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ABSTRACT 

LiNbO3 and ZnO have shown great potential for photochemical surface reactions 

and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due 

to recombination or back reactions and ZnO exhibits a chemical instability in a liquid 

cell. In this dissertation, both materials were coated with precise thickness of metal oxide 

layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO3 

was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and 

molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single 

crystal ZnO were passivated with PEALD SiO2 and Al2O3.  

Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions 

and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. 

Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO4 buffer 

solutions and studied for photoelectrochemical reactions. A fundamental aspect of the 

heterostructures is the band alignment and band bending, which was deduced from in situ 

photoemission measurements. 

This research has provided insight to three aspects of the heterostructures. First, 

the band alignment at the interface of metal oxides/LiNbO3, and Al2O3 or SiO2/ZnO were 

used to explain the possible charge transfer processes and the direction of carrier flow in 

the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with 

different internal carrier concentrations was related to the surface photochemical 

reactions. Third is the surface passivation and degradation mechanism of Al2O3 and SiO2 

on ZnO was established. The heterostructures were characterized after stability tests 
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using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-

section transmission electron microscopy (TEM). 

The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned 

LiNbO3 (PPLN) enhances the Ag
+
 photoinduced reduction process. ZnO seems more 

efficient than TiO2 possibly due to a higher carrier mobility. However, an increase of the 

ZnO thickness (≥ 4 nm) reduced the effect of the PPLN substrate on the Ag nanoparticle 

pattern. For the case of Al2O3 and SiO2/ZnO heterostructures, SiO2 remains intact 

through 1 h stability tests. Unlike SiO2, Al2O3 shows surface degradation after a short 

stability test of a few minutes. Thus, SiO2 provides improved passivation over Al2O3. A 

detailed microscopy analysis indicates the underneath ZnO photocorrodes in the 

SiO2/ZnO samples, which is possibly due to transport of ions through the SiO2 protective 

layer.  
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This dissertation is dedicated to the memory of my father. 

 

“Never give up on a dream just because of the time it will take to accomplish it. 
The time will pass anyway.” 

 - Earl Nightingale 
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INTRODUCTION 

CHAPTER 1. PHOTOCHEMICLA REACTIONS ON OXIDES 

Photochemical reactions can be used to remove industrial waste and chemicals 

from water and for water splitting to produce hydrogen fuel. For photochemical reactions, 

the illuminated above band gap light on the material excite electron-hole pairs, which 

migrate to the surface and react with chemical species and convert solar energy into 

chemical energy [1, 2, 3, 4, 5]. Photocatalysis is a process that is defined by two 

simultaneous reactions, reduction and oxidation (redox), usually on a solid photocatalyst 

surface. The commonly used photocatalyst materials are metal oxides and ferroelectrics. 

The requirements for photochemical reactions to occur at the solid-liquid interface are: (i) 

the redox potential of the chemical species should be within the photocatalyst bandgap, 

(ii) chemically stable solid photocatalyst, and (iii) high surface reaction rate of chemical 

species and photoexcited carriers. 

Semiconductors and ferroelectrics are the promising materials for photocatalysis 

processes to provide new approaches to mitigate environmental pollution and energy 

problems. During the last decades, various materials, such as metal oxides (TiO2, ZnO 

and ZrO2) [1- 3, 6], sulfides (CdS) [1, 7], nitrides [1, 8] and ferroelectrics (LiNbO3 and 

BaTiO3) [3, 4, 5, 9-11] have been explored. However, the applications of photocatalyst 

materials are limited due to (i) high carrier recombination rates, and (ii) chemical 

instability. To enhance the photocatalyst efficiency it is critical to reduce the charge 

recombination and enhance the stability. Despite the wide band gap ferroelectrics are 

emerging as efficient photocatalysts, which is attributed to their chemical stability and 

internal electric field. On the other hand, ZnO has the highest reported photocatalytic 
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efficiency among metal oxides due to a high optical absorption coefficient but it has the 

disadvantage of chemical instability. A number of efforts have been made to improve the 

efficiency of ferroelectric and ZnO photocatalysts. Among the number of different 

methods the formation of optimized heterostructures has been extensively explored [12-

15]. For ZnO, a passivation layer on the surface can increase the stability and thus 

increase the efficiency. Consequently, for ferroelectrics, metal oxide charge transfer layer 

at the surface can (i) reduce recombination due to surface states, and (ii) increase 

photoexcited charge separation. The heterostructure formation can protect the 

photocatalysts photocorrosion and enhance charge separation that also reduces the 

recombination.  

I.  Oxides as Photocatalysts and Charge Transfer Layers: 

Metal oxides have been the primary materials for photocatalysis to produce 

hydrogen (H2) fuel. The commonly used metal oxides for photocatalytic processes 

include ZnO, TiO2 and ZnO/TiO2 heterostructures due to their high reaction rate and 

appropriate band gap [1, 2, 16-19]. On the other hand, ferroelectrics such as LiNbO3 and 

BaTiO3 have been studied for photochemical reactions to remove dye molecules from 

water, and to pattern metal nanoparticles using reduction and oxidation processes [4, 5, 9-

11, 20]. The wide band gap of ZnO, TiO2, LiNbO3 and BaTiO3 makes them an efficient 

photocatalyst in UV illumination but the performance in visible light is significantly  

reduced [6, 12, 20].  

To enhance the photochemical reaction efficiency various material properties 

have been explored. The first is the oxides with high absorption coefficient and low 

photoexcited carrier recombination rate. Absorption coefficient is a material property that 
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increases with the increase in band gap [4]. Among the metal oxides and ferroelectrics, 

ZnO and LiNbO3 are the materials with high absorption and low recombination rate [7, 

16]. Second is the use of larger surface area for photochemical reactions where ZnO, 

TiO2 and LiNbO3 powders and nanowires have been employed [4, 9, 17, 21, 22]. 

However, the photogenerated carriers are confined in close proximity, which can lead to 

increase the carrier recombination and back reactions. The material properties change 

substantially going from bulk to ultra-thin films and nanostructures (nanowires and 

nanoparticles). With the reduction in size, materials possess different optical, electrical, 

mechanical and chemical properties as compared to the bulk due to changes in surface 

properties and quantum confinement effects [23, 24].  Third is to use internal electric 

field of ferroelectrics [4, 9], such as in LiNbO3 and BaTiO3, to separate the photoexcited 

carriers, which can reduce the carrier recombination and enhance the photochemical 

reaction rate.  

 

Figure 1.1. Schematic of H
+
 and H2O oxidation and reduction potential with respect to 

TiO2 band gap [7]. 
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Semiconductors are the conventional materials that have been widely considered 

for photocatalysis. A significant body of work has investigated ferroelectrics for 

photochemical reactions that show a similar efficiency to semiconductors due to the 

internal electric field of ferroelectrics [4]. The effect of the internal electric field is 

subject to change depending on the interfaces, including the electrolyte/ferroelectric and 

semiconductor/ferroelectric interfaces. Other than the bulk properties of photocatalyst 

materials, interfaces play a significant role in controlling the reduction and oxidation 

reactions. The photocatalyst materials are ideally chemically stable while satisfying the 

chemical species redox potential and band gap alignment. As shown in Figure 1.1, the 

photoinduced chemical species undergo photochemical reactions on the surface of the 

photocatalyst, provided the redox potential of species is within the photocatalyst band 

gap [1, 4, 5]. 

Other than photoelectrochemical process, photoinduced metal nanoparticle 

deposition is a process that is widely used to understand the photochemical reaction 

efficiency. This process is commonly used for ferroelectric surface photochemical 

reactions, where either reduction or oxidation process contributes to the formation of 

metal nanoparticles [25-30]. The surface of the ferroelectric is covered with electrolyte 

solution and illuminated with the UV light above the band gap of the ferroelectric. The 

photoexcited carriers near the surface of ferroelectrics migrate to the surface and cause 

the oxidation and reduction reactions. Photoinduced nanopattern formation on polarity 

patterned lithium niobate (PPLN) has been studied by a number of groups, Sun et. al. [25, 

26], Park et. al. [27], and Haussmann et. al. [28]. They have shown the formation of Ag 

nanowires on domain boundaries and Ag nanoparticles that form preferably on positive 
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domains. Ag nanoparticle deposition is enabled by photoexcited electrons that reduce 

Ag
+
 ions in aqueous AgNO3 solution. Shown in Figure 1.2 are the reduction potential of 

Ag
+
 to Ag, the oxidation potential of OH

-
 and H2O, and the band gap position of LiNbO3, 

Al2O3, TiO2, ZnO and VO2 [29, 30]. The pattern of the photoinduced Ag nanoparticles on 

the PPLN surface is influenced by the availability of photoexcited charge carriers near 

the surface [5, 26, 29]. The charge transfer metal oxide thin films with suitable band 

alignment and properties can enhance the photoexcited charge availability at the surface 

and thus can increase the density of Ag nanoparticles. 

 

Figure 1.2. Redox potential of H2O, hydroxyl ion (OH
-
) and Ag

+
 vs NHE with respect to 

LiNbO3 negative (–c) and positive (+c) domain, and Al2O3, MoO3, TiO2, ZnO and VO2 

CBM and VBM position relative to vacuum level. 

In this research, ZnO and LiNbO3 have been used as photocatalysts. Despite 

having high efficiency for photochemical reactions, ZnO has been shown to be 

chemically unstable in the electrolyte solution. To overcome the issue of ZnO 

photocorrosion, a chemically stable metal oxide material can be used as a passivation 
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layer. In the case of LiNbO3, the interface states, and Stern layer can limit the 

photochemical reactions. Metal oxide layers on LiNbO3 can be used to enhance the 

photochemical efficiency. The interfaces for metal oxide/ZnO and metal oxide/LiNbO3 

for photochemical efficiencies are discussed in detail here.  

II. ZnO: 

Zinc oxide is a polar metal oxide that exhibits the highest polarization (0.05 C/m
2
) 

among the wurtzite metal oxides and nitride semiconductors. Zinc oxide is a versatile 

material which is employed in the form of thin films, nanowires and nanoparticles, and it 

has been used in numerous applications such as an active channel material, a transparent 

conducting oxide (TCO), sensors, electron transfer layer, catalysts and UV light 

absorption materials [25, 26]. The numerous applications of ZnO are attributed to the 

wide band gap (3.3 eV), high exciton binding (60 meV) [24, 31], high absorption 

coefficient, and high carriers concentration (10
17

 – 10
20

 cm
-3

) and mobility. The n-type 

character of ZnO, which is still an area of research, has been attributed to a number of 

effects including interstitial hydrogen, impurities and oxygen vacancies [32]. Different 

forms of ZnO, such as nanoparticles and thin films are interlayered between the active 

material (which generates electron-hole pairs) and cathodes as charge transfer layers [33]. 

Zinc oxide is a II-VI semiconductor which exists in the wurtzite, zinc blende or 

rocksalt crystal structure. At ambient conditions, the wurtzite hexagonal structure of ZnO 

is thermodynamically stable. Zinc blende ZnO is usually observed on cubic substrates 

and the rocksalt structure is obtained at relatively high pressure. The wurtzite hexagonal 

structure of ZnO belongs to the P63mc space group in the Hermann-Mauguin notation 

and consists of a hexagonal unit cell with c/a ratio of 1.63, where c = 0.52 nm and a = 
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0.33 are the lattice constants. However, the c/a ratio observed experimentally in zinc 

oxide is smaller than the ideal value for hexagonal structure. The wurtizte ZnO structure, 

shown in Figure 1.3, consists of two alternate planes of O
2-

 and Zn
2+

 perpendicular to the 

c-axis. The O
2-

 and Zn
2+

 are terahedrally coordinated in a non-centrosymmetric structure, 

which is favorable for pyroelectric and piezoelectric properties. 

 

Figure 1.3. (a) ZnO unit cell, including the tetrahedral-coordination between Zn and its 

neighboring O. (b) ZnO has a noncentrosymmetric crystal structure that is made up of 

alternate layers of positive and negative ions, leading to spontaneous polarization �⃗�  [34]. 

The single crystalline ZnO is polar in nature with alternate O and Zn planes. 

However, ZnO thin films are usually polycrystalline. The properties of ZnO thin films are 

sensitive to deposition techniques. Most commonly used deposition methods for ZnO are 

pulsed laser deposition (PLD), molecular beam epitaxy (MBE), sol-gel, sputtering, 

thermal evaporation, chemical vapor deposition and atomic layer deposition [24, 32]. The 

deposition processes for ZnO have evolved with the enhanced demands to control the 

interfaces and intrinsic properties of the films. In the last decade, studies using ALD 
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processes have led to a revolution in interface chemistry control, which solely initiates 

the reactions at the substrate surfaces [35, 36]. The PEALD ZnO process is discussed in 

detail in the PEALD section (Chapter 2). During the last few years, ALD and PEALD 

ZnO have shown improvement in properties; for example, the mobility can be increased 

to 60 cm
2
 V

-1
 s

-1
 with carrier concentration of 10

18
 cm

-3
 at ≤150 ⁰C [37, 38, 39]. Also, 

ALD deposited ZnO thin films have shown high crystal quality [40, 41].  

III. LiNbO3: 

Lithium niobate (LiNbO3) is a ferroelectric material that exhibits of both 

pyroelectric and piezoelectric properties [42]. It possesses the highest spontaneous 

polarization (0.71 C/m
2
) among the ferroelectric materials.  The spontaneous polarization 

is the reversible polarization which persists in the absence of an electric field. An applied 

mechanical stress parallel to the spontaneous polarization generates surface charge 

through the piezoelectric effect [42]. The properties of LiNbO3 include transparency over 

a wide wavelength light, and large piezoelectric and optical coefficients. The unique 

properties of ferroelectric LiNbO3 have opened the windows for various applications 

such as nonlinear optical, surface acoustic wave, wave guides, and electro-optic devices. 

LiNbO3 exhibits different crystal structures in the ferroelectric and paraelectric 

phases. In the ferroelectric phase, lithium niobate is classified with the 3m point group 

and R3c space group [43, 44]. The crystal structure of LiNbO3 has trigonal structure, with 

a hexagonal base that has “c” and “a” parameters of 13.8631 Å and 5.14829 Å, 

respectively. The general formula (ABO3) of LiNbO3 is the same as perovskites; 

however, it does not the possess perovskite structure. In the paraelectric phase, LiNbO3 

crystal structure is centrosymmetric and exhibits a second order phase transition below 
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the Curie temperature [45]. The stacked sequence of LiNbO3 along the c-axis has three 

types of octahedral: LiO6, NbO6 and vO6, where the “v” represents vacant sites. The Li 

and Nb ions are stacked between the oxygen layer planes along the c-axis. A high applied 

voltage can switch the polarization of LiNbO3 and form domains with opposite polarity 

[46]. The cations of Li and Nb are displaced along the c-axis, and the induced stress 

results in LiNbO3 spontaneous polarization. The displacement of Li and Nb cations from 

centrosymmetric position in a direction parallel to the c-axis results only in antiparallel 

(180°) domains in LiNbO3 crystals. Spontaneous polarization (�⃗� sp) generated bound 

charge is given as: 

 

σ = �⃗� sp . �̂�                             (1) 

 

The unscreened polarization bound charge in LiNbO3 results in tilted conduction 

and valence bands due to the electric field [47]. The surface bound charge is compensated 

either by excess free carriers in the polar materials or screened by external charge carriers 

or adsorbed species [20, 48]. Thus, the commonly occurring screening can be divided 

into two categories, i.e. internal and external screening. The internal screening includes 

free carriers and ionized defects or impurities. On the other hand, the external screening 

arises from surface states and adsorbed charged molecules, radicals and ions at the 

surface. Both screening mechanisms are shown in Figure 1.4. 
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Figure 1.4. Schematic of ferroelectric LiNbO3 shows (a) negative polarization bound 

charge on -c domain and (b)positive polarization bound charge on +c domain.  In 

LiNbO3, due to lack of free carriers in bulk, the surface is externally screened with 

oppositely charged adsorbed species by forming a Stern layer.  

The internal screening mechanism leads to the charge accumulation near the 

surface and thus contributes to surface band bending. The internally screened surface 

exhibits a change in work function due to the surface band bending. The external 

screening mechanism leads to the formation of a sheet of opposite charges at the surface, 

which results in a surface dipole layer. The surface dipole layer can alter the surface 

electronic properties by changing the electron affinity and the work function of a surface 

[29]. In the case of LiNbO3, external screening dominates over internal screening due to 

the low internal carrier concentration (10
12

 cm
-2

). The external screening modulates the 

electron affinity of adjoining positive and negative domains, Figure 1.5. 
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Figure 1.5. External screening results in a surface dipole that changes the electron affinity 

on the surface of the polar ferroelectric. Χs,  Eg, Eth and Δχ is the electron affinity, band 

gap, photothreshold, and electron affinity difference, respectively. The subscript (-) 

represents the negative domain and (+) represent positive domain [29]. 

Materials, such as LiNbO3 and BaTiO3, are among the group of ferroelectrics with 

bandgaps that may enable photocatalytic processes and exhibit an internal electric field 

that can lead to separation of the photoexcited carriers. Consequently, surface 

photochemical reactions display enhanced efficiency for these materials [7, 8, 20]. 

Specifically, enhanced reduction efficiency has been shown on positive LiNbO3 and 

BaTiO3 domain surfaces for photoinduced metal nanoparticle deposition [7, 20, 25, 26, 

49]. 

IV.  Charge Transfer in Heterostructures: 

Heterostructures have advantages of reducing surface states, enhancing 

photoexcited carrier separation and in some cases, modulating the internal electric field to 

affect the charge transfer direction. These properties enhance the charge separation and 
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increase the photocatalytic efficiency. Metal oxide and ferroelectric heterostructures have 

been studied extensively for various applications such as photocatalysis, solar cells, and 

memory devices [7, 49-53]. The requirement of transparency and work function matching 

limits the selection of electron transfer layer. An interface of heterostructures plays a key 

role in the charge transfer process and charge transfer direction in 

semiconductor/ferroelectric, and passivation layer /semiconductor heterostructures [7]. 

The electron transport is initiated with the exposure of UV light photons of energy 

(h>Eg) above the band gap of the photoactive material.  

 

Figure 1.6. Schematic of active layer covered with thin passivation layer allowing an 

electron tunneling. 

In this research two processes are discussed in detail: (i) the effect of SiO2 and 

Al2O3 as passivation layers on ZnO surfaces, and (ii) the charge transfer in metal 

oxide/LiNbO3 heterostructures. In the first study, the wide band gap insulators allow the 

penetration of illuminated light with negligible absorption. In the second study, the top 

metal oxide layer can overcome the charge recombination due to reduced interface states 
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and faster photoexcited charge separation. Although, ZnO is a potential candidate as an 

efficient photocatalyst; however in some of the electrolyte solutions ZnO is chemically 

unstable and undergoes photooxidation [16, 54]. The chemical instability is a hindrance 

for use as a photocatalyst.  Thus, a chemically stable wide band gap material can be used 

as a passivation layer to protect the ZnO surface. Various methods have been developed 

to improve the performance of ZnO such as using a family of carbon, semiconductor, and 

wide band gap passivation layers [16, 55-58]. The unique properties of carbon, such as 

good electrical properties, corrosion resistance and stability, effectively improve the 

efficiency of ZnO [2, 16]. For example, graphene on top of ZnO can act as an electron 

reservoir for ZnO photo-excited electrons and also slows the electron-hole recombination 

rate due to faster electron transport from ZnO to the graphene surface [3, 59]. Wide band 

gap materials such as SiO2, HfO2 and Al2O3 may be suitable as a passivation layer 

because of their chemical and photo stability in the electrolytes. Al2O3 has been explored 

as a passivation layer for photocatalysis processes; however, the passivation efficiency is 

not in agreement for all the studies. Some studies show Al2O3 is chemically stable and 

protects the photocatalyst [60], while others show degradation of the Al2O3 [61]. The 

inconsistencies in the results can be attributed to the quality of Al2O3, the type of 

electrolyte and the specific application. The passivation layer is required to be thin, and 

free of pinholes and cracks to allow electron tunneling from the active material (ZnO) to 

the surface of the passivation layer and to prevent the photocorrosion of active layer in 

water and electrolyte solution. A schematic is shown in Figure 1.6.  

In the second process, the ferroelectric polarization field, the metal oxides 

properties, and the band alignment at the heterostructure interface controls the pattern of 
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metal nanoparticle pattern on the surface. Polarity patterned lithium niobate (PPLN) 

substrates lead to spatially separated oxidation and reduction on –c and +c domain 

surfaces, respectively, which reduces the back reaction of carriers [7]. However, to 

further enhance the efficiency of surface reduction and/or oxidation on LiNbO3, metal 

oxide charge transfer layer can be used. Burbure et. al. have studied the effect of TiO2 on 

BaTiO3 photochemical reaction using Ag metal deposition. They have shown on 

TiO2/BaTiO3 surfaces (i) the pattern on the surface of heterostructure is controlled by the 

polarization of BaTiO3 [49, 52], (ii) photoinduced charge transfer to the surface [49, 52], 

and (iii) the Ag nanoparticle deposition is independent of TiO2 crystal phase [52]. The 

charge transfer from BaTiO3 to TiO2 is attributed to the band alignment, Figure 1.7. 

Inoue et. al. have reported the use of TiO2 and NiO films on PPLN that enhanced the 

photodecomposition of water on one type of domain (+c and –c) surface. The effect of 

band alignment charge transfer from ferroelectric to metal oxide surface is applicable 

only if the carrier concentration does not screen the photoexcited carrier flow. Once the 

carrier concentration in metal oxide becomes high enough to screen the ferroelectric 

photoexcited carrier flow, the Ag nanoparticle pattern diminishes.  
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Figure 1.7. Band alignment of a) thin (15 nm) TiO2 on BaTiO3 and b) thick (100 nm) 

TiO2 on BaTiO3 [49].  

Other than the band alignment assisted charge transfer and metal oxide carrier 

concentration screening in semiconductor and ferroelectric heterostructure, the charge 

accumulation at the interface due to ferroelectric polarization bound charge also needs to 

be considered. The accumulated charge at the interface can generate electric field, which 

can affect the flow of photoexcited carriers in ferroelectrics. Cagin et. al. have studied the 

polarization induced charge in ZnO in ZnO/ferroelectric capacitor structure. The 

calculated induced charge in ZnO was 10
13

 cm
-2

 [51]. An induced interface charge can 

cause upward or downward band bending in semiconductors. The charge accumulation 

and band bending at the interface of ZnO/ferroelectric is shown in Figure 1.8. The effect 

of band bending and depletion or accumulation layer is more prominent in thick films or 

bulk; however, in thin films the bands do not fully relax [7]. Schwinkendorf et. al. have 

shown the accumulation of 2DEG at the interface of ZnO/PZT ferroelectric field effect 

transistor (FeFET) [51]. They have explained the switching behavior of FeFET with the 

formation of electron trap layer in ZnO at the interface of ZnO/PZT heterostructure. The 

amount of charge accumulated at the interface is controlled by the applied voltage. 

Consequently, the stored charge causes the permanent on/off in FeFET structure. In case 

of polar oxide/ferroelectric FETs, the polarization is given by a combination of 

spontaneous polarization and the stress induced effect: 

Ppiezoelectric = Psp + (e31 – e33 
𝐶31

𝐶33
 ) (εx + εy)                 (2) 

where, Psp is the spontaneous polarization, e31 and e33 are piezoelectric coefficients, and 

C31 and C33 are elastic constants.  
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Figure 1.8. Calculated band diagram for a PZT/ZnO capacitor structure with PZT 

polarization in differing directions (a) and (b) [51]. 

V.  Photoindued Metal Depositions: 

The Ag nanoparticle pattern after photoinduced deposition is among one of the 

methods to study the surface photoreduction. The surface of the photocatayst is immersed 

with an aqueous AgNO3 solution and illuminated with the UV light of energy higher than 



 

 17   

 

the band gap of photoactive material to excite carriers near the surface. The photoexcited 

electrons and holes can cause reduction and oxidation of available chemical species at the 

surface. Photoinduced Ag nanoparticle deposition is the result of a reduction reaction. 

Presumably, the reduction and oxidation reactions occur in equilibrium. The occurrence 

of reduction process indicates the existence of balancing oxidation process. Figure 1.9 

details the reduction and oxidation process on PPLN surfaces. 

 

Figure 1.9. Schematic of photoinduced Redox reactions on LiNbO3 -c and +c domain 

surface with UV light (l = 254nm, E = 4.2eV) illumination above the band gap of 

LiNbO3. Favorable oxidation and reduction reaction on -c and +c domain surfaces, 

respectively, are shown above. 

VI. Dissertation Approach: 

This thesis is focused on two studies: (i) photochemical reactions using Ag 

nanoparticle deposition and the effect of interface band alignment of metal 
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oxides/ferroelectrics heterostructures, and (ii) Al2O3 and SiO2 as passivation layers on 

ZnO. The band alignments are studied using x-ray and ultraviolet photoelectron 

spectroscopy (XPS and UPS). For photochemical reactions, surfaces of metal 

oxide/PPLN heterostructures were immersed with AgNO3 solution and illuminated with 

UV light. The metal oxides were deposited using plasma enhanced atomic layer depiction 

(PEALD) and molecular beam deposition (MBD).  

Chapter 2 and 3 discusses the deposition process, PEALD and MBD, in detail. In 

this research, films of ZnO, Al2O3 and SiO2 were deposited using PEALD and other 

metal oxides (VO2 and TiO2) were deposited using MBD. 

Chapter 4 and 5 introduces the characterization techniques of XPS, UPS, AFM 

and PFM are used to deduce the band alignment of heterostructures, and to characterize 

the surface topography and piezoelectric effect of ferroelectrics. 

Photoinduced Ag nanoparticle deposition was used to characterize the effect of 

ZnO thickness on PPLN surface photochemical reactions in Chapter 6. AFM was used to 

characterize the pattern of Ag nanoparticles. Enhanced efficiency of Ag
+
 ions was 

observed on 1, 2 nm ZnO/PPLN surfaces as compared to PPLN surfaces while PPLN 

controls the nanoparticle pattern on the surface. However, a further increase in ZnO 

thickness causes the decrease in photochemical reactions as the charge carriers in ZnO 

screens the photoexcited carriers in PPLN. 

Chapter 7 focuses on the interface studies of metal oxides (ZnO, TiO2, VO2 and 

Al2O3)/LiNbO3 heterostructures using XPS. Interface studies provide an insight to the 

band alignment and the mechanism of photoexcited charge transfer from PPLN to the 

metal oxide surface. Photoinduced Ag nanoparticle deposition was carried out on the 
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heterostructure and characterized using AFM to determine the effect of different metal 

oxides on photoreduction of Ag
+
 

Chapter 8 is the study of Al2O3 and SiO2 passivation and degradation mechanism 

on ZnO. PEALD ZnO and single crystals of ZnO were used in this research. The band 

offsets of passivation layers and ZnO were calculated using UPS and XPS before the 

electrochemical measurements in phosphate electrolyte solution. AFM and SEM were 

used to analyze the surfaces and TEM was used do the cross-sectional characterization of 

heterostructures after electrochemical measurements. 

In the end, Chapter 9 summarizes the important results and also presents 

opportunities for future studies based on this research. 
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DEPOSITION TECHNIQUES: 

CHAPETR 2. PLASMA ENHANCED ATOMIC LAYER DEPOSITION: 

I. Introduction: 

The term atomic layer deposition (ALD) is derived from atomic layer epitaxy 

(ALE). ALD has also been termed as atomic layer growth (ALG), atomic layer 

evaporation, molecular layer epitaxy (MLE), molecular deposition, molecular lamination, 

molecular layering (ML), and chemical layering [1]. According to the literature, the 

origin of the ALD process remains controversial as the process has been independently 

demonstrated by two groups in the 1960s and 1970s. Self-limiting gas and substrate 

reactions were reported by Aleskovskii’s group from Russia in 1964 [2] and Suntola’s 

group from Finland in 1974 under the names molecular layering and atomic layer epitaxy 

(ALE) [3], respectively. Conversely, in most of the journals Suntola’s group is 

recognized as pioneering the reaction chemistry of atomic layer deposition [4]. The only 

difference in the processes developed by these two groups was the use of reactants and 

the materials deposited. The Finland group carried out the deposition process using 

element reactants: Zn/S, Sn/O2 and Ga/P to deposit ZnS, SnO2 and GaP in their first 

report [3] and compound reactants: the TaCl5/H2O and Zn(Mn)Cl2/H2S and AlCl3/H2O to 

deposit Ta2O3, ZnS and Al2O3 as described in several patents [5,6]. The deposition 

process developed by the group from Russia involved TiCl2/H2O to deposit TiO2 and 

GeCl4/H2O to deposit GeO2 [3]. 

In the 1990s ALD processes were successfully adapted by the semiconductor 

industry to improve the quality of high-k films for microelectronic technologies 

consequently reducing gate tunneling [7]. An atomic level control of thickness and the 

ability to modulate materials properties in ALD processes brought attention to various 

high-k materials. In the last decade, ALD research has expanded to include metal nitrides 

[8, 9, 10], metal sulphides [10, 11] and elemental metals [10, 12, 13]. As ALD research 

has expanded, a number of reviews have discussed ALD applications in semiconductor 

devices [14, 15], photocatalysis [16-22], nanopatterning [23, 24], and solar cells [25, 26]. 

