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ABSTRACT 

This research is to address the design optimization of systems for a specified 

reliability level, considering the dynamic nature of component failure rates. In case of 

designing a mechanical system (especially a load-sharing system), the failure of one 

component will lead to increase in probability of failure of remaining components. Many 

engineering systems like aircrafts, automobiles, and construction bridges will experience 

this phenomenon. 

In order to design these systems, the Reliability-Based Design Optimization 

framework using Sequential Optimization and Reliability Assessment (SORA) method is 

developed. The dynamic nature of component failure probability is considered in the 

system reliability model. The Stress-Strength Interference (SSI) theory is used to build 

the limit state functions of components and the First Order Reliability Method (FORM) 

lies at the heart of reliability assessment. Also, in situations where the user needs to 

determine the optimum number of components and reduce component redundancy, this 

method can be used to optimally allocate the required number of components to carry the 

system load. The main advantage of this method is that the computational efficiency is 

high and also any optimization and reliability assessment technique can be incorporated. 

Different cases of numerical examples are provided to validate the methodology.  

 

 

 

  



ii 
 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to Dr. Rong Pan for his invaluable 

guidance and support throughout my graduate study. Most importantly, I would like to 

thank him for his patience and mentorship that he has given me to complete my Master’s 

thesis. 

I wish to thank Dr. Ronald Askin and Dr. Feng Ju for serving as my thesis 

defence committee members. Also, I would like to thank all the faculty and staff of 

Industrial Engineering program for their assistance during my course of study. 

Finally, I would like to acknowledge the support of my parents, Mr. K. 

Balasubramaniyan and Mrs. B. Sachukalamani for encouraging me to pursue graduate 

degree overseas and stood behind me forever. 

 

 

 

 

 

 

 

 

 

  



iii 
 

TABLE OF CONTENTS 

 Page 

LIST OF TABLES ………………………………………………………………………...v 

LIST OF FIGURES ………………………………………………………………………vi 

CHAPTER 

 1 INTRODUCTION …………………………………………………………………..1 

  1.1 Background ……………………………………………………………………1 

  1.2 Motivation and Problem Definition …………………………………………...2 

  1.3 Literature Review……………………………………………………………...5 

  1.4 Research Organization ………………………………………………………...9 

 2 RELIABILITY-BASED DESIGN OF MECHANICAL SYSTEMS ……………...10 

  2.1 Series Systems ……………………………………………………………….11 

  2.2 Parallel Systems ……………………………………………………………...12 

  2.3 Mixed Systems ………………………………………………………………13 

  2.4 K out of n: G Systems ……………………………………………………….13 

  2.5 Drawbacks with Deterministic Assumption …………………………………14 

  2.6 Stress-Strength Interference (SSI) Theory …………………………………...15 

  2.7 Reliability-Based Design Optimization ……………………………………..18 

 3 SEQUENTIAL OPTIMIZATION AND RELIABILITY ASSESSMENT (SORA) 

APPROACH FOR OPTIMAL SYSTEM DESIGN ……………………………….22 

   3.1 First Order Reliability Method (FORM) …………………………………….24 

   3.2 Optimization Techniques ………………………………………………….....26 



iv 
 

CHAPTER Page 

   3.3 SORA Procedure …………………………………………………………….27  

 4 NUMERICAL EXAMPLES ………………………………………………………34 

   4.1 Case 1 - System with Identical Components ……………………………..….34 

  4.2 Case 2 - System with Identical Components but with Different Performance 

Functions …………………………………………………………………….39 

   4.3 Case 3 - System with Non-Identical Components ……………….…………..41 

   4.4 Case 4 - Selection of Components Required for the System ………….……..44 

 5 CONCLUSIONS AND RECOMMENDATIONS ………………………………...47 

REFERENCES …………………………………………………………………………..50 

 

 

 

 

 

 

 

 

 

 

 

  



v 
 

LIST OF TABLES 

Table  Page 

4.1. Results for Case 1 …………………………………………………………………...38 

4.2. Results for Case 2 …………………………………………………………………...41 

4.3. Results for Case 3 …………………………………………………………………...43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



vi 
 

LIST OF FIGURES 

Figure  Page 

1.1 Load Sharing System with Two Components…………………………………………3 

1.2 Limit State Functions of the Components 1 and 2  ……………………………………4 

2.1 Series System ……………………………………………………………………...…11 

2.2 Parallel System ………………………………………………………………………12 

2.3 Stress-Strength Interference Theory …………………………………………………16 

2.4 Limit State Function …………………………………………………………………17 

3.1 Deterministic and Probabilistic Constraint Boundary ……………………………….23 

3.2 SORA Flowchart for Load Sharing Systems ………………………………………...29 

3.3 Shifting the Constraint Boundary ……………………………………………………31 

4.1 A Simple Load Sharing System ……………………………………………………..34 

4.2 Dimensions of I-Beam ……………………………………………………………….35 

4.3 Beam of Rectangular Cross Section …………………………………………………42 

 

  



 

1 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

System design optimization deals with developing efficient engineering systems, 

which should be competitive in terms of cost, performance, and its lifetime value. In the 

current competitive industrial world, almost every industry strive to improve the quality 

of their products with minimum cost and maximum safety. But even though there are lots 

of modern manufacturing tools available, the presence of uncertainties in terms of design 

parameters, material strength, and also some external factors like loads cannot be 

ignored. The assumption of deterministic constraints can be made for the simplified 

computing purpose, but this will certainly have a huge impact when the system is put into 

use. Many researchers are developing methods to incorporate these uncertainties that 

resulted in various probabilistic design methodologies. These methods are applied to 

design the system with given number of components, but have only limited usage. This is 

because in most of the system (parallel or mixed system), the components are linked with 

each other and the failure of one component might lead to redistribution of loads acting 

on the system, resulting in increased probability of failure of the remaining components. 

Most of the developed methods failed to account for this dependent nature of component 

failure probability, which laid the groundwork for this research. 
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1.2 Motivation and Problem Definition 

Load sharing systems are those in which the entire system load is shared among 

components in different proportions to support the working of system [13]. The failure of 

one component will increase the probability of failure of remaining components as the 

load acting on the system gets redistributed and thereby increasing the probability of 

failure of entire system. Several epistemic and aleatory uncertainties exists during the 

design and manufacturing of these systems, which has to be quantified appropriately for 

designing a reliable system. Uncertainties to be considered for efficient design are 

categorized into objective and subjective types [5, 9, 10, 11]. Objective uncertainty 

(Aleatory) exists due to the natural variation in the performance of the system. For 

instance, humidity, temperature, or some material parameters like conductivity are 

examples of aleatory uncertainties. Subjective uncertainty (Epistemic) exists due to lack 

of knowledge and they can be reduced by understanding the design by obtaining more 

data [5]. Hence, developing a good reliability analysis procedure should play a major role 

in system design.  

In case of mechanical systems, the reliability is calculated based on the Stress-

Strength Interference (SSI) theory [8, 12]. According to this SSI model, the reliability can 

be defined as the probability that load or stress acting on the component is lower than the 

strength of the component, which is calculated based on the probability density function 

of stress and strength. 

Several methods have been devised for evaluating the reliability of different types 

of systems. But these methods have been developed by considering the probability of 
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failure of the components to be independent of each other. But in the case of load sharing 

systems with dependent failure rate, using these existing methods may lead to incorrect 

conclusions as the probability of component failure depends on the state of other 

components in the system. Figure 1.1 represents a simple load sharing parallel system 

with two components, C1 and C2, carrying a total load, P.  

