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ABSTRACT  

   

Buildings consume nearly 50% of the total energy in the United States, which 

drives the need to develop high-fidelity models for building energy systems. Extensive 

methods and techniques have been developed, studied, and applied to building energy 

simulation and forecasting, while most of work have focused on developing dedicated 

modeling approach for generic buildings. In this study, an integrated computationally 

efficient and high-fidelity building energy modeling framework is proposed, with the 

concentration on developing a generalized modeling approach for various types of 

buildings. First, a number of data-driven simulation models are reviewed and assessed on 

various types of computationally expensive simulation problems. Motivated by the 

conclusion that no model outperforms others if amortized over diverse problems, a meta-

learning based recommendation system for data-driven simulation modeling is proposed. 

To test the feasibility of the proposed framework on the building energy system, an 

extended application of the recommendation system for short-term building energy 

forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion 

technique is incorporated into the building recommendation system for on-line energy 

forecasting. Data fusion enables model calibration to update the state estimation in real-

time, which filters out the noise and renders more accurate energy forecast. The 

framework is composed of two modules: off-line model recommendation module and on-

line model calibration module. Specifically, the off-line model recommendation module 

includes 6 widely used data-driven simulation models, which are ranked by meta-learning 

recommendation system for off-line energy modeling on a given building scenario. Only 

a selective set of building physical and operational characteristic features is needed to 
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complete the recommendation task. The on-line calibration module effectively addresses 

system uncertainties, where data fusion on off-line model is applied based on system 

identification and Kalman filtering methods. The developed data-driven modeling 

framework is validated on various genres of buildings, and the experimental results 

demonstrate desired performance on building energy forecasting in terms of accuracy and 

computational efficiency. The framework could be easily implemented into building 

energy model predictive control (MPC), demand response (DR) analysis and real-time 

operation decision support systems. 



  iii 

DEDICATION  

   

To my mom and dad, who have always been emotionally supportive. 



  iv 

ACKNOWLEDGMENTS  

   

First, I would like to thank my advisor Dr. Teresa Wu for persevering with me 

throughout my study and research process for completing the degree. I sincerely 

appreciate her mentorship, guidance and cultivation, which makes my Ph.D. study one of 

the most valuable experiences in my life. 

Second, I would like to thank my co-advisor, Dr. Jeffery D. Weir, and my 

committee member, Dr. Mengqi Hu, who have always been generously given their time 

and expertise on my research through years. They have also offered me a great help on 

my paper writing and presentation skills. 

Third, I would like to thank my committee member, Dr. Jing Li, who has been 

supportive when I encountered difficulties in my research and guided me with valuable 

suggestions. 

Forth, I also want to thank my committee member, Dr. John Fowler, who is 

willing to step in and become my committee member given short notice. In addition, I 

have benefited greatly from his knowledge in the field of simulation. 

In addition, I’m grateful to my lab mates, who have shared their knowledge, 

expertise and experience with me and helped me with not only academic but also daily 

life problems.  

Finally, I must thank as well the department, friends, faculty, students, colleagues, 

and other staff who assisted, advised, and supported my research and writing efforts over 

the years. 

 

 

 



  v 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

1 INTRODUCTION .................................................................................................. 1 

Background ................................................................................................. 1 

Literature Review........................................................................................ 2 

Research Scope ......................................................................................... 13 

Dissertation Organization ......................................................................... 18 

2 A RECOMMENDATION SYSTEM FOR META-MODELING ON DATA-            

DRIVEN SIMULATIONS ................................................................................... 20 

Introduction ............................................................................................... 21 

Background ............................................................................................... 26 

Proposed Framework ................................................................................ 39 

Experiments and Results Analysis ............................................................ 47 

Discussion and Conclusion ....................................................................... 57 

3 SHORT-TERM BUILDING ENERGY MODEL RECOMMENDATION 

SYSTEM: A META-LEARNING APPROACH ................................................. 61 

Introduction ............................................................................................... 62 

Building Energy Model Recommendation System................................... 72 

Experiments and Results ........................................................................... 83 



  vi 

CHAPTER                                                                                                                      Page 

Discussion and Conclusion ....................................................................... 96 

4 ON-LINE CALIBRATION OF DATA-DRIVEN MODELS FOR BUILDING 

ENERGY CONSUMPTION FORECASTING .................................................... 99 

Introduction ............................................................................................. 100 

Methodology ........................................................................................... 107 

Experiments and Results ......................................................................... 116 

Conclusions and Future Work ................................................................ 128 

5 CONCLUSION AND FUTURE WORK ........................................................... 131 

Summary ................................................................................................. 131 

Conclusion and Future Work .................................................................. 132 

6 REFERENCES ................................................................................................... 136 

 

 

  



  vii 

LIST OF TABLES 

Table Page 

1. Summary on the Advantages and Disadvantages of the Three Types of Models 11 

2. Performance Statistics of Meta-learners ............................................................... 52 

3. Top Recommended Meta-model Given by Different Meta-learners (K-Kriging, S-

SVR, R-RBF, M-MARS, A-ANN, P-PR) ............................................................ 53 

4. (Approximate) Computational Cost Comparison between the Traditional Trial-

and-Error Approach and Meta-learning Approach on each test problem ............. 54 

5. Summary Statistics of Three Feature Selection Techniques: SVD, Stepwise 

Regression and ReliefF ......................................................................................... 57 

6. Ten Selected Building Operational Features and two Categorical Variables ....... 75 

7. Building Physical Features ................................................................................... 79 

8. Test Case I: Statistics on Meta-learning SRCC, Success Rate and # of Successes 

across 48................................................................................................................ 88 

9. Test case II: Statistics on Meta-learning SRCC, Success Rate and # of Successes 

across 48 Problems ............................................................................................... 91 

10. Comparison between Ground Truth and Recommendation System on Mean of 

Best NRMSE across 48 Problems on Each Test Case .......................................... 92 

11. Mean and Standard Deviation of the Computational Cost (in seconds) of the Six 

Models across 48 Problems .................................................................................. 93 

12. Performance Rankings (T) of the Six Forecasting Models and the Predicted 

Rankings from BEMR (B) on Single Day and One Week Tests .......................... 95 

 



  viii 

Table Page 

13. Ten Selected Building Operational Features and two Categorical Variables ..... 114 

14. Performance of Each Recommended Model ...................................................... 119 

15. Summary Statistics of the Distribution of Process Noise of the Baseline Model 

and the Corresponding SSM ............................................................................... 124 

16. the Performance of Baseline, SSM and Kalman Filtering on Energy Consumption 

Forecast ............................................................................................................... 127 

17. The Absolute Errors of Each Kalman Filtering Results ..................................... 128 



LIST OF FIGURES 

Figure Page 

1. Diagram of Concepts of Physics-based, Data-driven and Hybrid Model 

(http://energy.imm.dtu.dk/models/grey-box.html). .............................................. 10 

2. Flowchart of Research Scope................................................................................ 18 

3. A Schematic Diagram of Rice’s Model with Algorithm Selection Based on 

Features of the Problem. ....................................................................................... 37 

4. A Pseudo Code of Meta-learning Based Recommendation System for Meta-

modeling. .............................................................................................................. 39 

5. Uni-modal Function: Sphere Function.................................................................. 47 

6. Multi-modal Function: Rotated Weierstrass Function. ......................................... 48 

7. Composition Function: Composed of Three Multimodal Functions. ................... 48 

8. Multiple Comparison Test on Mean NRMSE of Six Meta-models of Different 

Sample Sizes. ........................................................................................................ 51 

9. Framework of Building Energy Model Recommendation (BEMR) System. ....... 72 

10. “hv-block” Cross-validation Illustration. .............................................................. 77 

11. Cross-validation of Training Data Split. ............................................................... 78 

12. Test Case I: Bar Chart of Mean of Best NRMSE across 48 Problems on Each Test 

Case. ...................................................................................................................... 85 

13. Weekly Cooling Electricity Load (Kwh) Time Series Plot of (a) Large Office in 

San Francisco, CA; (b) Large Office in Phoenix, AZ; (c) Full Service Restaurant 

in Phoenix, AZ. ..................................................................................................... 86 

14. Test Case I: Bar Chart of Meta-learning Success Rate. ........................................ 87 



  x 

Figure Page 

15. Test Case I: Bar Chart of Meta-learning SRCC.................................................... 87 

16. Test case II: Bar Chart of Mean of Best NRMSE across 48 Problems on Each Test 

Case. ...................................................................................................................... 89 

17. Box Plot of Mean of NRMSE on Test Cases I&II................................................ 90 

18. Test case II: Bar Chart of Meta-learning Success Rate. ....................................... 91 

19. Test case II: Bar Chart of Meta-learning SRCC. .................................................. 91 

20. Energy Resource Station at Iowa Energy Center.  ................................................ 94 

21. Complete Kalman Filter Operations. .................................................................. 108 

22. Workflow of the Proposed Framework of On-Line Forecast Model. ................. 112 

23. One-day Ahead Forecast Comparison Plots with Different Measurement Noise.

............................................................................................................................. 120 

24. Time Series Comparison Plot among ANN Simulation Model, the State Space 

Model (SSM) and the Real Data (10% noise). ................................................... 122 

25. Simulation Error Time Series of ANN and SSM (10% noise). .......................... 124 

26. Control Input to the SSM Model. ....................................................................... 125 

27. Kalman Filter Energy Estimation of the Building. ............................................. 126 

28. Comparison Plot Between KF Estimation of Energy Consumption and Real 

Energy Consumption. ......................................................................................... 126 

29. Framework of Data-driven Building Energy Modeling...................................... 132 

 



1 

 

CHAPTER 1  

INTRODUCTION 

1.1 Background 

The U.S. Energy Information Administration (EIA) (Architecture 2030 2011) 

states that buildings consume nearly 50% of the total energy and around 30% of the 

consumption in buildings is used by heating, ventilating and air conditioning (HVAC) in 

the United States (Xiwang Li, Wen, and Bai 2016). Historical data shows, from 1996 to 

2006, the electricity consumption of the US grows 1.7% annually, and the total growth 

will reach to 26% by 2030 (Parks 2009). This drives the need to develop high-fidelity 

energy models for building systems. Since the early 20th century, load simulation and 

forecasting has been a conventional and important activity in electric utilities across a 

number of applications, such as financial planning, operations and controls, and resource 

allocations, etc. Extensive methods and techniques have been developed, studied, and 

applied to load simulation and forecasting, while many challenging issues are still 

remaining unsolved. In terms of modeling design, how to achieve modeling accuracy and 

computational efficiency at the same time. In terms of model selection, how to select the 

appropriate models among a number of candidates. And in terms of modeling robustness, 

how to make the model adaptive to various uncertainties. We conclude there is a lack of 

systematic and integrated approach of building energy modeling framework.  

This chapter discusses the current practices in building load simulation and 

forecasting, introduces the fundamentals and classifications of building energy models, 

discusses the relations between forecasting and simulation, proposes a number of 
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research questions, and provides with an integrated energy modeling framework solution 

for performing building load forecasting tasks. 

 

1.2 Literature Review 

As is known, there does not exist a universal forecast model that could satisfy all 

forecasting needs (T. Hong 2010). As a result, over the past decades, different types of 

building energy models have been developed for different purposes. Besides business 

needs, e.g., consumption analysis, control and operation optimization, pricing strategies, 

etc., the availability of the resources, e.g., weather forecast data, sensor data, economical 

information, etc., also affects the design and selection of forecasting model development.  

Based on the forecast horizon and updating cycle, the existing building energy 

forecasting could be categorized as short term load forecasting (STLF), medium term 

load forecasting (MTLF), and long term load forecasting (LTLF) (T. Hong 2010). STLF 

focuses on the load forecasting on daily basis and/or weekly basis, and MTLF and LTLF 

are based on monthly and yearly collected data for transmission and distribution (T&D) 

planning (H . Lee Willis 2004), and financial planning, which assist with medium to long 

term energy management, decision making on the utilities project and revenue 

management. STLF is important for real-time energy operations and maintenance. For 

daily operations, system operators can make switching and operational decisions, and 

schedule maintenance based on the patterns obtained during the load forecasting process 

(H. Wang et al. 2016). STLF is inherently connected to other types of forecasts by scaling 

and adjusting the parameters and elements in the model. Thus, it could be viably 
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transformed into MTLF or LTLF, by adding features, such as economics and land use, 

and extrapolating the model to longer horizons. To better assist the operations and control 

strategies development, this study mainly focuses on STLF approach, which provides the 

buildings with accurate load forecasts for daily and weekly based energy system 

management.  

The building energy simulation models could also be categorized as: “physics-

based” (white-box) models (Al-Homoud 2001; Katipamula and Lu 2006), “data-driven” 

(black-box) models (Ekici and Aksoy 2009; Aydinalp, Ugursal, and Fung 2004; Dong, 

Cao, and Lee 2005; Mihalakakou, Santamouris, and Tsangrassoulis 2002; Ozturk et al. 

2004) and “hybrid” (grey-box) models (Q. Zhou et al. 2008; J. E. Braun and Chaturvedi 

2002; Wen 2003). Extensive studies exist in the literature on these three types of building 

energy modeling approaches, which are closely reviewed in this Section. 

 

1.2.1 Physics-based Models 

Physics-based (or white box) models are built based on detailed physical 

principles for modeling the building components, and sub-systems. It can make 

predictions on whole buildings and their sub-systems behaviors. They are known to be 

excellent dynamic models due to their detailed dynamic equations built from system 

physics. The set of numerous mathematical representations forms a simulation engine 

which simulates the building operation mechanisms and calculates the building energy 

consumption (Scotton et al. 2013). The number of parameters that need to be estimated in 

the physics-based model is typically large, because each and every detail of the 
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description of all the processes is involved in the system.  Therefore, these types of 

simulation tools are usually elaborate and accurate.  

A number of white box software tools are available for both whole building and 

sub-system simulation, such as TRNSYS (Klein 2010) and EnergyPlus (Energy 2010). 

EnergyPlus is develop by Department of Energy of US and has been widely used as a 

whole building energy simulation tool for building energy research. It is known to be 

highly accurate simulation program used by engineers, architects, and researchers for 

modeling energy and water use in buildings. It allows the building professionals construct 

the building performance models on which optimization task could be conducted for 

design and operation strategies that render less energy and water usage. However, to 

build such elaborate system is not trivial task, which requires domain expertise on 

building architecture and thermal dynamic theories, involving with deep knowledge 

about detailed information and parameters of buildings, energy system and outside 

weather conditions. Moreover, to identify the modeling parameters takes long time and 

the simulation running process requires high-performance computing capability. The 

time-consuming model development and low-speed simulation process make it 

challenging to apply physics-based model on applications such as real-time energy 

consumption modeling and on-line model predictive control (MPC). As a result, the 

elaborate physics-based building energy models are more suitable for simulation 

purposes, where the objective is to estimate and observe the system response and 

behavior in a long-term time span. 
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1.2.2 Data-driven Model  

Data-driven models, also known as black box models, are defined as the models 

in which internal workings of the system are not described, but simply solves a numerical 

problem without reference to any underlying physics. This usually takes the form of a set 

of transfer parameters or empirical rules that relate the output of the model to a set of 

inputs. In simulation terminology, data-driven model is sometimes referred to as “meta-

model”, “black box model” or “surrogate model”, which is a “model of the model” (J. P. 

Kleijnen 2008).  Meta-model is often built when physics-based simulation is not 

computationally easily implemented. It simplifies the simulation in two ways: its 

response is determined by a set of simpler equations, and the run time is generally much 

shorter than the original simulation (Barton and Meckesheimer 2006).  Therefore, meta-

models are often used to approximate and replace the complex simulation models in 

computer-based engineering design and design optimization. 

  Data-driven models could be categorized into statistical techniques, e.g., 

multivariate regression, and machine learning algorithms, e.g., Artificial Neural Network 

(ANN) (McCulloch and Pitts 1943). A comprehensive review of meta-modeling 

applications in engineering design is given by (T. W. Simpson et al. 2001).  They review 

several of data-driven modeling techniques including design of experiments, response 

surface methodology, Taguchi methods, neural networks, inductive learning, and 

Kriging, and conclude with recommendations for the appropriate use of approximation 

techniques. Artificial neural networks consists of interconnected "neurons" which can 

train itself and make deduction from inputs. Support Vector Machine for regression 
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(SVR) (Clarke, Griebsch, & Simpson, 2005; Drucker, Chris, Kaufman, Smola, & Vapnik, 

1997) is derived from support vector classification to find an optimal generalization of 

the training data set. A thorough review on popular data-driven models will be given in 

Chapter 2.  

Data-driven models are based on analyzing the data about a system, in particular 

finding connections between the system state variables (input, internal and output 

variables) without explicit knowledge of the physical behavior of the system. These 

methods represent advances on conventional empirical modelling and allow for solving 

numerical prediction problems, reconstructing highly nonlinear functions, performing 

classification, grouping of data and building rule-based systems (Solomatine and Ostfeld 

2008). Data-driven modeling does not normally contain any physical knowledge 

regarding the system, and the physical parameters are partially hidden in the model 

parameterization. Therefore, data-driven modeling is desirable for short-term predictions. 

Black box models are useful when an answer to a specific problem is required while the 

flexibility to change aspects of a model and see the effect is not. The required flexibility 

of a model depends upon its long-term objectives as part of the design process. If the 

purpose of the model is only to provide quick, approximate answers, based on a pre-

determined set of input parameters, then a black box model is appropriate.  

 

1.2.3 Hybrid Models 

A hybrid model, also known as “grey box” model, is built from partial theoretical 

structure and physical knowledge of the process combining with data to complete the 
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model (Bohlin 2006). To maintain the physical interpretation of the model, it would be 

suitable to use physical formulation and apply an estimation method, where the 

parameterization is obtained from data. The parameters in the model are physically 

interpretable and estimated by statistical methods. Grey box model is mixture of white 

and black model, since the basic model structure is inherited from the white box models, 

usually in the form of ordinary differential equations, but the parameter estimation and 

the uncertainty assessment are obtained using statistical methods.  

  In a grey box model, certain elements within the model can be approximated by 

rules. The modeling development could be summarized as a three-step process: First, a 

simplified physics model for a system is developed as a foundation; Second, physical 

parameters are determined from the description of the system geometry and materials; 

Last, other model parameters are identified by user-defined algorithms from data. In 

building energy simulation, thermoelectricity analogy structure and lumped parameter 

models for energy devices are typical simplified physics based models (J. Braun and 

Chaturvedi 2002; Henze, Felsmann, and Knabe 2004). The model parameters are 

determined from the building systems properties and design factors, such as the energy 

device performance coefficient and thermal capacity of building envelope. Common 

methods for parameter determination include, such as, regression methods, optimization 

prediction error approach and maximum likelihood method, etc. For example, Resistance 

and Capacitance (RC) network model is one of the most common grey box models, 

which models building energy consumptions with a simplified physical representation for 

thermal flows in building. It can be used to predict the building heating and cooling load 
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(J. Braun and Chaturvedi 2002), as well as to estimate building temperatures (Oldewurtel 

et al. 2012; Lee and Braun 2008). Compared to white box model, it has less number of 

parameters to determine and compared to black box models, it requires less training data. 

However, determining the parameters of RC model still requires expertise on building 

internal design and structure, and knowledge on thermal dynamics, along with 

optimization and searching algorithms (S. Wang and Xu 2006).  

 

1.2.4 Forecasting and Simulation  

It is worthwhile discussing about these two technical terminologies, forecasting 

and simulation, for clarification on their inner connections and differences. Forecasting is 

the process of predictions on the future based on past and present data and analysis of 

trends. For example, to predict weather conditions by extrapolating/interpolating previous 

data. Prediction is a similar, but more general term. Both forecasting and prediction might 

work on time series, cross-sectional or longitudinal data. Simulation is the imitation of 

the operation of a real-world process or system over time (Banks et al. 2004). The 

simulation model represents the key characteristics or behaviors/functions of the physical 

system or process. The model represents the system itself, whereas the simulation 

represents the operation of the system over time. Simulation allows one to accurately 

specify a system through the use of logically complex, and often non-algebraic, variables 

and constraints. It is widely used for modeling of human systems or natural systems for 

gaining insight into the functions (R. D. Smith and Chief Scientist 1999). Moreover, by 

simulation, it is possible to show the courses of actions and corresponding effects 
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provided alternative conditions of the systems. Simulation is also used when the real 

system cannot be engaged, because it may not be easily obtainable, or it is being designed 

but not yet realized, or it may simply does not exist (Sokolowski and Banks 2008).  

Forecasting and simulation are correlated, due to their inter-connected 

mechanisms and functionalities. Forecasting could be realized through simulations. For 

example, most of the weather forecasts use the information published by weather 

bureaus, which has their own complicated numeric computer simulation models to 

predict weather by taking many parameters into account. Therefore, simulation is an 

approach for realization of forecasting, while forecasting is an application of simulation. 

The main objective of this thesis is to develop high-fidelity models for forecasting 

building energy, thus, the models are generally referred to simulation models. 

Consequently, we focus on developing high-fidelity simulation models to be applied for 

forecasting purpose.  

 

1.2.5 Summary 

We summarize the characteristics of physics-based, data-driven and hybrid 

models from different aspects including the model complexity, flexibility and accuracy 

and validity. It is then followed by our proposed modeling approach, combining with our 

business need and resource availability. 

  The comparison diagram of physics-based model, data-driven model and hybrid 

model, developed by Madsen et al., is illustrated in Figure 1, which depicts the main 

components of the three models. 
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Figure 1 Diagram of Concepts of Physics-based, Data-driven and Hybrid Model 

(http://energy.imm.dtu.dk/models/grey-box.html). 

 

As we discussed, it is important to choose the right type of model, based on the 

business need and available resources. Using the wrong type of model can result in 

failure of deliverables and waste of time and money. Therefore, the advantages and 

disadvantages of the three types of models are summarized in Table 1, which provides 

guideline on identifying model applicability. 
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Table 1 Summary on the Advantages and Disadvantages of the Three Types of Models 

Model Type Advantages Disadvantages Examples 

White box 

 High flexibility: everything 

is modelled on a low level, so 

the behavior can be changed in 

line with the actual physics; 

 Closeness to reality: 

provides the closest match to 

the real device. 

 High complexity: 

contains no or few 

approximations, resulting in 

most complex model; 

 High manpower: 

Requires domain expertise; 

 High computing 

overheads: requires fast 

computers and large 

amounts of memory. 

EnergyPlus 

simulation 

model 

Grey box 

 Moderate flexibility; 

 Closeness to reality: 

Partially built based on 

physics, and provides robust 

and accurate predictions under 

different operating conditions. 

