𝐿𝑘𝐼

2 =
1

2
 (2𝑚𝑒𝜈

2)(𝑛𝑐𝑝𝑙𝐴) (2.62) 

where 2𝑚𝑒 is the mass of a Cooper pair, 𝑛𝑐𝑝 is the number density of pairs, 𝑙 is the 

length of the transmission line, 𝐴 is the cross sectional area of the line, and 𝐼 = 2𝑛𝑐𝑝𝑒𝜈𝐴 

is the superconductor current. The intrinsic kinetic inductance [19] is then, 

 
𝐿𝑘0 = (

𝑚𝑒

2𝑛𝑐𝑝𝑒2
) (

𝑙

𝐴
) (2.63) 

and is shown to be a function of the transmission line geometry. Mattis-Bardeen theory 

provides another expression for the intrinsic kinetic inductance, 

 
𝐿𝑘0 =

ℎ̅𝜌𝑛
𝜋∆𝐴

 (2.64) 

where 𝐿𝑘0 is the intrinsic kinetic inductance per unit length, and 𝜌𝑛 is the normal state 

resistivity of the superconductor [20]. The ratio of the kinetic inductance to the total 

inductance, 𝛼 will therefore be greater in materials with high normal state resistivity, 

and the superconducting film should be made as long and narrow as possible. For 

NbTiN, 𝜌𝑛 = 100 μΩm, which is three orders of magnitude greater than typical 

resistivities for aluminium films [17] 
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2.5 Phase Shifter Design 

 Now that it is established in previous sections that to design an optimized W-

band kinetic inductance parametric amplifier, an accurate measurement and 

characterization of phase shift ∆𝜙𝑚𝑎𝑥 as a function of pump power, signal and pump 

frequency and length of the transmission line, is crucially important and necessary. 

Also, since the phase shift ∆𝜙𝑚𝑎𝑥 increases as length of the transmission line, in order 

to perceive a measurable amount a transmission line of approximately 503mm is 

designed. The entire phase shifter design will consist of a microwave circuit with a 

feeding circular waveguide port and a waveguide to microstrip transition, four 

waveguide probes – two for each orthogonal polarization, an impedance matching 

transformer section on the microstrip, two ~503 mm transmission lines – one each at 

the two arms of same polarization, a terminating microstrip-to-waveguide transition (a 

replica of the waveguide-to-microstrip transition) and an output circular waveguide. 

The W-band signal will be fed into the circular waveguide with horn antennas attached 

to the waveguide through couplers. A directional coupler will be used before the feed 

horn to mix the signal and pump frequencies. The microwave circuit is packaged in a 

aluminium casing specially designed to accommodate the circular waveguide and the 

microwave circuit chip. A schematic of the various components of the entire phase 

shifter design is shown in Figure 2.10. 
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Figure 2.10 Schematic diagram of the entire phase shifter design 

 The design of all the above mentioned components are discussed in details in 

the following sub-sections. 

 

2.5.1 W-band Circular Waveguide 

 Circular waveguide is a round metal pipe that supports TE and TM waveguide 

modes. The cylindrical components of the transverse field in a circular waveguide [21] 

are as follows: 

 
𝐸𝜌 = −

𝑗

𝑘𝐶
2 (𝛽 (

𝜕𝐸𝑧
𝜕𝜌

) +
𝜔𝜇

𝜌
(
𝜕𝐻𝑧
𝜕𝜙

))  (2.65) 

 
𝐸𝜙 = −

𝑗

𝑘𝐶
2 (
𝛽

𝜌
(
𝜕𝐸𝑧
𝜕𝜙

) − 𝜔𝜇 (
𝜕𝐻𝑧
𝜕𝜌

)) (2.66) 
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𝐻𝜌 =

𝑗

𝑘𝐶
2 (
𝜔𝜖

𝜌
(
𝜕𝐸𝑧
𝜕𝜙

) − 𝛽 (
𝜕𝐻𝑧
𝜕𝜌

)) (2.67) 

 
𝐻𝜙 = −

𝑗

𝑘𝐶
2 (𝜔𝜖 (

𝜕𝐸𝑧
𝜕𝜌

) +
𝛽

𝜌
(
𝜕𝐻𝑧
𝜕𝜙

)) (2.68) 

where 𝑘𝑐
2 = 𝑘2 − 𝛽2, and 𝑒−𝑗𝛽𝑧 propagation has been assumed. The transverse electric 

(𝑇𝐸)  mode in a circular waveguide will be when 𝐸𝑧 = 0 while the transverse magnetic 

mode (𝑇𝑀) will be for 𝐻𝑧 = 0. The first 𝑇𝐸 mode to propagate is 𝑇𝐸11 and for a 𝑇𝑀 

wave it is the 𝑇𝑀01The dominant mode that can propagate in a circular waveguide is 

the 𝑇𝐸11 mode since it has the lowest frequency of all the modes, 𝑇𝐸 or 𝑇𝑀. The cut-

off frequency for a 𝑇𝐸11 [21] mode of a circular waveguide is given by 

 
𝑓𝑐 =

1.841

2𝜋𝑎√𝜇𝜖
 (2.69) 

where 𝑎 is the radius of the circular waveguide. 

Figure 2.11. shows the attenuation due to conductor loss versus frequency for various 

modes of a circular waveguide [21]. 
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Figure 2.11 Attenuation of various modes in a circular waveguide with radius 𝑎 =

2.54 𝑐𝑚 [21] 

Figure 2.12 shows the cut-off frequencies of a few 𝑇𝐸 and 𝑇𝑀 modes of a circular 

waveguide normalized to the dominant 𝑇𝐸11 mode frequency [21].  

 

Figure 2.12 Cut-off frequencies of the first few 𝑇𝐸 and 𝑇𝑀 modes of a circular 

waveguide relative to the cut-off frequency of the dominant 𝑇𝐸11 mode [21]. 
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Figure 2.13 shows field lines of some 𝑇𝐸 and 𝑇𝑀 modes of a circular waveguide. A 

circular waveguide-to-microstrip transition aims at transforming the field lines of the 

dominant 𝑇𝐸11 mode to the quasi-𝑇𝐸𝑀 mode of a microstrip (discussed in the next sub-

section). 

 

Figure 2.13 Circular and along the waveguide field distributions of different 𝑇𝐸 and 

𝑇𝑀 modes in a circular waveguide [21]. 



34 
 

 So according to equation (2.70) for a W-band (75 GHz to 115 GHz) circular 

waveguide, the radius used in the phase shifter design is 1.42 cm. To calibrate the phase 

shift in the phase shifter, we operate the circular waveguide with two polarizations 

orthogonal to each other one at a time. 

 

2.5.2 Microstrip Transmission modes 

 A microstrip line consists of a conductor of width 𝑊 on a athin, grounded 

dielectric substrate of thickness 𝑑 and relative permittivty 𝜖𝑟 as shown in Figure 2.14.  

 

Figure 2.14 Microstrip line on a dielectric substrate of permittivity 𝜖𝑟 

If the dielectric permittivity was 1 i.e. 𝜖𝑟 = 1, the conductor would be embedded in a 

homogeneous medium which would be able to carry a pure 𝑇𝐸𝑀 transmission line with 

phase velocity 𝜈𝑝 = 𝑐 and propagation constant 𝛽 = 𝑘0. However, in a practical case, 

the conductor lies on a dielectric substrate with non-unity permittivity and since 

dielectric does not fill the region above the strip, the field lines are now not contained 

entirely in the dielectric region between the conductor and the substrate as shown in 

Figure 2.15. For this reason, the microstrip line cannot support a pure 𝑇𝐸𝑀 wave 
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Figure 2.15 Field lines in both the dielectric substrate and in air in a microstrip line  

In actuality, the fields of a microstrip line constitute a hybrid 𝑇𝑀 − 𝑇𝐸 wave or 

𝑞𝑢𝑎𝑠𝑖 − 𝑇𝐸𝑀 mode. The phase velocity and the propagation constant of microstrip is 

then given by  

 𝜈𝑝 =
𝑐

√𝜖𝑒𝑓𝑓
 (2.70) 

 𝛽 = 𝑘0√𝜖𝑒𝑓𝑓 (2.71) 

where 𝜖𝑒𝑓𝑓 is the effective dielectric constant since some of the field lines are in the 

dielectric region and some are in air. The effective dielectric constant satisfies the 

relation 

 1 < 𝜖𝑒𝑓𝑓 < 𝜖𝑟 (2.72) 

and depends on the substrate dielectric constant, substrate thickness and the conductor 

width and the frequency. The empirical formula for the effective dielectric constant is 

given by 

 
𝜖𝑒𝑓𝑓 =

(𝜖𝑟 + 1)

2
+
𝜖𝑟 − 1

2
−

1

√1 +
12𝑑
𝑊

  
(2.73) 
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In the phase shifter design, the dielectric is a silicon-on-insulator substrate with 

thickness of ~332 𝜇𝑚 etched to 30 𝜇𝑚 and a relative permittivity of 𝜖𝑟 = 11.7 and with 

a 3 𝜇𝑚 microstrip line deposited with a thickness of ~200 nm of niobium titanium 

nitride (NbTiN) for reasons made clear in previous sections. Two pairs of two of such 

microstrip lines are designed for the phase shifter circuit with each pair for a single 

polarization of the wave guided 𝑇𝐸11 mode of W-band signal.  

 

2.5.4 Circular Waveguide to Microstrip transition 

 Microwave transitions are used to launch microwave power from one kind of 

transmission line to another with minimum possible reflective and dissipative losses. 

Desirable characteristics of a transition [19] are: 

a) Low transmission and reflective losses over the operating bandwidth. 

b) Ease of connection and dis-connection to a microstrip with reproducibility.  

c) In-line design, robustness and simple fabrication. 

d) Adaptability to different substrate dielectric thicknesses. 

The mechanical design should be appropriate to physically match both electrical and 

magnetic field distributions between the two media as close as possible to keep the 

discontinuity reactance small. The electrical design should also be optimized to match 

the impedances and minimize interface discontinuities and avoid losses over the 

operating bandwidth. In general, electric and magnetic fields are matched by shaping 

the structure of the transition while impedance matching and discontinuity reactance 

compensation is realized by 𝜆/4 transformers. 
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 In any microwave transition, minimizing the interface discontinuity reactances 

is preferred over compensating for the discontinuities which limits the frequency range. 

This is done by matching both the electric and magnetic field patterns of the two media 

at the interface. An example of the field pattern transformation from a co-axial 

waveguide to a microstrip transition is shown in Figure 2.16 

 

Figure 2.16 Coaxial-to-microstrip transition field configuration [22] 

Another example of a ridged waveguide to microstrip transition with electric field 

configurations is shown in Figure 2.17 

 

Figure 2.17 Ridged waveguide-to-microstrip transition electric field configuration 

[22]. 
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 The circular waveguide-to-microstrip transition will also be similar to the one 

shown in Figure 2.16 except the waveguide and the microstrip are orthogonal to each 

other. Waveguide to microstrip transition have been dealt with in the literature in early 

days [20], [21] & [22]. The transition is basically done using a microstrip “probe” which 

essentially matches the waveguide impedance to the microstrip impedance. The probe 

is a rectangular patch/patches whose length and width are tuned to minimize the 

reflections and maximize the transmission. The probe used in the phase shifter’s design 

is of the type shown in Figure 2.18 [24] where it is inserted in the transverse cross-

section of the circular waveguide through an aperture in the waveguide wall. A short or 

a “back-short” is also placed at an optimum location from the microstrip probe to couple 

maximum energy from the 𝑇𝐸11 mode of the waveguide to the 𝑞𝑢𝑎𝑠𝑖 − 𝑇𝐸𝑀 mode of 

the microstrip line. The back-short serves to reflect any wave propagating in the wrong 

way and back towards the probe where it combines in phase with the incident wave. 

Although theoretically the back-short should be placed at 𝜆/4 distance from the 

microstrip probe, in reality it is slightly adjusted to minimize the return losses.  

 

Figure 2.18 Circular waveguide-to-microstrip transition [24] 

 The circular waveguide-to-microstrip arrangement used in design of the phase 

shifter is shown in Figure 2.19. The entire microwave circuit consists of a W-band 
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circular waveguide of radius 1.42 mm, a silicon substrate of ~30 𝜇𝑚 thickness with a 

permittivity of 𝜖𝑟 = 11.7, two pairs of two (in total four) waveguide-to-microstrip 

transitions – two for each polarization, impedance transformer to convert from a 100 

μm line down to 3 μm, two 3μm wide and ~503 mm long microstrip lines on the same 

polarization arm and two 3 μm wide and ~23.8 mm long for the other polarization. The 

dual polarization waveguide-to-microstrip transition and circular waveguide are 

replicated on the output port as well. The waveguide-to-microstrip transition or the 

microstrip “probe”, also involves a back-short along the circular waveguide but on the 

opposite side of the substrate wafer. A circular choke flange around the waveguide, to 

filter out the propagation of unwanted microstrip modes is also included in the circuit 

design. 