 

Figure 1.1: Load Sharing System with Two Components. 

If we assume that the two components are non-identical and component 1 fails 

first, then Figure 1.2 shows the shift in limit state functions due to the redistribution of 

load ‘P’ [13]. 
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Figure 1.2: Limit State Functions of the Components 1 and 2. 

The two points (µ1x and µ2x) from Figure 1.2 represent the optimal value (based 

on functions g1 and g2) for the two load sharing components 1 and 2 respectively [13]. 

But when component 1 fails, the entire load gets shifted to component 2 and the current 

optimal point for the surviving component may not satisfy the system reliability 

requirement. The limit state function of this surviving component would have shifted to a 

new position g21 represented using dotted line in figure 1.2 [13]. Now, the region below 

the function g21 represents the failure region of the entire system. One solution is to 

design each components separately to carry the full load for the given system reliability 

level. But, this solution deviates from the concept of load sharing and will result in 

increased cost of production and wastage of material. So far, many methods have been 

developed with the consideration of functions represented by g1 and g2
 only. We might 
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also end up in a situation where we need to increase the design space in order to achieve 

the required reliability level of the system for some cases. Some methods have been 

developed by considering the dependent failure probabilities, but resulted in high 

computational requirement. 

1.3 Literature Review 

The Reliability-Based Design Optimization (RBDO) method is used to overcome 

the problem in engineering design by considering the stochastic nature of the variables 

and find an optimum design point for each component to satisfy system reliability 

requirement. The main objective of RBDO is to achieve maximum reliability with 

minimum cost. RBDO methods are classified depending on how the reliability analysis is 

incorporated into the optimization process [1, 2]. There are many techniques that have 

been developed and they can be classified into nested double loop method and 

decoupled-loop method. The nested double loop method involves large number of 

computations to solve the problem. This is because, when nested RBDO is used, the 

reliability constraint of the given system can be evaluated after each optimization loop, 

but the computational cost is very high especially when the system is complex.  

The decoupled loop method has less computational work when compared to that 

of nested method. Also, in order to compute the reliability of the system, there are two 

approaches. The first one is to replace the probabilistic constraint in the optimization loop 

with the Taylor series expansion along with updating the gradients of failure probabilities 

after each optimization iteration [2, 17]. The second approach is to use heuristic method 

to increase the component reliability levels until the system reliability target is achieved 
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[3, 4]. Initially, the design is optimized only for the given component reliability target 

and then evaluated to find whether the system level reliability requirement is met. If it is 

not met, then the component reliability targets are increased arbitrarily based on some 

knowledge about the components of the system and then the iteration is repeated until the 

goal is met.  

RBDO using single loop approach (a decoupled loop method) is presented in [5, 

14, 15, 16]. Usually, single loop algorithms have proven to be computationally efficient 

in case of RBDO and are mostly applied to design components for the required reliability 

level [3]. When single loop RBDO method is used, the optimization and reliability 

analysis method is carried out simultaneously to design the system. Single loop 

algorithms are proved to be computationally inexpensive and the accuracy of the solution 

will be reasonable when compared to nested loop methods [5].  

Reliability-Based Design Optimization of load sharing parallel or mixed systems 

is computationally intensive due to the dependence between probabilities of failure of 

components. The problem especially gets intensified in evaluating the probabilistic 

constraints that are incorporated to quantify the uncertainties concerning the materials, 

load, geometry, etc. The Stress-Strength Interference (SSI) theory plays a major role to 

evaluate the system reliability, especially in case of mechanical systems as the stress and 

strength parameters are directly introduced in the model [8].  

An efficient single loop RBDO formulation is developed in [2] which is capable 

of handling both component level reliability as well as system level reliability for 

different types of systems. The authors used a single loop RBDO formulation and an 
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equivalent method that is effective in handling both system level and component level 

reliability constraints. This method helps the user to allocate optimum level of reliability 

for the individual components in order to satisfy both the component as well as the 

system level reliability targets. Various numerical examples are provided to validate the 

developed methodology.  

The method developed in [2] also proved that single loop method is 

computationally efficient way to solve RBDO problem with system reliability constraint. 

But the authors have assumed the probability of failure of the components to be 

independent of each other. When the failure probabilities of components are not 

independent to each other with system consisting of large number of non-identical 

components, then there will be more complexity in arriving at the optimum design [13]. 

Another approach for evaluating the reliability of the system based on the failure 

dependence of the components and redistribution of the load is presented in [8]. The 

authors have considered the varying nature of failure rates with respect to stress and 

strength parameters. The authors took account of the Strength Degradation Path 

Dependence (SDPD) of the various components in a system due to repeated application 

of random load using state probabilities. The Markov chain theory is used to represent the 

various states of the components and Monte Carlo Simulation is used in order to verify 

the proposed models.   

The reliability evaluation of load sharing power system is proposed in [18]. The 

authors developed models considering a number of subsystems and used supplementary 

variable technique in order to estimate the state probabilities of the system. A method for 
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evaluating the reliability of load sharing k out of n: G system with imperfect switching is 

developed in [19]. The authors used Markov theory to develop a reliability model of 

system with exponential lifetime [8].  

The reliability analysis of load sharing system subjected to different load behavior 

is provided in [20]. The authors considered a standby system with two components under 

varying load and used Weibull probability distribution of time to failure to derive models. 

The investigation of load sharing systems is also done in [21, 22] in which the authors 

studied about different methods of computing system reliabilities and the impact of 

different loads on system reliability evaluation methods [20]. 

Most of the research stated above has not considered the failure dependence of 

components. For those that have considered failure dependency, their computational 

requirements were very high. Therefore, an efficient method needs to be developed in 

order to overcome the problem in designing the load sharing system and to find an 

optimum design point for each component that satisfies system reliability requirement.  

Sequential Optimization and Reliability Assessment (SORA) method developed 

by [1] is used in this research to optimally design the load sharing system. Traditional 

Monte Carlo Simulation is more accurate but its computational cost is very high 

especially when the reliability requirement is close to one [5, 23]. Taylor series method 

cannot deal with highly non-linear performance function and also it is too complex to 

handle high dimensional data [5, 26, 27]. The response surface method builds meta 

models using limited amount of samples and replace the true system response [28]. 

Numerical integration using dimension reduction method [29-33] is also applicable for 
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some cases. The Most Probable Point (MPP) evaluation is based on First Order 

Reliability Method (FORM) and there are two approaches. The Reliability Index 

Approach (RIA) is a direct reliability analysis method in which the MPP is obtained by 

formulating an optimization problem, but the convergence of this method is low [6, 34, 

36, 37]. Another method, Performance Measure Approach (PMA) which is an indirect 

method [35, 38] is more robust and efficient than RIA method.   

1.4 Research Organization 

The report is organized as follows. The traditional approaches for reliability based 

design of engineering system and their drawbacks are discussed. Then Reliability-Based 

Design Optimization (RBDO) framework to design the load sharing systems using the 

Sequential Optimization and Reliability Assessment (SORA) method is proposed.  The 

procedure is explained using the First Order Reliability Method (FORM) for reliability 

analysis as it can produce good results with minimum computational requirements which 

will be validated using numerical examples. Also the following assumptions are included 

in our approach for designing the load sharing system. 

1. Failure of components are mutually exclusive, ie., if there are two components in 

the system, these two components cannot fail at the same time. 

