
An Evaluation of SDN Based Network Virtualization Techniques

by

Felipe Stall Rechia

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2016 by the
Graduate Supervisory Committee:

Violet R. Syrotiuk, Chair
Gail-Joon Ahn
Dijiang Huang

ARIZONA STATE UNIVERSITY

May 2016

ABSTRACT

With the software-defined networking trend growing, several network virtualization

controllers have been developed in recent years. These controllers, also called network

hypervisors, attempt to manage physical SDN based networks so that multiple tenants

can safely share the same forwarding plane hardware without risk of being affected by

or affecting other tenants. However, many areas remain unexplored by current network

hypervisor implementations. This thesis presents and evaluates some of the features

offered by network hypervisors, such as full header space availability, isolation, and

transparent traffic forwarding capabilities for tenants. Flow setup time and throughput

are also measured and compared among different network hypervisors. Three different

network hypervisors are evaluated: FlowVisor, VeRTIGO and OpenVirteX. These

virtualization tools are assessed with experiments conducted on three different testbeds:

an emulated Mininet scenario, a physical single-switch testbed, and also a remote

GENI testbed. The results indicate that network hypervisors bring SDN flexibility

to network virtualization, making it easier for network administrators to define with

precision how the network is sliced and divided among tenants. This increased

flexibility, however, may come with the cost of decreased performance, and also brings

additional risks of interoperability due to a lack of standardization of virtualization

methods.

i

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 5

2.1 Software Defined Networking and Network Virtualization. 5

2.2 Virtual Local Area Network . 9

2.3 Q-in-Q . 11

2.4 MAC-in-MAC . 13

2.5 Multiprotocol Label Switching . 14

2.6 Virtual eXtensible Local Area Network . 15

2.7 Virtual Private Networks . 16

2.8 FlowVisor . 18

2.9 VeRTIGO . 23

2.10OpenVirteX . 25

2.11 FlowN . 30

2.12AutoSlice . 31

2.13AutoVFlow . 32

2.14 Summary . 32

3 EXPERIMENTS . 33

3.1 Experimental Setup . 33

3.1.1 Mininet Topology . 34

3.1.2 Physical Topology . 36

ii

CHAPTER Page

3.1.3 GENI Topology . 37

3.1.4 Floodlight Setup . 38

3.1.5 FlowVisor Setup. 38

3.1.6 VeRTIGO Setup . 39

3.1.7 OVX Setup . 40

3.1.8 Scapy. 40

3.2 Functional Experiments . 41

3.2.1 Network and Topology Isolation . 42

3.2.2 Autonomous Rerouting . 44

3.2.3 Transparent Traffic Forwarding . 46

3.2.4 Compliance with Addressing Standards 48

3.3 Performance Experiments . 50

3.3.1 Flow Setup Time . 51

3.3.2 Throughput . 53

3.4 Summary . 54

4 RESULTS AND ANALYSIS . 55

4.1 Functional Test Results . 55

4.1.1 Network and Topology Isolation . 56

4.1.2 Autonomous Rerouting . 60

4.1.3 Transparent Traffic Forwarding . 63

4.1.4 Compliance with Addressing Standards 65

4.1.4.1 Unicast IPv4 Header Rewriting . 65

4.1.4.2 ARP and Multicast Header Rewriting 67

4.2 Performance Test Results . 69

iii

CHAPTER Page

4.2.1 Flow Setup Time . 69

4.2.2 Throughput . 72

4.3 Results Summary and Analysis . 76

5 CONCLUSION . 80

5.1 Future Work . 82

5.1.1 Development of Network Hypervisors . 82

5.1.2 IPv6 Support . 83

5.1.3 Improved Experiments . 83

REFERENCES . 85

APPENDIX

A EXPERIMENTAL SETUP DETAILS . 92

iv

LIST OF TABLES

Table Page

1 Host Connectivity as Observed by Tenant Hosts in Mininet. 59

2 Summarized Results of Traffic Forwarded with Network Virtualization. 63

v

LIST OF FIGURES

Figure Page

1 Simplified SDN Architecture. 6

2 Topology Discovery Using LLDP Flooding. 8

3 Network Hypervisor in an SDN Architecture. 8

4 Original Ethernet Frame and Different Encapsulation Options. 12

5 Use of Duplicate VLAN Tags Enabled by Q-In-Q. 12

6 MAC-In-MAC Frame. 13

7 The VXLAN Frame Format. 16

8 Network Slicing by FlowVisor. 19

9 FlowVisor Packet Flow Processing. 21

10 Physical Network at the Bottom and Corresponding Virtual Network. 24

11 OVX Simplified Architecture. 26

12 OVX Topology Virtualization through Discovery Manipulation. 27

13 OVX Packet Flow Processing. 29

14 Mininet Test Scenario. 35

15 Physical Test Scenario for Performance Tests. 37

16 GENI Test Scenario for Throughput Test. 38

17 Topology Isolation Expected with FlowVisor Virtualization. 43

18 Topology Isolation Expected with OVX and VeRTIGO Virtualization. 43

19 OVX Fast Reroute Feature. 45

20 Transparent Traffic Forwarding Test Reference. 47

21 Round Trip Time of the First Ping with Network Hypervisor. 51

22 Network A Discovered by Floodlight Instance A Using FlowVisor as the

Network Hypervisor. 56

vi

Figure Page

23 Network B Discovered by Floodlight B through FlowVisor. 57

24 Network C Discovered by Floodlight C through FlowVisor. 57

25 Network A Discovered by Floodlight Instance A Using OVX as the Network

Hypervisor. 58

26 Network B Discovered by Floodlight B through OVX. 58

27 Network C Discovered by Floodlight C through OVX.. 58

28 IP Header Rewriting Done by OVX. 66

29 IP Header Rewriting Done by OVX with Same IP Addresses. 66

30 ARP, IP and MAC Multicast Flooded by OVX. 68

31 Round Trip Time of First Ping. 70

32 Average round Trip Time of subsequent Pings. 71

33 Throughput Measured with Different Controllers, in Bits per Second. 72

34 Throughput Results in GENI Testbed, in Bits per Second 74

35 Throughput Results in GENI Testbed, for OVX, in Bits per Second 75

vii

Chapter 1

INTRODUCTION

The virtualization of computers is becoming increasingly popular and widespread

in the context of cloud computing. Users can set up their own private virtual machines

hosted by a service provider in a matter of minutes, using services such as Amazon

EC2, Microsoft Azure, or Google’s Cloud Platform. Virtualization and isolation of

the CPU, memory and storage elements in these environments is straightforward and

highly automated. However, dynamic configuration, virtualization, and isolation of

network resources is still considered a “missing link that will interconnect all other

virtualized appliances” [11].

Chowdhury and Boutaba [11] define network virtualization as a service that

provides several multiple logical networks decoupled from one single physical network,

allowing different users to share the same physical network resources while still being

entirely isolated from one another. In order to understand network virtualization it is

important to have a clear definition of what are the resources offered by computer

networks [33], [60]:

• The topology, which is comprised of the set of network devices – that is, switches

and routers, and their respective ports and links;

• The address space, which is determined by the kind of addressing used in the

network, such as IP;

• The network devices’ resources, namely the CPU, memory, flow tables, etc.;

• The bandwidth of links.

The concept of network virtualization is not new. Virtual local area networks

1

(VLANs), virtual private networks (VPNs), and several other techniques allow several

tenants (or customers) – sets of users of a network infrastructure – to share the same

network hardware without interfering with other tenants. However, these traditional

virtualization techniques rely on a distributed network control plane, and, thus,

frequently cannot split network resources evenly among tenants. Furthermore, the

provisioning of traditional virtual networks is made on a box-by-box basis. Without

centralized management, the manual network configuration process can take months

[33].

In the computing domain, hypervisors are regarded as the controlling entities that

enable virtual appliances to share abstracted computing and storage resources of a

host machine among several tenants. What hypervisors assign to one tenant cannot be

used by another [33]. The same requirements have been addressed in the networking

domain by the development of network hypervisors. Their purpose is analogous – to

allow several hosts to share network resources while minimizing the risk of having one

instance interfering with another [11].

Network hypervisors leverage software defined networking (SDN) concepts to

implement network virtualization. SDN decouples the control and data forwarding

planes of a network, and allows the network devices to be controlled by a single

centralized controller. This enables quick provisioning and fair sharing of network

resources among tenants [33]. Additionally, the network wide view provided by

SDN gives the means to explore new research areas and develop innovative network

applications.

Several different SDN-based network hypervisors have been developed in recent

years, such as FlowVisor [60], OpenVirteX (OVX) [57] and VeRTIGO [15]. These

network hypervisors aim to provide isolation between network tenants, and in some

2

cases they go further and offer additional features. OVX makes the full IP header

space available to all tenants through use of a complex header rewriting technique

[57]. Both OVX and VeRTIGO propose automatic handling of network failure and/or

congestion [15], [57].

However, network hypervisors often neglect to evaluate basic network functions.

Are network hypervisors capable of forwarding any kind of Ethernet or IP protocols

without blocking tenant traffic? Do the header rewriting techniques employed by OVX

comply with current IP standards?

In an attempt to answer these questions and many more, this thesis evaluates

network hypervisors with both qualitative and quantitative experimental approaches.

Functional experiments are conducted to verify network topology isolation, resiliency,

transparent traffic forwarding, and compliance with addressing standards. Performance

experiments are also conducted to measure the impacts of introducing a network

virtualization layer between the control and data planes of the network. Flow setup

time and throughput are measured and compared to that of non-virtualized networks.

The results show that network hypervisors enable efficient sharing of network

resources while keeping tenants isolated. However, they still have problems handling

IPv6 or multicast traffic, and in some cases the virtualization layer introduces great

performance impacts to the network.

Chapter 2 presents both the traditional and the SDN network virtualization

technologies. The purpose is to give the reader a background on how virtualization is

done in traditional distributed networks and on how it can be done with SDN. Chapter

3 introduces and explains the experimental scenarios, procedures, and methods used

to evaluate three network hypervisors. The results of the experiments are analyzed

and discussed in Chapter 4. Conclusions are drawn in Chapter 5, outlining the

3

major differences between the traditional and SDN-based virtualization techniques

and discussing advantages and disadvantages of each. Future work possibilities are

also presented in Chapter 5.

4

Chapter 2

LITERATURE REVIEW

Recent works about network virtualization tend to ignore fully-developed virtu-

alization techniques, such as VLANs and VPNs, in favor of new software defined

networking (SDN) techniques. However, these traditional methods are already fully

standardized and implemented in vendors’ equipment, so they are prepared to deal

with many real world problems faced by network users today.

This chapter introduces background concepts about SDN and explains how it

differs from traditional networking concepts. It then presents a brief explanation of

how some of the traditional network virtualization standards and technologies work,

followed by an introduction to recent SDN-based network virtualization tools, the

network hypervisors.

2.1 Software Defined Networking and Network Virtualization

Traditional networks are distributed systems composed of network devices that

are responsible for handling both the control plane and the data forwarding plane

of the network. The control plane function decides how the network traffic should

be handled; it is responsible for discovering neighboring devices and networks, and

deciding where traffic should be forwarded. Topology discovery, spanning-tree, and

routing protocols are examples of control plane functions [33]. The data forwarding

plane only consults forwarding tables that were previously calculated by the control

plane, and uses this information to quickly forward traffic [33].

5

Figure 1. Simplified SDN architecture.

SDN is a new paradigm which aims to take control plane functions out of the

network devices and place them in a specialized, logically-centralized controller of

the network. This has the benefit of simplifying network configuration and policy

enforcement. It also reduces the system resources required from the network devices,

as they are no longer required to run control plane functions [33].

In an SDN architecture, the point of reference is usually the centralized controller

platform, depicted at the center of Figure 1 [33]. Network applications are program

modules that communicate with the controller platform through a northbound appli-

cation programming interface (API). Typical network applications are MAC learning,

load balancers, and routing algorithms. The northbound APIs are not very well

standardized and there are many options to choose from [33]. Therefore, the controller

platform and the network applications are often integrated into a single piece of

software which is called the controller. POX [50], Floodlight [19] and Beacon [17] are

examples of controllers which offer a standard MAC learning application. The data

forwarding plane is composed of simple forwarding devices, usually called switches,

6

which communicate with the controller through the southbound API. The OpenFlow

protocol [40] is the most well known, standardized and actively used southbound API

for SDN [33].

OpenFlow allows the controller to manipulate the traffic in the data forwarding

plane through the installation of flow rules in the OpenFlow flow tables of the switches.

Each flow rule is composed of match and action pairs. For example, a packet can be

matched by destination MAC address, source IP address, and/or many other common

header fields. If packets match the flow rule, then they can be forwarded to the

controller, dropped, have their headers rewritten, flooded out of all switch ports, etc.

[33].

A key function for network virtualization in SDN is topology discovery. The

controller needs to know the data forwarding plane topology – how the network

devices are interconnected physically – in order to successfully implement traffic

forwarding. Typically OpenFlow controllers discover the data forwarding plane by

first sending OpenFlow PACKET OUT messages asking network devices to flood

link layer discovery protocol (LLDP) frames out of all ports. The controller then

waits for OpenFlow PACKET IN messages carrying LLDP messages. The PACKET

IN messages contain information about which port received which LLDP messages,

thereby allowing the controller to build a graph of the network. This process is

explained by Pakzad et al. [47] and depicted in Figure 2. The controller fully discovers

the topology by repeating this process for all network devices.

Device identification also plays an important role in SDN-based network virtualiza-

tion. Each OpenFlow capable switch in a network is uniquely identified by a datapath

ID (DPID), a 64-bit field composed of 48 bits of the network device’s real unique

MAC address plus 16 bits that are left as an additional identification field. Vendors

7

Figure 2. Topology discovery using LLDP flooding.

can use this additional 16-bit field in any way they desire [8]. For instance, in the

Hewlett-Packard switch used in this work, each OpenFlow instance is associated with

a VLAN number in the switch. The extra 16-bit field in the DPID is used to carry

the VLAN number which corresponds to an OpenFlow instance. This allows easy

distinction of which ports of the switch can be controlled through a particular DPID –

any ports belonging to the given VLAN. This concept is called slicing of resources

and will be further explained in Section 2.8.

Figure 3. Network hypervisor in an SDN architecture.

SDN-based virtualization is usually implemented with the introduction of proxy

8

controllers that act as network hypervisors between the data forwarding plane and

the many tenant controllers that are sharing control over the same infrastructure. As

depicted in Figure 3, network hypervisors can change how the tenant controllers see

the network. Tenant controller 1 has control over all the network devices transparently;

Tenant controller 2 sees an abstraction of the whole network represented by a single

big switch; Tenant controller 3 sees only a portion of the network containing three of

the five switches.

Examples of network hypervisors that work using the proxy controller principle

are: FlowVisor [60], OpenVirteX [57], VeRTIGO [15], AutoVFlow [66] and AutoSlice

[9]. FlowN [16] is an exception and does not use the proxy architecture, instead

being a modified controller which spawns containers of the network applications for

virtualization. More details about each of these SDN virtualization approaches will

be given in later sections of this chapter.

It is important to first understand at least some of the most basic traditional

virtualization technologies before further exploring SDN-based network virtualization.

The traditional methods, some of which will be briefly covered in the next few sections,

can be employed to further enhance the novel methods implemented with SDN.

2.2 Virtual Local Area Network

The virtual local area network (VLAN) technology is currently standardized by

the IEEE standard 802.1Q-2014 document [24]. VLANs provide traffic isolation and a

reduction of broadcast domains within LANs, and it is one of the most basic forms of

network virtualization. Basic functionality is realized by the introduction of a VLAN

tag (802.1Q tag) in the middle of Ethernet frames. For example, switches that support

9

VLANs do not allow frames tagged with a certain VLAN tag X to be forwarded to

ports which belong only to VLAN Y. The fields in a VLAN enabled Ethernet II Layer

2 frame are [24]:

• MAC destination (6 bytes)

• MAC source (6 bytes)

• VLAN tag (4 bytes)

• Ethertype (2 bytes)

• Payload (variable length)

• CRC check (4 bytes)

The 4 bytes of the VLAN tag are divided in the following ways [24]:

• Tag Protocol Identifier (TPID, 2 bytes)

– 0x8100 for basic VLAN functionality.