 

Figure 2.19 The W-band circular waveguide-to-microstrip transition design 
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2.6 Simulations and Design Optimization 

 Electromagnetic simulations were done in order to optimize the circular 

waveguide-to-microstrip transition. Ansys High Frequency Structural Simulator 

(HFSS) EM software was used to simulate the W-band transition design. An open 

source HFSS-Matlab API [23] which controls the input fields of HFSS was used to run 

and save various circuit design parameter optimizations. For simulation purposes only 

one waveguide-to-microstrip transition is simulated since the symmetry of input and 

output waveguides will ensure same wavguide-to-microstrip and microstrip-to-

waveguide transition. Following sub-sections will elucidate on various aspects of the 

simulation. 

 

2.6.1 Structure 

 A cross-section of the complete waveguide-to-microstrip transition circuit is 

shown in Figure 2.20. 

 

Figure 2.20 Cross-section of waveguide-to-micrsotrip transition circuit. 
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The W-band circular waveguide has a radius of 1.42 cm and is terminated on the input 

end with a “wave port”. The W-band signal is launched in the negative z direction from 

this wave port which travels down the W-band waveguide. The wave port is configured 

for two orthogonal polarizations as shown in Figure 2.21. The default boundary 

conditions in HFSS for a structure part are perfect electric boundaries and therefore the 

side walls of the W-band waveguide are terminated appropriately.  

 

 

Figure 2.21 Two orthogonal polarization modes of the input “wave port” 
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 The port at which the transmission through the waveguide-to-microstrip 

transition is measured is another wave port that covers the entire cross-section at the 

end of the microstrip which includes the silicon substrate, the vacuum gap above the 

silicon substrate, vacuum gap below the silicon substrate and the microstrip line itself, 

as shown in Figure 2.22. There are four such output wave ports that measure the 

transmission at the end of each microstrip line. Each of the two orthogonal polarizations 

launched at the input wave port atop the W-band waveguide are detected at one of the 

two pairs of two output wave ports. 

 

Figure 2.22 Output wave port at the end of a microstrip line that spans over the entire 

cross-section of the circuit at that point. 

 The microstrip on the chip is directly above the back-short plate separated by a 

20 μm vacuum layer. The metal work is intentionally placed directly above the back-

short plate so that the incoming electromagnetic wave from the input wave port sees 

the silicon first and then the microstrip probe and impedance matching sections after 

that. This is done for better coupling of the electromagnetic energy from the waveguide 
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as well as the back-short. A vacuum gap of 50 μm separates the waveguide plate from 

the silicon substrate. 

 

2.6.2 Impedance Boundary Conditions 

 The entire waveguide-to-microstrip transition circuit consists of different 

boundary conditions with different impedances. All the vacuum and air boundaries are 

terminated with an impedance of 377 Ω. All silicon interface boundary impedances are 

terminated by 110 Ω. Since the microstrip will be of NbTiN, which will be 

superconducting at 1.2 K will have zero resistance and as calculated previous, a kinetic 

inductance 𝐿𝑘 of 5.7pH/square, the microstrip is assigned an impedance sheet with 

reactance of 2𝜋𝜔𝐿𝑘. Ω/square. 

 

2.6.3 Waveguide-to-Microstrip Transition Design Optimization 

 Waveguide-to-microstrip transition consists of a microstrip probe which 

intercepts the TE mode wave launched in the circular waveguide and captures the 

electromagnetic energy to convert it into a quasi-TEM wave that is supported by the 

microstrip. Here, we have four of these microstrip probes arranged at the beginning two 

orthogonal pairs of two parallel but opposite running microstrip lines as shown in 

Figure 2.23.  
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Figure 2.23 Microstrip probe design 

 The microstrip probes are followed by an impedance matching section which 

matches the input waveguide impedance to the impedance of the microstrip. Since the 

microstrip is a NbTiN superconducting metal, it is designed to not have any distributed 

resistance. However, because of the kinetic inductance distributed over the entire length 

of the microstrip line, the impedance matching has to be done for a reactance of  

 𝑋𝐿 = 2𝜋𝜔𝐿𝑘 (2.74) 

where 𝐿𝑘 is 5.7pH/square and 𝜔 is the operating frequency. The impedance then 

becomes 

 𝑍 = 0 + 2𝜋𝜔𝐿𝑘 (2.75) 

which is frequency dependent. Therefore, the impedance matching should be as much 

broadband as possible. Microstrip probe and impedance transformer design is well 

elaborated in [24]. The impedance matching section consists of a high inductive line 

placed in series with the probe to resonate out its capacitive reactance. This is followed 
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by a quarter-wave impedance transformer to match the impedance of the circular 

waveguide to the microstrip line (Figure 2.24). 

 

Figure 2.24 Microstrip probe, high inductive line and impedance transformer 

components of the transition. 

The length and widths of the probe, high inductive line and impedance transformer 

(Figure 2.25) were optimized over various optimization runs which were aimed at 

maximizing the transmission (S21), minimizing the reflection (S11) and maximizing 

the absorption efficiency given by (2.77), over the 75GHz to 115GHz bandwidth. 

 𝐴𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1 − (𝑆11)2 − (𝑆21)2 (2.76) 

 

Figure 2.25 Lengths and widths of the probe, high inductive line and impedance 

transformer components. 

A few of the optimization runs of L1, W1, L2, W2, L3 & W3 are shown in the following 

figures. 
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Figure 2.26 Reflection characteristics (S11) of L1 optimization runs 

 

Figure 2.27 Transmission characteristics (S21) of L1 optimization runs 
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Figure 2.28 Absorption Efficiency of L1 optimization runs 

 

Figure 2.29 Reflection characteristics (S11) of L3 optimization runs 
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Figure 2.30 Transmission characteristics (S21) of L3 optimization runs 

 

Figure 2.31 Absorption Efficiency of L3 optimization runs 
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Figure 2.32 Reflection characteristics (S11) of choke height optimization runs 

 

Figure 2.33 Transmission characteristics (S21) of choke height optimization runs 
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Figure 2.34 Absorption Efficiency of choke height optimization runs 

No. Parameter Optimized Value 

1 𝐿1 0.56 mm 

2 𝑊2 0.4 mm 

3 𝐿2 0.07 mm 

4 𝑊2 0.1 mm 

5 𝐿3 0.4 mm 

6 𝑊3 0.3 mm 

7 Choke Height 0.5 mm 

8 Back-short 0.5 mm 

Table 2.1 Optimized parameters of waveguide-to-microstrip transition 
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2.6.4 Tapering transformer 

 The eventual width of the microstrip line that is ~503mm long and through 

which the phase shift is to be measured is 3 μm wide. However, for ease of 

impedance matching and microstrip probing the microstrip line width at the end of the 

impedance matching component in Figure 2.21 is kept at 100 μm. Therefore there is a 

need to transform the 100 μm line to a 3 μm. This transformation is done by a 

tapering section elaborated as follows. 

 A load of 𝑍𝐿 can be matched to a input impedance 𝑍𝑖𝑛 by using a quarter-wave 

section of transmission line with 𝑍𝑐 = √𝑍𝐿𝑍𝑖𝑛 (Figure 2.35). The impedance is then 

matched only at the frequency at which the electrical length of the matching section is 

𝐿 = 𝜆/4 [25].  

 

Figure 2.35 Quarter-wave transformer for matching 𝑍𝑖𝑛 and 𝑍𝐿 [26]. 

However, a single quarter-wave transformer is inadequate for a wider bandwidth 

application. The bandwidth can be increased by using cascaded quarter wave 

transformer sections which can match to the load in steps (Figure 2.36) or a continuous 

transformation like a tapering (Figure 2.37). The length of the tapering transformer is 
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determined by the lowest operation frequency and the maximum reflection coefficient 

allowed in the pass band (Figure 2.38). 

 

Figure 2.36 Stepped impedance transformer [29] 

 

Figure 2.37 Continuous impedance transformer [29] 

The impedance of a tapered matching is defined by its length L and its tapering function. 

The bandwidth of a tapered line increases [30]. If the tapered section has an electrical 

length of two or more wavelengths, the impedance transformation takes place with 

negligible reflections over a broad band of frequencies [31]. 

 Sonnet Suites simulations were done in order to simulate a triangular tapering 

from 100 μm down to 3 μm. The optimized length of the taper L is 0.7 mm. Following 

illustrations show the structure and transmission and reflection characteristics of the 

tapering transformer. Since the microstrip is to be biased (as discussed in previous 

sections), a bias T solder pad is placed before the beginning of the taper. A grounding 

pad is added on the path to dc pad that shorts out unwanted resonances. 
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Figure 2.38 100 μm to 3 μm tapered transformer with grounding short and dc bias T. 

 

Figure 2.39 S parameters of the tapered transformer. S11 indicates the reflection 

coefficient from the 100 μm line, S21 indicates the transmission coefficient to the 3 

μm line and S31 indicates the transmission coefficient to the dc solder pad. 
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2.6.5 Calibration Microstrip Lines 

 The two pairs of two microstrip lines in the phase shifter circuit have one pair 

for calibration and the other pair for the actual phase shifting. The calibration microstrip 

lines are ~23.8 mm long starting with a waveguide-to-microstrip transition and an 

impedance transformer tuned to one orthogonal polarization. Since the circular 

waveguides are fed by horn antennas and then are attached to the chip housing package 

through couplers, a calibration of this whole arrangement is necessary before the phase 

shifter branch is operated. The calibration microstrip lines will give a baseline for 

reflection and transmission through the horn antennas-waveguides-coupler-chip 

construction. 

 

2.7 Fabrication  

 Currently, the phase shifter is designed and simulated and it is proposed to be 

fabricated here at ASU and to be tested with our collaborators at Jet Propulsion 

Laboratory (JPL) and National Institute of Science and Technology (NIST). As 

discussed earlier the entire phase shifter circuit on the silicon substrate will have two 

waveguide-to-microstrip transitions each with two pairs of two microstrip probe – two 

probes for each polarization of the W-band signal, identical impedance matching 

sections and tapered transformers to convert 100 μm sections everntually to 3 μm 

microstrip lines. There will be two pairs of two arms of microstrip lines, one arm having 

a ~503mm long microstrip line while the other with a ~23.8 mm long microstrip line. 

The CAD layout of the phase shifter circuit is illustrated in Figure 2.41. The silicon 

substrate is etched from a ~332 μm thick silicon-on-insulator (SOI) wafer (Figure 2.40). 
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A handle wafer surrounds the etched silicon substrate which is very useful in to carry 

the wafer while processing, during measurements and packaging. To etch a depth of 

~300 μm of the SOI down to the silicon substrate, an anisotropic Bosch etch is 

necessary with a resist of very low selectivity over silicon (approximately 1:100). A 

deposition of NbTiN is done with a sputter deposition here at ASU. All the fabrication 

and processing steps are illustrated in Figure 2.42. 

 

Figure 2.40 SOI wafer with insulator (SiO2) and 30 μm silicon substrate. 
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Figure 2.41 CAD layout of the phase shifter circuit 
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Figure 2.42 Fabrication process of the phase shifter chip 
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2.8 Packaging 

 The phase shifter chip and a pair of PCBs for bias-T, will be housed in a three-

piece copper enclosure, to be precision machined at ASU in Spring, 2016. The input 

and output W-band circular waveguides will be attached with a coupler section to the 

copper packaging. The packaging is chosen of copper so as to ensure minimum thermal 

contraction when cooled to 4.2 K and also because of ease of manufacturing. The two 

W-band circular waveguides will be fed by a pair of horn antennas coupled at their open 

ends. This entire arrangement of the horn antennas, circular waveguides and the copper 

packaging that houses the phase shifter chip will be placed inside a cryostat that cools 

to 4.2 K (Figure 2.43). 