2. The time dependent degradation of the component is not considered. Whenever 

the stress exceeds the strength, the component fails immediately. 

3. Only the system level reliability is provided by the customer. 

4. The order in which the components fail is known. 

5. Normality assumption is maintained throughout this report. 
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CHAPTER 2 

RELIABILITY-BASED DESIGN OF MECHANICAL SYSTEMS 

Today, a variety of probabilistic design methods have been developed in order to 

aid the efficient design of mechanical systems. The most common methods like robust 

design [39-43] and reliability-based design [44-47] have been in practice for a long time. 

The objective of the reliability-based design is to ensure the satisfaction of the 

probabilistic constraints at the required level whereas the robust design focuses on 

ensuring the system to be working under abrupt input conditions. Both of them can be 

achieved by simultaneously optimizing the mean performance and performance variance. 

The first and foremost task in probabilistic design is uncertainty analysis, which 

gives the knowledge about the impacts of various uncertainties that the system inputs 

have on the output. These characteristics are formulated mathematically and optimization 

is performed in order to obtain the optimum design values for the system to withstand the 

given amount of uncertainties caused by the input variation. 

Having explained about the uncertainties in previous section, one of the most vital 

challenge with probabilistic design optimization is the computational efficiency. The 

evaluation of probabilistic constraints poses a major requirement of high computational 

power, which is very challenging for the implementation of probabilistic design. In order 

to have knowledge about the probabilistic characteristics of the system at a particular 

design point, a large number of iterations of deterministic optimization have to be carried 

out with respect to the nominal point. This can be done by using simulation approaches, 

such as Monte Carlo Simulation (MCS), or by using some deterministic approximation 
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methods for probabilistic constraint analysis. A plenty of research has been conducted 

particularly concentrating on improving the computational efficiency of the probabilistic 

constraints for complex engineering systems. A brief summary of different types of 

system is given below. 

2.1 Series Systems 

In case of series system, the failure of one component will lead to the total system 

failure. The reliability of the system is defined as the probability that component 1 is 

working and component 2 is working and so on to all the components present in the 

system are working. If the reliability of the individual components is denoted by Ri, then 

the reliability of series system with ‘n’ number of components is given by, 

Rseries = ∏ Ri

n

i=1

 (2.1) 

So, for a series system, all the components must be in working condition for the 

system to function. The series configuration of components is shown in Figure 2.1.  

 

Figure 2.1: Series System 

For the series system, if there are 3 components with the reliability of individual 

components being 0.9, then the reliability of the system is 0.73. 
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2.2 Parallel Systems 

In case of parallel system, the system works until all the components fail. The 

reliability of the system is defined as the probability that the component 1 is working 

and/or component 2 is working and/or any component(s) present in the system is 

working. If the reliability of the individual components is denoted by Ri, then the 

reliability of parallel system with ‘n’ number of components is given by, 

Rparallel = 1 − ∏(1 − Ri)

n

i=1

 (2.2) 

So, for a parallel system, atleast one of the components must be in working 

condition for the system to function. The parallel configuration of components is shown 

in Figure 2.2. For the system, if there are 3 components with the reliability of individual 

components being 0.9, then the reliability of the system is 0.99. 

 

Figure 2.2: Parallel System 
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It is to be noted that the reliability of the series system is lower than that of its 

individual components but the reliability of parallel system is higher than that of the 

individual components. Although the parallel system offers higher reliability, it is 

difficult to build the system because of its redundancy in number of components [2].  

2.3 Mixed Systems 

There are some systems in which some components are configured in series while 

others are in parallel configuration. Such systems are called mixed systems. Most of the 

consumer products are mixed system. 

2.4 K out of n: G Systems 

Some systems are designed in such a way that certain components can fail 

without damaging the system but more than ‘n’ components (n>1) need to function well 

for the system to work [48]. Such systems are called k out of n: G systems. Examples of 

this type of system is aircraft engine which requires 2 out of 4 engines to work for the 

aircraft to be stable. 

In the above-mentioned parallel system in section 2.2, the failure of components 

is assumed to be independent of each other. But, for real world applications, especially in 

case of parallel and mixed systems, the failure of components are not independent to each 

other, thereby causing difficulty in obtaining the real estimate of the reliability of the 

system. This causes trouble in optimally designing the components for the given load. 

The probability of failure of the system for dependent component failure is given by, 

Pfsystem =  P(C1)  ∗  P(C2 C1⁄ ) ∗  P(C3 C1, C2⁄ ) … … . . P(Cn C1, C2⁄ , … . Cn−1) (2.3) 
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where, P(Ci) denotes the probability of failure of ith component. Also if we assume all the 

components have equal chances of being failed initially and then the probability of failure 

of other components gets varied depending on the component that has failed, then the 

evaluation of system reliability increases many fold with increase in number of 

components. 

While most of the research has assumed the failure independence between the 

components, only some research is dedicated to developing methodology to design the 

system with dependent failure rate of components. This is because the computational 

requirement for evaluating probabilistic constraint is high, which becomes much higher 

when we consider system with dependent failure rate between components. One such 

proven methodology that has been used to efficiently deal with probabilistic constraint 

optimization problem is Sequential Optimization and Reliability Assessment (SORA). 

Before explaining about the probabilistic optimization and SORA technique, some useful 

concepts are discussed.       

2.5 Drawbacks with Deterministic Assumption 

Using a deterministic approach in system design and analysis (i.e., if the physical 

parameters like diameter of the rod is assumed to be deterministic say 25cm), this will 

lead to erroneous conclusion because not all the components can be manufactured to the 

exact diameter due to the manufacturing variations. Hence probabilistic approach is 

necessary to accommodate the variations. A large number of important points should be 

considered while designing the system. Though the probability of failure decreases by 

increasing the safety factor, the utilization of safety factor approach does not guarantee 
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zero failure rate [49]. In addition to narrowing down the region of random variables, 

adjusting the mean value of the random variable may also provide assistance in reducing 

the probability of failure [49]. The manufacturing tolerance can also be tightened in order 

to reduce the geometric dimension variation [49]. In the field of engineering design, the 

final aim is to have a better trade-off between system cost and the probability of failure, 

as failure happens at some point of time even for the worst-case design [49]. Hence, it is 

vital to bring the probability theory into system design so as to accommodate for the 

uncertainties in physical parameters that have effects on the performance of the system. 

2.6 Stress-Strength Interference (SSI) Theory 

It is always important to identify and handle the uncertain parameters induced 

during the design or manufacturing process as it is vital for reliability analysis. In case of 

mechanical systems, especially for the reliability analysis, the Stress-Strength 

Interference (SSI) theory aids the purpose [12]. According to this SSI model, the 

reliability can be defined as the probability that load or stress acting on the component is 

lower than the strength of the component, which is calculated based on the probability 

density function of stress and strength. The wide spread application of this SSI model is 

due to the fact that both stress and strength parameters are directly introduced into the 

model which aids the designer during the design and analysis of the mechanical 

components [8].  

The Stress Strength Interference theory is discussed in detail in [12, 50, 51], 

which mathematically represents these parameters by probability distributions. 
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Probability of failure =  Probability (Stress ≥  Strength)  (2.4) 

In mechanical sense, the term stress represents the mechanical force or load that is 

applied on the system, and the term strength denotes the yield strength of the physical 

unit that is subjected to the loads in order to perform its intended function [12]. The 

Figure 2.3 from [12] represents the concept of this stress strength interference theory. 