ALD is a low temperature process and most of the materials deposited are amorphous. 

Thus, the atomic layers do not follow substrate epitaxy as suggested by the name ALE 
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[10]. The name “atomic layer deposition”, which dates back to the 1990s, more 

accurately specifies the nature of the process [10].  

ALD is a self-limiting sub monolayer two-step process, in which the metal 

precursor and the reactant gas are separated with a N2 purge step. Unlike chemical vapor 

deposition (CVD), in ALD the reactants saturate the surface in real time [1, 7, 10, 12, 13, 

27-35]. As shown in Figure. 2.1, ALD is a four step process: in the first step the surface 

saturated with a precursor pulse; the second step is the N2 purge to remove the excess 

precursor and gaseous byproducts; the third step is the oxygen reactant reaction to replace 

the ligands; and the fourth step is the N2 purge to remove the excess oxygen and gaseous 

byproducts and to prepare the surface for next cycle.  The thickness of films is controlled 

by the number of cycles, where one cycle of ALD typically deposits 0.5-2.5 Å thickness. 

Consequently, the ALD deposition mechanism leads to uniform and conformal ultra-thin 

films. 

 

Figure 2.1. Schematic of an ALD process, showing the four step process for one cycle of 

thermal or plasma enhanced ALD. 

Plasma-Enhanced Atomic Layer Deposition (PEALD) is a modified form of 

conventional ALD in which plasma generated reactants are used to exchange reactions 

with ligands [35]. This process was first time reported at Philips Research Laboratories in 

Eindhoven, the Netherlands, in 1991 by De Keijser and Van Opdorp [36]. They deposited 
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GaAs using remote microwave plasma to generate hydrogen radicals that drive surface 

reactions with GaM3 and AsH3.  However, the interest in PEALD expanded in the mid-

1990s, when the semiconductor industry explored it for microelectronics of non-planar 

surfaces [37, 38]. Following Sherman’s patent on the PEALD process in 1996, 

Rossnagel’s group reported PEALD of metal (Ta and Ti) films in 2000 [39].  

II. Categories of Atomic Layer Deposition:  

Atomic layer deposition processes have evolved in the last two decades, and 

various forms of ALD have been conceptualized using different gaseous reactants or 

adding molecular energy during deposition. In this introduction metal compounds are 

termed as “precursors” and the non-metal gaseous vapors are termed as “reactants”. 

A. Thermal ALD:  

The conventional ALD process is usually termed as “thermal ALD”. The surface 

reactions of precursor and water vapor or oxygen gas are driven by thermal energy 

without the assistance of plasma or generated radicals. Usually, the thermal ALD 

deposition process requires slightly higher deposition temperatures (150 ºC - 500 ºC). 

The most common materials that have been deposited using thermal ALD systems are 

metal oxides (Al2O3, TiO2, ZnO, ZrO2, HfO2, and Ta2O5) [1, 11, 41], metal nitrides (TiN, 

TaN, and W2N) [7, 8, 9, 25, 41], and sulfides (ZnS and CdS) [8, 11]. Thermal ALD 

provides uniform coverage on 3D surfaces [10]; however, the thermal energy requirement 

to drive surface reactions has drawbacks. For example, flexible electronics that require 

low temperature deposition cannot sustain a typical thermal ALD process due to the high 

deposition temperature [35]. On the other hand, the low reactivity of O2 gas or H2O with 

precursors, such as β-diketonates, guanidinates, amidinatesand (substituted) 

cyclopentadienes, limits the materials that can be used in thermal ALD process [10, 35]. 

To overcome the issues of conventional ALD processes, plasma enhanced ALD and 

energy enhanced ALD processes have been successfully employed. 

B. Plasma-Enhanced ALD:  

A plasma-enhanced or plasma-assisted ALD process is a modified conventional 

ALD process, in which water vapor or gaseous molecules are replaced with plasma 

generated atomic gaseous species and radicals, Figure 2.1. The plasma generated highly 

reactive species facilitate surface reactions with ligands during the reactant step. PEALD 
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has merits over thermal ALD, in that it allows deposition at low temperatures and opens 

an avenue for low reactivity precursors while allowing film properties modulation. Some 

of the initial PEALD thin films were elemental metals prepared using metal precursor 

molecules and H2 plasma, e.g. PEALD Ta using TaCl5 and hydrogen plasma [35]. This 

was a breakthrough as metal deposition with conventional ALD was next to impossible. 

The interest in PEALD is increasing rapidly in semiconductor and non-semiconductor 

industries, which has led to the development of a large selection of precursors. PEALD 

provides versatility for applications that require a new set of ALD parameters that are not 

feasible with thermal ALD.  The most commonly used plasma reactants include O2, N2, 

H2, HF, NF3, and NH3 or combinations thereof, which can be used to deposit metal 

oxides, metal nitrides, metal fluorides, metal sulphides and metals. The most common 

materials that have been deposited successfully using PEALD are: metals (Ti, Ta, Al, Ru, 

Cu, Co, Ni, W), metal nitrides (TiN, TaN, RuTiN, TiSixNy, TaSixNy, W2N, SiNx), metal 

oxides (Al2O3, Ta2O5, Y2O3, ZrO2, ZnO, HfO2, SrTiO3, SrTa2O6 and SrBi2Ta2O9) [35]. 

Processes for PEALD of sulfides and fluorides are not as developed as those for oxides, 

nitrides and metals. The surface chemistry for metal fluorides can be developed using 

metal precursor molecules and fluorine radicals generated in an HF, F2 or NF3 plasma.  

As the high reactivity of the plasma species is a source of energy in PEALD to 

initiate surface reactions, less thermal energy is required. According to the literature, 

PEALD materials exhibit improved properties, such as higher film density, lower 

impurity concentration and improved electronic properties. In addition, the high reactivity 

of plasma reactants provides the freedom to use a wider range of precursors including 

chemically stable precursors, such as β-diketonate, which show negligible deposition in 

thermal ALD chemical reactions [35]. 

C. Energy-Enhanced ALD:  

As mentioned above PEALD is a form of EEALD which is defined in a few 

different ways. The concept is to enhance the surface energy, either using plasma 

generated radicals during a gaseous reactant step [41] or to incorporate a step of helium 

(He) plasma (or UV illumination), or molecular energy transfer after a gaseous reactant 

plasma step. For example, Potts et. al. have used plasma generated ions to increase the 

surface energy during TiO2 deposition in the O2 reactant step [41]. The EEALD TiO2 
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films were prepared at room temperature with a high growth rate, using [Ti(Cpx)L3] 

precursors, which is not viable with thermal ALD. Another concept is to use excited 

molecules to transfer a significant and controlled energy pulse to surface species. The 

process may involve plasma-excited noble gases (He, Ne, Ar, Kr), which can transfer eVs 

of energy without chemical interactions. The additional energy could enable nucleation or 

crystal growth at temperatures lower than achievable by thermal ALD. The 

implementation is through an additional plasma pulse and purge that is included in the 

ALD cycle, Figure 2.2. The freedom to modulate PEALD processes has revolutionized 

thin film interfaces through precise control of chemistry, morphology, and crystallinity.  

 

Figure 2.2. Schematic of an EEALD process, showing a six step process for one 

deposition cycle. Here, a helium plasma pulse following the oxygen pulse and nitrogen 

purge enhances the surface energy and allows the atoms to rearrange at the surface. 

III. Plasma Basics: 

Plasma is an electrically quasi-neutral (density of electrons is equal to the density 

of ions) collection of gaseous species of free and charged particles. The most common 

plasma generation method is to use an electric field to ionize gaseous species by 

accelerating and heating the electrons. The copper coil around the quartz tube generates 

an electrical field that ionizes the gas passing through it. The hot or high energy electrons 

(Te ~ 3.5 x 10
4
 K, ~3eV) excite the reactant gas and dissociate it into radicals, and ions. 

Despite the critical role of charged particles in the plasma, the density of charged 

particles is significantly lower (10
-6

-10
-3

) than the density of atomic oxygen radicals and 

expected O2  neutrals(the densities of O2 species in oxygen plasma are listed in Table 

2.1). Therefore, the surface reactions are dominated by the high concentration of radicals. 

The formation of a positive charge space layer, also called a “plasma sheath”, between 
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the plasma boundary and the substrate surface, generates ions that are accelerated 

towards the surface. An increase in the velocity of ions enhances the energy of ions 

reaching the surface. The potential difference of the substrate surface (Vf) and plasma 

(Vp) is given as: 

D. Vp-Vf = 
𝑇𝑒

2𝑒
 + 

𝑇𝑒

2𝑒
 ln(

𝑚𝑖

2𝜋𝑚𝑒
)  ………………………… (1) 

where, e is the electron charge, Te is the electron energy in eV, me is the electron mass 

and mi is the ion mass. Usually, the potential difference is a few times Te. The potential 

difference can vary from <50 V to a few hundreds of volts depending on the plasma 

conditions and reactor configuration. The ion energy distribution vs ion energy plots of 

commonly used plasmas for PEALD (O2, N2 and H2) is shown in Figure 2.3. 

Table 2.1. Densities of plasma species in an O2 plasma, as typically used in plasma ALD 

processes. Data are presented for two different pressures and the electron temperature, Te, 

and energy, Eion, of ions accelerated to the (grounded) substrate are also given. The data 

have been compiled for an inductively-coupled plasma operated at a source power of 500 

W. The excited species O* and O2* correspond to the lowest metastable states being O 

(
1
D) and O2 (a

1
 Δg), respectively. Reprinted from H. B. Profijt et al., J. Vac. Sci. Technol. 

A 29, 050801 (2011) [42]. 

 

 

The two mechanisms that account for PEALD processes are: 

First, the high energy species in the plasma act as the reaction driving force 

independently of substrate thermal energy. The concentration of the species can be 

controlled by varying gas and plasma parameters, such as flow rate, pressure, power, etc. 

Thus, the energy provided to the surface and surface adsorbed molecules can be 

manipulated for PEALD and EEALD. 

Second, the oxygen ions can act as a source of energy in PEALD and EEALD 

processes, which can accelerate the reaction rate and rearrange the adsorbed molecules. 
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Similar to the high energy species, the energy and density of ions can be manipulated by 

varying the gas and plasma parameters. Typically, the plasma sheath thickness and ion 

mean free path controls the collision of ions with the substrate surface. The surface ion 

bombardment can cause undesired damage to the surface, which may or may not be 

prevented depending on the reactor configuration.   

 

Figure 2.3. Ion energy distribution vs ion energy (eV) of O2, H2 and N2 remote plasmas 

using a retarding field energy analyzer (RFEA). The operating plasma conditions are: 

pressure 8 mTorr and plasma power 100 W [40]. 

Types of Plasma Sources: 

The plasma sources are usually differentiated by the way the plasma is generated 

or by the distance of the plasma source from the deposition surface. In general, three 

 

Figure 2.4. Schematic of a) radical-enhanced, b) direct and c) remote plasma sources 

[43]. 
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types of plasma designs have been employed i.e. radical-enhanced, direct plasma and 

remote plasma. 

Radical-enhanced Plasma: In this configuration, the plasma is generated far away from 

the ALD surface reactions zone, Figure 2.4 a). The plasma species flow from the plasma 

source to the substrate surface through tubing. This allows the electrons and ions to lose 

energy while undergoing multiple surface collisions and recombination. Consequently, 

the configuration is called radical-enhanced plasma. These plasma sources can be used in 

PEALD reactors and also for surface cleaning. The commercially available microwave 

surfatron [44] and the radiofrequency-driven radical-enhanced plasma system are sold by 

R*Evolution (MKS Instruments) [45] and Litmas RPS (Advanced Energy) [46]. 

Direct Plasma: The second configuration of plasma systems is the direct plasma. In this 

design, the plasma is generated between two parallel electrodes, and generally, the 

substrate is used as one of the electrodes. Typically one electrode is powered at 13.56 

MHz radio frequency and the other electrode, usually the substrate, is grounded. In this 

case, the substrate sits directly on the electrode that participates generating the plasma. 

Therefore, this configuration is referred to as direct plasma. As the plasma species are 

generated in the proximity of the substrate surface, shorter pulse times are required 

during ALD processing. However, the high energy fluxes of plasma ions and radicals can 

induce surface damage. 

Remote Plasma: In this configuration, the plasma is generated remotely from the reaction 

surface such that the substrate stage does not participate in plasma generation. This 

configuration is different from both above discussed radical enhanced and direct plasma. 

Unlike the radical enhanced plasma configuration, the plasma generation in a remote 

plasma is above the reaction surface. In contrast to direct plasma, for remote plasma the 

substrate and plasma conditions can be varied independently. The plasma composition 

and distance from the substrate surface provides the freedom to control the plasma 

properties. The operating flexibilities of remote plasma make it viable for surface 

cleaning and other R&D processes. Another advantage of remote plasma is the plasma 

source and deposition surface distance that allows in situ thickness measurement using 

spectroscopic ellipsometry. The inductively-coupled plasma (ICP) is the most commonly 

used plasma source in many of the commercially available PEALD systems [42, 47].  
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IV. PEALD Reactor Configuration: 

A schematic of the customized PEALD reactor that was used to deposit thin films 

for this research is shown in Figure 2.5 a). The chamber is pumped to a base pressure of 8 

x 10
-8

 Torr using a turbo pump backed with a mechanical pump; however, the mechanical 

pump is switched to a dry pump during processing. The ALD reactor has an ICP, i.e. a 

helical copper coil around a 32 mm diameter quartz tube, to generate a remote plasma 

~12 inches above the reaction surface. The oxygen plasma is ignited with 13.56 MHz rf 

at 200 W while maintaining the O2 gas pressure at 100 mTorr with a flow rate of 35 

sccm. The O2 gas pressure and flow rate, and plasma power is varied for some 

depositions to tune the thin film properties. The chamber is also heated to ~70 ºC during 

the PEALD processing to avoid chemical condensation at the chamber walls. As shown 

in Figure 2.5, the precursors are stored in stainless steel bubbler and each bubbler is 

maintained at a specific temperature according to the vapor pressure. The pipelines 

between the bubblers and chamber are also heated to prevent condensation. Argon gas is 

used as a carrier gas to deliver the precursor vapors from the bubbler to the chamber. 

Labview software is used to control the precursor time, N2 purge and O2 plasma pulse, 

and to combine the gas phase sequences to form ALD cycles. The system is installed with 

five precursors, i.e. Dimethylaluminum Isopropoxide (DMAI), 

Tetrakis(ethylmethylamino)hafnium (TEMAHf), Tri(dimethylamino)silane (TDMAS), 

Dimethyl Zinc (DMZ) and Gallium Acetylacetonate. The materials deposition using 

these precursors is discussed below.  
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Figure 2.5. Schematic of a) ICP remote plasma ALD reactor and b) gas phase sequences 

for 1 PEALD cycle controlled using Labview software. 

V. Growth Mechanisms of ALD:  

The basic growth mechanism in all the ALD processes is similar but there is 

significant variation in the reaction rates and reactivity of the adsorbed metal precursor 

molecules and the reactant gas. However, the growth process depends on a number of 

factors, such as adsorption sites, precursor molecule size, precursor reactivity etc. The 

first step is the surface adsorption which is followed by the reactant gas exchange 
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reaction with ligands.  Below are the different models of ALD growth process as 

described by Puurunen et. al. [10].  

A. Surface Adsorption:  

During the sequential steps of an ALD process, the atoms adsorb at the surface 

and the ALD surface adsorption mechanism can be divided into two 

categories,“physisorption” and “chemisorption” which differs on the basis of bond 

strength between adsorbing precursor molecule and the reactive surface sites, Figure 2.6.  

Chemisorption: Chemisorption is a strong interaction of precursor molecule and 

substrate surface. A chemisorbed bond is formed between the adsorbed precursor 

molecule and surface site; thus, only a monolayer of precursor molecules can adsorb at 

the surface, Figure 2.6 a. 

Physisorption: On the other hand, physisorption represents weak bonding of the adsorbed 

precursor molecules with minimal changes in the molecule structure, Figure 2.6 b. 

Because of the lack of chemical bond formation between the surface site and precursor 

molecule, the resultant adsorption can be a multilayer.  

 

 

Figure 2.6 a) Chemisorbed monolayer of precursor molecules, b) Physisorbed monolayer 

at the reactive sites and c) ALD monolayer of material grown on the surface. 

An ALD surface adsorption monolayer is different from the ALD layer thickness 

per cycle. An ALD monolayer is the thickness of material after the four step process. 

However, for the case of physisorption, a monolayer is an arrangement of precursor 

molecules in a close-packed array. Conversely, a chemisorbed monolayer is an 

arrangement of precursor molecules that bond at the surface reactive sites. For an ideal 

ALD process, chemisorption is the preferred surface adsorption mechanism. 
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As is evident, surface adsorption plays a critical role in the first step of an ALD 

process. The reaction mechanism between the precursor molecules and substrate surface 

can be irreversible or reversible in nature. Usually, chemisorption is either irreversible or 

reversible and in contrast, physisorption is always reversible. As per the definition, ALD 

is a self-limiting process, which indicates the molecules adsorbed at the surface should 

not desorb. Thus, the surface adsorption in ALD is limited to irreversible chemisorption. 

In ALD self-limiting surface reactions, chemisorption can be described by three 

mechanisms; ligand exchange, dissociation and association, Figure 2.7. The metal 

precursor molecule usually contains a metal atom bonded with ligand groups; the number 

of ligands is evident in the chemical composition. For instance, a molecule with 3 ligands 

can be represented as ML3.  

Ligand exchange: The first ligand exchange reaction is between the surface reactive site 

and one of the precursor molecule ligand, which reduced ML3 to –ML2 or >ML1 (Figure 

2.7 a). A metal molecule forms a bond at a surface reactive site while releasing ligand 

and adsorption site species as byproducts.  

Dissociation: The second process chemisorption, i.e. dissociation, does not change the 

number of metal atoms adsorbed at the surface. In this step, the already released ligand 

forms a bond with another reactive surface site, Figure 2.7 b. Through this step, the 

released precursor molecule ligand can cover more than one surface reactive site. 

 

Figure 2.7. ALD chemisorption mechanisms by a) ligand exchange, b) dissociation and c) 

association. 

Association: In case of association, the metal precursor molecule does not release any of 

the ligands; instead it forms an associated bond with a reaction site, Figure 2.7 c. Similar 
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to the second process, association does not change the number of metal molecules 

adsorbed at the surface.  

Among the above three chemisorption mechanisms, ligand exchange is preferable 

for ALD processes. The removal of ligands as byproducts often reduces impurities and 

carbon concentration in the case of organometallic precursors. 

B. Surface Coverage: 

Surface coverage is critical to initiate uniform and conformal ALD thin films 

deposition. In theory, the preferable surface coverage is the chemisorbed precursor 

molecules in a close packed structure. However, in practice it is next to impossible to 

control the pattern of precursor molecules at the surface due to the steric hindrance of 

ligands and the preferred chemisorption at the surface reactive sites. The surface 

coverage described here is discussed in detail by Puurunen et. al. in references [10] and 

[48]. 

Steric Hindrance: Steric hindrance is caused by the ligands bonded to the precursor 

metal atom, where the ligands cover reactive sites and prevent chemisorption of other 

precursor molecules. This phenomenon is directly related to the size of the ligands. Large 

ligands prevent the chemisorption of other precursor molecules on the surface and small 

ligands can provide full adsorption on the surface reactive sites. In such cases, despite the 

fact that the surface saturation is regulated by the size of ligands, the surfaces are 

considered fully covered. 

Surface Reactive Sites: The surface bonding sites depends on the substrate material. For 

the case of metal oxides, hydroxyl groups (–OH) or impurities can act as reaction sites. 

Some of the materials, such as metals, Si, SiO2 etc., easily adsorb hydroxyl groups and 

others, such as the family of carbon materials etc, do not adsorb hydroxyl groups. Surface 

treatments using plasma or other functional groups can vary the number of surface sites. 

The surface treatments can be used to either increase or decrease the number of reactive 

sites. In spite of the empty space on the surface, the precursor molecules cannot adsorb if 

the surface lacks uniform coverage of reactive sites.  

Unlike other deposition techniques, such as MBE, sputtering, and e-beam etc, the 

ALD growth rate is dependent on the precursor molecule size and on the surface reactive 

sites concentration. The surface reactive sites concentration also defines the “growth 
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mode” in ALD which is limited by surface nucleation. The non-uniformity or scarcity of 

surface reactive sites can lead to the formation islands (Volmer–Weber growth). 

Presumably, ALD thin films follow a two-dimensional growth (layer-by-layer growth, 

Frank–van der Merwe growth) which leads to the smooth surfaces. However, two-

dimensional growth of a monolayer in ALD is usually less than a monolayer of material 

thickness. The third possible growth mode in ALD thin film deposition is “random 

deposition”. All three modes are illustrated in Figure 2.8 a - c. 

 

Figure 2.8. Schematic of possible growth mode in ALD with the increase in number of 

cycles: a) island growth, b) two-dimensional growth and c) random growth. 

Island Growth: Island growth is the result of a scarce and non-uniform distribution of 

surface reactive sites, where with the deposition continues through the chemisorbed 

precursor molecules. Thus, islands form instead of a uniform thin film, Figure 2.8 a). 

However, the deposition can become continuous when the islands grow in size and 

coalesce to form a film. 

Two-dimensional Growth: Two-dimensional growth is a layer-by-layer growth mode 

with the formation of one monolayer of material in each cycle. In spite of the common 

use of monolayer in ALD and two dimensional growth, the ALD monolayer is different 

from a monolayer of material. Thus, the ALD deposition process does not occur in 

monolayers of materials. Nevertheless, the ALD deposition follows the two-dimensional 

growth on uniformly distributed surface reactive sites. 
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Random Growth: Random Growth defines the chemisorption of precursor molecules, 

with equal probability to the available reactive sites. The self-terminating nature of ALD 

surface reactions results in uniform and smooth films. Random growth can be explained 

using two further depositions models, i.e. the shower model and the rain model, where 

the rain model describes the continuous deposition and the shower model describes the 

ALD growth. In rain model, the molecules stick to the surface where they first hit and 

there is no surface diffusion. In the shower model, random deposition is defined as a 

shower of precursor molecules on the surface which involves self-termination reactions 

and faster layer closure. The later leads to the growth of low roughness films compared to 

the rain model.  

The ALD growth mode for the first monolayer varies with the surface reactive 

site density which is determined by the substrate top surface. It is likely that the reactive 

site density will change with the increase in number of cycles. For example, the initial 

island growth could change to uniform thin layer formation with an increase in the 

number of cycles. Figure 2.9 shows a TEM image of Al2O3 islands reconstruction into 

uniform thin film as the number of ALD cycles increase from 15 to 30. 

 

Figure 2.9. TEM cross-sectional image of thermal ALD Al2O3 covered with SiO2 after a) 

15 cycles, b) 20 cycles and c) 30 cycles [47]. 
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C. Growth Rate: 

In the ALD growth model, the deposition is described by the materials as growth 

per cycle (GPC). It is assumed that the ALD GPC should remain constant and the 

thickness should show a linear increase with the number of cycles. However, the GPC 

can change as the ALD initial growth may be surface coverage limited. In some cases, 

the initial cycles have lower or higher GPC before the GPC becomes constant. The 

variation in GPC with the number of ALD cycles is discussed in the following: 

Linear Growth Rate: To obtain a linear growth rate the number of cycles, two conditions 

play important roles. First, the concentration of reactive sites remains constant with the 

increase in number of cycles. Second, the steric hindrance conditions are the same in each 

cycle, i.e. the number of ligands per adsorbed precursor molecule are the same. 

Surface Enhanced Growth Rate: In surface enhanced growth rate, the GPC is higher 

initially and becomes constant in the steady state regime. The higher growth rate 

corresponds to a higher density of reactive sites on the surface.  

 

Figure 2.10. ALD growth rate per cycle (GPC) with the increase in number of cycles 

shows a) linear growth, b) surface enhanced growth, and surface inhibited growth c) type 

1 and d) type 2) [10]. 

Surface Inhibited Growth Rate: In surface inhibited growth rate, the growth rate is lower 

in the beginning than in the steady state regime. Opposite to surface enhanced growth 

rate, a lower concentration of reactive sites results in the lower GPC. This behavior is 

commonly described as type 1 surface inhibited growth rate. In type 2 surface inhibited 
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growth rate, the GPC increases with the increase in number of cycles in the beginning 

and reaches maximum before it decreases and becomes constant in the steady state 

regime. 

The growth rate in all ALD processes is also temperature dependent. The range of 

temperature, where the constant GPC is viable, is called the “ALD Growth Window”, 

Figure 2.11. This is an important term in ALD processes which is related to self-limited 

growth. The growth rate may be either higher or lower, below and above the growth 

window depending on specific surface processes. Usually, the processing temperature is 

selected in between the growth window. Temperature is an important parameter to 

determine the concentration and type of species adsorbed on the surface and also to 

inhibit the surface reactions. The reactive sites concentration can also be affected with the 

variation in temperature. The usual behavior of GPC with temperature is discussed as 

following: 

Decrease in GPC: A decrease in GPC is observed either below or above the growth 

window temperature. At high temperatures, the GPC is reduced due to a reduction in the 

density of reactive sites and desorption of precursor molecules. However, at low 

temperatures, a decrease in GPC is an indication of incomplete reactions, where the 

thermal energy is lower than the amount of energy required to initiate chemical reactions 

between the reactive sites and precursor ligands, Figure 2.11. 

Increase in GPC: An increase in GPC at low temperature may be due to precursor 

condensation at the surface. On the other hand, at high temperature, the precursor 

molecules decompose and initiate unwanted chemical reactions, thus the GPC increases 

but impurities may be incorporated in the films. 

Constant GPC: A constant GPC is a result of uniform reactive site density and self-

limiting reactions. In the constant GPC temperature range, the surface reactive site 

density remains unaffected and the thermal energy is sufficient to drive the surface 

reaction without causing surface desorption and precursor decomposition. 
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Figure 2.11. Growth rate vs growth temperature plot determines constant growth rate 

temperature range called “ALD growth window”. 

D. Effect of Plasma on the Growth Rate: 

The observation of an enhanced growth rate with PEALD has been attributed to 

high reactivity of the plasma species and active oxygen that remains on the surface after 

the O2 plasma step. Two plasma mechanisms that contribute to the enhanced growth rate 

are: (i) due to high reactivity of oxygen species [20], and (ii) increase in reactive sites due 

to surface active oxygen [49-52]. Remaining active oxygen on the surface may replace 

the ligands during the precursor pule, which forms additional adsorption sites for the 

incoming precursor molecules. In addition, the ligand replacement during the precursor 

pulse also helps to reduce the steric hindrance and expose additional reactive sites for 

 

Figure 2.12. Al2O3 growth rate per cycle vs remote plasma power [53]. 
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chemisorption [51]. The increase in adsorption sites for in O2 plasma is similar, and 

possibly higher than the increase found using ozone assisted growth [54]. 

We have studied the PEALD growth of Al2O3 using DMAI and remote oxygen 

plasma. The GPC achieved in our studies is higher (30% - 80%) than thermal ALD Al2O3 

using DMAI [53]. The increase in growth rate with increase in plasma power also 

corroborates the above hypothesis, Figure 2.12. Other studies, Lim et. al. and Koo et. al. 

have also shown a higher growth rate for PEALD Al2O3 using trimethyl(aluminum) 

(TMA) precursor [55, 56].  

AFM was used to characterize the surface roughness for PEALD Al2O3 films 

deposited at 200 ºC and 25 ºC, respectively to analyze the effect of the increased growth 

rate on the surface morphology. Figure 2.13 shows the AFM scans of the Si substrate 

before Al2O3 deposition [Figure 2.13 a] and after 6 nm and 33 nm Al2O3 [Figure 2.13 b] 

and [Figure 2.13 c)], respectively. It is evident from AFM RMS that the increased growth 

rate does not impact the uniformity or conformity of PEALD films.  

 

Figure 2.13. AFM  image (5 μm x 5 μm) of a) Si substrate, b) as grown 6 nm PEALD 

Al2O3 at 200 ºC and c) as grown 33 nm PEALD Al2O3 at 25 ºC. The RMS roughnesses 

are ~0.77±0.05 nm, ~0.76±0.05 nm and ~0.86±0.05 nm, respectively [53].  

VI. PEALD of Materials Used in this Research: 

A. Aluminum Oxide using DMAI: 

The following brief results for PEALD Al2O3 using DMAI have been published by 

Jialing Yang, Brianna S. Eller, Manpuneet Kaur, and Robert J. Nemanich in the Journal 

of Vacuum Science and Technology A. 