– 0x88a8 for backbone component addressing (Q-in-Q).

– 0x88e7 for service encapsulation (MAC-in-MAC).

• Tag Control Information (TCI, 2 bytes)

– Priority Code Point (PCP) – a 3-bit field that can be used to convey

priority information about the current frame.

– Drop Eligible Indicator (DEI) – a 1-bit field that can be used to indicate

whether this frame is eligible to be dropped in case of congestion.

– VLAN Identifier (VID) – a 12-bit field used to identify to which VLAN

this frame belongs.

Additionally, the use of VLAN tags also allows traffic to be marked with different

priorities. For instance, time sensitive frames generated by an IP phone could have its

10

PCP field configured to a higher value, indicating that this frame should be forwarded

with greater priority in a network.

Some problems arise from the use of frames with a single VLAN tag. For instance,

only 212 virtual networks may be created, a number which can be easily reached by

current data center networks with thousands of virtual machines. Furthermore, each

customer may only use a subset of the 212 VIDs, so administration of which VIDs

are available to which customers can become troublesome. This problem is partially

addressed by Q-in-Q, explained in the next section.

2.3 Q-in-Q

The use of two VLAN tags per frame allows customers to employ the full VLAN

header space, overcoming the global limit of VIDs. Using two VLAN tags in the same

frame is usually called Q-in-Q by network equipment vendors [31], and was originally

specified by IEEE standard 802.1ad-2005 [26]. The standard describes the isolation of

multiple customer networks within a single provider by assigning one VID to each

customer in the first VLAN tag of the frame, and the customer is free to use any of

the 212 VIDs in the second VLAN tag. The name Q-in-Q is a reference to the fact that

a 802.1Q tag is used again within an 802.1Q frame. The original 802.1ad standard

was later incorporated into the IEEE standard 802.1Q-2014 [24].

Figure 4 [38] shows different types of frames for illustration and comparison of the

different tagging and encapsulation options possible with VLANs – a pure Ethernet

frame, a frame with a with single VLAN tag – allowing 212 different VIDs – and a

frame with two VLAN tags – allowing 212×212 = 224 VID combinations. However, the

11

Figure 4. Original Ethernet frame and different encapsulation options.

customer’s MAC address is always exposed in these frames, regardless of the number

of VLAN tags used for the payload.

Figure 5. Use of duplicate VLAN tags enabled by Q-in-Q.

In Figure 5 [38], an example of Q-in-Q usage shows two different customers that

can use the same VLAN tag – the customer VLAN (C-VLAN) tag number 10 – and

remain isolated from one another while sharing the same network infrastructure. This

works because the provider supplies a different service VLAN (S-VLAN) tag for each

customer. For customer 1 the provider encapsulates all traffic with S-VLAN tag 100,

12

while, customer’s 2 traffic is encapsulated with S-VLAN tag 200. Q-in-Q allows both

customers to have 212 VIDs available. However, it still does not provide complete

separation between customer and provider domains due to the following possible

problems [7]:

• Customers MAC addresses travel through the entire provider backbone and are

learned in every switch along the way. This affects the scalability of the service

as the provider’s MAC tables may easily become full;

• The number of service VLAN tags is still limited to 212;

• There is no clear demarcation point between customer and provider networks

regarding fault and performance management.

MAC-in-MAC can be used to overcome these problems, and it will be explained in

the next section.

2.4 MAC-in-MAC

The provider backbone bridges (PBB) functionality is typically called “MAC-

in-MAC” by networking equipment vendors and extends the concept of Q-in-Q by

allowing complete encapsulation of the customer’s traffic, including the customer MAC

address (C-MAC). The IEEE 802.1ah-2008 standard [27] introduced the concept of

PBB, which was later incorporated into the IEEE Std 802.1Q-2014 standard [24].

Figure 6. MAC-in-MAC frame.

13

Figure 6 shows the MAC-in-MAC frame, in which there are backbone destination

and source addresses (B-DA and B-SA, respectively). Figure 6 shows that in the

PBB frame the customer MAC addresses (in lighter gray color) cannot be learned by

switches in the provider backbone. This becomes clear when comparing the PBB frame

to the single and double tagged frames of Figure 4. The backbone VLAN (B-VLAN)

represents a VLAN in the backbone, which is independent from the other VLAN tags

in the customer frame. The backbone service instance tag (I-TAG) contains a 24-bit

field called the backbone service instance identifier (I-SID) that is used to identify

a unique customer within the provider backbone bridged network. This allows 224

different customers to use 224 different combinations of VLAN tags each [7].

Therefore, the MAC-in-MAC solution addresses the main problems which occur

with Q-in-Q by:

• Providing more identifiers for different network customers (224);

• Preventing switches in the backbone from learning all the customer MAC

addresses, learning only the backbone destination and source addresses; and,

• Introducing a clear demarcation point between customer and provider networks.

2.5 Multiprotocol Label Switching

The multiprotocol label switching (MPLS) architecture introduces the concept of

partitioning sets of packets into forwarding equivalence classes (FECs) and mapping

each to a specific set of hops in the network. The FECs are then mapped into labels,

or label switched paths (LSPs) across the network. Labels can then be easily used by

label switching routers (LSRs) to make the forwarding decisions, because the network

layer is analyzed just once – at the network ingress router [54].

14

The paths that FECs take in the network are usually assigned by routing algorithms

that already run in the network, such as shortest path first. The mapping of LSPs

to FECs is then typically performed by the label distribution protocol (LDP) [4] or

resource reservation protocol (RSVP) with extensions for LSP tunnels [6] that allows

different LSRs to negotiate the meaning of labels and how to forward them across the

network.

Among other things, MPLS enables a packet-switched network to operate almost

as a circuit-switched network. Many network services are based on MPLS, such as

virtual pseudo wire services (VPWS) and virtual private LAN services (VPLS) [5].

2.6 Virtual eXtensible Local Area Network

Virtual eXtensible local area network (VXLAN) is yet another framework that was

created to solve the problem of network virtualization, although specifically oriented

to data center networks [35].

The main purpose of VXLAN is to solve a few major issues that arise from grouping

a large amount of tenants and VMs in a single shared layer 2 network [35]. These

include:

• Using network infrastructure shared by potentially hundreds of thousands of

VMs;

• Limitations of VLAN tags while still dealing with possible duplicate assignments

of MAC addresses and VLAN IDs;

• Preferred use of IP networks and routing to take advantage of equal cost

multipath (ECMP) and improve network utilization.

The VXLAN framework solves these issues by building a layer 2 network overlay

15

on top of a layer 3 network, therefore “stretching” layer 2 segments to reach remote

networks. VXLANs are identified by a 24-bit segment ID called a VXLAN network

identifier (VNI) [35].

Figure 7. The VXLAN frame format.

The tenant’s frames are encapsulated with a VXLAN header and a user datagram

protocol (UDP) which can then be forwarded through any IP network. The UDP

destination port is always 4789, and the Ethernet CRC check is only preserved for the

outer frame. Figure 7 shows the frame format for VXLAN [35]. The tenant’s payload,

in lighter gray color, is completely isolated from the provider’s network because it

stays in the application layer.

2.7 Virtual Private Networks

Virtual private networks (VPNs) achieve virtualization in such a way that the

network client sees typically just a portion of the whole network, which could be the

Internet or any other shared network infrastructure. Only participating users can

send and receive traffic within the VPN [30], [34].

Although VPNs are often considered network virtualization with added security

mechanisms, such as encryption and authentication, there is no precise definition of

what a VPN needs to have. In some cases encryption and authentication are not used

at all (e.g., the network provider is trusted in a MPLS VPLS VPN). Lewis [34] and

16

Jaha et al. [30] attempted to classify some of the existing types of VPN in several

different ways. A few of these criteria are summarized in the following paragraphs.

In trusted VPNs, the client trusts that the provider’s network is secure and not

accessible by the public. No authentication or encryption is necessary [30], [34].

Examples of trusted VPNs are MPLS-based layer 2 VPNs such as virtual pseudo

wire service (VPWS), and virtual private LAN service (VPLS) [5]. In secure VPNs,

client data must be authenticated and encrypted over the provider’s network [30],

[34]. Examples of trusted VPNs are application based secure socket layer (SSL) (e.g.,

OpenVPN [42]), and Internet protocol security (IPSec) VPNs [32].

Connection-oriented VPNs use virtual circuits or tunnels to transport data [30],

[34]. For instance, MPLS layer 2 VPN or generic routing encapsulation (GRE)

are connection-oriented VPNs [18]. Connectionless VPNs rely on partitioning of

client data at the provider edge (PE) [30], [34]. Using VLAN tags to achieve layer

2 connectivity between two customer sites can be considered connectionless, as it

basically relies on pure Ethernet for forwarding [23].

Overlay VPNs imply that the client is not aware of the network topology used

for the VPN because it does not exchange routing information with the provider.

Overlay VPNs include MPLS layer 2 VPN, GRE, or IPSec tunnels [30], [34]. Peer

VPNs require the client to exchange routing information with the provider, such as in

a virtual routing and forwarding (VRF) VPN [34].

Provider provisioned VPNs must be configured and deployed entirely by the

network provider. This allows the provider to control more precisely how customer

traffic is handled. VPWS, VPLS and VRF are all provider provisioned VPNs [30],

[34]. Customer provisioned VPNs are configured and deployed entirely by the network

17

client, and the provider may not even be aware of the existence of these VPNs. GRE

and application based SSL are both customer provisioned VPNs [30], [34].

VPNs can provide the same virtualization benefits that were discussed in Chapter

1, topology, address space and resource isolation. The next few sections will introduce

the SDN approach to network virtualization – network hypervisors.

2.8 FlowVisor

FlowVisor [60] is one of the first SDN network virtualization approaches to be

implemented based on OpenFlow. It consists of a transparent proxy that acts between

the OpenFlow controller and switches, allowing multiple controllers to share the same

network infrastructure. Sherwood et al. [60] suggest the division of network resources

in five dimensions: bandwidth, topology, traffic, device CPU, and forwarding tables.

The network is then divided in slices, each of which contain a subset of these resources,

and is controllable only by the owner of that slice.

To isolate the topology, FlowVisor may restrict the ports the tenant controllers

see from the real physical topology, to hide restricted areas of the network from the

users [60]. Figure 8 shows an example in which only Tenant 1 sees switches SW1 and

SW2 from the network, and Tenant 2 sees only a fraction of the ports from switches

SW3 and SW4.

Flow space isolation is implemented by rewriting the flow rules sent from the

tenant controller to the switch, restricting the flow space they affect. For instance, if

a controller attempts to create a rule restricting all traffic and FlowVisor knows that

this controller has access only to install rules for TCP port 80, then the OpenFlow

18

Figure 8. Network slicing by FlowVisor.

rule is rewritten in FlowVisor before being sent to the switches and affect only TCP

port 80 traffic [60].

To protect the network devices’ CPU, FlowVisor acts by rate limiting the number

of messages exchanged between tenant controllers and switches. If there are too

many table-miss OpenFlow PACKET IN messages coming from a network device to a

controller, FlowVisor also acts by installing a temporary drop rule in the corresponding

network device while forwarding the first table-miss PACKET IN to the controller.

This protects not only the CPU of the network device, but also the CPU of the

controller, as it gives time for the controller to process the new table-miss PACKET

IN request without being disturbed by further repeated PACKET IN messages coming

from the same network device [60].

FlowVisor also provides protection of the flow tables of the switches, to ensure

19

that one single controller does not exhaust all the flow entries in a device. This is

achieved by counting the flow rules installed by each tenant controller and limiting

the number of authorized flow rules to a predefined value [60].

To isolate network bandwidth, OpenFlow does not support a direct way of con-

trolling bandwidth or QoS. Therefore, it may employ the use of different VLAN tags

configured with different PCP bits for this purpose. Although this technique relies

on at least some degree of manual queue configuration in the switch, FlowVisor may

rewrite flows with new VLAN PCP bits to adjust the amount of bandwidth allowed

for installed flow rules [60].

Even though FlowVisor is still not perfectly capable of isolating the five network

dimensions, the SDN concept allows it to divide and monitor the network in ways

that were not possible before. FlowVisor experiments show that it leverages SDN

concepts to introduce centralized policy enforcement, that is, FlowVisor has a global

point of view of the network and may drop or rewrite OpenFlow messages according

to configured policies [59]. Furthermore, FlowVisor has the ability to slice the flow

space with more flexibility than the traditional coarse-grained traditional network

virtualization techniques. For instance, VLANs allow the traffic to be sliced only “by

input port or explicit tag”, while FlowVisor’s slicing mechanism can split the network

by ports, protocol, address ranges, etc. [59].

Several experiments demonstrate FlowVisor’s ability to run an experiment in a

slice, side-by-side with other experiments or even production traffic in a network, with

guaranteed isolation among slices, fine-grained network control, and still providing

hardware forwarding speeds to each slice [59].

Figure 9 shows an example of how FlowVisor interacts with the switches and the

tenant controllers when A1 starts an attempt to communicate with A2 by sending an

20

F
ig
ur
e
9.

F
lo
w
V
is
or

pa
ck
et

flo
w

pr
oc
es
si
ng

.

21

ARP Request. SW1 forwards this request to FlowVisor inside an OpenFlow PACKET

IN message. In Step 1, FlowVisor analyzes the PACKET IN message and forwards

this ARP Request to controller A (Step 2), because host A1’s MAC address belongs

to slice A flow space (this is configured by the network administrator in FlowVisor’s

database). The controller, running a simple MAC Learning application, sends back

to FlowVisor a PACKET OUT flood with the ARP Request (Step 3). If necessary,

FlowVisor rewrites the PACKET OUT message before sending it back to the network

(Step 4), ensuring that the ARP Request is flooded only to members of slice A. SW1

received the PACKET OUT, forwards the ARP request to SW2, which, in turn,

repeats the same Steps 1 through 4 to forward the ARP Request to host A (Step 5).

A2 receives the ARP request, replies to it, and the reverse process of reaching A1 is

started. When the controller A gets the PACKET IN ARP Reply message from A2,

the controller has enough information to instruct the switches to start forwarding

traffic between A1 and A2 independently (Step 6). In Step 7, the controller A sends

FLOW MOD messages to FlowVisor. FlowVisor checks if these messages are not

violating any flow spaces not belonging to controller A, and then programs SW1 and

SW2 with the new Flow Rules. Additionally, the controller A finishes sending the

PACKET OUT ARP Reply back to SW1 to make sure that the address resolution

phase finishes. The programming of SW1 and SW2 hardware fabric is done, and hosts

A1 and A2 can communicate through the data plane without further need from the

control plane. Steps 8-10 show how FlowVisor would handle a case when both a host

and a tenant controller try to “invade” part of the flow space which does not belong to

their slice. FlowVisor blocks attempts from controller B to install flows in controller

A’s slice.

22

2.9 VeRTIGO

VeRTIGO [15] extends FlowVisor with the concept of abstract nodes, or abstract

network devices, which consist of two basic building blocks: virtual links and virtual

ports. Virtual links bundle together several physical nodes and links and abstract them

to the tenant controller as a single link between any two ports. One or more virtual

ports are mapped to a physical port according to the number of virtual links that need

to use the same physical port. Figure 10 shows how VeRTIGO would use virtual links

1 and 2 between SW-A and SW-D to create redundant connections between physical

ports A and B. The four physical switches are represented as a single abstract node

to the tenant controller, with virtual ports X and Y mapped to physical ports A and

B, respectively.

VeRTIGO is built on top of FlowVisor, so it automatically provides all of the

network slicing features offered by FlowVisor. New modules that were designed

specifically for VeRTIGO are briefly described here.

The classifier module determines which messages coming from the network are

handled by the tenant OpenFlow controllers. Some of the messages are directly

handled by VeRTIGO’s internal controller, so that it can hide details of the network

from tenant controllers, which only control a portion exposed to them. For instance,

in Figure 10, OpenFlow messages generated by traffic entering SW-A from virtual

port X are handled by the tenant controller, while any OpenFlow messages related to

traffic between SW-B and SW-D – an internal portion of the virtual network, hidden

by VeRTIGO – are handled and routed by the internal controller [15].