 

Figure 2.3: Stress-Strength Interference Theory from Huang et al [12]. 

In cases where there is a single parameter of stress (denoted by random variable 

X) and strength (denoted by random variable Y) variables, the reliability can be found by, 

R = P(Stress < Strength) (2.5) 

R = P(X < Y) (2.6) 

R = ∫  
∞

−∞

fy(y) [∫  
y

−∞

fx(x)dx]  dy (2.7) 
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In cases when there are two or more strength and stress parameters, the threshold 

becomes multidimensional, which is termed as the limit state function [12]. The Figure 

2.4 illustrates the concept of the limit state function.  

 

Figure 2.4: Limit State Function from Huang et al [12]. 

It is noted that when the parameters (x1, x2) falls outside the limit state region, the 

component fails. In this case, the probability of failure can be mathematically represented 

by, 

Pf = ∬ f(x1, x2)dx1dx2

 

(x1, x2)∈ F

 (2.8) 

The failure region is denoted by F and the function f(x1, x2) denotes the joint 

probability density function of the random variables x1 and x2.  

 



 

18 
 

2.7 Reliability-Based Design Optimization 

Having studied about the problems in deterministic approach, uses of probability 

theory, stress-strength interference theory and evaluating the probability of failure from 

the given characteristics, the RBDO problem formulation is discussed in this section. 

In mechanical or construction engineer’s point of view, the Reliability Based 

Design is an important aspect of design optimization, as it plays a critical role in 

maintaining the design feasibility under various uncertainties. A typical RBDO 

formulation considers the uncertainties in the design variables and guarantees the system 

reliability by utilizing the probabilistic constraint functions for the system safety 

requirement [5, 6, 7]. The generic formulation of RBDO is given below.    

Objective: Minimize f(d, μX, μP) (2.9) 

Subject To: Probability [Gi(d, μX, μP) ≥ 0] ≥ Ri (2.10) 

μx
L ≤ μx ≤ μx

U (2.11) 

μp
L ≤ μp ≤ μp

U (2.12) 

dL ≤ d ≤ dU (2.13) 

i = 1,2, … , m (2.14) 

The objective function f(d, μX, μP) given in the above formulation can be 

interpreted as the cost function of the system, evaluated at the means of X and P. The cost 

function can be linear as well as non-linear. In this formulation, ‘d’ denotes the vector of 
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deterministic parameters, ‘X’ represents the vector of random variables and ‘P’ denotes 

the vector of random parameters. The most important part that is a major difference from 

other regular optimization problem is the presence of probabilistic constraint function, 

which ensures the system safety (reliability). The function Gi(d, μX, μP) is the 

performance function of the system that emphasizes the reliability requirement of the 

system. The condition  Gi(d, μX, μP) > 0 denotes the safety region of the system and 

Gi(d, μX, μP) < 0 denotes the failure region of the system. Also, Gi(d, μX, μP) = 0 

represents the limit state surface that represents the boundary between the safe and failure 

region of the system. The variable ‘Ri’ denotes the target reliability of the system.  

The above formulation is for the reliability-based design optimization of a system 

consisting of only one component. If there are more than one component in the system 

that have to be optimally designed, different types of formulation of the probabilistic 

constraint is required based on whether the system is in series configuration, parallel 

configuration or mixed configuration.  

In case of series system, the objective function will be the sum of cost of 

individual components and the probability of failure is given below [1]. 

Pfseries = Prob{⋃ Gi(d, μX, μP) < 0}

i

 (2.15) 

As all the components in the system must be functional for the system to be 

operating, the union of all the performance functions of components is required to be in 

the safe region. But for parallel system, any one component needs to be operating for the 

system to be functional, so the probability of failure is as follows. 
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Pfparallel = Prob{⋂ Gi(d, μX, μP) < 0}

i

 (2.16) 

The mixed system can be represented as a combination of both series and parallel 

system (union and intersection function). 

The above formulation has the assumption that the failure of each component is 

independent of each other, which means that the probability of failure is fixed for each 

component. In the above mentioned parallel system, if there are 2 components, then the 

formulation becomes, 

Pfparallel = P(G1(x) < 0) ∩ P(G2(x) < 0) (2.17) 

In case of load sharing systems in which the failure of one component is 

dependent on the condition of other components, in addition to the above formulation, the 

conditional probability of the components’ condition (working/failed) needs to be 

incorporated in the constraint. Also, when the number of components increase, the 

evaluation of this probabilistic constraint requires great effort in order to obtain the 

optimal design values. 

As stated in [1, 3, 4], the double loop strategy can be employed to solve the 

probabilistic constraints to get accurate results. So far many methods like Fast Probability 

Integration [52] and two point adaptive non-linear approximation [46], have been 

developed in order to improve the efficiency of the double loop strategy as it is 

computationally infeasible for complex systems [44, 45]. Du et al. [53] provided a brief 

review of all the methods and modeling approaches for design under uncertainty. In 
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recent years, the single loop strategy [54, 55, 56] is adopted as it avoids the nested loops 

of reliability assessment and optimization. The reliability constraints are formulated as 

deterministic constraints [54, 57] and approximating the condition of Most Probable 

Point (MPP) increased the computational efficiency. Du and Chen [1] doubted that the 

optimality is not satisfactory in some cases, as the active reliability constraint may not 

converge to the actual MPP, and developed a new probabilistic design method called 

Sequential Optimization and Reliability Assessment (SORA). This method has been 

proved as an efficient method for designing individual components [5, 7, 59] with single 

as well as multiple failure functions for the required reliability level.  

Hence, in order to solve our above-mentioned problem of designing system with 

dependent component failures, an efficient framework is developed using the Sequential 

Optimization and Reliability Assessment (SORA). The details about this methodology 

and its implementation is discussed in next chapter. 
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CHAPTER 3  

SEQUENTIAL OPTIMIZATION AND RELIABILITY ASSESSMENT (SORA) 

APPROACH FOR OPTIMAL SYSTEM DESIGN  

 The Sequential Optimization and Reliability Assessment (SORA) method is 

developed by Du and Chen [1] for solving the problem of design under uncertainty. This 

method has been used extensively for the optimal and computationally efficient design of 

mechanical components. The SORA method has been successfully utilized to solve the 

design optimization of individual component with great efficiency by Zhuang [5] and 

Zhuang et al. [6, 7]. This method is based on serial single loop strategy [54, 55, 56] which 

decouples optimization loop from reliability analysis loop. Also, the method can handle 

both deterministic as well as random variables and parameters very efficiently. Hence, 

this method is extended to solve our design optimization problem of the load sharing 

system with dependent failure probabilities. 

 The SORA method uses a single loop strategy with cycles of deterministic 

optimization followed by reliability assessment. The deterministic optimization is carried 

out first so as to verify the feasibility of the probabilistic constraint and then followed by 

reliability analysis [1, 5, 13]. The advantage of this method is discussed in Du et al. [1]. 

In SORA methodology, the optimization and reliability assessment are decoupled from 

each other which gives the freedom of choosing any optimization technique as well as 

reliability analysis technique appropriately [1, 59].  

 The reliability is evaluated only at the desired level of reliability percentile. 