Trimethyl(aluminum) (TMA) is extensively used precursor for thermal ALD 

Al2O3 [10, 60] . The binary reaction of TMA and water are well understood. Dimethyl 

aluminum isopropoxide (DMAI) has seldom been used in thermal ALD possibly because 
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of the unreliable results of PEALD growth rate using, the bonding configurations of Al 

atoms on the surface and the carbon content in the films [53, 55]. However, the non-

pyrophoric nature of DMAI makes it a safe alternative to pyrophoric TMA. Langereis 

and Potts et. al. have reported possible DMAI surface adsorption and reaction with O2 

plasma as following [57, 53]: 

ǁ¯ OH (ads) + ½ [(CH3)2AlOCH(CH3)2]2 (g)  ǁ¯ OAl(CH3)OCH(CH3)2 (ads) + CH4(g) 

 

ǁ¯ OAl(CH3)OCH(CH3)2 (ads) + 9O
*
 (g)  ǁ¯ Al(OH) (ads) + 3CO2 (g) + 3H2O (g) 

 

And /or 

ǁ¯ OH (ads) + ½ [(CH3)2AlOCH(CH3)2]2 (g)  ǁ¯ OAl(CH3)2 (ads) + HOCH(CH3)2 (g) 

 
ǁ¯ OAl(CH3)2 (ads) + 4O

*
 (g)  ǁ¯ Al(OH) (ads) + CO2 (g) + H2O (g) 

 

The above both reactions suggest that after one complete ALD cycle the surface is 

terminated by hydroxyl (–OH) group and accessible for the chemisorption of DMAI 

molecules for the next cycle.  

Results and Discussion: 

1. Growth window and Self-limiting growth:  

The self-limiting growth of Al2O3 was ensured with the optimized PEALD 

growth window, and DMAI dosing time and O2 plasma time at 200 °C which is within 

the growth window. Figure 2.14 shows the growth window of DMAI to deposit Al2O3. 

The 20 nm of Al2O3 films were deposited on Si substrate in the temperature range of RT 

to 320 °C and characterized using RBS and XRR to measure the thickness. The constant 

growth rate (~1.5 Å/cycle) was obtained for the films grown from RT to 220 °C. Our 

experimental growth rate is slightly higher than the reported growth rate, i.e. 1.0-1.2 

Å/cycle, for DMAI. The discrepancies are related to the remaining active oxygen on the 

surface as discussed above. An inset Figure 2.14 shows the linear increase in the Al2O3 

thickness with the increase in number of cycles at 200 °C which implies the growth rate 

is consistent throughout the thickness. The slight decrease in the growth rate at RT is 

most likely due to incomplete reaction as the growth rate increases with the increase in 

plasma exposure time. This behavior indicates the RT thermal energy was not sufficient 
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to complete the chemisorption reaction. The increase in the growth rate above 220 °C is 

attributed to precursor decomposition as discussed earlier in the ALD growth window. 

 

Figure 2.14. Al2O3 growth rate per cycle vs deposition temperature represents the 

PEALD growth window. A square indicates the increased growth rate at RT with the 

oxygen exposure time. The inset shows the increase in Al2O3 thickness with increase in 

number of deposition cycles [53]. 

To determine the growth window, the optimized parameters such as O2 plasma, 

precursor dose and N2 purge time of 8 sec, 0.6 sec and 40 sec were used. The selected 

parameters are above the experimental given numbers. As shown in the Figure 2.15, the 

Al2O3 growth rate saturates for O2 plasma pulse of ≥6s, precursor dose of ≥0.2s and N2 

purge of ≥18s at 200 °C. 
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Figure 2.15. Al2O3 growth rate per cycle vs DMAI dose time, O2 plasma time and N2 

purge time [53]. 

2. Al2O3 composition: 

The Al2O3 thin film composition, such as Al atoms per cycle and mass density 

ratio were determined using RBS and XRR, respectively.  Despite the RBS determined 

Al atoms per cycle at RT (3.9±0.2 atoms nm
-2

 cycle
-1

) were ~26% less than at 220 °C 

(5.3±0.2 atoms nm
-2

 cycle
-1

), the growth rates at both temperatures are similar. The 

density of Al2O3 deposited at RT (~2.7 g/cm
3
) was also ~10% lower as compared to 220 

°C (~3.0 g/cm
3
); however, the O:Al ratio was higher at RT (2.1) than 220 °C (1.6). 

Consequently, the high concentration of O at low temperature deposition compensates for 

the lower Al concentration. The important results of Al2O3 deposited at room temperature 

(25 °C) and (200 °C) are summarized in Table 2.2. 

Table 2.2: Al2O3 film properties on Si substrates grown by remote PEALD and DMAI at 

25 °C and 200 °C [53]. 
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B. Silicon Oxide using TDMAD: 

The SiO2 deposition recipe using PEALD was developed by Dr. Brianna Eller in our 

group. 

Despite its potential, the ALD of SiO2 has challenging due to the low reactivity of 

Si precursors with H2O at lower temperatures. Some techniques have been developed to 

enhance the reactivity, such as using high temperatures (>300°C), long reactant exposure 

times [27-29], or using pyridine and Al as catalyst [30-32]. High reactivity of oxygen 

plasma in PEALD is promising alternate to enhance the reactivity of precursors. A 

number of precursors including BDEAS (SiH2(NEt2)2) and TEOS (Si(OEt)4) have been 

used to deposit PEALD SiO2. However, high dosing time was required for low 

temperature deposition [1, 62]. For PEALD SiO2 deposition in this research, 

tris(dimethylamino)silane (TDMAS) was explored and used which has high reactivity 

with H2O2 [58].  

1. Experiment:  

In this study, TDMAS was used to deposit SiO2 on Si surfaces in PEALD 

chamber. The background pressure of chamber is ~3.0x10
-8

 Torr. During deposition, 

oxygen plasma was ignited with 13.56 MHz rf-excitation applied at 200 W. The oxygen 

flow was maintained at 100 mTorr with a flow rate of 35 sccm. The precursor 

temperature was maintained at 33°C, and the pipelines between the bubbler and the 

chamber were heated to ~40°C to prevent precursor condensation.  The pulse time of the 

TDMS was 1.6 sec, N2 purge gas was 40 sec and O2 plasma was 8 sec. The SiO2 was 

deposited at room temperature. 

2. Results and Discussion:  
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The GPC as a function of timing sequence was modified for the precursor, oxygen 

plasma, and nitrogen purge for room temperature depositions. The deposition process 

demonstrated that the saturated growth rate was achieved with a precursor pulse time 

>1.6 sec and an O2 plasma pulse time >16 sec. In addition, the nitrogen purge time of >30 

sec ensured the removal of residual reactants, Figure 2.16. The relationship of growth rate 

with temperature was also investigated under saturation conditions. The results are shown 

in Figure 2.17, where the films were deposited using a precursor pulse time of 1.6 sec, 

oxygen plasma time of 8 sec, and nitrogen purge time of 30 s. It is evident from Figure 

2.17 that the largest growth rate of 1.25Å/cycle was obtained at lower substrate 

temperatures. However, the growth window was not well defined. Increase in 

temperature resulted in a decrease of growth rate for temperatures <450°C. At higher 

temperatures, the dramatic increase of growth rate corresponds to the thermal 

decomposition of TDMAS. Thus the growth cannot be considered self-limiting. 

 

Figure 2.16. Growth rate per cycle (GPC) of ALD SiO2 as a function of a) TDMAS, b) 

oxygen plasma time, and c) nitrogen purge time at 30 °C. The timing for each respective 

gas phase was 1.6 sec, 16 sec and 30 sec when not specified otherwise. 
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Figure 2.17. The growth rate per cycle (GPC) of PEALD SiO2 at substrate temperatures 

varying from 30 to 550 °C with precursor pulse time of 1.6 sec, O2 plasma time of 16 sec, 

and nitrogen purge time of 30 sec. 

Table 2.3: SiO2 content and deposition characteristics determined as by RBS and XPS. 

(Thickness measurements were confirmed with XRR; however, the sample deposited at 

550°C did not provide reliable results, most likely due to contamination in the film. 

 

In addition to the self-limiting and saturation experiments and characterizations, 

some measurements were conducted at three different temperatures (30 °C, 270 °C and 

550 °C). Thick SiO2 layers were deposited for Rutherford backscattering (RBS) and x-

ray reflectivity measurements (XRR) measurements. The results are summarized in Table 

2.3. The temperature did not affect the stoichiometry or density of the films. However, 
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there was an increase in contamination for the thermally decomposed film, where small 

concentrations of nitrogen from the precursor and molybdenum from the sample holder 

were detected. 

C. Zinc Oxide using DMZ: 

1. Experiment: 

A custom chamber with a base pressure of 5x10
-8

 Torr was used for PEALD ZnO 

deposition. The pressure during deposition is set to 100 mTorr using throttle valve 

between the chamber and the turbo pump. Because of the high vapor pressure of DMZ (5 

x 10
2
 Torr at 20 ⁰C) it was necessary to cool the source using a chiller filled with ethylene 

glycol to -18 ⁰C. Ar gas was used as a carrier gas with a flow rate of 50 standard cubic 

centimeters per minute (sccm) to transport DMZ from the bubbler to the chamber. The 

chamber walls were heated to 100 ⁰C to avoid condensation of the precursor on the 

chamber walls. To ignite the remote O2 plasma, 35 sccm ultrahigh purity grade O2 gas 

flowed through the glass tube, positioned ~25 cm above the sample surface. The glass 

tube is inductively coupled with an rf-source at a power of 200 W and frequency of 13.56 

MHz. The large distance from the oxygen plasma source to the sample act as a remote 

plasma and thus reduces the direct bombardment of substrate surface with oxygen ions 

and excited species. N2 (research grade) purge gas flow of 50 sccm was used to separate 

the DMZ precursor and O2 plasma pulse to avoid chemical vapor deposition (CVD) like 

reactions.  

The p-Si substrates were cleaned ultrasonically for 10 min in acetone followed by 

10 min in methanol to remove the hydrocarbons and exposed to an O2 plasma for 8 sec to 

remove carbon and to prepare the surface for precursor chemisorption. The saturated 

surface termination with DMZ molecules and self-limiting growth of ZnO was ensured 

using different DMZ pulse times, O2 plasma times and N2 purge times. The ALD growth 

window of ZnO was ascertained doing the deposition from RT (25 ⁰C) to 220 ⁰C. 

AFM was used to characterize the topography of nanocrystalline ZnO thin films. 

The density of the ZnO films was determined using x-ray reflectivity (XRR) to calculate 

the thickness from Rutherford backscattering (RBS). The film thickness was also 

confirmed with XRR values. X-ray diffraction (XRD) was used to characterize the crystal 
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structure vs deposition temperature. RBS measurements characterized the Zn and O 

composition in the ZnO films deposited at different temperatures. The film thicknesses 

were also calculated using XPS for thin films (< 5 nm), and the studies also corroborated 

the chemical states of the ZnO. 

2. Results and Discussion: 

Self-limiting growth and growth window of PEALD ZnO: 

Self-limiting growth is the property of ALD that differentiates it from chemical 

vapor deposition (CVD), which makes it crucial to ensure self-limiting growth by varying 

the precursor pulse, N2 purge and O2 plasma pulse time. The precursor pulse time for 

saturated deposition was determined using different pulse times at 100 ⁰C, which is 

within the growth window of PEALD DMZ ZnO. The following parameters were used 

for ZnO deposition: the precursor pulse time of 0.35 sec, N2 purge time of 30 sec and O2 

plasma time of 8 sec, as the saturated ZnO growth rate is observed at these parameters, 

Figure 2.18. The O2 plasma was excited with 200 W since the growth rate saturated at a 

plasma power ≥ 200 W. The self-limiting growth rate was confirmed with the linear 

increase in the film thickness with an increase in the number of cycles, measured using 

XPS for thin films and RBS and XRR for thick films, Figure 2.18.  

The saturation of precursor chemisorption on the substrate surface during the first 

pulse is surface adsorption sites dependent, which can make the initial growth rate 

different for different substrates. The surface treatments, such as oxygen or hydrogen 

plasma, can be used to enhance surface adsorption sites. The Si substrate provides 

moderate growth rate for most of the precursors due to fast adsorption of oxygen and 

hydrogen on the surface that act as precursor adsorption sites. The thickness of ZnO thin 

films and thus the GPC was measured in situ using the Zn and Si XPS core level peak 

intensities. The relative increase of the Zn peak intensity and decrease of the Si peak 

intensity was used to calculate the thickness of the thin films. The XRR on ~20 nm ZnO 

and RBS data of thick films (~80 nm) was also used to calibrate the thickness 

measurements from XPS core level intensities. The observed ZnO growth rate within the 

growth window (85 ⁰C and 180 ⁰C) is ~2.1 Å/cycle, Figure 2.18. The growth window of 
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ZnO using standard plasma (200 W, 100 mTorr and 8 sec) and precursor pulse (0.35 sec) 

parameters is from 85 ⁰C to 180 ⁰C. 

 

Figure 2.18. The deposition parameters of PEALD ZnO deposition using DMZ precursor 

are indicated. The saturated GPC at 100 ⁰C a); saturated oxygen plasma time at 100 ⁰C 

b); growth window of DMZ using oxygen plasma at standard deposition condition 

(black), the increase in growth rate with the increase precursor pulse time at RT and 60 

⁰C and the decrease in growth rate with reduced oxygen plasma power (100W) at 150 ⁰C 

and 180 ⁰C (blue) c); and the linear increase in the thickness of ZnO film with the 

increase in number of cycles d). 

As reported by Rowellete et al., the DMZ precursor is inert with O2 gas from 25 

⁰C to 125 ⁰C and the same was determined from our experiments [59].  The growth rate 

of ZnO is constant from 85 ⁰C to 180 ⁰C and comparatively lower below 85 ⁰C and 

above 180 ⁰C. An increase or decrease in the ALD growth rate above the growth window 

is usually ascribed to the decomposition or desorption of the precursor, respectively. 

Barnes et al. has studied the decomposition and desorption of DMZ and have shown 
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DMZ can desorb in the temperature range, ≥130 ⁰C and ≤ 325 ⁰C [59, 60]. The lower 

growth rate observed at temperatures above 180 ⁰C, apparently signifies desorption of 

DMZ molecules. Conversely, desorption was not observed up to 180 ⁰C. On the other 

hand, the lower growth rate below the growth window corresponds either to incomplete 

precursor chemisorption or to an incomplete oxidation reaction due to nsufficient thermal 

energy. Two experiments were performed to understand the surface reactions below the 

ZnO growth window; the first experiment was to increase the DMZ pulse time from 0.35 

sec to 0.7 sec and the second was to increase the oxygen plasma time from 8 sec to 40 

sec; the N2 purge time was increased to 50 sec to prevent CVD like deposition. The 

increase in pulse time from 0.35 to 0.7 sec at 60 ⁰C increases the GPC from 1.7 Å/cycle 

to 2.0 Å/cycle (Figure 2.18 c), which implies unsaturated chemisorption of DMZ 

molecules caused the low GPC. The ZnO growth rate was unaffected with an increase in 

oxygen plasma time. Above the growth window (at 150 ⁰C and 180 ⁰C), using standard 

deposition parameters, a slight increase in the GPC (from 2.1 Å/cycle to 2.4 Å/cycle) was 

observed. The GPC was reduced from 2.4 Å/cycle to 2.0 Å/cycle with oxygen plasma 

power of 100 W, i.e. half of the standard oxygen plasma power. This implies the high 

GPC was possibly due to an increase in thermal energy that increased the reaction rate of 

adsorbed oxygen plasma species with DMZ molecules. The tweaking in deposition 

parameters widens the growth window (60 ⁰C – 180 ⁰C) as compared to the standard 

deposition conditions. 
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Figure 2.19. The AFM scans show the surface topography of ZnO 20 nm films deposited 

at a) 85 ⁰C, b) 100 ⁰C and c) 125 ⁰C. The roughness for all the surfaces is measured as 

~0.9 nm, irrespective of deposition temperature. 

RBS data shows, the Zn:O atomic ratio was 1:1 irrespective of the deposition 

temperature within the growth window. It is evident from AFM imges, the ZnO 

deposition using DMZ and oxygen plasma source is conformal and uniform; the 

roughness for 20 nm thick films deposited within the growth window, irrespective of the 

deposition temperature, is ~ 0.9 nm (Figure 2.19). 

Crystal structure of PEALD ZnO: 

The crystal structure of ZnO is very sensitive to temperature, unlike Zn:O ratio 

and roughness, and varies from a-axis dominated orientation to c-axis orientation with the 
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variation in deposition temperature from 85 ⁰C to 180 ⁰C. As shown in Figure 2.20, the 

crystal structure of ZnO films has highest (2 -1 -1 0) peak at 85 ⁰C; the orientation is 

mixed (a-axis and c-axis perpendicular to the plane) at 100 ⁰C but c-axis growth begins to 

dominate over a-axis growth; the c-axis orientation dominates at 125 ⁰C; and the well-

oriented (0 0 0 2) films are deposited with the further increase in temperature i.e. at 180 

⁰C. The crystal orientation, oxygen vacancies and impurities are considered to control the 

mobility and carrier concentrations. 

 

Figure 2.20. The grazing angle (ω = 0.5 degree) XRD scans of 20 nm ZnO deposited a) 

85 ⁰C, b) 100 ⁰C, c) 125 ⁰C and 180 ⁰C. The change in crystal structure from mixed a-

axis and c-axis orientation to c-axis orientation. 
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CHAPTER 3. MOLECULAR BEAM DEPOSITION: 

I. Introduction:  

Molecular beam deposition (MBD) is based on the principle of molecular beam 

epitaxy (MBE) experiment. MBE is an ultrahigh vacuum (UHV ~ 10
-10

 Torr) process to 

deposit epitaxial crystalline thin films. Kundsen cells are used as material source in MBE 

systems, which direct material to the substrate surface. Schoolar and Zemel et. al. were 

the first users of MBE, in 1964, to deposit lead sulfide [1]. The molecular beam for their 

system was produced by effusion cells. In late 1960s, the deposition technique was 

extended to deposit III-V semiconductors. Davey and Pankey et. al. deposited epitaxial 

gallium arsenide films in 1968 [2]. To date MBE III-V and II-VI films have been 

deposited for the applications of infrared imaging sensors and light emitting devices, etc.  

Lewis et. al. were the first ones to modify MBE hardware to use it as MBD to deposit 

dielectric materials [3-6]. The ultrahigh vacuum deposition method has advantages to 

reduce impurities, to deposit denser and mechanically stable films. The atomic or 

molecular beam is generated from the heated source. The flux distribution on the 

substrate surface is controlled by the substrate and source configuration. 

II. MBD Reactor Configuration: 

MBD system used in this research has a similar principle as MBE and MBD 

processes described above with a base pressure of 1 x 10
-9

 Torr. However, the sources 

used to evaporate the metal pellets were e-beam instead of using Knudsen or effusion cell 

and a background pressure of O2 gas was maintained the background to deposit metal 

oxides.  
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Schematics of MBD chamber with top view and side view are shown in Figure 

3.1 a) and b). The figure shows the three e-guns: vanadium, titanium and molybdenum, 

O2 gas inlet, and sample and crucible positions. The chamber is pumped with a cryopump 

and a turbo-molecular pump to achieve the base pressure in the range of 10
-9

 Torr. Three 

e-beam guns are installed in the system have three different (Vanadium, Titanium, 

Molybdenum) metal sources. The e-guns are cooled using water jackets. Metal pellets in 

the crucibles are evaporated using e-beam aligned with magnets to focus at the center of 

the crucibles. Molybdenum crucible is installed with boron nitride crucible liner due to 

high thermal coefficient (138 W/(m·K)) of molybdenum. On the other hand, the thermal 

coefficient of vanadium and titanium is 30.7 W/(m·K) and 21.9 W/(m.K), respectively. 

The low thermal coefficient allows using the crucibles for vanadium ad titanium metals 

without crucible liners. This system can be used to deposit different oxidation states of 

vanadium oxide and molybdenum oxide by varying oxygen pressure and deposition 

temperature.  
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Figure 3.1. Schematic of MBD shows a) the top view of three guns: vanadium, titanium 

and molybdenum, cryo pump, oxygen inlet and turbo pump, and b) side view of sample 

and crucible position. 



 

 64   

 

III. e-beam: 

The e-guns installed in the chamber were purchased from MDC. The system 

includes e-vap CVS emission current controller and 10 kW power supply. An e-gun 

consists of two parts, an electron beam generator/emitter and the metal source, Figure 

3.2. The emitter filament (tungsten) generates a beam of electrons by thermionic 

emission, which varies from 50 – 500 mA. The phenomenon of thermionic emission was 

demonstrated by Thomas A. Edison in 1883, where thermal energy is used to emit the 

electrons from a material while overcoming the work function. With the magnets 

installed on both sides of the emitter and crucible, the e-beam is confined and focused at 

the center of the source. An electron beam emitted from the filament is accelerated to 

high K.E. which provides high thermal energy to evaporate the metal source. The 

evaporation rate that is usually above the metal melting point determines the growth rate 

of metal oxides, which can be controlled by varying the emission current. 

 

Figure 3.2. Schematic of emitter and crucible which shows the filament and e-beam path 

to the metal source.  
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IV. Oxides Deposition Mechanism: 

To generate the electron beam, high voltage (HV) of 4.5 – 5.3 kV was applied 

between the e-gun filament and the metal source. The HV voltage used for vanadium, 

titanium and molybdenum metal sources was 4.5, 5.2 and 5.3 kV. In addition to the HV, 

emission current was increased to obtain the desired growth rate, which was ≤ 0.1 Å/sec 

for all the oxides. In a deposition method like MBD, the composition of metal oxide is 

controlled by the background oxygen and deposition temperature. Thus, the variation in 

oxygen pressure and deposition temperature can change vanadium oxide oxidation state. 

To obtain a specific oxidation states, the growth conditions are optimized. During the 

deposition, cryo pump is separated from the chamber using a gate valve Figure 3.1 a) and 

b). Consequently, turbo-molecular pump was used to maintain O2 gas pressure for metal 

oxides deposition. The required oxygen gas pressure was different for different metal 

oxides. The oxygen pressure for VO2 (vanadium (IV) oxide), TiO2 and MoO3 was 7 x 10
-

4
, 5 x 10

-5
 and 9 x 10

-5
 Torr, respectively. The vanadium, titanium and molybdenum 

metal sources were purchased from Alpha Aesar with 99.99%, 99.999% and 99.99% 

purity, respectively. 

A. Vanadium Oxide:  

Vanadium oxide has three oxidation states: VO2 (vanadium (IV) oxide), V2O3 

(vanadium (III) oxide) and V2O5 (vanadium (V) oxide). All the three oxidation states can 

be obtained using our MBD system. However, for this research, VO2 was deposited and 

studied for band alignment and charge transfer properties in VO2/LiNbO3 and VO2/PPLN 

heterostructures. With our MBD system VO2 can be deposited at 450 °C and 550 °C and 

research grade O2 gas pressure of 7 x 10
-4

. The AFM scans of 55 nm VO2 films deposited 
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at different temperatures are shown in Figure 3.3. It is evident from AFM scans, with the 

increase in deposition temperature the grain size also increases. 

Vanadium (III) oxide can be deposited at 350 °C with O2 gas pressure of 1 x 10
-5

 

Torr; however, vanadium (V) oxide deposition requires 650°C and O2 pressure in the 

rage of mTorr. With the O2 gas pressure in mTorr, arcing becomes an issue in the vicinity 

of emitter which restricts the deposition of thick V2O5. Our prior research has studied the 

band alignment of stacked vanadium dioxide (VO2) in HfO2 and Si gate stack structure 

[7].  
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Figure 3.3. AFM images of 55 nm VO2 on a) Si at 450  C, b) Si at 550 C, c) sapphire at 

450 C, d) sapphire at 550 C, and e)  PPLN at 550  C. The RMS of the VO2 from AFM 

was 3.0, 13.1, 4.5, 8.3 and 3.5 nm, respectively. 

B. Titanium Oxide: 

Titanium (TiO2) was used to determine the band alignment in TiO2/LiNbO3 and 

charge transfer in TiO2/PPLN heterostructures. The deposition of TiO2 could be achieved 

at comparatively lower temperature and oxygen pressure as compared to VO2. For thin 
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thickness < 2 nm, TiO2 can be deposited using two methods. First is to deposit Ti metal at 

RT and oxidize the thin film with oxygen and helium mixed plasma at 30 W, 100 mTorr, 

200 °C for 2 min [8]. Second is to deposit TiO2 at 250 °C while maintaining the 

background O2 pressure at 5 x 10
-5

 Torr. However, to deposit thick films (> 2 nm) the 

second deposition method is preferred. With the increase in Ti metal, the oxidation of Ti 

with oxygen plasma is difficult due to penetration depth limit of oxygen plasma species.  

C. Molybdenum Oxide: 

Molybdenum oxide has multiple oxidation states and usually deposits in mixed 

oxidation states. MoO3 is the highest work function (6.9 eV) material, which has been 

extensively used to transfer holes form organic materials and semiconductors in 

heterostructures. Usually, the evaporated molybdenum oxide is MoOx (x<3) [9, 10]. The 

work function of molybdenum oxide decreases with the decrease in x [9]. MoOx can be 

deposited in MBD system at various temperatures (RT – 250 °C) and oxygen pressure of 

4 x 10
-4

.  Molybdenum pellets required highest emission current among the three metal 

sources in the MBD system. The emission current to evaporate molybdenum metal 

source was 200 – 200 mA. 

 



 

 69   

 

References: 

[1] R. B. Schoolar, J. N. Zemel, “Preparation of Single-Crystal Films of PbS” J. Appl. 

Phys. 35 (1964) 3 

 

[2] J. E. Davey and T. Pankey, “Epitaxial GaAs films deposited by vacuum evaporation” 

J. Appl. Phys. 39 (1968) 1941. 

 

[3] K. L. Lewis, A. M. Pitt, J. A. Savage, A. G. Savage, A. G. Cullis, and N. G. Chew, 

“Molecular Beam Techniques for optical thin film fabrication, Boulder Damage 

Symposium, Colorado, 1985. 

 

[4] I. T. Muirhead, A. Miller, K.L. Lewis, J. Staromlynska, and K. Welford, “Molecular 

Beam Deposited Inteference Filters, Tech. Dig. Series, 6, Optical Interference Coatings, 

Optical Society of America, New York, 1988. 

 

[5] K. L. Lewis, I. T. Muirhead, A. M. Pitt, and A. Miller,” Thin Film Ultraclean 

Environments” J. Vac. Sci. Technol. 7 (1989) 3. 

 

[6] K. L. Lewis, I. T. Muirhead, A. M. Pitt, A. G. Cullis, N. G. Chew, A. Miller, and T. J. 

Wyatt-Davies, “Molecular Beam Deposition of Optical Coatings and their 

Characterization” Appl. Opt. 28 (1989) 2785. 

 

[7] C. Zhu, M. Kaur, F. Tang, X. Liu, D. J. Smith, and R. J. Nemanich, “Band alignment 

of vanadium oxide as an interlayer in a hafnium oxide-silicon gate stack structure” J. 

Appl. Phys. 112 (2012) 8. 

 

[8] C. C. Fulton, G. Lucovsky and R. J. Nemanich, “Electronic states at the interface of 

Ti–Si oxide on Si(100)” J. Vac. Sci. Technol. 20  (2002) 1726. 

 

[9] M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, S. Kennou, L. 

Sygellou, A. Soultati, I. Kostis, G. Papadimitropoulos, D. Davazoglou, and P. 

Argitis, “The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum 

Oxides Work Function and Gap States for Application in Organic Optoelectronics” J. 

Am. Chem. Soc. 134 (2012) 16178. 

 

[10] C. Battaglia, S. M. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javery, 

“Silicon heterojunction solar cell with passivated hole selective MoOx contact” Appl. 

Phys. Lett. 104 (2014) 113902. 

 

  



 

 70   

 

CHARACTERIZATION TECHNIQUES 

CHAPTER 4. SCANNING PROBE MICROSCOPY: 

I. Introduction: 

Scanning probe microscopy uses a conducting or non-conducting tip mounted at 

the end of a cantilever, which moves back and forth to image the sample surface. The 

deflection experienced by the cantilever as it approaches the sample surface is measured 

by a laser reflection from the top of the cantilever, Figure 4.1. Scanning probe 

microscopy was discovered with the invention of scanning tunneling microscope (STM) 

in 1981by Swiss scientist Gerd Binnig and Heinrich Rohrer at IBM’s Zurich. They were 

awarded the Noble Prize for the invention of STM in 1986 [1]. STM uses a conducting 

probe to tunnel electrons from sample to the tip and vice versa depending on the sign of 

the applied voltage. A bias applied between the sample and tip develops an electric field, 

which tunnels electrons when the distance between the tip and the sample surface is ~10 

Å [1]. In STM, an image is created by the tunneling current that varies with the tip to 

sample distance. STM was limited to scan conducting or semiconducting surfaces. To 

overcome the limitations of STM, atomic force microscope (AFM) was discovered to 

image conducting as well as non-conducting surfaces. AFM can also be used for other 

applications such as atomic force microscopy (AFM) [3, 4, 5], piezoelectric force 

microscopy (PFM) [6, 7, 8], electrostatic force microscopy (EFM) [9, 10] and scanning 

kelvin probe microscopy (SKPM) [11, 12, 13], etc 
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Figure 4.1. Schematic of scanning probe microscope [1]. 

