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ABSTRACT 

 To date, the most popular and dominant material for commercial solar cells is 

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out 

of all commercial solar cells. Although the potential of crystalline-Si solar cells in 

supplying energy demands is enormous, their future growth will likely be constrained 

by two major bottlenecks. The first is the high electricity input to produce 

crystalline-Si solar cells and modules, and the second is the limited supply of silver 

(Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching 

terawatt-scale deployment, which means the electricity produced by crystalline-Si 

solar cells would never fulfill a noticeable portion of our energy demands in the future. 

In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) 

electroplating has been developed as an alternative metallization technique in the 

fabrication of crystalline-Si solar cells. The plating is carried out in a 

near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been 

found that dense, adherent Al deposits with resistivity in the high 10–6 Ω-cm range 

can be reproducibly obtained directly on Si substrates and nickel seed layers. An 

all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al 

back electrode, has been successfully demonstrated based on commercial p-type 

monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further 

optimization of the cell fabrication process, in particular a suitable patterning 

technique for the front silicon nitride layer, is expected to increase the efficiency of 

the cell to ~18%. This shows the potential of Al electroplating in cell metallization is 

promising and replacing Ag with Al as the front finger electrode is feasible. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

 Over the past few decades, the fossil fuels, coming from coal, natural gas and oil, 

have been the dominant resource for world energy supply. In the statistical review 

published by British Petroleum, the consumption of the fossil fuels in 2014 continued 

to increase despite the slow growth in energy demand [1]. Global oil consumption 

grew 0.8 percent in 2014, while natural gas and coal consumption each increased by 

0.4 percent. However, this situation could change in the coming decades because 

fossil fuels not only are limited in supply but also cause detrimental impact on the 

environment like climate change through the emission of global warming gases. 

Therefore, the world has been searching for alternative energy resources, which can 

substitute the fossil fuels in the near future. Nuclear energy, using nuclear fission to 

release energy, has been considered as a promising substitute for the fossil fuels due to 

its lower cost and clean production of electricity. However, nuclear energy raises 

concerns about safety and radioactive waste disposal. In addition, it takes a long time 

to build a nuclear plant, making it less feasible for it to fulfill the rising demand for 

energy. A more sustainable and cleaner energy source needs to be developed to reduce 

the global usage of fossil and nuclear energy.    

 With significant cost reductions in both wind and solar energy, renewable energy 

is growing rapidly, and record numbers of new wind and solar installations have been 

coming online in the United States over the past few years [2]. Among all the 

renewable sources, solar energy is the fastest-growing renewable generation source. 

Photovoltaics (PV), a form of solar energy where light is directly converted to 

electricity typically using a semiconductor material, is one of the most promising 

candidates for sustainable energy source because sunlight is free, essentially unlimited, 
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and available almost in any part of the world. The impressive growth of global PV 

market can be clearly seen by tracking the evolution of the global cumulative installed 

PV capacity, as shown in Figure 1.1 [3]. At the end of 2014, the capacity almost 

reached 180 GWp, and it was anticipated that solar PV would continue growing and 

hit the target of 200 GWp installations over the next three years. 

 
Figure 1.1 Global cumulative installed PV capacity from 2000 to 2014. 

 

 PV provides a number of advantages over fossil energy, nuclear energy, and even 

other renewable energy sources: 

 1) PV systems do not require fuel, which eliminates the risk associated with 

 fluctuating fuel costs, and this advantage is shared by some other renewable 

 energy sources. There is also no requirement for the disposal of fuel. The 

 economic and safety risks associated with nuclear fuel disposal are still under 

 dispute. 

 2) The energy produced by PV systems is free of pollutants and greenhouse gas 
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 emissions. Besides environmental issues, it should be noted that recent reports 

 indicate hidden health care costs associated with populations living near coal 

 fired power plants [4]. These hidden costs are not typically included in cost 

 comparison between PV and coal. 

 3) PV systems are not localized in the world and can be installed and operated 

 with a relative ease on a rooftop, so transmission and  distribution costs can be 

 significantly reduced. It is worth mentioning the electricity generated at the 

 point of use is of more value than that generated at a remote place from which it 

 is supplied.  

 4) PV systems are comprised of highly reliable, solid-state devices with low 

 operation and maintenance (O&M) requirements. The current O&M costs for PV 

 are a much lower percentage of the total levelized cost of energy (LCOE) when 

 compared to other power generation technologies [5], with potential to be 

 reduced even further with advances in module level electronics. 

 5) Due to improvements in fast switching power devices and inverter 

 technology [6], integration of PV into the utility grid can now be realized in a 

 way that significantly enhances the stability of the grid and provides added value, 

 like power factor control and dispatchable reactive power (referred to as 

 “ancillary services” in the utility sector) [7].  

 Although the costs related to PV modules and systems have dropped drastically 

over the last few decades, the LCOE of PV is still higher than that of fossil fuels in 

many places [5]. In the United States, solar PV only accounts for ~0.4% of the total 

energy consumed in 2014, as shown in Figure 1.2, due to a higher LCOE 

(~$0.125/kWh) compared to fossil fuels (≤$0.1/kWh) [2]. To make PV a truly 

competitive energy source to the conventional fossil fuels, it is necessary to further 
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reduce the costs at all levels, including material, cell, module, and system. 

 
Figure 1.2 Percent of total U.S. energy consumption in 2014. 

 

 There are two obvious ways to bring down the PV module price: increase the 

conversion efficiency and reduce the material, cell processing and manufacturing cost. 

This criterion forms the overall scope and objective of my PhD research, which is 

using cheaper contact material and simplifying the whole process flow to fabricate 

solar cells with efficiency close to what commercial solar cells have achieved. The 

research would particularly focus on substituting the front silver (Ag) electrodes of 

crystalline silicon (Si) solar cells with a cheaper and Earth-abundant material such as 

aluminum (Al).  
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1.2 Overview of the Photovoltaic Technology 

PV is a simple method of utilizing the energy of sun. PV energy conversion is a 

one-step process which converts light energy directly into electricity using PV devices 

(solar cells). The explanation relies on quantum theory, in which light is made up of 

packets of energy, called photons. Their energy depends solely on the frequency of the 

light, and the energy of visible photons is sufficient to excite electrons up to higher 

energy levels, where they are free to move. In a solar cell, there is a built-in potential 

which separates the excited charge carriers before they can relax, and further drives 

the electrical current through an external load. The effectiveness of a solar cell 

depends on the different selections of light absorbing materials and the connection 

between materials and external circuit. Solar cells are commonly connected together 

electrically, in series or in a series-parallel configuration, to increase the voltage and 

current of the interconnected ensemble. The final component is called a PV module in 

which these cells are encapsulated by a front glass cover and a rear cover to protect 

themselves from the environmental hazards.  

 The photovoltaic effect was first discovered by Edmund Bequerel in 1839 [8]. 

His experimental setup was composed of a silver chloride (AgCl) electrode and a 

platinum (Pt) electrode in an acidic solution. When light was shone on the AgCl 

electrode, he observed a voltage drop across the two electrodes. In 1883, Charles 

Fritts demonstrated the large area and all solid-state solar cell by depositing an 

extremely thin layer of gold (Au) on semiconductor selenium (Se) [9]. This early solar 

cell was based on Schottky barrier between semiconductor-metal interfaces, where a 

semitransparent layer of metal deposited on top of the semiconductor. This provided 

both the asymmetric electrical junction, which is necessary for photovoltaic effect, 

and the access of incident light to junction. In the 1950s, with the development of 
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good quality Si wafers, researchers begun looking into the potential application of 

crystalline Si in solar cells. Meanwhile, discovery of a way to fabricate p-n junction in 

Si was followed the development of Si electronics. The p-n junction structures 

showed much better rectifying and photovoltaic behavior than Schottky barrier. The 

first Si solar cell with a p-n junction was demonstrated by D. Chapin et al. of Bell 

Laboratories in 1954 [10], and the conversion efficiency was about 6%. Since then, Si, 

either monocrystalline or multicrystalline, has remained the foremost PV material and 

dominated the solar cell market, gaining from the advances of Si-based 

microelectronics industry.  

 To compete with wafer-Si technologies, thin film PV technologies were 

developed to lower the cost of module manufacturing by reducing the processing 

steps and amount of active material required to create a module, at the expense of 

lower efficiencies. In general, this is accomplished by depositing a thin inorganic 

semiconductor film, called the absorber layer, onto a substrate. The absorber normally 

features a direct bandgap in the range of 1–1.75 eV, allowing for strong optical 

absorption of the visible and near-infrared wavelengths available from the solar 

spectrum. Various thin film material systems have been utilized by the industry, and 

the most successful absorber materials have been hydrogenated amorphous silicon 

(a-Si:H), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). 

However, for the CdTe and CIGS systems, limited availability and increasing prices 

of Te and In may be the obstacles to their future development according to experts 

working in the PV industry [11]. 

 While thin films were developed to provide an alternative with cheaper cost but 

lower efficiency to wafer-Si, multijunction III-V solar cells, also known as tandem 

cells, were developed to push the boundary of solar cell efficiencies. Efficiencies as 
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high as 46% have been achieved under concentrated light and 38.8% under one sun 

[12] with an incredibly high cost. This higher cost is due to both the materials 

requirements (e.g., substrates) and the expensive, low throughput epitaxial crystal 

growth methods (e.g., metal-organic chemical vapor deposition, molecular beam 

epitaxy) required to create these devices, which is why concentration of light is 

normally used to reduce the amount of material needed [13]. The efficiency boost 

primarily comes from the use of multiple p-n junctions stacked on top of each other, 

each with a bandgap engineered to absorb light with a certain range of wavelengths.  