Usually, if the required reliability level is high (close to 1), the computational 
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requirement will be high as well, because the search region is large and that requires 

more function evaluations. So, it is essential to move the design point to its optimum as 

soon as possible to reduce the necessity for re-locating the most probable point. Hence, in 

order to overcome this problem, percentile formulation is used in SORA method to 

establish equivalence between deterministic optimization and probabilistic optimization 

[1]. The Figure 3.1 from [1] represents the concept of probabilistic constraint boundary 

and deterministic constraint boundary.  

 

Figure 3.1: Deterministic and Probabilistic Constraint Boundary from Du et al [1]. 

In the Figure 3.1, two co-ordinate systems are plotted (design space µ1, µ2 and 

random space X1, X2) for two random design variables. If no uncertainty is considered, 

g(μx1, μx2 ) = 0 will be the constraint boundary for the deterministic design case. If 

uncertainty is considered, Prob{g(μx1, μx2 ) ≤ 0} = R will be the constraint boundary 

[1]. The constraint of the probabilistic design is much stricter than the deterministic 
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design as the reliability achieved by the deterministic design is lower than the 

probabilistic design. In other words, the failure region for probabilistic design is larger 

than that of the deterministic design [1, 59].  

In the Figure 3.1, XMPP is the inverse most probable point obtained by converting 

the x-space into standard normal u-space. The most probable point is the worst case point 

such that if this point satisfies the deterministic constraint, then all the other points will be 

feasible. So the Prob{g(μ1, μ2 ) ≤ 0} = R is equivalent to g(XMPP1, XMPP2 ) = 0, which 

denotes that the evaluation of probabilistic constraint at design point is the same as 

evaluating the deterministic constraint at the inverse most probable point. [1]. It is 

important that if the probabilistic constraint is feasible, the inverse MPP for the design 

variables will be on the deterministic constraint boundary or inside the feasible boundary. 

A brief review of locating the most probable point using First Order Reliability method is 

discussed in section 3.1 

3.1 First Order Reliability Method (FORM) 

Some of the most commonly employed reliability analysis methods are Monte 

Carlo simulation, importance sampling, First Order Reliability Method (FORM), Second 

Order Reliability Method (SORM), and the Response Surface Method [49]. Ref [23] 

provided a summary of some reliability assessment approaches as the design solution 

based on deterministic approach would not be appropriate due to uncertainties. 

Though the traditional Monte Carlo simulation gives accurate reliability estimate, 

the computational effort is high due to large sample data requirement. A number of 

methods have been developed to reduce the computational effort and aim to provide 
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estimates of the integral form of failure probability [49]. In these methods, the joint 

probability density function fx(x) is simplified by transforming the probability density 

function into a standard normal distribution function of the random variables of the same 

dimension. Then, the limit state function g(x) = 0 is approximated by the Taylor series 

expansion and keeping the first few terms of the approximation. Ref [49] provides brief 

explanation about the process involved. If only the linear terms of this approximation are 

included, then it is First Order Reliability analysis Method (FORM) and if the second 

order terms are also included, then it is called as Second Order Reliability analysis 

Method (SORM). The Performance Measure Approach is one such FORM used in this 

research. 

In Performance Measure Approach (PMA), the R-Percentile is assessed by 

employing an optimization problem in u-space to find the MPP of inverse reliability. 

After the random variable x is transformed to independent and standard normal random 

variable u, the mean becomes the origin and the most probable point should be a point on 

the limit state boundary that has distance ‘β’ from the origin. As the output of the 

performance function is assumed to follow normal distribution. Ref [5] gives the relation 

between the probabilistic constraint function and the reliability index as, 

Prob[Gi(d, x, p) ≥ 0] = ∫
1

√2π

∞

0

exp [−
1

2
(t2)] dt (3.1) 

       =  1 − ∅(−βi) (3.2) 

=  ∅(−βi) (3.3) 
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where t =
gi − μgi

σgi

 and βi =
μgi

σgi

 (3.4) 

The value of beta is the reliability index and it can be shown that μgi
= βi. σgi

, 

when standard deviation is assumed to be constant, then the distance between the mean 

margin and the limit state boundary is given by the reliability index [5]. 

It is to be noted that if most probable point can satisfy the reliability level, then all 

the other points can satisfy the required reliability target. Also, the MPP should be at a 

minimum distance from the origin. Hence, the evaluation of the probabilistic constraint 

becomes an optimization problem in order to find the most probable point [59]. The 

problem formulation is given below.  

Minimize G(u) (3.5) 

S. T:  ||u|| = β (3.6) 

This MPP in u-space is again transformed to x-space using the mean and standard 

deviation of the random variable. Some of the traditional optimization techniques is given 

below. 

3.2 Optimization Techniques 

The Engineering design problems can be mathematically formulated as single-

objective optimization problem or multi-objective optimization problem depending on 

the number of criteria involved. The ultimate aim is to either minimize or maximize the 

objective function subjected to some constraints, though there may be some 
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unconstrained problems as well. The variables can be continuous, discrete (including 

binary) and also, based on the nature of variables, the problem can be formulated as 

either deterministic or stochastic optimization problems [49]. 

The solution methodology for these optimization problems (either constrained or 

unconstrained) can be classified as graphical method, optimality criteria method and 

search methods using algorithms [49]. The Graphical methods does not involve 

numerical algorithms and provides graphical visualization of the problem and the optimal 

solution. The optimality conditions reveals the necessary and sufficient conditions for the 

optimum value, including Lagrange Multipliers, Karush Kuhn Tucker (KKT) conditions, 

but the method is not simple and straightforward. The search methods includes gradient 

based search, line search method etc. The Gradient based approach utilizes search method 

depending upon the gradients of the objective and constraint function and arrives at the 

optimum solution. Steepest descent method, conjugate gradient method, Quasi-Newton 

method and other line search methods like secant method comes under search methods. 

Also, there are some non-gradient approach like genetic algorithm, simulated annealing 

etc. 

3.3 SORA Procedure 

A single SORA cycle consists of an optimization part and reliability assessment 

part. In each cycle, the deterministic optimization problem is solved. The design solution 

is updated and the reliability analysis is carried out to check whether the reliability level 

is satisfied by locating the inverse most probable points. If the reliability requirement is 

not satisfied, then the new inverse MPP’s are used to formulate the constraint function for 
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the next cycle of deterministic optimization. In this new loop, the constraint boundary 

would have been shifted to new location and the MPP will be in the feasible region [59]. 

If not, the cycle is repeated and this method arrives at the optimum design by 

progressively improving the design solution. The detailed flowchart of this methodology 

is represented in Figure 3.2. 
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Figure 3.2: SORA Flowchart for Load Sharing Systems 
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In the flowchart of this methodology, there are two loops, optimization loop and 

reliability assessment loop. Initially, the value of most probable points are not available, 

so the mean of the random design variables and design parameters are selected as XMPP 

and PMPP. So, the value of shifting vector, which will be discussed later, is zero for the 

first cycle. In each cycle of this method, the optimization problem is solved first in order 

to find the value of µx and µp for each component. If we consider only the presence of 

random variables µx, then the problem formulation for first cycle is given as follows. 