 A 1-liter liquid Helium cryostat will be used to house the phase shifter during 

testing. A small, single stage 4 K cryostat was chosen because of its fast turnover time, 

and ~ 6-hour hold-time. The copper phase shifter enclosure will be mounted to the 4 K 

cold plate with the side holding the welded circular waveguide pointing out towards an 

NW-40 vacuum flange. The two pieces of waveguide will be fed through a small 

vacuum chamber and joined to rectangular W-band horns that connect with standard 

circular-to-rectangular waveguide flanges. The input and output signal will be coupled 

between two pairs of W-band horns, mounted face to face at a 1/16" vacuum window 

fabricated from high density polyethylene (HDPE) (Figure 2.44). HDPE was chosen 

because it is economical, while permitting sufficient W-band transmission without the 

need for fabricating a multi-layer window. Since the phase shift test is a relative 

measurement, the maximum magnitude of S21 is not an important consideration, and 

some signal loss can be incurred through the vacuum window without compromising 

the measurement. The W-band signal will be coupled to the test setup via Vector 
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Network Analyser (VNA) extenders that are currently available for use in our 

laboratory. 

 

Figure 2.43 Copper packaging that will house the phase shifter chip and which will be 

mounted on the 4.2 K stage of the test cryostat. As seen, the two W-band circular 

waveguides are coupled to the packaging. The copper piece on the right side will be 

joined with the piece on the right with screws leaving a 50 μm gap between the chip 

and the right piece. 
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Figure 2.44 A view from inside the test cryostat where the package and waveguides 

are coupled to the horn antennas that face the HDPE window. 

 

2.9 Conclusions and Future Scope 

 A distributed kinetic inductance of a superconductor transmission line is utilized 

into obtaining a length and current dependent phase velocity and hence a variable phase 

shift ∆𝜙. A pump tone and a signal tone can be mixed together to obtain gain in the 

signal tone that is quadratically dependent on the maximum phase shift ∆𝜙𝑚𝑎𝑥. We 

have designed here a ~503 mm phase shifting NbTiN superconducting transmission 

line which theoretically predicts a gain of ~49 dB for a meter of transmission line and 

a phase shift of ~ 1300 radians at 90 GHz. We have also designed the complete circuit 

required to achieve this phase shifter and a copper package housing the phase shifter 

that is to be mounted on a 1.2 K stage inside a cryostat. The W-band signal (75 GHz to 
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115 GHz) signal is thought to be fed through horn antennas coupled to the circular 

waveguide on the phase shifter side and with another set of horn antennas that will feed 

through a HDPE window from outside the cryostat. 

 The designs are ready for fabrication and manufacturing and will be assembled 

and tested here at ASU. 
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CHAPTER 3. 

PART II 

MICROSTRIP TO SLOT LINE TRANSITION FOR 150 GHz and 220 GHz 

FREQUENCIES 

 

3.1 Introduction and Scientific Motivation 

 A project to develop a 20-element prototype arrays of horn-coupled, 

polarization-sensitive microwave kinetic inductance detectors (MKIDs) that are each 

sensitive to multiple spectral bands between 130 and 280 GHz, is part of a proposal in 

collaboration with research groups from Columbia, Stanford, Cardiff and ASU. These 

MKID arrays are tailored for experiments that are designed to simultaneously 

characterize the polarization properties of both the cosmic microwave background 

(CMB) and Galactic dust emission. The research program focuses on (i) developing the 

coupling between our distributed aluminum MKID design and the Truce-developed on-

chip millimeter-wave polarimeter circuit and (ii) demonstrating that the sensitivity of 

theses arrays is competitive. The 20-element arrays we chose to develop allows to test 

the detector performance and the full readout bandwidth, and the prototype array design 

is directly scalable to 331-element arrays, which can be tiled into a 9268 detector array.  

 Figure 3.1 shows photographs of their horn and detector chip and a rendering of 

a microwave kinetic inductance detector (MKID) that is sensitive to 150 and 220 GHz 

spectral bands. Incoming radiation enters a detector holder that supports a planar 

detector chip in front of a waveguide back short and uses a waveguide choke to prevent 

lateral leakage of fields from the waveguide.  
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Figure 3.1 A prototype of a multi-chroic device 

The detector chip (Figure 3.1) uses a broadband orthogonal mode transducer (OMT) to 

couple the incoming light from the waveguide onto high impedance coplanar 

waveguide (CPW) lines. The OMT separates the incoming light according to linear 

polarization. Along each path, a broadband CPW to micro-strip (MS) transition 

comprised of 7 alternating sections of CPW and MS is used to transition the radiation 

onto MS lines. Next, diplexers comprised of two separate five pole resonant stub band-

pass filters separate the radiation into 75 to 110 and 125 to 170 GHz pass-bands. The 

signals from opposite probes within a single sub-band are then combined onto a single 

MS line using the difference output of a hybrid tee. This part of the thesis deals in 

designing and optimizing the CPW to MS transition as shown in Figure 3.2. 
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Figure 3.2 Insertion place of microstrip to slot line transition 

 

3.2 Slot Line 

 A slot line is a planar structure first proposed for use in MICs by Cohn, 1968 

[34]. The basic slot line configuration shown in Figure 3.3 consists of a dielectric 

substrate with a narrow slot etched in the metallization on one side of the substrate. The 

other side of the substrate is without any metallization.  
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Figure 3.3 Slot line configuration [22]. 

A practical slot line, the radiation is minimized by using a high permittivity substrate 

which causes the wavelength transmitted in the slot line 𝜆′ to be small compared to the 

free space wavelength 𝜆. This closely confines the electric and magnetic fields to the 

slot with negligible radiation loss. For instance, for a substrate relative permittivity 𝜖𝑟 =

20, the ratio of the wavelengths in the substrate and free space will be 𝜆′/𝜆 = 1/3. 

When an alternating voltage is applied between the two metal planes of the slot line, an 

electric field extends across the slot and the magnetic field is perpendicular to the slot 

as illustrated in Figure 3.4. Observing the magnetic field lines in Figure 3.4, the 

magnetic field lines curve and return to the slot at half wavelength intervals. The surface 

current density is greatest at the edges of the slot and decreases rapidly with distance 

from the slot.  
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Figure 3.4 Field distribution in a slot line. 

 

3.2.1 Slot Line Field Equations 

 The slot line can be characterized by its electrical parameters of characteristic 

impedance 𝑍0 and the phase velocity 𝜈. Because of the non-TEM nature of the slot line 

mode these parameters are not constant but vary with frequency. The slot line has no 

cut-off frequencies down to 𝑓 = 0 where if metal coated substrate is assumed infinite 

in length and width, 𝜈/𝑐  approaches unity and 𝑍0 approaches zero. The slot line fields 

can be divided into three electric field components and three magnetic field 

components. The longitudinal component of the electric field is weak since most of the 

electric field is confined between the two conductors. If the width 𝑊 (Figure 3.3) is 

much smaller than the free space wavelength 𝜆0, the electric field across the slot can be 

thought of as an equivalent line source of magnetic current. This leaves the far-field 

with only three components of the magnetic field 𝐻𝑥, 𝐻𝑟 and 𝐸𝜙. For a distance r in the 

air region the field equations [22] can be written as 
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 𝐻𝑥 = 𝐴𝐻0(𝑘𝑐𝑟) (3.1) 

 
𝐻𝑟 = − (

𝛾𝑥
𝑘𝑐2
)
𝜕𝐻𝑥
𝜕𝑟

=
𝐴

√1 − (
𝜆𝑠
𝜆0
)

𝐻1(𝑘𝑐𝑟)   (3.2) 

 
𝐸𝜙 =

𝑗𝜔𝜇

𝑘𝑐2
𝜕𝐻𝑥
𝜕𝑟

= −
𝜂𝐻𝑟𝜆𝑠
𝜆0

 (3.3) 

where 𝛾𝑥 is the propagation constant along the x-direction which is the propagation and 

𝑘𝑐 is related to the slot wavelength 𝜆𝑠 by the equation  

 

𝑘𝑐 = 𝑗
2𝜋

𝜆0
√(
𝜆0
𝜆𝑠
)
2

− 1 (3.4) 

 

3.2.2 Slot Line Wavelength 

 As illustrated in Figure 3.4 the slot line fields are not confined to the substrate 

alone and are extended into the air region above the slot and below the substrate as well. 

Therefore the effective permittivity of a slot line (𝜖𝑟𝑒) is less than the substrate 

permittivity (𝜖𝑟). The zeroth order value of 𝜖𝑟𝑒 for a slot on an infinitely thick substrate 

is the average dielectric constant of the two media [35], 

 
𝜖𝑟𝑒 =

𝜖𝑟 + 1

2
  (3.5) 

and therefore, 

 
𝜆𝑠
𝜆0
= √

2

𝜖𝑟 + 1
 (3.6) 
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For a slot line of finite thickness substrate, the above value of 𝜆𝑠/𝜆0 is approached for 

the cut-off thickness for the 𝑇𝐸0 surface wave mode [22].The cut-off thickness is given 

by  

 ℎ

𝜆0
=

0.25

√𝜖𝑟 − 1
 (3.7) 

 

3.2.3 Slot Line Impedance 

 The characteristic impedance 𝑍0 cannot be defined uniquely because of the non-

TEM nature of the slot line. From the power-voltage relationship the impedance can be 

written as [36] 

 
𝑍0𝑠 =

|𝑉|2

2𝑃
. (3.8) 

 where 𝑉 is the peak voltage across the slot. The average power P is written in terms of 

energy storage 𝑊𝑡, which can be written in terms of rate of change of total susceptance 

𝐵𝑡 wit frequency, 

 
𝑊𝑡 = (

𝑉2

4
) (

𝜕𝐵𝑡
𝜕𝜔

) (3.9) 

and since  

 
𝑊𝑡 =

𝜋𝑃

2𝜔

𝜈

𝜈𝑔
 (3.10) 

we can write  

 𝑍0𝑠 =
𝜈

𝜈𝑔

𝜋

𝜔𝜕𝐵𝑡
𝜕𝜔

. 
(3.11) 

For 𝑝 = 𝜆0/𝜆_𝑠, it may be expressed as  
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𝑍0𝑠 = 𝜂

𝜈

𝜈𝑔

𝜋

𝑝
 {

∆𝑝

−∆(𝜂𝐵𝑡)
} . (3.12) 

Here the phase velocity 𝜈 is related to the group velocity 𝜈𝑔 as, 

 
𝜈

𝜈𝑔
= 1 −

𝑓

𝜆𝑠
𝜆𝑔

∆ (
𝜆𝑠
𝜆0
)

∆𝑓
. (3.13) 

 

3.2.4 Slot Line Discontinuity – Short End 

 A slot line when terminated by merely ending the slot or by filling the slot with 

a conductor surface lying in the plane of the slot, it creates a short end discontinuity. 

The current flows on the metal surface at the end of the slot as shown in Figure 3.5. The 

stored magnetic energy due to the surface currents at the short end gives rise to an 

inductive reactance at a plane normal to the slot axis and coincident with the end of the 

slot. 

 

Figure 3.5 Short end field and current distributions [22] 
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The end reactance of a short ended slot line is purely inductive and increases with 

increase in slot width and ℎ/𝜆0 ratio. Propagation of power in surface waves and 

radiation causes losses in the short end in a slot line and are described by an equivalent 

resistance of 𝑅. The equivalent circuit of a short end on a slot line is therefore a series 

combination of an inductor and a resistor. 

 

3.2.5 Slot Line Discontinuity – Open End 

 A slow tapering out at the end of the slot line contributes to an open end as 

shown in Figure 3.6. A typical open end used in practice is a circular disc open end or 

a combination of a flared slot and a half disc open end as shown in Figure 3.7  

 

Figure 3.6 A flared open end as a slot line discontinuity. 

 

Figure 3.7 Circular disc open ended and a combination of flare and half-disc open 

ended slot line discontinuity. 
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A larger disc radius in the circular disc open end the smoother is the termination and 

better will be the open-circuit behavior. The circular disc may also behave like a 

resonator if the slot width is very narrow as compared to the disc radius [37].  

 

3.3 Microstrip Discontinuities 

 Microstrip discontinuities include open ends, gaps, steps in width, right angled 

bends, T-junction and cross junctions of which stepped width, right angles and T-

junctions are used in this design of microstrip-to-slot line. Following sub-sections 

elaborate these three discontinuities.  

 

3.3.1 Stepped Discontinuity 

 A difference in widths of the microstrip at a junction contributes a stepped 

discontinuity. The two varying widths have difference in their impedances. The 

discontinuity results in an excess capacitance 𝐶𝑠 as shown in Figure 3.8  

 

Figure 3.8 Microstrip stepped discontinuity and its equivalent circuit [22]. 