 In addition to wafer-Si, thin film and multijunction III-V technologies, other 

materials and device concepts have been developed at the laboratory scale with little 

to no commercial impact. Perhaps the most notable technology in this category would 

be organic PV, which is based on the use of organic semiconductor materials. 

Dye-sensitized solar cells are another technology of interest to the PV community. 

More recently, perovskite materials have emerged as a potentially attractive 

technology due to the demonstration of a non-stabilized cell efficiency of 21% by 

EPFL [14]. Concerns over both the short-term and long-term stability of organic PV, 

dye-sensitized solar cells, and perovskite cells are current market barriers for these 

technologies. 

 Other emerging PV technologies aim to break the well-known 

Shockley-Queisser limit by exploiting quantum confinement or by using some other 

novel energy conversion process (e.g., hot carrier solar cells, multiple exciton 

generation, intermediate band solar cells). Despite the advanced and innovative 

concepts, the majority of these technologies are still at the very early stages of the 

R&D cycle. 

 Figure 1.3 shows the progression of record laboratory efficiencies for current 
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solar cell technologies between 1976 and 2015 [14], which is maintained and updated 

by NREL. It can be seen that current commercially available solar cell technologies 

include 1) wafer-Si solar cells, either monocrystalline or multicrystalline, 2) CdTe 

cells, 3) thin-film Si cells, either amorphous or microcrystalline, 4) CIGS cells, and 5) 

III-V compound semiconductor multijunction tandem cells. On the other hand, 

currently developing solar cell technologies include 1) dye-sensitized solar cells, 2) 

perovskite cells, 3) organic solar cells, 4) quantum dot cells, and 5) thin film copper 

zinc tin selenide sulfide (CZTSS) cells. In general, there are two major directions for 

the development of current solar cell technologies. The first one is using more 

cost-effective ways to produce PV devices and materials, which includes 

photoelectrochemical junctions and alternative materials such as polycrystalline Si, 

amorphous Si, and other thin film and organic materials. The second one is improving 

device efficiency with tandem and other multiple bandgaps structures. 

 

Figure 1.3 Progression of record laboratory efficiencies for current solar cell 
technologies between 1976 and 2015. 
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1.3 Chapter Organization 

This chapter provides an introduction to the current PV technology, from why 

people need to develop renewable energy sources, what advantages the PV 

technology has compared to the conventional fossil energy to what issues the current 

PV technology has to prevent it from becoming the mainstream energy source. 

Developing an approach to solve the cost issue is the main focus and objective of my 

thesis work. Moreover, a brief overview of the current PV technology is introduced, in 

which the unique features of different material systems are discussed.  

 In Chapter 2, the basic operation and fundamental physics of solar cells are 

provided, including the typical structure of a solar cell, characteristics of a solar cell, 

and loss mechanisms in a solar cell. Since the wafer-Si solar cell is the most common 

solar cell commercially available today, it is used as an example to show the cell 

structure, in which the functions of different layers are discussed. Several important 

parameters which are used to characterize solar cells are defined and discussed. 

Various loss mechanisms in solar cells, including optical losses, resistive losses, and 

recombination losses, are discussed to explain why there is a discrepancy between the 

theoretical and the actual efficiency. 

 Chapter 3 provides a brief overview of crystalline-Si solar cells, which dominate 

the global solar cell market with ~90% of market share. Although the potential of 

crystalline-Si solar cells in supplying energy demands is enormous, their future 

growth will likely be constrained by two fundamental roadblocks. The first one is 

high energy input for the production of crystalline-Si modules. A much more 

energy-efficient process flow needs to be developed in order to solve this bottleneck. 

The second one is the scarcity of Ag reserve for the front metal grid. An alternative 

metallization technique with a low-cost and Earth-abundant metal to substitute for 
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screen-printed Ag has to be investigated to address this issue, which is the motivaion 

behind the development of room-temperature Al electroplating on Si substrates in this 

work.  

 In Chapter 4, we report the development of Al electroplating on Si substrates in a 

near-room-temperature ionic liquid for the metallization of crystalline-Si solar cells. 

The electrolyte is prepared by mixing anhydrous aluminum chloride and 

1-ethyl-3-methylimidazolium tetrachloroaluminate. The plating is carried out by 

means of galvanostatic electrolysis. The structural and compositional properties of the 

Al deposits are characterized, and the sheet resistance of the deposits is investigated to 

reveal the effects of pre-bake conditions, deposition temperature, and post-deposition 

annealing conditions. It has been found that dense, adherent Al deposits with 

resistivity in the high 10–6 Ω-cm range can be reproducibly obtained directly on Si 

substrates. 

 In Chapter 5, the integration of Al electroplating in the metallization process of 

commercial p-type monocrystalline-Si solar cells is reported. The design of the front 

grid pattern for our all-Al solar cells is first introduced, in which the design rules and 

pattern optimization are elucidated. The process flow, cell performance, and issues 

caused by the fabrication method are discussed. An all-Al Si solar cell, with an 

electroplated Al front electrode and a screen-printed Al back electrode, has been 

successfully demonstrated and its performance has been characterized. The effect of 

annealing for the front Al/Ni electrode in air at different temperatures on cell 

performance has been investigated.  

 Chapter 6 provides a conclusion of this work and future outlook on the possible 

development of cell structures and Al plating technique.  
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CHAPTER 2 BASIC OPERATION OF SOLAR CELLS 

2.1 Solar Cell Structure 

 A photovoltaic solar cell is an optoelectronic device which directly converts solar 

energy into electrical energy. Generally speaking, there are two requirements need to 

be presented simultaneously in any photovoltaic solar cells to realize this process: 

 1) A material in which the absorption of light generates charge carriers, which 

 are excited electrons and the vacant states left by those electrons. 

 2) The separation of charge carriers by a built-in potential difference, or 

 electromotive force, which drives electrons with higher energy from the solar 

 cell into an external circuit or load. 

 There are a variety of materials and techniques of charge separation in different 

cell technologies, but their operations are all based on the two vital processes 

mentioned above. Typically, the materials for light absorption can be categorized into 

inorganic semiconductors and organic semiconductors. Solar cells including wafer-Si, 

thin-film CdTe, thin-film Si, thin-film CIGS, III-V compound semiconductor 

multi-junction tandem cells, and those developing cells such as gallium arsenide 

(GaAs) single-junction, CZTSS, and perovskite cells all employ inorganic absorber. 

On the other hand, the absorber for solar cells like dye-sensitized cells and various 

types of organic cells is an organic material. In terms of charge separation, there are 

many different approaches to build up a potential difference, which varies from a p-n 

junction to a Schottky junction to a heterojunction between two dissimilar 

semiconductors. In practice, all the commercial solar cells today, wafer-Si, CdTe, 

thin-film Si, and CIGS, use a p-n junction for charge separation due to its superior 

performance and reliability to all other approaches. 

 Figure 2.1 shows the basic schematic of a wafer-Si solar cell [15], which is the 
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most common solar cell commercially available today. For Si solar cells, the basic 

design focuses on the optimization of surface reflection, carrier separation, 

recombination and parasitic resistances to reach about 25% theoretical efficiency. The 

Si substrate (base), either monocrystalline or multicrystalline Si, is p-type with a 

resistivity of about 1 Ω-cm. Although silicon's bandgap is slightly low for an optimum 

solar cell and it is an indirect material with a low absorption coefficient, its abundance 

and dominance of the integrated circuit industry have made it difficult for other 

materials to compete in current PV market. The cell thickness can be as thin as about 

100 µm with great light trapping and surface passivation. However, thickness between 

200 and 400 µm are generally used, partly for practical issues such as making and 

handling with thin wafers. The front surface is textured with random pyramids to 

reduce reflection by increasing the chances of reflected light bouncing back onto the 

surface. A phosphorus diffusion is performed at the front side to form n+ emitter with 

thickness of about 0.5 µm. The front emitter is doped to a level sufficient to conduct 

away the generated charge carriers with very little resistive losses. The front emitter 

cannot be too thick; otherwise, a great amount of carrier recombination would take 

place within this region. On the contrary, by making the front emitter thin, a large 

fraction of the carriers generated by the incident light are created within a diffusion 

length of the p-n junction. The front metal grid is placed on the surface to conduct 

away all the current generated, which is made of Ag. There is a trade-off between the 

shading losses and resistive losses of front metal grid. This makes the design of front 

metal grid an important topic, and engineers usually follow some basic rules when 

designing grid pattern [16]. The back electrode is Al, and the Al is also diffused into 

Si to form a heavily doped p+ region, which is called the back surface field (BSF). 

The interface between the high and low doped p-type regions behaves like an 
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electrical junction and a built-in electric field at the interface creates a barrier to 

minority carrier flow to the rear surface. Thus, the minority carrier concentration is 

maintained at higher levels in the bulk of the device, which minimize the impact of 

rear surface recombination. Both the front Ag grid and the back Al contact are formed 

by screen-printing technology because of its simplicity, high throughput, and low 

manufacturing cost. The material for anti-reflection coating (ARC) is silicon nitride 

(SiNx if nonstoichiometric) deposited by plasma-enhanced chemical vapor deposition 

(PECVD), and the thickness is around 75 nm. Moreover, the SiNx layer is often used 

for n-type Si surface passivation, which lowers surface recombination by reducing the 

number of dangling bonds at the Si surface and by providing field induced passivation 

via its built-in positive charge. 

 
Figure 2.1 Schematic of a wafer-Si solar cell. Surface texturing is not shown, and the 

figure is not drawn to scale. 
 

2.2 Characteristics of Solar Cell 

 Several important parameters which are used to characterize solar cells are 

defined and discussed in this section. Most of the parameters such as short-circuit 
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current, open-circuit voltage, fill factor, and cell efficiency are determined from the 

current-voltage characteristic (I-V curve) of the cell under illumination. 