A node virtualizer module is responsible for grouping multiple physical nodes in

the network and making them seem as only one abstract node for the tenant controller,

23

Figure 10. Physical network at the bottom and corresponding virtual network.

as depicted in Figure 10. VeRTIGO multiplexes the messages from several physical

nodes in the network and maps real data path IDs (DPIDs) to virtual DPIDs [15] of

the abstract node.

When a single physical port is in use by many different virtual links, the port

mapper handles the mapping of virtual to physical ports. This also occurs for abstract

node ports, which need to have physical port numbers remapped to virtual port

numbers [15].

The virtual topology (VT) planner is in charge of associating virtual network

instances with real network resources. For instance, when there are multiple paths to

connect points A and B, this module is responsible for finding the best path inside an

abstract node. The best path depends on application requirements and may be chosen

based on available throughput or total latency. The VT planner monitors network

24

statistics to determine current throughput and latency to judge which is the best path

for the current application.

2.10 OpenVirteX

OpenVirteX [57] (OVX) brings the virtualization of networks one step closer to the

infrastructure as a service (IaaS) concept. OVX provides a framework which makes

it possible for tenant controllers to instantiate, snapshot, migrate or delete virtual

networks, which is analogous to hypervisors handling virtual machines (VMs) in cloud

computing environments. Similar to FlowVisor, OVX stands as a proxy between

the network operating system (NOS) and the OpenFlow capable network. The main

improvements claimed by OVX are that it provides:

• A complete custom address space (or flow space) to each of the network slices

created with no risk of overlapping addresses;

• A fully virtualized network topology that can be specified by the slice tenant.

The sample virtualized big switch network shown in Figure 10 can also be realized

with OVX, with the difference that OVX can provide an almost full MAC and

IPv4 header space to each of its tenants. This allow the tenants to use potentially

overlapping addresses. This is accomplished by using header rewriting techniques at

the edges of the network, rewriting the MAC or IP addresses in the packet headers with

additional information including globally unique tenant IDs. If the tenant controller

pushes layer 2 flow rules to the network devices, then OVX resorts to rewriting the

MAC header. If layer 3 flow rules are installed, OVX uses IP rewriting [57].

Al-Shabibi et al. [57] claim that the link virtualization could also be implemented

25

by MPLS labels instead of header rewriting, though this is not done in the current

OVX version.

Figure 11. OVX simplified architecture.

OVX works by keeping two separate logical representations of the network as seen

in Figure 11 [45]. One is the physical network, illustrated by the switches inside the

cloud, and their virtual counterparts stored in OVX’s database – SW1-SW5 in the

gray box. The virtual networks are represented by the blue boxes on the upper portion

26

of the architecture. Both the physical and virtual representations of the network are

stored in a global map, represented by the green box in Figure 11, which currently

uses MongoDB as the database backend [46].

Figure 12. OVX topology virtualization through discovery manipulation.

To enable the representation of different virtual topologies, OVX intercepts LLDP

messages coming from the tenant controllers and creates LLDP responses designed to

represent the underlying physical network topology in different ways. This topology

discovery manipulation is depicted in Figure 12, where virtual switch X is mapped

to switch A, virtual switch Y is mapped to switch B and switch C is hidden from

the tenant controller. OVX receives a PACKET OUT from the tenant controller,

requesting to flood LLDP frames to discover the underlying topology. Instead of

flooding the LLDP frame out through ports 1 and 2 of SW-A, OVX creates a fake

LLDP frame as a response, to provide the tenant controller with the illusion that

27

there are only two switches, X and Y, connected to each other through ports X1

and Y1, respectively. Al-Shabibi et al. [57] describe the creation of this fake LLDP

frame as forging an LLDP response. In addition to providing topology virtualization,

this method ensures that OVX never allows tenant controllers to flood the physical

network with LLDP messages. Therefore, the number of LLDP frames travelling

through the physical network does not depend on the number of virtual networks [57].

An additional feature that OVX provides is resiliency through the use of backup

routes within the network. When building abstract nodes with multiple paths between

hosts, OVX can plan direct and backup routes. Flow rules are then installed to

forward traffic through the direct routes by default. If a link within a direct route

goes down, OVX detects this and automatically installs the backup route rules in the

switches [57].

Figure 13 shows how OVX operates to provide network virtualization. The example

uses the same network as shown in Figure 9, but outlining some major differences

between OVX and FlowVisor. With OVX, the two switches SW1 and SW2 are

represented as a single big switch (BIGSW) to the tenant controllers. In Step 1, OVX

consults its database (previously configured by an administrator) to determine which

hosts belong to which virtual networks. OVX then forwards PACKET IN messages to

the tenant controller A based on that database. In step 2, OVX uses buffers to store

the PACKET IN messages locally, thus avoiding sending unnecessary payload data to

the tenant controllers. A buffer ID is used to identify buffers so that the same data can

be returned to the network, as seen in Step 3. In Step 4 note that, unlike FlowVisor,

the PACKET OUT message is immediately delivered at SW2 instead of going from

SW1 to SW2 and only then delivered to host A2. This reduces the number of messages

that need to travel through the data plane during the address resolution phase. OVX

28

F
ig
ur
e
13

.
O
V
X

pa
ck
et

flo
w

pr
oc
es
si
ng

.

29

then floods the ARP Request to all hosts belonging to virtual network A (see Step 5,

only host A2 in this case). After receiving the second PACKET IN corresponding to

the ARP Reply message from A2 to A1, OVX forwards it to controller A. At this point

(Step 7), controller A sends two FLOW MOD messages to configure the big switch to

interconnect hosts A1 and A2. OVX translates the two FLOW MOD messages to four

FLOW MOD messages to program SW1 and SW2. This step is essential for the big

switch implementation to work, as controller A sees and programs the network as if it

were a single switch. Also in this step it is important to note that the FLOW MOD

rules not only forward traffic, but also rewrite source and destination IP addresses at

the edges of the big switch network. Steps 8-10 show what happens when host B1

and tenant controller B try to “invade” controller A’s virtual network: OVX returns

an OFPT ERROR message to controller B’s unauthorized FLOW MOD.

2.11 FlowN

FlowN [16] proposes a database and lightweight container based virtualization as

an extension to the NOX controller [39]. The database maintains a mapping of the

physical and virtual networks, while each virtual container runs one tenant application

with an independent address space. To ensure traffic isolation, FlowN adds VLAN

headers to traffic entering the network and removes these headers as traffic leaves the

network, allowing the tenants to reuse the same IP address space multiple times.

Instead of working as a proxy controller, FlowN is a modified version of the NOX

controller. Therefore, it does not need to map OpenFlow protocol messages between

the physical network and the virtual representation of the network that is exposed

to tenant controllers. This significantly reduces the memory overhead of running

30

multiple controllers, because the virtualization is realized within NOX itself, while

different tenants are applications running on the same controller, but in namespace

containers. The FlowN authors compare it to FlowVisor and show that FlowN has

superior performance in the presence of a great number of virtual networks (100 or

more). The improved results are attributed to the use of a relational database to store

the virtual to physical topology mapping, which is more scalable than FlowVisor’s

custom data structure mapping [16].

2.12 AutoSlice

AutoSlice [9] presents a system that automates the task of splitting the network’s

data forwarding plane among several tenants in the control plane. Its main objective

is to minimize manual reconfiguration of the network so that substrate providers can

resell slices of their networks to tenants. The implementation consists of a distributed

hypervisor architecture composed of one management module (MM) and several

controller proxies (CPX). The MM maps the virtual SDN (vSDN) topologies into

the physical network, and assigns each CPX a fraction (a domain) of the network

resources. The CPX is responsible for rewriting control messages from the control

network to the data forwarding plane, using traffic tagging where needed to ensure

isolation. AutoSlice also attempts to exploit traffic properties such as mouse and

elephant flows to optimize caching of flow entries.

31

2.13 AutoVFlow

AutoVFlow [66] works similarly to AutoSlice, but proposes to give more control to

the administrators of each vSDN, shifting the responsibility of handling flow space

virtualization to the administrator of each network. It also claims to adopt the

MAC rewriting technique in the network edges to ensure that the full header space is

available to each of the tenants.

2.14 Summary

This section introduced key concepts required to understand the typical SDN

architecture and operation, such as separation of the control and data planes, and

how controllers control and discover network devices. VLAN, MPLS and VXLAN

and VPNs were briefly explained, and it was shown that some of the SDN network

hypervisors may still employ some of these traditional technologies to implement

network virtualization. The next chapter will propose experiments to evaluate some

of these network hypervisors.

32

Chapter 3

EXPERIMENTS

The experiments in this chapter were designed to evaluate and compare a few

of the network hypervisors introduced in the last chapter. This chapter is divided

into three main sections. Section 3.1 explains the experimental setup, the software

used, and testbed design choices used for all the experiments; Section 3.2 describes

procedures that can be used to verify virtual topology isolation, resiliency, traffic

forwarding, and compliance with addressing standards; and Section 3.3 describes

procedures that can be used to verify flow setup time and throughput achieved in

virtualized networks.

3.1 Experimental Setup

Experiments are carried out in two different types of testbeds, a virtual Mininet-

based testbed [36] to evaluate functional aspects of network virtualization, and

a physical single-switch testbed to analyze basic performance aspects of network

virtualization. A remote GENI testbed [21] is used to confirm some of the experimental

results.

In all experiments the OpenFlow controller in use is Floodlight [19], because it is

an easy to set up controller and contains all the functions needed to experiment with

the networks under test, namely topology discovery and MAC learning.

Tutorials and source code are available to the public for FlowVisor [1], VeRTIGO

33

[12] and OpenVirteX [2]. AutoSlice, AutoVFlow and FlowN source code were not

found online and, thus, only the first three approaches are covered in this work.

3.1.1 Mininet Topology

Mininet is a network emulator, and it works by managing instantiation of networks

of virtual hosts, switches, and links. The virtual hosts are created as separate network

namespaces in Linux and the virtual switches are typically Open vSwitches (OVS) [49].

Mininet allows the user to use an external OpenFlow controller to control OpenFlow

enabled OVS switches [36].

The Mininet based topology depicted in Figure 14 is used for all of the functional

experiments. Each switch has 3 hosts connected to it, though the hosts connected

to switches SW2-SW4 are not shown for clarity. Additionally, the DPIDs and MAC

addresses were shortened by using double colons to express a sequence of zeros. For

instance, the DPID of SW3 (00:00:00:00:00:00:00:03) is represented by 00::03, and the

MAC address of host C1 (02:00:00:00:03:01) is shown as 02::03:01. The addressing

scheme of the virtual devices used in this network was devised to make experiments

easier to configure, understand, and run:

• Hosts were assigned to three different networks, A, B, and C. Networks A and

B (10.0.0.0/8) overlap with the purpose of testing network isolation benefits.

Network C (3.0.0.0/8) is meant to verify possible conflicts with the header

rewriting method, which is specific to OVX;

• Switch DPIDs are matched to the switch numbers 00::NN. For instance, switch

SW3 (NN = 03) has DPID 00::03, to make it easier to troubleshoot and analyze

results;

34

Figure 14. Mininet test scenario.

• Host MAC addresses were configured to reflect the network they belong to and

the switch they are connected to by following the template 02::XX:YY, where

XX is the network and YY is the switch. For instance, host B3 is in network B

(represented by XX = 02) and switch SW3 (Y Y = 03), so its MAC address is

02::02:03.

Figure 14 also shows that the network hypervisor – OVX, VeRTIGO, or FlowVisor

– is connected to the Open vSwitches through the loopback interface. The same

loopback interface is used to connect the network hypervisor to Floodlight.

Five switches are used in this emulated topology to make sure that the different

virtualization methods and features of each network hypervisor can be evaluated.

This network can be used to demonstrate FlowVisor’s slicing, OVX’s resiliency with

redundant routes, and both OVX’s and VeRTIGO’s topology virtualization capabilities.

More details about this Mininet topology are available in the Appendix.

35

3.1.2 Physical Topology

The physical topology used for testing of flow setup time and throughput between

hosts is depicted in Figure 15. Computers are connected to an HP OpenFlow Switch,

which is controlled by the Floodlight controller plus any of the network hypervisors

under test – OVX, FlowVisor or VeRTIGO. The testbed computers A to D have

two network interfaces each, one connected to the HP OpenFlow switch, used in the

performance tests, and another interface connected to a standard layer 2 switch to

facilitate management of the lab equipment. VLAN 10 was configured to be controlled

by the Floodlight controller. VLAN 40 was configured to be controlled by the network

hypervisor plus Floodlight, to measure the performance impacts of adding this network

virtualization layer to the control plane. Therefore computers A and B are used when

only Floodlight performance needs to be tested, and computers C and D are used

when the network hypervisor and Floodlight performance is tested.

For experiments conducted in this local physical topology, the OpenFlow hardware

switch is connected to the network hypervisor, which, in turn, connects to a single

Floodlight tenant controller instance at TCP port 10000.

The main purpose of this physical test topology is to run performance tests while

not being limited by Mininet’s consumption of CPU resources, which could happen

for higher throughput traffic. It is a much simpler topology because it is intended to

be used only to measure the throughput of traffic crossing the hardware switch and

the time to install new flow rules in the switch. These experiments will be described

later in this chapter.

36

Figure 15. Physical test scenario for performance tests.

3.1.3 GENI Topology

For comparison purposes, a test topology was also set up using the Global Envi-

ronment for Network Innovations (GENI) [21]. An OpenFlow hardware switch was

reserved using an adapted resource specification from a GENI tutorial [22]. The

hardware switch at the GENI testbed connects via the Internet to the local network

hypervisor instance in a local computer. The network hypervisor, in turn, connects to

a single instance of the Floodlight tenant controller. This is depicted in Figure 16.

The reason to have this third test topology is to confirm experimental performance

results from the physical topology described in Section 3.1.2. Hosts 1 and 3 are

configured with iperf and are used to measure throughput through the GENI hardware

switch.

37

Figure 16. GENI test scenario for throughput test.

3.1.4 Floodlight Setup

Due to some port conflicts, Floodlight [19] requires some changes to its default

configuration in order to be successfully set up in the same machine as the other

network hypervisors. Some of its default ports, such as 8080 for the REST API,

conflict with other applications. Additionally, its OpenFlow version negotiation for

versions 1.1 to 1.4 needs to be turned off, because none of the network hypervisors

tested here support OpenFlow versions higher than 1.0.

There are three different configuration files for Floodlight. These are used to

instantiate up to three instances of Floodlight at ports 10000, 20000, and 30000,

according to the experimental needs. More details about the configuration can be

found in the Appendix.

3.1.5 FlowVisor Setup

To set up FlowVisor the standard installation procedure from [1] is used. After

completing the installation, FlowVisor is configured through a command line interface

control tool called fvctl. The configuration done in FlowVisor can be output to a

38

JSON file and loaded later. Configuration details for all experiments can be found in

the Appendix.

The original Mininet network from Figure 14 cannot be set up with FlowVisor

because it does not work with overlapping IP addresses. Therefore, the topology

tested in FlowVisor has a slight variation from Figure 14: network B is changed from

10.0.0.0/8 to 11.0.0.0/8 to avoid overlapping with network A. The network is sliced

based on source MAC addresses to make the configuration as similar as possible with

the standard OVX slicing, which is done by specifying which MAC addresses belong

to each network.

3.1.6 VeRTIGO Setup

VeRTIGO setup and installation is very similar to FlowVisor’s and it is described

in VeRTIGO’s repository [12]. However, instead of using a JSON file for configuration,

VeRTIGO relies on an XML file to store its configuration. Although Doriguzzi Corin

et al. [15] claim that VeRTIGO has capabilities to create virtual links, ports and nodes,

their latest published version in [12] does not provide all of that functionality to the

user through command line configuration. The only extra function available to users

is the virtual link, which apparently does not work by itself. More details of the final

configuration used for experiments, plus start and stop scripts for the VeRTIGO test

scenario can be found in the Appendix.

39

3.1.7 OVX Setup

Installing and configuring OVX is described in [2]. Although it is possible to

configure OVX through a command line interface, the quickest and most efficient way

to configure it is to use their network embedder, a module that automatically maps

a virtual topology onto the physical topology based on a configuration received in

JSON format.