Objective: Min ∑ fj(dj, μxj)
T

j=1
    (3.7) 

Subject To:  gi,j(dj, μxj) ≥ 0 (3.8) 

Lb ≤  μxj  ≤  Ub  (3.9) 

Lb ≤  dj  ≤  Ub (3.10) 

i = 1, 2, … , m;   j =  1, 2, … , T; (3.11) 

In the above formulation, the total number of components is denoted as ‘T’, and 

f(dj, μxj) is the objective function that represents the total cost of the system as the sum of 

the cost of individual components. The deterministic design variable is denoted by ‘d’ 

and the mean of the random design variable X is denoted by ‘µx’. The number of 

constraints is denoted by ‘m’. In equation 3.8, gi,j denotes the performance function ‘i’ for 

component ‘j’.  
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Now, for the first cycle, once the deterministic optimization given in the above 

formulation is solved, some of the constraints will be active and the optimum point µx for 

the system will be on the deterministic constraint function boundary. From Figure 3.3 [1], 

it is shown that the actual probability that this design variable µx will be feasible under 

uncertainty is approximately 0.5.  

 

Figure 3.3: Shifting the Constraint Boundary from Du et al [1]. 

Now after the deterministic optimization loop is completed and the optimum is 

found, the reliability assessment is carried out for the solution obtained from the 

optimization phase. Assume that the system has two components with load ‘P’ acting on 

the system is divided equally into ‘P/2’ on the two components and the load gets 

redistributed if component 1 has failed. This forms a simple load sharing parallel system. 

So, the system reliability is as follows. 
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System Reliability = 1 − Prob{both components fail} (3.12) 

Rsystem = 1 − {PfC1 ∗ PfC2/C1} (3.13) 

Where PfC1 denotes the probability of failure of component 1 and PfC2/C1 denotes 

the conditional probability of failure of component 2 given that component 1 has failed. 

In order to find all these probabilities, the PMA optimization, which is a first order 

reliability analysis method is used. 

The x-space is transformed to standard normal u-space based on the mean and 

standard deviation of the random variable X. Then the inverse most probable points for 

the arbitrary component reliability level are located for the constraint gi,j from the 

problem formulation given below. 

Minimize G(u) (3.14) 

S. T:  ||u|| = βcomp (3.15) 

As it is already shown in figure 3.3 that the most probable point will lie in failure 

region and the reliability of this design point is around 0.5. Also the reliability of the 

design point with respect to the constraint gi,j/k, where gi,j/k denotes the performance 

function ‘i’ with component ‘j’ working given that component(s) ‘k’ failed is found 

using, 

Minimize ||u|| (3.16) 

S. T:  Gi,j k⁄ (u) = 0 
(3.17) 
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The value of conditional probability can be found from solving the above 

optimization problem. This process is repeated to calculate the conditional probabilities 

for all the components and then the system reliability is measured from equation 3.13. 

If the reliability target is not met, the second cycle of the deterministic 

optimization needs to be implemented. Each active constraint should be modified to shift 

the most probable point at least onto the deterministic boundary. If ‘s’ is denoted as the 

shifting vector, then each limit state function for the next optimization cycle will be as 

follows [1, 13, 59]. 

g(μx − s) ≥ 0 (3.18) 

The shifting vector should ensure the most probable point lies on the deterministic 

boundary and its value can be found from equation 3.13 below from [1, 13, 59]. 

 s = μx − xMPP (3.19) 

The dotted line in Figure 3.3 shows the shifted deterministic boundary for system 

with identical components. The feasible region for the second cycle will be narrower 

when compared to the first cycle of the optimization. The optimum solution is obtained 

for second optimization cycle and reliability is assessed. The results should improve 

drastically from the first cycle. If the required target is not met, the process is continued 

until the objective converges and the reliability target is achieved [1].  
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CHAPTER 4 

 NUMERICAL EXAMPLES 

In order to demonstrate and validate the developed methodology, four numerical 

example cases are discussed in this section. A simple case of a system with two identical 

components is modelled, followed by designing a system with non-identical components 

and finally the formulation for finding the optimum number of components for a system 

is discussed. In all the cases, the component 1 is assumed to fail first. 

4.1 Case 1 - System with Identical Components 

A simple load sharing system consisting of two identical components is 

considered. Figure 4.1 shows two identical I-Beams loaded with a bar at the top. 

Assuming the system to be a machine bed and a load of 600KN is applied at the top 

which splits equally to two beams, so that each beam experiences a load of 300KN.  

 

Figure 4.1: A Simple Load Sharing System 

The beam fails when load exceeds its yield strength and the system fails if both 

components fail. The objective is to design the beams with minimum cost so that the 
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reliability level of system is atleast 99.87%. As the components are identical, Figure 4.2 

represents a single beam and its design parameters.  

 

Figure 4.2: Dimensions of I-Beam from Zhuang [5]. 

 To design the beam, two random variables X1 and X2 needs to be determined [5, 

60, 13]. Due to manufacturing variability, these two variables X1 and X2 are random and 

are normally distributed with σ1 = 2.025 cm and σ2 = 0.225 cm respectively. The length 

of the beam is 200 cm. The maximum bending stress ‘σ’ for each beam is taken as 16 

KN/ cm2. Also, an unshared external axial load ‘Q’ of 50KN acts on each beam. Both the 

vertical and lateral loads are assumed to be normally distributed, i.e., P ~ N(600, 10) KN 

and Q ~ N(50, 1) KN. The target reliability index ‘β’ for the system is 3.0115 

(Probability of failure= 0.0013). Both the components are identical and have same 

performance function (g1(x) = g2(x)).  

 The overall objective of this problem is to reduce the system cost, i.e., the weight 

of the individual components which contributes to overall system cost and on the other 

hand should satisfy the required system reliability level. For simplicity, the beam length 
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and material density are assumed to be constant, so minimizing this function will be 

equivalent to minimizing the cross sectional area of the beam [5]. Now, the objective will 

be to minimize the function, f(x1, x2) = 2x1x2 + x2(x1 − 2x2). The limit state function 

g(x1, x2)  ≥ 0 for each component is the difference between bending threshold and the 

actual bending stress. G(x1, x2) is defined as, 

G(x1, x2)  = σ − (
My

Zy
+

M𝑧

Zz
) 

(4.1) 

 For the purpose of simplicity, the loads P and Q are assumed to be equal to their 

mean value and each component has only one performance function (i =1). As the beams 

are identical and have similar performance functions, the conditional probability 

functions g1/2 and g2/1 will also be the same. These two identical components are taken as 

two different components with same values for the variables for better understanding. 

The problem formulation is as follows. 

Objective: Minimize 2μ1μ2 + μ2(μ1 − 2μ2) +  2μ3μ4 + μ4(μ3 − 2μ4) (4.2) 

S. T: {1 − P[g1(μ1, μ2) < 0] ∗ P[g2 1⁄ (μ3, μ4) < 0]}  ≥ 0.9987 (4.3) 

10 ≤  μ1  ≤  80, 0.9 ≤  μ2  ≤  5 ; 10 ≤  μ3  ≤  80, 0.9 ≤  μ4  ≤  5   (4.4) 

μ1, μ2, μ3, μ4 ≥  0 (4.5) 

μ1 =  μ3 ;   μ2 =  μ4  (4.6) 
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g1(μ1, μ2) =  σ −
0.3(

p
2)μ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)

+
0.3qμ2 

(μ1 − 2μ2)μ2
3   + 2μ2μ1

3
 

 

 

(4.7) 

g2(μ3, μ4) =  σ −
0.3(

p
2)μ3 

μ4(μ3 − 2μ4)3  + 2μ3μ4(4μ4
2   + 3μ3

2 − 6μ3μ4)

+
0.3qμ4 

(μ3 − 2μ4)μ4
3   + 2μ4μ3

3
 

 

 

(4.8) 

g1/2(μ1, μ2) =   σ −
0.3pμ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)

+
0.3qμ2 

(μ1 − 2μ2)μ2
3   + 2μ2μ1

3
 

 

 

(4.9) 

g2/1(μ3, μ4) =  σ −
0.3pμ3 

μ4(μ3 − 2μ4)3  + 2μ3μ4(4μ4
2   + 3μ3

2 − 6μ3μ4)

+
0.3qμ4 

(μ3 − 2μ4)μ4
3   + 2μ4μ3

3
 

 

 

(4.10) 

 The probability of failure of the system is nothing but the probability that both 

components fail. For this case, the failure probability should be less than 0.0013 or in 

other words, the reliability should be greater than or equal to 99.87%. In this problem, 

even though the components are identical and has same performance function, they are 

treated as two different components with same values for variables. But the final answer 

for the variables x1, x3 and x2, x4 will be identical. 
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The Genetic Algorithm is used for the Optimization process and Performance 

Measure Approach (PMA) is used for reliability analysis. Using the above discussed 

methodology, the optimum mean values of the design variables is found within few 

iterations. The solution obtained from MATLAB software for each cycle is tabulated in 

Table 4.1. 