72 
 

In terms of distributed elements, the discontinuity capacitance 𝐶𝑠 has the effect of an 

increase in the wide line’s length and an equal decrease in the narrow line’s length that 

is given by [38], 

 
∆𝑙𝑜𝑐𝑓(𝜖𝑟) [1 −

𝑊2

𝑊1
] (3.14) 

where ∆𝑙𝑜𝑐 is the open circuit line extension given by, 

 ∆𝑙𝑜𝑐
ℎ

=
𝐶𝑜𝑐
𝑊

𝑐𝑍0𝑚𝑊

ℎ√𝜖𝑟𝑒
 (3.15) 

where 𝐶𝑜𝑐 is the open end capacitance (calculated empirically) and 𝑓(𝜖𝑟) is given by, 

 𝑓(𝜖𝑟) = 1.25 + 0.19 tan−1(6.16 − 𝜖𝑟). (3.16) 

 The inductance per unit length associated with the step discontinuity in a 

microstrip of width 𝑊1 is given by [39] 

 
𝐿𝑤1 =

𝑍0𝑚√𝜖𝑟𝑒

𝑐
 (𝐻/𝑚). (3.17) 

The individual additional inductances 𝐿1 and 𝐿2 can be written in terms of the total 

inductance 𝐿𝑠 by [22], 

 
𝐿1 =

𝐿𝑤1
𝐿𝑤1 + 𝐿𝑤2

𝐿𝑠. (3.18) 

 
𝐿2 =

𝐿𝑤2
𝐿𝑤1 + 𝐿𝑤2

𝐿𝑠. (3.19) 

and the corresponding additional lengths may be written as  

 ∆𝑙1
ℎ
=
∆𝑙2
ℎ
=

𝐿𝑠
𝐿𝑤1 + 𝐿𝑤2

 (3.20) 
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3.3.2 Right Angle Bends 

 A bend in a microstrip may be formed between equal or unequal impedance 

lines. An equivalent circuit as shown in Figure 3.9 includes an extra capacitance and 

parallel conductance.  

 

Figure 3.9 A microstrip line bend and its equivalent circuit. [22] 

Expressions for right angled bend discontinuities are given in [40] as, 

 
𝐶𝑏
𝑊
 (𝑝𝐹/𝑚) =  

{
 

 (14 𝜖𝑟 + 12.5)𝑊
ℎ

− (1.83 𝜖𝑟 − 2.25)

√𝑊
ℎ

+ 0.02
𝜖𝑟
𝑊
ℎ

 

}
 

 

 

…𝑓𝑜𝑟 (𝑊/ℎ < 1) 

(3.21) 

and  

 𝐶𝑏
𝑊
 (𝑝𝐹/𝑚) =  {(9.5 𝜖𝑟 + 1.25)

𝑊

ℎ
+ 5.2 𝜖𝑟 + 7.0} 

…𝑓𝑜𝑟 (𝑊/ℎ ≥ 1) 

(3.22) 

and  

 
𝐿𝑏
ℎ
 (𝑛𝐻/𝑚) = 100(4√

𝑊

ℎ
− 4.21) (3.23) 
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3.3.3 T-junctions 

 A T-junction is very common in microwave filters, impedance networks, 

couplers etc. The equivalent circuit for a T-junction consists of an extra discontinuity 

capacitance 𝐶𝑇 and a network of inductances in parallel to 𝐶𝑇 as shown in Figure 3.10. 

 

Figure 3.10 A microstrip T-junction and its equivalent circuit [22]. 

For symmetric T-junctions, the discontinuity reactances of the equivalent circuit with a 

main-line impedance of 50 Ω and for 𝜖𝑟 = 9.9 the expression [40] is given as  

 𝐶𝑇
𝑊1
 (𝑝𝐹/𝑚) =

100

tanh(0.0072 𝑍0)
+ 0.64 𝑍0 − 261 

…𝑓𝑜𝑟 (25 ≤ 𝑍0 ≤ 100) 

(3.24) 

where 𝑍0 is the characteristic impedance of the stub. The inductance per unit length 

[40] in the equivalent circuit are given by, 

 
𝐿1
ℎ
 (
𝑛𝐻

𝑚
) = −

𝑊

ℎ
 {
𝑊2

ℎ
(−0.016

𝑊1

ℎ
+ 0.064) +

0.016

𝑊1

ℎ

}𝐿𝑤1 (3.25) 
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…𝑓𝑜𝑟 (0.5 ≤ (
𝑊1

ℎ
,
𝑊2

ℎ
) ≤ 2.0) 

and  

 𝐿2
ℎ
 (
𝑛𝐻

𝑚
) = {(0.12

𝑊1

ℎ
− 0.47) + 0.195

𝑊1

ℎ
− 0.357

+ 0.0283 sin (𝜋
𝑊1

ℎ
− 0.75𝜋)} 𝐿𝑤2 

…𝑓𝑜𝑟 (1 ≤
𝑊1

ℎ
≤ 2.0; 0.5 ≤

𝑊2

ℎ
≤ 2) 

(3.26) 

where 𝐿𝑤 is the inductance per unit length for a microstrip of width 𝑊. 

 

3.3.4 Microstrip to Slot Line Transition 

 Combining the above equivalent circuits, a microstrip to slot line transition can 

be carefully designed to obtain maximum transmission and minimum reflection losses. 

Figure 3.11 shows an impedance matched microstrip to circular disc ended slot line 

transition. The microstrip end appears as a short circuit while the circular dis end of the 

slot line appears as an open circuit. An equivalent of the transition is shown in Figure 

3.12. 𝐿𝑜𝑠 is the inductance of the shorted slot line, 𝐶𝑜𝑐 is the capacitance of the open 

microstrip, 𝑍𝑜𝑠, 𝑍𝑜𝑚 are the slot line and microstrip characteristics impedances 

respectively. 𝜃𝑠 and 𝜃𝑚 are the electrical lengths (quarter wavelength at center 

frequency) od the extended portions of the slot line and microstrip respectively and 𝑛 

is the transformer ratio. 
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Figure 3.11 Microstrip to slot line transition with circular stubs and impedance 

matching end 

 

Figure 3.12 Equivalent circuit for the transition [41] 

 Transforming all of the circuit’s components to the microstrip side, we obtain, 

 
𝑅𝑠 =

𝑛2𝑍𝑜𝑠𝑋𝑠
𝑖𝑛

𝑍𝑜𝑠2 + 𝑋𝑠
𝑖𝑛

 (3.27) 

 
𝑋𝑠 =

𝑛𝑍𝑜𝑠𝑋𝑠
𝑖𝑛

𝑍𝑜𝑠2 + 𝑋𝑠
𝑖𝑛

 (3.28) 

 𝑋𝑚 = 𝑋𝑚
𝑖𝑛 (3.29) 
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The input reflection coefficient 𝛤𝑖𝑛 is therefore given by 

 
𝛤𝑖𝑛 = 𝑅𝑠 − 𝑍𝑜𝑚 +

𝑗(𝑋𝑚 + 𝑋𝑠)

𝑅𝑠 + 𝑍𝑜𝑚 + 𝑗(𝑋𝑚 + 𝑋𝑠)
 (3.30) 

 The geometry of the proposed MS to SL transition for this project is designed 

to have a configuration as shown in Figure 3.13 

 

Figure 3.13 Proposed MS to SL transition  

 

3.4 Simulations for Design Optimization 

 The microstrip-to-slot line design optimized here is built on a material stack as 

shown in Figure 3.15. The input signal is fed to a 5 μm wide microstrip line that sits on 

top of the 350 nm silicon nitride (SiN) while the slot line is etched from NbTiN metal 

that is sandwiched between the 350 nm SiN and a 5 μm thick silicon (Si) substrate. The 

slot line is terminated by a lossy aluminum (Al) which represents the kinetic inductance 

detector.  
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Figure 3.14 Microstrip to slotline transition layout 

 The slot line which is below the 350 nm SiN layer and that sits on top of a 5 μm 

thick Si substrate has two circular open ends followed by a right angle discontinuity to 

carry the signal to the lossy Al line. The microstrip starts on top of the 350 nm SiN layer 

is 5 μm initially and is followed by a T-junction discontinuity which is terminated by 

impedance matching sections on its two branches. The material stack is as shown in 

Figure 3.15. The crossing point of the microstrip and the slot line is approximately 𝜆/4 

from both the microstrip and the slot line ends. 
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Figure 3.15 Material stack for MS to SL transition 

 The parameters shown in Figure 3.14 are optimized using Sonnet Suite to get 

maximum transmission at the Al line. The microstrip can be treated as an input port and 

the Al line as an output port. The parameters are optimized for a set of frequencies – 

150 GHz and 220 GHz. Figure 3.16 and Figure 3.17 illustrate the S-parameters of the 

150 GHz and 220 GHz optimized designs. Table 3.1 is populated with the optimized 

values of the parameters for both the designs. 
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Figure 3.16 S-parameters of the design optimized for 150 GHz. 

 

Figure 3.17 S-parameters for design optimized for 220 GHz 
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No. Parameter Optimized Value for 150 GHz Optimized Value for 220 GHz 

1 𝐿1 0.2 mm 0.2 mm 

2 𝐿2 0.16 mm 0.05 mm 

3 𝑊1 0.13 mm 0.0575 mm 

4 𝑊2 0.002 mm 0.002 mm 

5 𝑊3 0.004 mm 0.004 mm 

6 𝑊4 0.014 mm 0.006 mm 

7 𝑅1 0.09 mm 0.09 mm 

Table 3.1 Optimized values of parameters of both 150 and 220 GHz designs. 

 

3.5 Conclusion 

 We have designed here a microstrip to slot line transition that will be part of a 

microwave kinetic inductance detector readout circuit. Two separate designs of MS to 

SL transition are optimized for 150 GHz and 220 GHz frequencies. The transition 

carries the signal that originates from a orthogonal mode transducer (OMT) followed 

by a CPW to MS transition and a T-network and eventually terminated to the MKID 

transmission line. The MS to SL transition has a band width of around 30 GHz for both 

the designs with a transmission coefficient of ~2dB and a reflection coefficient of 

around 16 dB. 

 The complete fabrication of the MKIDs will be done by collaborators at 

Berkeley once all other parts of the circuit are designed and optimized.  
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CHAPTER 4. 

PART III  

2DEG KINETIC INDUCTANCE WITH CO-PLANAR WAVEGUIDES – 

CIRCUIT MODELLING AND EXPERIMENTAL VERIFICATION 

 

4.1 Background and Motivation 

The collective oscillations of electrons called plasmons, in two-dimensional 

electron systems discovered more than 35 years ago [42] have recently gathered 

rigorous interest in the scientific community. The research interest is mainly driven in 

the direction of plugging the “THz gap” [43] which refers to a lack of detectors and 

sources in the terahertz (1012 Hz) region of the electromagnetic spectrum. Surface 

plasmons, which are electron oscillations propagating at the surface of the three 

dimensional bulk metal with a finite penetration depth are specially investigated in the 

field of photonics which takes advantage of the phenomenon of surface electrons 

travelling approximately 10 times slower than the free-space light velocity. This 

exhibits subwavelength confinement of light [44-47]. Surface plasmons in the skin of 

the bulk resonate at optical frequencies whereas the resonance of 2D electron systems 

such as semiconductor heterojunctions, graphene and 2D transition metals, falls in the 

gigahertz to far-infrared or the “THz gap”. The two-dimensional electron gas or two-

dimensional plasmons are able to achieve greater subwavelength confinement [48-50] 

with velocities as low as 100 times slower than free-space velocity i.e. c/100 [49, 51]. 

Moreover, the resonance of the 2D plasmons or 2D electron gas (2DEG) can be easily 

manipulated by changing the electron density through an applied field effect. Such 
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qualities of the 2DEG make an excellent candidate for high frequency detection and 

analysis [52 - 58]. 