The configuration used in the experiments of this work, as well as start and stop

scripts for experiments are detailed in the Appendix.

3.1.8 Scapy

Scapy is a Python-based program which can be used to create packets and inject

them into the network. It uses Python’s object oriented capabilities to provide the

user with simple interfaces to create packets by calling and stacking functions together.

It can handle many different protocols, and also allows the user to create their own

protocol [56]. Scapy can be downloaded from Github [55].

A command line packet generation tool was created with the purpose of testing

different types of traffic that can be handled by the network or equipment under test.

It uses a variety of sample frames and payloads extracted from real tcpdump captures,

as well as packets assembled from scratch using only Scapy to generate a series of

packets. The tool contains options to generate more than 40 different types of packets

and allows the user to change source/destination MAC and IP addresses, insert VLAN

tags and/or MPLS labels in the packet, and other small changes. The code for this

40

tool is available at [51], and the protocols that the tool can generate are listed in the

Appendix.

This tool is used by injecting frames into one interface in the network and moni-

toring other network interfaces with tcpdump [61] or Wireshark [65] to observe if the

frames reach their intended destination. The network is expected to transparently

forward most frames, which means that the frames should not be dropped or altered

by the network.

3.2 Functional Experiments

Functional experiments include verifying the network hypervisor’s capabilities to

isolate network topologies; to provide autonomous rerouting inside abstract nodes for

added resiliency; to allow transparent traffic forwarding; and to comply with IP and

MAC addressing standards. The experiments in this section are inspired by trying to

answer the following questions about network hypervisors:

• Are the virtual networks they provide truly isolated? Is it possible for a tenant

controller to control networks belonging to other tenants?

• Can they transparently handle traffic with reserved MAC addresses [28], MAC/IP

multicast addresses [28], [29], IPv6 [14] or VLAN tagging?

• Do the header rewriting techniques respect current MAC [28] and IPv4 [53]

addressing standards defined by Internet Assigned Numbers Authority (IANA)

and the Internet Engineering Task Force (IETF)?

• What kind of applications would benefit from the network virtualization methods

presented here? Can network hypervisors be used for wide area network VPN

applications or just data center network virtualization?

41

For all the functional experiments in this section the OpenFlow switches are

connected to the network hypervisor at port 6633. The network hypervisor, in turn,

connects to the three Floodlight tenant controller instances A, B, and C at ports

10000, 20000, and 30000, respectively.

3.2.1 Network and Topology Isolation

For this experiment, the Mininet topology illustrated in Figure 14 and described

in Section 3.1.1 is used to verify network isolation among tenants. First, the network

hypervisor under test – FlowVisor, OVX or VeRTIGO – must be configured to split this

network into three separate virtual networks, each controlled by a different instance

of Floodlight.

FlowVisor is expected to split the original network as illustrated in Figure 17. For

OVX and VeRTIGO, network isolation should look like what is shown in Figure 18,

with a big switch representing the five switches. Network isolation can be verified

by observing that the hosts belonging to different slices cannot communicate. For

instance, host A1 should not be able to send any packets to any of the C1-C5 hosts.

Additionally, the network hypervisor must ensure that the tenant controllers are

authorized to control only their network portions.

The network virtualization must be guaranteed both from a client and from a

controller perspective. To verify this, one possible procedure is to:

1. Try to reach C5 from A1 by sending a packet straight to the destination with

test_packets.py (should not work);

2. Try to reach A5 from A1 using the same method (should work);

42

Figure 17. Topology isolation expected with FlowVisor virtualization.

Figure 18. Topology isolation expected with OVX and VeRTIGO virtualization.

43

3. Try to reach C5 from C1 using the same method (should work);

4. Try to reach every node from every node using Mininet’s pingall. This should

show that hosts in network A can only reach other hosts in network A, and the

same applies for networks B and C;

5. Verify from the controllers’ interfaces that each controller (A, B and C) sees

only their own network hosts.

This sequence is repeated with each different network hypervisor running between

the physical network and the Floodlight instances.

3.2.2 Autonomous Rerouting

Both OVX and VeRTIGO claim to be able to provide autonomous rerouting inside

abstract nodes. This idea is similar to what is provided by the fast reroute extensions

for RSVP-TE for LSP Tunnels [48]. Only OVX and VeRTIGO should support this

experiment, and it is conducted in the Mininet topology described in Section 3.1.1.

Suppose that the network hypervisor routes traffic between hosts A1 and A2

through switches SW1 and SW2, as represented by the arrow with a solid line in

Figure 19. If the link between SW1 and SW2 fails, the network hypervisor should keep

the network functional by rerouting the traffic via a backup route, perhaps through

switches SW1-SW3-SW4-SW2.

One possible procedure to verify support for autonomous rerouting is:

1. Create a single virtual switch network and establish test traffic between a pair

of network hosts (should work);

44

Figure 19. OVX Fast Reroute feature.

2. Determine which links are used by the active and backup routes by inspecting

the switches flow tables;

3. Shutdown a link belonging to the active route;

4. Traffic should then be forwarded through the backup route, perhaps suffering a

minor interruption;

5. Bring the link from step 3 back up;

6. Traffic should be forwarded back through the original route.

To test this, it is important to enable the “backup routes” option in the JSON

configuration file:

"routing": {

45

"algorithm": "spf", // shortest path first

"backup_num": 1 } // number of backup routes

Traffic interruption time can be measured by using a traffic generator, such as

iperf. The traffic generator has to be configured to send UDP packets, to make sure

that the application layer will not resend lost packets. By sending packets with known

size and at a fixed rate, it is possible to measure the interruption time by counting

the number of lost packets. Equation 3.1 shows how to calculate bandwidth based on

the volume of data received (datarx) and time elapsed.

bandwidth =
datarx
time

(3.1)

Considering that datarx = Npackets × packet size, and known packet size,

bandwidth, and time, Equation 3.1 can be rewritten as Equation 3.2.

Npackets =
time× bandwidth

packet size
(3.2)

For instance, using a packet size of 125 bytes (1000 bits), a bandwidth of 1 Mbps

and sending data for 10 seconds should result in Npackets = 10000 packets. Therefore,

each packet lost corresponds to 10/10000 = 1 millisecond. It is straightforward to

estimate how much time the network remains unavailable by counting the number of

lost packets.

3.2.3 Transparent Traffic Forwarding

Network tenants may want to run traditional distributed network applications

in their own virtual network, such as the LLDP discovery mechanism, or the open

46

shortest path first (OSPF) routing protocol. Both LLDP and OSPF rely on the

use of multicast frames to communicate with neighboring network devices. Network

virtualization is usually well tested for standard unicast IP traffic, but some multicast

frames and other special frame types are hardly ever verified for transparent traffic

forwarding in experimental network hypervisors. Therefore, it is important to verify

that several different types of traffic can be forwarded by virtual networks.

This experiment is conducted in the Mininet topology described in Section 3.1.1.

The results are compared with a standard Ethernet layer 2 switch, and an Open

vSwitch in standalone bridge mode. Both are used as a reference for the experiment,

depicted in Figure 20. The Ethernet switch used for testing is a NETGEAR Fast

Ethernet FS108, but any other standard Ethernet layer 2 switch should yield the same

results.

Figure 20. Transparent traffic forwarding test reference.

One way of verifying transparent traffic forwarding consists of using the

test_packets.py tool [51], described earlier in Section 3.1.8. The user has to in-

ject frames into one network port and then expect the frames to be received at any

other destination host in the network. The network is expected to forward frames to

ports belonging to the correct slice or virtual network without dropping or altering

them. The following set of steps can be used to verify transparent traffic forwarding:

1. Set up the test_packets.py tool to send traffic from host A1 to A2;

47

2. Run Wireshark at hosts A1 and A2;

3. Send a predefined set of packets from host A1 to A2 through an Open vSwitch

configured in standalone bridge mode. The predefined set of packets is docu-

mented in the Appendix;

4. With Wireshark, save the capture files including the frames sent from A1 and

the frames received at A2;

5. Compare the capture files and take note of which frames were dropped or altered

by the network;

6. Run steps 3-5 using the hardware Ethernet layer 2 switch;

7. Repeat steps 3-5 using Floodlight to control the network;

8. Repeat steps 3-5 using FlowVisor and Floodlight to control the network;

9. Repeat steps 3-5 using OpenVirteX and Floodlight to control the network;

10. Repeat steps 3-5 using VeRTIGO and Floodlight to control the network.

The different network hypervisors should not further restrict the type of traffic

which can be normally forwarded by the Floodlight controller alone.

3.2.4 Compliance with Addressing Standards

FlowVisor and VeRTIGO do not change the traffic in the network. They merely

slice the available header space so that the different tenants are handled by different

tenant controllers. OVX, however, works by rewriting IP headers to make the full IP

header space available to each tenant [57].

The purpose of this experiment is to observe how the network hypervisor changes

IP and MAC headers as they enter the network. The traffic flowing through internal

links of the network is captured in the Mininet topology described in Section 3.1.1

48

(illustrated in Figure 14). Then the captured frames are analyzed while bearing in

mind compliance with IP and MAC addressing standards and reserved ranges of

addresses, as specified by:

• IANA IP multicast [29] and MAC address allocation [28];

• IETF address allocation for private networks [53];

• IEEE bridge control protocols, such as the spanning-tree protocol (STP) or

generic attribute registration protocol (GARP) [25];

• Other general addresses already assigned to vendors or reserved for specific

purposes. Wireshark maintains an updated database of Ethernet vendor codes

and well-known MAC addresses [64].

For instance, the address range 01:00:0C:xx:xx:xx is used by several of Cisco’s

proprietary protocols [64]. The easiest method to verify if a specific MAC address is

taken is to consult Wireshark’s database [64].

IPv4 address compliance means that the IP addresses generated by the network

hypervisor are valid and within the ranges assigned to private networks. For instance,

1.0.0.1 is a public IP address assigned to an organization in Asia [63], and 224.0.0.5

belongs to the IP multicast range reserved by IANA and is specifically used for

exchange of OSPF messages [53]. Neither of these addresses should be used by

network hypervisors when rewriting unicast IP headers, as they could cause many

problems if there is ever a need to interoperate with other IP networks. Private IP

packets could leak to the Internet and travel all the way to Asia, or they could be

interpreted as IP multicast addresses and flooded.

The test_packets.py tool is used to generate the required frames for address

compliance checks:

49

1. Ensure that hosts A1 and A2 from the same virtual network can communicate;

2. Send IPv4 packets from A1 to A2 and capture the traffic in the link between

SW1 and SW2;

3. Send ARP packets from A1 to A2 and capture the traffic in the link between

SW1 and SW2;

4. Send IPv4 multicast packets from A1 and capture the traffic in the link between

SW1 and SW2;

5. Send frames with reserved MAC multicast frames from A1 and capture the

traffic in the link between SW1 and SW2;

6. Execute the previous steps for FlowVisor, VeRTIGO, and OpenVirteX.

FlowVisor and VeRTIGO should not affect the IP and MAC headers in any way,

because they do not work by modifying packets. Layer 2 and Layer 3 traffic rewritten

by OVX should comply with the addressing standards discussed in this section.

3.3 Performance Experiments

Flow setup time is already recognized as one of OpenFlow’s (and SDN) disad-

vantages of having a centralized controller taking care of forwarding decisions [62].

Additionally, it is important to confirm that the virtualization techniques employed

by network hypervisors do not affect network throughput significantly. For instance,

Al-Shabibi et al. [57] claim that OVX introduces a negligible drop in performance due

to the header rewriting technique. The experiments described in this section intend

to measure:

• The flow setup time overhead introduced by the virtualization element in the

network;

50

Figure 21. Round trip time of the first ping with network hypervisor.

• Decreased data throughput caused by traffic isolation techniques, such as rewrit-

ing of packet headers.

3.3.1 Flow Setup Time

The objective of this experiment is to compare the latency of pure Floodlight

established flow rules versus the latency with the added network hypervisor between

Floodlight and the OpenFlow switch. This experiment is conducted in the physical

topology described in Section 3.1.2 and illustrated in Figure 15. The ARP entries on

all hosts were manually added to their tables to avoid additional variance introduced

by the address resolution phase.

The procedure consists of measuring the round trip time (RTT) of a ping between

two hosts. As depicted in Figure 21, when the switch has no rules for the traffic

51

between hosts A and B, the Internet control message protocol (ICMP) echo request

and reply messages must be processed by the controller. By comparing the RTT of

the first ping with subsequent RTTs, it is possible to determine how much time the

network hypervisor and the tenant controller add to the whole RTT Equation 3.3.

RTTfirstping = tprocessing + ttransmission + tqueuing + tpropagation (3.3)

The propagation, queuing and transmission delays are negligible in this small

network, which is tested without any significant load. Therefore, the time it takes

for the flow to be setup bidirectionally depends almost exclusively on the processing

time added by the network hypervisor proxy and the Floodlight controller, as seen in

Equation 3.4:

RTTfirstping ≈ tprocessingproxy + tprocessingfloodlight (3.4)

A script was written to perform the following steps to implement the flow setup

time test:

1. Start a ping with count 1 from host A to B and record its RTT;

2. Start a ping with count 3 from host A to B and record the average RTT;

3. Record the results in a comma separated values (CSV) file;

4. Sleep for enough time so that the flows in the switch expire. Floodlight’s flow

rules are configured to expire after spending 5 seconds unused. Sleeping for 8

seconds gives enough time to let the flow rules expire;

5. Repeat the previous steps 50 times.

The RTT recorded in step 1 represents the bidirectional flow setup time from the

network user’s perspective, and the average RTT recorded in step 2 represents the

52

network’s actual latency after the flow rules are installed and the network ready to be

used. The script used for this test can be found in the Appendix.

3.3.2 Throughput

Throughput loss may be introduced by the traffic isolation techniques used in

network virtualization, such as VLAN tagging or rewriting of packet headers. The

objective of this experiment is to determine how much throughput is lost due to

network virtualization.

This experiment is conducted twice with two different hardware switches: Once

in the scenario depicted in Figure 15 and once in the GENI testbed illustrated in

Figure 16. Hardware switches are used to evaluate throughput, as they are expected

to install flow rules in hardware flow tables and forward traffic at line rate. Since

this experiment depends on hardware capabilities offered by vendors, two different

testbeds are used to confirm experimental results.

One way of doing this is to determine the maximum throughput between two hosts

with the iperf tool for each case. Scripts are used to do the following:

1. Using the physical test scenario (Figure 15) start a ping with a low count from

hosts A to B to get the flows installed by Floodlight in the switch;

2. Immediately start an iperf TCP test through the same path;

3. Record the results in a CSV file;

4. Sleep for enough time so that the flows in the switch expire. Floodlight’s flow

rules are configured to expire after spending 5 seconds unused. Sleeping for 8

seconds gives enough time to let the flow rules expire;

5. Repeat the previous steps 30 times;

53

6. Repeat steps 1-5 using hosts C and D to measure throughput achieved by flows

installed by FlowVisor and Floodlight;

7. Repeat steps 1-5 using hosts C and D to measure throughput achieved by flows

installed by VeRTIGO and Floodlight;

8. Repeat steps 1-5 using hosts C and D to measure throughput achieved by flows

installed by OVX and Floodlight;

9. Repeat all the steps using the GENI testbed (Figure 16), using hosts 1 and 3 to

measure throughput for all cases.

The effect of the network virtualization layer on throughput is expected to be

negligible. The throughput achieved with the use of network hypervisors should

approach the throughput measured when using Floodlight alone.

3.4 Summary

This section described in detail the experimental setups used for evaluation of net-

work hypervisors, as well as some of the tools used to test them. Several experimental

procedures were suggested and detailed. The next chapter will present and analyze

the results of these experiments.

54

Chapter 4

RESULTS AND ANALYSIS

This chapter presents the results that were collected by following the experimental

procedures from the last chapter. Functional test results are presented first in Section

4.1, followed by the performance test results in Section 4.2, and a general analysis of

all the results in Section 4.3.

4.1 Functional Test Results

Functional experimental results are inherently qualitative and consist of determin-

ing whether the result is acceptable or not. This section only attempts to present and

briefly analyze the results. A deeper overall analysis of the results is later presented

in Section 4.3.