 

 Moderate complexity: 

both physics and data are 

required to estimate the 

model; 

 Moderate manpower 

and computing overhead: 

Requires building 

information and domain 

expertise. 

 

Resistance 

and 

Capacitance 

(RC) model 

Black box 

 Low complexity: consists 

of a set of rules and equations 

that are easy to evaluate and 

can run very rapidly; 

 Minimal required 

manpower and computing 

power. 

 Lack of flexibility: 

bounded to the training 

building operating 

conditions; 

 Interpretation ability: 

lack of any form of physical 

meanings. 

Artificial 

Neural 

Network 

 

 

From Table 1, it can be concluded that different types of models have different 

properties and thus different applicability. The two major researching objectives of recent 

studies on building simulation modeling are increasing simulation speed and maintaining 

simulation accuracy (Xiwang Li and Wen 2014a). Therefore, the research objective of 

this study is to develop an integrated computationally efficient and high-fidelity building 

energy modeling framework, which could provide real-time accurate fast approximations 
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of the building energy systems with high degree of adaptivity and minimum computing 

efforts. The developed model could be cheaply implemented into building energy 

operation optimization, sensitivity analysis, what-if analysis and real-time engineering 

decisions. Moreover, in choosing the appropriate modeling approach, we also consider 

the following requirements: 

1) Forecasting horizon: The model should be designed to assist in short term modeling 

(hourly based or daily based). In order to adapt the developed model with real time 

building operation and decision controls, a fast and real-time evaluation of the system 

is required. 

2) Required level of flexibility: The model needs not to be highly flexible, because our 

research scope focuses on real-time building energy modeling, in facilitating the 

building operation and control design optimization. The update cycle granularity is 

generally within hourly-basis or daily basis. As a result, the design operation bounds 

are usually covered by the training data. A quick and accurate approximation model is 

preferable than a cumbersome time-consuming model. 

3) The resource availability: Sometimes, the selection of the type of model is limited by 

the available computing power and manpower. Domain experts’ knowledge is needed 

to build detailed white box model, which is not always available. In such a case, a 

simplified model is needed.  

  Based on the above considerations, in this research, we mainly focus on data-

driven modeling approach for the building energy model development. Several key issues 

are involved with data-driven simulation modeling, such as selection of key 
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characteristics about the relevant system behaviors, acquisition of valid resource 

information, the assumptions within the simulation and the use of simplifying 

approximations, and fidelity and validity of the simulation outcomes. We summarize our 

research questions as follows:  

 The choice of the modeling functional form, i.e., the assumptions within the 

simulation and the use of simplifying approximations; 

 The choice of modeling inputs, i.e., key characteristics about the system behaviors; 

 Data acquisition and data reliability, i.e., acquisition of valid resource information; 

 Computational efficiency of the model; 

 The design of experiments: sampling strategy, parameter tuning, validation method, 

etc.; 

 Model adaptivity to uncertainties and generalizability to different building scenarios; 

 Assessment of the adequacy of the fitted model, i.e., fidelity and validity of the 

simulation outcomes; 

These research questions are elaborately discussed and addressed in Chapter 2, 3 and 4. 

 

1.3 Research Scope 

The overall research objective is to develop an integrated computationally 

efficient and high-fidelity building energy modeling framework with high degree of 

adaptivity and generalizability and minimum computing efforts. To fulfill this objective, 

we set our modeling targets to various building scenarios, rather than some specific 

building types. We argue that a single simulation modeling assumption may not be 
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adequate for serving the purpose of modeling various types of building energy systems. 

Therefore, a number of data-driven simulation models are first reviewed and assessed on 

various types of “black-box” problems. Motivated by the conclusion that no model 

outperforms others if amortized over diverse types of problems (Cui et al. 2014), we 

propose an integrated recommendation system for data-driven model selection on the 

cross-sectional data, which are depicted by various features derived from the design 

space. To test the feasibility of the proposed framework on the building energy system, 

we further extend the application of the recommendation system for forecasting on 

various building energy time series data using the same set of data-driven models. 

Finally, Kalman filter-based data fusion technique is incorporated into the building 

recommendation system for on-line energy forecasting. The proposed building energy 

simulation and forecasting framework is desired to be an integrated, intelligent and 

adaptive system, where human involvement is lessened, computational efficiency is 

improved and automatic decision making on model selection is realized. The research 

topics and proposed solutions associated with the following Chapters along with a brief 

summary is given below. 

Research Topic 1: What are the most appropriate data-driven models for a given 

simulation problem? 

Proposed Solution: We propose a meta-learning based recommendation system for meta-

modeling on cross-sectional data. 

 We first evaluate different meta-models on various black-box problems, and find 

that the performance of each model depends on the problems studied.  Therefore, we 
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propose a general framework of a meta-model recommendation system by applying 

meta-learning technique for computationally expensive simulation tasks. 44 benchmark 

problems are tested using the proposed framework which includes uni-modal, multi-

modal and composition functions. Not only traditional statistical features, but also novel 

geometrical features are developed for problem characterization. Two types of meta-

learning algorithms, instance-based learning and model-based learning, are implemented 

and compared based on two evaluation criteria, Spearman’s ranking correlation 

coefficient and hit ratio. In addition, feature reduction techniques, including Singular 

Value Decomposition, Stepwise Regression and ReliefF, are applied on the feature space 

to further improve the meta-learning performance. The experiments show that the 

proposed framework is efficient and effective in making recommendation on meta-

models for any given simulation problem.     

Research Topic 2: What are the most appropriate forecasting models on energy 

consumption forecasting for a specific building? 

Proposed Solution: We propose a meta-learning based recommendation system for 

building energy forecasting using data-driven models. 

 Continued from the study on cross-sectional data, we want to further explore the 

applicability of the recommendation system to the building energy time series data. 

Therefore, we propose a framework of forecasting model recommendation system by 

applying the meta-learning technique on various computationally expensive building 

simulations. 48 benchmark building simulation models are tested using the proposed 

framework. In addition, a careful design of experiments on the modeling process is 
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elaborated, including feature engineering on building variables, training data selection 

and cross-validation on time series data. The meta-features are derived not only from the 

building electricity load time series, but also from the building design and operational 

variables and building physical description variables, in order for comprehensive 

characterization on various building scenarios. Based on the first study, a model-based 

meta-learning algorithm, specifically, an artificial neural network, is applied to model the 

relationship between the meta-features and the ranking derived from the meta-models’ 

performance. In addition, due to high dimensionality of the proposed meta-feature space, 

advanced feature reduction technique, Singular Value Decomposition, which is 

concluded to be efficient and effective in the first study, is applied on the meta-feature 

space to improve the meta-learning performance and reduce computational cost. The 

resulting high hit ratio (90%) indicates the successful implementation of the 

recommendation system on forecasting models for various building scenarios. 

Research Topic 3: How to develop on-line data fusion for data-driven model calibration 

with system uncertainties? 

Proposed Solution: We propose to develop an on-line data fusion system based on 

system identification and Kalman filter for calibrating the recommended model.  

  Buildings are dynamical systems with noisy conditions and stochastic physical 

and occupancy characteristics. The fidelity of the static model may deteriorate as the 

system is continuously affected by outside disturbance and sensor noise. Therefore, on-

line calibration using data fusion techniques are needed for improving the accuracy. To 

address this issue, sequential on-line data fusion for building energy model calibration is 
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a viable approach and in building research and practice, the Kalman filter is the most 

commonly used method. However, Kalman filter requires state space form of the system 

for state estimation. We propose to implement subspace-based system identification 

method, specifically, canonical variate analysis (CVA) for identifying the parameters of 

the given model as a state space representation upon which Kalman filtering can be 

applied. As a result, we propose a three-stage generalized framework for online 

calibration of data-driven models which may be state-space free. In the first stage, an 

appropriate data-driven model is recommended by the building model recommendation 

system developed in the previous research for off-line energy modeling. In the second 

stage, CVA is applied to transform the off-line model into a state space representation. In 

the third stage, Kalman filter is applied for on-line model calibration by real-time data 

fusion of the measurements. The proposed forecast model is tested on the energy 

consumption data of a commercial building simulation model, where three levels, small, 

medium and large of Gaussian noises are added to the system as measurement noises. 

The experimental results show that the proposed Kalman filtering data fusion model 

significantly improves the forecasting accuracy on average of 22%. 

  In summary, the research scope of this dissertation is given in Figure 2. The III-

phase research steps provide with a comprehensive and integrated system methodology 

for high-fidelity, efficient and intelligent building energy forecasting.  
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Figure 2 Flowchart of Research Scope. 

 

1.4 Dissertation Organization 

  The rest of this dissertation is organized into three interrelated chapters that 

address building energy forecasting model selection and calibration, followed by the 

conclusion Chapter 5. Chapter 2 discusses the proposed meta-learning based 

recommendation system for meta-modeling on cross-sectional data. 44 black-box 

benchmark problems are tested using the proposed framework. Two types of meta-

learning algorithms, instance-based learning and model-based learning, are implemented 

and compared based on two evaluation criteria, Spearman’s ranking correlation 

coefficient and hit ratio. Advanced feature reduction techniques are applied on the feature 

space to further improve the meta-learning performance. Furthermore, encouraged by the 

promising result obtained from Chapter 2, we implement the recommendation system 

using meta-learning approach on the building energy forecasting problems in Chapter 3. 

48 benchmark building simulation models are tested using the proposed framework of 

forecasting model recommendation system. Various meta-features are derived from 

multiple data sources. An artificial neural network is applied to model the relationship 

between the meta-features and the ranking derived from the meta-models’ performance. 

Phase I:

Recommendation 
system of meta-
models for black-
box simulations 
problems

Phase II: 
Recommendation 
system of 
forecasting models 
for building energy 
time series data

Phase III: 

On-line calibration 
of data-driven 
models for building 
energy forecasting  
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In addition, advanced feature reduction technique, Singular Value Decomposition, which 

is concluded to be efficient and effective in Chapter 2, is applied on the meta-feature 

space to improve the meta-learning performance and reduce computational cost. Finally, 

in Chapter 4, we implement on-line data fusion to further calibrate the recommended 

forecast model, which could be derived from Chapter 3. Subspace-based system 

identification method is adopted to identify the parameters of the given data-driven 

simulation model as a state space representation upon which Kalman filtering can be 

applied.  The proposed data fusion framework is tested on the consumption data of a 

commercial building simulation model. Chapter 5 summarizes the dissertation with 

conclusion remarks and discussions on future work. 
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CHAPTER 2  

A RECOMMENDATION SYSTEM FOR META-MODELING ON DATA-DRIVEN 

SIMULATIONS 

Various meta-modeling techniques have been developed to replace 

computationally expensive simulation models. The performance of these meta-modeling 

techniques on different models are varied which makes existing model 

selection/recommendation approaches (e.g., trial-and-error, ensemble) problematic. To 

address these research gaps, we propose a general meta-modeling recommendation 

system using meta-learning which can automate the meta-modeling recommendation 

process by intelligently adapting the learning bias to problem characterizations. The 

proposed intelligent recommendation system includes four modules: 1) problem module, 

2) meta-feature module which includes a comprehensive set of meta-features to 

characterize the geometrical properties of problems, 3) meta-learner module which 

compares the performance of instance-based and model-based learning approaches for 

optimal framework design, and 4) performance evaluation module which introduces two 

criteria, Spearman’s ranking correlation coefficient and hit ratio, to evaluate the system 

on the accuracy of model ranking prediction and the precision of the best model 

recommendation, respectively. To further improve the performance of meta-learning for 

meta-modeling recommendation, different types of feature reduction techniques, 

including singular value decomposition, stepwise regression and ReliefF, are studied. 

Experiments show that our proposed framework is able to achieve 94% correlation on 

model rankings, and a 91% hit ratio on best model recommendation. Moreover, the 
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computational cost of meta-modeling recommendation is significantly reduced from an 

order of minutes to seconds compared to traditional trial-and-error and ensemble process. 

The proposed framework can significantly advance the research in meta-modeling 

recommendation, and can be applied for data-driven system modeling. 

 

2.1 Introduction 

The growing complexity of real-world systems drives research to develop 

simulation models to imitate the underlying functionality of the actual system (Banks et 

al. 2004). In general, the models can be categorized into three groups: physics-based 

modeling, data-driven modeling and a hybrid of the two. Physics-based models simulate 

the behavior of a real system based on the fundamental physics of each component and 

the interactions of the components, thus it can provide a high-fidelity description of the 

systems. However, the development of such models requires domain expertise for setting 

up and implementation. In addition, it suffers from high computational cost. A hybrid 

model is built upon the physics-based model using statistical tools to estimate the model 

parameters (Kristensen, Madsen, and Jørgensen 2004). It again, requires partial 

knowledge of the underlying system as a prior, which may not be easily obtained. 

Recently, the data-driven modeling approach has emerged as an alternative to model the 

system purely from the data available. A data-driven model, also known as a meta-model 

or surrogate model, is a “model of the model” (J. P. C. Kleijnen 1995). It is constructed 

using data which can provide fast approximations of the objects and has been used for 
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design optimization, design space exploration, sensitivity analysis, what-if analysis and 

real-time engineering decisions.   

Extensive research has explored a number of meta-models, e.g., Kriging 

(Matheron 1960), support vector regression (SVR) (Clarke, Griebsch, & Simpson, 2005; 

Drucker, Chris, Kaufman, Smola, & Vapnik, 1997), radial basis function (RBF) (Dyn, 

Levin, and Rippa 1986), multivariate adaptive regression splines (MARS) (Friedman 

1991), artificial neural network (ANN) (McCulloch and Pitts 1943) and polynomial 

regression (PR) (Gergonne 1974), just to name a few. A comprehensive review of the 

meta-modeling applications in computer-based engineering design and optimization can 

be found in (Simpson, Peplinski, Koch, & Allen, 1997; Wang & Shan, 2007). As 

expected, the general conclusion from these studies is that the performances of the meta-

models vary depending on the problems investigated. This is also confirmed by (Clarke, 

Griebsch, and Simpson 2005) and (Cui et al. 2014). Therefore, researchers have taken a 

trial-and-error approach, that is, investigating a number of different meta-models among 

which the best performer (evaluated against metrics, e.g., accuracy) is selected. It is not 

until recently that research started to explore the use of an ensemble, an optimal 

combination of several models. The distinct challenge these approaches (trail-and-error 

and ensemble) face is the expensive computational costs. Taking a large-scale meta-

model based design optimization problem as an example, where thousands or even 

millions of fitness evaluations are triggered in support of the optimization process, 

building several meta-models or an ensemble might be computationally unaffordable.  
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In this research, we propose a meta-model recommendation system using a meta-

learning technique to identify the appropriate meta-models for engineering simulation 

problems which are known to be computationally expensive. Please note meta-learning is 

not new, it has been studied in machine learning fields, e.g., gene expression 

classification (Souza, Carvalho, and Soares 2008), failure prediction (Lan et al. 2010), 

gold market forecasting (Zhou, Lai, & Yen, 2012) and recommendation of classification 

algorithms on educational datasets (Romero, Olmo, and Ventura 2013). The idea of meta-

learning is that the information gained from learned instances shall be valuable to study 

future instances. To the best of our knowledge, most existing meta-learning systems 

handle the learning process on instances with a large volume of data records provided. As 

a result, the overall underlying structure of the instances can be well captured by the 

features extracted from the dataset. In this research, we are motivated to develop meta-

model recommendation expert system for simulation purpose.  Therefore, several unique 

challenges arise: 

 How to intelligently select sample data for meta-modeling? 

 In identifying the exemplar meta-model for a specific new problem, researchers have 

proposed instance-based (e.g., k-nearest-neighbors) vs. model-based (e.g., artificial 

neural network) meta-learning algorithms. To develop a meta-learning based meta-

modeling recommendation for simulation, which approach is appropriate?  

 Given the dataset, existing research tends to collect as many meta-features as possible 

which may lead to a large yet redundant set of meta-features. Which feature reduction 

technique is appropriate to reduce the dimensionality of the meta-features? 
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To answer these questions, our proposed recommendation system is designed 

with four modules: the problem space with an intelligent sampling module, a meta-

feature space module, an algorithm space module, and a performance space module. The 

problem space module is the repository of the problems being studied; intelligent 

sampling is launched to identify the representative dataset. The problem space is to be 

updated accordingly as new problems emerge. From the derived dataset, the meta-level 

features describing the characteristics of the problems/datasets are to be captured. 

Dimension reduction techniques, which include singular value decomposition (SVD) 

(Fallucchi, Zanzotto, & Rome, 2009; Simek et al., 2004), stepwise regression (Draper & 

Smith, 1981; Efroymson, 1960; Hocking, 1976) and the ReliefF method (Kira & Rendell, 

1992; Kononenko, Šimec, & Robnik-Šikonja, 1997) may be applied to process the high 

dimensional meta-features. The algorithm space module consists of the meta-models to 

be chosen from and the performance space provides the metric(s) on which the meta-

model is evaluated (multiple metrics may apply depending on the problem scope). To test 

the applicability of the proposed recommendation system: (1) 44 benchmark functions 

with distinct characteristics and properties, are collected from IEEE CEC 2013&2014 

(Liang & Qu, & Suganthan, 2013a, 2013b); (2) Latin hypercube sampling is applied for 

the generation of a representative dataset for each problem; (3) 15 meta-features 

(statistical and geometrical) are derived from the generated dataset, and three feature 

reduction methods (SVD, stepwise regression, ReliefF) are then applied to reduce the 

dimensionality of the features, respectively; (4) Six meta-models are of interest including 

Kriging, SVR, RBF, MARS, ANN and PR; (5) Two types of meta-learning algorithms 
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(instance-based and model-based) are applied and compared, for exploration on 

appropriate designs; (6) Normalized root mean square error (NRMSE) is used as the 

accuracy measurement of each meta-model studied in the algorithm space module; (7) 

The performance of the proposed meta-learning framework is first assessed using the 

Spearman’s ranking correlation coefficient (Brazdil, Soares, & Costa, 2003; de Souto et 

al., 2008), a nonparametric measure of statistical dependence between derived rankings 

and ideal rankings. A second assessment metric, hit ratio, is introduced which is defined 

as the percentage of matches between the recommended best performer to the true best 

performer. Experiments show that our proposed framework is able to achieve 94% 

correlation on rankings, and a 91% hit ratio on best performer recommendation (40 out of 

44 problems).  

In summary, the contributions of the proposed recommendation system are four-

fold: 1) To the best our knowledge, this may be the first attempt to apply meta-learning 

on meta-modeling for automating the surrogate modeling process on computationally 

expensive simulation tasks. 2) The proposed generalized meta-model recommendation 

framework can significantly reduce the computational cost in the traditional trial-and-

error or ensemble modeling process. 3) A comprehensive set of meta-features is proposed 

to characterize the properties of various black box problems. Different types of feature 

reduction techniques, including singular value decomposition, stepwise regression and 

ReliefF are studied to improve the recommendation system performance. 4) The 

proposed recommendation system is validated on a large number of benchmark cases, 

which is shown to be able to significantly improve the meta-modeling process, both on 
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the efficiency of model construction and the quality of the meta-model selection. The 

resulting intelligent expert system can benefit extensive research applications where 

automatic model selection is desired.  

This Chapter is organized as follows: Section 2.2 reviews background of meta-

modeling and meta-learning; In Section 2.3, the proposed methodology is elaborated; 

Section 2.4 describes the design of experiments and discusses results obtained; Finally, 

Section 2.5 draws the conclusions. 

 

2.2 Background 

This section gives a general review on meta-modeling and meta-learning. “Meta”, 

meaning an abstraction from a concept is used to complete or add to that concept. Meta-

modeling refers to the modeling of a model, while meta-learning refers to the learning of 

the learning process. As a matter of fact, both deal with meta-level learning, while in 

different domains.    

 

2.2.1 Meta-modeling 

The meta-modeling process involves model fitting or function approximation to 

the sampled data of design variables and responses from the detailed model (Ryberg, 

Bäckryd, and Nilsson 2012). To demonstrate the idea of our proposed framework, one 

parametric technique (PR), and five non-parametric techniques (Kriging, SVR, RBF, 

MARS and ANN) are chosen due to their extensive use in meta-modeling. Each is 

reviewed in the following section. For parametric techniques, a chosen functional 
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relationship between the design variables and the response is presumed. While non-

parametric techniques, also known as distribution free methods, rely less on a priori 

knowledge about the form of the true function but mainly on the sample data for function 

construction. 

 

2.2.1.1 Kriging  

Kriging (also known as Gaussian process regression) is an interpolation method that 

assumes the simulation output may be modeled by a Gaussian process. It gives the best 

linear unbiased prediction of simulation output not yet observed. It generates the 

prediction in the form of a combination of a global model with local random noise: 

 𝑦(𝑥) = 𝑓(𝑥)𝛽 + 𝑍(𝑥), (1) 

 

where x is the input vector, 𝛽 is the weight vector, and Z(x) is a stochastic process with 

zero mean and stationary covariance of 

 𝐶𝑂𝑉[𝑍(𝑥𝑖), 𝑍(𝑥𝑗)] = 𝜎2𝑅(𝑥𝑖, 𝑥𝑗),  (2) 

where 𝜎2 is the process variance, 𝑅(𝑥𝑖, 𝑥𝑗) is an n by n correlation matrix where n is the 

sample size of the training data. R is usually depicted by a Gaussian correlation function, 

𝑒𝑥𝑝(−𝜃(𝑥𝑖 − 𝑥𝑗)2) with parameter 𝜃. Kriging is one of the most intensively studied 

meta-models because it is flexible with a number of correlation functions and regression 

functions (with polynomial degree of 0, 1 or 2) to choose from. It is generally 

acknowledged that the Kriging model outperforms others on nonlinear problems. 

However, it is also noted that it is time consuming to implement Maximum Likelihood 
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Estimation of the correlation parameters in R, which is a multi-dimensional optimization 

problem (Jin, Chen, and Simpson 2001). 