II. Atomic Force Microscopy: 

The atomic force microscope was developed by Binnig, Gerber and Quate in 1986 

to image surface topography [3]. AFM consists of a cantilever with non-conducting probe 

tip which scans over the sample surface or the sample scans under the tip. The measured 

cantilever deflection of laser beam by photodiode sensor is sent to photodetector 

feedback loop to keeps the distance between the sample surface and tip constant, Figure 

4.2. An electronic signal received by the computer from feedback loop controls the 

scanner position and from photodiode is converted into an image showing surface 

topography. The four quadrant photodiode generates voltage from each quadrant, which 

has amplitude directly related to the laser beam intensity. A voltage signal from each of 
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the four quadrants is added to get the total change in the laser beam intensity. AFM 

measures conducting and insulting surfaces at ambient pressure. In this research Asylum 

Research 3D MFP 3D is used, which scans the tip over the sample surface and has a 

floating sample stage to isolate the noise.  

 

Figure 4.2. Schematic of AFM setup showing laser beam reflected from the back of the 

cantilever and the cantilever deflection is scanned by a four quadrant photodiode. 

Feedback loop processor converts the cantilever deflection into an image. 

A. Probes:  

AFM cantilevers are usually made of Si or Si3N4 in triangular or rectangular 

shape. The back of the cantilever is coated with reflective material to reflect the laser 

beam. A cantilever image and cross-sectional view is shown in Figure 4.3 (a) which also 

shows the cantilever length (L), thickness (T) and probe tip height (h). SEM image of a 
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tip with radius ~10 nm is shown in Figure 4.3. (b). In this research to scan AFM 

topography images, non-conducting Si probes of spring constant k = 13-77 N/m and the 

resonance frequency ~200 – 400 kHz are used. 

 

 

Figure 4.3 (a) Image and cross-sectional view of AFM probe showing cantilever, length, 

thickness and tip height (Nanoscience Instruments). (b) SEM image of a tip with radius ~ 

10 nm (Bruker AFM probes). 

B. Tip-Sample Interactions: 

AFM cantilever deflection is the result of a force (10
-11

 N – 10
6
 N) between the tip 

and surface. The existence of Vander Waals, electrostatic, capillary and magnetic forces 

allow non-destructive imaging of the surface. For topography images, Vander Waals 
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attractive (long-range) and repulsive (short-range) forces exist between the tip and the 

sample.  As the tip approaches the sample surface, the attractive and repulsive forces 

arise and show the same plot as Vander Waals interactions i.e. Force on the tip vs 

Distance, Figure 4.4. When the tip is far away from the surface weak attractive forces 

exist between the tip and the surface. As the tip comes close to the surface attractive 

forces increase and cause the downward movement of the tip until the tip comes so close 

to the surface where attractive forces starts decreasing. With the further decrease in the 

distance between the tip, the attractive interactions convert into repulsive forces. The  

 

Figure 4.4. Force on the tip vs tip-sample distance shows a plot of attractive and repulsive 

forces between the tip and the sample. Non-contact AFM works in the attractive 

interactions region and contact AFM works in the repulsive interactions region. 
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nature of the interaction force is influenced by the sample surface and the distance 

between the tip and the sample. The tip-sample interaction forces other than the Vander 

Waals attractive and repulsive forces allow AFM to be used in other modes, Table 4.1. 

Table 4.1 AFM tip-sample interactions and modes of operation. 

 

C. Operation Modes: 

1. Contact AFM:  

In contact mode, AFM operates in strong repulsive Vander Waals forces region, 

Figure 4.4, where tip makes a soft contact with the surface atoms. The cantilevers used 

for contact mode have spring constant (< 1 Nm) lower than the spring constant of surface 

atoms holding them together. Due to low spring constant, the force between the sample 

and the tip bends the cantilever and deflects the cantilever. Contact AFM can operate to 

create topography image in two modes: constant height mode and constant force mode. 

Constant Height Mode: 



 

 76   

 

In constant height mode, the cantilever is kept at constant height by applying 

constant voltage to the scanner. Since the scanner position is fixed, the cantilever deflect 

is used to generate the topography image. This mode can be used for very flat surfaces.  

Constant Force Mode:  

In constant force mode, the force between the tip and sample surface is kept 

constant by applying voltage to the scanner using feedback loop. The movement of the 

scanner along the z-direction due to applied voltage is used to generate topography 

image. In this case, the cantilever deflection does not contribute to topography image.  

2. Tapping AFM:  

In tapping mode, the tip-sample distance is kept between tens of Angstroms to hundreds 

of Angstrom and is made to oscillate at its resonance frequency (100 – 300 kHz). This 

mode operates in the attractive region of Vander Waals force vs distance plot. An 

oscillating tip makes an intermittent contact with the surface, experiencing free-amplitude 

of ~20 nm when the tip is in the air, and the tip amplitude decreases when it approaches 

to the surface. In scanning mode, when oscillating tip passes over the bump on the 

surface the cantilever oscillation amplitude decreases. However, when the tip passes over 

a trench the cantilever oscillation amplitude increases and approaches towards the free 

oscillation amplitude. In other words, the tip-sample interactions change the force on the 

tip with the change in sample-tip distance that changes the resonance frequency of the tip, 

Figure 4.5. The change in the oscillation frequency causes a change in the tip amplitude. 

A piezo-scanner attached to the cantilever keeps the tip oscillations amplitude constant at 

the set point value, using computer software, and adjusts the height of the scanner using 
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feedback loop. The voltage change measured from the piezo scanner to keep the z- height 

of the sample constant generates topography image.  

 

Figure 4.5. AFM cantilever oscillations amplitude in free air and in scanning mode at the 

set point value [15].  

Tapping mode has advantages over the contact mode and can be used to scan 

rough surfaces and soft samples. The force used in the tapping mode per strike is ~0.5 

nN, which is ~ 3 orders magnitude smaller than contact mode i.e.  100 nN. Unlike contact 

mode, lateral forces reduce drastically in the tapping mode due to intermittent contact 

with the sample, which increases the topography images resolution. High resolution AFM 

topography images of Ag nanoparticles on polarity patterned lithium niobate (PPLN) 

obtained in tapping mode is shown in Figure 4.6. 
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Figure 4.6. Tapping mode AFM topography image of Ag nanoparticles on PPLN. 

III. Piezoresponse Force Microscope: 

Piezoresponse force microscopy measures the electromechanical response 

(domain orientation, domain boundaries, piezoelectric hysteresis loop, piezoelectric 

constants and domain switching) of the sample when voltage is applied using a 

conductive tip. Guthner and Dransfeld were the first who studied piezoelectric properties 

of ferroelectric polymer using AFM in 1992 [25]. Over the years, the PFM was advanced 

and Gruverman et. al. presented results of nanoscale size poled domains on Barrium 

Titanate Oxide (BTO) and Lead Zirconate Titanate (PZT) in 1995 [26, 27]. After three 

years, Christman et. al. measured the piezoelectric constants using PFM [28]. In this 

research PFM is employed to study the alternate domain of polarity patterned lithium 

niobate (PPLN) substrate and ZnO/PPLN heterostructure. 

PFM operates in contact mode, i.e. repulsive force region, when a tip with applied 

ac voltage raster over the sample surface. The ac voltage produces an electric field, which 

induces deformation in piezoelectric samples and causes cantilever deflection to generate 

PFM images. In PFM, topography and PFM images can be obtained simultaneously. An 
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experimental set-up of PFM used in this study is shown in Figure 4.7. The ac voltage 

applied to the tip is given as: 

Vtip =  Vdc + Vac                                                           (1) 

where Vtip applied tip voltage, Vdc and Vac are the dc and ac component of the applied 

voltage and  

Vac = V0 Cos(t)                                                          (2) 

where  is the frequency at which the piezoelectric material contracts and expands. 

In PFM, one frequency (~10 kHz) set value is required for ac modulation and 

another resonant frequency (45-115 kHz) set value is required for cantilever deflection. 

Two lock-in amplifiers, lock-in one and lock-in two, in Figure 4.9 are assigned to 

resonant frequency and ac modulation, respectively, to amplify frequency signals. Lock-

in amplifier sets the tip deflection due to piezoelectric strain given as: 

Z = Z0 + A Cos (t + )                                                   (3) 

where Z0 is the static surface displacement, A is piezoresponse amplitude at frequency  

and  is the piezoresponse phase. Piezoresponse amplitude and phase generates 

amplitude and phase images, respectively. Phase images show the contrast in different 

orientation of spontaneous polarization of piezoelectric surfaces. Amplitude is the 

electromechanical deformation of the sample measured in nm/V. However, the amplitude 

signal is independent of polarization orientation except at the domain boundaries the 

value of amplitude is 0. PFM amplitude measurements can be used to determine the 

width of the domain boundaries. However, the domain width accuracy is questioned [20, 

21]. 

A. Probes:  
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In PFM, conductive probes are used to apply tip voltage to the piezoelectric 

samples. The commonly used tips for PFM are Pt/Ir or diamond coated Si. Due to the 

contact mode operation of PFM,  Pt/Ir conductive coating wears off quickly. Diamond 

coating thickness is ~ 1000 Å (0.1 Ω-cm, p-type) and are very expensive. These tips are 

expensive and non-uniform diamond coating has also been observed on Si tips [22, 23]. 

We have used n
+
 Si tips (0.01-0.02 Ω-cm) coated with Pt/Ir from Nanosensors.  

B. Contrast Mechanism in PFM Phase Image: 

It is well know that all the ferroelectric materials are piezoelectric and shows reverse 

piezo effect when placed in an applied voltage. In ferroelectric materials, the 

piezoresponse is directly related to the polarization direction. For instance, when the 

applied electric field (generated by applied tip ac voltage) is parallel to the direction of 

the spontaneous polarization, LiNbO3 domain expands in the direction of applied electric 

field i.e. applied voltage and piezoresponse are in 0° or 180° phase with each other. On 

the other hand, when the applied electric field is antiparallel to the direction of 

spontaneous polarization, LiNbO3 domain contracts in the direction of applied electric 

field, i.e. applied voltage and piezoresponse are 180° out of phase with each other, Figure 

4.7. The expansion and contraction of LiNbO3 alternate domains with opposite 

spontaneous polarization causes color contrast in phase images. 
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Figure 4.7. Schematic of piezoelectric effect in LiNbO3 with applied tip voltage (Vac). a) 

and b) LiNbO3 negative domain (-c) and positive domain (+c) expands and contracts with 

the applied  the applied electric field aligning parallel and antiparallel to spontaneous 

polarization, respectively. The applied voltage and piezoresponse are in 0° phase and 

180° out of phase with each other when LiNbO3 domain expands and contracts, 

respectively. 

C. Operation Modes: 
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The local deformation of the sample, in vertical and horizontal direction, at the 

apex of the tip applies a force on the cantilever. Deflection of the cantilever is a force 

applied on the cantilever directly in the vertical direction when the sample underneath the 

tip expands or contracts. This is called vertical PFM due to the investigation of forces at 

the apex of the tip and movement of the cantilever directly in the vertical direction. Other 

than deflection of the cantilever, buckling or torsion investigates the forces applied on the 

cantilever in due to horizontal displacement and thus are associated to in-plane 

deformations, i.e. lateral displacement. Both deflection and torsion or buckling results in 

the movement of the cantilever in vertical direction which deflects the laser beam as 

shown in Figure 4.8. The cantilever displacement due to torsion or buckling can be used 

to detect in-plane polarization of domains which are not aligned at 180⁰. 

 

 

Figure 4.8. Schematic of the cantilever movement with an applied force at the apex of the 

tip duet to surface deformations. (a) shows the direction of deflection, buckling and 

torsion force with respect to the surface plane. (b) displays the side and top view of 

cantilever deflection with vertical (deflection) and lateral (buckling/torsion) forces. (c) 
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indicates the possible movement direction of laser beam reflecting from cantilever back 

[20]  

This study involves PPLN samples with domains aligned at 180⁰ which required 

the use of vertical PFM. Dual ac resonance tracking (DART) PFM is used to analyze the 

domains of PPLN using vertical mode.  

Dart PFM: 

PFM technique described above has limitations as the cantilever deflections are 

limited to a few picometers (pm) per volt. The small deflections are overshadowed by the 

noise from an optical lever, which is in the range of tens of pm. Thus the amplification of 

the signal is required to get accurate measurements using either high AC voltage or some 

other techniques. Usually, the modulation using high voltage is the most common method 

used to amplify the signal. However, high AC voltage generates large electric field that 

can switch the domains in case of ferroelectric materials and results cross talk between 

the topography and piezo signal [24, 25]. The other technique that has been developed to 

modulate the piezo signal is the use of cantilever contact resonance and is called DART 

PFM. The schematic of DART PFM is shown in Figure 4.9.  
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Figure 4.9 (a) Schematic Illustration of DART PFM. (b) The change in amplitude with 

dual resonance frequency [26].  

In case of DART PFM, the drive frequency of the cantilever is adjusted tracking 

the contact resonance using a feedback loop. Unlike conventional PFM that uses phase 

frequency as the feedback loop response, DART uses the difference in the amplitudes of 

two different voltage frequencies that are applied at above and below the resonant 

frequency [27]. As shown in the schematic above (Figure 4.9), f1 and f2 are the two drive 

frequencies selected above and below the resonant frequency, respectively and A1 and A2 

(solid black line) is the respective deflection amplitude. As the deflection changes the 

resonant frequency due to tip-sample surface force gradient, the deflection amplitude 
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changes to A1
’
 and A2

’
 (dotted black line). The amplitude difference (A2

’
-A1

’
) is an input 

to a feedback loop to shift the drive frequency to make the new amplitude difference 

(A2
’
-A1

’
) zero as the initial amplitude difference (A2-A1). DART PFM can be used on the 

samples to detect small piezo response on ferroelectric samples [28]. PFM phase images 

on PPLN domain ends is shown in Figure 4.10. 

 

Figure 4.10. PFM phase image of PPLN showing positive domain ends and contrast in 

the positive (+c) and negative (-c) surface.  

 



 

 86   

 

References: 

[1] Scanning Probe Microscopy, Center for probing the nanoscale, Stanford University 

[2] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope” Phys. Rev. Lett. 

56 (1986) 930. 

[3] N. Jalili, K. Laxminarayana “A review of atomic force microscopy imaging systems: 

application to molecular metrology and biological sciences”, Mechtronics 14 (2004) 907. 

[4] E. Meyers, “Atomic Force Microscopy”, Progress Surf. Sci. 41 (1992) 3. 

[5] C. B. Prater, P. G. Maivald, K. J. Kjoller and M. G. Heaton, “Tapping Mode Imaging 

Applications and Technology” Veeco. 

[6] A. Gruverman, O. Auciello, and H. Tokumoto, “Scanning force microscopy for the 

study of domain structure in ferroelectric thin films” J. Vac. Sci. Technol. B 14 (1996) 

602. 

[7] A. Gruverman, O. Auciello, and H. Tokumoto, “Scanning force microscopy: 

Application to nanoscale studies of ferroelectric domains” Integr. Ferroelectrics 19 

(1998) 49. 

[8] O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and H. Tokumoto, “Nanoscale 

Visualization and Control of Ferroelectric Domains by Atomic-Force Microscopy” Phys. 

Rev. Lett., 74 (1995) 4309. 

[9] J. W. Hong, D. D. Kahng, J. C. Shin, H. J. Kim, and Z. G. Khim, “Detection and 

control of ferroelectric domains by an electrostatic force microscope” J. Vac. Sci. 

Technol. B 16 (1998) 2942. 

[10] J. W. Hong, S. Park, and Z. G. Khim, “Measurement of hardness, surface potential, 

and charge distribution with dynamic contact mode electrostatic force microscope” Rev. 

Sci. Instrum. 70 (1999) 1735. 

[10] M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin Probe Force 

Microscopy” Appl. Phys. Lett. 58 (1991) 2921. 

[11] M. Fujihira and H. Kawate, “Structural Study of Langmuir-Blodgett-Films by 

Scanning Surface-Potential Microscopy” J. Vac. Sci. Technol. B 12 (1994) 1604.  

[12] M. M. Shvebelman, A. G. Agronin, R. P. Urenski, Y. Rosenwalks, and G. I. 

Rosenman, “Kelvin probe force microscopy of periodic ferroelectric domain structure in 

KTiOPO4 crystals” Nano Lett. 2 (2002) 455. 



 

 87   

 

[15] C. B. Prater, P. G. Maivald, K. J. Kjoller, and M. G. Heaton, “Scanning Probe 

Microscopy .2. Scanning Technology and Applications” Ameri. Lab. 27 (1995) 50. 

[16] P. Guthner, and K. Dransfeld, “Local Poling Of Ferroelectric Polymers by Scanning 

Force Microscopy” Appl. Phys. Lett. 61, 1137-1139 (1992). 

[17] A. Gruverman, O. Kolosov, J. Hatano, K. Takahashi, and H. Tokumoto, “Domain-

Structure And Polarization Reversal In Ferroelectrics Studied By Atomic-Force 

Microscopy” J. Vac. Sci. Technol. B 13 (1995) 1095.  

[18] A. Gruverman, O. Auciello, and H. Tokumoto, “Scanning force microscopy for the 

study of domain structure in ferroelectric thin films” J. Vac. Sci. Technol. B 14 (1996) 

602  

[19] J. A. Christman, R. R. Woolcott, A. I. Kingon, and R. J. Nemanich, “Piezoelectric 

measurements with atomic force microscopy” Appl. Phys. Lett. 73 (1998) 3851. 

[20] E. Soergel, “Piezoresponse Force Microscopy (PFM)” J Phys. D: Appl.Phys. 44 

(2011) 464003  

[21] T. Jungk, A. Hoffmann, and E. Soergel, “Influence of the inhomogeneous field at the 

tip on quantitative piezoresponse force microscopy” Appl. Phys. A 86 (2007) 353. 

[22] P. Niedermann, W. Haenni, N. Blanc, R. Christoph, and J. Burger, “Chemical vapor 

deposition diamond for tips in nanoprobe experiments” J. Vac. Sci. Technol. A 14 (1996) 

1233. 

[23] S. J. O'Shea, R. M. Atta, and M. E. Welland, “Characterization of Tips for 

Conducting Atomic-Force Microscopy” Rev. Sci. Instrum. 66 (1995) 2508. 

[24] C. Harnagea, M. Alexe, D. Hesse and A. Pignolet, “Contact resonances in voltage-

modulated force microscopy” Appl. Phys. Lett., 83 (2003) 338. 

[25] B. J. Rodriguez, C. Callahan, S. Kalinin, R. Proksch, “Dual-frequency resonance-

tracking atomic force microscopy” Nanotechnology, 18 (2007) 475504. 

[26] S. Kim, V. Gopalan and A. Gruverman, “Coercive fields in ferroelectrics: A case 

study in lithium niobate and lithium tantalite” Appl. Phys. Lett., 80 (2002) 2740 

[27] Piezoresponse force microscopy, Asylum Research. 

[28] B. J. Rodriguez, S. V. Kalinin, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. 

Baddorf and A. Gruverman, “Electromechanical imaging of biomaterials by scanning 

probe microscopy” J. Struct. Biol., 153 (2006) 151. 



 

 88   

 

CHAPTER 5. PHOTOEMISSION ELECTRON SPECTROSCOPY 

I. Introduction: 

Photoemission electron spectroscopy (PES) or photoelectron spectroscopy is an 

application of photoelectric effect, i.e. an incident photon can emit or ionize an electron 

from the surface, as explained by Albert Einstein in 1905. The excess photon energy than 

the amount of energy required to emit an electron is carried by an emitting electron in the 

form of kinetic energy (KE). PES is used to measure the kinetic energy of emitted 

photoelectrons to determine the binding energy (BE), which is used to examine the 

electronic structure of materials. Photoelectron spectroscopy can be divided into two 

categories, i.e. x-ray photoelectron spectroscopy (XPS) and Ultraviolet photoelectron 

spectroscopy (UPS), depending upon the photon energy source. The high energy x-rays 

are used to study the electronic profile of core level electrons and the technique is known 

as XPS, while low energy ultraviolet photons provide an electronic profile of valence 

electrons and the technique is termed as UPS. Both XPS and UPS characterizations are 

surface sensitive since the photon penetration depth is limited to few nanometers under 

the surface. Photoelectric effect defines the relationship between the kinetic energy (KE) 

and the binding energy (BE) of solids as: 

BE = h - KE - A 

where his incident photon energy and A is the analyzer work function. However, the 

detected BE in photoelectron spectroscopic system is different from equation (1) because 

the detected energy is referred to the vacuum level of the spectrometer and is given as: 

BE = h - KE - A+ qV
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where A is the work function of analyzer, q is the elementary charge and V is the bias 

applied to either sample or analyzer. The applied bias provides photoelectrons sufficient 

energy to accelerate and overcome the analyzer work function and hence increases the 

collection of low energy electrons. Figure 5.1 illustrates the core level and valencne band 

electron emission with x-ray and ultraviolet photons. 

 

Figure 5.1. Energy level diagram of photoelectron emission in XPS and UPS. 

Schematic of photoelectron microscopy is illustrated in Figure 5.2. Photoelectron 

spectroscopic system consists of photon source, energy analyzer and an electron 

multiplier detector in ultra-high vacuum (UHV). All the photoelectrons do not reach to 

the detector because of inelastic mean free path [1]. Recombination and scattering energy 

loses for most of the photo emitted electrons inhibit their surface escape. Consequently, 

the only electrons reach to the vacuum, which have sufficient kinetic energy to overcome 

the work function of the given material. However, some scattered electrons can escape to 
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the vacuum and contribute to the background spectrum. In front of the analyzer, the set of 

electrostatic lenses collect electrons and  

 

 

Figure 5.2. Schematic of photoelectron spectroscopy. Copyright: Photoemission 

spectroscopy (Wikipedia)  

focus them on the entrance slit. The electric field is developed by applying bias to two 

hemispherical plates of the analyzer, which allows electrons with certain energy exit 

through the other slit to reach to the multiplier detector, where the electrons are 

accelerated and converted into current pulses. 

II. X-ray Photoelectron Spectroscopy: 

X-ray photoelectron spectroscopy is surface analysis method, as described above, 

which combines the x-rays surface irradiation and photoelectric effect. The other name 

used for XPS is Electron Spectroscopy for Chemical Analysis (ESCA), which was 

discovered by Kai Siegbahn in 1957 to study the chemical information instead of 
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elemental detection. XPS is used to characterize electronic structure, chemical oxidation 

states and atomic composition of the material being studied [2]. 

The commonly used metallic x-ray sources, to irradiate the surface to emit 

electrons, are aluminum (Al) and magnesium (Mg). X-rays are generated by bombarding 

Al or Mg anodes with electrons. A thoria coated iridium filament is heated to supply 

electrons, which are accelerated in a 15 kV electric field to be bombarded at water cooled 

metal anodes. Al and Mg anodes emit Al K (1486.6 eV) and Mg K (1253.6 eV) x-

rays, respectively. Both, Al and Mg, sources are usually equipped and used in non-

monochromatic systems due to wide x-ray beam and lower resolution to detect 

overlapping core levels and Auger peaks. However, monochromatic systems are 

equipped with only Al source, which achieves high resolution with added 

monochromator (a series of quartz crystals), which removes satellites and 

Bremsstrahlung [3]. A monochromatic XPS system (SCIENTA MX650), consists of 

SCIENTA SAX100, was used for most of the characterizations here. This system is 

installed with seven quartz crystals. 

Monochromator: Concave shaped quartz crystals are used in a monochoromator to 

increase the surface area for x-rays incidence, which are diffracted satisfying Bragg’s 

condition. 

2 d Sin = n                                                        (3) 

where n is an integer, d is the distance between diffracting planes and  is x-ray 

wavelength. The incident x-rays at an incidence angle i ~ B can satisfy Bragg’s 

diffraction condition. To focus the diffracted x-rays, concaved quartz crystal with radius 

2R is tangentially aligned on Rowland’s circle with radius R [4]. Quartz crystal and x-ray 
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source are placed on Rowland’s circle which ensures the focus of diffracted x-rays will 

exist at another point on the circle [4,5]. Figure 5.3 shows the schematic of x-ray source, 

quartz crystal and sample on Rowland’s circle. Rowland’s circle sometimes is also called 

focus circle. 

 

 

Figure 5.3. Schematic of Rowland’s circle with positioned x-ray source, quartz crystal 

and sample.  

Characterization: 

1. Core level Shift and Bonding:  

An XPS measured binding energy of core level electrons is used to determine the 

chemical oxidation and electronic states. The amount of energy required to remove 

electrons from core levels in elemental samples, such as Au [6], is supposed to be same in 

the absence of surface contamination and impurities. A small change in the core level 

peaks binding energy signifies the change in electronic environment of photoelectrons 
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and the change referred as core level shift. Another name used for core level shift is 

chemical shit. Quantitatively, chemical shift is the change in hybridization state with the 

nearest neighbor atoms and/or ionic/covalent bonding. For example, single crystalline Si 

substrate exposed to atmosphere forms thin film of SiO2 on the surface. XPS shows two 

Si 2p peaks at 99 eV and 103.3 eV corresponding to Si and SiO2, respectively. The core 

level binding energy can be used for further band alignment and band bending analysis. 

2. Thickness:  

Surface sensitivity of XPS enables it to determine the thickness of deposited or 

oxidized thin films. Hill et. al. calculated homogenous thin film thickness using Hill’s 

equation in 1970 using the core level peak intensity of thin film and the substrate. Chiyu 

et. al. calculated SiO2 thin film thickness on oxidized Si substrate using following 

equation [8]. 

t = SiO2 Sin ln{1 + [(ISiO2 / RSiO2) / ISi]}                                   (4) 

where t is the SiO2 thickness,  is the angle between the photoelectrons emission 

direction and the sample surface i.e. 90⁰, ISiO2 is the core level intensity of SiO2 measured 

using XPS, ISi is the core level intensity of Si measured using XPS and RSiO2 is the ratio 

of bulk SiO2 and Si intensity i.e. 0.9392. 

3. Chemical Composition:  

As discussed earlier, all the emitted electrons do not reach to the detector which 

limits the direct comparison of XPS core level peak intensities and/or area. XPS 

intensities are also sensitive to the operating mode and instrumentation ability. 

Photoelectrons describe the electronic states of an element. With the change in the 

chemical composition the electronic states of an element also changes, which alters the 
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transition peak area from same and different elements. To eliminate the peak area 

discrepancies, the peak area for different elements and same element with different 

hybridization state to nearest neighbors must be scaled using atomic sensitivity factors. 

An atomic concertation percentage can determine the thin films composition that is 

calculated as [9]: 

Atomic % = [𝐼𝑖
𝑒𝑥𝑝 / Si] / ∑ [𝐼𝑗

𝑒𝑥𝑝𝑛
𝑗  / Sj]                                     (5) 

where I
exp

 is the core level intensity and S is the atomic sensitivity factor.  

4. Band Gap:  

XPS energy loss spectrum (ELS) can be used to determine the band gap. The O 1s 

core level is preferred to be measured for ELS spectrum due to smooth and broad spectral 

component of Plasmon loss related to it. A Plasmon peak is the result of a fraction of O 

1s photoelectrons energy loss due to collective oscillations (Plasmons) and 

interband/intraband transitions [11,12]. The O 1s peak position is aligned to zero energy 

loss, the onset energy of electron excitation from valence band to conduction band 

measures the band gap of the material [13].  Figure 5.4 an ELS spectrum of PEALD 

Al2O3 O1s, used to calculate the band gap, i.e. 6.7±0.1 eV [14], which is comparable to 

ALD Al2O3 films band gap, i.e. 6.5 - 7.0 eV [12,15-17]. 
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Figure 5.4. Oxygen 1s energy loss spectra from 10 nm PEALD Al2O3 on Si deposited at 

200 ⁰C. The zero loss energy represents O 1s peak position, Ev is the valence band 

maximum, Ec is the conduction band minimum and Eg is the band gap [14]. 

5. Other Peaks in XPS: 

All peaks in an XPS spectrum are not the core level peaks created by 

photoelectrons emitted from the core levels of the nucleus. Along with the direct 

emission of photoelectrons with incident photons other phenomenon also occurs within 

the material and contributes to create XPS peaks. The most commonly known are the 

Auger peaks, satellite peaks, ghost peaks, shake-up peaks, and Plasmon peaks. 

Auger Peaks: Auger peaks are often observed in XPS spectrum and the result of 

secondary electron emission with incident x-ray photons. As shown in Figure 5.5, the 

hole created by direct incident photon in the core level is filled by an energetic electron 

from higher energy level. An electron going from higher energy level to lower energy 

level releases energy, which in some cases is used as a kinetic energy for an another 
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electron to emit to the vacuum. Unlike photoelectrons, the energy of electrons 

participating in Auger peaks is independent of incident x-ray photon and does not satisfy 

equation (1) and (2). However, Auger peak position depends on the x-ray source material 

[18]. 

 

Figure 5.5. Energy diagram of Auger (KL1L2) process. X-ray photon emits and electron 

form orbital K, an electron from L1 fill the hole in K and transfer released energy in the 

form of KE to an electron in orbital L2, which contributes to create an Auger peak.  