 

2.2.1 Short-circuit Current and Open-circuit Voltage 

 A solar cell can simply replace a battery in an electric circuit, and the cell would 

not do anything in the dark. When a light shines on the cell to switch it on, it develops 

a voltage. The voltage developed when two terminals are isolated (infinite load 

resistance) is called the open-circuit voltage (Voc), which is the maximum voltage 

available from a solar cell at zero current. The current through the solar cell when two 

terminals are connected together is the short-circuit current (Isc). The short-circuit 

current results from the generation and collection of light-generated carriers. For a 

solar cell with moderate resistive losses, the short-circuit current and the 

light-generated current are identical. Therefore, the short-circuit current is the largest 

current which can be drawn from the solar cell. Since the current is roughly 

proportional to the illuminated area, the short-circuit current density (Jsc) is also a 

useful factor for comparison of cell's performance. 

 

2.2.2 Photocurrent and Quantum Efficiency 

 The current generated by a solar cell under illumination at short circuit is called 

light-generated current or photocurrent, which is dependent on the incident light. To 

relate the photocurrent density (Jsc) to the solar spectrum, the cell's quantum 

efficiency (QE) is needed [17]. The QE(E) is the ratio of the number of carriers 

collected by the solar cell to the number of photons with a given energy incident on 

the solar cell. It may be given as a function of either photon wavelength or energy. 

Energy is a more convenient parameter for the physics of solar cells. Thus, 
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(2.1) Jsc = q ∫ × QE(E)d(E)φ(E)  (2.1) 

where φ(E) is the incident photon flux density, which is defined as the number of 

photons with energy in the range E to E+dE incident on unit area in unit time and q is 

the electric charge. QE depends on the absorption coefficient of the material, the 

effectiveness of charge separation and the probability of charge collection in the 

device. It is a key factor in describing the performance of solar cells under various 

conditions. 

 

2.2.3 Dark Current and Open-circuit Voltage 

 When a voltage or bias is applied across the solar cell, a current which flows in 

the opposite direction to the photocurrent is generated, resulting in the reduction of 

net current from its short-circuit value. This reverse current is usually called the dark 

current in analogy to the current Idark(V) which flows across the device in the dark. 

Most solar cells behave like a diode in the dark, which means its I-V curve would 

have a much larger current under forward bias than under reverse bias. This rectifying 

behavior is a feature of photovoltaic devices. For an ideal diode, the dark current 

density Jdark(V) can be expressed as 

(2.2) Jdark(V) = J0[exp(
kT

qV
)−1] (2.2) 

where J0 is the reverse saturation current density, k is the Boltzmann constant and T is 

the temperature in degrees Kelvin. 

 The current-voltage characteristic of the solar cell can be approximated as the 

superposition of the I-V curve in the dark with the light-generated current (or 

short-circuit current). Although the reverse current which flows through the cell under 

illumination is not exactly equal to the current flowing in the dark, the approximation 
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is quite reasonable for many photovoltaic materials and devices. Also, the sign 

expression for current and voltage in solar cells is that the photocurrent is positive, 

which is the opposite to the common convention people use in electronic devices. The 

relation of voltage-current density is then given by 

(2.3) J(V) = Jsc − Jdark(V). (2.3) 

For an ideal diode, it becomes 

(2.4) J(V) = Jsc − J0[exp(
kT

qV
)−1] . (2.4) 

 An equation for Voc is found when the dark current and short-circuit current 

cancel each other out from the above equation. For an ideal diode, 

(2.5) Voc =
q

kT
ln(

0

sc

J

J
+1) (2.5) 

The above equation shows that Voc depends on the saturation current and the 

short-circuit current of the solar cell. While the value of Jsc typically does not change 

too much, the key effect is the saturation current, since this value may vary by orders 

of magnitude. The saturation current density, J0, is related to the recombination in 

solar cell [18]. Based on the open-circuit voltage, one can approximately know the 

amount of recombination in the device. 

 

2.2.4 Fill Factor and Efficiency 

 The short-circuit current and open-circuit voltage are the maximum current and 

voltage from a solar cell, respectively. The operating regime of the cell is within the 

range of Voc and Jsc. The cell's power density reaches its maximum at maximum 

power point, which occurs at voltage (Vm) with a corresponding current density (Jm), 

as shown in Figure 2.2 [17].The fill factor (often abbreviated as FF) is defined as the 
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ratio of the maximum power from the solar cell to the product of Voc and Jsc: 

(2.5) FF =
ocsc

mm

VJ

VJ

⋅
⋅

. (2.6) 

The fill factor measures the "squareness" of the J-V curve and is also the area of 

largest rectangle which can fit in the J-V curve.  

 
Figure 2.2 The current-voltage and power-voltage characteristics of an ideal cell. The 
maximum power density Jm×Vm is given by the area of inner rectangle, while the area 

of outer rectangle is Voc×Jsc. 
 

 The efficiency is the most commonly used parameter to compare the 

performance of different solar cells. The efficiency (η) is defined as the ratio of energy 

output from the solar cell to the input power density from the sun (Pin), 

(2.5) η =
in

mm

P

VJ ⋅
, (2.7) 

which is related to Voc and Jsc using FF, 
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(2.5) η =
in

scoc

P

FFJV ⋅⋅
. (2.8) 

These four quantities Jsc, Voc, FF, and η are key characteristics in determining one 

solar cell's performance. The efficiency depends on the spectrum, intensity of the 

incident sunlight, and the temperature of the solar cell. Hence, the illumination 

condition under which the efficiency is measured should be carefully controlled to 

compare the performance of one cell to another. The Standard Test Condition (STC) 

for solar cells is the Air Mass 1.5 (AM 1.5) spectrum with an input power density of 

1000 W/m2 and a temperature of 25°C. 

 

2.2.5 Parasitic Resistances 

 For an ideal solar cell, it is electrically equivalent to a current generator in 

parallel with a non-linear resistive element such as a diode. When illuminated, the 

solar cell generates the photocurrent which is divided between the diode and external 

load. However, in real cells, the power is actually dissipated through the resistance of 

the contacts and through leakage currents around the sides of the device. These are 

resistive effects in solar cells, which are electrically equivalent to two parasitic 

resistances: 1) series resistance (Rs) and 2) shunt resistance (Rsh), as shown in Figure 

2.3. 
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Figure 2.3 Equivalent circuit of a solar cell including series and shunt resistance. 

 

 The series resistance is caused by 1) the current flow through the emitter and  

base of the solar cell, 2) the contact resistance between cell material and metal 

contacts, and 3) the current flow through the front metal contacts including busbar and 

fingers. Series resistance is a particular problem at high current densities, for instance 

under concentrated light. The parallel or shunt resistance results from leakage of 

current through the manufacturing defects in cell and around the edges of the device. 

The shunt resistance is a problem in poorly rectifying devices and is particularly 

severe under low illumination. The effect of these two parasitic resistances is to 

reduce the fill factor, so typically we want Rs to be as small and Rsh to be as large as 

possible for an efficient solar cell. When both series and shunt resistances are present, 

the diode equation becomes 

(2.5) J = Jsc − J0[exp(
kT

)JARq(V s+
)−1] −

sh

s

R

JARV +
, (2.9) 

where A is the area of cell. 

 

2.3 Loss Mechanisms in Solar Cells 

 The theoretical efficiency of crystalline Si solar cells under one sun illumination 
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is about 29.4% [19]. However, Si solar cells with record efficiencies, which were 

fabricated by SunPower, Panasonic, and UNSW are currently 25.0~25.5% [20-22]. 

The discrepancy between the theoretical and the actual efficiency is caused by various 

loss mechanisms in solar cells, which include optical losses, resistive losses, and 

recombination losses. The optical losses are due to the fact that not every photon from 

the solar spectrum enters the absorber of a solar cell, and not every photon which 

enters a solar cell is absorbed and converted to electron-hole pairs. Figure 2.4 

illustrates three main optical loss mechanisms, which are 1) reflection loss, 2) shading 

loss, and 3) incomplete absorption. The resistive losses are due to the consumption of 

the potential by various resistances in the cell, which reduces the power delivered to 

the external load. The recombination losses are caused by several recombination 

processes in which photo-generated charge carriers recombine with each other before 

they reach the external load. Minimizing these loss mechanisms in a cost-effective 

way to achieve higher cell efficiency records has been the major focus of solar cell 

research over the past few decades.  

 
Figure 2.4 Three optical losses in the wafer-Si solar cell. “1” is reflection at front 

surface and Si/SiNx interface, “2” is shadowing by front metal electrode, and “3” is 
incomplete absorption. 
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2.3.1 Reflection Loss 

 When photons reach an interface between two materials of different refractive 

indices, part or all of it is reflected back at the interface and does not enter the second 

material. In the case of a Si solar cell, the reflectance at the interface of air and Si is 

over 35% under normal incidence. The reflection can be minimized by two techniques: 

anti-reflection coating and surface texturing. 

 1) Anti-reflection coating (ARC): ARC is formed by sandwiching a thin 

dielectric film between the Si and air to reduce the reflection of incident light via 

destructive interference of the waves reflected from the top and bottom surfaces of the 

dielectric (Figure 2.5). Proper selection of thickness (dAR) and refractive index (nAR) of 

the ARC layer can reduce reflection significantly. 

 
Figure 2.5 Schematic of a single anti-reflection coating layer for Si solar cells. 