The following subsections present results regarding network and topology isolation;

support of autonomous rerouting; transparent traffic forwarding; and compliance with

addressing standards.

Although this section was originally intended to evaluate the three network hy-

pervisors, most of the results in this section concern only FlowVisor and OVX.

Unfortunately, VeRTIGO’s implementation was not complete and stable enough to be

tested by the experimental procedures described in Section 3.2.

55

4.1.1 Network and Topology Isolation

The Floodlight GUI was used to verify that the network hypervisors were exposing

the correct virtual network representations to tenant controllers. Three instances of

the Floodlight tenant controller were spawned in ports 10000, 20000 and 30000 to

control networks A, B, and C respectively.

Figure 22. Network A discovered by Floodlight instance A using FlowVisor as the
network hypervisor.

Figure 22 shows network A from Floodlight’s perspective as presented by FlowVisor,

the network hypervisor. Five switches with DPIDs ranging from 00::01-05 are shown,

which correspond to switches SW1-SW5 in the Mininet topology presented in Section

3.2.1, depicted in Figure 17. All the hosts in this network have MAC addresses

56

Figure 23. Network B discovered by
Floodlight B through FlowVisor.

Figure 24. Network C discovered by
Floodlight C through FlowVisor.

02::01:XX, and these correctly correspond to hosts A1-A5. Analogous results may be

observed in Figures 23 and 24, which contain hosts B1-B5 and hosts C1-C5 respectively.

This shows that FlowVisor works as expected, allowing network isolation by slicing a

single network into three different networks that operate independently.

As observed in Figure 25, the Floodlight instance A “sees” only a single virtual

switch presented by OVX. This virtual switch has DPID 00:a4:05::01 and is only

a representation of the five switches from Figure 14. The same analysis used for

FlowVisor is repeated, comparing which hosts are connected to each network. From

this analysis it is confirmed that hosts with MAC address 02::01:XX appear only in

network A. The same can be confirmed from Figures 26 and 27, where hosts 02::02:XX

appear only in network B and hosts 02::03:XX only in network C. Therefore, OVX

also works as expected and allows network isolation by virtualizing a single network

into three abstract instances that operate independently.

Network isolation was also verified from the network hosts perspective. Using

Mininet’s pingall utility for all hosts shows that hosts A1-A5 cannot reach hosts B1-B5

57

Figure 25. Network A discovered by Floodlight instance A using OVX as the network
hypervisor.

Figure 26. Network B discovered by
Floodlight B through OVX.

Figure 27. Network C discovered by
Floodlight C through OVX.

58

nor C1-C5. Table 1 shows this reachability in matrix form. For instance, row B3

intersection with column C1 has an “N”, indicating that B3 cannot reach C1. Row

C5 intersection with column C1 has a “Y”, which means that C5 can reach C1. Both

OVX and FlowVisor network hypervisors produced correct connectivity results.

Table 1. Host connectivity as observed by tenant hosts in Mininet

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5
A1 – Y Y Y Y N N N N N N N N N N
A2 Y – Y Y Y N N N N N N N N N N
A3 Y Y – Y Y N N N N N N N N N N
A4 Y Y Y – Y N N N N N N N N N N
A5 Y Y Y Y – N N N N N N N N N N
B1 N N N N N – Y Y Y Y N N N N N
B2 N N N N N Y – Y Y Y N N N N N
B3 N N N N N Y Y – Y Y N N N N N
B4 N N N N N Y Y Y – Y N N N N N
B5 N N N N N Y Y Y Y – N N N N N
C1 N N N N N N N N N N – Y Y Y Y
C2 N N N N N N N N N N Y – Y Y Y
C3 N N N N N N N N N N Y Y – Y Y
C4 N N N N N N N N N N Y Y Y – Y
C5 N N N N N N N N N N Y Y Y Y –

VeRTIGO could not be evaluated because of stability issues. While bringing up the

Mininet topology, VeRTIGO would restart the connection with Floodlight indefinitely.

The problem seems to be a bug in VeRTIGO, which is very likely to be related to the

encapsulation of LLDP packets from the Open vSwitches. It was not possible to solve

this issue with configuration alone.

59

4.1.2 Autonomous Rerouting

During topology configuration, OVX presents information about the virtual

switches and ports that map to the physical topology. It is essential to under-

stand what OVX does during network configuration phase, in order to verify that the

autonomous rerouting results are correct.

During network A configuration, OVX logs show that it creates a big-switch X,

corresponding to the switch shown in Figure 25, a representation of the network shown

in Figure 14. Then it creates virtual ports 1 and 2 in switch X and connects hosts

A1 and A2 to them. This is shown in the following section of edited log output from

OVX:

Set routing algorithm spf for big-switch X in virtual network A

Created virtual port 1 on virtual switch X in virtual network A

Connected host A1 to virtual port 1 on virtual switch X

Created virtual port 2 on virtual switch X in virtual network A

Connected host A2 to virtual port 2 on virtual switch X

OVX then proceeds to calculate direct routes. This is observed in the following

section of edited log output, where the direct route between hosts A1 and A2 is

configured bidirectionally through the link between SW1 and SW2:

Add route for big-switch X between virtual ports (1,2) with

priority: 64

path: [SW1 port 5 <-> SW2 port 5]

Add route for big-switch X between virtual ports (2,1) with

priority: 64

60

path: [SW2 port 5 <-> SW1 port 5]

And then backup routes are calculated, as observed in the following output which

adds a secondary route with lower priority between hosts A1 and A2 that goes through

the path SW1-SW3-SW4-SW2 bidirectionally:

Add backup route for big-switch X between ports (1,2) with

priority: 63

path: [SW1 port 4 <-> SW3 port 4, SW3 port 5 <-> SW4 port 5,

SW4 port 4 <-> SW2 port 4]

Add backup route for big-switch X between ports (2,1) with

priority: 63

path: [SW2 port 4 <-> SW4 port 4, SW4 port 5 <-> SW3 port 5,

SW3 port 4 <-> SW1 port 4]

Based on the log output, link failure between SW1 and SW2 is expected to cause

traffic to be automatically rerouted through SW1-SW3-SW4-SW2 as depicted in

Figure 19, in Section 3.2.2. The link failure causes connectivity between hosts A1 and

A2 to go down and a new route is apparently established by OVX, as observed in the

edited logs below:

Try recovery for virtual network A big-switch X between ports(1,2)

in virtual network A switching all existing flow-mods crossing

the big-switch X route 1 between ports (1,2) to the new path:

[SW1/4 <-> SW3/4, SW3/5 <-> SW4/5, SW4/4 <-> SW2/4]

Try recovery for virtual network A big-switch X between ports(2,1)

in virtual network A switching all existing flow-mods crossing

the big-switch X route 1 between ports (2,1) to the new path:

61

[SW2/4 <-> SW4/4, SW4/5 <-> SW3/5, SW3/4 <-> SW1/4]

virtual network A, switch X, route 1 between ports 1-2:

flow-mod switched to the new path

virtual network A, switch X, route 1 between ports 2-1:

flow-mod switched to the new path

Removing physical link between SW2/5 and SW1/5

Removing physical link between SW1/5 and SW2/5

However, when the link between SW1 and SW2 is deactivated, connectivity is

not recovered and the experiment fails. The dpctl dump-flows command executed in

Mininet reveals that one of the old flow rules using the link between SW1 and SW2

was not flushed from SW1’s flow table:

mininet> dpctl dump-flows

*** SW1 ---

[...],in_port=1,dl_src=02:00:00:00:01:01,dl_dst=02:00:00:00:01:02,

nw_src=10.0.0.1,nw_dst=10.0.0.2

actions=mod_nw_dst:1.0.0.2,mod_nw_src:1.0.0.1,

output:5

This rule means that SW1 keeps trying to use the link at port 5, which was

deactivated. The rule never expires by itself from the flow table because host A1 keeps

sending traffic and trying to reach A2. In order to have traffic successfully routed

through the backup route, OVX was expected to flush the flow rules of the original

route and install new ones through the backup route. The only way to work around

this is to stop traffic from A1 to A2, wait until the remaining flow rule expires, and

62

start it again. This allows the new flow to be processed by OVX and use the backup

route.

Therefore, this experiment is considered a failure. Network connectivity should

not be interrupted indefinitely if the hosts continue attempting to use the network. It

is clear that OVX failed to flush the flow tables completely in order to install the new

backup route flow rules.

As mentioned before, autonomous rerouting tests with VeRTIGO were not con-

cluded because of stability issues.

4.1.3 Transparent Traffic Forwarding

Using the test_packets.py tool, many types of traffic were tested to evaluate

whether the virtualization controllers would block specific frames. The summarized

results are shown in Table 2 and classified into six different categories. All the

categories are self explanatory, and more detail about which packets were used for

testing can be found in [51]. Table 2 compares the results of traffic forwarding using a

standard layer 2 switch (L2 column), Open vSwitch (OVS), Floodlight (FL), FlowVisor

(FV) and OpenVirteX (OVX). Note that VeRTIGO results are not shown here because

VeRTIGO’s application would run into exceptions and stop working during tests.

Table 2. Summarized results of traffic forwarded with network virtualization.

Type of traffic L2 OVS FL FV OVX
IPv4 unicast OK OK OK OK OK
IPv6 unicast OK OK OK No No
IPv4 multicast OK OK OK OK OK
L2 multicast Some No Some Some Some
IPv4 w/ VLAN OK OK OK OK OK
IPv4 w/ MPLS OK OK OK OK OK

63

Both OVX and FlowVisor network hypervisors managed to forward everything,

except:

• IPv6 packets;

• Two types of L2 Multicast packets: link layer discovery protocol (LLDP) and

spanning tree protocol (STP).

The Floodlight controller supported IPv6 forwarding, though it had to be configured

with OpenFlow 1.3, which is not supported by FlowVisor and OpenVirteX. However,

Floodlight still cannot forward LLDP and STP frames. This limitation is expected,

as these frames are intercepted by the controller’s application for network discovery

purposes or processed/dropped by the Open vSwitches.

Open vSwitch configured as a traditional layer 2 switch successfully manages to

forward all types of traffic, except L2 multicast packets such as LLDP, STP, link

aggregation protocol (LACP), and Cisco discovery protocol (CDP). These frames use

reserved multicast MAC destination addresses in the ranges 01:80:c2:00:00:xx and

01:00:0c:cc:cc:xx, and should be normally processed by Ethernet bridges. With OVS

configured as a standalone bridge, it is acceptable to have these frames processed or

dropped instead of flooded to the rest of the network.

A standard layer 2 switch – a NETGEAR Fast Ethernet FS108 switch – was also

used as a baseline to compare against the other results. It managed to forward all

types of traffic except a few of the L2 multicast frames:

• Operations, Administration, and Maintenance (OAM), a protocol used to detect

connectivity problems in layer 2 networks;

• LACP;

64

In general, the tested network hypervisors were surprisingly good in forwarding

several types of traffic. The only general problems observed happen with IPv6, LLDP

and STP traffic. IPv6 is not supported by OpenFlow 1.0, which is used by both

OVX and FlowVisor. LLDP and STP are both used as control protocols for Ethernet

networks. Although this limitation is expected because these protocols are meant to be

processed by network hypervisors, this is a potentially serious limitation for customers

who wish to run their own layer 2 control protocols in their virtual networks.

The resulting capture files gathered during this experiment are available in [52] in

the pcapng format, which can be opened by Wireshark [65].

4.1.4 Compliance with Addressing Standards

4.1.4.1 Unicast IPv4 Header Rewriting

Regarding the header rewriting technique used by OVX, the results show that the

network hypervisor replaces IPv4 addresses with addresses in the ranges X.0.0.0/8

for each tenant host, where X is the tenant ID assigned during OVX configuration.

Figure 28 shows a screenshot of a packet capture of an ICMP echo request from host

A1 to A2, and a reply from A2 to A1. By monitoring network traffic at port 5 of

SW2, we can observe that the IP address 10.0.0.1 is rewritten as 1.0.0.1 and the IP

address 10.0.0.2 as 1.0.0.2.

It is interesting to notice that if internal and external IP addresses are the same,

OVX still installs flow rules that rewrite the IP header. For example, when host

C1 (3.0.0.1) is sending ICMP echo requests to host C2 (3.0.0.2), OVX rewrites their

65

Figure 28. IP header rewriting done by OVX.

Figure 29. IP header rewriting done by OVX with same IP addresses.

addresses as 3.0.0.1 and 3.0.0.2 respectively, as shown in Figure 29. This is done

because hosts C1 and C2 belong to tenant ID 3 and their internal IP addresses lie in

the range 3.0.0.0/8. This pointless address rewriting can be confirmed by the following

flow rules installed by OVX in SW1’s flow table:

[...],in_port=3,dl_src=02:00:00:00:03:01,dl_dst=02:00:00:00:03:02,

nw_src=3.0.0.1,nw_dst=3.0.0.2

actions=mod_nw_dst:3.0.0.2,mod_nw_src:3.0.0.1,

output:5

66

[...],in_port=5,dl_src=02:00:00:00:03:02,dl_dst=02:00:00:00:03:01,

nw_src=3.0.0.2,nw_dst=3.0.0.1

actions=mod_nw_src:3.0.0.2,mod_nw_dst:3.0.0.1,

output:3

The repeated address spaces in the internal and external networks managed by

OVX could make troubleshooting much harder in case packets leak from the internal

network, but they actually do not cause any problems in the traffic forwarding

capabilities of the virtual network. However, the internal addressing scheme of OVX

goes against Internet addressing best practices [53] and cannot be used outside of

completely private IPv4 networks. If any traffic leaks from the internal network to

the Internet, it could potentially carry sensitive data all the way to an unknown

destination.

FlowVisor does not have any issues with addressing standards compliance because

it does not modify tenant’s traffic, but rather ensures that each tenant owns a limited

portion of the flow space.

4.1.4.2 ARP and Multicast Header Rewriting

Regarding ARP, IPv4 multicast packets and MAC multicast frames, OVX did not

present any addressing compliance problems to forward these frames across the virtual

network. In fact, OVX did not even forward these packets across the data forwarding

plane of the network. All ARP frames, IPv4 multicast packets (destination address

224.0.0.5 tested) and MAC multicast addresses (destination address 01:00:0c:cc:cc:cc

tested) are always forwarded through the control plane of the network. This is shown

in Figure 30, where each PACKET_IN of type ARP or with multicast destinations is

67

automatically flooded to all switches through OVX by using PACKET_OUT messages.

This means that the header rewriting method employed by OVX does not apply to

these situations.

Figure 30. ARP, IP and MAC multicast flooded by OVX.

Although OVX and FlowVisor do not have any compliance problems with the ARP

and IP/MAC multicast frames tested, the results show that both of them may cause

problems in multicast networks. Every single multicast frame sent to the network is

handled by the network hypervisor alone, without ever forwarding it to the Floodlight

tenant controller.

68

4.2 Performance Test Results

Using the physical topology (Section 3.1.2), performance tests were severely affected

by the switch’s inability to install required FLOW MOD rules in hardware tables.

Due to hardware limitations, the OpenFlow switch could use only software flow tables.

This causes a huge performance impact in test results, especially in throughput tests.

Better results were achieved with the GENI testbed described in Section 3.1.3.

For all the box plots shown in the following sections, outliers (data points repre-

sented by circles) were discarded when computing statistics. Outliers are defined as

data points that fall outside the boundaries defined by Equations 4.1 and 4.2 for each

data set. Q1 represents the first quartile, Q3 represents the third quartile, and IQR

represents the inter quartile range of each data set.

Lower boundary = Q1 − 1.5× IQR (4.1)

Upper boundary = Q3 + 1.5× IQR (4.2)

4.2.1 Flow Setup Time

Latency tests were only possible for FlowVisor and OVX. VeRTIGO caused the

first packets of a flow to be dropped during flow installation. Therefore the ping test

could not measure flow setup time for VeRTIGO.

This experiment was conducted in the physical topology described in Section 3.1.2,

and verified flow setup time cases for:

• Floodlight;

69

• FlowVisor and Floodlight;

• No controller, using the switch in traditional layer 2 forwarding mode;

• OVX and Floodlight.