Satellite Peaks: Satellite peaks are observed near the core level peaks in XPS spectrum 

collected using non-monochromatic x-ray source. Origin of these peaks is the existence 

of several x-ray lines except K in non-monochromatic source.  

Ghost Peaks: It is possible metal anode in XPS can get contaminated, such as with 

carbon,  oxygen and in case of two anode system from the other source, and the 

accelerated electrons can hit at the other parts of the source interior [18]. When this 

happens, the x-ray core level peaks and ghost peaks are generated since the binding 

energy is referred to x-ray source energy. Plasmon Peaks: Plasmon peaks are energy loss 
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peaks of photoelectrons that lose their energy due to interband transitions and /or 

collective oscillation (Plasmons). As discussed earlier, these peaks can be used to 

determine the band gap of the material.  

III. Ultraviolet Photoelectron Spectroscopy: 

Unlike XPS, UPS system uses a noble gas plasma discharge generated photons. 

An electric field is used to accelerate electrons and ionize the gas to emit photons in a 

discharge lamp. In this research helium (He) gas of purity research grade (99.9999%) is 

used as photon source. Helium can produce two lines He(I) and He(II) of energy 21.22 

eV and 40.82 eV, respectively. Line I corresponds to light photons produced from neutral 

atoms and line II corresponds to light photons produced from singly ionized atoms. A 

beam of photons (~3 mm) is focused to the material surface to emit photoelectrons. The 

low energy photons in UPS system allow emitting photoelectrons from valence band and 

the penetration depth is ~1 nm. Other than He gas, Ar and Ne can also be used to change 

the photon energy. Like He, Ar and Ne also generate two lines (I and II). The minimum 

energy photons are produced by Ar(I), i.e. 11.7 eV, and the maximum energy photons are 

produced by He(II), i.e. 40.8 eV [17]. Analyzer used here is VSW HA50. An UPS 

spectrum gives the valence band maximum with respect to the fermi level and electron 

affinity of the material being characterized. 

Characterization: 

1. Valence Band Maximum:  
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Figure 5.6. Schematic UPS spectrum showing valence band maximum with respect to 

Fermi level, back cut off, secondary peak and spectrum width. 

An UPS spectrum gives the direct information of the valence band maximum 

(VBM) value. The front cut-off of the spectrum gives the position VBM with respect to 

the Fermi level, Figure 5.6. 

2. Electron Affinity: 

Electron affinity of a material is defined as the amount of energy released when 

an electron is added to a material. Using UPS, spectrum electron affinity value can be 

calculated using following equation: 

= h - W - Eg                                                           (6) 

where,  is the electron affinity, h is the ups source photon energy, W is the UPS 

spectrum width, Eg is the material band gap. 

IV. Band Diagram:  
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The data measured using XPS and UPS can be used to determine the band 

diagram (band bending and band alignment) of a material. In case of a thin film (Al2O3) 

and substrate (ZnO) heterostructure, the valence band offset (VBO) method by Waldrop 

and Grant [20], and Kraut [21] is used in this study. 

EV = (ECL – EV)Al2O3 – (ECL – EV)ZnO + ECL                                              (8) 

where EV is the VBO, ECL is the XPS core level energy, EV is the UPS VBM, (ECL – 

EV)Al2O3 is the difference between the core level and VBM in Al2O3, (ECL – EV)ZnO is the 

difference between the core level and VBM in ZnO and ECL is the difference between 

Al2O3 and ZnO core level binding energy. The conduction band offset is calculated using 

the value of valence band offset using following equation: 

EC = Eg,Al2O3 – Eg,ZnO – EV                                                                                           (9) 

where EC is the conduction band offset, Eg,Al2O3 and Eg,ZnO are band gap of  Al2O3 and ZnO, 

respectively. 

The process to determine the VBO in Al2O3 and ZnO is given in Figure 5.7. To 

draw a band diagram of ZnO and Al2O3 VBM, VBO and band bending is required. XPS 

is used to measure ZnO 2p and Al2O3 2p core levels and UPS is used to measure VBM of 

ZnO and Al2O3, which gives information of band bending and VBO at the interface of 

ZnO and Al2O3, respectively. VBO is calculated using equation 8 and band bending is 

calculated using following equation: 

Band Bending = (ECL – EV)ZnO + Eg – ECL + EC                                             (9) 

where ECL is the ZnO core level, EV is the ZnO VBM, Eg is the ZnO band gap and EC is 

the ZnO conduction band minimum. As reported by Waldrop [20] and Grant [21], the 

distance between the core level and VBM remains constant for a given material, which 
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implies the ZnO core level 2p and VBM shift in the same direction with same binding 

energy due to charges induced at the interface after Al2O3 deposition or change in internal 

carrier concentration of ZnO, Figure 5.8. 

XPS data can independently determine the band bending since the VBM and core level 

difference remains constant. 

 

Figure 5.7. Schematic of VBO determinations in Al2O3 and ZnO heterostructure. 
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Figure 5.8. Schematic of change in ZnO core level and VBM and constant (ECL – EV)ZnO. 

 



 

 102   

 

References: 

[1] D. Briggs, et. al., Practical Surface Analysis, Vol. 1 Auger and X-ray Photoelectron 

Spectroscopy, 2nd edition (John Wiley & Sons,West Sussex, 1990). 

[2] C. C. Chusuei and D. W. Goodman, Texas A&M University. 

[3] S. Zhang, L. Li and A. Kumar, “Materials Characterization Techniques” Taylor and 

Francis (2009).  

[4] D. B. Wittry and N. C. Barb, “X-ray Crystal Spectrometers and Monochromators in 

Microanalysis”, Microsco.  Microanal. 7 (2001) 124. 

[5] Z. W. Chen, Walter M. Gibson, and Huapeng, “Huang High Definition X-Ray 

Fluorescence: Principles and Techniques”, X-Ray Optics and Instrumentation 2008 

(2008) 318171. 

[6] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray 

photoelectron spectroscopy (Waltham: Perkin-Elmer Corporation, 1992). 

[7] D. A. Cole, J. R. Shallenberger, S. W. Novak, R. L. Moore, M. J. Edgell, S. P. Smith, 

C. J. Hitzman, J. F. Kirchhoff, E. Principe, W. Nieveen, F. K. Huang, S. Biswas, and K. 

Jones, “SiO2 thickness determination by x-ray photoelectron spectroscopy, Auger 

electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, 

transmission electron microscopy, and ellipsometry” J. Vac. Sci. Technol. B18 (2000) 

440–444. 

[8] C. Zhu, M. Kaur, F. Tang, X. Liu, D. J. Smith, and R. J. Nemanich,“Band alignment 

of vanadium oxide as an interlayer in a hafnium oxide-silicon gate stack structure” J. 

Appl. Phys. 112 (2012) 084105. 

[10] F. G. Bell and L. Ley, “Photoemission-Study of SiOx (0 Less-Than-or-Equal-to x 

Less-Than-or-Equal-to 2) Alloys” Phys. Rev. B 37, 8383 (1988).   

[11] H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S. 

De Gendt, M. Heyns, J. Maes, and M. Tuominen, “Characterization of ALCVD-Al2O3 

and ZrO2 layer using X-ray photoelectron spectroscopy” J. Non-Cryst. Solids 303, 83 

(2002).   

[12] M. Bär, M. Rusu, S. Lehmann, Th. Schedel-Niedrig, I. Lauermann, and M. C. Lux-

Steiner, “The chemical and electronic surface and interface structure of CuGaSe2 thin-

film solar cell absorbers” Appl. Phys. Lett. 93, 232104 (2008).  

[13] J. Yang, B. S. Eller, M. Kaur, and R. J. Nemanich, “Characterization of plasma-

enhanced atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide” J. 

Vac. Sci. Technol. A 32, 021514 (2014).  



 

 103   

 

[14] E. Bersch, S. Rangan, R. A. Bartynski, E. Garfunkel, and E. Vescovo, “Energy gap 

and band alignment for (HfO2)(x)(Al2O3)(1-x) on (100) Si” Phys. Rev. B 78 (2008) 

085114.   

[15]. Miyazaki, J. Vac. Sci. Technol. B 19 (2001) 2212. 

[16] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, D.-L. Kwong, J. S. Pan, C. H. 

Ang, J. Z. Zheng, and S. Ramanathan, Appl. Phys. Lett. 81 (2002) 376.   

[17] “UVL Ultra-violet Source,” Thermo Electron Corporation Application Note: 

AN30058_E (2008).   

[18] Casa XPS, CasaXPS software Ltd. 2013. 

[19] R. Smart, S. McIntyre, M. Bancroft, I. Bello et al., U. Hong Kong, Dept. Phys.   

[20] J. R. Waldrop and R. W. Grant, “Measurement of AlN/GaN (0001) heterojunction 

band offsets by x-ray photoemission spectroscopy” Appl. Phys. Lett. 68 (1996) 2879. 

[21] E. A. Kraut, R. W. Grant, J. R. Waldrop and S. P. Kowalczyk, Heterojunction Band 

Discontinuities: Physics and Device Applications, edited by F. Capasso and G. 

Margaritondo (Elsevier, New York, 1987).  

 

  



 

 104   

 

RESEARCH 

CHAPTER 6. PHOTOCHEMICAL REACTION PATTERNS ON 

HETEROSTRUCTURES OF ZnO ON POLARITY PATTERNED LITHIUM 

NIOBATE 

Abstract: The internal electric field in LiNbO3 provides a driving force for 

heterogeneous photocatalytic reactions, where photoexcited holes or electrons can 

participate in redox reactions on positive and negative domain surfaces and at the domain 

boundaries. One of the methods to characterize the surface chemical reactivity is 

photoinduced Ag deposition by immersing the LiNbO3 in an aqueous AgNO3 solution 

and illuminating with above bandgap light. Reduction of Ag
+
 ions leads to the formation 

of Ag nanoparticles at the surface, and a high density of Ag nanoparticles indicates 

enhanced surface photochemical reactions. In this study, an n-type semiconducting ZnO 

layer is deposited on polarity patterned LiNbO3 (PPLN) to modulate the surface 

electronic properties and impact the surface redox reactions. After plasma enhanced 

atomic layer deposition (PEALD) of 1, 2, 4 and 10 nm ZnO thin films on PPLN 

substrates, the substrates were immersed in aqueous AgNO3 and illuminated with above 

band gap UV light. The Ag nanoparticle density increased for 1 and 2 nm ZnO/PPLN 

heterostructures, indicating an enhanced electron density at the ZnO/PPLN surface. 

However, increasing the ZnO thickness beyond 2 nm resulted in a decrease of the Ag 

nanoparticle density and the formation of large clusters. The increase in nanoparticle 

density is related to the photoexcited charge density at the ZnO/PPLN interface and the 

presence of a weakly adsorbed Stern layer at the ZnO surface. The decrease in the 
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nanoparticle density for thicker ZnO is attributed to photoexcited electron screening in 

the ZnO layer that suppresses the electron flow from the LiNbO3 to the ZnO surface.  

I. Introduction: 

Photochemical redox reactions have been used for various processes such as 

splitting water into H2 and O2 [1, 2], converting CO2 and water into fuel [3] and removing 

organic and inorganic compounds from contaminated water [4, 5]. For photocatalytic 

processes involving semiconductors or oxides, above band gap light excites electrons and 

holes, which can transport to the surface and react with chemical species, provided that 

the redox potential of the reacting species is within the semiconductor or oxide bandgap 

[1, 2, 6]. The redox reaction rate is controlled by the number of carriers available at the 

surface, which is influenced by the recombination and generation rates. The 

recombination rate is affected by bulk defects and surface states, while the generation rate 

is controlled by the absorption of light near the surface of the photocatalyst. 

A recent review discusses mechanisms where the internal electric field in 

ferroelectrics can separate photoinduced charge carriers and enhance the efficiency of 

photocatalytic processes [2]. Ferroelectric polarization and polar surfaces have been 

described as a source of internal fields [2]. Materials such as LiNbO3 and BaTiO3, are 

among the group of ferroelectrics with bandgaps that enable photocatalytic processes and 

that exhibit an internal electric field that can lead to separation of the photoexcited 

carriers. Consequently, surface photochemical reactions display enhanced efficiency for 

these materials [2, 6]. Specifically, enhanced reduction efficiency has been shown on 

positive LiNbO3 and BaTiO3 domain surfaces for photoinduced metal nanoparticle 

deposition [7, 8, 9].  



 

 106   

 

Lithium Niobate (LiNbO3) has previously been explored for photochemical 

efficiency in bulk, powder and nanowire forms [2, 3, 6, 9, 10, 11]. Polarity patterned 

LiNbO3 crystalline surfaces have been used for photochemical reactions, where the 

reduction and oxidation reactions are spatially separated on the different polarity domains 

[2, 3, 6]. However, to improve the LiNbO3 photochemical reaction efficiency, recent 

efforts have employed multi-phase LiNbO3 nanowires [9], multi-crystalline powders 

(LiNbO3 and LiNb3O3) [10], Fe doped LiNbO3 [6] and Ag loaded LiNbO3 [12]. Another 

method to improve the photochemical reaction efficiency is to use a semiconductor and 

ferroelectric heterostructure. Burbure et. al. have prepared TiO2/BaTiO3 heterostructures 

that led to an enhancement of the photochemical reaction efficiency. They demonstrated 

two phenomena: (i) photoinduced charge transfer from BaTiO3 to the TiO2 surface [13], 

and (ii) Ag
+
 reduction that reflects the BaTiO3 polarity pattern irrespective of TiO2 

crystal orientation [14]. The results indicated that the BaTiO3 electric field controls the 

surface reactions of TiO2/BaTiO3 heterostructures. Here we investigate ZnO and 

ferroelectric lithium niobate (LiNbO3) to form a semiconductor/ferroelectric 

heterostructure. The band gap of ZnO is 3.4 eV, which is less than the 3.9 eV bandgap of 

LiNbO3. It has a much smaller spontaneous polarization of 0.05 C/m
2
 [15], which can be 

neglected compared to the 0.71 C/m
2
 spontaneous polarization of LiNbO3 [16, 17]. The 

oxide heterostructures can serve two purposes: (i) reduction of defect states at the 

ferroelectric surface [18], and (ii) enhancement of the photoexcited charge separation 

process [14, 13]. The goal of this study is to modulate polarity patterned lithium niobate 

(PPLN) surfaces with ZnO thin films to understand how photocatalytic processes may be 

influenced by the heterostructure properties. 
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In LiNbO3, the positive polarization charge terminated surface is termed as +c and 

the negative polarization charge terminated surface is termed as –c. In general, the 

polarization surface bound charge can be screened by free carriers, ionized impurities, 

defects (internal screening), charged adsorbed species, and/or surface states (external 

screening) [19, 20]. As shown in Figure 6.1, the polarization bound charge at LiNbO3 

surfaces is predominantly screened by external charges due to the low carrier 

concentration (10
12

 cm
-3

) [17, 19]. The electric field induced by the polarization bound 

charge influences the photoinduced charge carrier density by displacing electrons towards 

the positive surface (+c) and holes towards the negative surface (–c).  

 

Figure 6.1. Schematic of ferroelectric LiNbO
3
 shows (a) negative polarization bound 

charge on -c domain and (b) positive polarization bound charge on +c domain.  In 

LiNbO
3
, due to free carrier deficiencies in bulk, the surface is externally screened with 

oppositely charged adsorbed species by forming a Stern layer.  

Among oxides, ZnO is a promising candidate as an electron transport layer due to 

its relatively high mobility and optical transparency. Wide band gap zinc oxide (ZnO) 
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thin films have been used for numerous applications in electronic and optical devices and 

have been more recently considered as photocatalysts and charge transfer layers in 

photovoltaic heterostructures [2-4, 24]. ZnO thin films and nanostructures can be used as 

efficient photocatalysts and are, in some cases, preferred over TiO2 due to a higher 

absorption coefficient [5]. Despite the wide band gap, ZnO is typically an n-type 

semiconductor with a high internal carrier concentration (1 x 10
16

 – 1 x 10
18

 cm
-2

) [21-

22]. The n-type character of ZnO, which is still an area of research, has been attributed to 

a number of effects including interstitial hydrogen, impurities and oxygen vacancies [22]. 

Photoinduced nanopattern formation on polarity patterned lithium niobate (PPLN) 

is a photocatalytic process that has shown Ag nanowire formation and preferred Ag 

nanoparticle deposition on domain boundaries and positive domains, respectively [7, 8, 

11, 23]. Ag nanoparticle deposition is enabled by photoexcited electrons that reduce Ag
+
 

ions. Shown in Figure 6.2 are the reduction potential of Ag
+
 to Ag, the oxidation potential 

of OH
-
 and H2O, and the bandgap position of +c LiNbO3, –c LiNbO3 and ZnO [17, 24]. 

The structure and pattern of the photoinduced nanoparticle deposition on periodically 

poled ferroelectric materials is influenced by the availability of photoexcited charge 

carriers at the surface [6, 8, 17]. A major focus of this study is to examine the effect of 

ZnO film thickness on PPLN photochemical surface reactivity. This study addresses how 

the n-type carrier concentration and thickness of ZnO affects photoexcited electron 

transport from LiNbO3 as evidenced by the observed Ag nanoparticle pattern and density 
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Figure 6.2. Redox potential of H2O, hydroxyl ion (OH
-
) and Ag

+
 vs normal hydrogen 

electrode (NHE) with respect to LiNbO3 negative (-c) and positive (+c) domain and ZnO 

conduction band minimum (CBM) and valence band minimum (VBM) position relative 

to vacuum level.  

Plasma enhanced atomic layer deposition (PEALD) is a sub-monolayer deposition 

process that can achieve uniform, conformal ZnO thin films [25]. In this study, 

ZnO/PPLN heterostructures were prepared with various ZnO thicknesses (1, 2, 4 and 10 

nm) using a PEALD process. To understand the photochemical reactivity of the 

ZnO/PPLN heterostructures, photoinduced deposition was carried out by illuminating the 

heterostructures with 254 nm (4.9 eV) and 350 nm (3.5 eV) UV light, which are above 

and below the band gap of LiNbO3. The variation in the Ag nanoparticle pattern with the 

ZnO thickness provides insight into the charge transfer processes in ZnO/PPLN 

heterostructures and the photocatalytic redox reactions at the surface. 

II. Experiment: 

A. PEALD ZnO on PPLN: 

This study employs plasma enhanced atomic layer deposition of ZnO thin films 

on periodically poled LiNbO3 polished substrates which were purchased from Crystal 

Technologies. The 6 mm x 4 mm x 0.5 mm LiNbO3 substrates were double side polished 
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with an ~20 m period, lithographically patterned, polarity grating and c-axis surfaces 

with periodically arranged positive (+c) and negative (–c) domains separated by 180º 

domain boundaries. An ultrasonic chemical (acetone and methanol) clean was used to 

prepare the PPLN surfaces prior to PEALD. The ZnO thin films of different thicknesses 

(1, 2, 4 and 10 nm) were deposited at 130 ºC using dimethyl zinc (DMZ) as the precursor 

and oxygen plasma as the reactant with 0.35 second and 8 second exposures, 

respectively. The precursor and plasma steps were separated by 40 sec N2 purge steps. 

The observed PEALD ZnO growth rate was determined to be ~2.1 Å/cycle using 

Rutherford Backscattering Spectrometry (RBS). The sub-monolayer two step atomic 

layer deposition requires reactive sites to initiate the reaction of the chemical precursor 

molecules at the substrate surface [26]. Prior to the PEALD process, the surface was 

treated with an O2 plasma for 10 sec, to remove the surface adsorbed impurities that can 

act as reactive sites for PEALD nucleation. In addition, the initial plasma treatment 

provides a surface with reactivity similar to that after each growth cycle. 

B. PFM of PPLN and ZnO/PPLN: 

Piezo force microscopy (PFM) can be used to image the polarity domains of 

ferroelectric substrates. PFM detects the signal from the LiNbO3 surface as it expands or 

contracts due to the converse piezoelectric effect induced by the applied potential. The 

LiNbO3 domain expands or contracts if the applied electric field (Eap) is parallel or anti-

parallel to the spontaneous polarization (Ps), respectively (Figure 6.3). The spontaneous 

polarization of the +c or –c surfaces points toward or away from the surface, respectively. 

An Asylum Research Molecular Force Probe (MFP) 3D was used to image the domains 

in an ambient environment. PFM was performed before and after ZnO deposition with 
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conductive (Pt/Ir coated Si) tip probes (PPP-EFM, Nanosensors) of radius 30 ± 10 nm, 

spring constant of k = 0.5 to 9.5 N/m, resonance frequency between 45-115 kHz, and 

resistivity of 0.01 – 0.02 cm. The periodic structure of PPLN is evident in the PFM 

phase image, where the color contrast represents the opposite polarity domains, Figure 

6.4 a. After ZnO deposition on PPLN, a higher tip voltage (Vac) was required to image 

the domains. The tip voltage used for PPLN and (1 nm – 10 nm) ZnO on PPLN was 

between ~250 mV to 950 mV. For each sample the tip voltage was adjusted to obtain the 

same cantilever signal from the photodetector. This signal is directly related to the 

material oscillation amplitude.  

 

Figure 6.3. Schematic of piezoelectric effect in LiNbO3 with applied tip voltage (Vac). a) 

and b) LiNbO3 negative domain (-c) and positive domain (+c) expands and contracts with 

the applied  electric field aligning parallel and antiparallel to spontaneous polarization, 

respectively.  

The electric field strength experienced by the ferroelectric material is affected by 

the top surface layer thickness (d) [26] and the presence of free carriers. For the case of a 

dielectric top layer, the electric field strength is inversely related to the thickness; 

however, for metals, the free carriers can completely screen the applied electric field. 
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Consequently, a semiconductor layer can reduce the applied electric field strength 

through an increase in thickness or through the free carrier concentration. For a dielectric 

between the PFM tip and surface, the electric field (Eap) near the ferroelectric surface is 

given as [26]: 

 Eap  Vac/d                                                                 (1) 

where Vac is the applied oscillating tip voltage and d is the distance from the tip to the 

ferroelectric surface. It is evident from equation (1) that with an increase in the distance 

between the tip and ferroelectric surface, the electric field strength experienced by the 

ferroelectric material decreases if Vac is kept constant. The ZnO thickness increases the 

distance between the PFM tip and PPLN surface, and a higher tip voltage is required to 

obtain the same displacement. 

 

Figure 6.4. PFM phase image of a) bare PPLN, b) 1 nm ZnO/PPLN, c) 4 nm ZnO/PPLN 

and d) 10 nm ZnO/PPLN. The bottom phase vs width (m) plots show 180⁰ difference in 

the alternate opposite polarity domains of PPLN along the red line drawn on respective 

phase images.  

C. Photoinduced Ag nanoparticle deposition on PPLN and ZnO/PPLN: 
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To establish the surface reactivity and charge transfer processes, Ag nanoparticle 

deposition was carried out on the ZnO/PPLN heterostructures and compared with the 

well-studied photoinduced deposition of Ag nano-patterns on bare PPLN [7, 8, 11, 23]. 

Prior to photoinduced deposition, the PPLN or ZnO/PPLN substrates were sonicated in 

methanol for 1 minute and dried with N2 gas. The cleaned sample surfaces were covered 

with a 35 µL droplet of a 0.00001 M AgNO3 solution and illuminated with 254 nm (4.9 

eV) or 350 nm (3.5 eV) UV light of intensity ~1100 µW/cm
2
 for 8 min. The illumination 

was obtained using a 100 W Hg lamp with line filters. After UV illumination, the 

samples were immersed in deionized water for 1 minute followed by a N2 blow dry. The 

photoinduced Ag nanoparticle pattern was obtained using AFM in tapping mode, with 

non-conducting Si probes of spring constant k = 13-77 N/m and resonance frequency of 

~200-400 kHz. 

D. Electron Microscopy: 

An aberration corrected JEOL ARM200F (200 kV) was employed to determine 

the thickness and crystallinity of the ZnO after Ag nanoparticle deposition for the 1 and 2 

nm ZnO/PPLN heterostructures. The images were obtained using both bright field (BF) 

and high angle annular dark field (HAADF) configurations. Energy dispersive x-ray 

spectroscopy (EDX) was used to spatially locate the ZnO layers and identify the Ag 

nanoparticles. 

III. Results: 

A. Piezoelectric force microscopy (PFM) on PPLN and ZnO/PPLN surfaces: 

PFM was used to measure the piezo response of PPLN +c and –c domains. As 

shown in the PPLN PFM phase scan in Figure 6.4 a, the alternate domains show color 
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contrast, differentiating the +c and –c domains. In addition, the PPLN domain contrast is 

also visible with 2 nm, 4 nm and 10 nm PEALD ZnO films, Figure 6.4 b –  d. However, 

as the ZnO thickness was increased, a higher tip voltage (Vac) was required to achieve the 

same tip displacement, Figure 6.5. The linear increase with thickness suggests that the 

screening is due to the dielectric layer thickness and the screening effect due to free 

carriers is not significant. 

 

 

 

 

 

 

 

Figure 6.5. PFM tip voltage (Vac) at 11 mV amplitude vs ZnO thickness plot shows the 

increase in Vac with the increase in ZnO thickness. 

B. Photoinduced Ag nanoparticle deposition on PPLN and ZnO/PPLN: 

The resultant Ag nanoparticle patterns on PPLN and ZnO/PPLN heterostructures 

after photoinduced deposition are shown in Figures 6.6, 6.7 and 6.8. Two control 

experiments were conducted to exclude the possibility of unexpected surface reactions. In 

the first control experiment the PPLN sample was immersed in a 35 L AgNO3 solution 

in the absence of UV light. The AFM scan, in Figure 6.6 a, showed a smooth surface with 

an absence of Ag nanoparticles, which ruled out the possibility of direct reaction of ZnO 

with AgNO3 in water. In the second control experiment, photoinduced Ag nanoparticle 
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deposition using 350 nm (3.5 eV) UV light illumination was performed on 2 nm 

ZnO/PPLN to analyze the contribution of electrons photoexcited in the ZnO. In this case, 

the photon energy is above the ZnO bandgap but below the LiNbO3 bandgap. The AFM 

image shows sparse Ag nanoparticles irrespective of the +c and –c LiNbO3 domains, 

Figure 6.6 b. This indicates the ZnO photoexcited electrons have a negligible contribution 

to the Ag
+
 photoreduction. 

 

Figure 6.6. AFM scan of Ag nanopattern on 2 nm ZnO/PPLN a) with no UV light 

illumination and b) with 350 nm (3.5 eV) UV light illumination. 

The AFM images of photoinduced Ag nanopatterns on PPLN and 1, 2, 4 or 10 nm 

ZnO on PPLN are shown in Figures 6.7 and 6.8. All photodepositions were conducted 

under similar conditions of UV wavelength, exposure time, intensity, and AgNO3 

concentration. The Ag nanoparticle patterns on the PPLN and ZnO/PPLN samples are 

summarized below: 

Pattern of Ag nanoparticles on +c and –c domains: AFM images show the deposition of 

Ag nanoparticles is spatially enhanced on PPLN +c domains compared to –c domains, 

Figure 6.7 a. For the 1 nm ZnO on PPLN structures, an increased density of nanoparticles 
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was observed on both domains. A higher density of Ag nanoparticles was maintained on 

the +c domain surface compared to the –c surface, Figure 6.7 b. As the ZnO thickness 

increases to 2 nm, the nanoparticle density further increases on the negative domain and 

appears to be comparable to that on the positive domain. There is a notable change in the 

Ag nanoparticle pattern for ZnO films ≥ 4 nm, Figure 6.8 a – c. In this case, large 

agglomerated clusters are observed which are not evidently correlated with the domains.  

Ag nanoparticles at domain boundaries: Preferential Ag nanoparticle deposition is 

observed along the domain boundaries on PPLN and on 1 and 2 nm ZnO/PPLN 

heterostructures. For 1 nm ZnO on PPLN the domain boundary nanoparticles are larger 

and show a higher density, Figure 6.7 b. The height vs width profiles of the AFM 

topography image shows the domain boundary width for 1 nm ZnO/PPLN is ~2 times 

(2.2 μm) larger than on bare PPLN (1 μm), Figure 6.7 d – e. In the AFM scan of the 2 nm 

ZnO/PPLN, the domain boundary nanoparticle density and width appears to be reduced 

compared to PPLN. 
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Figure 6.7. The AFM scans of photoinduced Ag nanoparticle pattern on a) bare PPLN, b) 

1nm ZnO/PPLN and c) 2nm ZnO/PPLN. The –c and +c represents positive and negative 

domains of PPLN, respectively. The  width and height profile across the domain 

boundary separating +c and –c domains shows the Ag nanoparticles size on d) bare 

PPLN, e) 1nm ZnO/PPLN and f) 2nm ZnO/PPLN.  
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Figure 6.8. The AFM scans (5um x 5 um) of photo-induced Ag nanoparticle pattern on 4 

nm ZnO/PPLN, a) using 254 nm UV light and b) 350 nm UV light, and 10 nm 

ZnO/PPLN, using c) using 254 nm UV light and d) 350 nm UV light.  