 

2.2.1.2 Support Vector Regression  

Support Vector Regression (SVR) is analogous to support vector classification, 

which attempts to maximize the distance between two classes of data by selecting two 

hyperplanes to optimally separate the training data. The mathematical form of SVR is:  

 𝑓(𝑥) = 〈𝜔 ∙ 𝑥〉 + 𝑏,  (3) 

 

where 𝜔 is the norm vector to the hyperplane and 𝑏/‖𝜔‖ determines the offset of the 

hyperplane from the origin. The goal is to find a hyperplane that separates the data points 

optimally without error and separates the closest points with the hyperplane as far as 

possible. Thus, it can be constructed as an optimization problem:  

min  1/2|𝜔|2 

 s.t.  {
𝑦𝑖 − 〈𝜔 ∙ 𝑥𝑖〉 − 𝑏 ≤ 휀
〈𝜔 ∙ 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 휀

. (4) 

 

According to the duality principle, the nonlinear regression problem is given by: 

 

 𝑓(𝑥) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)

𝑚
𝑖=1 𝑘〈𝑥𝑖 ∙ 𝑥𝑗〉 + 𝑏, (5) 

 

where 𝛼𝑖
∗ and 𝛼𝑖 are two introduced dual variables, and 𝑘〈𝑥𝑖 ∙ 𝑥𝑗〉 is a kernel function, e.g. 

Gaussian kernel. It is noted that there exists research demonstrating the outperformances 

of SVR (G. G. Wang and Shan 2007), yet, most so far have been empirical studies. 
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2.2.1.3 Radial Basis Function  

Radial Basis Function (RBF) is used to develop interpolation on scattered 

multivariate data. A RBF is a linear combination of a real-valued radially symmetric 

function, ∅(𝑥), based on distance from the origin, 

 𝑓(𝑥) = ∑ 𝜃𝑖
𝑛
𝑖=1 ∅(‖𝑥 − 𝑥𝑖‖), (6) 

where 𝜃𝑖 is the unknown interpolation coefficient determined by the least-squares 

method, n is the number of sampling points and ‖𝑥 − 𝑥𝑖‖ is the Euclidean norm of the 

radial distance from design point 𝑥 to the sampling point 𝑥𝑖. Fang, Rais-Rohani, Liu, and 

Horstemeyer (2005) found RBF performs well on highly nonlinear problems.   

 

 

2.2.1.4 Multivariate Adaptive Regression Splines  

Multivariate Adaptive Regression Splines (MARS) is a form of regression 

analysis introduced by Friedman (1991). A set of basis functions, defined as constant, 

hinge function, or the product of two or more hinge functions, are combined in the 

weighted sum form, as the approximation of the response function. A MARS model is 

built with generalized cross validation regularization in a forward/backward iterative 

process. The general model of MARS can be written as: 

 𝑓(𝑥) = 𝛾0 + ∑ 𝛾𝑖ℎ𝑖(𝑥)𝑚
𝑖=1 ,  (7) 

where 𝛾𝑖 is the constant coefficient of the combination whose value is jointly adjusted to 

give the best fit to the data, and the basis function ℎ𝑖, can be represented as: 

  ℎ𝑖(𝑥) = ∏ [𝑠𝑘,𝑚·(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘,𝑚)]+
𝑞𝐾𝑚

𝑘=1 ,  (8) 
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where 𝐾𝑚 is the number of splits given to the mth  basis function, 𝑠𝑘,𝑚=±1 indicates the 

right/left sense of the associated step function, 𝑣(𝑘, 𝑚) is the label of the variable, and 

𝑡𝑘,𝑚 represents values (knot locations) of the corresponding variables. The superscript q 

and subscript + indicate the truncated power functions with polynomials of lower order 

than q. According to (Jin, Chen, and Simpson 2001), MARS procedure appears to be 

accurate due to its distribution free assumption compared to other algorithms. 

 

2.2.1.5 Artificial Neural Network  

Artificial Neural Network (ANN) (Rosenblatt 1958) is a computational model 

inspired by an animal's central nervous system. It is apt at solving problems with 

complicated structures. Due to its promising results in numerous fields, ANN has been 

extensively applied in stochastic simulation meta-modeling (Fonseca, Navaresse, & 

Moynihan, 2003; Nasereddin & Mollaghasemi, 1999). An ANN model typically consists 

of three separate layers: the input layer, the hidden layer(s), and the output layer. The 

neurons across different layers are interconnected to transmit and deduce information. A 

typical ANN with three layers and one single output neuron has the following 

mathematical form: 

 𝑓(𝑥) = ∑ 𝜔𝑗𝛿(∑ 𝑤𝑖𝑗𝛿(𝑥𝑖)
𝐼
𝑖=1 + 𝛼𝑗)𝐽

𝑗=1 + 𝛽 + 휀 (9) 

 

where 𝑥 is a k-dimensional vector, the input unit represents the raw information that is 

fed into the network, 𝛿(∙) is the user defined transfer function, 𝑤𝑖𝑗 is the weight factor on 

the connection between the ith input neuron and the jth hidden neuron, 𝛼𝑗 is the bias in the 
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jth hidden neuron, 𝜔𝑗 is the weight on connection between the jth hidden neuron and the 

output neuron, 𝛽 is the bias of the output neuron, ε is a random error with a mean of 0, 

and I and J are the number of input neurons and hidden neurons. In supervised learning, 

the output unit is trained to simulate the underlying structure of the input signals and 

response. The trained structure is depicted by several parameters, the weights on each 

connection, the biases, the number of hidden layers, the transfer functions, and the 

number of hidden nodes in each hidden layer. It is worth mentioning that the performance 

of ANN is highly dependent on parameter tuning, and extensive research have been done 

on this regard (Bashiri & Farshbaf Geranmayeh, 2011; Packianather, Drake, & 

Rowlands, 2000). 

 

2.2.1.6 Polynomial Regression  

Polynomial Regression (PR) is a variation of linear regression in which a nth order 

polynomial is modeled to formulate the relationship between the independent variable x 

and the dependent variable y. PR models have been applied to various engineering 

domains such as mechanical, medical and industrial (Barker et al., 2001; Greenland, 

1995; Shaw et al., 2006). A second-order polynomial model can be expressed as: 

 𝑓(𝑥) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑗𝑖 + 𝜖  (10) 

where 𝛽 is the constant coefficient, 𝑘 is the number of variables, and 𝜖 is an unobserved 

random error with zero mean. PR models are usually fit using the least squares method. 

One advantage of PR models is the straightforward hierarchical structure, where the 
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significances of different design variables are directly reflected by the magnitude of the 

coefficients in the model. This is especially useful when the design dimension is large, 

where only significant factors are kept in the model and thus reduce the possibility of 

over-fitting. However, when fitting on highly nonlinear behaviors, PR may suffer from 

numerical instabilities (Barton 1992).  

 

2.2.1.7 Summary 

Wolpert (1996) showed that bias-free learning is futile. In fact, researchers have 

claimed that a learning process without any prior knowledge about the system’s nature 

may lead to random solutions. As a result, existing research concluded the performance 

of meta-models is problem dependent, which confirms the classical No Free Lunch 

Theorem (NFL) (D.H. Wolpert and Macready 1997), that is, no algorithm can outperform 

any other algorithm when performance is amortized over all functions. Therefore, 

traditional approaches take a trial-and-error manner where a number of different meta-

models are separately built and the best one is finally chosen. A comparison study on 

polynomial, Kriging, RBF, and MARS meta-models was conducted by Clarke, Griebsch, 

& Simpson (2005), which concluded that SVR generally outperforms others on accuracy 

and robustness. In a separate study (Cui, Wu, Hu, Weir, & Chu 2014), in which Kriging, 

SVR and RBF were compared in terms of accuracy and robustness, it was found that 

Kriging overall performs the best. The discrepancy on the conclusions between the two 

studies shows that the meta-modeling performance not only depends on the test 

problems, but also is compounded by the design of experiments and the model parameter 
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settings. A Gaussian process meta-model was used as the surrogate model for the time-

consuming finite-element model on a simple flat steel plate and a full-scale arch bridge in 

(Wan and Ren 2015).  The authors favored a Gaussian process meta-model because of its 

probabilistic, nonparametric features and high capability of modeling a complex physical 

system. However, Gaussian process is not the only one that bears these merits, e.g., ANN 

is also nonparametric and is of powerful capability on complex system modeling.  The 

selection of a single meta-model is very risky in the sense that researchers may end up 

with a sub-optimal model solution given no justification on other models’ 

inappropriateness. Therefore, traditional research has also explored the application of 

ensemble (Acar 2015), the combination of several models, which takes advantage of each 

meta-model’s strength and mitigate the weakness, thus result in stronger than any 

standalone meta-model. A multi-objective design optimization using dynamic ensemble 

metamodeling method was conducted to seek the optimal designs of a proposed 

functionally graded foam-filled tapered tube in (Yin et al. 2014). The authors claimed 

that the ensemble metamodeling method performs better than a single static meta-model. 

However, as the ensemble is built by four different meta-models, including Kriging, 

SVR, RBF, and PR, the computational cost is much higher than building a single model, 

which was not addressed in this work. In effect, for large-scale problems, e.g., meta-

model based design optimization, in which thousands of fitness evaluations are called in 

support of the optimization process, building several meta-models or ensemble for each 

evaluation might be impractical. To summarize, two approaches are mainly involved with 

traditional meta-modeling research: (1) subjectively select a single meta-model for the 
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given surrogate modeling tasks, regardless of applicability and adaptability; (2) Ensemble 

on several meta-models, but at the expense of higher computational cost. Therefore, there 

is a need of a meta-learning approach to effectively associating the algorithm 

performance with the problem.  

 

2.2.2 Meta-Learning  

Meta-learning is a machine learning approach to explore the learning process and 

understand the mechanism of the process, which could be re-used for future learning. 

Compared to base-learning, which learns a specific task (e.g., credit rating, fraud 

detection, etc.) on the corresponding data, meta-learning is a learning process that 

continuously gains knowledge as tasks being accomplished by the base-learners 

accumulate. The main goal is to build a flexible automatic learning machine that can 

solve different kinds of learning problems by using meta-data such as, the learning 

algorithm properties, the characteristics of the learning problems, or patterns previously 

derived from the relationship between learning problems and the effectiveness of 

different learning algorithms, and hence to improve the performance of the learning 

algorithms. For a comprehensive review of meta-learning research and its applications, 

we refer the reader to (Giraud-Carrier 2008; P Brazdil et al. 2008; Vilalta and Drissi 

2002). Here we provide a general overview of a meta-learning framework followed by a 

review of its application to regression algorithm selection/recommendation which is of 

interest in this research. 
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2.2.2.1 Meta-Learning – Rice’s Model 

The early contribution related to computer programming on meta-learning dates 

back to 1986, when STABB (“Shift to A Better Bias”) is proposed by Utgoff (1986), as 

the first system capable of dynamically adjusting a learner’s bias. Following Utgoff’s 

work, Rendell, Seshu, and Tcheng (1987) propose a variable bias management system 

(VBMS), which selects an algorithm (out of three), based on two meta-features: the 

number of training instances and the number of features. The StatLog project (Brazdil, 

Gama, & Henery, 1994) further extends VBMS by introducing a larger number of dataset 

characteristics, together with a broad class of candidate classification models and 

algorithms for selection.   

The first formal abstract model for algorithm recommendation corresponds to 

Rice’s model (Rice 1975). As shown in Figure 3, Rice’s model has four component 

spaces: (1) problem space P represents the datasets of learning instances; (2) feature 

space F includes the features or characteristics extracted from the datasets in P, as an 

abstract representation of the instances; (3) algorithm space A contains all the candidate 

algorithms considered in the context; (4) performance space Y is the performance 

measurement of an algorithm instance in A on a problem instance in P. This framework is 

well accepted for component-based learning since it is easily extensible with respect to 

any component, and is capable of strengthening learning capability over time (Marin 

Matijaš, Suykens, and Krajcar 2013). Specifically, given a problem 𝑥 ∈ 𝑃, the 

features 𝑓(𝑥) ∈ 𝐹 are mapped to the algorithm 𝑎 ∈ 𝐴 by selection algorithm 𝑆(𝑓(𝑥)), so 

as to maximize the performance 𝑦(𝑎(𝑥)) ∈ 𝑌. A general procedure for meta-learning 
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induction begins with a process of gaining experience: base-line learning. The instances 

𝑥 ∈ 𝑃 are learned by all the candidate algorithms 𝑎 ∈ 𝐴, evaluated by the performance 

measures in 𝑦 ∈Y. The features 𝑓(𝑥) ∈ 𝐹 are called meta-features, which 

comprehensively depict the characteristics of the instances 𝑥 ∈ 𝑃. It later involves in the 

meta-level computation for algorithm recommendation 𝑆(𝑓(𝑥)). Similarly, the learned 

instance datasets are called meta-examples. As sufficient meta-examples are accumulated 

in P, the induction process proceeds to the stage of learning from experience: meta-level 

learning. A learning process is imposed to meta-features 𝑓(𝑥) of the meta-examples 𝑥 ∈

𝑃, the new instance 𝑥𝑛𝑒𝑤 ∈ 𝑃, and the performance of the meta-examples 𝑦(𝑎(𝑥)). 

Finally, in the stage of applying learning knowledge: the meta-level algorithm 

recommendation, the new instance is provided with a recommendation on algorithm 

selection, guided by the learned knowledge by mapping the meta-features of the new to 

the old ones. In this way, when a new instance is encountered, the user does not need to 

try each one of the candidate algorithms, instead, the recommended algorithm may 

provide satisfactory solutions. It is noteworthy that the meta-learning system is 

dynamically updated, once an instance is meta-learned, it could be immediately absorbed 

as new gained experience that backs up future learning.  As this is the case, in the long 

run, one can expect expertise of the meta-learner, which adaptively changes its bias 

according to the characteristics of each task, as the system grows more experienced with 

accumulated knowledge.   
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Figure 3 A Schematic Diagram of Rice’s Model with Algorithm Selection Based on 

Features of the Problem. 

 

Based on the Rice’s model, the machine learning community has studied the 

application of meta-learning for classification problems where the classification 

algorithm which best labels each data instance to the classes is recommended. As we 

stated in Section 2.1, the meta-model for simulation is used to predict continuous outputs, 

thus regression algorithms shall be studied. A brief review on recommendation for 

regression problems is given in the next section.  

 

2.2.2.2 Meta-Learning for Regression Problems 

  The METAL project funded in 1998 by ESPRIT (a meta-learning assistant for 

providing user support in machine learning and data mining) is among the first few 

attempts to explore the application of meta-learning for regression problems. The project 

delivered the Data Mining Advisor (DMA), a web-based meta-learning system for the 

automatic selection of learning algorithms. In addition, Köpf, Taylor, and Keller (2000) 

tested the suitability of meta-learning applied to regression problems using primarily the 

StatLog features. The number of test regression problems is over 5,000, with various 
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sample sizes in the range of (110, 2,000), and 3 candidate regression models were 

considered. In 2002, Kuba, Brazdil, Soares, and Woznica investigated new features for 

regression problems, e.g., presence of outliers in the target, coefficient of variation, etc., 

providing a supplement to StatLog measures as tested by Köpf et al. (2000). Smith-Miles 

(2008) pointed out the potential of extending the algorithm selection problem to cross-

disciplinary developments, and a unified framework was proposed to generalize the meta-

learning concepts for tasks such as regression, sorting, forecasting, constraint satisfaction, 

and optimization. Smith, Mitchell, Giraud-Carrier, & Martinez (2014) applied a 

collaborative filtering technique, meta-CF (MCF), for the meta-learning and 

hyperparameter selection. MCF does not rely on meta-features but only considers the 

similarity of the performance of the learning algorithms associated with their 

hyperparameter settings. MCF was validated on 125 data sets and 9 diverse learning 

algorithms, and shown to be a viable technique for recommending learning algorithms 

and hyperparameters. M. Smith & White (2014) proposed the machine learning results 

repository (MLRR), an easily accessible and extensible database for metalearning. 

MLRR was designed as a data repository to facilitate meta-learning and provide 

benchmark meta-data sets of previous experiment results, which is a downloadable 

resource for other researchers.   

As we discussed in Section 2.2.1, traditional meta-modeling approaches fail to 

provide an effective and efficient way for model selection, resulting in sub-optimal 

modeling solution and waste of computations. While more investigations have focused on 

meta-learning on cross-disciplinary studies, the applicability of meta-learning on meta-
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model selection has yet to be fully defined and studied. In this study, we propose a 

generalized framework of meta-learning for recommending meta-models specifically 

designed for data-driven simulation modeling to investigate the suitability of the 

approach and improvement it could achieve.     

 

2.3 Proposed Framework 

2.3.1 Recommendation System for Meta-Modeling- A Generalized Framework 

The proposed framework is built upon Rice’s work (Figure 3) with two main 

advancements: First, feature reduction component is added to the framework. Second, we 

expand the meta-learning algorithm into a ranking based method including model-based 

learners and instance-based learners, to strengthen the recommending capability of the 

system. The pseudo code of the proposed framework is presented in Figure 4.  

 

 

Figure 4 A Pseudo Code of Meta-learning Based Recommendation System for Meta-

modeling. 

 

 

Step 0: Given new instance 𝑥𝑛𝑒𝑤 ∈ 𝑃, meta-examples 𝑥 ∈ 𝑃, feature 
    reduction d, meta-learner algorithm R, accuracy 

    performance measurement 𝑦 ∈ 𝑌 
Step 1: Conduct feature extraction 𝑓(𝑥𝑛𝑒𝑤) 

Step 2: Conduct feature reduction 𝑑(𝑓(𝑥𝑛𝑒𝑤)) 

Step 3: Meta-learning: find rankings {𝑎1, 𝑎2, … , 𝑎𝑘}, where 𝑎 ∈ A, 
    k=number of algorithm candidates, such that  

        𝑦(𝑎𝑘−1(𝑥𝑛𝑒𝑤)) ≥ 𝑦(𝑎𝑘(𝑥𝑛𝑒𝑤)) 
    Case meta-learner R OF 

     Model-based algorithm: 

      𝑎 = 𝑅(𝑑(𝑓(𝑥)), 𝑑(𝑓(𝑥𝑛𝑒𝑤)), 𝑦(𝑥)) 
     Instance-based algorithm: 

      𝑎 = 𝑅(𝑑(𝑓(𝑥)), 𝑑(𝑓(𝑥𝑛𝑒𝑤))) 
    End Case 

Step 4: Return the final rankings of recommendation:{𝑎1, 𝑎2, … , 𝑎𝑘} 
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2.3.2 Meta-Features 

Before meta-learning is applied, one task to fulfill is to identify available 

“features of instances that can be calculated and that correlate with 

hardness/complexity” (Smith-Miles 2008). The idea behind this is to use learning 

algorithms to extract a unified body of knowledge from the dataset, which adequately 

represents the entire dataset for meta-level induction learning. Because the meta-learning 

algorithm (meta-learner) is sensitive to the underlying structure of the data, the 

determination and selection of appropriate features is a crucial step. 

In this research, the statistical and geometrical meta-features are derived. A total 

of 15 meta-features are proposed, of which the definitions and calculations are given 

below. Some of the features are extensively used in meta-learning on classification 

(Romero, Olmo, & Ventura, 2013; Sun & Pfahringer, 2013). For example, the basic 

statistical characterizations of the dataset, such as mean, median, standard deviation, 

skewness and kurtosis. Moreover, geometrical measurements for data characterization, 

such as the gradient-based features on response values (1-4), outlier ratio (12), ratio of 

local extrema (13 & 14) and biggest difference (15) are derived. For a thorough review 

on meta-features specifically for regression problem characterization, we refer the reader 

to (Köpf et al., 2000; Pavel Brazdil et al., 1994).  

Given N sample data points, for the ith sample point, let 𝐺𝑖 be the gradient and 𝑓𝑖 

be the response of the point, point j is the nearest neighbor of point i in Euclidian space. 

𝐺𝑖 is calculated as: 
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 𝐺𝑖 = 𝑓𝑖 − 𝑓𝑗, i≠ 𝑗.  (11) 

1) Mean of Gradient of Response Surface Point: Mean of absolute values of gradient, �̅�, 

which evaluates how steep and rugged the surface is, by looking into its rate of 

change on the sample data, 

�̅� = 1 𝑁⁄ ∑ |𝐺𝑖|
𝑁
𝑖=1 . (12)   

2) Median of Gradient of Response Surface Point: Median of absolute values of 

gradient. 

3) SD of Gradient of Response Surface Point: Standard deviation of gradient, SD (G), 

which evaluates the variation of the rate of change on the sample data, 

 SD (G) =√1 (𝑁 − 1)⁄ ∑ (𝐺𝑖 − �̅�)2𝑁
𝑖=1  . (13) 

4) Max of Gradient of Response Surface Point: Maximum of absolute values of 

gradients on all response surface points, 𝐺𝑚𝑎𝑥, which gives an upper bound of rate of 

change on the sample data, a measure of the degree of sudden change on the surface. 

 SD (G) =√1 (𝑁 − 1)⁄ ∑ (𝐺𝑖 − �̅�)2𝑁
𝑖=1  . (14) 

5) Mean of Function values: Mean of response values, 𝑓,̅ which evaluates the general 

magnitude of the surface 

 𝑓̅ = 1 𝑁⁄ ∑ 𝑓𝑖
𝑁
𝑖=1 . (15) 
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6) SD of Function values: Standard deviation of response values, 𝑆𝐷 (𝑓), which 

evaluates how bumpy the surface is by looking into each value’s deviation from the 

mean. 

 𝑆𝐷 (𝑓)  = √1 (𝑁 − 1)⁄ ∑ (𝑓𝑖 − 𝑓)̅2𝑁
𝑖=1  . (16) 

7) Skewness of Function values: Skewness of response values, 𝛾1(𝑓), which evaluates 

the lack of symmetry on the surface 

 𝛾1(𝑓) = 𝐸{[(𝑓𝑖 − 𝑓)̅ 𝑆𝑡𝑑. (𝑓𝑖)⁄ ]3}, 𝑖 = 1, … , 𝑁. (17) 

8) Kurtosis of Function values: Kurtosis of response values, 𝛾2(𝑓), which evaluates the 

flatness relative to a normal distribution 

 𝛾2(𝑓) = 𝐸[(𝑓𝑖 − 𝑓)̅4]/(𝐸[(𝑓𝑖 − 𝑓)̅2])2, 𝑖 = 1, … , 𝑁. (18) 

9) Q1 of Function values: 25% quartile of response values, which is the lower quartile of 

function values. 

10)  Q2 of Function values: 50% quartile of response values, which is the median of 

function values. 

11)  Q3 of Function values: 75% quartile of response values, which is the upper quartile 

of function values. 

 

12)  Outlier Ratio: Ratio of outliers of response values, which measures percentage of 

extreme values among all.  An iterative implementation of the Grubbs Test (Grubbs 

1950), which is a statistical test used to detect outliers is applied in this study.  
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13)  Ratio of local minima: Ratio of local minima within a given neighborhood, which 

measures the percentage of local fluctuations. Note local extrema can differentiate 

problems with a bumpy response surface and with a flat response surface. The 

neighborhood is defined within 5 nearest neighbors in this study.  