Floodlight FlowVisor None OVX

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Controller used

F
lo

w
 S

e
tu

p
 T

im
e

 i
n

 m
s

Outliers−>

Outliers−>

Figure 31. Round trip time of first ping.

As shown in Figure 31, flow setup time with Floodlight alone was on average under

20ms, while FlowVisor flow setup time floated around 20-40ms and OVX flow setup

time around 40-50ms. The variance of the flow setup time was higher in OVX case,

and this result is probably due to the fact that OVX relies on complex flow rules to

rewrite traffic as it enters or exits the network. A standalone layer 2 switch yielded, on

70

Floodlight FlowVisor None OVX

0
.2

0
.4

0
.6

0
.8

1
.0

Controller used

A
ve

ra
g

e
 R

T
T

 i
n

 m
s

<−Outliers

<−Outliers

Figure 32. Average round trip time of subsequent pings.

average, 0.08ms of flow setup time. This is represented by the “None” controller. These

results were according to expectations: the flow setup time is much higher when using

network hypervisors between the network and the tenant controllers, and software

defined networks show a significant overhead in flow setup time when compared with

traditional networks.

Figure 32 shows that the average RTT of pings initiated after flow setup does not

depend on the controller at all. This is expected after the flows are installed, as the

controller no longer has any effect on the latency between hosts. Furthermore, it is in

this plot that the difference between the software and hardware forwarding modes

can be observed. The standalone forwarding mode of the switch (Controller = None)

71

FlowVisor+Floodlight OVX+FloodLight Vertigo+FloodLight

6
1

0
0

0
0

6
1

5
0

0
0

6
2

0
0

0
0

6
2

5
0

0
0

Controller used

T
h

ro
u

g
h

p
u

t
in

 b
p

s

Outliers−>

Figure 33. Throughput measured with different controllers, in bits per second.

takes advantage of hardware line rate forwarding, which results in approximately 10

times faster RTTs and a much lower variance.

4.2.2 Throughput

The throughput test is based on iperf in TCP mode. TCP is a best-effort protocol

and the throughput achieved depends on network latency, frame size, packet loss,

inter-frame gap, and other network conditions [10]. The expected throughput in a low

latency local area network should be within the 90-100% range of the auto-negotiated

72

link capacity of 100Mbps. However, test results were affected by the poor performance

of the HP-3500yl-24G switch, and measured throughput was less than 1 Mbps.

The results of the experiments conducted in the physical topology are summarized

in Figure 33. The bandwidth with FlowVisor averages to ≈617.9kbps, with OVX

≈618.6kbps and VeRTIGO ≈620.0kbps. However, the variance in all the results is

quite large, and statistically there is no significant difference in the resulting bandwidth

measured between two hosts when changing to different network hypervisors. This

result was expected, since the bottleneck of this experiment was the switch processor.

High switch CPU load during the experiment is the most likely reason to have an

outlier data point on the “FlowVisor + Floodlight” data set. Simple tasks during the

experiment, such as opening a telnet session to the switch, could affect throughput,

because they require the CPU to stop handling traffic temporarily.

Additional research and tests confirmed that the performance limit was imposed

by the HP-3500yl-24G limited hardware [41]. Browsing the flow tables of the switch

also revealed that even the most simple flow rules were not handled by the forwarding

hardware, but by its CPU:

HP-3500yl-24G# show openflow instance ovx flows

<output omitted for clarity>

Flow Location : Software

Hardware Index: NA

Reason Code : 2

Reason Description : The rule has a match criterion for MAC address

<output omitted for clarity>

The “Flow Location” field indicates that the flow rule is handled by software, and

the reason for handling in software is “The rule has a match criterion for MAC address”.

73

Floodlight only FlowVisor+Floodlight Vertigo+FloodLight

9
.4

0
e

+
0

7
9

.8
0

e
+

0
7

1
.0

2
e

+
0

8

Controller used

T
h

ro
u

g
h

p
u

t
in

 b
p

s

Outlier−>

Outlier−>

Figure 34. Throughput results in GENI testbed, in bits per second

This means that the HP-3500yl-24G switch cannot even handle the most basic flow

rules in hardware.

The throughput tests were repeated using a GENI hardware switch and the results

were much more satisfactory. Figures 34 and 35 show the results. While Floodlight,

FlowVisor and VeRTIGO managed to install flows that yielded nearly 100Mbps

throughput in iperf TCP tests between hosts, OpenVirteX traffic throughput averaged

to approximately 339kbps. Again, TCP is a best-effort protocol and tries to use as

much bandwidth as it can. Throughput for this experiment should also stay between

90-100% of link capacity (100Mbps).

74

0
e

+
0

0
1

e
+

0
5

2
e

+
0

5
3

e
+

0
5

4
e

+
0

5

OpenVirteX controller

T
h

ro
u

g
h

p
u

t
in

 b
p

s

Outliers−>

Outliers−>

Figure 35. Throughput results in GENI testbed, for OVX, in bits per second

Figure 34 also shows two outlier data points. The first outlier is in the “Floodlight

only” column, a data point which exceeds the link capacity of 100Mbps. This value is

not realistic, and the reason for the anomaly is unknown. The second outlier occurred

with “FlowVisor+Floodlight”, and it shows that one measurement was significantly

lower than the rest. This could mean several different things, such as temporary CPU

overload in the computer running iperf, or temporary packet loss could have triggered

TCP’s congestion control mechanism. Fortunately, the outliers were few in number,

and the results are still considered valid.

GENI switches cannot be logged into to confirm the reason for such a low through-

put with OVX, but most likely the relatively complex header rewriting flow rules

75

required by OVX cannot be handled by this switch’s hardware. The outlier data

points in Figure 34 also indicate that the switch was overwhelmed by the TCP flow

while processing packets with its slow CPU.

4.3 Results Summary and Analysis

Two out of the three network virtualization applications were successfully eval-

uated by the experiments proposed here. Both FlowVisor and OVX lived up to

the expectations and, for most of the experiments, worked well according to their

documentation. Most of the experiments with VeRTIGO could not be completed

due to limited documentation and interoperability issues with OVS and Floodlight.

VeRTIGO presented several limitations and was usable only for very simple tests with

the hardware switch. Attempts to use virtual links to allow different virtual topologies

caused exceptions in Floodlight when exchanging messages with VeRTIGO.

Regarding network and topology isolation, FlowVisor implements a simpler flavor

of network virtualization when compared to OVX. On one hand, FlowVisor allows the

slices to be split based on very flexible constraints, such as a whole switch, physical

ports, MAC addresses or TCP/UDP port numbers. On the other hand, OVX does

not allow any traffic in the network without explicitly “connecting” a host to one of

its virtual networks by supplying a MAC address and Virtual Port. This means that

the administrator of the network – or the application controlling it – needs to know

in advance all of the MAC addresses that are going to be connected to the network.

FlowVisor does not care whether the network traffic uses IP or not, as long as

the network controller is able to handle network traffic exposed through FlowVisor’s

slicing mechanism. OVX, based on its current operation mechanism, assumes that

76

the networks under control will operate with IPv4. Both network virtualization tools,

however, are limited by the OpenFlow capabilities that they support. For instance,

currently FlowVisor and OVX do not support IPv6 because they can only handle

OpenFlow 1.0, while most of the IPv6 implementations are only offered by versions

1.2 and 1.3 [40]. This is made evident by the experimental results presented in Section

4.1.3.

Both VeRTIGO and OVX claimed to have support for autonomous rerouting in

case of link failure. VeRTIGO was not verifiable due to compatibility issues. OVX

autonomous rerouting feature worked, but still cannot guarantee autonomous recovery

if the client host does not let flow rules expire before trying to send traffic again. It

is not possible to measure the network recovery time, because the rerouting feature

depends on network usage.

On the subject of addressing standards, FlowVisor’s transparent mode of operation

makes sure that it is prepared to handle almost any kind of addressing, as long as it is

supported by OpenFlow and the controlling application. OVX, however, relies almost

exclusively on rewriting of the IPv4 header to provide network isolation features.

While it works very well in the networks tested here, this method could be a problem

in an IPv6 network, because headers would have to be rewritten from IPv6 to IPv4 and

vice versa. This could lead to many compatibility problems. Another negative aspect

of assigning arbitrary networks for header rewriting is that the isolated traffic could

cause problems if leaked to the Internet. For instance, OVX uses internal networks

such as 1.0.0.0/8 and 2.0.0.0/8 for isolation, but these are valid public IP ranges and

should never be used in private networks.

Interestingly, the experiment intended to verify compliance to addressing standards

was useful to find some serious limitations in the network virtualization layer proposed

77

by both FlowVisor and OVX. Experiments with ARP and multicast frames revealed

that the network hypervisors under test handled these frames by always forwarding

them through the control plane, instead of installing flow rules to deal with this kind of

traffic. This could become a major bottleneck in multicast intensive networks, as every

ARP or IP/MAC multicast frame has to be processed by the controller before being

sent out to the network. Additionally, the virtualization layer imposed by the network

hypervisors does not forward these frames to tenant controllers. Instead, network

hypervisors process these frames locally, leaving the tenant controllers unaware that

there ever was a multicast frame travelling across the network. This means that the

tenant controller is limited by the virtualization layer, even if it is programmed to

support multicast.

Concerning flow setup time, tests show that the introduction of network hypervisors

increases this time considerably, as it is expected when adding additional processing

stages to setup and install new flows. The incorporation of extra network virtualization

controller layers merely highlights an already existing concern of SDN. Flow setup

time is already recognized as one of OpenFlow’s (and SDN) disadvantages of having a

centralized controller taking care of forwarding decisions [62]. Traditional distributed

layer 2 networks have a very low flow setup time, frequently a few milliseconds or

even less than one millisecond. This is a particularly important aspect for networks

that require quick recovery from failure.

Throughput tests revealed that network virtualization proxy controllers may

decrease throughput significantly if the installed flows are not supported by the

device’s hardware. In the experiments carried out in the local physical laboratory,

none of the network applications was supported by the OpenFlow hardware, and all

controllers performed poorly due to limitations of the OpenFlow switch. However,

78

results of experiments using a GENI hardware switch show that only OpenVirteX

virtualization caused a significant performance impact in throughput. Although the

reason for OpenVirteX throughput limitation could not be confirmed, this problem is

most likely related to complex header rewriting flows that OpenVirteX requires.

79

Chapter 5

CONCLUSION

This work has presented a literature review of traditional and SDN based network

virtualization technologies. It also presented experiments with some of the latest SDN

based options available to the public. Traditional technologies such as those based on

the use of VLANs, MPLS and VxLAN have years of development and standardization

which translate into relatively stable solutions. They are still useful to solve most of

the virtualization challenges required by Internet service providers (ISPs) and data

centers. SDN, however, brings more flexibility to the virtualization problem.

FlowVisor allows the network administrator to slice the network using many

different matching rules, allowing multiple different applications to share the same

network. This kind of flexibility is hard to achieve in traditional networks. For

instance, once a host is connected to a port using a VLAN, there are not many ways

to give different treatment to all the traffic that is tagged with the same VLAN ID.

With FlowVisor, different treatment could be easily given to different TCP or UDP

application ports. OVX provides a virtualization service similar to what could be

achieved with a MPLS based VPN. All hosts belonging to the same tenant are assigned

to a single virtual network, and OVX calculates the best routes within the network to

interconnect these hosts, as if the whole network was a big switch. This solution is

similar to a VPLS VPN service, offered by MPLS networks. From the tenant’s point

of view the network appears to be a single big switch. The advantage of OVX is that

the configuration and management of the network is completely centralized, whereas

in a traditional network each switch would have to be configured separately.

80

Based on the observations made throughout this work, FlowVisor is best suited

to handle different applications within the same network. It can be used as a means

of virtualizing a network to allow different customers to share layer 2 forwarding

resources, providing isolation between slices. However, its true potential is to provide

each slice with a different application. This means that a set of OpenFlow switches

could potentially be used to provide a layer 2 based forwarding solution to one

customer while providing IP routing to another customer. On the other hand, OVX

is mostly focused on network isolation. It is very well suited to be used in data center

networks, as its virtualization mechanism relies on the information about port and

MAC addresses to determine to which network a host belongs. Although OVX by itself

requires manual configuration of all the hosts of the network, there are development

efforts which aim to integrate OVX with OpenStack, enabling the provisioning of

virtual machines along with the provisioning of virtual networks with OVX through

the neutron plug-in. This is essentially the infrastructure as a service (IaaS) concept

[44].

Even though the SDN approach is flexible, it still has some disadvantages. As seen

in the performance test results, flow setup time is already high in SDN networks and

further increased when the network virtualization proxy controller is introduced. The

open source solutions available and tested here are in the early stages of development

and may suffer from bugs and interoperability issues, as was observed in experiments

with VeRTIGO or the OVX autonomous rerouting feature. Another negative aspect

of SDN is that the virtualization methods are not standardized at all. For instance,

if there is ever a need to interconnect two networks from different providers using

different virtualization controllers (e.g. FlowVisor and OVX), special care would have

81

to be taken when handling traffic at the edges of the network to ensure that networks

would remain isolated properly.

When faced with processing and transparent forwarding of special types of traffic,

both FlowVisor and OVX presented serious limitations. None of these network

hypervisors is able to forward IPv6. Some of the layer 2 control protocols are blocked

by the network virtualization layer, and multicast applications have to rely on CPU

intensive control plane forwarding. By restricting the types of traffic that tenants

can use in the network, the currently available SDN-based virtualization techniques

discourage migration of existing applications to the new paradigm of SDN.

The creative approach of OVX to use IP header rewriting to provide network

virtualization works surprisingly well in experimental environments. However, the

indiscriminate use of arbitrary IP addresses to implement network virtualization is

questionable. Rewriting IP headers makes the network troubleshooting process more

complex, and the risks involved with the use of valid public IP addresses to implement

virtualization may not be worth the cost of potential leaks of sensitive data to the

Internet.

5.1 Future Work

5.1.1 Development of Network Hypervisors

The OpenVirteX approach to network virtualization is promising. If OVX could

support MPLS through OpenFlow version ≥ 1.2, the software could be adapted to

provide different services, such as MPLS based VPNs. This would contribute towards

employing SDN in a service provider use case, instead of only using it in data centers.

82

In addition, this would eliminate all the problems related to using the header rewriting

method for virtualization.

Additionally, OVX deployed by itself requires the administrator to program all the

hosts (MAC addresses and ports) in order to configure the virtual networks. This could

quickly become a cumbersome task even in small networks. According to De Leenheer

[13], it should be straightforward to add host discovery capabilities to OVX. However,

even if OVX could dynamically learn and add new hosts to the network, how would it

decide to which network each host belongs? This is an interesting research area to be

further explored.

5.1.2 IPv6 Support

Current SDN related research gives a surprising amount of focus to IPv4 and

solving problems that would not exist with IPv6, such as making the full header

space available to tenants. With IPv6, addresses would not need to be reused and

network header space limits should no longer be a concern. IPv6 is already widely

supported and stable in most operating systems. As OpenFlow 1.3 becomes popular

and more widely available in network devices, there is a clear opportunity for research

on support for IPv6 in network hypervisors.

5.1.3 Improved Experiments

The performance experimental results done in this work were partially inconclusive.

It would be interesting to experiment with network virtualization in bigger physical

networks with more OpenFlow switches that support flows in hardware. Using the

83

GENI [21] infrastructure to repeat all of the experiments could be a next step to

improve the quality and reproducibility of the experiments presented in this work.

Additionally, more standardized tools could be used to measure and compare the

network hypervisor’s performance impact. Although, the ping based flow setup time

experiment used in this work is useful in representing a “real user” point of view of

controller performance, the flow setup time could have been tested with cbench, a tool

that is better suited to produce comparable experimental results and benchmarking

of OpenFlow controllers [58].

84

REFERENCES

[1] A. Al-Shabibi et al. (Aug. 2013). Flowvisor @ github.com, [Online]. Available:
https://github.com/opennetworkinglab/flowvisor (visited on 11/25/2015).

[2] ——, (May 2014). Openvirtex installation @ ovx.onlab.us, [Online]. Available:
http://ovx.onlab.us/getting-started/installation/ (visited on 11/25/2015).