C. Crystallinity and Thickness of ZnO on PPLN: 

 

Figure 6.9. SEM image of TEM sample preparation. Light gray and dark gray parallel 

stripes are PPLN +c and –c domains with 180⁰ opposite polarity. 
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The TEM cross-sections of polarity patterned LiNbO3 were prepared with a 

domain boundary at the center as shown in Figure 6.9. The crystal structure and thickness 

of the PEALD 1 and 2 nm ZnO thin films are shown in the TEM images, Figure 6.10. 

The 2 nm ZnO films exhibit an amorphous structure, between the PPLN surface and Ag 

nanoparticles, as shown in Figure 6.10 b – d; however, the thicker ZnO films exhibit a 

crystalline structure [25]. Due to the amorphous structure, the ZnO cannot be 

differentiated from the amorphous carbon protective layer. The large particle clusters 

appear to correspond to domain boundary Ag nanoparticles on the 1 and 2 nm 

ZnO/PPLN, Figure 6.10 a – d. From the TEM images, the height of the nanoparticles at 

the domain boundaries and domain surfaces on both heterostructures is within the range 

(7–15nm) measured using AFM, Figure 6.7 e –  h. Energy dispersive X-ray (EDX) scans 

and high angle annular dark field (HAADF) were performed on the same 2 nm 

ZnO/PPLN sample, Figure 6.11 a – b. The EDX scan shows the Zn K-shell peak 

confirming ZnO on the surface, Figure 6.11 a. On the same sample, the HAADF image 

and normalized EDX Zn K-shell peak intensities confirm the 2 nm ZnO thickness, Figure 

6.11 b.  
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Figure 6.10. TEM images of the photo-induced deposition of Ag nanoparticles on a) and 

b) 1 nm ZnO/PPLN and c) and d) 2 nm ZnO/PPLN. In all TEM images, clustered Ag 

nanoparticles on PPLN are visible in all the images. ZnO thin films of thickness 1 nm and 

2 nm are sandwiched between Ag nanoparticles and LiNbO3 substrates in b) and d), 

respectively. 
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Figure 6.11. a) EDX spectra from both ZnO surface layer and from LiNbO3 substrate 

showing Zn signal is only detected on the surface. Mo and Pt were introduced when the 

TEM sample was prepared using the focused ion beam. b) HAADF image of the 2 nm 

ZnO/PPLN sample and normalized EDX Zn K peak intensities in each area. 

IV. Discussion: 

The Ag nanoparticle pattern that develops on polarity patterned LiNbO3, shown in 

Figure 6.12, is ascribed to the process of illumination with above bandgap photons (in 

this case 4.9 eV).  The photoelectrons excited near the LiNbO3 surface drift toward or 

away from the surface under the influence of the internal electric field and/or diffuse in 

all directions due to the thermal energies. The available electrons at the surface reduce 

Ag
+
 to Ag which nucleates to form nanoparticles. The photoexcited holes oxidize water 

molecules to OH
●

 radicals and H
+
 ions, and hydroxyl ions (OH

-
) to OH

●
 radicals [6]. 

Prior work from our group has noted that the Stern layer can limit the concentration of 
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Ag
+
 ions near the surface, which can lead to a reduced density of randomly deposited 

nanoparticles [8].  

 

Figure 6.12. Schematic of photoinduced redox reaction on LiNbO3 -c and +c domain 

surface with UV light (l = 254nm, E = 4.2eV) illumination above the band gap of 

LiNbO3. Favorable oxidation and reduction reaction on -c and +c domain surfaces, 

respectively, are shown above. 

In this research we observe that ZnO on PPLN results in a change of the Ag 

nanoparticle density and spatial distribution, indicating a change in the photoexcited 

electron availability at the surface. For 1 nm ZnO/PPLN heterostructures the overall Ag 

nanoparticle deposition is enhanced, and the selectivity is maintained. As the ZnO layer 

is increased to 2 nm, the Ag nanoparticle density on the –c domain surface becomes 

comparable to that on the +c domain surface. However, for ZnO thicknesses ≥ 4 nm, the 

reduction process changes completely. Here, agglomerated Ag clusters form on the 

surface with no apparent relationship to the LiNbO3 domains and domain boundaries and 

the role of the LiNbO3 domains and domain boundaries is no longer evident.  
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To understand the variation in Ag
+
 reduction and the transport of photoexcited 

electrons from PPLN to the ZnO surface, we have considered the effects of the following 

three attributes: (i) the band alignment and interface states, (ii) the Stern layer, and (iii) 

screening due to photoexcited carriers in the ZnO.  

A. Band Alignment of ZnO/LiNbO3 and Interface States:  

The favorable flow of photoexcited electrons and holes from one material to the 

other can be understood by the band alignment diagrams at the interface of a 

heterojunction [2, 27–29]. The reported average electron affinity of LiNbO3 surfaces is 

1.6 eV and that of ZnO is 4.1 eV [17, 24]. Applying Anderson’s band alignment model, 

the ZnO conduction band minimum (CBM) is below the LiNbO3 CBM, and electron 

transport is favored from LiNbO3 to ZnO, Figure 6.13. According to prior work from our 

group, the +c and –c domain surfaces have different electron affinity because of the 

dipole generated by external screening (adsorbed charged molecules and/or ions) [17]. 

However, for ZnO/PPLN heterostructures, we have considered the average electron 

affinity of LiNbO3 assuming that the polarization bound charges in PPLN are screened by 

charges at the ZnO interface. The actual band alignment will be modified by an interface 

dipole due to the specific interface bonding configuration. 
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Figure 6.13. Anderson’s band alignment model of ZnO and LiNbO3. CBM and VBM of 

ZnO is below the CBM and VBM of LiNbO3, which favors the electron migration from 

LiNbO3 +c and -c to ZnO. 

It is evident from the pattern of photoinduced Ag nanoparticles on 1 nm and 2 nm 

ZnO/PPLN heterostructures, that the pattern is controlled by electrons photoexcited in the 

PPLN. The overall increase in the density of nanoparticles indicates enhanced 

photoinduced electron migration to the surface. Mechanisms that can increase the 

electron migration are the reduction of recombination due to interface states, and the band 

alignment of ZnO/LiNbO3. 

B. Stern Layer: 

The presence of a partially screened polarization charge will lead to the formation 

of a Stern layer at the surface of polar materials. The high ZnO electron carrier 

concentration (1 x 10
-18

 cm
-3

) [21-22] apparently contributes to screening of the LiNbO3 

polarization bound charge. Consequently, the more effective screening alters the Stern 

layer composition compared to that for bare LiNbO3. The Stern layer can affect the Ag
+
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ion transport to the surface [8], and thus can affect the Ag nanopattern on the ZnO/PPLN 

heterostructures. For an AgNO3 aqueous solution, the Stern layer consists of Ag
+
, NO3

-
, 

OH
-
 and dipole water molecules, which can form a densely packed layer to screen the 

surface charge [8, 30]. The dense layer results in a barrier for Ag
+
 ions to reach the 

surface. With an increase in the ZnO thickness the polarization screening is expected to 

be more efficient leading to a less dense Stern layer. The existence of a weak Stern layer 

on ZnO/PPLN heterostructures can enhance the reaction rate and thus increase the 

density of Ag nanoparticles on both (+c and -c) domain surfaces and domain boundaries. 

C. ZnO Electron Screening:    

It is well established that external screening is an effective way to compensate the 

polarization bound charge of LiNbO3 [17]. For ZnO/LiNbO3 heterostructures, 

photoexcited electrons in the ZnO layer can redistribute to effectively screen the 

polarization charge. Schwinkendorf et. al. and Cagain et. al. have studied the 

accumulation of an electron sheet layer in ZnO at the ZnO/BaTiO3 positive domain 

interface for field effect transistors and the ZnO/lead zirconate titatnate (PZT) positive 

domain interface for capacitor structures [31, 32]. At the ZnO/LiNbO3 positive domain 

interface, the positive polarization bound charge is screened by electrons in ZnO, which 

consequently reduces the internal electric field. In contrast, for bare PPLN, the 

incomplete external screening due to adsorbates results in an internal electric field that 

leads to electron drift to the positive surfaces. With the decrease of the internal electric 

field, electron diffusion dominates over electron drift, which reduces the Ag nanoparticle 

selectivity. 
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The 254 nm UV light used to illuminate ZnO/PPLN excites carriers in both ZnO 

and PPLN and 350 nm UV light excites carriers only in ZnO. As discussed above, the 

silver nanoparticle pattern is controlled by the photoexcited carriers in LiNbO3 for 1 and 

2 nm ZnO on PPLN. For ≥ 4 nm ZnO/LiNbO3, the random pattern of large Ag 

nanoparticle clusters indicates the Ag cluster formation is independent of the PPLN 

domains. The large cluster formation is evident on the 4 nm ZnO/PPLN sample surface 

when photoinduced Ag deposition was performed using 3.5 eV UV illumination, 

presented in Figure 6.8 b. However, with the illumination of 4.9 eV UV on 4 nm 

ZnO/PPLN a higher density of small Ag nanoparticles is observed in addition to the 

clusters, shown in Figure 6.8 a. This indicates that the density of small particles is due to 

photoexcited electrons from the PPLN which transport to the ZnO surface and reduce 

Ag
+ 

ions. In contrast, for 10 nm ZnO/PPLN the absence of small nanoparticles indicates a 

negligible concentration of photoexcited electrons from the PPLN, in Figure 6.8 c – d. 

We suggest that the increase in the density of free electrons for the thicker ZnO layer 

screens the electron transport from PPLN. We note that the PFM images of ZnO/PPLN 

were not screened by the ZnO carrier concentration as the domains are displayed for all 

thicknesses, Figure 6.4. However, unlike the PFM measurements, the sample surfaces 

were illuminated with UV light during the photoinduced Ag deposition process, which 

photoexcites carriers in the ZnO and enhance the free carrier concentration. The 

formation of random Ag nanoclusters on both 4 and 10 nm ZnO/PPLN with the 

illumination of 254 and 350 nm UV light indicates the photoexcited electron density in 

the ZnO also contributes to the nanocluster formation.   

V. Conclusions: 
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The Ag nanoparticle patterns formed on ZnO/PPLN heterostructures were 

examined to understand the effect of PEALD ZnO thin films on photoexcited electron 

transfer and photochemical reactions. AFM was employed to characterize the Ag 

nanopatterns on PPLN and ZnO/PPLN heterostructures. TEM and was used to verify 

crystal structure and thickness, and EDX was used for element detection to locate the 

ZnO thin film. We provide the evidence that 1-2 nm ZnO thin films on both +c and –c 

PPLN domains change the composition of the Stern layer and reduces the interface state 

density. We suggest that a weak Stern layer forms at the ZnO/PPLN surface as the PPLN 

polarization bound charge is screened by the ZnO carrier concentration. Thus, the Ag
+
 

ions can be more readily accessible to the photoinduced electrons to form Ag 

nanoparticles. On the other hand, the reduction of interface states can lower the carrier 

recombination rate and enhance the charge transport to the surface of the ZnO/PPLN 

surface. It is difficult at this time to say which process is dominant.  

The electron diffusion process dominates over electric field assisted electron drift 

on –c domain surface covered with 1 nm and 2 nm ZnO, which enables an increase in the 

density of Ag nanoparticles. The band alignment of ZnO and LiNbO3 is appropriate for 

electron transfer from LiNbO3 to ZnO, which also contributes to enhancing the reaction 

rate at the surface. However, the thicker (≥ 4 nm) ZnO films evidently impede charge 

migration from LiNbO3 to the ZnO surface, irrespective of domain surface polarity. We 

suggest that screening by photoexcited charge carriers in the ZnO creates this effect. This 

study provides evidence that a limited thickness (< 4 nm) of ZnO on PPLN can increase 

the photoinduced reaction rate on +c and –c domain surfaces and at the domain 
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boundaries. A more extensive study could establish the effect of the band gap and band 

alignment of the metal oxide heterostructures on the photochemical processes. 
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CHAPTER 7. PHOTOEXCITED CHARGE TRANSPORT IN METAL OXIDES AND 

POLARITY PATTERNED LITHIUM NIOBATE HETEROSTRUCTURES 

Abstract: Metal oxides are used as charge transfer layers in solar cells and photocatalytic 

electrode structures. The band gap and band alignment at the interface can influence the 

direction of charge transfer in heterostructures. In this research, 1.5 nm metal oxides 

(ZnO, TiO2, Al2O3 and VO2) were deposited on LiNbO3 substrates for band alignment 

characterizations using XPS core level peaks. However, the metal oxides thicknesses 

were maintained to 1 and 2 nm on polarity patterned lithium niobate (PPLN) for 

photoinduced Ag nanoparticle deposition. The deduced band alignment of ZnO/LiNbO3, 

TiO2/LiNbO3, Al2O3/LiNbO3 and VO2/LiNbO3 shows conduction band offsets (CBOs) of 

0.6, 0.8, 1.1 and 0.8 eV, respectively. The photoinduced Ag nanoparticle deposition on 

ZnO and TiO2/PPLN heterostructures indicates the deposition follows the pattern of the 

PPLN but with enhanced Ag nanoparticle deposition for 1 nm thickness and comparable 

deposition on both domain surfaces for 2 nm thickness. For Al2O3/PPLN 

heterostructures, the Ag nanoparticle density is reduced with an increase in the Al2O3 

thickness. On the other hand, VO2/PPLN shows random deposition of Ag nanoparticles 

with reduced density irrespective of PPLN domains and domain boundaries. The Ag 

nanoparticle deposition on the heterostructures is in agreement with the determined 

electron flow from band alignment diagrams. The conduction band minimum (CBM) of 

ZnO, TiO2 and VO2 aligns below the CBM of LiNbO3, thus favoring electron flow from 

PPLN to the surface. However, the Al2O3 CBM is above the LiNbO3 CBM, which 

inhibits the electron through transport except electron tunneling.  

I. INTRODUCTION:  
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The internal electric field of ferroelectric materials can improve photochemical 

reactions at surfaces [1-5], by reducing back reactions and recombination losses of 

photoexcited carriers. The effect is similar to that of a semiconductor p-n junction. 

Ferroelectrics are materials with a spontaneous polarization due to the different symmetry 

of the positive and negative atoms. LiNbO3 exhibits the highest spontaneous polarization 

(0.71 C/m
2
) [6] among ferroelectrics, and it has been established that the internal electric 

field can influence photochemical reactions. Specifically, the photoreduction efficiency 

of LiNbO3 is similar to that for commonly used metal oxide photocatalysts [3].  

Ferroelectric LiNbO3 is a promising photocatalyst where the internal electric field 

has been explored to increase photoreaction efficiencies [3, 4, 26, 28]. To enhance the 

density of photoexcited carriers to participate in surface photoreduction, the ferroelectric 

surfaces can be covered with metal oxides to form oxide heterostructures. Enhanced 

photochemical reaction efficiencies have been established for oxide/ferroelectric 

heterostructures including ZnO/LiNbO3 [29] and TiO2/BaTiO3 [1, 2]. For high efficiency, 

the metal oxide films should have (i) a suitable band alignment to allow the photoexcited 

charge transfer, (ii) a limited internal carrier concentration to prevent carrier screening of 

the ferroelectric internal field, and (iii) the limited thickness to prevent ferroelectric 

carrier screening.  
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Figure 7.1. Schematic of photoexcited charge transfer in metal oxide/LiNbO3 

heterostructure to enable photochemical (metal ions, M
+
, reduction and OH

-
 oxidation) 

surface reactions. 

Metal oxides are among a group of widely used charge (electrons and holes) 

transfer materials in solar cells and photocatalytic electrodes. They have the advantage of 

optimally reducing surface states, allowing the charge transfer at the interface, and 

enhancing the charge separation [1, 2, 7-18]. ZnO and TiO2/ferroelectric heterostructures 

have been explored to enhance the surface reactions. A schematic of the possible 

photoexcited charge transfer in metal oxide and ferroelectric heterostructures is shown in 

Figure 7.1. Metal oxides are divided into subcategories as per the charge transfer 

mechanism, (i) insulators (Al2O3 and SiO2) [7-9], (ii) low electron affinity (ZnO, TiO2, 

VO2 and ZrO2) materials [7, 9-16, 19] and (iii) high electron affinity (MoO3 and WO3) 

materials [7, 10, 16-18]. The focus of this study is to modify polarity patterned lithium 

niobate (PPLN) surfaces with Al2O3, ZnO, TiO2 and VO2 thin films to understand the 

effect of band alignment and metal oxide carrier concentration and mobility on surface 
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photochemical reactions. The electron affinity and band gap of these materials are shown 

in Figure 7.2. 

 

Figure 7.2. Redox potentials for H2O, hydroxyl ion (OH
-
) and Ag

+
 ions with respect to 

LiNbO3, and Al2O3, TiO2, ZnO and VO2 CBM and VBM position relative to vacuum 

level. 

An approach to study the surface photochemical reactions and charge transfer 

process in heterostructures is to employ photoinduced metal deposition [1, 2, 29, 30-33]. 

The surface of the heterostructure is covered with an aqueous AgNO3 solution and 

illuminated with UV light above the band gap of the carrier generating material. The 

carriers transport to the surface and cause photocatalytic oxidation or reduction. The 

potential for various redox reactions with respect to the band gap of the metal oxides and 

LiNbO3 is also shown in Figure 7.2. For this research, Ag
+
 reduction on metal 
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oxide/PPLN surfaces were studied to understand the electron transport in the metal 

oxide/ferroelectric heterostructures. Metal oxide thicknesses were limited to 1 nm and 2 

nm to compare the electron migration with our prior work of charge transport through 

ZnO/PPLN heterostructures. The purpose of this study is to deduce the band alignment of 

metal oxide (ZnO, TiO2, VO2 and Al2O3)/LiNbO3 heterostructure, the effect of band 

alignment on photoexcited carrier transport, and the effect of metal oxide carrier 

screening on the LiNbO3 internal electric field. 

II. Experiment:  

A. Metal Oxide Deposition on PPLN: Polarity patterned lithium niobate (PPLN) 

substrates (6 mm x 4 mm x 0.5 mm) used in this study were purchased from Crystal 

Technologies. The substrates were double side polished with lithographically patterned 

~20 μm period polarity gratings on c-axis surfaces. In this configuration the positive (+c) 

and negative (–c) domains are separated by 180 °C domain boundaries. An ex-situ 

ultrasonic chemical clean (acetone and methanol) was used on the PPLN substrates prior 

to deposition of Al2O3, TiO2, ZnO or VO2. The ZnO and Al2O3 layers were deposited 

using plasma enhanced atomic layer deposition (PEALD), and the TiO2 and VO2 were 

deposited using reactive molecular beam deposition. The ZnO and Al2O3 were deposited 

at 130 °C and 170 °C using dimethyl zinc (DMZ) and dimethyl(aluminum)isopropoxide 

(DMAI) precursors and oxygen plasma reactants. The respective 0.35 and 1.2 sec pulses 

of DMZ and DMAI were separated from 8 sec O2 plasma (source of oxygen) generated at 

200 W and 100 mTorr with 40 sec N2 purge steps. The Rutherford backscattering 

spectroscopy (RBS) determined PEALD growth rate of ZnO and Al2O3 was 2.1 Å/cycle 

and 1.4 Å/cycle [20], respectively. For molecular beam deposition, metal pellets were 
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evaporated using an e-beam source and a background of O2 gas as a reactant. The growth 

rate was controlled using a crystal monitor. To deposit TiO2 on PPLN, O2 pressure and 

substrate temperature were maintained at 1 x 10
-4 

Torr and 200 °C, and VO2 was 

deposited at 450 °C, with an O2 pressure of 7 x 10
-4

 Torr.  

B. X-ray Photoelectron Spectroscopy: In-situ x-ray photoelectron spectroscopy 

(XPS) was used to measure the Nb and metal core level before and after 1.5 nm metal 

oxides deposition. For the XPS measurements 1 cm x 1 cm, double side polished, c-axis, 

single domain LiNbO3 substrates (purchased from Crystal Technologies) were used. The 

x-rays were generated in UHV chamber (2 x 10
-8

 Torr) at 30 mA emission current and 15 

kV accelerating voltage using monochromatic Al Kα (1486.6 eV) source. The XPS core 

level positions were used to determine the valence band offsets (VBO) following the 

approach given by Waldrop, Grant [34], and Kraut et. al.: 

VBO = (ECL – EV)LN – (ECL – EV)metal oxide + ΔECL   ……………….. (1) 

where, ECL is the core level binding energy, EV is the valence band minimum (VBM) 

binding energy, ΔECL is the difference of the Nb and metal core level binding energy, and 

(ECL – EV)LN and (ECL – EV)metal oxide are the differences of the binding energy and 

respective VBM of LiNbO3 and metal oxides. In this case, the VBM positions are 

extracted from literature as the valence band spectra could not be measured due to 

charging during the measurements.  

C. Photoinduced Silver Deposition and AFM: To understand the photoelectron 

transport of photoexcited electrons from LiNbO3 through the metal oxide 

heterostructures, the density and pattern of the photoinduced Ag nanoparticle were 

observed with atomic force microscopy. After the metal oxide deposition, the substrates 
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were cleaned ultrasonically in methanol for 1 min. The surfaces were dried with N2 gas 

and covered with 0.35 μl aqueous AgNO3 solutions of concentration 0.00001 M and 

illuminated for 8 min using a 100 W Hg lamp with line filters. The UV light wavelength 

was 254 nm and the intensity was maintained at ~1100 µW/cm
2
 during illumination. 

After photoinduced deposition the samples were immersed in deionized water for 1 min 

and dried with N2 gas. The Ag nanoparticle pattern was imaged using atomic force 

microscopy (AFM). The AFM scan used a non-conducting Si cantilever of spring 

constant (k) 13-77 N/m and resonance frequency of ~200 – 400 kHz. The measurements 

were obtained using intermittent contact mode.  

III. Results and Discussion:  

A. Band Alignment of Metal Oxide/LiNbO3: 

To understand the band alignment of metal oxides (ZnO, TiO2, Al2O3, VO2) and 

LiNbO3, the metal and Nb core levels in metal oxide/LiNbO3 heterostructures were 

measured using XPS, Figure 7.3. Surface charging during XPS measurements, as the 

substrate is insulating LiNbO3, resulted in a shift of all peaks towards higher binding 

energy. To calibrate the binding energy shift, the Nb 3d5/2 and C 1s core levels were 

measured for as-received and chemically cleaned LiNbO3. All core levels were corrected 

by the difference of the measured C 1s peak and the standard value of 285 eV [34]. Using 

this method, the Nb peak was corrected to 206.8, which is close to the 207.0 eV value 

determined by Courths et. al. [36]. For the ZnO/LiNbO3, TiO2/LiNbO3, Al2O3/LiNbO3 

and VO2/LiNbO3 heterostructures, the XPS metal core levels and Nb peaks were 

corrected to the value of the Nb peak from clean LiNbO3. For example, in the case of 
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ZnO/LiNbO3, the Nb 3d5/2 and Zn 2p1/2 original positions were 218.4 eV and 1031.6 eV, 

 

Figure 7.3. XPS core level of a) C 1s from as received (295.8) LiNbO3 and calibrated 

(285 eV) from literature [36], b) Nb 3d peak for as received LiNbO3, 1.5 nm 

ZnO/LiNbO3, 1.5 nm TiO2/LiNbO3, 1.5 nm Al2O3/LiNbO3 and 1.5 nm VO2/LiNbO3, c) 

Zn 2p, d) Ti 2p, e) Al 2p, and f) V 2p. 
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respectively. The Nb 3d5/2 peak was measured at 218.4 eV which is shifted by 11.6 eV to 

206.8 eV. The same 11.6 eV value was used to shift the Zn 2p3/2 core level from 1031.6 

to 1020.0 eV. The measured and corrected core level peak positions of the metals and Nb 

in LiNbO3 for the heterostructures are listed in Table 7.1. 

Table 7.1. XPS measured and corrected (in parentheses) peak positions of C1s, Nb 3d, Ti 

2p, Al 2p and V 2p core levels. All the peak positions are in eV. 

 

The VBMs with respect to Fermi level for metal oxides are used from literature to 

calculate VBOs of metal oxides and LiNbO3 heterostructures band diagrams. The VBM 

of LiNbO3, ZnO, TiO2, Al2O3 and VO2 is 3.0 [36], 3.1 [37], 3.1 [9], 4.5 [20] and 0.6 eV 

[19], respectively. Using equation (1) and the XPS core level values from Table 1, the 

calculated respective VBOs of ZnO/LiNbO3, TiO2/LiNbO3, Al2O3/LiNbO3 and 

VO2/LiNbO3 are 0.1, 0.1, 1.5 and 2.4 eV. The band gap and VBOs were further used to 

deduce the conduction band offsets (CBOs) for the metal oxide/LiNbO3 heterostructures, 

Figure 7.4. 

The band diagrams of the metal oxide/LiNbO3 heterostructures in Figure 7.4 

indicate the VBO and CBO at the interface. The interface band alignment can influence 
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the photoexcited carrier flow. ZnO and TiO2 are two materials used in this study with a 

similar band gap and band alignment with LiNbO3. The CBO for ZnO/LiNbO3 and TiO2 

is 0.6 and 0.8 eV, respectively. Conduction band minimums (CBMs) of ZnO and TiO2 

align near the CBM of LiNbO3 which indicates a favorable flow of photoexcited electron 

 

Figure 7.4. Band alignment shows the valence band offset (VBO) and conduction band 

offset (CBO) of a) ZnO/LiNbO3, b) TiO2/LiNbO3, c) Al2O3/LiNbO3, and VO2/LiNbO3 

heterostructures. 

from LiNbO3 to ZnO and TiO2 surfaces, Figure 7.4 a) and b). For Al2O3/PPLN, the band 

diagram, Figure 7.4 c), indicates the possible charge transfer process involves electron 
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tunneling. VO2 is a small band gap material which has a CBM below the CBM of 

LiNbO3, Figure 7.4 d), and signifies the electron transport from LiNbO3 to the VO2 

surface. 

B. Photoinduced Ag Deposition on Metal oxide/PPLN Heterostructures: 

The heterostructure surfaces were immersed with aqueous AgNO3 solution and 

illuminated with UV light (4.9 eV) above the bandgap of LiNbO3 and the Ag 

nanoparticle pattern was recorded with AFM, Figures 7.5 and 7.6. The available electrons 

and holes at the surface due to drift and/or diffusion originate the surface redox reactions 

and control the Ag nanoparticle pattern. Prior work from our group by Sun et. al. have 

indicated that a dense Stern layer that can limit the availability of Ag
+
 ions near the 

 

Figure 7.5. AFM scans after photoinduced Ag nanoparticle deposition on a) PPLN, b) 1 

nm ZnO/PPLN, c) 1 nm TiO2/PPLN, d) 1 nm Al2O3/PPLN, and e) 1 nm VO2/PPLN. 
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which may be related to the reduced density of Ag nanoparticles [31]. We have observed 

in our previous work that the deposition of ZnO on PPLN possibly caused the formation 

of less dense Stern layer and reduced the surface states as the overall density of Ag 

nanoparticles on ZnO/PPLN heterostructures as compared to PPLN [29]. 

AFM topography images of photoinduced Ag nanoparticle patterns on PPLN and 

1 and 2 nm (ZnO, TiO2, Al2O3, VO2)/PPLN heterostructures are shown in Figures 7.4 and 

7.5. The Ag photoinduced deposition conditions, including AgNO3 solution 

concentration, UV light wavelength and flux, were similar for all the samples. The Ag 

nanoparticle pattern on bare PPLN is used as a reference to compare changes in the Ag 

nanoparticle pattern on metal oxide/PPLN heterostructures. On bare PPLN, the Ag 

nanoparticle deposition is selective with increased density on +c domain surfaces and 

domain boundaries. The variation in the Ag nanoparticle pattern is described below: 
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Figure 7.6. AFM scans after photoinduced deposition Ag on a) 2 nm ZnO/PPLN, b) 2 nm 

TiO2/PPLN, c) 2 nm Al2O3/PPLN, and d) 2 nm VO2/PPLN. 

1 nm metal oxides/PPLN heterostructures: Unlike 1 nm ZnO/PPLN where the 

overall photoinduced Ag nanoparticle density is enhanced and the selectivity is similar to 

bare PPLN, 1 nm TiO2/PPLN shows a loss of selectivity with comparable Ag 

nanoparticle density on +c and –c domain surfaces separated by larger particles at the 

domain boundaries, Figure 7.5 a) – c).  In contrast, the overall density of Ag 

nanoparticles on 1 nm Al2O3/PPLN decreased compared to bare PPLN, Figure 7.5 d). 