14)  Ratio of local maxima. 

15) Biggest difference: Averaged local biggest difference of function values, �̅�𝑝, which 

evaluates the average bumpiness by looking into the difference between “valley” and 

“peak” on each local area 

 �̅�𝑝 = 1 𝑠⁄ ∑ 𝐷𝑝
𝑠
𝑝=1 , 𝑝 = 1, … , 𝑠,  (19) 

where s is the number of local areas, and 𝐷𝑝 is the difference between “valley” and 

“peak” on area p. This measurement gives an estimate on the magnitude of the 

bumpiness for each response surface. 100 local areas are defined in this study, by 

dividing the whole design surface into smaller sub areas.  

 

2.3.3 Meta-Learners 

  Meta-learning algorithms are generally categorized into two groups: instance-

based learning and model-based learning (M Matijaš 2013). The former learning method 

assumes the meta-modeling techniques exhibit similar performance on similar problems, 

where the similarity is measured by some distance metric, e.g., Euclidean distance. While 

for the latter, one assumes that an underlying model governs the way that algorithms 

perform on different problems.  
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2.3.3.1 Instance-based Meta-Learner  

The k-Nearest Neighbor ranking approach is commonly selected as an instance-

based learner, due to its efficient and effective performance in numerous applications. 

One naive approach is to solely learn from the nearest neighbor of the target problem, by 

calculating the Euclidean distance between the target problem i and the meta-examples: 

 𝑑𝑖𝑠𝑡(𝑖, 𝑗) = √(𝑥𝑖 − 𝑥𝑗)2, j=1,…,m,  (20) 

where 𝑥𝑖 is the meta-feature vector of i, and m is the number of meta-examples. The 

nearest neighbor is found by comparing all the distance measures and target the 

minimum. We call it the 1-NN method. The k-NN method involves the nearest neighbors 

search step and a ranking generation step. We first select the k nearest neighbors by 

calculating the similarity between the test problem and the meta-examples, based on the 

meta-features. Next, the performance is calculated to make the recommendation. The 

cosine similarity is calculated as follows:    

 𝑠𝑖𝑚(𝑖, 𝑗) = 𝑐𝑜𝑠(𝑥𝑖, 𝑥𝑗) =
𝑥𝑖∙𝑥𝑗

√‖𝑥𝑖‖2×√‖𝑥𝑗‖
2
, j=1,…,m. (21) 

The ranking of the algorithm a on the target problem i is predicted as 

 

 𝑟𝑖,𝑎 =
∑ 𝑠𝑖𝑚(𝑖,𝑗)𝑟𝑗,𝑎𝑗∈𝑁(𝑖)

∑ 𝑠𝑖𝑚(𝑖,𝑗)𝑗∈𝑁(𝑖)
, (22) 

where 𝑁(𝑖) represents the set of k-NN of problem i.  
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2.3.3.2 Model-based Meta-Learner 

The rank position values of each algorithm are the target (response) in the meta-

learning models. A regression-based learner assumes an underlying model between the 

meta-features and the algorithm rankings, which could be trained by the meta-example 

datasets. In addition, due to the correlations among the various meta-features, a nonlinear 

model might be more appropriate. In this study, we choose ANN as it is superior on non-

linear function modeling (Fonseca, Navaresse, & Moynihan, 2003) and more robust to 

noisy and redundant features (Goodarzi et al. 2009).   

2.3.4 Performance Space 

The accuracy metrics reflect the degree of closeness of the meta-model 

measurement outputs �̂� to true output y. One global measurement for meta-modeling 

accuracy used in the performance space Y (see Figure 3) is Normalized Root Mean 

Square Error (NRMSE), 

 𝑁𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−�̂�𝑖)2𝑁
𝑖=1

𝑁
/(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛).  (23) 

Since the focus of this research is to make a recommendation on the meta-modeling 

algorithms from the algorithm space, we choose to make the recommendation based on 

the ranks derived from the NRMSE measures. Ranking is a relative measure which is 

scale-free and case-wise independent. Since different problems are of different levels of 

difficulty to be modeled, this may result in varied magnitudes of NRMSE measurements. 

The use of a relative measure, in this study, rank, shall better facilitate the 
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recommendation process.  Given the predicted rankings, two evaluation metrics are 

introduced:  

 The Spearman’s rank correlation coefficient (Neave and Worthington 1989) which is 

employed to measure the agreement between recommended rankings and ideal 

rankings. For two samples of size N, the coefficient of the recommended ranks 𝑥𝑖 and 

the ideal ranks 𝑦𝑖 is computed as 

 𝜌 = 1 − 6·
∑ 𝑑𝑖

2𝑁
𝑖=1

𝑁(𝑁2−1)
,  (24) 

 where 𝑑𝑖 = 𝑥𝑖 − 𝑦𝑖, is the difference of ranks of two samples. The value of 1 

represents perfect agreement while −1, perfect disagreement. A correlation of 0 

means that the rankings are not related, which would be the expected score of the 

random ranking method. 

 Hit ratio: the percentage of exact matches between ideal best performer and 

recommended best performer among all problems. This is to evaluate the “precision” 

of the meta-learning algorithms. As a matter of fact, in the case of the meta-model 

recommendation, users are more concerned if the recommended best performer (top 

1) matches the ideal one, so only one meta-model is built and computational 

efficiency is ensured. Therefore, besides the Spearman’s rank correlation coefficient, 

the hit ratio is also proposed to comprehensively compare the performance of 

different meta-learners. 
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2.4 Experiments and Results Analysis 

To test the performance of our proposed framework, 44 benchmark functions are 

collected from IEEE CEC 2013&2014. There are 8 uni-modal functions which have only 

one global optimum (valley/peak), 28 multi-modal functions which have many local 

optima (valleys/peaks), and 8 composition functions which are composed of uni-modal 

and multi-modal functions. For illustration purpose, three 3-dimensional plots for 2-

dimensional example test functions are given in Figure 5-Figure 7 (x, y-axis are the 

independent (input) variables, and z-axis is the dependent (output) variable).  

 

Figure 5 Uni-modal Function: Sphere Function. 
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Figure 6 Multi-modal Function: Rotated Weierstrass Function. 

 

 

Figure 7 Composition Function: Composed of Three Multimodal Functions. 

 

Note in this study, 10 dimensional functions are studied. These functions are 

treated as simulation models without prior knowledge for analysis. To simulate stochastic 

behavior of real world systems, we purposely add uncertainties to the inputs and the 

outputs of the functions. Specifically, parametric uncertainty (variability on each input 
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variable) and residual uncertainty (variability on the outputs) are considered. Random 

numbers generated within 10% of each input variable range depicts parametric 

uncertainty. For the residual uncertainty, a random number is added to the training data 

output, which is generated from a Normal distribution~𝑁(0, 𝜎2), where 𝜎2 equals to 10% 

times the logarithm of the difference between the maximum and minimum of the training 

output for each black-box function. Since it is expected that with the existence of 

uncertainties, the same input does not generate the same output, 25 simulation replicates 

are conducted. An average value of the 25 output replicates (�̅�) is taken as the output for 

training data while the input for training data takes its nominal value (𝑥), which is the 

value without noise contamination. And the same operation is applied to the test data.  

Three successive experiments are conducted. In the first experiment on meta-

modeling, different sizes of training data generated from the benchmark functions are 

tested on the six meta-models. Meta-models’ performances are sensitive to the number of 

training data, which will impact the accuracy of model recommendation on meta-

learning. Thus we need to decide the appropriate sample size for promising and stabilized 

meta-modeling accuracy performance. Once the sample size is settled, we implement 

experiments involving two types of meta-learner models, artificial neural network and k-

NN in the second experiments to explore the performance of the meta-learners. In the 

third experiment, feature (meta-feature) reduction techniques are studied.  
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2.4.1 Experiment I – Identification of Meta-Modeling Training Size 

The objective of this experiment is to identify the appropriate size of the training data to 

be collected from the simulation. In this experiment, Latin hypercube sampling (LHS) is 

chosen as the sampling technique on each function of which the design space is set within 

the range of [-100,100]. LHS is a statistical sampling method used in construction 

of computer experiments for its good uniformity and coverage from a multidimensional 

distribution. It is widely used because the sample size is not strictly determined by the 

number of dimensions of the simulation design space (Zhang et al. 2012). Moreover, 

given the sample size is small, it is shown that LHS makes simulations converge faster 

than traditional random sampling strategies, e.g., Monte Carlo sampling (Matala 2008). 

The six meta-modeling techniques are separately trained on 10-dimensional 

training datasets of five different training sizes, 80, 100, 150, 300 and 400. In order to 

avoid over fitting, we implement 5-fold cross-validation on the training process (Kohavi 

1995). 1,000 data points is randomly generated over the design space, which is treated as 

the testing data set. The grid search method (Chang and Lin 2011) is implemented on the 

six meta-models to select the optimal parameters that give the minimum validation error. 

The test data is applied to the optimally trained model to obtain its generalization error. A 

multiple comparison test is conducted on the mean estimation of NRMSE of the six meta-

models, across the five experiments. As is shown in Figure 8, we observe that the slope 

of performance improvement is steep from training size 80 to 200, while it changes 

slowly after 200. Thus the “elbow” point of training size is identified at 300. In the 

following experiment, all the meta-models are trained with a sample size equal to 300.  
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Figure 8 Multiple Comparison Test on Mean NRMSE of Six Meta-models of Different 

Sample Sizes. 

 

2.4.2 Experiment II - Meta-Learning for Meta-Modeling  

The objective of this experiment is to compare the instance-based meta-learner vs. 

the model-based meta-learner. In this set of experiments, we adopt a leave-one-out 

strategy, that is, of the 44 problems, 43 are used as a training set, and the remaining one is 

used to test the resulting meta-learner, which is repeated 44 times (Prudencio and 

Ludermir 2004). The average recommendation performance measured by Spearman’s 

rank correlation coefficients and hit ratio are reported. For each meta-learner, the 

Spearman’s correlation coefficient is first calculated on each test problem by comparing 

the learned ranking and ideal ranking of the six meta-models. When all the coefficients 

are gathered, they are averaged over 44 problems. The hit ratio is calculated as the ratio 
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of the total number of matches on the recommended best performers among the 44 

problems. 

In this experiment, k-NN is chosen as the instance-based meta-learner, equations 

(21) and (22) are applied to identify the exemplar problem for the new studied problem 

which is then used to identify the appropriate algorithm. ANN is chosen as the model-

based meta-learner which takes the following parameter settings: the hidden layer size is 

tuned within the range of [10, 20], and the transfer functions are selected between radial 

basis and log sigmoid. We apply 10-fold cross validation with 70% split to training and 

30% to validation for prevention of over-fitting. Six ANN models are built on six sets of 

the rankings of each meta-model across all 44 training problems. Based on the 

preliminary experiment, we found the k-NN method with k set to 3 is suitable. Table 2 

summarizes the overall results of the meta-learners’ recommendation performance on the 

44 test problems. In Table 3, the top recommended meta-model given by the meta-

learners for each test problem is summarized (the highlighted model is marked as 

inconsistent with the true best model).  

Table 2 Performance Statistics of Meta-learners 

Meta-learner Spearman’s Correlation Coefficient Hit Ratio 

ANN 0.8831 86.36% (38/44) 

1-NN 0.5486 81.82% (36/44) 

3-NN 0.5603 84.09% (37/44) 

 

As can be seen in Table 2, ANN (model-based meta-learner) outperforms k-NN 

(1-NN and 3-NN, the instance-based meta-learner) on both Spearman’s correlation 

coefficient and Hit ratio. Though all three meta-learners are able to recommend the 
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appropriate algorithm for each problem (38, 36, 37 out of 44 test functions), ANN is 

better at identifying the rankings overall (measured by the Spearman’s correlation 

coefficient). We believe that this may be due to the fact that the instance-based meta-

learner solely relies on the features that characterize the problems. If the features do not 

adequately represent the picture of the data, it is difficult to find the true similarity 

between the problems, thus making the learners ineffective on recommending good 

models. While the model-based meta-learner is a supervised learning approach as it 

derives the model to relate the meta-features to the meta-model performance. As a result, 

it may be more tolerant to the noises from the meta-features. In addition, we observe that 

the performance of 1-NN is lower than 3-NN which indicates that as the number of 

neighbors increase, the accuracy of k-NN learning improves. Therefore, we conclude that 

model-based meta-learner generally outperforms instance-based meta-learner. 

 

Table 3 Top Recommended Meta-model Given by Different Meta-learners (K-Kriging, 

S-SVR, R-RBF, M-MARS, A-ANN, P-PR) 

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

True Best P P R K K K R S K P K K A K K S P P M S S K 

ANN P P R K K K R S K P K A A K K S P P K S S K 

1-NN P R K K K K R S K P K K A K K S P P K R S K 

3-NN P P K K K K K S K P K K A K K S P P K R S K 

Problem # 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

True Best K K R K R R P P P A S K P P P K K K P P K S 

ANN K K K M K M P P P A S K P P P K K K P P K S 

1-NN K K K M K K P P P A S K P P P K K K P P K S 

3-NN K K K K K K P P P A S K P P P K K K P P K S 

 

  Table 4 summarizes the (approximate) computational cost of the two approaches 

on each test problem on an Intel i5 CPU 16G computer. Here ANN, the meta-learner 
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example, takes slightly longer time to develop the model compared to the instance-based 

meta-learner. As seen, the computational efficiency of meta-modeling could be 

significantly improved from an order of an hour to a minute, by summing up the 

computational time of 44 functions.  

 

Table 4  (Approximate) Computational Cost Comparison between the Traditional Trial-

and-Error Approach and Meta-learning Approach on each test problem 

 Traditional Trial-and-Error 

Approach 

Meta-learning Approach 

Learning 

Tasks 

Meta-modeling with Kriging, 

SVR, RBF, MARS,ANN and 

PR 

Feature Extraction 

Meta-learning (ANN) and one meta-

modeling with recommended 

algorithm 

Learning Cost 5~10 min. 0.05 sec. + 3~5 sec. + 1~1.5 min. 

 

2.4.3 Experiment III- Feature Reduction Techniques Comparison  

The objective of this experiment is to explore the potential improvements that 

could be made by employing a feature reduction technique on the meta-learning process. 

The features defined in Section 2.3.2 are tentatively selected in the hope that they could 

effectively represent the dataset. However, it is not guaranteed that all of them are useful. 

As it is well accepted that redundant and irrelevant features deteriorate the model 

performance, we propose to use advanced feature reduction techniques to address the 

noise the curse of dimensionality issues. Three commonly used feature reduction 
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techniques are studied including singular value decomposition (SVD), stepwise 

regression and ReliefF. 

 SVD is of interest in this research due to its known performance in tolerating data 

noise (Simek, 2003; Simek et al., 2004; Phillips, Watson, Wynne, & Blinn, 2009; 

Chakroborty & Saha, 2010). It is a factorization of a real matrix 𝑋 ∈ 𝑅𝑚×𝑛, 𝑚 ≥ 𝑛, 

 𝑋 = 𝑈𝑆𝑉𝑡,  (25) 

where 𝑈 ∈ 𝑅𝑚×𝑚 and 𝑉 ∈ 𝑅𝑛×𝑛 are orthogonal matrices and 𝑆 ∈ 𝑅𝑚×𝑛 is a diagonal 

matrix. A rank-k (𝑘 ≪ 𝑚𝑖𝑛 (𝑚, 𝑛)) matrix 𝐶 is defined as the best low-rank 

approximation of matrix 𝑋 if it minimizes the Frobenius norm of the matrix (𝑋 − 𝐶), 

which is known as the Eckart–Young theorem (Eckart and Young 1936). This 

approximation matrix can be computed by SVD factorization and keeping the first k 

columns of 𝑈, truncating 𝑆 to the first k diagonal components, and keeping the first k 

rows of 𝑉𝑡. This results in noise reduction by assuming the matrix 𝑋 is low rank, 

which is not generated at random but has an underlying structure. In this research, the 

optimal rank of the reduced matrix is solved by the random projection method. The 

optimal rank is identified as 3 resulting in a feature space dimension reduction from 

44 by 15 (44 test functions, 15 meta-features) to 44 by 3 (44 test functions, 3 derived 

SVD “meta-features”).  

 Stepwise regression carries out an automatic procedure on the choice of predictive 

variables when building regression models. It’s a wrapper method which uses a 

predictive model to score feature subsets. The stepwise regression is set up with 
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bidirectional elimination, with p-value threshold equal to 0.1. As a result, 7 meta-

features are selected: (1) max of gradient of response surface point, (2) standard 

deviation of gradient of response surface point, (3) mean of function values, (4) 

skewness of function values, (5) kurtosis of function values, (6) Q2 of function 

values, and (7) outlier ratio. 

 The ReliefF algorithm examines the difference between features of nearby instances 

and iteratively updates the weight of each feature, where features are selected with 

higher averaged weight. Due to the sensitivity of ReliefF to the settings of number of 

nearest neighbors, we tentatively set the k-value as 5, 10, 15, and 20, and the ranks of 

the features are averaged across different k values. The averaged ranks decide which 

features will be selected in the final model. As a result, 10 meta-features are selected: 

(1) mean of gradient of response surface point, (2) max of gradient of response 

surface point, (3) median of gradient of response surface point, (4) standard deviation 

of gradient of response surface point, (5) standard deviation of function values, (6) 

kurtosis of function values, (7) Q1 of function values (8) Q2 of function values, (9) 

Q3 of function values, and (10) outlier ratio. 

Since we conclude the model-based meta-learner (ANN) outperforms the 

instance-based meta-learner, in this experiment, we choose ANN as the test case to 

evaluate the efficacy of the feature reduction techniques. The summary statistics of the 

three methods is given in Table 5. It is observed that both Spearman’s Correlation 

Coefficient and hit ratio are improved by using feature reduction, where SVD achieves 

the best performance. Moreover, the number of successful best performer 
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recommendations increases to 40, resulting in a hit ratio of 90.90%, using SVD. The 

performance of the reduced ANN model using stepwise regression and ReliefF do not 

observe significant difference, and compared to SVD, they are both slightly inferior. We 

contend that SVD may perform well when noise exists as stated by (Baker 2005). The 

second conclusion we draw from this experiment is, given the 15 meta-features derived, 

there is redundancy among the features, therefore employing feature reduction techniques 

has proved to be valuable in improving the recommendation system performance.   

Table 5 Summary Statistics of Three Feature Selection Techniques: SVD, Stepwise 

Regression and ReliefF 

Feature Selection Methods Spearman’s Correlation Coefficient Hit Ratio 

Singular Value Decomposition 0.9351 90.90% (40/44) 

Stepwise Regression 0.9060 88.64% (39/44) 

ReliefF 0.8956 88.64% (39/44) 

Without Feature Selection 0.8831 86.36% (38/44) 

 

2.5 Discussion and Conclusion 

In this Chapter, we develop a meta-learning framework of a meta-model 

recommendation system for computation-intensive simulation problems. It addresses the 

problem of meta-model selection, where appropriate meta-models are recommended for 

surrogate modeling in substitute for physical models. The learned relationships could be 

used to make predictions on model rankings for unseen problems. Specifically, we 

propose a number of novel meta-features such as the gradient-based features for 

characterizing the geometrical properties of the response surface. Next, we explore the 
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use of different meta-leaners (instance-based vs. model-based). The Model-based learner 

outperforms the instance-based learner which may be due to the fact that the model-based 

learner is a supervised method which takes both of the meta-features and the model 

performance into consideration in the learning process. We further explore the 

contribution of feature reduction techniques and conclude SVD may significantly reduce 

the dimensionality of the feature space while retaining the core information, which not 

only expedites the meta-learning process, but also improves the overall performance.   

To demonstrate the applicability and efficacy of the proposed recommendation 

system, 44 benchmark problems have been tested, including uni-modal, multi-modal and 

composition problems covering a wide range of feature domains. To evaluate the 

predictive capability of the proposed framework, we have also implemented various 

popular meta-modeling methods in the literature, including Kriging, SVR, RBF, MARS, 

ANN and PR. Computational experiments clearly show that the proposed system 

significantly improves the computational efficiency on meta-modeling and is consistently 

capable of recommending appropriate models across the 44 benchmark test cases. The 

results indicate our proposed framework is able to serve as an alternative approach for 

traditional meta-modeling tasks, especially when the number of candidate meta-models is 

large and little prior knowledge of the problems is available.  

Regarding to practical advantages and research contribution in expert and 

intelligent systems, the proposed recommendation system in this work can be used to 

facilitate the development of various expert systems, such as decision making and 

support systems. The proposed meta-learning based recommendation system augments 
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the traditional trial-and-error meta-modeling method to a structured and automated form 

suitable for computer manipulation, opening up many possibilities for using it. The 

generic system is able to automate and optimize the modeling process without human 

involvement and excessive computations. It emulates the human’s decision-making 

ability, which is to reason about knowledge based on past experience to solve complex 

problems. Specifically, it consists of two components: the knowledge base, which 

represents facts and rules, and the inference engine, which applies the rules to the known 

facts to deduce new facts. This work provides practical guidelines in the design, 

development, implementation, and testing of a meta-model recommendation expert 

system for simulation engineering and machine learning. Due to these theoretical 

contributions and advantages, the recommendation system can be applied to the 

simulation industry to reduce the cost and improve modeling and operation efficiency. 

Moreover, it is advised to facilitate simulation optimization applications where surrogate 

modeling is of significant implementation in support of effective model construction and 

computational cost saving.  

While promising, we want to note there is room for improvement. For example, 

extended efforts on feature characterization on the meta-models for knowledge extraction 

can be explored. In addition, the ranks used for recommendation are derived from a 

single NRMSE measure. This may be extended to include multi-criteria metrics, e.g., 

robustness and computational cost. We believe there is room for improvement on 

extendibility of candidate models and test case sets, as this study uses a subset of the 

possible meta-models and test problems available in the literature. Inclusion of other 
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meta-models and test cases may extend the expert system knowledge base. We plan to 

extend our proposed framework reported in this Chaper with these future research 

directions. 