  

 For a single ARC layer, the reflectance (R) can be expressed by the Fresnel 

equations [23]: 

(2.5) 
cosθr2rrr1

cosθr2rrr
R

21

2

2

2

1
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(2.5) 
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+
−=  (2.10) 

where n is the refractive index of each layer. The reflectance has minimum Rmin when 
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nAR．dAR=
4

λ
 (quarter-wavelength destructive interference) and is obtained by: 

(2.5) 22

AR21

22

AR21
min )nn(n

)nn(n
R

+
−= . (2.11) 

For the broad solar spectrum, the wavelength (λ) at maximum intensity, about 630 nm, 

is often used to determine the thickness of the ARC layer. There is also an optimum 

value for the refractive index of the ARC layer, which makes Rmin become zero at the 

desired wavelength:  

(2.5) 
21AR nnn = . (2.12) 

As solar cells are typically packaged into modules, the material on top of the cells is 

glass with a refractive index of about 1.5. Therefore, the optimum index of the ARC 

layer on wafer-Si solar cells is around 2.4 at 630 nm. 

 2) Surface texturing: surface texturing is another effective and common 

technique for minimizing the reflection. Texturing of Si surface can be done by 

immersing a Si (100) wafer into an alkaline solution, which contains sodium 

hydroxide (NaOH) or potassium hydroxide (KOH). The etch rate on the (111) planes 

is much smaller than on the (100) planes. This exposes the (111) planes in the Si 

crystal, resulting in pyramids of random sizes on the wafer. These random pyramids 

reduces the reflection by increasing the number of bounces of incident light, as 

illustrated in Figure 2.6. For a Si wafer in air, the reflectance of Si surface can be 

reduced from 35% to about 12% after surface texturing. In today’s wafer-Si solar cells, 

a SiNx ARC layer is often deposited on textured Si wafers, and the combination of 

these two techniques can further reduce the surface reflectance to almost zero at a 

particular wavelength and incident angle. 
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Figure 2.6 Comparison of bounces of incident light on flat Si surface and textured Si 

surface.                                
 

2.3.2 Shading Loss 

 A finished solar cell needs to be contacted at the front and back side in order to 

extract power from the cell. However, the front metal contact prevents the light to 

enter into the cell, resulting in a reduced light-generated current. The front metal 

contact has to be in a grid shape (busbars and fingers) to allow sunlight to pass 

through. Typically, the front metal contact covers 5-10% of the cell surface area. 

Reducing the width of the metal busbars or fingers can simply reduce the shading loss, 

but this would increase the resistive losses as the cross section of the metal grid gets 

smaller and the distance which charge carriers need to travel before being collected 

becomes longer. Thus, the design of front metal grid has to be optimized to balance 

the shading and resistive losses. It is also possible to place both contacts on the rear 

side of the cell to avoid the shadowing loss, and this structure is called the 

interdigitated back contact (IBC) solar cell. The best efficiency of the IBC cell 

(large-area) is 25%, fabricated by SunPower on a commercial cell [22].  
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2.3.3 Incomplete Absorption 

 The loss of incomplete absorption refers to the loss of photons with energy E>Eg, 

which escape the cell from either the front or back surfaces due to thin cell thickness 

or insufficient optical path length through the cell. Incomplete absorption is also 

called optical leak, which can be minimized by appropriate light trapping that 

enhances the absorption of photons with long wavelength by reflecting them back into 

the cell from the surfaces. Light trapping is realized by changing the angle of incident 

light such that the light can travel at certain angle, rather than perpendicular to the 

surface, leading to an increased optical path length. Thus, the front surface is textured 

in order for the light to meet the surface at certain angles. When light gets reflected 

from the back surface and travels from back to front in a cell, it goes from the 

high-index semiconductor to the low-index ARC layer. Because of this reverse index 

profile, total internal reflection can occur at the front surface at the critical angle (θc), 

which is given by: 

(2.5) 
2

AR
c n

n
arcsinθ = . (2.13) 

At this angle, the refracted light travels along the interface, and no light enters the 

ARC layer. When the incident angle is larger than θc, all the light is specularly 

reflected back into the semiconductor. For the rear surface of most wafer-Si solar cells, 

the metal electrode, typically Al, can serve as a reflector. If the rear surface is textured, 

the surface recombination would also increase due to an increased interface trap 

density. Therefore, the rear surface often remains planar in the structure design of 

wafer-Si solar cells with higher efficiency. 
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2.3.4 Resistive Losses 

 The resistive losses are caused by the series resistance (Rs) and shunt resistance 

(Rsh) of a solar cell. The Rsh generally results from process-induced defects, resulting 

in partial shunting of the p-n junction. Shunting lowers the Rsh and reduces the 

amount of photocurrent flowing through the p-n junction, which decreases the voltage 

of the solar cell. It is worth noting that Rsh is not a design parameter, but the Rs is a 

design parameter which can be controlled. 

 Figure 2.7 illustrates the path of current flow in a wafer-Si solar cell [15]. The 

current flows vertically in the base but horizontally in the emitter. The fingers collect 

currents from different regions of the cell and the busbars collect currents from all the 

fingers. The Rs of a solar cell consists of several components, which are resistances in 

the current path, including: 

 1) The back Al/Si contact resistance R1; 

 2) The base resistance R2; 

 3) The emitter resistance R3; 

 4) The front Ag/Si contact resistance R4; 

 5) The finger resistance R5; and  

 6) The busbar resistance R6.  

 Resistance is proportional to the length and inversely proportional to the cross 

section of a given material. The direction of the current in Figure 2.7 indicates that the 

back contact resistance R1 and base resistance R2 are small compared to other 

resistances since the cross section of R1 and R2 is large. The resistive losses in Si solar 

cells are often determined by the remaining four resistances, emitter resistance R3, 

front contact resistance R4, finger resistance R5, and busbar resistance R6. Emitter 

resistance R3, finger resistance R5, and busbar resistance R6, are design parameters in 
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a solar cell. It is very important to have the proper emitter and grid design for 

lowering the Rs and increasing the cell efficiency. 

 For the emitter design, there is a tradeoff between resistive losses and 

recombination losses in the emitter. The high doping level in the emitter significantly 

reduces the lifetime and diffusion length of photo-generated charge carriers, resulting 

in high recombination losses in the emitter. While a thinner emitter with a lower 

doping level can be used to minimize the recombination losses, this reduces the cross 

section for the current flowing horizontally along the emitter and increases the emitter 

resistance. The design of the fingers and busbars is a compromise between shadowing 

losses and resistive losses. Wider fingers and busbars reduce the resistances but block 

more incident sunlight, while narrower fingers and busbars reduce shadowing losses 

but increase resistive losses. The design of the front grid pattern for our all-Al solar 

cells will be discussed in more detail in Chapter 5, in which the design rules and 

pattern optimization will be elucidated.  

 
Figure 2.7 Path and direction of the electron flow in wafer-Si solar cells. Various 

resistances are labeled with red circles. Dominant resistances include emitter 
resistance R3, front contact resistance R4, finger resistance R5, and busbar resistance 

R6. 



 

27 

 

2.3.5 Recombination Losses 

 When a solar cell is illuminated, the absorption of each photon creates an excited 

electron and a vacant state (hole) in the absorber. They need to be separated and 

extracted by the electrodes to generate an electric power output. Recombination losses 

refer to losses in which an excited electron falls back into a vacant state before they 

reach the electrodes. There are four types of recombination processes in solar cells 

based on inorganic semiconductor: 1) Radiative recombination; 2) Auger 

recombination; 3) Shockley-Read-Hall (SRH) recombination; and 4) Surface 

recombination. 

 1) Radiative (Band-to-Band) recombination: An excited electron in the 

conduction band directly recombines with a hole in the valence band, which releases a 

photon with energy equal to the bandgap of the semiconductor (Figure 2.8). The rate 

of radiative recombination is proportional to the number of carriers in the conduction 

band and the number of empty states in the valence band. This recombination is 

dominant in direct bandgap semiconductors such as CdTe, but it is not that important 

in indirect bandgap materials like Si.  

 
Figure 2.8 Radiative recombination in inorganic semiconductors. 

 

 2) Auger recombination: An electron in the conduction band recombines with a 

hole in the valence band, and the energy associated with the recombination excites 
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another electron in the conduction band to a higher-energy state (Figure 2.9). The 

excited electron will quickly lose its excess energy through multiple steps of 

relaxation (scattering) and come down to the minimum of the conduction band. This 

can also happen to a hole: the energy released through recombination can excite a 

hole into a higher-energy state, which will eventually relax to the maximum of the 

valence band. Auger recombination occurs at a very high carrier concentration in the 

semiconductor.  

 
Figure 2.9 Auger recombination in inorganic semiconductors. 

 

 3) Shockley-Read-Hall (SRH) recombination: Various structural defects, 

including impurities, dislocations, and grain boundaries in the crystal lattice, often 

introduce electronic states near the middle of the bandgap in the semiconductor. These 

defect states, or trap states, can act as recombination centers for charge carriers. The 

SRH recombination involves two step processes, as illustrated in Figure 2.10. First, an 

electron (or hole) is trapped by an energy state in the energy level introduced by the 

defects. If a hole moves up to the same energy state before the electron is re-emitted 

into the conduction band, they then recombine with each other. While recombination 

through defects is present in direct bandgap semiconductors, it is particularly 

important in indirect bandgap semiconductors such as Si. Minimizing defect densities 
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in Si is critical to increase the lifetime and diffusion length of charge carriers, thus 

improving the cell efficiency.  

 
Figure 2.10 Shockley-Read-Hall (SRH) recombination in inorganic semiconductors. 

 

 4) Surface recombination: Si surface has a large number of unsaturated 

dangling bonds, which introduce surface defect states within the forbidden gap 

(Figure 2.11) [24]. These states act as recombination centers, resulting in surface 

recombination. Surface passivation is a technique used for reducing the surface 

recombination, which involves two approaches: chemical passivation and field-effect 

passivation.  

 
Figure 2.11 Surface recombination at Si surface. 