However, to probe the electromagnetic radiation, there needs to be interaction 

between the gigahertz or THz photon and the 2DEG. A directly incident free-space 

radiation on a 2D electron system does couple. For any radiation photon to couple to a 

2D electron system, the frequency and momentum of the photon and the 2D electron 

should be the same. The dispersion relation of a wave propagating on a surface can be 

briefly derived as follows, 

 𝐸 = 𝐸0𝑒
𝑖(𝑘𝑥𝑥 + 𝑘𝑧𝑧−𝜔𝑡) (4.1) 

E being the electric field of a propagating electromagnetic wave, k is the eave number, 

ω is the angular frequency of the wave travelling parallel to the y direction. Solving 

Maxwell’s equation at a boundary of two different materials of permittivity ε1 and ε2 

and using appropriate boundary conditions as follows, 

 𝑘𝑧1
휀1
+ 
𝑘𝑧2
휀2

= 0 (4.2) 

and  

 
𝑘𝑥
2 + 𝑘𝑧𝑖

2 = 휀𝑖 (
𝜔

𝑐
)
2

 (4.3) 

where 𝑖 = 1, 2 and c is the speed of light in vacuum, 𝑘𝑥 remains same for the both the 

media at the surface for a surface wave. Solving with these boundary conditions, the 

dispersion relation for a wave propagating on the surface is, 

 

𝑘𝑥 =
𝜔

𝑐
√
휀1휀2
휀1 + 휀2

 (4.4) 

In a free electron model, the dielectric function is as follows, 
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휀(𝜔) = 1 −

𝜔𝑃
2

𝜔2
 (4.5) 

where the bulk plasma frequency is 

 

𝜔𝑃 = √
𝑛𝑒2

휀0𝑚∗
 (4.6) 

Here n is the electron density, e is the charge on the electron, m* is the effective mass 

of the electron and 휀0 is the permittivity of free-space. If we plot the relation of 
𝜔

𝜔𝑃
 and 

𝑘𝑥 we get an asymptotic behavior [59] for higher values of 𝑘𝑥.  

 

Figure 4.1. Dispersion relation of optical photons [59] 

At lower values of 𝑘𝑥, the surface plasmons behave like a photon but as the k vector 

increases, the dispersion relation reaches an asymptotic limit called the “surface plasma 
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frequency”. Figure. 4.1 shows a “light line” which indicates the dispersion relation of 

optical photons at 𝜔 = 𝑘𝑥𝑐. The dispersion of surface plasmons lies to the right of this 

line which indicates that the plasmons have a shorter wavelength than free-space 

radiation and the out-of-plane wave-vector of the surface plasmons is purely imaginary 

and exhibits evanescent decay. Thus the dispersion relation of surface plasmons can be 

given by  

 𝜔𝑆𝑃 =
𝜔𝑃

√1 + 휀2
 (4.7) 

Comparing the equations (4.4) & (4.7), the momentum of optical photons in free-space 

is less than the momentum of surface plasmons for the same energy. Since the surface 

plasma is a collective oscillation of free electrons and photons, the surface plasmons 

can be thought to have both of electrons and photons where the momentum of electrons 

is larger than that of the photons which causes the mismatch and prevents from light 

coupling directly into a 2D electron gas. 

 2D electron gas in heterojunction semiconductors are of a particular interest in 

the field of space exploration and  Far-Infrared / THz or mm-wave astronomy. 

2DEG hot electron bolometers operating at cryogenic temperatures are used to measure 

the cosmic microwave background (CMB) power at microwave frequencies. One way 

to couple electromagnetic energy into a 2D electronic system is to use planar antennas 

tuned to a particular band of frequency  
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4.2 Two-Dimensional Electron Systems 

Electrons that can move freely in two dimensions x and y and whose momentum 

vectors are restricted in the third dimension z constitute a 2D electron system. 2D 

electron sheet densities can be found in band engineered heterojunction 

semiconductors, surface of liquid helium, graphene, inversion layer in a MOSFET etc. 

The research work in this thesis concerns with band engineered heterojunction 

semiconductor 2D electron systems, specifically 𝐺𝑎𝐴𝑠 / 𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 heterojunction.  

Abrupt changes in the conduction band energy level at a junction between two 

different semiconductors with mismatching bandgaps cause a formation of a deep 

discontinuity in the conduction band which forms a 2DEG. Figure 4.2 shows a 

conduction band profile of a AlxGa1-xAs/GaAs heterojunction [60] with a silicon doped 

𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠.  

 

Figure 4.2. Conduction band of a Si-doped 𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠/𝐺𝑎𝐴𝑠 heterojunction [60] 

A quantum well structure is formed at the interface of the two mismatched III-V 

semiconductors. To allow the electrons to occupy only the lowest energy level in the z 

direction in the 2D well at the interface of AlxGa1-xAs and GaAs, the fermi level can be 
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engineered by designing the silicon doping and the entire stack of materials. This will 

form a 2D electron sheet density in x and y direction along the heterojunction. This 

sheet density of electrons is approximately ~10nm inside the GaAs side of the junction 

and the conduction band energy of GaAs near the Γ point in the Brillouin zone (Figure 

4.3) in momentum space can be given by 

 
𝐸(�⃗� ) =

ℎ2𝑘2

8𝜋2𝑚∗
 (4.8) 

where 𝑘 = |�⃗� | = 𝑘𝑥
2 + 𝑘𝑦

2 and m* ≈ 0.067me for GaAs where me is the mass of electron 

[60]. Both the momentum vector �⃗�  and the conduction band energy 𝐸(�⃗� ) are relative 

to the Γ point. 

 

Figure 4.3 Band structure of GaAs with the Brillouin Zone inset [61] 
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4.3 Electron-Wave Interaction in 3D and 2D Electron Systems 

Collective oscillations of electrons in bulk metals, due to inertia of the electrons and 

their Coulombic restoring forces of background positive charge consist of plasmonic 

oscillations. An electric field 

 
�⃗� =  

(𝑒𝑛3𝐷)

𝜖0
𝑥  (4.9) 

is created inside the bulk metal when the electron gas is shifted effectively from the 

equilibrium position by a displacement 𝑥 . The density of electrons 𝑛3𝐷 is specifically 

for the case of bulk or 3D metals. The fermi wavenumber 𝑘𝑓 is obtained by  

 
𝑛 = ∬

𝑑𝑑�⃗� 

(2𝜋)𝑑
𝑔

|�̅�|≤𝑘𝐹

 (4.10) 

where d is the dimensionality, g is the spin and valley degeneracy. 𝐸(�⃗� ) has a value of 

EF when 𝑘 = 𝑘𝑓. The fermi velocity can be calculated as  

 
𝜗𝐹 =

2𝜋

ℎ

𝜕𝐸

𝜕𝑘
|𝑘=𝑘𝐹 (4.11) 

The density of state D(E), representing the number of states per unit area or volume 

between 𝐸 and 𝐸 + 𝑑𝐸 is obtained by 

 
𝐷(𝐸) =

𝑑�̅�

𝑑𝐸
 (4.12) 

where  

 
�̅�(𝐸) = ∬

𝑑𝑑�⃗� 

(2𝜋)𝑑
𝑔

𝐸(�⃗� )≤𝐸

 (4.13) 

Therefore, the equation of motion for a unit volume of electrons inside the metal can 

then written as  
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 (𝑚∗𝑛3𝐷)𝑥 = (−𝑒𝑛3𝐷)�⃗�  (4.14) 

or  

 𝑥 ̈ = −𝜔𝑃
2𝑥  (4.15) 

where 𝜔𝑃
2 = 𝑛3𝐷𝑒

2/𝑚∗𝜖0 is the plasma frequency. This collective oscillation of 

electron gas at angular frequency 𝜔𝑃 is typically in an optical frequency regime. The 

electric field inside a metal of a fairly large cross sectional area is given by �⃗� =

(𝑒𝑛3𝐷/𝜖0)𝑥  which justifies the dispersion relation being flat at frequency 𝜔𝑃. Here, 

purely longitudinal modes in the plasma that satisfy �⃗� × �⃗� = 𝜔�⃗� = 0 Maxwell 

equations are consider so as to distinguish from the transverse electromagnetic mode in 

3D metal above 𝜔𝑃 which will have a dispersion relation of the form 𝜔2 = 𝜔𝑃
2 + 𝜔2𝑐2 

corresponding to a dielectric constant of 1 − (𝜔𝑃
2/𝜔2). Along the direction of the 

surface, a hybrid mode of the electromagnetic radiation and the 3D plasmonic 

oscillation exists because an oblique TM wave has a longitudinal electric field 

component along the direction of the surface which couples the electromagnetic wave 

and the 3D plasmonic oscillation at the surface of the metal. Since the transverse 

electromagnetic wave decays exponentially inside the bulk of the metal, it only 

propagates in a frequency dependent depth called the penetration depth 𝛿 from the 

surface of the metal. The low frequency dispersion nature of this transverse wave is 

almost as same as an electromagnetic wave but as its frequency approaches a surface 

plasmon resonance frequency, which is closely related to 𝜔𝑃, the dispersion nature 

significantly differs that of light dispersion. Near this frequency, the wave propagates 

at a velocity much slower than light and exhibits sub-wavelength confinement with 

reduced wavelength which opens up a whole new chapter of research called photonics.  
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 In a 2D electron system, since the electrons poses inertia and also a Coulombic 

restoration force, the 2D conductor can also support plasmonic waves although the 

dispersion of these waves appears at much lower frequencies compared to the surface 

plasmonic waves, typically 1010 Hz (GHz) to 1012 Hz (Tera-hertz or THz). Moreover, 

2D plasmonic waves can achieve greater subwavelength confinement with velocities 

going as low as c/100 [49-51]. Throughout this chapter, the terms 2D plasmonics and 

2D electron gas (2DEG) are used interchangibly. 

 Following sections will go through the characteristics of plasmonic waves in a 

2D electronic system and exploits this plasmonic behavior of the 2D electron systems 

by geometrically coupling electromagnetic waves of GHz frequencies to the 2DEG and 

make efforts in formulating a circuit model of a co-planar waveguide with a 2DEG 

system backed by experimental verification. 

 

4.4 Circuit Modelling of 2D Electron Gas 

The kinetic energy of the collectively oscillating electrons is accounted by the 

kinetic inductance which is of non-magnetic origin while on the other hand the electric 

potential energy due to the Coulombic restoration force which drives electrons into 

plasmonic oscillation can be modelled as an electrical capacitance. Electron degeneracy 

pressure also exerts a restoring force acting upon the disturbed equilibrium of electron 

density distribution which can be modelled as a quantum capacitance. Now, since the 

2DEG is spread as a sheet of electrons at the junction, the overall circuit model (Figure 

4.4) of the 2D plasmonic medium [62] will consist of a distributed kinetic inductance 
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Lk per unit length, a distributed total capacitance consisting of geometric and electrical 

capacitances 𝐶𝑐 and a quantum capacitance 𝐶𝑞 

 
𝐶 = (

1

𝐶𝐶
+
1

𝐶𝑞
)

−1

 (4.16) 

 

Figure 4.4 Transmission line model of a 2DEG without any loss 

A lossy transmission line model, not shown here, will have an additional distributed 

resistance that relates to different loss mechanisms such phonon scattering, fringing etc. 

For a gate nearby the 2DEG, it will act as the ground in the transmission line model. 

For an ungated 2DEG, the ground is the potential of free space away from the 2DEG. 

The difference between an ordinary transmission line and a plasmonic transmission line 

will be that the kinetic inductance will dominate the later. So in the plasmonic case, the 

phase velocity will be given by 𝜗𝑃 = 1/√𝐿𝑘𝐶 which corresponds to the plasmonic 

dispersion relation. 

 

4.4.1 Kinetic Inductance Lk 

 The kinetic inductance accounts for the kinetic energy of the collective 

oscillations of electrons in the 2D plasmonic medium. The following section on kinetic 

inductance in a semiconductor heterojunction has been mostly derived from [63], [64] 
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and [65]. As discussed in [63], the kinetic inductance 𝐿𝑘 can be calculated in a 2D 

electron system such as 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 heterojunction 2DEG with a classical 

approach as follows.  

 Consider a strip of 2DEG or a 2D conductor with width W and length l applied 

with a time varying electric potential 𝑉(𝑡) to induce an electric field 𝑉(𝑡)/𝑙. No spatial 

variation of the electric field is considered here to keep the derivation simple. By 

Newton’s equation, the inertial acceleration for an electron is  

 
−𝑒

𝑉

𝑙
= 𝑚∗

𝑑𝑣

𝑑𝑡
 (4.17) 

where v is the velocity of electron and m* is the effective mass of electron (m* = 

0.0067𝑚0 for GaAs). The current due to electron’s velocity is 𝐼 = −𝑛0𝑒𝑣𝑊, 𝑛0 being 

the conduction electron density. Also, if we Fourier transform the expression (4.17), 

the frequency dependent relation would be  

 
−𝑒

𝑉

𝑙
= 𝑖𝜔𝑚∗𝑣 (4.18) 

Therefore, the impedance obtained would be  

 𝑉

𝐼
= 𝑖𝜔

𝑚∗

𝑛0𝑒2
𝑙

𝑊
 (4.19) 

This leads us to the kinetic inductance per unit length given by 

 
𝐿𝑘 =

𝑚∗

𝑛0𝑒2
.
𝑙

𝑊
  (4.20) 

For a 2DEG, the total kinetic energy 𝐸𝑡𝑜𝑡𝑎𝑙 of the electrons with velocity 𝑣 can be 

expressed as 𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
. 𝑚∗𝑣2𝑛0𝑊𝑙. With the total current being 𝐼 = −𝑛0𝑒𝑣𝑊, the 

𝐸𝑡𝑜𝑡𝑎𝑙 can also be written as 
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𝐸𝑡𝑜𝑡𝑎𝑙 =

1

2
. (𝐿𝑘𝑙)𝐼

2 (4.21) 

where 𝐿𝑘 being the kinetic inductance per unit length and 𝐿𝑘𝑙 being the total kinetic 

inductance. 