For future research suggestions in expert and intelligent systems, the proposed 

model recommendation system can benefit by automatically identifying the appropriate 

models for a given task. Therefore, the meta-learning could not only be used in a meta-

modeling application, but can also be used in optimization with meta-heuristic 

algorithms, where hundreds of algorithms are available but little insight has been gained 

regarding which algorithms perform well on which problems. Similarly, the idea could 

further inspire or enhance a number of research applications, such as classification, 

forecasting and general regression tasks, where model selection and model 

recommendation is of urgent need. For example, in the research fields of complex 

systems such as aircraft design, the task is a sophisticated system engineering one where 

multiple disciplines are often involved, such as, aerodynamics, multi-objective 

optimization, and computationally-intensive processes.  Due to the computational 

efficiency and automatic learning capability of meta-learning, it can be applied in both 

the optimization process for algorithm selection and the computationally-intensive 

process for meta-model recommendation. This is especially true when the number of 

design parts are large, and the parts can be described by shared common features. 
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CHAPTER 3  

SHORT-TERM BUILDING ENERGY MODEL RECOMMENDATION SYSTEM: A 

META-LEARNING APPROACH 

High-fidelity and computationally efficient energy forecasting models for 

building systems are needed to ensure optimal automatic operation, reduce energy 

consumption, and improve the building’s resilience capability to power disturbances. 

Various models have been developed to forecast building energy consumption. However, 

given buildings have different characteristics and operating conditions, model 

performance varies. Existing research has mainly taken a trial-and-error approach by 

developing multiple models and identifying the best performer for a specific building, or 

presumed one universal model form which is applied on different building cases. To the 

best of our knowledge, there does not exist a generalized system framework which can 

recommend appropriate models to forecast the building energy profiles based on building 

characteristics. To bridge this research gap, we propose a meta-learning based 

framework, termed Building Energy Model Recommendation System (BEMR). Based on 

the foundation of Chapter 2, which is applied on cross-sectional data, this Chapter aims to 

extend the application of proposed recommendation system on time series data. Using the 

building’s physical features as well as statistical and time series meta-features extracted 

from the operational data and energy consumption data, BEMR is able to identify the 

most appropriate load forecasting model for each unique building. Three sets of 

experiments on 48 test buildings and one real building are conducted. The first 

experiment is to test the accuracy of BEMR when the training data and testing data cover 
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the same condition.  BEMR correctly identified the best model on 90% of the buildings. 

The second experiment is to test the robustness of the BEMR when the testing data is 

only partially covered by the training data. BEMR correctly identified the best model on 

83% of the buildings. The third experiment uses a real building case to validate the 

proposed framework and the result shows promising applicability and extensibility. The 

experimental results show that BEMR is capable of adapting to a wide variety of building 

types ranging from a service restaurant to a large office, and gives excellent performance 

in terms of both modeling accuracy and computational efficiency. 

 

3.1 Introduction 

According to the U.S. Energy Information Administration (EIA), buildings 

consume nearly half (48%) of the total energy and produce almost 45% of CO2 emissions 

in the United States (Architecture 2030 2011). This drives the need to develop high-

fidelity and computationally efficient energy forecasting models for building systems to 

ensure optimal automatic operation, reduce energy consumption, and improve the 

building’s resilience capability to power grid disturbances (Xiwang Li, Wen, and Bai 

2016). Existing building energy models are in general categorized as: physics-based 

models, hybrid models and data-driven models (Li and Wen 2014). Physics-based models 

employ the physical concepts and knowledge of the low level devices and aggregate the 

mathematical expressions to model the building system. It heavily relies on domain 

expertise and often is computationally prohibitive (Eisenhower et al. 2012). Hybrid 
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models use simplified physical descriptions combined with parameter identification 

algorithms to predict energy consumption. Nevertheless, without a description of the 

building geometry and materials, it is difficult to estimate the model parameters. In 

contrast, the emerging technology advancements in the energy industry make it possible 

to collect massive amounts of data from sensors and meters, which enable data-driven 

modeling to unfold the underlying knowledge (Yu, Wang, and Lai 2009). As most 

industrial, institutional, and commercial buildings built after 2000 include a building 

automation systems (BAS), there is a growing interest to mine valuable information and 

derive additional insights from data collected. The data-driven approach motivates and 

drives the building energy research in various aspects including estimation of energy 

consumption (Solomon et al. 2000; Crespo Cuaresma et al. 2004; W.-C. Hong 2011), 

real-time performance validation and energy usage analysis (Salsbury and Diamond 

1996), and energy saving operational control (Xiwang Li and Wen 2014b; Hu 2015; Hu 

and Cho 2014). A significant advantage of the data driven approach lies in that it 

considerably reduces the design cycle iteration time for building design and operations, 

which includes not only simulation, but also analysis of results and optimization of 

actions based on these results. It allows for fast realizations of the design and operation 

tasks for any building scenario in an industrial context. Based on the updating cycle and 

horizon, the load forecast models can also be categorized into short term load forecasting 

(STLF), medium term load forecasting (MTLF), and long term load forecasting (LTLF) 

(T. Hong 2010) . STLF focuses on the load forecasting on daily basis and/or weekly 

basis, and MTLF and LTLF are based on monthly and yearly collected data for 
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transmission and distribution (T&D) planning (H . Lee Willis 2004)，and financial 

planning, which assist with medium to long term energy management, decision making 

on the utilities project and revenue management. STLF is important for real-time energy 

operations and maintenance. For daily operations, system operators can make switching 

and operational decisions, and schedule maintenance based on the patterns obtained 

during the load forecasting process (H. Wang et al. 2016). To better assist the operations 

and control strategies development, this study develops a novel STLF methodology for 

buildings, which provides accurate load forecasts for daily and weekly based energy 

system management. The model, however, could be viably transformed into MTLF or 

LTLF, by adding features of economy and land use, and extrapolating the model to 

longer horizons.  

Various data-driven methods have been studied and implemented for building 

load forecasting including 1) statistical methods such as autoregressive, moving average, 

exponential smoothing (Hagan and Behr 1987), state space (Hyndman et al. 2002; Baldi 

et al. 2016), polynomial regression (Mavromatidis, Bykalyuk, and Lequay 2013), and 2) 

machine learning methods such as neural networks (Hippert, Pedreira, and Souza 2001) 

and support vector regression (W.-C. Hong 2011; Touretzky and Patil 2015). Statistical 

regression models simply build the correlation between the energy consumption and the 

simplified influential features such as weather parameters. These empirical models are 

developed from historical performance data to train the models. Machine learning models 

are good at building non-linear models and are especially effective on complex 

applications.  
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 A regression-based approach was tested on the peak and hourly load forecasts of 

the next 24 hours using Pacific Gas and Electric Company’s (PG&E) data 

(Papalexopoulos and Hesterberg 1990). The regression model was thoroughly tested and 

concluded to be superior to the existing system load forecasting algorithms used at 

PG&E. In another study, five methods (autoregressive integrated moving average 

(ARIMA) modeling; periodic AR modeling, an extension for double seasonality of Holt-

Winters exponential smoothing; an alternative exponential smoothing formulation; and a 

principle component analysis (PCA) based method) were compared on 10 load series 

from 10 European countries on an hourly interval and 24-hour horizon (Taylor and 

McSharry 2007). They concluded that the double seasonal Holt-Winters exponential 

smoothing method outperformed the others. Another interesting study by Ahmed, Atiya, 

Gayar, & El-Shishiny (2010) explored machine learning methods. Eight machine learning 

models for time series forecasting on the monthly M3 time series competition data 

(around a thousand time series) were investigated. These eight are multilayer perceptron, 

Bayesian neural networks, radial basis functions, generalized regression neural networks, 

K-nearest neighbor regression, CART regression trees, support vector regression, and 

Gaussian processes. They concluded that the best two methods turned out to be the 

multilayer perceptron and the Gaussian process regression. Chirarattananon and 

Taveekun (2004) developed a model for building energy consumption forecasting based 

on overall thermal transfer value and concluded that the model does not present good 

generalizability on some types of buildings, especially on hotels and hospitals. Yik, 

Burnett, and Prescott (2001) predicted the energy consumption for a group of different 
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types of buildings using a number of physical parameters such as air conditioning system 

type, year the building was built and geographical information. The resulting model 

showed high correlation to the detailed simulation model. One novel data-characteristic-

driven modeling methodology for nuclear energy consumption was proposed in (Tang, 

Yu, and He 2014), in which two steps, data analysis and forecasting modeling, were 

involved in formulating an appropriate forecasting model in terms of the sample data’s 

own data characteristics. Experimental results showed that “data-characteristic-driven 

modeling” significantly improves prediction performance compared to all other 

benchmark models without consideration of data characteristics. However, only time 

series data characteristics and univariate forecasting models were explored in this study. 

One observation from these extensive studies is model performance varies and is highly 

dependent on the characteristics of the building systems, which leads the researchers 

come to inconsistent conclusions regarding the performance of various forecasting 

models. This concurs with what was found by (Armstrong 1984): he thoroughly reviewed 

twenty-five years of research and concluded that no algorithm is best for all load 

forecasting tasks. He suggested that the identification of which methods should be chosen 

with respect to the situations should be done via experimental studies.  

Noting that a building system is stochastic, nonlinear and complex (Lü et al. 

2015), research so far has mainly focused on an approach of trial-and-error or one-size-

fits-all. In the cases where little prior knowledge of the building systems is available, 

previous studies either develop multiple models and identify the outperformer among 

them, which is computationally expensive and impractical for real-time building energy 



67 

 

management and operations, or subjectively presume one model fits any type of building, 

suffering from high-bias modeling. In short term building load forecasting, the main goal 

is to minimize the forecasting error with computationally-efficient solutions. Building 

management control tasks can range from real-time load forecasting and user behavior 

analysis to predictive building control. For these tasks, the meter data are usually 

generated at a rate ranging from per minute to per hour. Due to the dynamics of building 

energy systems and for real-time supervisory purposes, the control and operations should 

be updated dynamically by analyzing the time series data. This impedes the trial-and-

error modeling approach in that the computational complexity for constructing multiple 

models is unaffordable, especially in the case where data volume is large. In a broader 

scope, a reduction of the forecasting error ensures the power systems stabilize in balance 

and assists power market design, operation, and security of supply (M Matijaš 2013). 

These drive the need for a general framework for short term building load forecasting, 

which satisfies both the time constraint driven by real-time building operations and 

control, and the fidelity constraint which calls for high-accuracy load forecasting. The 

general building load forecasting framework would be beneficial in dealing with 

heterogeneous building load forecasting tasks for most commercial utilities and market 

participants. Taking into account the above, we develop a Building Energy Model 

Recommendation (BEMR) system for short term load forecasting motivated by the meta-

learning concept. Meta-learning has gained increasing attention and has been successfully 

applied in diverse research fields including gene expression classification (Souza, 

Carvalho, and Soares 2008), failure prediction (Lan et al. 2010), gold market forecasting 
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(Zhou, Lai, & Yen, 2012), and electric load forecasting (Marin Matijaš 2013), just to 

name a few. Meta-learning is a machine learning algorithm that explores the learning 

process and understands the mechanism of the process, which can be re-used for future 

learning. The objective is to build a self-adaptive automatic learning mechanism that 

connects the meta-data (e.g., the characteristics of the problems) with the model 

performance. As a result, the best performing model can be identified via the meta-data 

directly and thus significantly saving the model training process.   

 Earlier efforts on meta-learning for forecasting mainly focused on rule-based 

approaches. For example, (Collopy and Armstrong 1992) weighted four candidate models 

using 99 derived rules from human experts’ analysis. The weight of each model is 

modified based on the features of the time series.  One potential issue of this approach is 

the knowledge acquired from human experts may not be easily accessible. Prudêncio & 

Ludermir (2004) used a decision tree on a stationary time series with two candidate 

algorithms, exponential smoothing with a neural network, and NOEMON, on the M3-

competition time series, for ranking three candidate models: random walk, Holt’s 

smoothing, and auto-regressive. They concluded both case studies revealed satisfactory 

results, taking into account the quality in the selection and the forecasting performance of 

the selected models. Wang, Smith-Miles, & Hyndman (2009) generated a decision tree 

on the induced rules from univariate time series data characteristics, where four 

algorithms: Random walk, smoothing, ARIMA, and neural network, were selected as 

candidates. They were able to draw recommendations and suggestions on the conceptive, 

categorical and quantitative rules. The meta-learning system based on a large pool of 
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meta-features proposed by (Lemke and Gabrys 2010) was shown to outperform many 

approaches of the NN3 and NN5 competition entries. Marin Matijaš, Suykens, & Krajcar 

(2013) proposed a meta-learning system for load forecasting based on multivariate time 

series, in which 65 load forecasting tasks in Europe were tested and lower forecasting 

errors were observed compared to 10 well-known forecasting algorithms.  

Note that the literature reviewed above all attempt to gain knowledge from time 

series data to generate rules which define the relationship between the meta-features and 

the model performance. While promising for the problems examined, building systems 

are inherently nonlinear, diverse and complex due to the heterogeneity among multiple 

interconnected factors, e.g., internal factors, social factors and weather factors (Lü et al. 

2015). For buildings, especially large and complex ones, simplifications of model 

formulations and lack of physical knowledge may lead to poor forecast accuracy. 

Therefore, the meta-knowledge characterization should not solely be collected from the 

building’s operational data, such as energy consumption univariate time series, but also 

the building’s physical features.  

 We conclude that a generalized intelligent system for building energy model 

recommendation, which incorporates both building data-characteristic and physical-

characteristic meta-features is currently lacking and this research attempts to fill this gap 

motivated by the research success from (Cui et al. 2015). Specifically, we employ a two-

stage meta-learning approach for BEMR. It first trains multiple models on the existing 

buildings to obtain the model performance. Next, the features and/or meta-features are 

derived from the existing building instances in association with the respective 
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performances for making recommendations on the new building. The BEMR framework 

developed in this study can be used on development and selection of models for building 

energy modeling and forecasting, as well as building optimal operation and real-time 

control. 

In developing BEMR, the first notable challenge is that building data is of high 

dimension in both the temporal and spatial domains. Building energy consumption is 

influenced by many factors: internal factors such as building structure and physical 

characteristics, the sub-system components like equipment schedule and operations on 

HVAC systems, occupants and their behavior, and external factors such as natural 

environments, weather conditions, and economies. Therefore, meta-features are 

introduced to depict the operational data, and the physical features of the buildings are 

gathered as additional descriptive knowledge. We hypothesize the inclusion of the 

heterogeneous features should increase the generalization of BEMR for diverse buildings 

in different operating conditions. Next, six statistical and machine learning data-driven 

models are explored and included in BEMR: Kriging, support vector regression (SVR), 

radial basis function (RBF), multivariate adaptive regression splines (MARS), artificial 

neural network (ANN) and polynomial regression (PR). These models are chosen due to 

their extensive use in surrogate modeling applications (G. G. Wang and Shan 2007) and 

their good theoretical and experimental performance on energy system applications 

(Anna Ściążko 2011; Zhao and Magoulès 2012). The third effort in BEMR is to collect 

the building instances as the training sources. Considering that both the building type 

(internal factors) and climates (external factors) have effects on energy consumption 
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profiles, 48 (8 building types on 6 climate zones) simulated commercial and residential 

reference buildings developed by the Department of Energy (DOE) are collected. Last, 

ANN is chosen as the meta-learner to develop the associations between the meta-features 

derived from the building instances and the model performance so the best model is 

identified. Three sets of experiments are conducted using leave-one-out cross validation. 

The first experiment is to test the performance of BEMR on regular short term daily and 

weekly forecasting. Experiment results show that among the 48 buildings, BEMR is able 

to identify the best model for 43 buildings (accuracy: 90%) and the difference of the 

mean of the normalized root mean square error (NRMSE) from the ground truth is within 

2%. The second experiment is to validate the robustness of BEMR when the test data is 

only partially covered by the training data, and we call it extrapolation validation. Among 

the 48 buildings, 40 (accuracy: 83%) correct model recommendations are made and the 

difference of mean NRMSE from the ground truth is within 3%. Moreover, the 

computational cost of the system is significantly lower than traditional trial-and-error 

approaches, which decreases forecast time from the order of minutes to seconds. The 

third experiment is to validate the proposed framework on a real building case, which is 

located in Ankeny, IA. The result shows that the proposed BEMR is capable of making 

reliable recommendations for a real building energy forecast. 

The Chapter is constructed as follows: Section 3.2 introduces the proposed 

methodology; Experiments and results are discussed in Section 3.3; finally, a discussion 

of the conclusion is given in Section 3.4.  
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3.2 Building Energy Model Recommendation System 

In this research, we propose a Building Energy Model Recommendation System 

(BEMR) for short-term building energy consumption forecasting.  BEMR is a two stage 

framework.  As shown in Figure 9, the first stage is to establish the instance repository to 

connect the learning instances with a forecasting models’ performance; next, both 

building physical features and operational meta-features are derived and connected with 

the model performances so the model recommendation can be made.  

 

Operational 

features and 

load data

Testing

Model 1

Model 2

…
Model n

Model 

Performance Statistical&

time series 

features

Physical

features

Meta-learning

New problem
Meta-feature 

extraction

Recommendation 

system
Recommendations

Training data

(specification

& lag data) 

Cross-

validation

(hv-block CV)

Stage 1

Stage 2

Meta-feature generation

 

Figure 9 Framework of Building Energy Model Recommendation (BEMR) System. 

 

 

3.2.1 Stage I: Building Learning Instance Repository  

Eight types of commercial and residential buildings are selected from the DOE 

simulated reference buildings which are identified as the most prevalent building types 

(Deru et al. 2011) in the United States. Considering the significant impact of climate on 

the energy consumption profile, each building type is simulated at each of six selected 

locations which correspond to the climate zones discussed in ASHRAE 90.1 -2004 
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(ASHRAE. 2004).  These locations are San Francisco, CA; Boulder, NV; Phoenix, AZ; 

Houston, TX; Miami, FL; and Baltimore, MD. As a result, the building repository 

includes a total of 48 simulated buildings (8 types, in 6 locations). The corresponding 

TMY3 (typical meteorological year) weather data sets (Wilcox and Marion 2008) are 

adopted as the weather data source for the simulation models.  

 

3.2.1.1 Training Data Selection  

The STLF process heavily relies on the weather information and ambient 

environment. When the parameters are estimated, the weather information is extrapolated 

to forecast the load. Much research (Touretzky and Patil 2015; Eisenhower et al. 2012) 

has looked at the most suitable features for load forecast problems.  They try to explain 

the causality of the electric load consumption. In STLF, the electric load is generally 

driven by nature and human activities. Nature is usually represented by weather variables, 

e.g., temperature and humidity, while the human activities are usually represented by the 

calendar variables, e.g., occupancy and business hours. High-dimensional feature spaces 

result in unnecessary complication in building forecasting models and thus impede the 

optimization process. To alleviate this concern, our features are selected based on the 

work of Eisenhower et al. (2012), in which the sensitivity analyses were conducted to 

identify the most influential features for the energy output generated from the EnergyPlus 

simulation models. They were adopted to develop the meta-model and the following 

optimization model for energy management operations. Seven top influential variables, 

which are all temperature and human activity related, were selected to build a reduced 



74 

 

form of meta-models. On the foundation of their work, 12 operational features are 

initially selected from over 600 features in the simulation models, including (1) outdoor 

air dry bulb temperature; (2) outdoor air relative humidity; (3) outdoor air flow rate; (4) 

diffuse solar radiation rate; (5) direct solar radiation rate; (6) zone people occupant count; 

(7) zone air temperature; (8) zone air relative humidity; (9) zone thermostat cooling set 

point temperature; (10) building equipment schedule; (11) building light schedule; (12) 

HVAC operation schedule. In addition, since periodicity is one main characteristic in 

electricity load time series, two categorical variables, Day and Time are added to the 

study. Given these 14 features, we then conduct principal component analysis (PCA) 

(Montgomery, Peck, and Vining 2012) to explore the multicollinearity among the 

features for robust forecasting model development. It is observed that feature 11 

(building light schedule) and feature 12 (HVAC operation schedule) are highly correlated 

with feature 9 (zone thermostat cooling set point temperature). Therefore, these two 

highly collinear variables are removed from the study. We further assess the correlation 

between each remaining feature and the response variable using Pearson’s correlation 

coefficient. It is observed that all the features are significantly correlated to the response 

variable (the absolute correlations are all above the threshold correlation, 0.195, to reject 

the null hypothesis that the two variables are not correlated). Note categorical variables 

are excluded in the multicollinearity test and the correlation test. Finally, ten building 

operational features and two categorical variables are selected (Table 6).  
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Table 6 Ten Selected Building Operational Features and two Categorical Variables 

Numbering Building Variables Variable Type [range] 

1 Outdoor Air Drybulb Temperature  (℃) Continuous 

2 Outdoor Air Relative Humidity Continuous on [0,1] 

3 Outdoor Air Flow Rate Continuous 

4 Diffuse Solar Radiation Rate (W/m2) Continuous 

5 Direct Solar Radiation Rate (W/m2) Continuous 

6 Zone People Occupant Count Integer 

7 Zone Air Temperature  (℃) Continuous 

8 Zone Air Relative Humidity Continuous on [0,1] 

9 Zone Thermostat Cooling Set Point Temperature 

(℃) 

Continuous 

10 Building Equipment Schedule Value Continuous on [0,1] 

11 Day of Week Integer on [1,7] 

12 Time of Day Integer on [1,48] 

 

Besides the features discussed above, all the buildings (simulation models) apply 

typical equipment control strategies for chillers and fans. In fact, no matter how the 

subsystems/devices are controlled, their operations will be reflected in the training data. 

Our models should be able to capture these operation characteristics in the model training 

process. The objective of this study is to provide whole building level STLF models for 

building operation and control. As a result, only the building level features are selected. 

The detailed sub-system level and device level operation are not studied in this work. 

For the features, both specification data and lagged data are collected in the training 

data set. Specifically, let c be the periodicity of the seasonality, n be the number of lags, 

and t be the current time data index, then the specification data indices are t, t - c, t - 2c, 

while the lagged data indices are t -1, t -2,…, t – n. For example, assume the current time t 

is 12 pm on a day, possible lagged data indices are 11:30 pm, 11 pm, 10:30 pm, etc. (given 

data are collected every 30 minutes), and possible specification data indices are 12 pm in 
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the past few days (c=24 hrs.). This is motivated by the “Similar Days technique” in 

(Xunming Li, Sun, and Gong 2005) that a particular load on the same day of the week 

should behave similarly,  given similar weather and other conditions. Several researchers 

have pointed out the superior performance of specification models over traditional models 

which are built solely on lagged data (Crespo Cuaresma, Hlouskova, Kossmeier, & 

Obersteiner, 2004). 