 

 The chemical passivation terminates the dangling bonds on the Si surfaces and 

reduces the density of surface states (Dit) with a thin dielectric film. Thermally-grown 
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silicon dioxide (SiO2), PECVD-grown SiNx, and aluminum oxide (Al2O3) can be used 

for this purpose. Right selection of these dielectric thin films can provide excellent 

surface passivation for high cell efficiency. The field-effect passivation is based on the 

reduction of either electron or hole concentration at the Si surface with a built-in 

electric field. The electric field can induce an accumulation layer by repelling 

minority carriers from the Si surface. This charge accumulation at the surface lowers 

the recombination because recombination rate is the maximum when the electron and 

hole concentrations at the Si surface are equal. A good example is the 

negatively-charged Al2O3 dielectric layer for field-effect passivation on p-type Si 

surface. 
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CHAPTER 3 BOTTLENECKS FOR CRYSTALLINE-SI SOLAR CELLS 

3.1 Brief Overview of Crystalline-Si Solar Cells 

 Out of all the solar cell technologies available commercially in the market, 

crystalline-Si solar cells, including multicrystalline and monocrystalline dominate the 

solar cell market with about 89% of market share in 2015, according to NPD 

Solarbuzz (now IHS technology) PV Technology Roadmap report (Figure 3.1) [25]. 

Suppliers of high efficiency solar panels based on premium crystalline-Si, such as 

SunPower and Panasonic, comprise 3% market share and are expected to increase 

their capacity over the next few years. Thin-film cell technologies, led by First Solar 

and Solar Frontier only account for nearly 8% of the market share. Among them, 

CdTe panels manufactured by First Solar is the leader with roughly 5% of the market.  

 
Figure 3.1 Accelerated Technology Roadmap Scenario Forecast by PV Technology 

Type. 
 

 There are several technical factors leading to the dominance of Si in the solar cell 

industry. Among them, technologies developed by the Si-based microelectronics 

industry by the 1970s, when the solar industry was born, undoubtedly contributed to 

its dominance since fabrication techniques, device physics, and materials science had 
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all been well established for Si in those years. Although it can be foreseen that 

crystalline-Si solar cells will still be the workhorse of PV industry for years to come, 

they have some major limitations, which hinder them to reach terawatt-scale 

deployment. The production of crystalline-Si solar cells consists of fabrication 

processes with intensive energy input and high cost, but their efficiency and cell 

lifetime are the highest. They are made on silicon wafers, which is among the most 

abundant elements on earth. Monocrystalline-Si solar cells use mono-Si wafers grown 

by Czochralski process as substrates. The efficiency of monocrystalline-Si solar cells 

has reached 25%, while that of multicrystalline-Si solar cells, which are manufactured 

through directional solidification, is around 20%. Despite the fact that the potential of 

crystalline-Si solar cells in supplying energy demands is enormous, their future 

growth will likely be constrained by the fundamental roadblocks. In Chapter 3.2 and 

3.3, we will discuss two major bottlenecks now faced by PV industry: 1) high energy 

input and 2) limited silver reserve. We will explain our approach to solve them, 

especially in Chapter 3.3 regarding the bottleneck of silver reserve.  

 

3.2 Energy Input 

 The fabrication of crystalline-Si solar cells is energy intensive, costly, and 

polluting. Figure 3.2 shows the process flow for the fabrication of monocrystalline-Si 

solar cells [26]. It can be seen that there are major steps included in the fabrication, 

which are quartz reduction to metallurgical-grade (MG) Si, distillation of 

trichlorosilane (SiHCl3), Siemens process to produce polycrystalline-Si (poly-Si), 

Czochralski growth of monocrystalline-Si ingot, wafering, and cell fabrication. The 

electricity input for each step is also labeled. Quartz is first reduced to MG Si in an 

electric-arc furnace with charcoal at ~1900°C, which releases several million tons of 



 

33 

 

carbon dioxide (CO2) into the atmosphere. MG-Si is reacted with hydrochloric acid 

(HCl) to form SiHCl3, which is purified by multiple distillation. The corrosive SiHCl3 

often results in frequent replacement of the stainless steel equipment. The purified 

SiHCl3 is then reduced by hydrogen (H2) to produce high-purity poly-Si in the 

Siemens process, which takes place on a high-purity Si rod at ~1150°C with an 

electrical current passing through it. The Siemens process is a very energy-intensive 

process. Subsequently, monocrystalline-Si ingot is obtained by the crystallization of 

high-purity poly-Si at extremely high temperature in Czochralski process, which is 

again an energy-intensive step.    

 
Figure 3.2 Fabrication process flow for monocrystalline-Si solar cells. 

 

 If we assume 20% material loss for each step except the wafering step, which has 

about 65% material loss, the total electricity needed to produce 1 kg of 

monocrystalline-Si wafers is about 1000 kilowatt hour (kWh). Moreover, it takes a 

huge amount of extra electricity to turn Si wafers into cells and modules, in which the 

sealing of a cell module with an Al frame is a very energy-intensive process. It was 

estimated that the electricity consumption for the production of monocrystalline-Si 

wafers a year was 2.5 times as many as the electricity produced from 

monocrystalline-Si solar cells under the best scenario. To our earth, it would be really 
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difficult to squeeze out 10% of its electricity consumption just for solar cells. 

Therefore, in order to reach terawatt-scale deployment of monocrystalline-Si solar 

cells, new process flow need to be developed to significantly reduce the energy input 

for the production of mono-Si cells and modules. Due to this purpose, the PV industry 

has been looking into the potential of the fluidized-bed reactor (FBR) process. Several 

companies, including REC Silicon and SunEdison, are exploring the application of 

the FBR technology and establishing poly-Si production lines based on this process. 

Compared to the Siemens process, the FBR process uses much lower electricity for 

producing high-purity poly-Si, meaning the manufacturing cost can be reduced. 

According to the most recent International Technology Roadmap for Photovoltaic 

(ITRPV), it is expected that the FBR technology will increase its share substantially in 

poly-Si production over the next decade, as shown in Figure 3.3 [27]. 

 
Figure 3.3 Expected change in the distribution of poly-Si production technologies. 

 

3.3 Silver Reserve 

 In most commercial crystalline-Si solar cells today, Ag is used as the front finger 
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electrode on the n-type emitter, while Al is used as the back electrode on the p-type 

base, as shown in Figure 2.1. In addition to the bottleneck of high energy input, 

crystalline-Si solar cells suffer from the scarcity of Ag for terawatt-scale deployment. 

Ag provides some advantages over other metals as front metallization, such as low 

resistivity and resistance to oxidation. The known reserve of Ag is 530000 metric tons 

according to the mineral commodity summaries published by U.S. Geological Survey 

in 2015 [28]. The density of Ag is 10.5 g/cm3. If we assume the Ag contacts are 12 

µm thick and the fraction of front metallization is 7%, the peak output of 

crystalline-Si solar cells with an efficiency of 17% would be around 10.1 TWp. This 

value equals an averaged output of 1.5 TW or only 3% of the projected energy 

demand in 2100 (46 TW) [29]. This estimation is done under the best scenario, in 

which all the silver reserve are used for the production of crystalline-Si solar cells. If 

we take into consideration other commercial usages such as batteries, mirrors, 

photography, and jewelry, which also consume Ag, the total energy these cells can 

provide may be much less than 3% of the energy demand in 2100. The cost associated 

with Ag material and processing has become a significant portion of the cell 

fabrication cost as the module price continues its decline [30]. Due to the limited 

supply of Ag, a rise in silver price is guaranteed, which makes cost control difficult 

for cell manufacturers. These factors have motivated industry-wide efforts to develop 

an alternative metallization technique with a lower-cost and Earth-abundant metal for 

the front finger electrode. 

 Among all capable metallization techniques, finger contacts composed of 

nickel/copper (Ni/Cu) metal stacks has been investigated extensively in recent years 

[31-36], and cells with efficiencies above 20% have been successfully demonstrated 

with an electroplated Cu/Ni front electrode. The most important feature of 
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electroplated Ni/Cu stacks is that this metallization technique can be realized with 

lower materials cost. The formation of Ni/Cu contact stacks involves three major 

steps: 1) Patterning of SiNx ARC layer; 2) Deposition of a Ni seed and barrier layer, 

followed by 3) deposition of a Cu electrode. The conventional Ag contact is usually 

formed by screen-printing and firing the Ag paste through SiNx ARC layer. However, 

Ni/Cu-based metallization requires an additional step to open the SiNx ARC layer in 

order to form the contact grid. For patterning the front dielectric layer, various 

approaches have been investigated, including: 1) Photolithography and wet etching 

[37]; 2) Laser chemical processing [38]; 3) Laser ablation [39]; and 4) Mechanical 

scribing [40]. After the opening of front dielectric layer, the Ni seed and barrier layer 

is formed by either electroless plating or light-induced plating. The Cu electrode, 

which is the main conducting layer, is deposited by light-induced plating developed at 

the Fraunhofer Institute for Solar Energy [41]. After the deposition of Ni/Cu stacks, a 

thin capping layer of Ag or tin (Sn) is usually electroplated on top of the Cu electrode. 

The purpose of this capping layer is to prevent the Cu metal lines from being oxidized 

and help to solder the interconnecting tabs. Figure 3.4 shows a schematic of Ni/Cu/Ag 

or Sn-based metallization schemes.   
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Figure3.4 Schematic of Ni/Cu/Ag or Sn-based metallization schemes. 

 

 In terms of electrical resistivity and material abundance, Al is another promising 

candidate to substitute for Ag as the front electrode in crystalline-Si solar cells [42]. 