[3] ——, (May 2014). OpenVirteX Repository, [Online]. Available: https://github.
com/OPENNETWORKINGLAB/OpenVirteX.git (visited on 03/23/2016).

[4] “LDP specification,” Tech. Rep., Oct. 2007. doi: 10.17487/rfc5036. [Online].
Available: https://tools.ietf.org/html/rfc5036.

[5] “Framework for Layer 2 Virtual Private Networks (L2VPNs),” Tech. Rep., Sep.
2006. doi: 10.17487/rfc4664. [Online]. Available: https://tools.ietf.org/html/
rfc4664.

[6] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP-
TE: Extensions to RSVP for LSP tunnels,” Tech. Rep., Dec. 2001. doi: 10.
17487/rfc3209. [Online]. Available: https://tools.ietf.org/html/rfc3209.

[7] A. N. Bhagat. (n.d.). Understanding PBB, [Online]. Available: https://sites.
google.com/site/amitsciscozone/home/pbb/understanding-pbb (visited on
03/11/2016).

[8] D. Bombal. (n.d.). Datapath IDs, [Online]. Available: http : / /pakiti . com/
datapath-ids/ (visited on 04/01/2016).

[9] Z. Bozakov and P. Papadimitriou, “Autoslice: Automated and scalable slicing
for software-defined networks,” in Proceedings of the 2012 ACM Conference on
CoNEXT Student Workshop, ser. CoNEXT Student ’12, Nice, France: ACM,
2012, pp. 3–4. doi: 10.1145/2413247.2413251. [Online]. Available: http://doi.
acm.org/10.1145/2413247.2413251.

[10] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Intercon-
nect Devices,” Tech. Rep., Mar. 1999. doi: 10.17487/rfc2544. [Online]. Available:
https://www.ietf.org/rfc/rfc2544.txt.

[11] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,”
Computer Networks, vol. 54, no. 5, pp. 862–876, 2010. doi: http://dx.doi.org/
10.1016/j.comnet.2009.10.017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389128609003387.

85

https://github.com/opennetworkinglab/flowvisor
http://ovx.onlab.us/getting-started/installation/
https://github.com/OPENNETWORKINGLAB/OpenVirteX.git
https://github.com/OPENNETWORKINGLAB/OpenVirteX.git
http://dx.doi.org/10.17487/rfc5036
https://tools.ietf.org/html/rfc5036
http://dx.doi.org/10.17487/rfc4664
https://tools.ietf.org/html/rfc4664
https://tools.ietf.org/html/rfc4664
http://dx.doi.org/10.17487/rfc3209
http://dx.doi.org/10.17487/rfc3209
https://tools.ietf.org/html/rfc3209
https://sites.google.com/site/amitsciscozone/home/pbb/understanding-pbb
https://sites.google.com/site/amitsciscozone/home/pbb/understanding-pbb
http://pakiti.com/datapath-ids/
http://pakiti.com/datapath-ids/
http://dx.doi.org/10.1145/2413247.2413251
http://doi.acm.org/10.1145/2413247.2413251
http://doi.acm.org/10.1145/2413247.2413251
http://dx.doi.org/10.17487/rfc2544
https://www.ietf.org/rfc/rfc2544.txt
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://www.sciencedirect.com/science/article/pii/S1389128609003387
http://www.sciencedirect.com/science/article/pii/S1389128609003387

[12] R. D. Corin and M. Gerola. (Nov. 2013). Vertigo @ github.com, [Online].
Available: https://github.com/fp7-ofelia/VeRTIGO (visited on 11/25/2015).

[13] M. De Leenheer. (Dec. 2015). Openvirtex discussion forum - can ovx discover
the hosts information? [Online]. Available: https://goo.gl/hL8yTe (visited on
03/11/2016).

[14] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”
Tech. Rep., Dec. 1998. doi: 10.17487/rfc2460. [Online]. Available: https://tools.
ietf.org/html/rfc2460.

[15] R. Doriguzzi Corin, M. Gerola, R. Riggio, F. De Pellegrini, and E. Salvadori,
“Vertigo: Network virtualization and beyond,” in Software Defined Networking
(EWSDN), 2012 European Workshop on, Oct. 2012, pp. 24–29. doi: 10.1109/
EWSDN.2012.19.

[16] D. Drutskoy, E. Keller, and J. Rexford, “Scalable Network Virtualization in
Software-Defined Networks,” Internet Computing, IEEE, vol. 17, no. 2, pp. 20–
27, Mar. 2013. doi: 10.1109/MIC.2012.144.

[17] D. Erickson, “The Beacon OpenFlow Controller,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’13, Hong Kong, China: ACM, 2013, pp. 13–18. doi: 10.1145/2491185.
2491189. [Online]. Available: http://doi.acm.org/10.1145/2491185.2491189.

[18] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing
Encapsulation (GRE),” Tech. Rep., Mar. 2000. doi: 10.17487/rfc2784. [Online].
Available: https://tools.ietf.org/html/rfc2784.

[19] Floodlight. (n.d.). Floodlight project, [Online]. Available: http://www.projectfl
oodlight.org/ (visited on 03/23/2016).

[20] ——, (n.d.). Floodlight repository, [Online]. Available: https://github.com/
floodlight (visited on 03/23/2016).

[21] GENI. (n.d.). Global Environment for Network Innovations (GENI), [Online].
Available: http://www.geni.net/ (visited on 03/23/2016).

[22] R. R. Hain. (Mar. 2015). Intro to openflow tutorial (hardware switch), [Online].
Available: http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/
OpenFlowHW/DesignSetup (visited on 03/24/2016).

86

https://github.com/fp7-ofelia/VeRTIGO
https://goo.gl/hL8yTe
http://dx.doi.org/10.17487/rfc2460
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2460
http://dx.doi.org/10.1109/EWSDN.2012.19
http://dx.doi.org/10.1109/EWSDN.2012.19
http://dx.doi.org/10.1109/MIC.2012.144
http://dx.doi.org/10.1145/2491185.2491189
http://dx.doi.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2491185.2491189
http://dx.doi.org/10.17487/rfc2784
https://tools.ietf.org/html/rfc2784
http://www.projectfloodlight.org/
http://www.projectfloodlight.org/
https://github.com/floodlight
https://github.com/floodlight
http://www.geni.net/
http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowHW/DesignSetup
http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowHW/DesignSetup

[23] “IEEE Standard for Ethernet,” IEEE Std 802.3-2012 (Revision to IEEE Std
802.3-2008), pp. 1–3747, Dec. 2012. doi: 10.1109/IEEESTD.2012.6419735.

[24] “IEEE Standard for Local and Metropolitan Area Networks – Bridges and
Bridged Networks,” IEEE Std 802.1Q-2014 (Revision of IEEE Std 802.1Q-
2011), Dec. 2014. doi: 10.1109/IEEESTD.2014.6991462.

[25] “IEEE Standard for Local and metropolitan area networks: Media Access Control
(MAC) Bridges,” IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998),
pp. 1–277, Jun. 2004. doi: 10.1109/IEEESTD.2004.94569.

[26] “IEEE Standard for Local and Metropolitan Area Networks – Virtual Bridged
Local Area Networks, Amendment 4: Provider Bridges,” IEEE Std 802.1ad-2005
(Amendment to IEEE Std 8021Q-2005), 2006. doi: 10.1109/IEEESTD.2006.
216360.

[27] “IEEE Standard for Local and Metropolitan Area Networks – Virtual Bridged
Local Area Networks Amendment 7: Provider Backbone Bridges,” IEEE Std
802.1ah-2008 (Amendment to IEEE Std 802.1Q-2005), Aug. 2008. doi: 10.1109/
IEEESTD.2008.4602826.

[28] Internet Assigned Numbers Authority. (Mar. 2015). Ethernet Numbers As-
signment, [Online]. Available: http://www.iana.org/assignments/ethernet-
numbers/ethernet-numbers.xhtml (visited on 04/02/2016).

[29] ——, (Mar. 2016). IPv4 Multicast Address Space Registry, [Online]. Available:
http://www.iana.org/assignments/multicast-addresses/multicast-addresses.
xhtml (visited on 04/02/2016).

[30] A. A. Jaha, F. B. Shatwan, and M. Ashibani, “Proper Virtual Private Network
(VPN) Solution,” in 2008 The Second International Conference on Next Gener-
ation Mobile Applications, Services, and Technologies, Institute of Electrical &
Electronics Engineers (IEEE), 2008. doi: 10.1109/ngmast.2008.18.

[31] Juniper. (May 2014). Understanding Q-in-Q Tunneling and VLAN Translation,
[Online]. Available: http://www.juniper.net/documentation/en_US/junos13.2/
topics/concept/qinq-tunneling-qfx-series.html (visited on 02/14/2016).

[32] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” Tech.
Rep., Dec. 2005. doi: 10.17487/rfc4301. [Online]. Available: https://tools.ietf.
org/html/rfc4301.

87

http://dx.doi.org/10.1109/IEEESTD.2012.6419735
http://dx.doi.org/10.1109/IEEESTD.2014.6991462
http://dx.doi.org/10.1109/IEEESTD.2004.94569
http://dx.doi.org/10.1109/IEEESTD.2006.216360
http://dx.doi.org/10.1109/IEEESTD.2006.216360
http://dx.doi.org/10.1109/IEEESTD.2008.4602826
http://dx.doi.org/10.1109/IEEESTD.2008.4602826
http://www.iana.org/assignments/ethernet-numbers/ethernet-numbers.xhtml
http://www.iana.org/assignments/ethernet-numbers/ethernet-numbers.xhtml
http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
http://dx.doi.org/10.1109/ngmast.2008.18
http://www.juniper.net/documentation/en_US/junos13.2/topics/concept/qinq-tunneling-qfx-series.html
http://www.juniper.net/documentation/en_US/junos13.2/topics/concept/qinq-tunneling-qfx-series.html
http://dx.doi.org/10.17487/rfc4301
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301

[33] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: a comprehensive survey,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015. doi: 10.1109/JPROC.2014.
2371999. eprint: 1406.0440. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6994333.

[34] M. Lewis, Comparing, Designing, and Deploying VPNs. Cisco Press, 2006.
[Online]. Available: http://ptgmedia.pearsoncmg.com/images/1587051796/
samplechapter/1587051796content.pdf (visited on 03/12/2016).

[35] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M.
Bursell, and C. Wright, “Virtual eXtensible local area network (VXLAN): A
framework for overlaying virtualized layer 2 networks over layer 3 networks,”
Tech. Rep., Aug. 2014. doi: 10 . 17487 / rfc7348. [Online]. Available: https :
//tools.ietf.org/html/rfc7348.

[36] Mininet. (Feb. 2016). Mininet overview, [Online]. Available: http://mininet.org/
overview/ (visited on 01/20/2016).

[37] ——, (n.d.). Mininet GitHub, [Online]. Available: git://github.com/mininet/
mininet (visited on 01/23/2016).

[38] R. Molenaar. (2014). 802.1Q Tunneling (Q-in-Q) Configuration Example, [On-
line]. Available: https://networklessons.com/switching/802-1q-tunneling-q-q-
configuration-example/ (visited on 02/21/2016).

[39] NOX. (n.d.). The NOX Controller Repository, [Online]. Available: https://
github.com/noxrepo/nox (visited on 03/30/2016).

[40] ONF. (Mar. 2015). Openflow switch specification version 1.5.1, [Online]. Avail-
able: https : / /www .opennetworking . org / images/ stories /downloads/ sdn -
resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf (visited on
03/21/2016).

[41] OpenDaylight. (Jan. 2015). Odl openflow questions, [Online]. Available: https:
//lists.opendaylight.org/pipermail/openflowplugin-dev/2015-January/002469.
html (visited on 04/04/2016).

[42] OpenVPN. (n.d.). OpenVPN security overview, [Online]. Available: https://
openvpn.net/index.php/open-source/documentation/security-overview.html
(visited on 03/30/2016).

88

http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/JPROC.2014.2371999
1406.0440
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6994333
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6994333
http://ptgmedia.pearsoncmg.com/images/1587051796/samplechapter/1587051796content.pdf
http://ptgmedia.pearsoncmg.com/images/1587051796/samplechapter/1587051796content.pdf
http://dx.doi.org/10.17487/rfc7348
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
http://mininet.org/overview/
http://mininet.org/overview/
git://github.com/mininet/mininet
git://github.com/mininet/mininet
https://networklessons.com/switching/802-1q-tunneling-q-q-configuration-example/
https://networklessons.com/switching/802-1q-tunneling-q-q-configuration-example/
https://github.com/noxrepo/nox
https://github.com/noxrepo/nox
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://lists.opendaylight.org/pipermail/openflowplugin-dev/2015-January/002469.html
https://lists.opendaylight.org/pipermail/openflowplugin-dev/2015-January/002469.html
https://lists.opendaylight.org/pipermail/openflowplugin-dev/2015-January/002469.html
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://openvpn.net/index.php/open-source/documentation/security-overview.html

[43] OVS. (Dec. 2014). Open vSwitch version 2.3.1 release, [Online]. Available: https:
//github.com/openvswitch/ovs/releases/tag/v2.3.1 (visited on 03/23/2016).

[44] OVX. (n.d.). Openvirtex and openstack, [Online]. Available: http://ovx.onlab.
us/openstack/ (visited on 03/22/2016).

[45] ——, (n.d.). Openvirtex architecture, [Online]. Available: http://ovx.onlab.us/
documentation/architecture/overview/ (visited on 03/13/2016).

[46] ——, (n.d.). Openvirtex architecture - operation and subsystems, [Online].
Available: http://ovx.onlab.us/documentation/architecture/operation-and-
subsystems/ (visited on 03/13/2016).

[47] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient topology
discovery in software defined networks,” in Signal Processing and Communication
Systems (ICSPCS), 2014 8th International Conference on, Dec. 2014, pp. 1–8.
doi: 10.1109/ICSPCS.2014.7021050.

[48] “Fast Reroute Extensions to RSVP-TE for LSP Tunnels,” Tech. Rep., May 2005.
doi: 10.17487/rfc4090. [Online]. Available: https://tools.ietf.org/html/rfc4090.

[49] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The Design
and Implementation of Open vSwitch,” in Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, ser. NSDI’15,
Oakland, CA: USENIX Association, 2015, pp. 117–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789779.

[50] POX. (n.d.). The POX Controller Repository, [Online]. Available: https://
github.com/noxrepo/pox (visited on 03/30/2016).

[51] F. S. Rechia. (Mar. 2016). Test packets repository, [Online]. Available: https:
//bitbucket.org/fsrechia/test_packets/ (visited on 03/14/2016).

[52] ——, (2016). Thesis Repository, [Online]. Available: https://bitbucket.org/
fsrechia/thesis/overview (visited on 03/23/2016).

[53] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J., and E. Lear, “Address Allocation
for Private Internets,” Tech. Rep., Feb. 1996. doi: 10.17487/rfc1918. [Online].
Available: http://dx.doi.org/10.17487/RFC1918.

89

https://github.com/openvswitch/ovs/releases/tag/v2.3.1
https://github.com/openvswitch/ovs/releases/tag/v2.3.1
http://ovx.onlab.us/openstack/
http://ovx.onlab.us/openstack/
http://ovx.onlab.us/documentation/architecture/overview/
http://ovx.onlab.us/documentation/architecture/overview/
http://ovx.onlab.us/documentation/architecture/operation-and-subsystems/
http://ovx.onlab.us/documentation/architecture/operation-and-subsystems/
http://dx.doi.org/10.1109/ICSPCS.2014.7021050
http://dx.doi.org/10.17487/rfc4090
https://tools.ietf.org/html/rfc4090
http://dl.acm.org/citation.cfm?id=2789770.2789779
https://github.com/noxrepo/pox
https://github.com/noxrepo/pox
https://bitbucket.org/fsrechia/test_packets/
https://bitbucket.org/fsrechia/test_packets/
https://bitbucket.org/fsrechia/thesis/overview
https://bitbucket.org/fsrechia/thesis/overview
http://dx.doi.org/10.17487/rfc1918
http://dx.doi.org/10.17487/RFC1918

[54] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching
Architecture,” Tech. Rep., Jan. 2001. doi: 10.17487/rfc3031. [Online]. Available:
https://tools.ietf.org/html/rfc3031.