 

3.2.1.2 Cross Validation  

It is worth noting that in traditional forecasting, a common practice is to reserve 

some data toward the end of each time series for testing, and to use earlier time series 

data for training. One potential issue is that the data are not fully made use of due to a 

lack of cross-validation, and the resulting model may suffer from over-fitting. 

Meanwhile, for time series data it may not be appropriate to directly apply traditional 

cross-validation, which randomly splits the data into training and testing datasets.  

Theoretical problems with respect to temporal evolutionary effects and data dependencies 

are encountered when the fundamental assumptions of cross-validation might be 

invalidated. Racine (2000) proposes “hv-block” cross-validation which is asymptotically 

optimal. It is consistent for temporally dependent observations in the sense that the 

probability of selecting the model with the best predictive ability converges to 1 as the 

total number of observations approaches infinity. The basic idea is to place restrictions on 

the relationship between the training set, validation set, the size of an h-block, and the 
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sample size. We can thereby obtain a consistent cross-validating model selection 

procedure for the process. 

 

 

Figure 10 “hv-block” Cross-validation Illustration. 

As shown in  

Figure 10, given an observation zi, we first remove v observations on either side 

of it to obtain a validation set of size 2v+1.  We then remove another h observations on 

either side of this validation set with the remaining n-2v-2h-1 observations forming the 

training set. The value of v controls the size of the validation set with nv= 2v+1. The 

value of h controls the dependence of the training set of size nt= n-2h-nv and the 

validation set of size nv. For guidance on appropriate selection on h and v, please refer to 

(Racine 2000) for details.  

For illustration, Figure 11 shows the design for cross-validation on a single day 

test. Take Friday as an example, and let’s define it as F0, and the unit of lag being a day, 

with n being 6 days, and c being 7 days. Therefore, the training data consists of six days 

of lagged data (Thursday, Wednesday, Tuesday, Monday, and Sunday on the same week 

of test data, and Saturday from the previous week) and three days of specification data 

(three Fridays from the last three weeks, F1, F2, F3). Based on the “hv-block” cross-

validation approach, the training data are cross split into 4 training and validation folds. 

nt1 nt2   v v h h 

zi 
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In each fold, the size of validation data nv and the block h are set as one day, and the rest 

of data is kept aside as training data.  

 

Figure 11 Cross-validation of Training Data Split. 

 

3.2.1.3 Forecasting Model Performance Evaluation  

In BEMR, six data-driven models are explored including Kriging, support vector 

regression (SVR), radial basis function (RBF), multivariate adaptive regression splines 

(MARS), artificial neural network (ANN) and polynomial regression (PR). To make the 

recommendation, the first step is to evaluate and validate the model performance using 

available building energy data. The performance is measured using Normalized Root 

Mean Square Error (NRMSE), which is given in Equation (23) in Section 2.3.4. 

In summary, stage I of the BEMR is providing the base repository which consists 

of 288 models (8 building types, 6 locations, 6 data driven models) and the respective 

forecasting performance (measured by NRMSE). This enables the implementation of the 

meta-learning strategy which is discussed in the next section.  
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3.2.2 Stage II: Meta-Level Learning    

3.2.2.1 Meta-Feature Extraction  

Meta-features, which characterize the entire dataset for meta-level induction 

learning, are an abstraction of knowledge extracted from the dataset. Three types of meta-

features are devised, including physical features, statistical features and time series 

features. Table 7 summarizes the seven physical features of the buildings. 

 

Table 7 Building Physical Features 

 
1 Plus Basement.  

Feature # 1 2  2 3 4 5 6 7 

Building 

Type 

# of 

stories 

Area(m2) Roof 

Type 

Wall 

Type 

Window 

Type 

Cooling Space Type 

Large Office 

121 46,320 IEAD2 Mass Fixed Chiller, 

water-

cooled 

Non-

residential 

Medium 

Office 

3 4,982 IEAD2 Steel 

Frame 

Fixed Packaged 

DX3 

Non-

residential 

Small Office 
1 511 Attic 

Roof 

Mass Fixed Packaged 

DX3 

Non-

residential 

Supermarket 
1 4,181 IEAD2 Mass Fixed Packaged 

DX3 

Non-

residential 

Full Service 

Restaurant 

1 511 Attic 

Roof 

Steel 

Frame 

Fixed Packaged 

DX3 

Non-

residential 

Hospital 

51 22,422 IEAD2 Mass Fixed Chiller, 

water-

cooled 

Residential 

for 

patient 

rooms 

Large Hotel 

61 11,345 IEAD2 Mass Operable in 

guest rooms 

Chiller, air-

cooled 

Residential 

for 

guest rooms 

Midrise 

Apartment 

4 3,135 IEAD2 Steel 

Frame 

Operable Packaged 

DX3 

Residential 
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2 Built-up flat roof with insulation entirely above the roof deck. 
3 Packaged Direct-expansion (DX) equipment 

 

Other than the seven physical meta-features,  nine statistical meta-features similar 

to (Matijaš, 2013; Lemke & Gabrys, 2010) are derived from the operational features from 

Table 6 and the energy consumption data:  

(S1) Min: e.g., the minimum of load over a time period.  

(S2) Max: e.g., the maximum of load over a time period. 

(S3) Mean: e.g., arithmetic average of load over a time period. 

(S4) SD: e.g., the standard deviation of load over a time period. 

(S5) Skewness: evaluates the lack of symmetry, taking the load as an example, Yi is the 

load of time period i, and �̅� is the mean of the load over a period of time, skewness is 

derived as: 

 E {[(𝑌𝑖 − �̅�) 𝑆𝑡𝑑. (𝑌𝑖)⁄ ]3}, 𝑖 = 1, … , 𝑁.   (26)  

(S6) Kurtosis: evaluates the flatness relative to a normal distribution. Again, taking the 

load as an example 

 E [(𝑌𝑖 − �̅�)4]/(𝐸[(𝑌𝑖 − �̅�)2])2, 𝑖 = 1, … , 𝑁.  (27)   

(S7) Q1: e.g., 25% quartile of load, which is the lower quartile of load. 

(S8) Q2: e.g., 50% quartile of load, which is the median of load. 

(S9) Q3: e.g., 75% quartile of load, which is the upper quartile of load. 
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In addition, considering the building system is dynamic and non-linear, we 

introduce four of time series meta-features to describe the temporal characteristics of the 

building energy data.  

(T1) Ratio of local extrema: Ratio of local minima and maxima within a given 

neighborhood, taking the load as an example, it measures the percentage of load 

oscillation. 

(T2) Non-linearity: A number of surrogate data is generated from the null hypothesis that 

the series is linear, and the derived estimate of the original time series data is 

compared to the ones generated from the surrogate data to check the non-linearity 

(Kugiumtzis 2000). 

(T3) Cut-off lag of ACF: The autocorrelation function (ACF) is the collection of the 

autocorrelation coefficients, which indicate the covariance between observations with 

any lag. In this study, a lag of 30 autocorrelation coefficients is calculated.   

(T4) Cut-off lag of PACF: Similarly, a lag 30 of the partial autocorrelation function 

(PACF) is used to derive the coefficients.  

As a result, we derive nine statistical meta-features for each of the ten building 

operational data and the energy consumption data (99 meta-features in total). 

Additionally, four of time series meta-features on the energy consumption data are 

derived. With the seven building physical features a total of 110 features (meta-features) 

are used for meta-learning.  
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3.2.2.2 Meta-Learner  

When constructing learning algorithm, a powerful artificial intelligence-based 

model is more preferable than traditional statistical models (Fonseca, Navaresse, and 

Moynihan 2003; Yu, Wang, and Keung 2008).  Therefore, we use an ANN as the meta-

learner, considering correlation between the meta-features and nonlinear patterns brought 

by the complexity and heterogeneities of different building scenarios (noises within meta-

features) might impair the modeling power of the learner. The parameter settings of the 

meta-learner ANN are as follows: the hidden layer size is tuned within the range of [10, 

20], and the transfer functions are selected between radial basis and log sigmoid. Note 

that the proposed meta-features are tentatively selected in hoping that they could 

effectively represent the dataset. However, the number of features is more than twice the 

number of problems, which may impair the predictive power of the meta-learner.  This is 

known as the “Hughes effects” (Hughes 1968). As a result, we propose to use an 

advanced feature reduction technique to address the curse of dimensionality. Specifically, 

singular value decomposition (SVD) is of interest in this research due to its known 

performance on noise filtering and dimensionality reduction, which is introduced in 

Section 2.4.3.  

 

3.2.2.3 BEMR Performance Evaluation  

Given the predicted rankings of the six models’ performance from the 

recommendation system, two evaluation metrics are introduced to evaluate the meta-
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learning performance: The Spearman’s rank correlation coefficient (SRCC), defined in 

Equation (24) and success rate (i.e., hit ratio defined in Section 2.3.4). The success rate is 

to evaluate the “precision” of the meta-learning performance. As a matter of fact, in the 

case of forecasting, users are sometimes more concerned if the recommended best 

performer (top 1) matches the ideal one, so only one model is built and computational 

efficiency is ensured. Therefore, besides the Spearman’s rank correlation coefficient, the 

success rate is also proposed to comprehensively evaluate the performance of the meta-

learning system. 

 

3.3 Experiments and Results 

In this study, we investigate the cooling electricity consumption of buildings in 

the summer time. Simulation data are obtained by simulating the reference building 

energy consumption models for one month in July. The data are generated at half-hour 

granularity using DOE’s EnergyPlus (Crawley, Drury B., Linda K. Lawrie, Frederick C. 

Winkelmann, Walter F. Buhl, Y. Joe Huang, Curtis O. Pedersen 2001) simulation 

software, which yields 48 data points on each day, 1,488 data points for a month. Three 

forecasting cases are tested respectively: (1) Single day and a one-week test, (2) an 

extrapolation test, and (3) a real building validation test. 
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3.3.1 Experiment I  

In this set of experiments, we test the performance of the proposed BEMR to 

forecast the building cooling load for each day of the last week and the whole last week 

of July, respectively. The single day test and one-week test correspond to short-term load 

forecasting on a daily basis and a weekly basis. In the one-week test, since the training 

data is scarce compared to the size of test case, we apply a traditional validation 

technique, where the first 80% of the data is used for training and the last 20% of the data 

is used for validation. 

Figure 12 displays a bar chart of the mean of the NRMSE measures of the best 

forecasting model across the 48 problems on each test case. Except for the test on 

Sunday, the means of the best NRMSE are evenly distributed from 0.020 to 0.035, while 

the best performance on Sunday is significantly worse than those on other days. To 

explain this observation, we may refer to the time series plot of the energy consumption 

in July. See Figure 13(a) for the weekly energy time series plot of the large office 

building in San Francisco, CA, which shows that the cooling load of Sunday is 

significantly less than other weekdays. The sudden decline may be due to the fact that 

most people don’t come to work on weekends thus less cooling load is required. On the 

other hand, due to its significantly different pattern from the weekdays, data available for 

forecasting the energy consumptions for Sunday is scarce. This implies more training 

data with similar patterns are needed for energy forecasting on weekends. Figure 13(b) 

shows the time series plot of the cooling load of the same type of building located in 

Phoenix, AZ. Compared to plot (a), similar daily and weekly quasi-periodic behaviors are 
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observed on the energy consumptions, with approximately constant variance and repeated 

patterns. However, the cooling load of the large office in Phoenix is on average one-tenth 

more than that in San Francisco, which is to be expected due to the hot summer in 

Phoenix. Figure 13(c), which displays the cooling load time series plot of a full service 

restaurant in Phoenix, AZ, shows a markedly different behavior. The daily cooling load 

presents a stable pattern while the weekly periodicity is not as significant.  This is likely 

due to the fact that restaurants are usually open seven days a week. Moreover, it is 

observed that the magnitude of the energy consumption in a restaurant is significant 

lower than that in a large office. These validate our proposition that cooling energy 

consumption is impacted by combined social factors, weather conditions and building 

types. 

 

Figure 12 Test Case I: Bar Chart of Mean of Best NRMSE across 48 Problems on Each 

Test Case. 
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Figure 13 Weekly Cooling Electricity Load (Kwh) Time Series Plot of (a) Large Office 

in San Francisco, CA; (b) Large Office in Phoenix, AZ; (c) Full Service Restaurant in 

Phoenix, AZ. 

 

  Figure 14 and Figure 15 present the meta-learning performance in terms of 

success rate and SRCC. Table 8 summarizes the statistics of the above two performance 

measures. The average success rate amounts to 90%, which means almost 43 out of 48 

problems are correctly assigned with the best model. Again, Sunday has the lowest 

success rate due to its different patterns from other days. In another words, its meta-

features are less similar to others’ causing difficulty in meta-learning. It is also observed 

that all the performance measures on the one-week test are slightly better than those on 
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the single day, however, notice that the training cost for the one-week forecast is much 

higher than the single day forecast due to the higher training size. Be advised that there 

are always trade-offs between the computational cost and model performance, which is 

worth consideration when selecting the training and testing sizes. Please refer to Racine 

(2000) for a discussion on training, validation and testing sample size selection for time 

series forecasting using “hv-block” cross validation. In addition, the mean SRCC is 

around 96%, which implies high agreement between the predicted rankings of the 

recommendation system and the true rankings of the six forecasting models.  

 

 

 

Figure 14 Test Case I: Bar Chart of Meta-learning Success Rate. 

 

 

Figure 15 Test Case I: Bar Chart of Meta-learning SRCC. 
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Table 8 Test Case I: Statistics on Meta-learning SRCC, Success Rate and # of Successes 

across 48  

Test Date M T W Th F S Sun One Week Mean 

Spearman 

Correlation 

Coefficient 

0.954 0.931 0.958 0.963 0.960 0.971 0.945 0.982 0.958 

Success 

Rate 
0.854 0.813 0.917 0.917 0.917 0.917 0.771 0.979 0.900 

# of 

Successes 

(out of 48) 

41 39 44 44 44 44 37 47 43 

 

 

 

3.3.2 Experiment II 

In this set of experiments, we test the extrapolation capability of the proposed 

BEMR. We sampled four days: Monday, Wednesday, Friday and Sunday of the last 

week, to forecast the building cooling load, while the training data is the building cooling 

load of the first week. Notice that by observing the energy data, some of the features of 

the last week are out of the range covered by the training data of the first week. For 

example, the average range of the difference between the maximum and minimum 

outdoor temperature among all the buildings in the first week is around [24, 35] ℃, while 

it is around [22, 39] ℃ in the last week. The temperature gap in the training data allows 
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us to test the extrapolation capability of the forecasting models and the recommendation 

system performance under uncertainties. 

Figure 16 displays a bar chart of the mean of the NRMSE measures of the best 

forecasting model across 48 problems on the second test case. An attractive finding is 

that the best forecasting performance on extrapolation is only slightly inferior to regular 

forecasting.  This can be observed by noting that the difference between the mean values 

in Figure 12 and Figure 16 is around 0.01. This indicates the best forecasting model 

generally is able to give a reliable forecast even though a time gap exists between the 

forecast horizon and the energy data at hand. Therefore, energy users and utilities can 

have confidence in the extrapolation predictions to pre-plan and make decisions in 

advance, which enables energy savings and cost reductions. Figure 17 displays a box plot 

of the mean of the NRMSE on the single day, one week and extrapolation tests across six 

forecasting algorithms. It is observed that the variance of the mean NRMSE for the tests 

on one day tests of Friday, Saturday, Sunday and the Sunday extrapolation are greater 

than other days, which indicates that the performance of different forecasting models 

vary significantly to each other on these days. This may be caused by the dates being 

weekends, or quasi-weekend (Friday), when the energyusage patterns are different from 

regular weekdays.  
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Figure 16 Test case II: Bar Chart of Mean of Best NRMSE across 48 Problems on Each 

Test Case. 

 

Figure 17 Box Plot of Mean of NRMSE on Test Cases I&II. 

Figure 18 and Figure 19 present the meta-learning performance in terms of 

success rate and SRCC on the second test case. Table 9 summarizes the statistics of the 

above two performance measures. Similar to the comparison result on the best 

forecasting model performance, all three performance measures are slightly inferior to 

regular forecasting. The mean SRCC still remains above 94%, and the average successful 

recommendations are almost 40 out of 48, which is acceptable.  

Table 10 gives a comparison between the ground truth and the recommendation 

system of the three test cases based on the mean of the best NRMSE across 48 problems. 
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It is shown that the average discrepancy between the recommended model and the true 

best model performance is within an error of 0.02, which reveals the proposed system is 

highly capable of making correct recommendations. 

 

 

Figure 18 Test case II: Bar Chart of Meta-learning Success Rate. 

 

 
Figure 19 Test case II: Bar Chart of Meta-learning SRCC. 
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# of Successes (out of 48) 40 40 42 36 40 

 

 

Table 10 Comparison between Ground Truth and Recommendation System on Mean of 

Best NRMSE across 48 Problems on Each Test Case 

Test Date M T W Th F S 

True Best 0.025 0.026 0.033 0.025 0.024 0.035 

Recommend 0.026 0.029 0.034 0.026 0.025 0.036 

Test Date Sun OneWeek M_ext W_ext F_ext Sun_ext 

True Best 0.082 0.021 0.043 0.031 0.030 0.088 

Recommend 0.092 0.021 0.045 0.035 0.031 0.092 

 

 Table 11 summarizes the mean and standard deviation of the computational cost (in 

seconds) of the six models on an Intel i5 CPU 16G computer. As seen, PR is the most 

computationally efficient model, followed by RBF and Kriging. The least efficient 

algorithm is SVR, which takes more than 5 minutes on average to solve each problem. 

The variance of the computational costs among different models implies that a trial-and-

error method is not an efficient approach for solving heterogeneous energy forecasting 

problems, especially when the number of problems at hand is large and the problems 

have different levels of complexity and heterogeneities. By summing the solution times 

of all six models, it is easy to see why a trial-and-error approach for these types of 

problems is costly.  By introducing the automatic model recommendation using a meta-

learning approach, the computational cost for forecasting reduces from an order of 

minutes to seconds. 
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Table 11 Mean and Standard Deviation of the Computational Cost (in seconds) of the Six 

Models across 48 Problems 

Statistics Kriging SVR RBF MARS ANN PR 

Mean 2.75 324.94 0.68 202.79 10.44 0.28 

Std. 0.27 151.29 0.08 119.22 1.50 0.08 

 

The promising performance indicates that the proposed ANN based meta-learning 

recommendation system is capable of accurately recommending not only the best model 

but also the ranking of the models. This provides more freedom for users to select either 

one or several models, such as building an ensemble of multiple models (Cui et al. 2014). 

Moreover, it can be concluded that the meta-learning approach can achieve both high 

prediction accuracy and high computational efficiency on heterogeneous forecasting 

problems. 

 

3.3.3 Experiment III 

In this experiment, we test and validate the proposed BEMR using a real 

commercial building at the Iowa Energy Center. The building operation data is acquired 

from ASHRAE 1312 (J Wen and Li 2012). The target is a small size commercial building 

with an experiment area and common office area. The total floor space of this building is 

855.5 m2. The area of each test room is 24.7 m2. The percentage of exterior window area 

to exterior wall area is 54 % for each exterior zone. A built-up roof with insulation is 
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constructed above the roof deck. The zone thermometers are located on the center of the 

internal wall (shown as the blue box on the floor plan in Figure 20). The location of the 

sensor is 1.21 meters from the floor. Two Variable Air Volume (VAV) air handling units 

(AHU) are used for the two experiment systems (A and B) in the experiment area. Both 

of these AHUs are equipped with dual (supply and return) variable speed fans and are 

operated similarly to that in a typical commercial building. More details about this 

building can be found at (Price and Smith 2003). In the ASHRAE 1312 experiment, both 

AHU-A and AHU-B were used. However, AHU-A was used for faulty test and AHU-B 

was used for regular operation test. As a result, the summer (August and September) test 

data from AHU-B (system B) was used in this study. Similar to the subsystem operation 

schemes in experiment I and II, the chilled water temperature set point was 7.2 °C, the 

supply air temperature set point was 12.7 °C, the supply air pressure set point was 9.6 

kPa, and the zone temperature heating and cooling set points at occupied hours (8 am to 6 

pm) were 22.2 °C and 21.2 °C, respectively. The HVAC system was shut down during 

unoccupied hours.  
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Figure 20 Energy Resource Station at Iowa Energy Center (Price and Smith 2003).  

 

We follow the exact same experimental settings, including the collection of 

operational features, the derivation of the meta-features, the training data selection and 

cross-validation. Again, the validation is conducted on both a single day test and one-

week test. Since the measurement data is collected between August and September, while 

the BEMR is built based on July, this could be viewed as an extrapolation test. The 

performance rankings of the six forecasting model along with the predicted rankings from 

BEMR are provided in Table 12.  

 

Table 12 Performance Rankings (T) of the Six Forecasting Models and the Predicted 

Rankings from BEMR (B) on Single Day and One Week Tests 

Model Mon Tue Wed Thu Fri Sat Sun One Week 

 T B T B T B T B T B T B T B T B 

Kriging 1 1 2 2 2 2 2 1 1 1 3 2 3 4 1 1 

SVR 5 5 5 5 6 5 5 4 3 4 2 3 1 2 6 6 

RBF 4 3 4 3 5 6 4 5 5 6 6 6 6 5 5 5 

MARS 2 6 6 6 4 4 3 3 6 5 1 1 3 3 1 2 

ANN 6 4 3 4 1 1 6 6 2 2 5 5 2 1 4 3 

PR 2 2 1 1 3 3 1 2 3 3 3 4 5 6 3 4 

 

The statistics show that 2 out of 8 test cases (Thursday and Sunday) are assigned a 

sub-optimal model, while the assigned models are both ranked second according to the 

ground truth, which implies the BEMR generally provides reliable recommendations. In 
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conclusion, the validation experiment results on the real building indicate that the 

proposed BEMR is able to assist real building energy forecasting tasks with reliable and 

high quality solutions.   

 

3.4 Discussion and Conclusion 

This Chapter is motivated to develop a computationally efficient data-driven 

approach to quickly identify appropriate algorithms for building energy load forecasting. 