Little has been done to investigate the possibility. The biggest advantage of Cu is its 

low resistivity. Electroplated Cu has its resistivity close to its bulk value, far lower 

than that of screen-printed Ag. From our experience, the resistivity of electroplated Al 

is 2–3 times larger than electroplated Cu and similar to screen-printed Ag. However, 

Cu has several intrinsic issues as an electrode in Si solar cells. Cu introduces deep 

states in Si, degrading the efficiency of the cell, so the Ni barrier layer is required to 

prevent Cu from contacting and diffusing into Si. Oxidation of Cu is another concern 

for module reliability. In comparison, Al is a proven electrode material in 

crystalline-Si solar cells. It can be in direct contact with Si without introducing deep 

states. It has excellent reliability as it is protected from oxidation by a dense Al2O3 

film which naturally forms on it. 

 There are several possible processes for Al metallization on crystalline-Si solar 
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cells. Kessler et al. [43] reported vacuum-based in-line evaporation for the Al front 

electrode on back-junction cells with efficiencies approaching 20%. In principle, 

sputter deposition can also be used for Al metallization, but both evaporation and 

sputtering are vacuum-based processes which would result in high processing costs 

for Al electrodes. Hanwha Solar America proposed a design concept of IBC cells with 

screen-printed Al as the electrodes for both contact polarities [44] although it has yet 

to be demonstrated. Screen-printed Al would be compatible with current industrial 

process for Al metallization. However, it is unclear how screen-printed Al works on 

n-type Si since the cell performance would be degraded if Al diffuses into n-type Si. 

This goes back to the firing temperature for the Al electrode on n-type Si. It has to be 

low enough, which excludes Al pastes with >700˚C firing temperature. 

Low-temperature fired Al paste with a low resistivity is still not commercially 

available yet. Therefore, a solution-based metallization process with a low processing 

temperature for Al electrodes is desirable, and is the motivation behind the 

development of room-temperature Al electroplating on Si substrates in our lab. This 

metallization process will be discussed in more detail in Chapter 4. 

 

3.4 Summary 

The deployment of solar cells have to be expand to tens of peak terawatts in 

order to make a noticeable impact on future energy demands. Out of all the solar cell 

technologies commercially available today, crystalline-Si solar cells dominate the cell 

industry with nearly 90% of the market share. Although the potential of crystalline-Si 

solar cells in supplying energy demands is enormous, their future growth will likely 

be constrained by the two major bottlenecks. The first one is high energy input for the 

production of crystalline-Si modules. With current technology, we would have to save 
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a lot of electricity to fabricate those modules. A much more energy-efficient process 

flow needs to be developed in order to solve this bottleneck. The second one is the 

scarcity of Ag reserve for the front metal grid. An alternative metallization technique 

with a low-cost and Earth-abundant metal has to be investigated and developed to 

substitute for conventional screen-printing of Ag.  
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CHAPTER 4 ELECTROPLATING OF ALUMINUM ON SILICON IN AN 

IONIC LIQUID 

4.1 Introduction 

 Room-temperature or near-room-temperature electroplating of Al requires a 

non-aqueous solvent for an Al precursor because of the larger negative standard 

potential of Al/Al(III) couple (-1.67 V vs. NHE). Many solvents have been reported 

for this purpose [45]. including organic solvents and ionic liquids. Three types of 

organic solvents have been used to dissolve Al halides for Al electroplating: aromatic 

hydrocarbons [46], dimethylsulfone [47], and ethers [48]. Although high quality Al 

deposits can be obtained with these solvents, the relatively narrow electrochemical 

window, low electrical conductivity, low solubility of Al halides, high volatility and 

flammability make industrial applications of these organic solvents limited. Ionic 

liquids are a relatively new class of solvents for Al electroplating. They are 

characterized by high electrical conductivity, low viscosity, low toxicity, 

non-flammability, high thermal and chemical stability, and wide electrochemical 

window, making them ideal solvents for Al electroplating. Various ionic liquids for Al 

electroplating have been reported [49-59], which are typically mixtures of aluminum 

chloride (AlCl3) and an organic halide (RX), such as 1-ethyl-3-methylimidazolium 

chloride (EMIC) and 1-butyl-3-methylimidazolium chloride (BMIC). These ionic 

liquids show adjustable Lewis acid-base properties, which are acidic when the molar 

ratio of AlCl3 : RX is >1. Al electroplating can be performed only under acidic 

conditions. 

 Electroplating of Al in an ionic liquid has been carried out on metallic substrates 

such as stainless steel [56], platinum [50, 54], tungsten [50, 51, 55], gold [53], copper 

[52], iron [54], and glassy carbon [50]. The deposited Al often serves as an 
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anticorrosion coating. Although Al electroplating on Si has been reported [59], report 

of electroplated Al on Si substrates as a low-cost metallization method in Si 

photovoltaics and microelectronics has yet to appear in the literature. A major 

difference between electroplating on Si substrate vs. on metallic substrate is the high 

resistivity of Si, which is typically in 10–2–10 Ω-cm. For most metals, the resistivity is 

in 10–5–10–6 Ω-cm. Another problem is the native oxide on Si, which is electrically 

insulating and hinders electroplating. 

 In this Chapter, we report the results on electroplating of Al on Si substrates in an 

above-room-temperature ionic liquid. Dense and adherent Al deposits have been 

reproducibly obtained directly on Si substrates from a 3:2 molar ratio AlCl3 : EMIC 

solution at temperatures slightly above 100˚C. In addition to structural and 

compositional characterization of the Al deposits, it is of great interest to examine 

their electrical properties for applications in metallization. The effects of deposition 

parameters such as pre-bake conditions, deposition temperature, and post-deposition 

annealing on the sheet resistance of the deposits were investigated. The resistivity of 

the Al deposits after annealing was in the high 10–6 Ω-cm range, similar to that of 

screen-printed Ag from an Ag paste. This electroplating process has been integrated in 

the fabrication of a p-type monocrystalline-Si solar cell for n-side metallization, 

which will be discussed in Chapter 5.  

 

4.2 Experimental 

 We prepared the electroplating solution and conducted Al electroplating in a dry 

nitrogen box with a continuous nitrogen flow, which prevents the ionic liquid from 

absorbing moisture. All the chemicals, 1-ethyl-3-methylimidazolium 

tetrachloroaluminate ((EMIM)AlCl4) (≥95%, Aldrich) and anhydrous AlCl3 powder 
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(99%, Aldrich), were used as received. The electroplating solution was prepared by 

mixing 3:2 molar ratio of AlCl3 and (EMIM)AlCl4 in a dry beaker with continuous 

magnetic bar stirring at ambient temperature, ensuring Lewis acidic property. On 

completion of the room temperature mixing, a pre-bake was performed in which the 

obtained electrolyte was heated to different temperatures for different times in order 

to drive out the residual moisture in the electrolyte. Then, the temperature of the 

electrolyte was changed to a predetermined temperature for Al deposition. The effect 

of pre-bake conditions and deposition temperature was investigated through the sheet 

resistance of the resultant Al deposits. 

 A three-electrode electrochemical cell was employed for all the experiments, as 

shown in Figure 4.1. Textured Si wafers, either n-type or p-type with resistivity 

between 0.3–1 Ω-cm, were used as the substrates. A thin SiNx layer was deposited on 

the backside of the Si wafer to ensure one-side Al deposition. Prior to electroplating, 

the Si wafer was cleaned in diluted hydrofluoric acid (HF) to remove native oxide on 

Si surface. Al wires of 99.99% purity were used as the sacrificial counter and 

reference electrodes. This makes the electroplating solution reusable for many 

deposition runs, as the Al anode supplies Al to the solution and keeps the Al 

concentration in the solution constant. The Al wires were cleaned with a short dip in 

37% hydrochloric acid (HCl), followed by a deionized (DI) water rinse. After 

cleaning, the Al wires and the Si wafer (as the cathode/working electrode) were 

immediately assembled and then transferred to the dry nitrogen box. The deposition 

of Al was performed at a temperature near the boiling point of water, and the 

electrolyte was magnetically stirred. The electroplating process was carried out 

galvanostatically, i.e. under a constant current of ~15 mA/cm2 for half an hour. After 

deposition, excess ionic liquid was removed from the sample by dipping it in absolute 
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alcohol. The sample was then rinsed with DI water and dried with nitrogen. 

Post-deposition annealing under vacuum was also conducted to further reduce the 

sheet resistance of the Al deposits.  

 
Figure 4.1 Schematic of electrochemical cell setup for Al electroplating. 

 

 A scanning electron microscope (SEM) equipped with energy dispersive X-ray 

analysis (EDX) was utilized to examine the surface morphology and composition of 

the Al deposits. The crystal structure was studied with an X-ray diffractometer (XRD) 

with Cu Kα radiation. The sheet resistance of the Al deposits was measured with a 

four-point probe. The nominal thickness of the Al deposits was calculated by the 

following equation:  

(2.5) Nominal thickness (µm) = 4

3

2

10
)2.7(g/cm396485

27(amu)t)J(A/cm ×
××

××
. (4.1) 
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4.3 Results and Discussion 

 Surface cleaning of the substrate prior to deposition is critical for Al 

electroplating. We used diluted HF to clean the Si substrate, which is effective enough 

to remove native oxide and leaves a clean Si surface for electroplating. It was found 

that whitish, dense, and adherent Al can be plated directly on Si if the resistivity of the 

Si substrate is below ~1 Ω-cm. For Si substrates with >1 Ω-cm resistivity, the Al 

deposits were greyish and poorly adherent to the Si substrate. A seed layer of metal, 

such as Ni or Ni silicide (NiSi), was required in this case. 