Table 4.1: Results for Case 1 

Cycle µ1 µ2 µ3 µ4 Cost Rsystem 

1 31.4745 0.9470 31.4745 0.9470 175.25 0.6583 

2 34.2925 0.9259 34.2925 0.9259 187.07 0.8342 

3 38.4987 1.0298 38.4987 1.0298 233.63 0.9988 

 

The optimum design value for the beam is found to be µ1 = 38.4987cm, µ2 = 

1.0298 cm with total system cost of 233.63 sq.cm. In order to validate the results 

obtained for the given system, the Monte Carlo Simulation is carried out for the given 

performance function by generating random samples from the given distribution. The 

average reliability of the system is found to be 99.80% and the solution is acceptable. If 

the conditional probabilities are not considered, then the actual reliability is only around 

95.2 % which is erroneous due to load sharing property. 
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4.2 Case 2 - System with Identical Components but with Different Performance 

Functions 

There are situations where the manufacturer can afford to produce only one type 

of component which is interchanged for different purposes. In these cases, the design of 

the components in the system is identical but the performance function for each 

component varies depending on the loading condition or location where it is installed for 

usage. The developed methodology can be extended to this type of system with identical 

components but with different performance functions for each component. To validate 

the claim, the same system shown in Figure 4.1 and 4.2 is used but the performance 

function is altered based on the applied load ‘P’. In this case, the load ‘P’ is not equally 

distributed and the load ‘Q’ is acting on only one component and hence the failure 

function will not be the same even though the components are identical. The objective 

function remains the same but the performance function constraint is changed in the 

problem formulation as follows. 

Objective: Minimize 2μ1μ2 + μ2(μ1 − 2μ2) +  2μ3μ4 + μ4(μ3 − 2μ4) (4.11) 

S. T: {1 − P[g1(μ1, μ2) < 0] ∗ P[g2 1⁄ (μ3, μ4) < 0]}  ≥ 0.9987 (4.12) 

10 ≤  μ1  ≤  80, 0.9 ≤  μ2  ≤  5 ; 10 ≤  μ3  ≤  80, 0.9 ≤  μ4  ≤  5   (4.13) 

μ1, μ2, μ3, μ4 ≥  0 (4.14) 

μ1 =  μ3 ;   μ2 =  μ4  (4.15) 
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g1(μ1, μ2) =  σ −
0.3(

2p
3 )μ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)

+
0.3qμ2 

(μ1 − 2μ2)μ2
3   + 2μ2μ1

3
 

 

 

(4.16) 

g2(μ3, μ4) =  σ −
0.3(

p
3)μ3 

μ4(μ3 − 2μ4)3  + 2μ3μ4(4μ4
2   + 3μ3

2 − 6μ3μ4)
 

 

(4.17) 

g1/2(μ1, μ2) =   σ −
0.3pμ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)

+
0.3qμ2 

(μ1 − 2μ2)μ2
3   + 2μ2μ1

3
 

 

 

(4.18) 

g2/1(μ3, μ4) =  σ −
0.3pμ3 

μ4(μ3 − 2μ4)3  + 2μ3μ4(4μ4
2   + 3μ3

2 − 6μ3μ4)
 

 

(4.19) 

 The reliability of the system should be greater than or equal to 99.87%. This 

problem is also formulated as previous case such that, even though the components are 

identical, they are treated as two different components with same values for variables. 

The final answer for the variables x1, x3 and x2, x4 will be identical. The Genetic 

Algorithm is used for the Optimization process and Performance Measure Approach 

(PMA) is used for reliability analysis. The optimum mean values of the design variables 

is found within a couple of iterations. The solution obtained from MATLAB software for 

each cycle is tabulated in Table 4.2. 

The optimum design value for the beam is found to be µ1 = 40.5532 cm, µ2 = 

1.0902 cm with total system cost of 260.53 sq.cm. The average reliability of the system 
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obtained with Monte Carlo Simulation is 98.92%. If the conditional probabilities are not 

considered, then the actual reliability is only around 94.6% which is erroneous due to 

load sharing property. 

Table 4.2: Results for Case 2. 

Cycle µ1 µ2 µ3 µ4 Cost Rsystem 

1 36.0270 1.0136 36.0270 1.0136 208.92 0.6975 

2 37.0654 1.0141 37.0654 1.0141 221.43 0.8790 

3 40.5532 1.0902 40.5532 1.0902 260.53 0.9989 

 

4.3 Case 3 - System with Non-Identical Components 

Most of the engineering systems consists of components that are non-identical but 

their combined performance is necessary for the system to operate. In these cases, the 

above developed methodology can be used to design the components optimally, ensuring 

the system safety. In order to demonstrate this case, one of the I-Beam in the system 

shown in Figure 4.1 is replaced by a beam of rectangular cross section shown in Figure 

4.3. Also, the external load ‘Q’ is ignored. 
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Figure 4.3: Beam of Rectangular Cross Section 

The geometrical dimensions of this component is given in Figure 4.3. The length 

of the beam is 200cm. The random variables X3 and X4 are normally distributed with σ3 = 

2.025 cm and σ4 = 0.225. The other parameters are also taken to be the same as the I-

Beam, with load ‘Q’ removed. The cost function for rectangular beam is f(x3, x4) = x3.x4. 

The performance function G(x3, x4) is given in equation 4.20.  

G(x3, x4) = σ −
6PL 

4 ∗ x3x4
2  

 (4.20) 

The complete problem formulation is as follows. 

Objective: Minimize 2μ1μ2 + μ2(μ1 − 2μ2) +  (μ3 ∗ μ4) (4.21) 

S. T: {1 − P[g1(μ1, μ2) < 0] ∗ P[g2 1⁄ (μ3, μ4) < 0]} ≥ 0.9987 (4.22) 

10 ≤  μ1  ≤  80, 0.9 ≤  μ2  ≤  5 ; 1 ≤  μ3  ≤  25, 10 ≤  μ4  ≤  50 (4.23) 
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μ1, μ2, μ3, μ4 ≥  0 (4.24) 

g1(μ1, μ2) =  σ −
0.3(

p
2)μ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)
 (4.25) 

g2(μ3, μ4) =  σ −
300(

p
2) 

μ3μ4
2  

 (4.26) 

g1/2(μ1, μ2) =   σ −
0.3pμ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)
 (4.27) 

g2/1(μ3, μ4) =  σ −
300p 

μ3μ4
2  

 (4.28) 

The Genetic Algorithm is used for the Optimization process and Performance 

Measure Approach (PMA) is used for reliability analysis. The optimum mean values of 

the design variables found from MATLAB software for each cycle is tabulated in Table 

4.3. 