 Alternately, the derivation in [63] for 𝐿𝑘 proceeds by calculating the total kinetic 

energy first and then the current 𝐼 in the 𝑘-space or the electron wavenumber space. A 

2D fermi disk with radius 𝑘𝐹 with center lying on the 𝑘-space origin is considered which 

shifts towards the positive 𝑘𝐹-axis with application of an electric field pointing in the 

negative 𝑥-axis, along the length of the 2D conductor. This shift in the 2D fermi disk 

increases the total kinetic energy and produces a current 𝐼. Figure. 4.5 indicates the shift 

of the 2D fermi disk of ∆𝑘 ≪ 𝑘𝐹 when a negative pointing electric field is applied [63].  

 

Figure 4.5 Shift of fermi disc in 𝑘-space due to an electric field [63] 

Therefore, the total increase in kinetic energy per unit area is,  

 𝐸𝑡𝑜𝑡𝑎𝑙
𝑊𝑙

=∬
𝑑2�⃗� 

(2𝜋)2
𝑔𝐸(�⃗� ) −∬

𝑑2�⃗� 

(2𝜋)2
𝑔𝐸(�⃗� )

𝐴𝐵

 (4.22) 
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where 𝑔 is for spin and valley degeneracy (𝑔=2 for 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 2DEGs) and 

𝐸(�⃗� ) =
ℎ̅2𝑘2

2𝑚∗  is the energy of an electron with wavevector �⃗� . The first integration in 

equation (4.22), where 𝑘′⃗⃗  ⃗ = �⃗� − ∆𝑘�̂�𝑘𝑥, where �̂�𝑘𝑥 is the unit vector in the 𝑘𝑥 direction 

which is calculated as  

 
∬

𝑑2�⃗� 

(2𝜋)2
𝑔𝐸(�⃗� ) =

𝑔ℎ̅

8𝜋2𝑚∗
∬𝑑2�⃗� ′|�⃗� ′ + ∆𝑘�̂�𝑘𝑥|

2

𝐵𝐵

=
𝑔ℎ̅2

8𝜋2𝑚∗
∬𝑑2�̅�′[𝑘′2 + 2𝑘𝑥

′∆𝑘 + (∆𝑘)2]
𝐵

 

(4.23) 

Now the total kinetic energy per unit area of the Fermi disk A is the same as the first 

term of the rightmost expression in equation (4.23) which is 
𝑔ℎ̅2

8𝜋2𝑚∗∬ 𝑑2�̅�′[𝑘′2]
𝐵

 and so 

it will cancel out the that term in (4.22). For the second term, because of the odd 

symmetry of 𝑘𝑥
′  in disc B, ∆𝑘 term vanishes reducing the (4.22) integration to 

 𝐸𝑡𝑜𝑡𝑎𝑙
𝑊𝑙

=
𝑔ℎ̅2

8𝜋2𝑚∗
(∆𝑘)2∬𝑑2�⃗� ′

𝐵

=
𝑔ℎ̅2𝑘𝐹

2

8𝜋𝑚∗
(∆𝑘)2 (4.24) 

From which the total current calculated is  

 
𝐼 = 𝑊∬

𝑑2�⃗� 

(2𝜋)2
𝑔𝑒𝑣𝑥(�⃗� )

𝐵

 (4.25) 

where 𝑣𝑥(�⃗� ) =
ℎ̅𝑘𝑥

𝑚∗  is the 𝑥-component of the velocity of an electron with �⃗�  as the 

wavevector. Therefore, 

 
𝐼 =

𝑊𝑔𝑒ℎ̅

4𝜋2𝑚∗
∬𝑑2�⃗� 𝑘𝑥
𝐵

=
𝑊𝑔𝑒ℎ̅

4𝜋2𝑚∗
∫ 𝑑𝜃 cos 𝜃
2𝜋

0

∫ 𝑘2𝑑𝑘
𝑘𝐹+∆cos𝜃

0

 (4.26) 
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where the radius of disc B is 𝑘𝐹 + ∆𝑘 and the distance between the origin and the edge 

of disc B at an angle 𝜃 is 𝑘𝐹 + ∆𝑘 cos 𝜃 , assuming ∆𝑘 ≪ 𝑘𝐹. Integrating up to first 

order ∆𝑘 terms, the current obtained is 

 
𝐼 =

𝑊𝑔𝑒ℎ̅𝑘𝐹
2

4𝜋𝑚∗
∆𝑘 (4.27) 

Substituting 𝐼 from (4.27) into (4.24) and 𝑘𝐹
2 =

4𝜋𝑛0

𝑔
,  

 
𝐸𝑡𝑜𝑡𝑎𝑙 =

1

2
[
𝑚∗

𝑛0𝑒2
.
𝑙

𝑊
] 𝐼2 (4.28) 

which is the same as (4.21) where 𝐿𝑘 is given by 4.(20).  

 This kinetic induced current 𝐼 is related to the total energy 𝐸𝑡𝑜𝑡𝑎𝑙 and voltage 𝑉 

similar to the relation between the magnetic inductance and voltage i.e. 

 
𝑉 =

(𝐿𝑘𝑙)𝑑𝐼

𝑑𝑡
 (4.29) 

and  

 
𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑉𝐼𝑑𝑡

𝑡

𝑡0

=
1

2
(𝐿𝑘𝑙)𝐼

2 (4.30) 

where 𝑡0 is the time when the electron gas is at rest. It is also worth to be noted that the 

kinetic inductance opposes the change in momentum of electron just as magnetic 

inductance opposes change in magnetic flux.  

 

4.4.2 Capacitance of 2DEG 

 The total capacitance in a 2DEG or a 2D plasmonic transmission line consists 

of a geometrical capacitance per unit length and a quantum capacitance per unit length. 
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The energy in the total capacitance can be thought to be distributed to add a unit charge 

on the 2DEG electron sheet density or a remainder of the kinetic energy of the electrons. 

Following topics elucidate the origins of the two capacitances viz. geometrical and 

quantum capacitance. 

 

4.4.3 Quantum Capacitance 

The kinetic inductance 𝐿𝑘 represented the increase in kinetic energy of a fixed number 

of electrons due to their movement. However, the quantum capacitance 𝐶𝑞 represents 

the addition of an extra unit charge to the 2DEG to increase the total kinetic energy. 

Therefore, 𝐶𝑞 increases with increase in the density of states 𝐷(𝐸) at the Fermi surface. 

The quantum capacitance given in [66] is  

 𝐶𝑞 = 𝑒
2𝐷(𝐸𝐹)𝑊 (4.31) 

The electron degeneracy pressure due to the addition of any electron into the system 

and thus needing to occupy Fermi level above because of Pauli’s exclusion principle 

leads to a restoring force is accounted for by the quantum capacitance. For a 

GaAs/AlGaAs 2DEG system, the quantum capacitance can be given by 

 
𝐶𝑞 =

𝑔𝑚∗𝑒2

2𝜋ℎ̅2
𝑊 (4.32) 

where 𝑚∗ is the effective mass of electron (𝑚∗ = 0.0067𝑚0 for GaAs) and 𝑔 represents 

spin and valley degeneracy.  Equation (4.32) can also be written as 

 
𝐶𝑞 =

𝑔𝑒2𝑘𝐹

2𝜋ℎ̅𝑣𝐹
𝑊 (4.33) 
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4.4.4 Geometric Capacitance 

 The Coulombic attraction in a plasmonic oscillating wave of electrons accounts 

for the geometric capacitance 𝐶𝑐. The geometric capacitance also depends on the 

surrounding medium in which the plasmonic oscillations exist. For a 2D conductor with 

no surrounding conductors and with width 𝑊, the geometric capacitance 𝐶𝑐 [68] is, 

 𝐶𝑐 = 2𝜅𝜖0𝑘𝑃𝑊 (4.34) 

where 𝑘𝑃 is the plasmonic wavenumber and 𝜅 is the effective dielectric constant of 

surrounding media. 

 The presence of an external conductor or a gate alters the geometrical 

capacitance 𝐶𝑐. For a distance of 𝑑 between the fate and the 2DEG and assuming 

distance 𝑑 is much smaller than the plasmonic wavelength i.e. 𝑘𝑃𝑑 ≪ 1, then the 

parallel plate capacitance per unit length becomes 

 
𝐶𝑐 =

𝜅𝜖0𝑊

𝑑
 (4.35) 

 

4.5 Transmission Line Theory of 2D plasmonic waves 

 Now that we have obtained the geometrical capacitance 𝐶𝑐, quantum 

capacitance 𝐶𝑞 and the kinetic inductance 𝐿𝑘 which compose of the distributed 

components of a transmission line, we can formulate transmission characteristics of a 

2D plasmonic system. 

From the telegrapher’s equation [69] & [70] that give partial differential 

equations that relate the induced voltage to time rate-of-change of current through 
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inductance and the induced current to the time rate-of-change of voltage to the 

capacitance, 

 𝜕𝑉

𝜕𝑥
= −𝐿

𝜕𝐼

𝜕𝑡
 (4.36) 

and  

 𝜕𝐼

𝜕𝑥
= −𝐶

𝜕𝑉

𝜕𝑡
 (4.37) 

we can obtain the potential energy 𝑉(𝑥) and current 𝐼(𝑥) in the transmission line model 

as 

 𝑑2𝑉(𝑥)

𝑑𝑥2
− 𝛾2𝑉(𝑥) = 0 (4.38) 

 𝑑2𝐼(𝑥)

𝑑𝑥2
− 𝛾2𝐼(𝑥) = 0 (4.39) 

where 

 𝛾 ≡ 𝛼 + 𝑖𝑘𝑃 = 𝑖𝜔√𝐿𝑘𝐶 (4.40) 

 is the complex propagation constant with 𝛼 being the attenuation and 𝑘𝑃 representing 

the plasmonic wavenumber. equation (4.40) essentially is the plasmonic dispersion 

relating 𝑘𝑃 and 𝜔. General solutions for the equations (4.38) & (4.39) are 

 𝑉(𝑥) = 𝑉0
+𝑒−𝛾𝑥 + 𝑉0

−𝑒𝛾𝑥 (4.41) 

 𝐼(𝑥) = 𝐼0
+𝑒−𝛾𝑥 + 𝐼0

−𝑒𝛾𝑥 (4.42) 

Here, the 𝑒−𝛾𝑥 term indicates the propagation of the wave in the positive 𝑥 direction 

whereas the 𝑒𝛾𝑥 term represents the wave propagating in the negative direction. The 

characteristic impedance of the line can now be given by, 
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𝑍0 = √
𝐿

𝐶
=
𝑉0
+

𝐼0
+ = −

𝑉0
−

𝐼0
−   (4.43) 

 2DEG electronic systems may often have an external conductor nearby or are 

“gated” which affects the overall capacitance and causes change in the dispersion 

relation of the 2D plasmonic waves. Following sections briefly explain the two cases 

viz. gated and ungated 2DEG electronic systems.  