 Figure 4.2 shows top-view SEM images of Al deposits on a Si substrate and a 

NiSi-coated Si substrate at 70˚C and 15 mA/cm2 for 30 min without pre-bake of the 

electroplating solution. As shown in Fig. 4.2(a), the as-deposited Al film directly on 

the Si substrate is dense and reasonably homogeneous with large Al crystallites on the 

order of 10–20 µm. For the NiSi-coated Si substrate which is used specifically for Si 

with >1 Ω-cm resistivity, the as-deposited Al film is dense with smaller crystallites on 

the order of 2–4 µm but more homogeneous than that obtained directly on Si, 

evidenced in Fig. 4.2(b). The increased homogeneity of Al on NiSi can be attributed 

to the fact that NiSi has a lower resistivity than Si, resulting in a more even current 

distribution in the substrate during electroplating. However, the adherence between 

NiSi and Al was so poor that the Al film could be easily peeled off regardless of 

surface preparation. Considering this material issue, the following results were 

obtained from Al deposits directly on textured n-type Si substrates with resistivity 

between 0.3–1 Ω-cm.  
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Figure 4.2 Top-view SEM images of Al deposits on (a) a Si substrate with resistivity 
below 1 Ω-cm and (b) a NiSi-coated Si substrate at 70˚C and 15 mA/cm2 for 30 min 

without pre-bake of the electroplating solution. 
 

 

 Figure 4.3 shows the corresponding EDX analysis and XRD pattern of the Al 

deposit in Fig. 4.2(a). In Fig. 4.3(a), the deposit displays only one strong peak of Al 

around 1.5 keV without any other peaks of different materials, suggesting a pure Al 

deposit under the conditions described. As shown in Fig. 4.3(b), all the four peaks of 

the deposit are related to Al and identified as Al(111), (200), (220), and (311), further 

confirming that the composition of the deposit is pure metallic Al. 
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Figure 4.3 (a) EDX spectrum and (b) XRD pattern of an Al deposit obtained on Si 
substrate with resistivity below 1 Ω-cm at 70˚C and 15 mA/cm2 for 30 min without 

pre-bake of the electroplating solution. 
 

 The sheet resistance of electroplated Al was investigated. The effects of pre-bake 

conditions, deposition temperature, and post-deposition annealing conditions were 

examined. Three different temperatures (100, 120, and 140˚C) and two different 

pre-bake times (30 and 60 min) were chosen as the conditions for moisture removal in 

the electroplating solution. After pre-bake, the solution temperature was changed to 

70˚C for a 30-min deposition at 15 mA/cm2. Figure 4.4 shows the sheet resistances of 

Al deposits as a function of pre-bake temperature and time. The Al deposits show 
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significant reduction in sheet resistance when the pre-bake temperature exceeds 100˚C, 

which is the boiling point of water at one atmosphere. It was also noticed that the 

humidity level in the dry nitrogen box dropped from 19% to 16% after the 

electroplating solution was baked at 120˚C for 60 min. This supports the assumption 

that the pre-bake drives out moisture from the solution. Moisture in the solution 

increases the possibility of Al2O3 formation in the Al deposit, which is an insulator 

and increases the resistivity of the Al deposit. It can be seen in Fig. 4.4 that the lowest 

sheet resistance is obtained at 120˚C for 60 min, which is then used as the pre-bake 

conditions for all the subsequent experiments. 

 
Figure 4.4 Sheet resistance of Al deposits as a function of pre-bake temperature after 

30- and 60-min pre-bake. 
 

 Figure 4.5 shows the sheet resistance of Al deposits as a function of deposition 

temperature before and after vacuum annealing at 350˚C for 20 min. All the Al 

deposits were obtained on Si substrates at 15 mA/cm2 for 30 min, and their nominal 

thickness is ~9 µm based on the total charge accumulated during electroplating. It is 
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clear that the sheet resistance decreases as the deposition temperature increases. The 

exact reason is still under investigation. One possibility is that higher temperatures 

keep moisture out of the electroplating solution, reducing the amount of Al2O3 in the 

deposits. Another possibility is that higher temperatures increase the density of the Al 

deposits, making the resistivity closer to the bulk value. 

 
Figure 4.5 Sheet resistance of Al deposits as a function of deposition temperature 

before and after vacuum annealing at 350˚C for 20 min. 
 

 As shown in Fig. 4.5, the sheet resistance of the Al deposits was slightly reduced 

by post-deposition annealing. This may have resulted from the fact that annealing at 

higher temperatures than the electroplating temperature further increased the density 

of the Al film. The minimum sheet resistance obtained is ~8 mΩ/sq for 9-µm Al, 

corresponding to a resistivity of ~7×10–6 Ω-cm. It should be noted that the nominal 

thickness of the Al deposits was calculated under the assumption of 100% current 

efficiency. In actuality, the current efficiency should be around 80–90%, meaning that 

the real thickness of the deposits should be lower than the calculated thickness. 
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Therefore, the actual resistivity of the Al films could be lower than ~7×10–6 Ω-cm. 

 

4.4 Summary 

 It has been shown that dense and adherent Al deposits with low electrical 

resistivity can be obtained directly on Si substrates by electroplating over a wide 

range of temperatures using galvanostatic deposition. Electroplating conditions such 

as pre-bake conditions, deposition temperature, and post-deposition annealing affect 

the electrical resistivity of the Al deposits. For reliable and low-resistivity Al deposits, 

the pre-bake and deposition temperatures should be above 100˚C. The resistivity of 

electroplated Al is in the high 10–6 Ω-cm range, similar to that of screen-printed Ag. 

The maximum process temperature for electroplated Al is well below 400˚C. This 

makes Al electroplating a promising metallization method for crystalline-Si solar 

cells.  
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CHAPTER 5 ELECTROPLATED ALUMINUM AS THE FRONT 

ELECTRODE IN CRYSTALLINE-SI SOLAR CELLS 

5.1 Introduction 

 In Chapter 4, we showed that dense and adherent Al films could be reproducibly 

obtained directly on Si substrates by electroplating and the maximum process 

temperature could be around 400˚C, well below the typical firing temperatures for Al 

pastes. In this Chapter, the integration of Al electroplating as the metallization 

technique for front finger electrode on n-type Si in commercial p-type 

monocrystalline-Si solar cells from Hareon Solar is reported. In the first section, the 

design of the front grid pattern for our all-Al solar cells will be introduced, in which 

the design rules and pattern optimization are investigated. In the subsequent sections, 

the process flow, cell performance, and issues caused by the fabrication method will 

be discussed. An all-Al Si solar cell, with an electroplated Al front electrode and a 

screen-printed Al back electrode, has been successfully demonstrated and its 

performance has been characterized. To overcome the issue of poorly-adherent Al 

deposits on Si substrate with >1 Ω-cm resistivity, the electroplated Al front electrode 

has a Ni seed layer to serve as the adhesion layer. The effect of annealing for the front 

Al/Ni electrode in air at different temperatures on cell performance has been 

investigated.  

 

5.2 Design of Front Contact Pattern 

 In crystalline-Si solar cells, the front contact is usually implemented using a grid 

of screen-printed metallic paste. The grids typically have two kinds of gridlines: 

busbars and fingers. Busbars are larger and connected directly to the external leads, 

while fingers are smaller areas of metallization which collect current for delivery to 
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the busbars. The key trade-off in top contact design is the balance between the 

increased resistive losses associated with a widely-spaced grid and the increased 

shading losses caused by a high fraction of metallization on the top surface. 

 

5.2.1 Parameters 

 The physical parameters used for the grid design were provided based on 

industrial datasheets and semi-empirical experience. Let us assume the efficiency of 

the solar cell is 20% under standard testing conditions (100 mW/cm2), which 

corresponds to a power output of 20 mW/cm2. If the assumed fill-factor (FF) is 80% 

then the actual power output is 25 mW/cm2. To select the typical values of 

short-circuit current density (Jsc) and open-circuit voltage (Voc), assuming there are no 

optical or resistive losses, the following equation is used: 

(2.5) Pmax = Jsc × Voc. (5.1) 

The values used in the calculation are typical of what researchers have obtained on 

crystalline-Si solar cells: a Jsc of 38 mA/cm2 and a Voc of 0.66 V.  

 The grid resistance is determined by the resistivity of the metal used to make the 

metal contact and the aspect ratio of the metallization pattern. A low resistivity and a 

high metal height-to-width aspect ratio are desirable in solar cells. In practice these 

parameters are limited by the fabrication technology used to make the solar cell. Here, 

the resistivity of the Al front finger electrode is assumed to be 9×10–6 Ω-cm, and its 

thickness is 5 µm, which results in a sheet resistance of 0.018 Ω/sq. The sheet 

resistance of the front n+ emitter (Rsheet) fabricated by phosphorus diffusion is assumed 

to be 90 Ω/sq. Table 5.1 below summarizes the parameters of the cell used in the 

pattern design. 
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Table 5.1 Physical parameters used in the design of front pattern. 

Parameter Value Description 

FF 80% Fill-factor 

Jsc 38 mA/cm2 Short-circuit current density 

Voc 0.66 V Open-circuit voltage 

ρ 9×10–6 Ω-cm Resistivity of Al electrode 

T 5×10–4 cm Thickness of Al electrode 

Rsheet 90 Ω/sq Sheet resistance of n+ emitter 

A  1 inch2 Area of the cell 

 

5.2.2 Assumption 

 In the design of the front contact pattern, the current density is assumed to be 

generated uniformly across the entire surface of the solar cell. The most accurate 

method for quantifying resistive losses is based on the fact that current generated in 

the cell would travel the shortest distance to a finger or busbar, as shown on the left in 

Figure 5.1. However, to simplify the analysis, it is assumed that current would not 

travel directly to a busbar and instead only to the nearest finger, as shown by the right 

image in Figure 5.1. This assumption seems justifiable because it would make the 

calculated resistive losses larger than what experimental evidence has shown. 
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Figure 5.1 Actual vs. assumed behavior of current flow. 