The 1 nm VO2/PPLN heterostructure shows random deposition of Ag nanoparticles on +c 

and –c domain surfaces and domain boundaries, Figure 7.5 d). 
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2 nm metal oxides/PPLN heterostructures: The Ag photoinduced pattern on 2 

nm ZnO/PPLN and 2 nm TiO2/PPLN shows a similar pattern with enhanced Ag 

deposition on –c domains and comparable density on +c domain surface, Figure 7.6 a) – 

b). However, on the 2 nm ZnO/PPLN heterostructure, the domain boundary is well 

defined, while on the 2 nm TiO2/PPLN the domain boundary Ag nanoparticle deposition 

is sparse, The 2 nm Al2O3/PPLN shows essentially no Ag deposition on the surface 

Figure 7.6 c). The 2 nm VO2/PPLN AFM surface indicates random deposition of Ag 

nanoparticles similar to the 1 nm VO2/PPLN but with increased particle size, Figure 7.6 

d). 

The Ag nanopattern on 1 nm ZnO and TiO2 on PPLN is different in terms of 

selectivity. The 1 nm ZnO/PPLN heterostructures maintain selectivity while showing an 

enhanced Ag nanoparticle density. On the other hand, 1 nm TiO2 reduces the selectivity, 

and the Ag nanoparticle deposition on –c domain surfaces become comparable to +c 

domain surfaces. The pattern of Ag nanoparticles on 2 nm ZnO indicates the pattern is 

controlled by the PPLN domains and domain boundaries but with reduced selectivity. In 

contrast, on 2 nm TiO2/PPLN, random deposition of nanoparticles occurs with no signs 

of domain boundary deposition. Despite the similar band alignment of ZnO and TiO2 

with LiNbO3, the different Ag nanoparticle pattern indicates the material properties also 

influence the electron flow from PPLN to the metal oxide surface. In general, ZnO is 

reported as higher electron mobility material as compared to TiO2 [18, 38-40]; however, 

some groups have reported the reverse behavior of electron mobility [41, 42]. In prior 

work by Hagfeldt et. al. the electron mobility of TiO2 and ZnO was found to be the same 

[43]. Similarly, PEALD ZnO can have low carrier concentration than the ZnO thin films 
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deposited using other techniques due to higher reactivity of oxygen plasma species which 

reduce the impurities and oxygen vacancies [44]. Consequently, the TiO2 thin films 

deposited using oxygen gas in MBD system can have higher carrier concentration as 

compared to PEALD ZnO. The discrepancies in ZnO and TiO2 electron carrier 

concentration can be attributed to differences in the deposition processes. For this study, 

ZnO and TiO2 were prepared using PEALD and MBD, respectively. Thus, we cannot 

exclude the difference in the properties of these two materials caused by the deposition 

processes. The internal carrier concentration of metal oxides can screen the electric field 

in LiNbO3 and thus reduce the selectivity. The 1 nm TiO2/PPLN shows a similar Ag 

nanoparticle pattern to that of 2 nm ZnO/PPLN. This behavior can be related to a higher 

reduction of interface states and/or more effective interface screening of the polarization 

by the free carriers in TiO2. 

The Ag nanoparticle pattern on 1 nm and 2 nm Al2O3/PPLN heterostructures 

corroborates that the electron transfer process is consistent with the heterostructure band 

alignment. The electron tunneling is expected to decreases exponentially with an increase 

in thickness [22]. The Ag nanoparticle density on Al2O3/PPLN indicates a decrease of the 

supply of electrons with the increase of Al2O3. The 1 nm Al2O3/PPLN shows a Ag 

nanoparticle pattern similar to PPLN but with reduced density. With the increase in Al2O3 

thickness to 2 nm, the electron tunneling from PPLN to the Al2O3 surface is essentially 

blocked.  

Unlike ZnO and TiO2, 1 and 2 nm VO2 shows random nanoparticle deposition. 

The carrier concentration of vanadium oxide is 10
18

 – 10
19

 cm
-3

 [45] is comparable to 

ZnO (10
18

 – 10
20

 cm
-3

) [45] and higher than TiO2 (10
17

 cm
-3

) [40]. As discussed above, 
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the high carrier concentration of the metal oxide layer can screen the internal electric 

field of LiNbO3 and reduce the control of PPLN on Ag nanoparticle pattern formation. 

For this case, the electron diffusion dominates the electron drift, thus the Ag deposition 

does not show enhanced deposition of LiNbO3 positive domains. With the increase in 

thickness, the photocarrier excitation in metal oxide layer screens the flow of 

photoexcited electrons from PPLN to the surface.  

IV. Conclusions: 

The x-ray photoemission spectroscopy results were used to determine the possible 

band alignment in metal oxide (Al2O3, ZnO, TiO2 and VO2)/LiNbO3 heterostructures. 

The Ag nanoparticles deposition on these heterostructures establishes the effect of metal 

oxide/PPLN band alignment, and metal oxide carrier concentration on photoexcited 

charge transfer. For Al2O3/PPLN heterostructures, the charge transfer is limited by 

electron tunneling through the blocking Al2O3 layer. However, for ZnO/PPLN, 

TiO2/PPLN and VO2/PPLN the photoecited carriers can transport through the metal oxide 

film. We suggest with the increase in metal oxide thickness, the effect of metal oxide 

carrier concentration screening on PPLN internal electric field enhances and diminishes 

the selective Ag nanoparticle formation. The other effect that is evident in the 

experiments performed here is the diminished photoexcited carrier concentration from 

PPLN to the surface by the photoexcited carrier concentration with the increase in metal 

oxide thickness. 
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CHAPTER 8: PEALD Al2O3 AND SiO2 PASSIVATION AND DEGRADATION 

MECHANISM ON ZINC OXIDE PHOTOELECTRODE 

The photoelectrochemical characterizations, and TEM and SEM were performed by Qian 

Cheng and Qianlang Liu, respectively. 

Abstract: Atomic layer deposited thin films provide uniform and conformal coverage, 

and thus can be efficiently used to deposit thin passivation layers on photoanodes and 

photocatalysts. ZnO is a high efficiency photocatalyst due to a high absorption 

coefficient, and it has been demonstrated for water splitting and water cleaning. 

However, chemical instability of ZnO hinders its use for photocatalysis process. Thus it 

is crucial to coat the ZnO surfaces to avoid direct contact with the electrolyte solution. In 

this paper, 1 and 2 nm PEALD Al2O3 or SiO2 were deposited on 20 nm PEALD ZnO and 

single crystalline ZnO to study the stability and degradation mechanisms. The interface 

band alignment was determined by in situ photoemission and photochemical stability 

tests were performed and characterized with AFM, SEM, and TEM. The results indicate 

the VBO and CBO of Al2O3/ZnO are 1.1 eV and 2.2 eV, and SiO2/ZnO is 2.5 eV and 3.2 

eV, respectively. The Al2O3 passivation layer is unstable as it undergoes photocorrosion, 

which initiates from pinholes. On the other hand, SiO2 shows improved passivation of 

ZnO from photoelectrochemcical measurements, AFM and SEM. However, the TEM 

results indicate the corrosion of underneath ZnO. The possible cause of photocorroison is 

the electrolyte ions transport through SiO2   

I. Introduction:  
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In order to reduce global warming and control the carbon emission, renewable 

energy is a viable option. The solar water splitting process to produce hydrogen fuel has 

been studied extensively [1 – 3].  The incident photons excite electron-hole pairs in a 

semiconductor photocatalyst, which are separated and migrate to the surface to react with 

an aqueous electrolyte solution. The reduction and oxidation reactions occur at the solid-

liquid interface. Consequently, the band edges alignment with redox potentials play a 

critical in water splitting. For efficient reactions to prevail, both H
+
/H2 and OH

-
/O2 redox 

potentials must align within the bandgap, the reaction rate should be sufficient to prevent 

carrier recombination, and the photocatalyst should be chemically stable in an aqueous 

electrolyte [4]. 

Metal oxides (ZnO, TiO2 and ZrO2 etc) have been studied as photocatalysts for 

water splitting to generate hydrogen due to their suitable bandgap and appropriate band 

positions relative to the water redox potentials [1]. Despite the similar band gap, ZnO is 

preferred over TiO2 because of its higher absorption coefficient [5-8]. However, 

photocorrosion of ZnO in an aqueous electrolyte solution makes it difficult to be used as 

a photoanode. High efficiency ZnO can be advantageous if the photocorrosion during 

chemical reactions can be prevented. 

In a number of reviews, atomic layer deposited (ALD) films have been employed 

as passivation layers on chemically unstable photocatalyst surfaces [9-13]. The criteria 

for passivation layers are: (i) chemical stability in the electrolyte solution, (ii) efficient 

charge transport of photoexcited carriers to the electrolyte, and (iii) prevention of ions 

transport to the photocatalyst. Commonly used ALD passivation layers that have been 

studied for Si photoanodes include are Al2O3 [14], Ta2O5 [15] and TiO2 [14, 16]. The 
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charge transfer mechanism, i.e. either transport or tunnel, through the passivation layer is 

determined by the band gap, band alignment and properties of the passivating material. 

The purpose of the passivation layer is to reduce the surface defects, or trap sites, to 

separate the chemically unstable photocatalyst from electrolyte solution and to enhance 

the efficiency of the photocatalytic processes [16-18]. 

Different thicknesses of TiO2 have been used as a passivation layer on ZnO [19, 

20]. The band gap of TiO2 is comparable to the band gap of ZnO that allows absorption 

of the illuminated light in the TiO2 and reduces the photoexcitation in ZnO. Also, the 

valence band (VB) edge of TiO2 is slightly positive relative to ZnO, which favors 

transport of the TiO2 photoexcited holes towards the ZnO and enhances the ZnO 

photocorrosion [15, 21]. To prevent these issues, the wide band gap materials, Al2O3 and 

SiO2, can be used as passivation layers on ZnO. The wide band gap allows the 

transmission of most of the illuminated light to ZnO. Moreover, the absence of 

photoexcited carriers in a material like Al2O3 eliminates the possibility of hole transport 

to the ZnO layer.  

Small band gap materials have also been studied to passivate ZnO [22]. However, 

the chemical instability and light absorption make them unfavorable to be used as 

protecting layers. For these reasons, the wide band gap Al2O3 and SiO2 have been 

selected as passivation layers for ZnO in this study. Consequently, the VB edge of both 

oxides aligns below the ZnO VB edge, thus the possible carrier transport mechanism is 

tunneling. Al2O3 has been used as a protective layer on Fe2O3 [23], TiO2 nanotubes [23], 

and WO3 thin films [24]. Some of the studies have shown that Al2O3 is unstable in an 

aqueous solution [25] and others suggest it can protect the photocatalyst surface without 
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undergoing photocorrosion [14]. The inconsistency of Al2O3 as a passivation layer can be 

attributed to the different deposition methods and electrolyte conditions. The passivation 

layer is required to be thin, and free of pinholes and cracks to allow electron tunneling 

from the active material (ZnO) to the surface and to prevent the photocorrosion of the 

active layer in water or the electrolyte solution. To the best of our knowledge, there have 

not been any prior studies using SiO2 for passivation of ZnO photoanodes. 

In this research we propose to explore the interfacial properties and 

photocorrosion mechanisms of ZnO passivated with plasma enhanced atomic layer 

deposited (PEALD) Al2O3 and SiO2 layers. The characterizations performed included 

photoelectron spectroscopy, photoelectrochemical stability, and microscopy (atomic 

force, scanning electron, transmission electron). PEALD is known to deposit uniform, 

conformal and pin-free high quality thin films, which makes it a good candidate among 

the known deposition processes [26]. The heterostructures which consisted of 20 nm ZnO 

thin films were also deposited using PEALD. A pinhole or defect on the surface of a 

protective layer can act as a corrosion site in the electrolyte solution during stability test, 

which can quickly grow and cause exfoliation of the whole passivation layer. Therefore, 

we can monitor the damage of the passivation layers and analyze the corrosion 

mechanisms through the change of photocurrent and microcopy characterizations. The 

demonstrated band alignments provide the band offsets at the interface of Al2O3 or 

SiO2/ZnO and provide band bending information which may be related to the surface 

preparation and deposition processes. Also, the valence band maximum and conduction 

band minimum positions can be determined relative to the redox potentials from the band 

alignment diagrams. 
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II. Experiments: 

A. ZnO substrate surface cleaning: 

In this research, 1 cm x 1 cm x 2 mm single crystal ZnO wafers (MIT Corp) with both 

sides polished and cut along c-axis were used. The one side of the single crystal ZnO was 

O-face (0 0 0 -1) and the other side was Zn-face (0 0 0 1). The substrates were 

ultrasonically cleaned ex situ in methanol for 1 minute and dried with ultra-high purity 

(UHP) N2 gas. ZnO substrates exposed to the atmosphere adsorbed a layer of –OH 

groups at the surface, which was removed prior to the deposition of PEALD SiO2 and 

Al2O3 to form a clean interface between the passivation layer and photocatalyst. Various 

methods such as ex situ UV exposure and in situ He and O2 mixed plasma have been 

reported to remove the layer of hydroxyl groups from the surface [23]. In situ surface 

cleaning is preferred over ex situ cleaning due to reduction of –OH groups and re-

adsorption in UHV. In this study, the O-face of ZnO single crystal substrate was cleaned 

using in situ He:O2 (80:20%) plasma at 310 °C for 40 minutes. The He:O2 plasma gas 

pressure and power was maintained at 50 mTorr and 20 W, respectively, while the 

temperature was ramped at 1 degree/sec from 20 °C to 310 °C in He:O2 gas at 50 mTorr. 

X-ray photoelectron spectroscopy (XPS) and Ultraviolet photoelectron spectroscopy 

(UPS) were used to measure the core (Zn, O and C), valence band maximum (VBM) and 

work function. On as received and plasma cleaned ZnO (0 0 0 -1). The absence of C 1s 

peak, reduction in shoulder O 1s peak, increase in the intensity of Zn 2p and increase in 

main O 1s peak indicate the removal of atmospheric carbon and –OH layer from the 

surface after He:O2 plasma cleaning. 

B. PEALD ZnO, Al2O3 and SiO2 deposition: 
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PEALD is a two-step sub-monolayer process to deposit metals, metal oxides, nitrides and 

fluorides. To deposit metal oxides, remote oxygen plasma is used as a source of oxygen 

to oxidize metal precursor. The alternate two steps, metal precursor and oxygen plasma 

are separated by research grade nitrogen inert gas to avoid CVD-like reactions. This 

study employed 20 nm PEALD ZnO deposited on n-Si (1 0 0) one side polished substrate 

(0.5 mm x 1”) and single crystal ZnO (0 0 0 -1), which are passivated with 2 nm and 4 

nm PEALD Al2O3 or SiO2. The Si substrate was ultrasonically cleaned in acetone and 

methanol for 10 minutes each to remove hydrocarbons from the surface. PEALD ZnO 

was deposited on n-Si followed by the 10 sec remote oxygen plasma clean, using 200 W 

power and 100 mTorr O2 pressure at 130 °C, to remove the atmospheric adsorbed carbon. 

ZnO was deposited at 130 °C using dimethylzinc (DMZ) precursor and remote oxygen 

plasma pulse of 0.35 sec and 8 sec. The two pulses were separated by 40 sec N2 purge. 

The observed growth rate of PEALD ZnO in our system is ~2.1 Å/cycle. PEALD Al2O3 

and SiO2 deposition was carried out using dimethyl(aluminum)isopropoxide (DMAI) and 

tris(dimethylamino)silane (TDMAS), respectively, and remote oxygen plasma. PEALD 

Al2O3 was deposited at 160 °C using 1.2 second DMAI pulse and SiO2 was deposited at 

RT using 1.6 sec TDMAS pulse. The oxygen plasma time used for SiO2 deposition was 

twice (16 sec) as compared to Al2O3 i.e. 8 seconds. The observed growth rate of Al2O3 

and SiO2 passivation layers is 1.8 A/sec and 1.1 Å/sec, respectively. 

C. Ultraviolet and X-ray photoemission spectroscopy characterization: 

In-situ x-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron 

spectroscopy (UPS) were used at various stages, Al2O3/ZnO and SiO2/ZnO 

heterostructure formation to determine the elemental core levels, the valence band 
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maximum and the work function. PEALD Al2O3 and SiO2 were annealed in situ at 400 

°C in research grade N2 gas (90 sccm, 60 mTorr) for 30 min and the core levels were 

measured before and after annealing. To investigate the cleaning process for the O-face 

ZnO substrate, the XPS and UPS measurements were performed on as received ZnO and 

plasma cleaned ZnO substrates. X-rays were generated using monochromatic Al Kα 

(1486.6 eV) source in UHV chamber at 30 mA emission current and 15 kV accelerating 

voltage. The carbon and oxygen core level (C 1s and O1s) were used to determine the 

presence of carbon and hydroxyl groups on the surface. The uncertainity in core level 

peak fitting can be up to ±0.1 eV. The shift in the core level peak positions was used to 

determine the change in band bending and deduced the valence band offsets. 

UPS was also performed on as received single crystal and plasma cleaned ZnO 

and on as deposited and annealed PEALD Al2O3 and SiO2 heterostructures. The He I 

(21.2 eV) radiation was generated from research grade He gas in a UHV chamber with 

base pressure 4 x 10
-9

 Torr. The helium discharge was excited with a 1 kV supply and a 

discharge current of 20 mA. The photoemitted electrons were dispersed using VSW 50 

mm hemispherical analyzer with a resolution of ~0.1 eV. A negative bias of 8 V or 10 V 

was used to overcome the work function of the analyzer i.e. 4.4 eV. The UPS spectra 

provide the binding energy of the valence band maximum (VBM), i.e. given by the low 

binding energy cut off position relative to the Fermi level. The UPS spectrum can also 

provide the electron affinity, which is calculated as following: 

  χ = hυ -W - Eg   …………….   (3) 
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where, hυ is the incident ultraviolet photon energy (21.2 eV), W is the width of the UPS 

spectrum from low binding energy cut-off to high binding energy cut-off and Eg is the 

band gap of the material. 

The following method was used to determine the valence band offsets at the 

interface, which is given by Waldrop et. al. and Kraut et. al. [24] 

ΔEV = (ECL – EV)ZnO – (ECL – EV)dielectric + ΔECL  …………………..  (4) 

where, EV is the VBM binding energy, and ΔECL is core level binding energy difference 

between wide band gap passivation thin films and ZnO, (ECL – EV)ZnO is the difference 

between binding energy of Zn core level and ZnO VBM and (ECL – EV)dielectric is the 

difference between binding energy of passivation dielectric layer metal element core 

level and its VBM. The binding energy of metal element core level and VBM shifts in the 

same direction after PEALD deposition and annealing, the difference between them, i.e. 

(ECL-EV)ZnO, remains constant and independent of band bending. The valence band offset 

(VBO) can be calculated using the semiconductor and dielectric core level binding 

energies. In this study, the VBO is calculated using the core level binding energy of 

Al2O3/ZnO and SiO2/ZnO. 

D. Electrochemical Characterization: 

The electrochemical characterizations were performed with a potentiostat 

(Biologic SP-200) while using ZnO as an electrode. The counter electrode was a Pt wire 

and Ag/AgCl was a reference electrode. The single crystal ZnO sample was sealed with 

epoxy on the sides and at the back to avoid the direct contact of ZnO with the electrolyte 

solution. For the similar reasons, the 20 nm PEALD ZnO deposited on Si and FTO 
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substrates were sealed on the sides with Kapton tape. Indium metal was used as a back 

contact for ZnO.  The epoxy sealed samples were immersed into the electrolyte solution 

(0.1 M K3PO4 buffer) with adjusted pH to 7 using H3PO4. A 450 W Xe solar simulator 

(Newport, model 66923) was used to acheive ~100 mW/cm
2
 intensity of light. Linear 

sweep voltammetry (LSV) with a 10 mV/s scan rate and chronoamperometry (CA) were 

used to examine the light response and durability of ZnO samples coated with passivation 

layers. 

E. AFM, SEM and TEM Characterization: 

To explore the quality of SiO2, Al2O3 and ZnO after photoelectrochemical process 

the surface was scanned using atomic force microscopy (AFM) and scanning electron 

microscopy (SEM) and cross-sectional images were characterized using transmission 

electron microscopy (TEM). AFM was performed on as deposited 4 nm Al2O3/ ZnO thin 

film / n-Si and 4 nm SiO2/ ZnO thin film / n-Si before and after the stability test to 

examine the surface topography and understand the photocorrosion process. To confirm 

the results of AFM, the topography was also analyzed using SEM after stability tests on 

the same samples. An Asylum Research molecular force probe (MFP) 3D atomic force 

microscope (AFM) was used in tapping mode, with non-conducting Si probes of spring 

constant k = 13-77 N/m and the resonance frequency ~200 – 400 kHz, in ambient 

atmosphere to obtain the topography images. 

An FEI Nova 200 field emission scanning electron microscope (SEM) was 

employed both to examine the surface morphology of the samples after stability tests and 

to prepare cross-sectional TEM samples with its inner integrated focused ion beam (FIB). 

A JEOL 2010F (200 kV) was used to acquire high resolution TEM images. Energy 
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dispersive x-ray spectroscopy (EDX) coupled to this microscope was also used for 

chemical analysis.  

III. Results: 

To determine the band alignment at the interface and to understand the charge 

transfer mechanism in wide band gap passivation layer and semiconductor 

heterostructure, we chose to study the band alignment of PEALD Al2O3/ZnO and 

PEALD SiO2/ZnO interfaces using photoelectron spectroscopy, structural 

characterization using AFM, SEM and TEM. 

 

Figure 8.1. Passivation layer (Al2O3 and SiO2) deposition on A) 20 nm PEALD 

ZnO/FTO, B) 20 nm PEALD ZnO/n-Si, and C) Single crystal ZnO. 

For this study three different types of substrates, i.e. PEALD ZnO/FTO, PEALD 

ZnO/n-Si and ZnO single crystals, were used as described in the Figure 8.1. Selective 

measurements were done on each substrate coated with Al2O3 or SiO2. The selectivity of 

characterization is decided based on the following factors. Samples with fluorine doped 

tin oxide (FTO) as substrate was selected due to high photocurrent results. However, the 

high roughness of FTO is an obstacle to determine the degradation of passivation layer 

through AFM. Thus the substrates with low surface roughness, 20 nm PEALD ZnO/n-Si 
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and single crystal ZnO were selected and compared for degradation mechanism. The ZnO 

thin films studies revealed that 4 nm SiO2 could be an effective passivating layer, and the 

effectiveness of the protecting layer was also demonstrated in ZnO single crystal. 

A.  Al2O3/ZnO and SiO2/ZnO band alignment: 

To understand the band alignment at the interface between the ALD coatings and 

ZnO, XPS and UPS measurements were performed. Al2O3 and SiO2 layers were 

deposited onto ZnO single crystals (O-terminated face) in order to have a well-controlled 

surface to study the effect of the ALD layer on band bending at the interface. 

 

Figure 8.2.  XPS of A) O 1s of as received and annealed Al2O3 and SiO2 and B) C 1s of 

as received O-face ZnO and plasma cleaned O-face ZnO, as deposited Al2O3 and SiO2 

and. 

In single crystal ZnO, band bending on the O-face is related to the surface 

adsorbed contaminants, such as carbon and hydroxyl layer, which can significantly affect 

the charge transfer to the surface in dielectric/ZnO heterostructures [25]. The defect states 

at the interface can act as charge trap regions and alter the charge tunneling from ZnO to 

the dielectrics. Thus surface cleaning is crucial prior to the deposition of PEALD 

dielectric thin films on O-face ZnO. Coppa et al. have studied the ZnO (0 0 0 -1) surface 
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cleaning using He:O2 plasma at 525 °C [23]. However, because of the decomposition of 

ZnO single substrates used for this study cleaned at 525 °C, low temperature cleaning 

was required. To develop a cleaning process, different temperatures (310 °C - 500 °C) 

were used to determine the suitable annealing conditions without decomposing ZnO to 

clean O-face of ZnO. According to our experiments, annealing in He:O2 mixed plasma at 

temperatures higher than 310 °C caused ZnO decomposition and desorption. The 

hydroxyl layer and carbon was removed effectively by annealing the substrate at 310 °C 

in He and O2 mixed plasma. Post plasma cleaning, the O 1s and Zn 2p3/2 peaks increased 

in intensity and shifted 0.2 eV towards lower binding energies (Figure 8.2 a, 8.3 a), which 

indicated removal of surface donors. The diminished shoulder peak along with the ZnO 

O1s core level after surface cleaning indicated the removal of OH layer. The VBM 

binding energy for the as-received ZnO shifted from 3.4 eV to 3.2 eV after plasma 

cleaning (Figure 8.3 a), which is in agreement with the shift in the Zn 2p and O 1s core 

level binding energy in the XPS. The change in the Zn 2p core level indicates 0.2 eV 

downward band bending, considering the distance between the Zn core level and VBM is 

1018.9 eV. After mixed plasma cleaning, the VBM position and XPS core levels moved 

toward the higher binding energy (0.2 eV) that signified the flat band in ZnO, which also 

indicated the decrease in donor surface states. 
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Figure 8.3 A) XPS of Zn 2p3/2 core level and UPS spectra of as received O-face ZnO, B) 

XPS of Al 2p core level and UPS spectra of as deposited and annealed Al2O3 and C) XPS 

of Si 2p core level and UPS spectra of as deposited and annealed SiO2. The core level and 

VBM of ZnO shifts towards higher binding energy after plasma clean. However, the core 

level of Al and Si and VBM shifts towards the lower binding energy after Al2O3 and SiO2 

annealing. 

The band bending is attributed to the accumulation or depletion layer near the 

interface to neutralize the surface charges. Ionized donors and free carriers 

accumulation/depletion generated the space charge layer, which induced upward or 

downward band bending. In case of ZnO, the surface adsorbed hydroxyl groups act as 

donors and makes the surface positively charged that causes the accumulation of free 

electrons and hence downward band bending is introduced in ZnO, as shown in Figure 

8.4 a. The surface adsorption also affects the work function of the material. The increase 
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in the ZnO work function, i.e. from 4.3 to 4.5 eV, after surface cleaning is explained 

considering the donor nature of hydroxyl groups. 

 

Figure 8.4. Redox potentials of water, ZnO and Al2O3 at RHE with respect to the vacuum 

level and Band diagram of a) as received ZnO (0 0 0 -1) and plasma (He:O2) cleaned 

ZnO (0 0 0 -1), b) as deposited PEALD Al2O3/ZnO and annealed PEALD Al2O3/ZnO, 

and c) as deposited PEALD SiO2/ZnO and annealed PEALD Al2O3/ZnO. The values in 

band diagrams and redox potentials are in eV. 

The XPS and UPS data can be combined and used to draw the band alignment for 

heterostructures, which provide an insight to the valence and conduction band offsets at 

the interface and band bending. The data from XPS core level (Zn 2p3/2, Al 2p and Si 2p) 

peak positions and UPS (VBM and work function) for ZnO, Al2O3 and SiO2, following 

each clean, deposition and annealing is concluded in Table 8.1. After the deposition of 
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~2.0 nm PEALD Al2O3 and SiO2 on O-face ZnO, the Zn 2p3/2 core level shifts 0.4 eV and 

0.5 eV towards the lower binding energy, Figure 8.3 b and c. Assuming the difference 

between the ZnO Zn 2p core level and VBM is constant (i.e. 1018.9 eV), 0.4 eV and 0.5 

eV upward band bending was introduced in ZnO, as shown in Figure 8.4 b - c. The 

upward band bending demonstrates the negative charge in the PEALD films, which is 

compensated by the positive charges in the ZnO by inducing upward band bending. 

Presumably, the negative charge in PEALD films is due to the presence of interstitial 

oxygen and defects. Post-deposition annealing at 400 °C in research grade N2 gas for 30 

min removes the oxygen from thin PEALD and thus reduces the upward band bending in 

ZnO. The upward band bending and flat bands in ZnO after PEALD Al2O3 and SiO2 and 

annealing are shown in Figure 8.4, which are calculated using XPS data. 

Table 8.1: The table concludes the data from XPS core level (Zn 2p3/2, Al 2p and Si 2p) 

peak positions and UPS (VBM and work function) for ZnO, Al2O3 and SiO2, following 

each clean, deposition and annealing. 
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The measured band gap of amorphous PEALD Al2O3 using energy loss 

spectroscopy (EELS), in previous study, is 6.7 eV [26] and reported band gap of SiO2 is 

8.9 eV [27]. To determine the valence band offset of SiO2/ZnO from equation 4, the 

experimental values of (ECL – EV)ZnO, (ECL – EV)SiO2 and ΔECL are used, which are 

determined as 1018.9 eV, 98.2 eV, – 920.7 eV, respectively. Similarly, the values of (ECL 

– EV)ZnO, (ECL – EV)Al2O3 and ΔECL for Al2O3/ZnO are measured as 1018.9 eV, 70.7 eV 

and – 947.1 eV, respectively. (ECL – EV)Al2O3 and (ECL – EV)Al2O3 values of as grown and 

annealed Al2O3 and SiO2 and electron affinity of Al2O3 (2.6 eV) and SiO2 (1.2 eV) from 

this study corroborates with the prior studies [27].The determined valence and conduction 

band offset of Al2O3/ZnO heterostructure is 1.1 eV and 2.2, and SiO2/ZnO is 2.5 eV and 

3.2. 

It is evident from the band offsets in the band diagrams of Al2O3/ZnO and 

SiO2/ZnO, the possible mechanism of photoexcited carrier transport from ZnO to the 

surface of Al2O3 and SiO2 is tunneling.  