[55] Scapy. (Jan. 2016). Scapy GitHub repository, [Online]. Available: https://github.
com/secdev/scapy/ (visited on 01/20/2016).

[56] ——, (Jan. 2016). Scapy project, [Online]. Available: http://www.secdev.org/
projects/scapy/ (visited on 01/20/2016).

[57] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar, E. Sal-
vadori, and B. Snow, “Openvirtex: Make your virtual SDNs programmable,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined Net-
working, ser. HotSDN ’14, Chicago, Illinois, USA: ACM, 2014, pp. 25–30. doi:
10.1145/2620728.2620741. [Online]. Available: http://doi.acm.org/10.1145/
2620728.2620741.

[58] R. Sherwood. (2014). Cbench: A Benchmarking Tool for Controllers, [Online].
Available: https://github.com/andi-bigswitch/oflops/tree/master/cbench
(visited on 03/23/2016).

[59] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.-Y.
Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman, D. Underhill,
T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller, R. Johari, N.
McKeown, and G. Parulkar, “Carving Research Slices out of Your Production
Networks with OpenFlow,” SIGCOMM Comput. Commun. Rev., vol. 40, no.
1, pp. 129–130, Jan. 2010. doi: 10.1145/1672308.1672333. [Online]. Available:
http://doi.acm.org/10.1145/1672308.1672333.

[60] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar, “Flowvisor: a network virtualization layer,” Deutsche Telekom
Inc. R&D Lab, Stanford, Nicira Networks, Tech. Rep., 2009.

[61] Tcpdump. (n.d.). Tcpdump Command-line Packet Analyzer, [Online]. Available:
http://www.tcpdump.org/ (visited on 04/01/2016).

[62] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On Controller Performance in Software-Defined Networks,” in Presented as
part of the 2nd USENIX Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services, San Jose, CA: USENIX, 2012.
[Online]. Available: https://www.usenix.org/conference/hot-ice12-0/controller-
performance-software-defined-networks.

90

http://dx.doi.org/10.17487/rfc3031
https://tools.ietf.org/html/rfc3031
https://github.com/secdev/scapy/
https://github.com/secdev/scapy/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
http://dx.doi.org/10.1145/2620728.2620741
http://doi.acm.org/10.1145/2620728.2620741
http://doi.acm.org/10.1145/2620728.2620741
https://github.com/andi-bigswitch/oflops/tree/master/cbench
http://dx.doi.org/10.1145/1672308.1672333
http://doi.acm.org/10.1145/1672308.1672333
http://www.tcpdump.org/
https://www.usenix.org/conference/hot-ice12-0/controller-performance-software-defined-networks
https://www.usenix.org/conference/hot-ice12-0/controller-performance-software-defined-networks

[63] URIH. (n.d.). Smart whois lookup, [Online]. Available: http://whois.urih.com/
record/1.0.0.1/ (visited on 04/02/2016).

[64] Wireshark. (n.d.). Ethernet vendor codes, and well-known MAC addresses,
[Online]. Available: https://code.wireshark.org/review/gitweb?p=wireshark.git;
a=blob_plain;f=manuf (visited on 04/02/2016).

[65] ——, (n.d.). Wireshark Network Protocol Analyzer, [Online]. Available: https:
//www.wireshark.org/ (visited on 04/01/2016).

[66] H. Yamanaka, E. Kawai, S. Ishii, and S. Shimojo, “Autovflow: Autonomous
virtualization for wide-area openflow networks,” in Software Defined Networks
(EWSDN), 2014 Third European Workshop on, Sep. 2014, pp. 67–72. doi:
10.1109/EWSDN.2014.28.

91

http://whois.urih.com/record/1.0.0.1/
http://whois.urih.com/record/1.0.0.1/
https://code.wireshark.org/review/gitweb?p=wireshark.git;a=blob_plain;f=manuf
https://code.wireshark.org/review/gitweb?p=wireshark.git;a=blob_plain;f=manuf
https://www.wireshark.org/
https://www.wireshark.org/
http://dx.doi.org/10.1109/EWSDN.2014.28

APPENDIX A

EXPERIMENTAL SETUP DETAILS

92

A.1 Physical Laboratory

A.1.1 Hosts

The lab test hosts where running Linux with the following hardware and operating
system specifications:

• General Hardware: Dell OptiPlex 755
• CPU: Intel(R) Core(TM) 2 Duo E8400
• Linux Distro: Fedora release 20
• Linux Kernel: 3.19.5-100.fc20.x86_64
• Network interfaces: 2x Realtek RTL-8100/8101L/8139 PCI Fast Ethernet
Adapter

By default, the Linux distro used in the lab has iptables configured with security
rules that prevent iperf from running properly. The configuration below was required
in all of the hosts to remove firewall rules and allow use of iperf:

iptables -F

In order to reduce the variance of ping tests, ARP entries were manually added to
the ARP tables of the computers under test:

arp -s <IP address> <MAC address>

The iperf and ping versions used were:

[root@hostA ~]# iperf -v
iperf version 2.0.5 (08 Jul 2010) pthreads
[root@hostA ~]# ping -V
ping utility, iputils-s20140519

The test scripts for flow setup time and throughput tests are available in [52]:

• 04_common_tools/ping_test.sh
• 04_common_tools/iperf_test.sh

93

https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/04_common_tools/ping_test.sh?at=master
https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/04_common_tools/iperf_test.sh?at=master

A.1.2 OpenFlow Hardware Switch

Tests run in the lab used the switch Hewlett Packard ProCurve as specified below:

• J8692A HP 3500-24G-PoE yl Switch
• Software: K.16.01.0004

Switch configuration can be found in the file 04_common_tools/openflow_config-
hp.txt in [52].

A.2 Virtual Laboratory

A.2.1 Host Machine

• CPU: Intel(R) Core(TM) i7-6700HQ CPU @ 2.6GHz, 16GB RAM (4 cores, 8
threads)

• OS: Windows 10
• Network interfaces: Realtek USB GbE Family Controller
• Software: running VirtualBox Version 5.0.16 r105871

A.2.2 Virtual Machine

• Linux distro: Ubuntu 14.04.3 LTS
• Linux kernel: 3.13.0-76-generic #120-Ubuntu SMP Mon Jan 18 15:59:10 UTC
2016 x86_64 x86_64 x86_64 GNU/Linux

• Virtual machine reserved resources:

– Memory: 4096MB
– Processors: 4

A.3 Floodlight

Floodlight version commit 63849d2 Jan 11, 2016 is used. It was downloaded from
[20] and compiled locally. The following configuration files, which can be found in
[52], were used to instantiate Floodlight:

• Network A: 03_OpenVirtex_resources/floodlightdefault.properties10000
• Network B: 03_OpenVirtex_resources/floodlightdefault.properties20000

94

https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/04_common_tools/openflow_config-hp.txt?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/04_common_tools/openflow_config-hp.txt?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/03_OpenVirtex_resources/floodlightdefault.properties10000?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/03_OpenVirtex_resources/floodlightdefault.properties20000?at=master&fileviewer=file-view-default

• Network C: 03_OpenVirtex_resources/floodlightdefault.properties30000

A.4 OVX

OpenVirteX version 0.0-MAINT was used, latest commit 25f38b7 on May 16, 2014,
available in their repository at [3]. Several JSON configuration files were used to
configure OVX for the experiments conducted in this work (stored at [52]):

• The virtual Mininet laboratory used three configuration files which correspond
to figure 14:

– JSON config file for network A 03_OpenVirtex_resources/test03a.json;
– JSON config file for network B 03_OpenVirtex_resources/test03b.json;
– JSON config file for network C 03_OpenVirtex_resources/test03c.json;

• The physical testbed configuration 03_OpenVirtex_resources/test_lab2.json,
connecting computers C (physical port 13) and D (physical port 15) to the same
virtual network managed by OVX. This configuration file correspond to figure
15;

Furthermore, start and stop scripts were created to initiate OpenVirteX, Floodlight
and the Mininet network all at once, to make experiments easier (stored at [52]):

• 03_OpenVirtex_resources/startup_test_scenario.sh starts up everything
needed to test OVX with the Mininet testbed;

• 03_OpenVirtex_resources/lab_test.sh starts up everything needed to test OVX
with the physical switch in the lab;

• 03_OpenVirtex_resources/stop_test_scenario.sh kills all the processes related
to OVX, Floodlight and Mininet to stop experiments.

A.5 FlowVisor

FlowVisor version used for the experiments was flowvisor-1.4.0, latest commit
b45b58f on Aug 30, 2013, available at [1]. All of the configuration files and scripts
mentioned in this section are stored at [52].

Starting with an empty database, the script 01_flowvisor_resources/configure_slices.sh
configures the topology slicing for the three networks in the Mininet scenario shown in
figure 14. Then the scripts 01_flowvisor_resources/start_fv_testbed_with_mininet.sh
and 01_flowvisor_resources/stop_fv_testbed_with_mininet.sh start and stop, re-
spectively, the Mininet based scenario depicted by figure 14.

95

https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/03_OpenVirtex_resources/floodlightdefault.properties30000?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/test03a.json?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/test03b.json?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/test03c.json?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/test_lab2.json?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/startup_test_scenario.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/lab_test.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/03_OpenVirtex_resources/stop_test_scenario.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/01_flowvisor_resources/configure_slices.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/01_flowvisor_resources/start_fv_testbed_with_mininet.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/01_flowvisor_resources/stop_fv_mininet_testbed.sh?at=master&fileviewer=file-view-default

The script 01_flowvisor_resources/start_fv_testbed.sh starts with an empty
database, configures and starts the FlowVisor and Floodlight controllers to run tests
with the hardware switch at the lab, which is depicted by figure 15.

A.6 VeRTIGO

VeRTIGO version vertigo-0.3.8 (based on flowvisor-0.8.1) was used for the experi-
mental attempts conducted in this work and can be found at their repository in [12].
All of the configuration files and scripts mentioned in this section are stored at [52].
VeRTIGO can be started using XML files to configure the slicing of the topology under
test. The configuration files for the physical and Mininet testbeds are respectively:

• 02_VeRTIGO_resources/config_phylab.xml;
• 02_VeRTIGO_resources/reduced_config_mininet.xml.

The topology start and stop scripts are:

• 02_VeRTIGO_resources/start_vertigo_testbed_with_mininet.sh starts up
everything needed to test VeRTIGO with the Mininet testbed;

• 02_VeRTIGO_resources/start_vertigo_testbed.sh starts up everything needed
to test VeRTIGO with the physical switch in the lab;

• 02_VeRTIGO_resources/stop_vertigo_testbed.sh kills all the processes related
to VeRTIGO, Floodlight and Mininet to stop experiments.

A.7 Mininet

Mininet version 2.2.1d1 [37] was used with a local patch to make OVSBridge work
as a traditional layer 2 bridge. The patch is very simple and just corrects a simple
bug that does not exist in the HEAD version of Mininet:

diff --git a/mininet/node.py b/mininet/node.py
index 8e91c6e..f48e9c7 100644
--- a/mininet/node.py
+++ b/mininet/node.py
@@ -1183,7 +1183,7 @@ def bridgeOpts(self):

if self.protocols and not self.isOldOVS():
opts += ' protocols=%s' % self.protocols

if self.stp and self.failMode == 'standalone':
- opts += ' stp_enable=true' % self
+ opts += ' stp_enable=true' #% self

96

https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/01_flowvisor_resources/start_fv_testbed.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/02_VeRTIGO_resources/config_phylab.xml?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/02_VeRTIGO_resources/reduced_config_mininet.xml?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/02_VeRTIGO_resources/start_vertigo_testbed_with_mininet.sh?at=master
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/02_VeRTIGO_resources/start_vertigo_testbed.sh?at=master
https://bitbucket.org/fsrechia/thesis/src/dae475cf298bc25c2b82ab2627ff6773e2e829ae/02_VeRTIGO_resources/stop_vertigo_testbed.sh?at=master

return opts

def start(self, controllers):

The topology configuration files used for the experiments are in [52]:

• 03_OpenVirtex_resources/virtual_mininet_testbed_simple.py, corresponding
to figure 14;

• 01_flowvisor_resources/virtual_mininet_testbed_simple_no_repeated_addresses.py,
which just changes network B’s range from 10.0.0.0/24 to 11.0.0.0/24.

A.8 Open vSwitches

The virtual switches used for the experiments were Open vSwitches compiled from
the source code version 2.3.1, available in [43].

A.9 GENI Testbed

The GENI testbed was reserved using the GENI portal graphical interface and
the RSpec 04_common_tools/ig-clemson.rspec.xml stored at [52].

A.10 Test Packets Tool

The test packets tool has a predefined set of packet samples which are used for
testing. It sends the following protocols (or packet types) out on a specified network
interface card:

• IPv4 unicast:

– ping: ICMP Echo request over IPv4,
– udp: UDP over IPv4,
– tcp: TCP over IPv4,
– ipfix: Internet Protocol Flow Information Export (IPFIX),
– ssh: Secure Shell (SSH),
– telnet: Telnet,
– http: Hypertext Transfer Protocol (HTTP) ,
– https: HTTP Secure (HTTPS),
– snmpv2c: Simple Network Management Protocol (SNMP) version 2c,
– bgp: Border Gateway Protocol (BGP),

97

https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/03_OpenVirtex_resources/virtual_mininet_testbed_simple.py?at=master
https://bitbucket.org/fsrechia/thesis/src/bc7153cc190b93047a87bbab29ec7814db1e7031/01_flowvisor_resources/virtual_mininet_testbed_simple_no_repeated_addresses.py?at=master&fileviewer=file-view-default
https://bitbucket.org/fsrechia/thesis/src/cf2c25d68d1219279198b654f3827f8ac3496c24/04_common_tools/ig-clemson.rspec.xml?at=master

– dns: Domain Name System (DNS),
– mdns: multicast DNS,
– tacplus: Terminal Access Controller Access-Control System Plus
(TACACS+) protocol,

– radius: Remote Authentication Dial-In User Service (RADIUS) protocol,
– ntp: Network Time Protocol (NTP).

• IPv6 unicast:
– ping6: ICMPv6 Echo request,
– udp6: UDP over IPv6,
– tcp6: TCP over IPv6.

• IPv4 multicast:
– igmpv2: Internet Group Management Protocol version 2 (IGMPv2),
– ldp: Label Distribution Protocol (LDP),
– ospf: Open Shortest Path First (OSPF) protocol hello message,
– ripv2: Routing Information Protocol version 2 (RIPv2),
– pim: Protocol Independent Multicast version 2 (PIMv2),
– vrrp: Virtual Router Redundancy Protocol (VRRP) ,
– igmpv3: Internet Group Management Protocol version 3 (IGMP).

• L2 unicast:
– unicastarp: Address Resolution Protocol (ARP) Reply (unicast),
– eaps: Ethernet Automatic Protection Switching (EAPS) protocol.

• L2 multicast/broadcast:
– arp: Address Resolution Protocol (ARP) Request (broadcast),
– dhcp: Dynamic Host Configuration Protocol (DHCP) (broadcast),
– glbp: Gateway Load Balancing Protocol (GLBP),
– stp: Spanning-tree Protocol (STP),
– lldp: Link Layer Discovery Protocol (LLDP),
– cfm: Configuration Fault Management (CFM),
– oam: operations, administration and maintenance (OAM)
– lacp: Link Aggregation Control Protocol (LACP),
– cdp: Cisco Discovery Protocol (CDP),
– pagp: Port Aggregation Protocol (PAGP) ,
– udld: Unidirectional Link Detection (UDLD),
– vtp: VLAN Trunking Protocol (VTP),
– pvst: per-VLAN Spanning-tree (PVST) protocol,
– marker: Marker Protocol,
– gvrp: GARP VLAN Registration Protocol (GVRP),
– dot1x: Extensible Authentication Protocol (EAP),
– loopback: Loopback-detection protocol (Ethertype 0x8809).

98

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 EXPERIMENTS
	4 RESULTS AND ANALYSIS
	5 CONCLUSION
	References

	Appendix
	A Experimental Setup Details