 

4.5.1 Gated 2DEG Electronic Systems 

 As introduced in geometrical capacitance section, for a 2DEG with a nearby 

conductor or a gate at distance 𝑑 from the 2DEG which is much smaller than the 

plasmonic wavelength (i.e. 𝑘𝑃𝑙 ≪ 1)  the angular frequency can be given by 

 

𝜔 = √
𝑔𝑒2𝑘𝐹𝑑

4𝜋𝜅𝜖0ℎ̅𝑣𝐹
+
1

2
𝑣𝐹𝑘𝑃 (4.44) 

In equation (4.44), the term 
1

2
𝑣𝐹𝑘𝑃 represents the quantum capacitance and 

𝑔𝑒2𝑘𝐹𝑑

4𝜋𝜅𝜖0ℎ̅𝑣𝐹
 

represents the geometrical capacitance which as seen depends on the distance between 

the gate and the 2DEG. In the case of geometrical capacitance, expression in the first 

bracket of (
𝑔𝑒2

𝜅4𝜋𝜖0ℎ̅𝑣𝐹
) (𝑘𝐹𝑑) is typically of the order of 1. However the amplitude of the 

second bracket is determined by the distance 𝑑 and the electron density i.e. 𝑘𝐹 =

4𝜋𝑛0/𝑔 , g being the spin and valley degeneracy. For typical values of 𝑛0 i.e. 1012 

𝑐𝑚−2 the distance 𝑑 is ~5nm for 𝑘𝐹𝑑 = 1 which means the quantum capacitance or the 

electron degeneracy pressure dominates for distances ~ < 5nm. For a semiconductor 

heterostructure such as 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 used this thesis, the distance 𝑑 is ~135 nm, 
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which makes it difficult for 2D plasmonic waves to propagate dominated by quantum 

capacitance. Therefore, we can approximate the dispersion relation (4.44) to be 

 

𝜔 = √
𝑔𝑒2𝑘𝐹𝑑

4𝜋𝜅𝜖0ℎ̅𝑣𝐹
𝑣𝐹𝑘𝑃 (4.45) 

 

4.5.2 Ungated 2DEG Electronic Systems 

 In equation (4.20), if we substitute 𝑚∗ = ℎ̅𝑘𝐹/𝜈𝐹, then the equation of kinetic 

inductance 𝐿𝑘 can be written as 

 
𝐿𝑘 =

4𝜋ℎ̅

𝑔𝑒2𝜈𝐹𝑘𝐹

1

𝑊
 (4.46) 

For a 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠  heterojunction with no conductors nearby, we can write the 

following dispersion relation combining equations (4.34), (4.40), (4.43) and (4.46). can 

be written 

 

𝜔 = 𝜈𝐹𝑘𝐹√
𝑔𝑒2

8𝜋𝜅𝜖0ℎ̅𝜈𝐹
 (
𝑘𝑃
𝑘𝐹
) +

1

2
 (
𝑘𝑃
𝑘𝐹
)
2

 (4.47) 

In the right hand side of equation (4.47), the first term originated from the geometric 

capacitance and the second term from the quantum capacitance. For 𝑘𝑝 smaller than 𝑘𝐹, 

then the first term dominates since the coefficient of the first term is of the order of 1. 

For 𝑘𝑃 larger that 𝑘𝐹, the second term dominates. For low frequencies i.e. long-

wavelengths, the effect of the quantum capacitance is negligible and the dispersion 

relation (4.47) is approximated as [49], [51], [62], [63], 
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𝜔 = √
𝑔𝑒2𝜈𝐹𝑘𝐹

8𝜋𝜅𝜖0ℎ̅
 𝑘𝑃 (4.48) 

This dispersion relation is illustrated in Figure 4.6. 

 

Figure 4.6 Comparison of dispersion relations light, surface plasmonic waves, gated 

and ungated 2D plasmonic waves. The 2D plasmonic waves appear at much lower 

frequencies around GHz. [64] 

 In the regime where Coulombic force is strong, the gated 2DEG has a much low 

slope compared to the ungated 2DEG which means at the same frequency, the gated 2D 

plasmonic wave exhibits much shorter wavelength with much slower phase velocity 

compared to the ungated since the gate shortens the range of Coulombic interactions in 

the 2D conductor.  

 

 

 



102 
 

4.6 Momentum Relaxation/Scattering Time in a 2DEG 

 Electron scattering in the 2DEG accumulate to give a per-unit-length resistance 

𝑅, and can be added in series to the kinetic inductance 𝐿𝑘 as shown in the transmission 

line circuit model in Figure 4.7. 

 

Figure 4.7 Lossy transmission line model of 2DEG [65] 

 The resistance per square in a 2DEG is given as follows 

 
𝑅𝑠𝑞 =

𝑚∗

𝑛𝑒𝑒2𝜏
 (4.49) 

where 𝑚∗ is the effective mass of electron, 𝑛𝑒 is the 2D electron density in the 2DEG 

and 𝜏 is the momentum relaxation/scattering time. The kinetic inductance can be related 

to 𝑅𝑠𝑞 as follows 

 
𝐿𝑘/𝑠𝑞𝑟 = 𝑅𝑠𝑞𝜏 =

𝑚∗

𝑛𝑒𝑒2
 (4.50) 

The momentum scattering time 𝜏 is affected by a number of scattering mechanisms 

such as impurity scattering, acoustic and optical phonon scattering, defect scattering 

etc. The defect and impurity scattering has low temperature dependence as compared 

to phonon scattering. Cumulatively, the total momentum scattering time is as follows 
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 1

𝜏
=

1

𝜏𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦
+

1

𝜏𝑑𝑒𝑓𝑒𝑐𝑡
+

1

𝜏𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐
+

1

𝜏𝑜𝑝𝑡𝑖𝑐𝑎𝑙
+⋯ (4.51) 

which means the overall momentum scattering time will be dominated with the shortest 

individual scattering mechanism. The momentum relaxation time of the 

𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 wafers used in this thesis is ~76 ps at 4.2 K [71] 

 

4.7 Proposed Circuit Model for 2DEG-Co-planar waveguide coupling 

 The research work done for this thesis in the field of 2DEG focuses mainly on 

formulating, simulating and experimentally verifying the effect of 2DEG coupling to 

co-planar waveguide structures and capacitive coupling structure fabricated on a 

𝐺𝑎𝐴𝑠/𝐴𝑙0.3𝐺𝑎0.7𝐴𝑠 heterojunction semiconductors. Following sections will elaborate 

more on the proposed circuit models and discuss simulation results and experimental 

verifications. 

 

4.7.1 Capacitively coupled 2DEG Contacts. 

 Burke (1999) [62] measured the real and imaginary conductivity 𝜎(𝑘 = 0,𝜔) 

of a high mobility two dimensional electron gas system at frequecnies below and above 

the momentum scattering time and also observed that the imaginary part of the 2DEG 

impedance is inductive suggesting a kinetic inductance. Their research work also 

proposes a transmission line model of a 2DEG capacitively coupled to an Al Schottky 

barrier gate separated by 500 nm from the 2DEG (Figure 4.8). However, their 

measurements are limited to 2.5 GHz and do not convey any high frequency behavior. 
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We attempt here this thesis to verify the 2DEG circuit model theoretically and 

experimentally by designing and testing a capacitively coupled 2DEG. 

 

Figure 4.8 Al Schottky barrier capacitively coupled to a 2DEG with a proposed 

circuit model as in Burke (1999). 

 The 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠  heterojunction stack used here is illustrated in Figure 

4.9. The quantum well exists between the 40 nm AlGaAs layer and GaAs layer below 

it. The AlGaAs is doped with 1 × 1012 𝑐𝑚−2 1𝛿 Silicon doping at the interface of 

AlGaAs and GaAs. A mesa structure of height ~200 nm is etched out so that the 

quantum well where the 2DEG exists is only in the mesa structure. 250 nm thick Al 

contacts are deposited in a pattern to form the capacitively coupled 2DEG over the 

mesa. 

 

Figure 4.9 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 heterojunction stack 
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The structure of the capacitively coupled 2DEG is shown in Figure 4.10. The 

capacitively coupled 2DEG  is formed between two Al contacts (250 nm thick) over 

the mesa (~200 nm thick) and the 2DEG is approximately 122 nm below the surface of 

the mesa. The etched mesa is approximately 100 μm x 300 μm wide. 

 

Figure 4.10 Capacitively coupled 2DEG structure 

 The 2DEG was simulated in Sonnet Suites by assigning a metal sheet 1.76 

nH/square as a starting estimate of the kinetic inductance. Variations in the metal 

contact dimensions were simulated to obtain the transmission and reflection parameters 

of the capacitively coupled 2DEG. Figure 4.11 illustrates the dimensions of the 

structure where the parameter 𝑊1 is varied. Figure 4.12 and Figure 4.13 show the 

transmission (S21) and reflection (S11) parameters with variations in 𝑊1.  
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Figure 4.11 Circuit layout of the structure  

 

Figure 4.12 Transmission coefficient (S21) of the capacitively coupled 2DEG with 

variations in 𝑊1 
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Figure 4.13 Reflection coefficient (S11) of the capacitively coupled 2DEG with 

variations in 𝑊1 

 From the simulations we observe that as the parameter 𝑊1 increases, the peak 

resonance frequency shift down in frequency This can be accounted for by the 

increasing capacitance because of the increasing plate area and since 𝜔 = 1/√𝐿𝐶. 

 

4.8 Fabrication Process 

 The capacitvely coupled 2DEG is fabricated here at ASU at the CSSER clean 

room facility. A number of steps are involved in fabricating the chip that include two 

layer photo-lithography, 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 etching, aluminum etching etc. All the 

steps of fabrication are illustrated in Figure 4.14. Many of the etching recipes were 

needed to be optimized to have accurate control over the depth of the mesa. The 
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𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 heterojunction was wet etched in a solution of Hydrogen Peroxide 

(H2O2), Phosphoric Acide (H3PO4) and water in a ratio of 1:1:38 [72] for 60 sec to 

obtain a rate of ~200 nm per minute.  

 

Figure 4.14 Steps involved in fabricating the capacitively coupled 2DEG 
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4.9 Experimental Procedure 

 The capacitively coupled 2DEG chip is mounted in a microwave package that 

is calibrated for up to 24 GHz. Inside the microwave package, the chip is wire bonded 

to 50 Ω microstrip lines that are soldered to the SMA input and output ports of the 

package (Figure 4.15). 

 

Figure 4.15 Capcitively coupled 2DEG chip connected to input and output 50 Ω 

microstrips. 

  A UV led that operates at low temperatures is also fitted inside the package in 

order to photo-dope the 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 quantum well so as to increase the electron 

density in the 2DEG. High frequency cables are connected to a Vector Network 

Analyzer (VNA) that feed the signal to the input and output SMA ports of the package 
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housing the chip (Figure 4.16). Transmission measurements are performed at 77 K and 

10 K using a bath of liquid nitrogen and a cryostat respectively.  

 

Figure 4.16 Package with UV led and input & output SMA connections housing the 

chip 

 

Figure 4.17 Calibration unit for calibrating the baseline transmission and reflection of 

the high frequency cables. 
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The cables are calibrated using standard calibration equipment (Figure 4.17). The 

microwave package is dipped in to a bath of liquid nitrogen (77 K) as shown in Figure 

4.19. The dip probes used for the 77 K measurements (Figure 4.18) are also calibrated 

with the calibration unit. For a 10 K measurement, the package is mounted in an ultra-

high vacuum cryostat (Figure 4.20) designed in the lab. The package is also fitted with 

a UV-led to photo dope the GaAs/AlGaAs heterojunction and inject electrons into the 

2DEG. 

 

Figure 4.18 Dip probes attached to the microwave package housing the chip 
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Figure 4.19 Package dipped in liquid nitrogen at 77 K 

 

Figure 4.20 10 K ultra-high vacuum cryostat 

 



113 
 

4.10 Experimentation Results 

 We have obtained preliminary results of the transmission and reflection 

coefficients of a capacitively coupled 2DEG with 𝑊1 = 20 μm at room temperature, 

77K and 10 K. The nature of the s-parameters is the same as simulations by the 

observation of the peak of transmission that lies in the same range of frequencies as the 

simulated s-parameters. The nature of the results is also similar to the one observed by 

Burke (1999) which gives us confidence in the working of the 2DEG circuit model. 

Figure 4.21 to 4.24 show plots of the experimentally observed transmission and 

reflection coefficients of experiments done at 77 K and 10 K. In both of the 

experiments, the intensity of the UV-led is gradually increased to increase the photo 

doping. S-parameters are recorded for a number of intensities of the UV-led. In the 77 

K case, the transmission decreases as the intensity of the UV-led is increased which 

might indicate that photo-carriers are still being generated in the GaAs/AlGaAs 

heterojunction and a total freeze out has not occurred. While for 10 K measurements 

we observe that after a certain intensity of the UV-led, there is no change in the 

transmission characteristics indicating that the 2DEG is saturated with electrons and 

there is a freeze out in rest of the semiconductor. 