We propose a recommendation system for short-term building forecasting model 

selection based on a meta-learning technique. This is an extensively studied automatic 

learning algorithm applied to meta-data in machine learning experiments. We propose 

various meta-features which characterize the building energy data: building electricity 

load time series features, building operational features and physical features. An 

Artificial Neural Network is applied to model the relationship between the meta-features 

and the ranking of each model derived from the performance on forecasting. In addition, 

due to the high dimensionality of the proposed meta-features, an advanced feature 

reduction technique, Singular Value Decomposition, is applied on the meta-feature space 

to improve the meta-learning performance and reduce computational cost. The resulting 

high spearman’s ranking correlation coefficient and success rate on the two test cases: 

single day and one week, and the extrapolation test, indicate the successful 

implementation of the recommendation system.   
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To demonstrate the applicability of the proposed recommendation system, 48 

benchmark buildings have been tested, including 8 types of typical buildings located 

across 6 climate zones covering a wide range of building profiles. One real building is 

used to validate the system for assessment of the applicability and extensibility to real 

problems. To evaluate the forecasting capability of the proposed framework, we have 

also implemented various popular data-driven forecasting methods in the literature, 

including Kriging, SVR, RBF, MARS, ANN and PR. Regarding the practical advantages 

of this framework and its combination with energy supplies in the domain of building 

energy and power systems, the proposed recommendation system can be used to facilitate 

the development of a building energy expert system for real-time building operations 

management, decision making and support. Comparing this technique to the traditional 

approach, it is concluded that the meta-learning approach can achieve both high 

prediction accuracy and high computational efficiency on various genres of building 

forecasting problems. It augments the traditional trial-and-error meta-modeling method in 

that it enables an automated and optimized modeling process which requires little expert 

involvement and minimizes excessive computations. Based on past experience, the 

recommendation system emulates the human’s decision-making ability, which makes 

reasonable decisions and efficient calculations to solve complex problems. Specifically, it 

consists of a two stage learning process: the knowledge base is first constructed, which 

accumulates facts and rules about the problem domain, and then an inference engine is 

built to apply the rules from the known facts and deduce new facts. This work provides 

practical guidelines in the design, development, implementation, and testing of a 
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forecasting recommendation system for various short-term building energy forecasting 

problems.  Specifically, it can help non-experts with forecasting model selection. Due to 

these theoretical contributions and advantages, we recommend its use to facilitate 

everyday building energy industrial applications and operations to reduce the cost and 

improve modeling and operation efficiency. 

In summary, the originality of this Chapter is three-fold: 

 The first contribution is the implementation of a two-stage meta-learning framework 

on various time-series problems in the domain of building energy modeling. 

 The second contribution stems from the proposed generalized automatic meta-

learning based expert system which requires little human involvement to support 

forecasting model recommendation. 

 To the best of our knowledge, this is the first recommendation system motivated from 

the machine learning domain for short term building forecasting based on various 

meta-features derived from both of building data-characteristics and physical-

characteristic features. 

We acknowledge that conducting our analysis in the scope of STLF is a limitation 

of this study. However, the proposed approach adequately demonstrates the applicability 

of the recommendation system on energy forecasting for various types of buildings across 

different climate zones. We envision that the STLF framework is viably transformable to 

MTLF and LTLF by adjusting the operational features and meta-features, and we reserve 

this for our future work.   



99 

 

 

CHAPTER 4  

ONLINE CALIBRATION OF DATA-DRIVEN MODELS FOR BUILDING ENERGY 

CONSUMPTION FORECASTING 

Buildings are dynamical systems with noisy operating conditions and stochastic 

physical and occupancy characteristics. The fidelity of the static building model may 

deteriorate as the system is continuously affected by outside disturbances and the sensors 

are contaminated by noises. As the development of cheap sensor technology and cyber 

infrastructure, we can collect large volume of data to online calibrate the static model to 

improve the model accuracy and thus to achieve greater energy efficiency. In this 

research, we develop an online three-stage modeling framework to provide accurate 

energy consumption forecasting. In the first stage, an appropriate data-driven model is 

recommended using a building model recommendation system developed in our previous 

study for offline energy modeling. In the second stage, we propose to implement a 

subspace-based system identification method, specifically, canonical variate analysis 

(CVA) to identify the parameters of the given model as a state space representation to 

bridge the gaps between the offline and online modeling. In the third stage, a Kalman 

filter algorithm is applied for online model calibration. The proposed forecasting model is 

tested on a commercial building, where three levels, small, medium and large of Gaussian 

noises are added to the system as measurement noises. The experimental results show 

that the proposed Kalman filter based online forecasting model significantly improves the 

forecasting accuracy on an average of 22%.  
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4.1 Introduction 

  In the United States, buildings consume 48% of the total energy [1]. To improve 

the building energy efficiency, extensive research has been conducted in the areas of 

building energy efficiencies and operational controls, such as smart control strategy for 

HVAC and model predictive controllers (MPC) (Ma et al. 2012), real-time energy model 

performance validation and energy usage analysis (Salsbury and Diamond 1996), and 

optimization techniques for building energy system design and planning (Hu, Weir, and 

Wu 2012). While it is estimated that proper building energy load control and operation 

can contribute up to 40% utility cost savings (J. E. Braun 1990), the biggest challenge to 

optimally control the buildings is to accurately predict the energy consumption. 

Overestimating the energy consumption may result in large energy waste and high cost, 

and the power supply may be disrupted if the energy consumption is underestimated 

(Ibrahim 2002). Due to the dynamics and uncertainties exist in the buildings, a high-

fidelity model is needed to characterize the complexities of the buildings and provide 

precise estimations of the building energy consumptions. The existing building energy 

models can be classified to three categories: physics-based (white-box) models, hybrid 

(grey-box) models, and data-driven (black-box) models (Xiwang Li and Wen 2014b). For 

example, EnergyPlus is one of the most comprehensive physics-based model to simulate 

the energy usage in buildings which is widely used by engineers, architects, and 

researchers (Crawley, Drury B., Linda K. Lawrie, Frederick C. Winkelmann, Walter F. 

Buhl, Y. Joe Huang, Curtis O. Pedersen 2001). However, its high computational cost 
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prohibits its adoption for model predictive controllers to optimize building energy 

consumption. Resistance and Capacitance (RC) network model which is a commonly 

used grey-box model is developed to model building energy consumptions with a 

simplified physical representation of thermal flows in buildings. It can be used to predict 

the building heating and cooling load (J. Braun and Chaturvedi 2002), as well as to 

estimate building temperatures (Oldewurtel et al. 2012; Lee and Braun 2008). The RC 

grey-box model requires less number of parameters compared with white-box models, 

and requires less training data compared with black-box models. However, quantifying 

the parameters of RC model still highly depends on experts’ knowledge on building 

internal structure design and thermal dynamic behavior, and requires effective 

optimization and searching algorithms (S. Wang and Xu 2006). This may hinder the 

usage of this method when detailed information and knowledge about parameters of 

buildings are lacking.  

  A large volume of data can be collected as most industrial, institutional, and 

commercial buildings use building automation systems (BAS). This motivates 

researchers to investigate data-driven approach to mine valuable information and obtain 

managerial insights from collected data. The data-driven approach motivates and drives 

the building energy research in various aspects including estimation of energy 

consumption (Solomon et al. 2000; Crespo Cuaresma et al. 2004; W.-C. Hong 2011), 

real-time performance validation for building energy forecast and energy usage analysis 

(Salsbury and Diamond 1996), and energy efficient operation and control (Xiwang Li and 

Wen 2014b; Hu 2015; Hu and Cho 2014). A significant advantage of data-driven 
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approach lies in that it considerably reduces the design cycle iteration time for building 

design and operations, which includes not only simulation, but also analysis of results 

and optimization of actions based on these results (Solomon et al. 2000). It allows fast 

realizations of the design and operation tasks for various building scenarios, in an 

industrial context. Various data-driven methods have been studied and implemented for 

building load forecasting including 1) statistical methods such as Kriging (Matheron 

1960), multivariate adaptive regression splines (MARS) (Friedman 1991), and 

polynomial regression (PR) (Gergonne 1974), and 2) machine learning methods such as 

radial basis function (RBF) (Dyn, Levin, and Rippa 1986), artificial neural network 

(ANN) (McCulloch and Pitts 1943) and support vector regression (Drucker et al. 1997). 

These models have demonstrated good theoretical and experimental performances on 

energy system applications (Anna Ściążko 2011; Zhao and Magoulès 2012).  

  Although a number of data-driven models have been developed to model the 

building energy envelope and HVAC system, the uncertainties in the buildings and the 

dynamics in the environments make it very difficult to model the energy consumption 

with high fidelity. Buildings are dynamical systems with noisy operating conditions and 

stochastic physical and occupancy characteristics (Maasoumy et al. 2014). When real-

time system is continuously affected by outside disturbances and the sensors are 

contaminated by noises, the models will produce predictions that diverge from or fail to 

simulate the real behaviors of the system.  For an off-line discrete data-driven forecasting 

model, the modeling data is usually collected during a regular building operation process 

in a predefined time span. Without on-line calibration, a static model simply takes a 



103 

 

numerical form that relates the output of the model to a set of inputs with 

parameters/structures determined in a passive manner. In another word, the model 

response is deterministic rather than stochastic while forecasting, by nature, is a 

stochastic problem (T. Hong 2010). To address this issue, sequential data fusion to 

calibrate the data-driven model is a viable approach. The Kalman filter, which is a 

computationally efficient data fusion algorithm, facilitates optimal estimation for 

dynamic models has been commonly used in building research and practice (Kalman 

1960).  

  A RC model, in which the building is considered as a network of nodes is 

calibrated with an unscented Kalman filter (UKF) technique for building on-line 

parameter identification and state estimation (Maasoumy et al. 2014). A gray-box 

approach using an unscented Kalman filter based on a multi-zone thermal network is 

proposed and validated with EnergyPlus simulation data (Radecki and Hencey 2012). 

However, RC model is grey-box model and may not be easily developed in the lack of 

knowledge about system physics. A seasonal autoregressive moving average (SARIMA) 

based model is used to forecast energy demands and is calibrated by Kalman filter with 

simple manipulation of the model formation from autoregressive model to state space 

model (Ibrahim 2002). However, this model best accommodates single-input single-

output (SISO) systems, in which only the energy consumption and the time dependencies 

are considered, which is impractical since buildings normally are multiple-input single-

output (MISO) or multiple-input multiple-output (MIMO) in nature (Hasfjord 2014), in 

which building operating conditions, e.g., weather factors, environmental conditions, 
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cannot be ignored in the models. Moreover, the modeling process of time series model 

relies on expert’s decision on parameters settings, e.g., autocorrelation function (ACF) 

and partial autocorrelation function (PACF), which makes it difficult for system 

automation and generalization. Another data-driven approach, in which system 

identification model has been developed based on frequency domain spectral density 

analysis and eigensystem realization algorithm, is used to generate the state space model 

from the Markov parameters, followed by data fusion using a Kalman filter (Xiwang Li 

and Wen 2014a). This study demonstrates good performance of data-driven approaches 

on building energy forecasting and calibration.  

  In summary, a general approach for building energy data fusion is to apply 

Kalman filter on the energy model for online calibration. However, to implement Kalman 

filter for online energy forecasting, a state space model is needed, which is usually 

derived from the system physics, or developed from some data-driven models, e.g., 

ARMA, which is easily transformable to state-space representation. However, various 

data-driven models of different formations and assumptions can be adopted for energy 

forecasting, such as Kriging, ANN, and PR, although some of the data-driven models are 

transformable to state-space representation, technical difficulties exist on the 

customizations with respect to the formulations and parameterizations, such as system 

order determinations. Therefore, given a selected forecast model, which is not necessarily 

to be state space form, there is a need to efficiently and effectively transform it to a state-

space model representation for the Kalman filter to dynamically estimate the states. 
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  To this end, we will develop a generalized approach for online calibration of data-

driven model which can provide more accurate energy consumption forecasting. To 

bridge the gaps between offline and online forecasting models, we propose to implement 

a subspace-based system identification method to transform the static model to a state-

space model which is applicable for Kalman filter. System identification is a process of 

developing or improving a mathematical representation of a system using data collected 

from a designed operation or an experiment in an active manner (Ljung 1987). Three 

basic subspace methods are Canonical Variate Analysis (CVA) (Larimore 1990), 

Numerical algorithm for Subspace State Space System Identification (N4SID) (Van 

Overschee and De Moor 1994), and Multivariable Output Error state SPace (MOESP) 

(Verhaegen and Dewilde 1992). These three methods have their unique features, but are 

all interpreted as a singular value decomposition of a weighted matrix with different 

weights for identifying the order and the extended observability matrix. Ruscio (Ruscio 

1995) has shown that the N4SID algorithm in general does not give consistent estimates 

of the extended observability matrix, and thus gives poor results for deterministic input 

signals. Also, MOESP algorithm does not estimate the stochastic part of the model, while 

CVA estimates the Kalman gain and innovations covariance matrix directly from the 

data. In addition, the experiment based on Monte Carlo Simulation indicates that CVA 

demonstrates competitive performance for system parameter estimations, comparing with 

ARMAX (autoregressive-moving-average models with exogenous inputs terms). 

Therefore, this study adopts CVA as the subspace black-box estimation technique, which 

conditions the input to output data by projecting or performing a decomposition of the 
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system matrices and then conducts estimation using least squares (Van Overschee et al. 

1996). As a result, we propose a three-stage generalized framework for online calibration 

of data-driven models which may be state-space free. In the first stage, an appropriate 

data-driven model is recommended by a building model recommendation system 

developed in our previous work (Cui et al. 2016) for off-line energy modeling. In the 

second stage, CVA is applied to transform the off-line model into a state space 

representation. In the third stage, Kalman filter is applied for on-line model calibration 

using real-time measurements collected from sensors. To evaluate the performance of the 

proposed framework, we test on a commercial building simulation model for one-day 

ahead forecasting with Kalman filter data fusion, under three levels of measurement 

noises. The experimental results show that the Kalman filter data fusion significantly 

improves the forecasting accuracy on the range of 8%~30%. In summary, the 

contributions of this research lie in that it realizes the on-line Kalman filter data fusion 

for a given forecast model with automatic transformation to state-space representation 

using system identification, which only requires moderate configuration complexity. 

  Section 2 first gives a general introduction to the related methodologies, including 

Kalman filter basics and CVA subspace system identification method, followed by the 

proposed methodology; Section 3 elaborates the experiments and results; In section 4, 

conclusion and future work are discussed. 
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4.2 Methodology 

4.2.1 Kalman Filter Basics  

  In 1960, a recursive solution to the discrete data filtering problem was described 

by R.E. Kalman in (Kalman 1960). A brief and straightforward introduction to Kalman 

filter can be found in (Maybeck 1979). The Kalman filter generally tries to address the 

problem of estimating the state 𝑥 ∈ 𝑅𝑛of a discrete-time controlled process, governed by 

the linear stochastic difference equation 

 xk  =  Axk−1  +  Buk−1  +  wk−1, (28)   

with a measurement 𝑧 ∈ 𝑅𝑚that is 

 𝑧𝑘  =  𝐻 𝑥𝑘 + 𝑣𝑘. (29)   

The random variables 𝝎𝒌 and 𝒗𝒌 represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions 

𝑝(𝜔) ∼  𝑁(0, 𝑄) 

𝑝(𝑣)  ∼  𝑁(0, 𝑅)  

The 𝑛 × 𝑛 matrix A in the difference Equation (28) denotes the relations between the 

state at the previous time step k-1and the state at the current step k. The 𝑛 × 𝑙 matrix B 
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denotes the relations between the optional control input 𝑢 ∈ 𝑅𝑙 and the state x. The 𝑚 ×

𝑛 matrix H in the measurement Equation (29) denotes the relations between the state and 

the measurement 𝑧𝑘. Equations (28) and (29) are also known as time update equations 

and measurement update equations. The time update equations obtain the a priori 

estimates of the next states by projecting forward (in time) the current state and error 

covariance estimates. The measurement update equations incorporate a new measurement 

into the a priori estimate of the next state to obtain an improved a posteriori estimate. A 

Kalman gain, K is computed as 

 𝐾𝑘  =  𝑃−
𝑘 − 𝐻𝑇 (𝐻𝑃−

𝑘𝐻𝑇  +  𝑅)−1,  (30)   

where 𝑃𝑘
−

 is a priori state estimate error covariance. K is responsible for minimizing the a 

posteriori estimate error covariance 𝑃𝑘, as a gain or blending factor. The actual 

measurement is “trusted” more and more, as the measurement error covariance 

approaches zero, while the predicted measurement is trusted less and less. On the other 

hand, the actual measurement is trusted less and less as the a priori estimate error 

covariance approaches zero, while the predicted measurement is trusted more and more. 

A complete depiction of the operation of the Kalman filter is shown below (Figure 21). 
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Figure 21 Complete Kalman Filter Operations   

 

4.2.2 Canonical Variate Analysis for State Space Modeling 

The Canonical Variate Analysis is a sub space system identification method that 

models, filters, and controls a process by approximating the memory or states of the 

process, i.e. by successive determination on the functions of the past which have the most 

information for prediction of the future (Larimore 1996). The CVA fundamentally 

determines a general state space model in which the states correspond to the Markov 

states of the process, which is a stochastic process that satisfies the Markov property. 

Markov property states that conditional probability distribution of future states of the 

process (conditional on both past and present states) depends only upon the present state, 

not on the sequence of events that preceded it. The computational modeling process has a 

number of major advantages over other model approximation methods: 1) It is a much 

more economical approximation by successively selecting the states of the process than 

say Fourier methods, which generally involves an infinite number of states for good 

approximation. 2) The CVA first determines the canonical states and the state space 
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models are then simply determined by regression. In contrast, other methods, e.g., RC 

models, determine a model of the system and then obtain estimates of the states by 

deriving the corresponding Kalman filter. 3) The CVA computation on the “optimal 

memory” is based on a singular value decomposition (SVD) which is one of the most 

numerically stable computational procedures. This ensures that the obtained state space 

representation is always well conditioned. Therefore, the CVA method is a viable tool for 

automatic implementation of system identification on building energy modeling 

including the automatic selection of the model state order (Hunter 1995). The procedure 

mainly involves the following tasks: 

 Determination of the canonical states of the process. The canonical states are 

orthogonal and optimal by selecting the first r canonical states given a reduced order 

model of order r.  

 The canonical states involve with the computation on state equations by simple 

regression. 

 Determination of optimal state order is based on the Akaike information criterion 

(AIC) (Akaike 1977). 

The state equations may be obtained in a least squares sense using: 

 𝑥𝑡+1 =  𝐴𝑥𝑡 +  𝐵𝑢𝑡 +  𝐺𝑒𝑡,  (31)   

 𝑦𝑡 =  𝐶𝑥𝑡 +  𝐷𝑢𝑡 +  𝑒𝑡.  (32)   
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In the above equations, 𝑥𝑡, 𝑢𝑡, and 𝑦𝑡 are known at any time t, and 𝑒𝑡 is white noise 

process which results from errors in the solution, and A, B, C, D, and G are determined 

using least squares.  

  The subspace system identification method is particularly useful in the modeling 

of buildings and has been implemented in (Cigler and Privara 2010). The advantage of 

the algorithm lies in that it not only can provide an estimation of the system order but 

also can provide matrices of the state space description (Verhaegen and Dewilde 1992). 

Another advantage is its state space representation, making it suitable for Kalman filter 

calibration. CVA is able to automatically identify the system order and is problem 

independent. The state space derived from CVA can then be used in the data fusion 

framework discussed in the next section.  

 

4.2.3 Proposed Online Model Calibration Framework for Building Energy Forecasting   

  According to our previous study, the performances of the data-driven models vary 

depending on the problems investigated (Cui et al. 2014; Cui et al. 2015). To identify the 

best model, a common procedure is to conduct a trial-and-error approach, which might be 

computationally inefficient. This study adopts the recommendation system proposed in 

our previous work (Cui et al. 2016), which intelligently selects the best model among a 

number of candidates based on the characteristics of the given building case, without 

going through model training and validation process. The recommended off-line energy 

model could be viewed as a data-driven simulation model of the building energy system, 

as it is constructed from the historical data collected from the building energy system. 
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Meanwhile, it could be used as a forecasting model for predicting the energy 

consumption of the future. However, without on-line data fusion, this model shall provide 

poor forecast results because it does not adapt to system dynamics and noises. With the 

assistance of a CVA transformation, the simulation data from the data-driven model can 

be used for training the state space model. This enables data fusion with real-time noisy 

measurements from the sensors through Kalman filter based calibration.  

  As a result, the proposed building energy forecasting framework is a 3-stage 

integrated system involving: 1) model selection, 2) model transformation, and 3) model 

calibration. The flowchart of the proposed framework is given in Figure 22 which works 

as follows: 1) Historical data is used to perform off-line, one-step simulation using a 

recommended data-driven model selected from the candidate models. The modeling error 

of the off-line simulation model is quantified to model the process noise in Kalman filter. 

2) The simulation data is generated from the obtained off-line model on which CVA 

transformation is applied to build a state space model. 3) Kalman filter updates the 

system states of the building model, as the system measurements sequentially being 

observed.  
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Figure 22 Workflow of the Proposed Framework of Online Energy Forecasting Model  

 

 

  

4.2.3.1 Stage I - Offline Model Selection 

  Development of offline simulation model is a critical step because model 

formulation and structure plays an important role in model forecasting accuracy. We 

begin with training data selection, based on the work of (Eisenhower et al. 2012), in 

which the sensitivity analyses were conducted to identify the most influential features for 

the energy output generated from the EnergyPlus simulation models, 10 operational 

features are selected from over 600 features in the simulation models, including (1) 
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outdoor air dry bulb temperature; (2) outdoor air relative humidity; (3) outdoor air flow 

rate; (4) diffuse solar radiation rate; (5) direct solar radiation rate; (6) zone people 

occupant count; (7) zone air temperature; (8) zone air relative humidity; (9) zone 

thermostat cooling set point temperature; (10) building equipment schedule; In addition, 

since periodicity is one main characteristic in electricity load time series, two categorical 

variables, Day and Time are added to the study. Note these 12 features are also treated as 

system control inputs (denoted as u) in the state space model construction process 

(Equations (31) -(32)). The 12 features are described in Error! Reference source not 

found..  