B.  Photoelectrochemical Characterization of Al2O3 and SiO2 ALD coatings on 

PEALD ZnO: 

LSV and CA measurements determine the current resulting from ZnO 

photoexcited holes transport to the electrolyte solution. The ZnO photocorrosion can also 

contribute to the photocurrent. The LSV measurement is shown in Figure 8.5 a) for 20 

nm ZnO thin film. The stability test was performed using CA at a fixed potential of 0.3 V 

vs SCE to monitor the photocurrent generation over time. Due to thin ZnO film the 

current increase to the maximum and drops back to zero within a few minutes, Figure 8.5 

a. The decay in the photocurrent generated by the ZnO photocorrosion is likely because 
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of the limited thickness of ZnO. The 4 nm Al2O3/ZnO shows the similar behavior as 

ZnO; however the increase and decrease in photocurrent is slower, Figure 8.5 a. On the 

hand, 4 nm SiO2/ZnO shows the constant photocurrent with no significant change, Figure 

8.5 a. 

 

Figure 8.5. Comparison of 20 nm PEALD ZnO/FTO and passivated 20 nm PEALD 

ZnO/FTO with 4 nm Al2O3 and 4 nm SiO2. (A) Stability test of all these three samples, 

the voltage was set at 0.3 V vs SCE, (B) comparison of LSV of ZnO sample coated with 

4 nm Al2O3 before and after stability test, and (C) comparison of LSV of ZnO sample 

coated with 4 nm SiO2 before and after stability test. 
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The LSV measurements on 4 nm Al2O3 or SiO2 coated ZnO are shown in Figure 

8.5 b and c before and after the stability test.  The transient current spikes observed in the 

LSV plots are possibly due to the light turn on and off and/or from the increased charge 

transfer resistance due to the insulator ALD films tunnelling barrier.  In case of the 

Al2O3/ZnO, the photocurrent was significantly smaller after the CA test (Figure 8.5 b), 

which indicates the dissolution of 20 nm ZnO due to photocorrosion. In contrast, the 

photocurrent before and after the CA test for the SiO2/ZnO sample was similar, which 

suggests that SiO2 layer was intact on 20 nm PEALD ZnO (Figure 8.5 c). 

C.  AFM and SEM Characterization: 

To better understand these observations, AFM and SEM characterization were 

performed. To obtain a flat surface for AFM, ZnO films with ALD protecting layers of 4 

nm were deposited onto n-Si substrates, which have ~ 20 times less surface roughness 

than FTO. The root mean square (RMS) roughness of the n-Si before and after the 

deposition of 20 nm PEALD ZnO was ~0.7 nm for the 5 μm x 5 μm scan; however, the 

RMS on FTO before and after ZnO deposition was ~15 nm. The AFM data for the Al2O3 

coated film before and after the CA stability test is shown in Figure 8.6. The as-deposited 

Al2O3/ZnO/Si sample surface was flat, with roughness similar to the ZnO film (Figure  

8.6 a). The CA and LSV plots for After CA testing, particles were observed on the 

surface in both AFM and SEM images due to the adhesion of phosphate salts from the 

electrolyte. Furthermore, pits of different sizes were observed on the surface of the 

samples after CA measurements of different durations. The AFM scan showed tiny pits ~ 

6 nm deep on the surface after performing CA for 7 min, as shown in Figure 8.6 b. AFM 

on the surface after the 15 min stability test showed an increase in the width and depth of 
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pits (Figure 8.6 c). This indicates that the corrosion of the Al2O3 passivation layer 

initiated from tiny pin holes on the surface and expanded into large sized pits. To further 

confirm the corrosion mechanism, SEM characterization was performed on the same 

samples. It is evident from the SEM image (Figure 8.6 d) that Al2O3 surface after 7 min 

stability test has undergone severe damage with various darker contrast areas which were 

confirmed to be corrosion pits by TEM. 

 

Figure 8.6. 4 nm Al2O3 coated 20 nm ZnO/n-Si (4A-PZS), AFM images of (A) before the 

stability test and (B) after stability test for 7 min and (C) after stability test for 15 min and 

the height and width profile for respective AFM topography image along the red line. (D) 

SEM image showing the surface morphology of the same sample after 7 min stability 

test. 
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On the other hand, AFM observation of the 4nm SiO2/ZnO did not show obvious 

signs of degradation or pit formation (Figure 8.7 a - b). SEM observation of the SiO2 

passivated sample after 7 min of CA stability test (Figure 8.7 c) also showed an absence 

of pit formation.The surface remained as smooth as the sample prior to testing, even after 

performing CA for 1 hour (Figure 8.7 b and d), indicating that the SiO2 layer was 

preserved.  

 

 

Figure 8.7. 4nm SiO2 coated 20 nm ZnO on n-Si surface. AFM data for sample (A) as-

prepared, (B) after 1 hour durability test. SEM image after CA for (C) 7 min, (D) 1h 

stability test. 

D.  TEM Characterization: 
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In order to understand and investigate the origin of pits observed in AFM and 

SEM scans, TEM characterization was crucial and thus performed on cross-sectioned 

Al2O3/ZnO/Si and SiO2 /ZnO/Si samples. The crossectional TEM characterization 

provides an insight to the ZnO degradation mechanism the interface of passivation layers 

and ZnO. TEM sample was tilted to Si [0 1 1] zone axis to clearly show the interfacial 

structure. 

For the Al2O3/ZnO/Si sample, a TEM sample was obtained across a few corrosion 

pits to compare the undamaged (Figure 8.8 a) and corroded (Figure 8.8 b) areas. TEM 

images show a thin amorphous layer between the Si substrate and ~21 nm PEALD ZnO. 

The observed thickness of Al2O3 layer is ~3 nm in the undamaged area, which is also 

confirmed by EDX. It is evident from TEM images that the ZnO is polycrystalline and 

Al2O3 layer is amorphous. Figure 8.8 b shows the corroded area where ZnO layer is 

reduced in thickness. The ZnO corrosion near the Si surface corresponds to the 

delamination behavior.  
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Figure 8.8. TEM images showing cross section microstructure of 4 nm Al2O3/ZnO/Si 

sample after 7 min of stability test from (a) uncorroded area and (b) corroded area. 

Similar analyses were performed on the 4 nm SiO2/ZnO/Si. From the CA, LSV, 

AFM and SEM results, this sample has shown negligible degradation.  A TEM specimen 

was prepared from the sample that has been tested for stability for 1h. In TEM images, it 

is difficult to distinguish SiO2 from amorphous carbon which indicates the amorphous 

nature of SiO2, Figure 8.9 a. EDX was used to confirm the presence of the SiO2 layer. A 

predominant Zn L peak is observed from intact ZnO layer, while Si peak dominates in the 

EDX scan that is acquired about 2 nm above the ZnO layer. The TEM from corroded area 

is also shown in Figure 8.9 b. In contrast to the Al2O3/ZnO/Si, a relatively uniform 

contrast is observed in the corroded ZnO area. This suggests the ZnO corrodes under the 
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SiO2; however, the mechanism is different from Al2O3 passivation layer, which is 

discussed in the discussion section.   

 

Figure 8.9. TEM images showing cross section microstructure of 4 nm SiO2/ZnO/Si 

sample after 1h of stability test from (a) uncorroded area and (e) corroded area. EDX 

results from the ZnO layer and the top surface of the uncorroded area are also shown. The 

Pt and Mo peaks in the EDX spectrum come from the process of TEM sample 

preparation using FIB technique. 

IV. Discussion: 

A. Passivation effect of Al2O3 and SiO2: 

In order to understand the passivation of Al2O3 and SiO2 on ZnO, the shape of the 

LSV and CA plots, and the surface topography images using AFM and SEM are 

analyzed. It is evident from photocurrent measurements that PEALD ZnO corrodes in 

less than 5 min, Figure 8.5 a. The possible cause of is the nanocrystalline structure as 
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shown in TEM (Figure 8.8 and 8.9). The wide bandgap and dielectric properties of Al2O3 

and SiO2 layers on ZnO generates an energy barrier for photoexcited carriers [Figure 8.4 

b and 8.4 c]. Thus the photocurrent in LSV and CA plots shows a sharp decrease with an 

increase in thickness. The increase in thickness results in an exponential decrease of 

carrier tunneling, which is explained using the tunneling thickness of the dielectric layers. 

A suitable tunneling length for electrons has been shown to be ~2 nm [28]. 

The increase in photocurrent in the Al2O3/ZnO/FTO stability test, Figure 8.5 a, 

indicates ZnO is in direct contact with the electrolyte and thus photocorrosion contributes 

to enhance the photocurrent. It has been reported that Al2O3 passivation layer dissolves in 

hot water [29]. Consequently, it can be suggested that an Al2O3 can dissolve under the 

influence of photogenerated holes and water. To understand the photocorroison of 

protected ZnO and Al2O3 during photoelectrochemical measurements, AFM, SEM and 

TEM studies are crucial. The surface analysis with AFM and SEM scans show the Al2O3 

surface has corrosion pits after photoelectrochemical measurements (Figure 8.6), which is 

possibly due to chemical instability and expanded corrosion initiated from pin holes. It 

appears Al2O3 corrosion rate is slower than ZnO. The TEM sample analysis of the 

corrosion pit showed the damaged ZnO, Figure 8.6 b, and EDX on the same sample 

confirms some of Al2O3 is preserved at the surface after the photoelectro-chemcial 

measurements.  

In contrast to the Al2O3 dissolution issue, SiO2 showed a higher stability for the 

same thicknesses. Unlike Al2O3, the SiO2 layer showed a constant photocurrent which is 

an indication of intact SiO2 on the surface. The same conclusion is also corroborated by 

the 1 h stability test measurements on 4 nm SiO2/ZnO/FTO, which shows a negligible 
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increase in photocurrent. Thus, it seems that the 4 nm SiO2 is sufficient for the 

passivation of the ZnO surface. However, the intact thick SiO2 layer reduces the electron 

tunneling. 

B. Degradation Mechanisms of Al2O3 and SiO2: 

The failure of wide band gap passivation layers is attributed to three factors: (1) 

pin holes, and (2) diffusion of electrolyte species through the passivating layer to the 

interface. The photocorrosion of the semiconductor or the damage of Al2O3 or SiO2 

passivation layer is either due to pin holes and surface defects or ion diffusion. The 

topography and cross-sectional characterization of Al2O3/ZnO/Si using AFM, SEM and 

TEM indicates the corrosion of Al2O3 and ZnO underneath. The favorable reaction for 

Al2O3 degradation with holes is similar to that of ZnO: [29] 

2Al2O3 + 12h
+
 → 4Al

3+
 + 3O2             (3) 

The reaction of Al2O3 with water can cause thinning of the whole film. However, AFM 

and SEM shows non-uniform corrosion of the Al2O3/ZnO, which implies besides 

thinning, another photocorrosion process dominates in the passivation layer corrosion. A 

possible process for Al2O3 is pin holes and surface defects, which initiates the 

photocorrosion at the surface of Al2O3 and causes pit formation. A possible model of 

photocorrosion of Al2O3/ZnO is shown in Figure 8.10 (A). It was not possible to measure 

the surface corrosion pits of ZnO samples on FTO due to high surface roughness of FTO. 

In order to examine the corrosion mechanism, 20 nm PEALD ZnO/Si samples were 

coated with 4 nm SiO2 or Al2O3. It is interesting to note that an exfoliation-like behavior 

was commonly observed in the areas where the most severe corrosion occured at the 
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interface between the n-Si substrate and ZnO, Figure 8.9 (B). Due to the wide band gap 

of ZnO and Al2O3, the photons with large wavelength penetrate ZnO and excite carriers 

in n-Si substrate. The photogenerated holes sweep to the interface of ZnO and Si and 

apparently cause ZnO corrosion. This leads to the exfoliation of ZnO at the Si/ZnO 

interface.  

 

Figure 8.10. Photocorrosion mechanism of (A) Al2O3/ZnO due to electrolyte and ZnO 

direct contact through pin holes in Al2O3 layer and (B) SiO2/ZnO due to ions diffusion 

through porous SiO2 layer.    

Tomkiewicz et. al. has studied the pitting of a 40-nm TiO2 passivation layer on 

GaAs. The destruction mechanism of TiO2 was explained with the diffusion of electrolyte 

species through films thinner than 40 nm to the interface of TiO2 and GaAs and the 

reaction with holes dissolves the GaAs underneath the TiO2 [30]. The intact TiO2 film on 

top of the dissolved GaAs forms a bubble which ruptures due the pressure to form a pit 

[30, 31]. Similarly, the diffusion of electrolyte species has also been studied in SiO2/Si 

ion diffusion field effect transistors (ISFET) [32]. The favorable migration of OH
-
 ions 

which has been reported in SiO2 [32] suggests that OH
-
 can diffuse to the ZnO/SiO2 

interface and Zn
2+

 and O2 can be released to the electrolyte through this same diffusion 

process. Although the sample surface is flat according to AFM and photocurrent is stable 
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in the stability test, the ZnO layer underneath still gets corroded. The photocorrosion 

mechanism of SiO2/ZnO is shown in Schematic 3 (b). The stability and diffusion of 

electrolyte species through SiO2 complicates the characterization and analysis of the 

corrosion process. Some of the surface areas are thin to allow the diffusion of ions, which 

initiate the corrosion to the underlying ZnO layer. Therefore, SiO2 is different from 

Al2O3, even though the ZnO on both samples experiences corrosion. The rate of ZnO 

corrosion with SiO2 passivation layers is very slow. The existing SiO2 layer inhibits the 

direct contact between the ZnO and electrolyte, is more effective passivating the surface 

than Al2O3. 

V. Conclusion 

Al2O3 and SiO2 were successfully deposited on ZnO single crystal and thin film 

sample and shows uniform coverage. ZnO samples coated with SiO2 had better stability 

than samples coated with Al2O3. The failure of Al2O3 layers starts from defective sites or 

pin holes and expands to the underneath ZnO. Although the ZnO coated with SiO2 shows 

better stability than Al2O3, the corrosion still occurs due to the diffusion of ions from 

electrolyte to the ZnO layer underneath.  
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CHAPTER 9: MODIFIED PLASMA ENHANCED ATOMIC LAYER DEPOSITION 

OF ZnO and Al2O3 

Abstract: Plasma enhanced atomic layer deposition (PEALD) is a well-established 

deposition process to deposit smooth and uniform films for metal oxides. However, 

excess oxygen in the PEALD films does not favor the metal oxide electrical properties. 

Here we have employed helium plasma pulses in the PEALD deposition cycle for ZnO 

and Al2O3 and compared the films with without helium plasma. In situ XPS, and ex situ 

RBS, AFM and XRR were used to characterize the films. The results indicate removal of 

acceptor-like states (possibly excess oxygen) with incorporated helium plasma pulses. 

The effect is ascribed to rearrangement of the precursor molecules due to the energy 

provided by the helium plasma species.  

I. Introduction:  

Plasma enhanced atomic layer deposition (PEALD) is a novel deposition process 

to deposit uniform and conformal films for various applications [1, 2]. It has been 

extensively employed to deposit oxides including ZnO, Al2O3, HfO2, SiO2 and TiO2 [1].  

ZnO is a semiconductor material which has applications for electronic and optoelectronic 

devices due to its wide band gap, high carrier concentration and mobility, and 

transparency [3, 4]. For example, ZnO based thin film transistors and transparent 

conducting oxides on flexible and non-flexible substrates have been demonstrated. 

Similarly, Al2O3 have been considered for gate insulator application in electronic devices 

[5, 6]. Many of the properties of ZnO and Al2O3 rely on the deposition method and 

deposition temperature. With the continuing demands of thin films and flexible 

electronics, low roughness and low temperature processes are becoming mandatory 

requirements. In the last decade, the widely used low temperature process to deposit 

smooth and uniform films is plasma enhanced atomic layer deposition (PEALD) [1, 5]. 

However, the high reactivity of the oxygen plasma generated species can be detrimental 

to the electrical properties of ZnO and Al2O3 [7, 5]. Here, we propose a method to 

remove the excess oxygen from ZnO and Al2O3 using helium plasma pulses during 

PEALD deposition process. The films have been characterized with x-ray photoelectron 

spectroscopy (XPS), atomic force microscopy (AFM), x-ray reflectivity (XRR) and 

Rutherford Backscattering Spectroscopy (RBS).  
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The excess oxygen in ZnO thin films becomes negatively charged by trapping 

free electrons. Thus the conductivity and mobility of ZnO are reduced [8, 9]. In PEALD 

Al2O3, we have shown in prior studies that the adsorption of excess oxygen acts as 

acceptor, which shifts the core level peaks to lower binding energy [5]. To mitigate the 

adsorbed O2 problem on ZnO nanowires Kind et. al. have used UV light illumination, 

which has successfully enhanced the ZnO conductivity [8]. We are adopting a similar 

approach for a PEALD ZnO deposition process to remove the excess oxygen during the 

deposition. Instead of using a source of UV light, a helium (He) plasma step is 

incorporated in the PEALD process after each oxygen plasma pulse. The He plasma 

generates UV photons of line I (21.2 eV) [10], where the intensity can be controlled by 

varying the He gas pressure [10].  

II. Experiment: 

The ZnO and Al2O3 thin films were deposited on 25.4 mm n-Si wafers in our 

customized PEALD system using dimethyl zinc (DMZ) and 

dimethyl(aluminum)isopropoxide (DMAI). During the deposition, the nitrogen purge gas, 

and oxygen and helium plasma ignition pressure was maintained at 100 mTorr using a 

throttle valve that separates the chamber and turbo pump. To pump the chamber, the 

turbo pump was backed with a one stage dry pump. DMZ is a high vapor pressure 

precursor, thus requires to be cooled to -18 °C. On the other hand DMAI is heated to 90 

°C to be vaporized. The precursor vapors were transported from bubbler to the chamber 

using an Ar gas flow of 55 sccm for DMZ and 70 sccm for DMAI. To avoid 

condensation of precursor vapors, the pipelines and chamber walls were heated and 

maintained at ~100 °C. The N2 purge gas flow was 50 sccm, and the O2 and He gas flows 

were 35 sccm and 45 sccm, respectively. The remote O2 and He plasmas were generated 

at 200 W and 13.54 MHz at ~25 cm above the deposition surface, which reduces the ion 

bombardment on the surface. Consequently, the O2 and He plasma generated radical 

species and photons which reach the reaction surface. The oxygen and helium plasma 

pulse was 8 sec. Schematics of the He assisted PEALD process is shown in Figure 1. The 

ZnO was deposited at 130 °C and the Al2O3 was deposited at 170 °C. XPS was used to 

determine the core level positions, RBS was used to determine the thickness and 
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elemental ratios (Zn:O and Al:O), AFM was used to scan the surface topography, and 

XRR was used to determine the thickness and density.  

 

Figure 9.1. Schematic of He pulse induced plasma enhanced atomic layer deposition. 

III. Results And Discussion: 

The XPS core levels (O 1s, Zn 2p, Al 2p and Si 2p) after 10 PEALD cycles of 

ZnO or Al2O3 with and without He plasma pulse are shown in Figure 2. It is evident that 

all the core levels shift to higher binding energy after growth with He plasma pulses. The 

shift to higher binding energy is an indication of reduced acceptor-like states in the 

PEALD films. For instance, in our prior studies, the as-deposited Al core level position of 

10 nm PEALD Al2O3 at 200 °C was 74.2 eV [5]. However, after a 600 °C anneal in N2, 

the peak position shifts to 75.3 eV indicating the acceptor states were removed [5]. For 

He plasma assisted Al2O3 deposition, the Al core level position is 75.4 eV, which is at 0.9 

eV higher energy than the Al core level of Al2O3 (74.5) deposited without He plasma 

pulse. Similarly, the XPS Zn core level positions in ZnO deposited with and without He 

plasma pulse are at 1022.0 eV and 1021.5 eV, respectively. The 0.5 eV shift of the Zn 

core level to higher binding energy is explained using the same concept of the removal of 

acceptor like states. A similar shift is also observed in the Si core level, Figure 2 c, f. The 

oxygen peaks in Figure 2 c and f are the combination of two peaks, from Si substrate and 

ZnO, and Si substrate and Al2O3, thus it is difficult to distinguish them.  
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Figure 9.2. XPS core level of ZnO a) Zn 2p, b) O1s, and c) Si 2p of PEALD ZnO with 

and without He plasma pulse. XPS core level of Al2O3 d) Al 2p, e) O1s, and f) Si 2p with 

and without He plasma pulse. 

The thick ZnO and Al2O3 films were deposited for the analysis using RBS, XRR 

and AFM. The results for all these characterizations are summarized in Table 1. It is 

evident from the AFM scans that the roughness of the ZnO and Al2O3 is similar for the 

PEALD deposition with and without He plasma, Figure 3. However, XRR shows a 

significant change (~10%) in the Al2O3 density. The thickness of the Al2O3 is slightly 
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reduced with the He plasma pulses, and consequently, the density increases. We conclude 

that the He plasma leads to a rearrangement the precursor molecules which cause the 

increase in density. On the other hand, the change in ZnO density is less as compared to 

Al2O3. The elemental ratio deduced from RBS suggests, the stoichiometry of ZnO and 

Al2O3 remains essentially the same, Zn:O = 1:1 and Al2O3 = 2:3, irrespective of the 

change in the deposition process.  

 

Figure 9.3. AFM scan of (a) PEALD ZnO (b) PEALD ZnO with He plasma pulse, (c) 

PEALD Al2O3, and (d) PEALD Al2O3 with He plasma pulse. The RMS obtained from 

AFM scans is 8.47, 8.6, 7.3 and 7.5 nm respectively 
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Table 9.1. This table concludes the RBS Zn:O and Al:O ratio, RBS thickness, AFM 

roughness, GPC, and XRR density and thickness for PEALD ZnO and Al2O3 films with 

and without helium plasma pulses. 

 

IV. Conclusions: 

Helium plasma pulse assisted PEALD growth of ZnO and Al2O3 is compared with 

PEALD ZnO and Al2O3. The XPS core level positions indicate the removal of acceptor 

like states, possibly excess oxygen, which may be due to UV photons generated during 

the He plasma pulse. An increase in the Al2O3 density signifies the rearrangement of 

DMAI precursor molecules on the surface with energy provided by the He plasma 

species.  
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CHAPTER 10.  SUMMARY AND FUTURE WORK 

I.  Summary: 

The interface band alignments, band offsets and properties of oxide 

heterostructures are crucial for carrier transport for various applications, such as 

photocatalysis, solar cells and electronics. This dissertation is focused on the study of 

heterostructure band alignments, photoexcited charge transport, and surface 

photochemical reactions. PEALD processes were employed to deposit metal oxides on 

LiNbO3, polarity patterned lithium niobate (PPLN) and ZnO. As mentioned in the earlier, 

this research work has addressed three aspects.  

First is the band alignment at the interface of metal oxides and LiNbO3 or ZnO. 

These studies employed in situ x-ray photoelectron spectroscopy (XPS) and ultraviolet 

photoelectron spectroscopy (UPS) before and after the oxide deposition. The shift in the 

XPS core levels was used to determine the valence band offsets (VBOs) and conduction 

band offsets (CBOs) of metal oxides and LiNbO3. On the other hand, the VBOs and 

CBOs of Al2O3 or SiO2 on ZnO were determined using UPS measured valence band 

maximum (VBM) and XPS core level positions. Metal oxide/LiNbO3 band diagrams 

show the favorable electron transport from LiNbO3 to ZnO, TiO2 and VO2 and electron 

tunneling as the possible charge transfer through Al2O3. Band diagrams were developed 

that show the band bending in addition to the band offsets of as-deposited and processed 

PEALD films. 

Second is the effect of metal oxide layers on the LiNbO3 surface photochemical 

reactions. Different thicknesses (1, 2, 4, 10 nm) of PEALD ZnO were deposited on PPLN 

and results established that the internal carrier concentration at the interface screens the 
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effect of the internal electric field of PPLN. Thus the pattern of photoinduced Ag 

nanoparticle was no longer controlled by the PPLN internal electric field. Another effect 

that was observed in ZnO/PPLN heterostructures was the increased photoexcited carrier 

concentration with an increase of the ZnO thickness which screens the photoexcited 

carrier transport from the PPLN substrate. The photoinduced Ag nanoparticle deposition 

study on ZnO/PPLN indicates that the metal oxides suppress the surface states, and also 

reduce the effect of the internal electric field, which diminishes electron drift and 

enhances electron diffusion. Thus the Ag nanoparticle deposition is enhanced on –c 

LiNbO3 domain surfaces. The TiO2/PPLN heterostructures, show a similar effect as ZnO 

as reflected in the Ag nanoparticle deposition. The VO2/PPLN shows a different Ag 

nanoparticle pattern as compared to ZnO and TiO2. The results may reflect less than 

optimal higher carrier higher carrier concentration. For Al2O3/PPLN heterostructures, the 

insulating properties of Al2O3 reduces the photoinduced carrier tunneling from PPLN for 

thicknesses > 2 nm. 

Third is the surface passivation and degradation mechanism of Al2O3 or SiO2 on 

ZnO. In this study, PEALD Al2O3 and SiO2 were deposited on 20 nm ZnO/n-Si and 20 

nm ZnO/FTO which were characterized using AFM, SEM and TEM. The Al2O3 stability 

test was performed for 15 min and SiO2 stability test was performed for 4 h. The 

degradation of 4 nm Al2O3 was evident in AFM and SEM surface scans. Unlike Al2O3, 

SiO2 surfaces did not show signs of degradation. However, TEM characterization on both 

samples showed the degradation of the ZnO each with a different mechanism. TEM of 

the Al2O3/ZnO/n-Si indicated that photocorossion of ZnO is initiated through the Al2O3 

pin holes which expose the ZnO directly to the electrolyte solution. In contrast, SiO2 
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provides improved stability of ZnO; however, degradation of the underneath ZnO was 

attributed to diffusion of ions which were transported from the electrolyte solution during 

stability test.   

II. Future Work: 

The proposed future work consists of two areas: (A) to use LiNbO3 and modified 

LiNbO3 surfaces with PEALD films for photocatalytic processes for water splitting and 

photo-oxidation surface reactions, and (B) to extend the versatility of PEALD processes. 

A. LiNbO3 and Modified LiNbO3 Surfaces for Photo-oxidation Reactions and 

Water Splitting: 

The research discussed above has studied approaches for photoreduction reactions 

on LiNbO3. Most of the studies suggest oxidation reactions occur in equilibrium with 

reduction reactions which are driven by photoexcited holes [1, 2]. However, to the best of 

our knowledge, there have not been prior studies that explored the hole driven surface 

reactions on LiNbO3 or metal oxide/LiNbO3. Thus it would be interesting to study the 

surface photo-oxidation reactions. To understand the role of holes in LiNbO3 and metal 

oxide/LiNbO3 heterostructures, the phtoto-oxidation dominated nanoparticle deposition 

processes can be used as described in the dissertation.  

On the other hand, the most commonly used materials for photocatalytic 

processes to produce H2 fuel or to clean water are semiconductors [1]. Other than 

semiconductors, only a few studies have been done to remove dye molecules from water 

using the internal electric field of ferroelectrics [2, 3]. The water splitting reactions are 

driven by both reduction and oxidation reactions. Earlier, Burbure et. al. have studied 

surface photoreduction reactions on TiO2/BaTiO3 [4]. We have shown a significant 
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increase in the surface photoreduction processes with ZnO or TiO2 on PPLN in the 

research here. Presumably, with the enhanced photoreduction surface reactions, surface 

photo-oxidation also increases. In addition to using LiNbO3 ferroelectric material that 

highest polarization among the ferroelectric materials, metal oxide/LiNbO3 structures can 

also provide a significant increase in the photocatalysis efficiency. Thus, the metal 

oxide/LiNbO3 heterostructures may be used for water splitting or water cleaning with 

enhanced efficiency.  

B. Energy Enhanced Atomic Layer Deposition:  

Other than studying the heterostructure interfaces, PEALD processes were an 

integral part of the research concluded here. The uniform and conformal deposition is 

certainly an advancement of ALD process that makes it favorable for electronic devices. 

Moreover, low temperature deposition with PEALD has been extensively reported in the 

last decade. However, the high reactivity of the oxygen plasma species incorporates 

excess oxygen which is evident in the form of acceptor like defects in the metal oxide 

films [5]. The PEALD capabilities may be expanded by incorporating pulses of He 

plasma to remove the excess oxygen during the deposition which may have a significant 

effect on the electrical properties of metal oxides (semiconductors and dielectrics).  

UV light is known to desorb adsorbed oxygen from ZnO nanowires and to 

improve their electrical properties [6]. Specifically, helium plasma generates a UV line 

(I) of energy 21.2 eV which can be used after each oxygen plasma pulse possibly to 

remove the adsorbed excess oxygen on the surface. Other than using UV light photons, 

the effect of molecular energy provided by the novel gasses (He, Ne, Ar, Kr) pulses 

incorporated after oxygen or precursor pulse can be studied. The energy provided by the 
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non-reactive plasma species can enhance the nucleation or rearrange the precursor 

molecules and thus altering the materials properties and GPC.  
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