 Low temperature (77 K and 10 K) transmission characteristics were measured 

for a variation of two values of 𝑊1. As explained earlier through simulations that 

increasing 𝑊1 leads to downward shift in the resonance frequency, from the illustrations 

in Figures 4.25 & 4.26 that show the transmission characteristics of a capacitive coupled 

2DEG with 𝑊1 = 100 μm, it is clearly the case.  
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Figure 4.21 Reflection coefficient of 𝑊1=20 μm capacitively coupled 2DEG at 77 K 

 

Figure 4.22 Transmission coefficient of 𝑊1=20 μm capacitively coupled 2DEG  at 77 

K 
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Figure 4.23 Reflection coefficient of 𝑊1=20 μm capacitively coupled 2DEG at 10 K 

 

Figure 4.24 Transmission coefficient of 𝑊1=20 μm capacitively coupled 2DEG at 10 

K 
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Figure 4.25 Reflection coefficient of 𝑊1=100 μm capacitively coupled 2DEG at 10 K 

 

Figure 4.26 Transmission coefficient of 𝑊1=100 μm capacitively coupled 2DEG at 

10 K 
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4.11 Proposed 2DEG-CPW Coupling 

 We further investigate circuit modeling of 2DEG coupled co-planar structures 

by theorizing and simulating a 2DEG coupled co-planar waveguide structure. The 

2DEG-cpw structure is based on the same principles of the capacitively coupled 2DEG 

structure in the sense that the CPW transmission line is atop a mesa structure which 

contains the 2DEG underneath it.  

 The CPW is designed to be 3 μm wide with two ground planes placed 3 μm 

apart from the center line. In transmit signal through the 3 μm center line, a broader 

solder pad needs to be placed before and after it. To minimize the reflection losses in 

the CPW-solder pad structure, a Klopfenstein taper structure transitions the 3 μm center 

line to a 200 μm solder pad (Figure 4.27). The Klopfenstein taper was chosen in order 

to obtain minimum reflection coefficient at maximum bandwidth and minimum length 

of the tapering structure [73]. The 2DEG is etched out of a 200 μm × 50 μm mesa 

structure, just as in the case of the capacitively coupled 2DEG. 

 

Figure 4.27 2DEG coupled CPW structure 
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 We propose that the CPW transmission will be coupled to the 2DEG via 

capacitances as shown in Figure 4.28. The distributed kinetic inductance 𝐿𝑘 of the 

2DEG along with the 2DEG capacitance 𝐶2𝑑 essentially forms a 𝐿𝐶 circuit along with 

the geometric capacitance of the CPW center line. The geometric capacitance 𝐶𝑔 

capacitively couples the 2DEG with the ground planes of the CPW. 

 

Figure 4.28 Proposed circuit model of the 2DEG-cpw structure 

 Sonnet simulations were performed on the 2DEG-cpw structure with an initial 

estimate of the distributed kinetic inductance of 𝐿𝑘 = 1.76 nH/m. We observe distinct 

rise and dips in the reflection coefficient S11 and the transmission parameter S21 

respectively, that may correspond to the resonance frequency of the 𝐿𝐶 circuit as shown 

in Figure 4.29. The circuit model can be analytically formulated to estimate the values 

of the kinetic inductance 𝐿𝑘, 2DEG capacitance 𝐶2𝑑 and the geometric capacitance 𝐶𝑔, 

as done in the following subsection. 



119 
 

4.11.1 2DEG-CPW Analytical Formulation 

 Assuming a lossy 𝐿𝐶 circuit with a distributed 2DEG resistance 𝑅 throughout 

the 2DEG, we can write the total impedance of the 2DEG-CPW circuit model as follows 

 

𝑍0 = √
𝑖𝜔𝐿𝑔

𝑍//
  (4.52) 

where 𝑍// is the impedance of the parallel 𝐿𝐶 circuit that comprises the distributed 

kinetic inductance, 𝐶2𝑑, distributed resistance 𝑅 and the geometric capacitance 𝐶𝑔 

(Figure 4.29). 

 

Figure 4.29 Total impedance of the 2DEG-CPW circuit model 

The 𝑍// can be evaluated as 

 

𝑍// = √𝑖𝜔𝐶𝑔 +
1

𝑖𝜔(𝐿𝑘 + 𝑅) +
1

𝑖𝜔𝐶2𝑑

 (4.53) 



120 
 

Therefore the total impedance 𝑍0 becomes,  

 

𝑍0 = √
𝐿𝑔

𝐶𝑔
 (

1
𝐶𝑔
− 𝜔2𝐿𝑘 + 𝑖𝜔𝑅

1
𝐶2𝑑

+
1
𝐶𝑔
− 𝜔2𝐿𝑘 + 𝑖𝜔𝑅

) (4.54) 

𝑍0 can be analyzed for zeroes for the condition when the numerator is zero and poles 

when denominator is zero, as follows 

 1

𝐶𝑔
− 𝜔2𝐿𝑘 + 𝑖𝜔𝑅 = 0 (4.55) 

 
∴ (

1

𝐶2𝑑
− 𝜔2𝐿𝑘)

2

= −𝜔2𝑅2 (4.56) 

 

∴  𝜔2 = −
1

2
(
𝑅2 − 2𝐿𝑘

𝐿𝑘
2𝐶𝑔

±√(
𝑅2 − 2𝐿𝑘

𝐿𝑘
2𝐶𝑔

 )

2

−
4

𝐶2𝑑
2 𝐿𝑘

2)  (4.57) 

The poles of 𝑍0 are when  

 1

𝐶2𝑑
+
1

𝐶𝑔
− 𝜔2𝐿𝑘 + 𝑖𝜔𝑅 = 0 (4.58) 

 
∴ (

1

𝐶2𝑑
+
1

𝐶𝑔
)

2

− (2𝜔2𝐿𝑘 (
1

𝐶2𝑑
+
1

𝐶𝑔
)) + 𝜔4𝐿𝑘

2 = −𝜔2𝑅2 (4.59) 

 

𝜔2 = −
1

2

(

 
 
(𝑅2 − 2𝐿𝑘 (

1

𝐶2𝑑
+
1

𝐿𝑔
))

±√(𝑅2 − 2𝐿𝑘 (
1

𝐶2𝑑
+
1

𝐶𝑔
))

2

− 4𝐿𝑘
2 (

1

𝐶2𝑑
+
1

𝐶𝑔
)

2

)

 
 

 

(4.60) 
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 The 2DEG-CPW impedance 𝑍0 along with load and input impedances can be 

visualized as a transmission line as shown in Figure 4.30. For such a transmission line, 

the input and load impedance are related by the propagation constant 𝛾 as follows 

 
𝑍𝑖𝑛 =

𝑍0(𝑍𝑙 + 𝑍0 tanh(𝛾𝑙))

𝑍0 + 𝑍𝑙 tanh(𝛾𝑙)
 (4.61) 

 

Figure 4.30 2DEG-CPW with load and input impedances 

If we consider a lossless 2DEG (R = 0) that is terminated with a load impedance 𝑍𝑙, the 

total impedance can be written as  

 

𝑍0 = 𝑍𝑙√

1 − 𝜔2𝐿𝑘𝐶2𝑑

1 − 𝜔2𝐿𝑘 (
𝐶𝑔𝐶2𝑑
𝐶𝑔 + 𝐶2𝑑

)

 
(4.62) 

 Simulations were performed with variations in the value of kinetic inductance 

per square (𝐿𝑘) in the 2DEG so as to extract out the geometric inductance 𝐿𝑔 and 

geometric capacitance 𝐶𝑔. From equation (4.62), we can say that for when 𝑍0 becomes 

zero i.e. when  

 1 − 𝜔2𝐿𝑘𝐶2𝑑 = 0 (4.63) 

or  
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𝜔1
2 =

1

𝐿𝑘𝐶2𝑑
 (4.64) 

and when 𝑍0 becomes infinity when  

 
1 − 𝜔2𝐿𝑘 (

𝐶𝑔𝐶2𝑑

𝐶𝑔 + 𝐶2𝑑
) = 0 (4.65) 

or  

 
𝜔2
2 =

𝐶𝑔 + 𝐶2𝑑

𝐿𝑘𝐶𝑔𝐶2𝑑
 (4.66) 

Therefore the transmission through the 2DEG-CPW will be zero when 𝑍0 is infinite or 

when 𝑍0 is zero. Hence, 𝜔1 and 𝜔2 correspond to first and second minima of the 

transmission coefficient. In the simulations with the 2DEG, transmission and reflection 

coefficients are observed at these frequencies for varying values of kinetic inductance 

per square as shown in Figure 4.31. From equations (4.64) and (4.66), the ratio of the 

two frequencies 𝜔1 and 𝜔2 gives a relation between 𝐶𝑔 and 𝐶2𝑑 as follows 

 𝜔2
2

𝜔1
2 =

𝐶𝑔 + 𝐶2𝑑

𝐶𝑔
 (4.67) 

  

∴  𝜔2 = 𝜔1√
𝐶𝑔 + 𝐶2𝑑

𝐶𝑔
 (4.68) 

 From equations (4.64) or (4.66), we can also infer that the product 𝜔√𝐿𝑘 is 

constant for a given dimension of 2DEG. Therefore, in order to verify this hypothesis, 

we note the values of different resonant frequencies for various values of kinetic 

inductance per square and observe their product to be almost constant. The simulated 

values of 𝜔1 & 𝜔2 for various 𝐿𝑘 are shown in Table 4.1. 
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Figure 4.31 Simulations of 2DEG-CPW structure with varying 𝐿𝑘. Solid lines 

indicate the transmission coefficient S21 and dashed lines indicate reflection 

coefficient S11 

 Using Keysight’s ADS simulation software, we estimate the electrical length 𝛽𝑙 

of the 3 μm wide and 3μm ground spaced CPW in degrees as 6.285𝑜.Now since, 𝛽𝑙 =

𝜔𝑙/𝑣, for a frequency of 10 GHz, we have the following expression 

 
6.285𝑜 =

2𝜋1010 × 200 × 10−6

𝑣
 (4.69) 

from which we can extract 𝑣 as 1.1455 × 108 𝑚/𝑠. Now since 𝑣 = 1/√𝐿𝐶, we can 

write  
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 1

√𝐿𝑔𝐶𝑔
= 1.1455 × 108 𝑚/𝑠 (4.70) 

𝐿𝑘 𝑓1 𝑓2 𝜔1√𝐿𝑘 𝜔2√𝐿𝑘 

4 nH/sqr 24.7 GHz 50.1 GHz 1562.16 3168.6 

5 nH/sqr 22.1 GHz 46.1 GHz 1562.7 3259.76 

6 nH/sqr 20.1 GHz 42.1 GHz 1556.9  3261 

7 nH/sqr 18.5 GHz 38.9 GHz 1547.8 3254.6 

8 nH/sqr 17.3 GHz 36.5 GHz 1547.3 3264.6 

9 nH/sqr 16.3 GHz 34.3 GHz 1546.3 3253.9 

10 nH/sqr 15.5 GHz 32.5 GHz 1550 3250 

Table 4.1 Simulated values of 𝜔1 & 𝜔2 for various values of 𝐿𝑘. The fourth and fifth 

column indicate that the product 𝜔√𝐿𝑘 remains almost constant confirming the 

relation 

Also for a 50 Ω terminated 3 μm wide and 3μm ground spaced CPW, we estimate its 

impedance 𝑍𝑐𝑝𝑤 from ADS as  

 𝑍𝑐𝑝𝑤 = 41.039 Ω (4.71) 

We also know that 𝑍 = √𝐿𝑔/𝐶𝑔 and from equations (4.70) and (4.71) we have  

 
𝐿𝑔 =

41.039

1.1455 × 108
= 3.5823 × 10−7 𝐻/𝑚 (4.72) 

and 𝐶𝑔 can be extracted as equal to 2.127 × 10−10 𝐹/𝑚. We can substitute .the value 

of 𝐶𝑔 in equation (4.67) to obtain 𝐶2𝑑 as ~0.7 × 1010 𝐹/𝑚. This value of 𝐶2𝑑 can be 

substituted in equation (4.64) to obtain the value of kinetic inductance per meter 𝐿𝑘,𝑚 
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as ~1 × 1013 𝐻/𝑚. Therefore the effective length over which the kinetic inductance 

accumulates is (𝐿𝑘 𝑝𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒)/(𝐿𝑘,𝑚) which approximates to 1.35 × 10−5 𝑚. 

 

4.12 Conclusion 

 We have designed, simulated and tested a working capacitively coupled 2DEG 

mesa structure lying at the heterojunction of a 𝐺𝑎𝐴𝑠/𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 (𝑥 = 0.3), whose 

circuit model is verified from Burke (1999). The experimental results of transmission 

and reflection coefficients are in agreement with the simulations confirming the 

presence of a distributed kinetic inductance in 2DEG. We also propose a 2DEG coupled 

co-planar waveguide structure and its circuit model whose impedance and therefore 

transmission line coefficients are formulated analytically. Preliminary simulations take 

us closer to an accurate circuit model although the next step would be to practically test 

the structure and measure transmission coefficient. 
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