Table 4.3: Results for Case 3. 

Cycle µ1 µ2 µ3 µ4 Cost Rsystem 

1 31.4275 0.9307 2.9527 43.6260 214.83 0.6709 

2 32.5215 1.0124 3.7869 44.5877 265.58 0.8542 

3 35.9531 1.1120 4.5016 45.9437 324.28 0.9990 
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The optimum value for the component 1 (I-Beam) is µ1 = 35.9531 cm, µ2 = 

1.1120 cm and for rectangular bar is µ3 = 4.5016 cm, µ4 = 45.9437 cm with total system 

cost of 324.38 sq.cm. The average reliability of the system obtained with Monte Carlo 

Simulation is around 98.86%. If the conditional probabilities are not considered, then the 

actual reliability is only around 93%. 

4.4 Case 4 - Selection of Components Required for the System 

In addition to optimal design of components in a system, the user might be 

interested to know whether to include all the components or else eliminate some 

components so that the system cost could be reduced while the reliability target is still 

attainable. When the system consists of non-identical components, then the cost of each 

components will play a vital role in designing and allocating the number of components 

to the system. For instance, it is efficient to design components with lower cost function 

that perform at the same level than to design the one with higher cost function, provided 

that there is no restriction for the number of components to be manufactured. 

In order to solve this case, a mixed integer programming problem is formulated 

with I-Beam and rectangular box beam used for the previous case. The final solution will 

provide a knowledge whether the system has an optimum cost by including both 

components or by designing any one component to carry full load for the given reliability 

level. The problem formulation is given below. 

Objective: Minimize b1[2μ1μ2 + μ2(μ1 − 2μ2)] +  b2[(μ3 ∗ μ4)] (4.29) 

[b1g1(μ1, μ2) ≥ 0] (4.30) 
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[b2g2(μ3, μ4) ≥ 0] (4.31) 

10 ≤  μ1  ≤  80, 0.9 ≤  μ2  ≤  5 ; 1 ≤  μ3  ≤  25, 10 ≤  μ4  ≤  50   (4.32) 

b1, b2  ∈ [0,1];  μ1, μ2, μ3, μ4 ≥  0  (4.33) 

g1(μ1, μ2) =  σ −
0.3(

p
2

)μ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)
 (4.34) 

g2(μ3, μ4) =  σ −
300(

p
2) 

μ3μ4
2  

 (4.35) 

g1/2(μ1, μ2) =   σ −
0.3pμ1 

μ2(μ1 − 2μ2)3  + 2μ1μ2(4μ2
2   + 3μ1

2 − 6μ1μ2)
 (4.36) 

g2/1(μ3, μ4) =  σ −
300p 

μ3μ4
2  

 (4.37) 

The reliability assessment is done according to the results of the above 

formulation. In order to keep the system in working condition, either the component 1 

should be designed to carry the entire load or the component 2 should be designed to 

carry the entire load or components 1 and 2 should be combined to carry the entire load 

provided that even if one component fails, the other component holds out. The sum of the 

binary variables gives us the optimum number of components required for the system. 

Also, with the knowledge of these binary variables, the components that are to be 

included in the system can be easily identified. The result is that b1 =1 and b2 = 0 with 

design parameters are µ1 = 53.8166 cm, µ2 = 0.9524 cm, with total system cost of 151.95 
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sq.cm. In this case, the component 1 is optimum to carry the entire load depending on the 

overall cost. But, in terms of K out of n: G system, if it is essential to place at least two 

components, then one more constraint given in equation 4.38 is added to the above 

formulation. 

b1 + b2 ≥ k (4.38) 

If k=2, then b1 =1 and b2 = 1 and both the components are included in our design 

leading to optimum value of µ1 = 35.6959 cm, µ2 = 1.0105 cm for I-Beam and for 

rectangular bar µ3 = 4.6404 cm, µ4 = 45.7061 cm with total system cost of 320.26 sq.cm. 

In systems where the number of components is large, then this method will be helpful in 

selecting the components needed to be included in the system. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 This research proposes a novel approach for the design optimization of load 

sharing systems using Sequential Optimization and Reliability Assessment (SORA) 

framework. The optimal design of the components to satisfy the required system level 

reliability target can be arrived using this method with least computational requirement. 

This is because the objective converges rapidly by employing sequential cycles of 

optimization and reliability assessment. Several numerical examples are provided in 

order to validate this method by designing components for different types of systems. The 

number of function evaluations were less than 1000 for all the four cases of numerical 

examples. Also, the formulation for finding the optimum number of components for a 

given system is discussed at the end.  

 In terms of accuracy of the optimum solution, Monte Carlo Simulation is 

conducted from the given distribution and the reliability level achieved for each case is as 

follows.  

1. Reliability of system with identical components is around 99.80%,  

2. Reliability of system with identical components but with different performance 

function is around 99.52%, 

3. Reliability of system with non-identical components is around 98.86% 

 The solutions obtained for these cases are acceptable as the error percentage is 

low. This error is due to the fact that the cost function and performance function for the 
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components are non-linear. So, the first order approximation during reliability analysis 

leads to loss in accuracy of the result. Also, for a system with non-identical components, 

the convergence of the objective might take a long time with increased cycles of 

optimization and reliability analysis. This drawback may be due to the difference in 

component design variables as well as the constraint and objective functions are non-

linear. So, the activities of the deterministic constraint changes drastically for each cycle 

leading to increased computation. But, sometimes, the results were conservative that led 

to increased system cost rather than allowing the system to fail. This is due to the nature 

of shifting vector strategy, which might have moved the most probable point far inside 

the feasible region than required. Also, this shifting strategy will work reliably only for 

the random variables with normal distribution. If there is a mix of random variables with 

normal distribution and other distributions, or if the random variables are non-normally 

distributed, this method of using FORM with SORA is not applicable. 

 In order to overcome the problems with FORM method, Du [58] proposed saddle 

point approximation method for SORA, which could be tried for our system. Also, there 

is a high need to reduce the curse of dimensionality while formulating the system 

reliability constraint for components with dependent probability of failure. As the number 

of components increase, the conditional probability for each and every components’ 

working or failed state needs to be incorporated, which will increase the computational 

requirement of the single constraint many fold. So, if the system has many constraints, 

the computation will be much complex and also reaching an optimum solution will be 

difficult. Also, as the computational demand of most probable point based approach and 
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the number of random variables are approximately proportional to each other, the random 

variables which are of least importance or inessential for the component design can be 

sorted out by developing methodology using design of experiment (DOE) techniques, 

which might be the objective for future research. This will result in reduced problem size 

and might contribute towards alleviating the curse of dimensionality problem, leading to 

increased computational efficiency.  

 But in case of designing simple system with less number of components or 

designing individual components for the given reliability, this method is reliable as well 

as efficient. Other usefulness with this method is that the design objective is deterministic 

and there is no need to perform probability analysis during the optimization process. 

Also, the reliability is measured only at the desired level (R-Percentile) and the use of 

robust inverse MPP search algorithm will makes it more computationally efficient [1]. 

Finally, the optimum number of components required for the system is found by 

formulating a mixed integer programming problem.  
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