 

 

 

 

 

 

 

Table 13 Ten Selected Building Operational Features and Two Categorical Variables 

 Building Variables Variable Type [range] 

1 Outdoor Air Drybulb Temperature  (℃) Continuous 

2 Outdoor Air Relative Humidity Continuous on [0,1] 

3 Outdoor Air Flow Rate Continuous 

4 Diffuse Solar Radiation Rate (W/m2) Continuous 
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5 Direct Solar Radiation Rate (W/m2) Continuous 

6 Zone People Occupant Count Integer 

7 Zone Air Temperature  (℃) Continuous 

8 Zone Air Relative Humidity Continuous on [0,1] 

9 Zone Thermostat Cooling Set Point Temperature (℃) Continuous 

10 Building Equipment Schedule Value Continuous on [0,1] 

11 Day of Week Integer on [1,7] 

12 Time of Day Integer on [1,48] 

 

In this study, six data-driven models are explored including Kriging, support 

vector regression (SVR), radial basis function (RBF), multivariate adaptive regression 

splines (MARS), artificial neural network (ANN) and polynomial regression (PR). The 

performance is measured using Normalized Root Mean Square Error (NRMSE). The 

Building Energy Model Recommendation (BEMR) system proposed in (Cui et al. 2016) 

is implemented in this study for model selection, where the recommended model is used 

for model transformation and on-line calibration. 

4.2.3.2 Stage II – State Space Model Transformation  

 Given a sequential simulation data of the input, 𝑢𝑡 and energy consumption 

prediction �̂�𝑡 from developed building model, the CVA method can transform the model 

into a state space model. Specifically, for a given choice k of rank (determined by AIC), 

the first k canonical variables are used as memory in the construction of a kth-order state 

space model. Given k is greater than or equal to the true state order of the system, the 
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canonical variables will provide an accurate estimate of the state. In Equations (31) and 

(32), assume 𝑥𝑡 is a kth-order Markov state and 𝑤𝑡 and 𝑣𝑡 are white noise processes that 

are independent distributed with covariance matrices Q and R respectively. Given the 

state 𝑥𝑡 and data consisting of inputs 𝑢𝑡 and outputs 𝑦𝑡 over an interval of time t, the state 

space matrices A, B, C and D could be estimated by a multivariate least square regression 

estimation procedure.  

 

4.2.3.3 Model Transformation Stage III – Online Model Calibration  

  The data-driven model is regenerated to be a state space model based on SVD 

matrix factorization conducted in canonical variate analysis on the simulation data of the 

building energy forecast model. However, due to the truncation of the system, the state 

space model may not perform as accurate as the data-driven model. Therefore, the error 

between the state space model and the observations is considered as the process noise in 

Kalman filter. Upon the state space model, noisy measurements are used to update the 

energy forecasting. The procedures of Kalman filter are given in Figure 21. 

4.3 Experiments and Results 

A simulated building system is used as a test bed for the proposed framework. 

Specifically, the building description, procedure of offline model performance evaluation, 

model identification and transformation, and online data fusion will be elaborated in 

detail in this section. 
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4.3.1 Experimental Settings of the Proposed Framework  

  In this study, an EnergyPlus simulation model, developed by U.S. Department of 

Energy (DOE) (Deru et al. 2011), is used to generate energy data to train and validate the 

online building energy forecasting model. The simulation model has been validated with 

real buildings. A large-size commercial office building with 12 stories including 

basement is studied. It is constructed with nineteen zones, sixteen conditioned zones and 

three unconditioned zones, and the total floor area is 46,320 m2. The building location is 

selected in Phoenix, AZ, USA for this study, and the corresponding TMY3 (typical 

meteorological year) weather data set (Wilcox and Marion 2008) is adopted as the 

weather data source for the simulation model. The HVAC systems used in this building 

are variable-air-volume (VAV) air handling units (AHUs) with 2 water-cooled chillers. 

Heating is provided by gas boiler and as a result, we restrain our study on cooling load 

forecasting in this study. Simulation data are obtained by simulating the reference large 

office building energy consumption for one month in July. The data are generated at half-

hour granularity using DOE’s EnergyPlus simulation software, which yields 48 data 

points on each day and 1,488 data points for a month. 

  The historical data is obtained from the EnergyPlus simulation model results as 

the ground truth (real energy consumption), and we add respectively, small, 𝜎1=5%, 

medium, 𝜎2=10%, and large, 𝜎3=20% of white Gaussian noise to the observed values as 

measurement noises. The observation data perturbed by the artificial random noise is 

depicted in Equation (33), which resembles the real-world system contaminated by 

various unknown disturbances, e.g., sensor errors, 
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 𝑅 =  (�̅� ∗  𝜎 ∗  𝑟𝑎𝑛𝑑 )2,  (33)   

where �̅� is the mean of simulation output of the energy consumption and 𝑟𝑎𝑛𝑑 is a 

random value drawn from the standard normal distribution. Due to model approximation, 

both off-line black-box forecasting model and the state space model present modeling 

errors, which are inevitable model uncertainties. These uncertainties are then quantified 

as the process noise incorporated into the Kalman filter calibration procedures, in order 

for quantitatively capturing the discrepancy between the model and the real system. It is 

depicted as, 

 𝑄 =  𝐼 ∗  𝑠𝑡𝑑.2,  (34)   

where 𝐼 is an 𝑛 × 𝑛 identity matrix, and 𝑠𝑡𝑑. is the standard deviation of the model 

simulation error.  

 

 

4.3.2 Offline Data-driven Model Recommendation  

  The building model recommendation system makes recommendations among six 

models, Kriging, SVR, RBF, MARS, ANN, PR. According to the extrapolation test in 

our study in (Cui et al. 2016), BEMR is capable of making reliable recommendations 

under uncertainties. We consider the data ranging from July-1 to July-14 (two weeks) as 

training set and the recommended models are tested on July-15 (Monday). The 

performance of the recommended models under different levels of the measurement 

noises is given in Error! Reference source not found.. For the measurement noise equal 
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to 5% and 10%, ANN is recommended as the best model, and as a result, it is selected as 

the baseline model for developing the state space model with CVA method. While when 

measurement noise equals to 20%, Kriging is recommended and thus it is chosen as the 

baseline model. The performance results also indicate that one model is not necessarily to 

perform consistently well as the uncertainty increases, because the robustness of the 

models varies.  Figure 23 shows the discrepancy between the forecast data on July-15 and 

the real data, with three incremental measurement noises. It is observed that when noise 

is between 5% and 10%, ANN model in general could capture the abrupt change of the 

system dynamics as the operation of the system switch between on and off. However, as 

the measurement noise continues to increase, it is difficult for the Kriging model to 

closely track the system dynamics for the entire day. Also, as shown in Figure 23, in most 

of time, the forecast on the testing data set continually underestimates the real energy 

consumption.  

 

Table 14 Performance of Each Recommended Model 

Noise NRMSE Model 

NRMSE(𝝈𝟏=5%) 0.0538 ANN 

NRMSE(𝝈𝟐=10%) 0.0625 ANN 

NRMSE(𝝈𝟑=20%) 0.0868 Kriging 
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Figure 23 One-day Ahead Forecast Comparison Plots with Different Measurement Noise 

 

4.3.3 CVA estimation on black-box for state space modeling 

  To realize on-line data fusion, a state space model using CVA system 

identification method is applied on the static black-box model. We first simulate the 
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energy system using the trained ANN model for one week from July-8 to July-14. Then 

based on the simulation data, a state space model is identified using the CVA method. 

Here we take 𝜎2=10% as an example to illustrate the model development process. Based 

on Equations (31) and (32), the identified model is a 3rd-order state space model with the 

following parameters in canonical form: 

A = (
0
0

−0.73

1
0

0.65

0
1

0.84

), 

B

= (
−17.21
−5.09

−14.96

−3.39
−7.95

−1.23

1.02
−1.05

0.83

0.20
−0.22

0.15

−0.33
−0.06

−0.51

92.56
−47.15

54.05

24.56
4.86

10.61

−296.22
232.22

−320.74

528.84
−67.47

668.99

−458.73
−10.22

−1030.80

2020.27
1779.33

714.66

97064.93
85307.63

34360.56

), 

G = (
−0.02
0.13

−0.03

), 

which is the estimated Kalman gain, 

C = (
1
0
0

)

𝑇

, 

D = 𝟎. 

The estimated states x is 3rd-order, in which the 3 state variables are factorized from the 

past input and output data. They represent the “memory” of the past information that are 

most important for prediction of the output y in the future. They could also be viewed as 

the optimally selected 3 linearly combined canonical variables that are the optimal 

choices for reduced order states, which best represent the critical information of the past 

data. The output y is the energy consumption forecast based on the derived SSM, which 
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is one-dimensional. Therefore, the Kalman filter measurement noise covariance is simply 

considered as the variance of the measurement noise. 

  A time series comparison plot is given in Figure 24, presenting the discrepancy 

from ANN simulation model and the state space model (SSM) to the real data. It is 

shown that SSM generally captures the dynamics of the ANN simulation model, 

however, it fails to track the abrupt change of the system dynamics (marked as dotted 

circle in red), when the operations on the HVAC systems switch between on and off. This 

might be due to the fact that ANN is superior for modeling non-linear relations between 

the multi-variates and the response variable, while SSM in general is a linear model 

which is governed by linear stochastic difference equations. To mitigate this discrepancy, 

we can consider this inadequacy as the model uncertainty, i.e., 𝑤𝑡, and model it into the 

process update equation in the SSM. While this inadequacy dose not fully depict the 

overall model uncertainty from the SSM to the real system since it only accounts for the 

discrepancy to ANN simulation model, which is also an approximation model from the 

real system. Therefore, ANN simulation error will also be considered and incorporated 

with the SSM model error.  
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Figure 24 Time Series Comparison Plot among ANN Simulation Model, the State Space 

Model (SSM) and the Real Data (10% noise) 

  It is known that energy load profiles of weekdays and weekend present 

significant different patterns, thus they should be modeled separately (Xunming Li, 

Sun, and Gong 2005) (Crespo Cuaresma et al. 2004). Since the test day is Monday, 

for estimating the model errors of the ANN model and SMM, only the simulation 

data of July-8 to July-12 (Monday to Friday) are used. Figure 25 shows the 

simulation error time series of the two models, and it is observed that CVA presents 

error with higher variance than ANN. This echoes with Figure 24 that CVA is less 

capable on modeling system dynamics than ANN due to its limited ability on non-

linearity modeling. We perform Kolmogorov-Smirnov (K-S) tests to determine if 

the ANN error sample and CVA error sample are from normal distribution, 

respectively. According to the tests, at 5% significance level, both of the errors are 

estimated as normally distributed. Specifically,  𝑤𝐴𝑁𝑁~𝑁(−12.45, 27.432) , 

𝑤𝑆𝑆𝑀~𝑁(0.55, 76.642). Because the modeling of baseline model and SSM is 
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independent with each other, here we assume the two errors are also independent. 

In the following data fusion procedure, these two independent Gaussian noises are 

combined to account for the process noise of the system. From the estimated 

parameters in the errors, we can observe that ANN generally underestimates the 

energy load given a negative estimated mean, while the standard deviation of SSM 

is large since it is not as capable as ANN to capture the non-linear dynamics of the 

system. It can also be inferred that ANN is a high-bias low-variance model in this 

case, while SSM on the contrary, is a low-bias but high-variance model. A good 

model is appreciated by bearing both of low bias and low variance, while it is very 

difficult to obtain such a “perfect” model in real application. Data fusion with 

Kalman filter could mitigate this concern since it assimilates the real-time 

observations into the prediction process which iteratively provides statistically 

“optimal” estimates of the present states to correct the bias and filter out noise to 

reduce the variance. Follow the same procedures, we develop the SSM for the other 

two sets of contaminated observations, each with the measurement noise of 5% and 

20%. The process noise of the baseline model and the corresponding SSM for three 

measurement noise conditions are summarized in  

 

Table 15. It is observed that as the measurement noise increases, both the baseline and 

SSM process noise tend to increase. 



125 

 

 

Figure 25 Simulation Error Time Series of ANN and SSM (10% noise) 

 

 

Table 15 Summary Statistics of the Distribution of Process Noise of the Baseline Model 

and the Corresponding SSM 

 Baseline SSM 

𝜎1=5% 𝑤𝐴𝑁𝑁 ~𝑁(−8.40, 25.642) 𝑤𝑆𝑆𝑀~𝑁(0.25, 68.272) 

𝜎2=10% 𝑤𝐴𝑁𝑁~𝑁(−12.45, 27.432) 𝑤𝑆𝑆𝑀~𝑁(0.55, 76.642) 

𝜎3=20% 𝑤𝐾𝑟𝑖𝑔𝑖𝑛𝑔~ 𝑁(−16.86, 31.192) 𝑤𝑆𝑆𝑀~ 𝑁(0.85, 82.322) 

 

4.3.4 Data Fusion with Kalman Filter 

  In order to obtain the best initial parameter values for the Kalman filter algorithm, 

we first estimate the SSM based on baseline model simulation data. Figure 26 shows the 

outside disturbance on the building system as control input to the SSM model. We can 

see that the building energy system operation strategies have significant impacts on the 

energy consumption profiles.  
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Figure 26 Control Input to the SSM Model 

  The energy estimation of the building with measurement noise of 10%, using KF 

is depicted in Figure 27. It is observed that the KF estimated energy consumption is 

generally consistent with the real consumption, while the static SSM (the prior estimates 

of the state) fails to render good forecast in the first 8 hours, which results in high 

variance prediction (note there are even negative energy consumption predictions, which 

are not realistic). According to the estimated parameters of the SSM simulation error, it is 

known that SSM has high variance on prediction, which leads to unrealistic predictions in 

the first 8 hours. As the system control inputs switch to high mode (shown in Figure 26 

starting from time 15), the SSM starts to catch up the system dynamics and provides 

more accurate predictions. However, it still somewhat underestimates and overestimates 

the load (shown in red circle). Compared to SSM, the KF calibrated model does much 

better job as it closely follows up the real energy consumption trend.  
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Figure 27 Kalman Filter Energy Estimation of the Building 

  Figure 28 shows a comparison plot between the KF estimation of energy 

consumption and the real energy consumption. While comparing to the corresponding 

ANN plot (10% noise) in Figure 23, we see significant forecast accuracy improvement by 

using the Kalman filter data fusion than simply relying on static ANN model.  

 

Figure 28 comparison plot between KF estimation of energy consumption and real energy 

consumption 
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  The performance of static baseline model, static SSM and Kalman filter on energy 

consumption forecast for July-15, under three measurement noise conditions is given in 

Table 16. The Kalman filter results give the best accuracy performance for each 

experiment, with an average of 22.23% improvement compared to static baseline model. 

The mean and standard deviation of the absolute prediction errors of each Kalman filters 

are given in Table 17. It is observed that as the measurement noise increases, the Kalman 

filter estimation error generally increases, where the absolute prediction error mean 

increases from 2.8% to 7.0% of the mean half-hour energy consumption. This is due to 

the fact that, given a higher measurement noise, the baseline model’s performance will 

also be deteriorated. While the process noise is derived from the error of the baseline 

model along with the SSM estimation error, this means, when measurement noise is 

higher, the process noise is also getting higher. Although the Kalman gain can act as a 

blender effect for tuning the model estimations between the process and measurement 

updates, however, given both process and measurement noises are deteriorated, the 

Kalman filter’s performance may also deteriorate. Therefore, when the measurement 

noise is too high, if the baseline model is built from data-driven approach, the data fusion 

performance may not be as good as the performance based on the model built upon 

system physics. Data-driven model is highly relying on the training data quality of the 

system, this is one of the drawbacks of the data-driven models. Therefore, to ensure high 

fidelity modeling and high quality data fusion, we need to control measurement noise in a 

reasonable range. According to this experiment result, 5%-10% of the Gaussian noise is 

acceptable.  
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Table 16 NRMSE Performance of Baseline, SSM and Kalman Filter on Energy 

Consumption Forecast 

Noise Level Static Baseline Static SSM Kalman 

Filter 

Improvement% 

5% 0.0538 0.1021 0.0392 27.14% 

10% 0.0625 0.1032 0.0431 31.04% 

20% 0.0868 0.1544 0.0794 8.53% 

 

Table 17 Mean and Standard Deviation of Absolute Forecasting Errors of Kalman Filter 

Results 

Noise Level noise=5% noise=10% noise=20% 

mean 42.08 45.90 104.82 

std. 28.51 31.41 78.08 

 

4.4 Conclusions and Future Work 

A three-stage modeling technique of building energy consumption online 

forecasting is proposed in this study. The proposed method tries to augment the static 

forecasting model into a dynamic state space model, in which CVA bridges the gap for 

the static model of arbitrary form transforming into state space form. This facilitates the 

Kalman filter data fusion forecast that assimilates the real-time measurements and refines 

the state estimate. The contributions of the proposed method include: 
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 Realization for on-line Kalman filter data fusion for arbitrary forecast model. 

 Automatic system identification from static forecast model into dynamic state space 

model representation. 

 Minimal configuration complexity in applying this algorithm for any building case, 

due to its generalizability on arbitrary forecast model. 

The proposed forecast model is tested on the consumption data of a commercial 

building simulation model. The one-day ahead forecasting using the estimated state space 

model in conjunction with Kalman filter data fusion is performed. The CVA makes 

approximation of the data-driven model in state space form on which Kalman filter is 

applied for data fusion. Three levels of measurement noises are added to the consumption 

data for testing the data fusion performance. The experimental results show that the 

Kalman filter data fusion significantly improves the forecasting accuracy on the range of 

8%~30%. It is also concluded that as the measurement noise increases, the data fusion 

modeling performance deteriorates. This is because that both of the forecast model and 

state space model are developed from data-driven approach, which highly relies on 

accurate training data. We suggest that measurement noise should be controlled within a 

certain level to prevent from inaccurate forecasting results, especially for data-driven 

forecasting approach, otherwise physics-based models or hybrid models are preferable. 

Finally, it is safe to say that the proposed framework provides a more flexible 

approach compared to other offline modeling procedures. It is a suitable technique for 

online forecasting with arbitrary forecast model which requires data fusion smoothing of 
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measurement noises. It is an automatic and effective algorithm that can tackle system 

output uncertainty properly.  

Currently, the proposed framework only considers measurement noise of the 

output, while other uncertainties, e.g., input uncertainties, are not tackled. Moreover, we 

assume the system parameters remain unchanged while only system states are calibrated 

based on measurement noise. In our future work, we intend to update the system 

parameters concurrently with state estimation, which is known as dual-estimation 

procedure, to further improve the system’s adaptive capability to system dynamics and a 

wide range of uncertainties. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 Summary 

In this dissertation, a generalized high-fidelity data-driven building energy 

modeling framework is proposed. As shown in Figure 29, a recommendation system for 

data-driven model selection is first developed. Various types of “black box” simulation 

problems are investigated followed by the building applications. The proposed system 

demonstrates satisfactory performance in recommending appropriate models, resulting 

accurate and efficient predictions on both of cross-sectional data and time series data 

(e.g., building energy). We note the building model performance may deteriorate given 

the dynamical and stochastic nature of building energy systems. To address the issue, 

Kalman filter-based data fusion based on canonical variate analysis (CVA) subspace 

method is developed for on-line energy forecasting which significantly improves the 

prediction accuracy.  
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Figure 29 Framework of Data-driven Building Energy Modeling. 

 

 

5.2 Conclusion and Future Work 

In general, the contributions of this work are manifold.  

The objective of Chapter 2 is to develop a recommendation system of meta-model 

for computation-intensive simulation problems. It addresses the problem of meta-model 

selection, where appropriate meta-models are recommended for surrogate modeling in 

substitute for physical models, based on a meta-learning technique. The contributions are:  

 The proposed system can be used to facilitate the development of various expert 

systems, such as decision making and support systems.  
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 The proposed system augments the traditional trial-and-error meta-modeling method 

to a structured and automated form suitable for computer manipulation 

 The generic system is able to automate and optimize the modeling process with less 

human involvement and computations.  

The objective of Chapter 3 is to build a recommendation system for short-term 

building forecasting model selection. This work provides practical guidelines in the 

design, development, implementation, and testing of a forecasting recommendation 

system for various short-term building energy forecasting problems.  The originality of 

this Chapter is three-fold: 

 The first contribution is the implementation of a two-stage meta-learning framework 

on various time-series problems in the domain of building energy modeling. 

 The second contribution stems from the proposed generalized automatic meta-

learning based expert system which requires little human involvement to support 

forecasting model recommendation. 

 To the best of our knowledge, this is the first recommendation system motivated from 

the machine learning domain for short term building forecasting based on various 

meta-features derived from both of building data-characteristics and physical-

characteristic features. 

The objective of Chapter 4 is to build an on-line model calibration model for the 

data-driven building energy forecast model. A three-stage combined black-box-CVA-

Kalman filter modeling technique of forecasting is proposed in this study. The proposed 

method tries to augment the static forecasting model into a dynamic adaptive system, in 
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which CVA bridges the gap for the static model of arbitrary form transforming into 

dynamic system form. The main contributions are: 

 The proposed framework provides a more flexible approach for data fusion compared 

to other physical modeling procedures.  

 It is an automatic and effective algorithm that can tackle system output uncertainty 

properly.  

 It is devised for minimum configuration complexity for its application on any 

building case, due to its generalizability on arbitrary forecast model. 

The framework may have several advantages: 1) It is a computationally efficient 

model, because it is completely data-driven, which does not involve with physics 

modeling; 2) It is an intelligent expert system, because it is built from meta-learning 

based machine learning method, which is capable of recommending the appropriate 

models for any arbitrary building scenario; 3) It is an automatic self-adaptive learning 

system, because it is capable to learn from its past experience, which enables enlargement 

of the knowledge and data bases;  4) It is a high-fidelity forecasting engine, because it 

implements data fusion on the forecast model, which dynamically calibrates the model 

with real-time measurements.  

There are a number of research directions we intend to move forward, on the basis 

of the proposed framework. First, the current model is limited in the scope of short term 

load forecasting, we argue that it is viably extendable to incorporate medium term and 

long term load forecasting, by adjusting and reengineering the data sampling frequency, 

feature engineering and meta-feature selection. We envision that the extended building 



136 

 

modeling system is able to adapt itself to a wide range of forecasting problems, and 

provides with more powerful decision support. Second, in the current model, the model 

recommendations are simply derived from accuracy metric, which may not be adequate 

for selecting the most appropriate models. We plan to extend to include multi-criteria 

metrics, e.g., robustness and computational cost, for comprehensive assessment on the 

models’ performance.  Third, the features we select to describe the building energy data 

is critical for success of recommendation system development. Therefore, feature 

engineering for knowledge extraction should be further studied to better understand and 

depict the building energy data. Forth, regarding data fusion, the proposed framework 

only considers measurement noise, while other uncertainties, e.g., input uncertainties, and 

model uncertainties, are not tackled. Moreover, we assume the system parameters remain 

unchanged while only system states are calibrated. In our future work, we intend to 

update the system parameters concurrently with state estimation, which is known as dual-

estimation procedure, to further improve the system adaptivity to system dynamics and a 

wide range of uncertainties. 
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