 

5.2.3 Grid Design  

 For the solar cell fabricated in our lab, the actual area (1 inch by 1 inch) was 

relatively small, so only one busbar was used in the design. The distance from the tips 

of each finger and busbar to the edge of cell is set to be 0.1 cm to minimize the effects 

of shading loss. The quantitative aspects of the design process did not require any 

complicated numerical calculations. The only design rule followed was to calculate 

the power loss (Ploss) and then express it as a fraction of the maximum cell power 

(Pmax). The power loss is a combination of resistive losses in the n+ emitter layer, 

resistive losses along the fingers, and resistive losses along the busbar. By scaling the 

fractional power loss (P%loss = Ploss/Pmax) so that it is level across the entire cell, we 

were able to optimize the dimensions of the contact pattern. 

 

1) Resistive Losses in Busbar:  

 Since the probe would be placed in contact with the middle of the busbar during 

the I-V measurement, only half of the busbar was considered in the calculation of 

power loss. To get the optimal dimension of busbar width (Wb), we need to find the 

fraction between the power loss along the busbar and maximum power, which are 
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both a function of busbar width. Figure 5.2 shows a schematic of the busbar used for 

the calculation of resistive losses. The length of half busbar is 1.17 cm. The 

incremental power loss in the section dL is given by: 

(2.5) dPloss = I2dR. (5.2) 

The lateral current flow (I1), which includes the shading loss, depends on the distance 

(L). It is zero at the edge of the cell and increases linearly to its maximum at the 

middle of the busbar. The equation for the current is:  

(2.5) I1 = J×(L+0.1)×2.54－J×L×Wb, (5.3) 

where J is the current density (Jsc is used in the calculation). 

 The differential resistance (dR1) is given by: 

(2.5) dR1 = ρ×
TW

dL

b ×
, (5.4) 

where ρ and T are the resistivity and thickness of the Al electrode, respectively. The 

equation for the calculation of Wb is:  

(2.5) ∫
1.17

0
1

2

1 dRI = P%loss×0.038×0.66×(1.27×2.54－Wb×1.17). (5.5) 

 If the range of P%loss is from 2% to 3%, Wb ranging from 0.07 cm to 0.046 cm 

can be obtained. We chose 0.06 cm as the value of Wb. It should be noted that Jsc and 

Voc are used as the current density and voltage in the calculation. Ideally, the current 

density and voltage at the maximum power point should be used instead. This means 

the actual resistive losses along the busbar would be smaller than the one calculated 

here, which is acceptable for the design. 

 



 

55 

 

 
Figure 5.2 Schematic of a busbar used for the calculation of resistive losses. The 

figure is not drawn to scale. 
 

2) Resistive Losses in n+ Emitter 

 Based on the sheet resistance of the front emitter, the power loss due to the 

emitter resistance can be calculated as a function of finger spacing (S) in the top 

contact. It should be mentioned that the distance through which current flows in the 

emitter is not constant. On the one hand, current can be collected from the base close 

to the finger and therefore has only a short distance to flow to the finger. On the other 

hand, the length of the resistive path seen by the current is half the finger spacing if 

the current enters the emitter between the fingers. Figure 5.3 shows a schematic of 

current flow in the front emitter. The finger length (Lf) is (2.54－0.06)/2－0.1 = 

1.14cm. The incremental power loss in the section dy has the same form as Equation 

5.2. The lateral current flow (I2), which is zero at the midpoint between grating lines 

and increases linearly to its maximum at the grating line, is given by: 

(2.5) I2 = J×1.14×y. (5.6) 

 The differential resistance (dR2) is given by: 
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(2.5) dR2 = Rsheet ×
1.14

dy
. (5.7) 

The equation for the calculation of S is: 

(2.5) ∫
S/2

0
2

2

2 dRI = P%loss×0.038×0.66×1.14×(S/2). (5.8) 

By following the same design rule, S ranging from 0.215 cm to 0.264 cm can be 

obtained if the P%loss is from 2% to 3%. These values will be included in the 

calculation of finger width. 

 
Figure 5.3 Schematic of the current flow in the front emitter. 

 

3) Resistive Losses in Fingers 

 The power loss along a finger is calculated with the incorporation of finger 

spacing from the corresponding P%loss to get the optimal value of finger width (Wf). 

Figure 5.4 shows a schematic of a finger for the calculation of resistive losses. For the 

current behavior, it is assumed that the current is uniformly generated and flows 

perpendicularly into the finger. Consider an element dx at a distance x from the end of 

the finger. The lateral current flow, including the shading loss, is: 
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(2.5) I3 = J×(x+0.1)×S＋J×0.1×Wf. (5.9) 

 The differential resistance (dR3) is given by: 

(2.5) dR3 =ρ×
TW

dx

f ×
. (5.10) 

The equation for the calculation of Wf is: 

(2.5) ∫
1.14

0
3

2

3 dRI = P%loss×0.038×0.66×(1.24×S+Wf ×0.1). (5.11) 

Again, Wf ranging from 57 µm to 47 µm can be obtained if the P%loss is from 2% to 

3%. It should be noted that each P%loss has a corresponding value of S, which was 

calculated previously. 

 
Figure 5.4 Schematic of a finger used for the calculation of resistive losses. 

 

 By limiting the P%loss in the busbar, the emitter, and the finger to the same range 

and setting the number of fingers on each side of the busbar to be 11, the dimensions 

of the contact pattern can be obtained. The busbar width is 0.06 cm, the finger spacing 

is 0.226 cm, and the finger width is 50 µm. For the fractional power loss in each part, 
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P%loss in the busbar is 2.31%, P%loss in the emitter is 2.2%, and P%loss in the finger is 

2.4%. 

 

5.2.4 Optimization 

 The fractional power loss in the busbar mentioned above is calculated without 

considering the shading loss caused by the fingers. To include the shading from the 

rectangular fingers, the area of the busbar was divided into 12 segments, for each 

either factoring in fingers on each side or a lack of fingers. The power loss of each 

segment was calculated and then added up. The P%loss in the busbar decreases to 

2.27% after the shading of fingers is included. 

 It was reported that a tapered finger has lower resistive loss than a finger of 

constant width  [16]. To further optimize the pattern design, we changed the rectangle 

fingers to tapered fingers while keeping the area fixed. This is because the fractional 

power loss is proportional to the current flow and inversely proportional to the finger 

width. Thus, by increasing the width near the base of the finger (where current is 

higher) and tapering down to the tip of the finger (where current is lower) the 

fractional power loss can be made uniform across the entire area of the finger. Figure 

5.5 shows a schematic of a tapered finger and its width at the base and tip. The base 

and tip width of the finger can be calculated by setting the ratio (Wf,tip /Wf,base) equal 

the current ratio (Itip /Ibase): 
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From the above simultaneous equations, the tip width is 8 µm, and the base width is 

92 µm.  
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Figure 5.5 Schematic of a tapered finger for the calculation of its width. 

 

 After the rectangular fingers are changed to tapered fingers, the P%loss in the 

finger drops to 2.12%. The tip and base width would still be different from the 

optimal values as a result of metallization techniques. The minimum line-width of the 

metal contact is limited by which technique researchers use. An 8µm-wide finger 

cannot be achieved by screen printing through the mask, but it is possible to achieve 

that by electroplating on the opening of dielectric layer. The metallization fraction of 

the final contact pattern is ~4.5%, and the sketch of final design is shown in Figure 

5.6. 
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Figure 5.6 A sketch of the final grid design for the front Al electrode. 

 

5.3 Experimental 

 Partially-processed commercial p-type monocrystalline-Si solar cells with a front 

SiNx coating, an n+ front emitter, a p+ back-surface field and a screen-printed Al back 

electrode were obtained from Hareon Solar. All the subsequent processes for 

patterning and metallization were performed at ASU. The process flow for this all-Al 

p-type Si solar cell is shown in Figure 5.7. The cell fabrication starts with a 12.5×12.5 

cm2, p-type, CZ Si(100) wafer. After random pyramid texturing, the thickness of the 

wafer is ~170 µm. Phosphorus diffusion is performed on the front side using 

phosphoryl chloride (POCl3) to form the n+ emitter with a sheet resistance of 90±5 

Ω/sq. A layer of SiNx (~75 nm) is deposited on the n+ emitter by PECVD after 
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removal of the phosphosilicate glass. Subsequently, the backside Al electrode is 

screen printed and then the wafer goes through a firing step at ~750˚C, which forms 

the p+ back-surface field. 

When the partially-processed monocrystalline-Si cells were received, they were 

cut into small cells of 3.75×5 cm2 for front-side patterning and metallization. The size 

of the cells is limited by our electroplating tool. The front SiNx layer was patterned by 

photolithography, followed by sputter deposition of Ni (~200 nm) over the patterned 

photoresist. It should be noted that laser ablation is likely more cost-effective for 

patterning the SiNx layer. For the deposition of the Ni seed layer, electroless plating or 

light-induced electroplating are actually production-ready. Unfortunately we have no 

such capabilities. The Ni seed layer is required to facilitate Al electroplating since 

electroplated Al on Si substrates with over 1 Ω-cm resistivity shows poor adhesion. 

Our choice of Ni as the seed layer is compatible with the Cu electroplating process 

being developed for crystalline-Si solar cells. It was found that dense and adherent Al 

finger electrodes can be electroplated onto a Ni seed layer. 

The lift-off step was performed by dipping the cells into acetone in an ultrasonic 

bath, which removed Ni over photoresist and left Ni only in the openings of the SiNx 

layer. Electroplating of Al on Ni was carried out in an ionic liquid, consisting of a 

mixture of AlCl3 and (EMIM)AlCl4, prepared in a dry nitrogen box. Prior to 

electroplating, the ionic liquid was baked to drive out any moisture in it. The Ni 

surface was cleaned by a short dip in diluted hydrochloric acid, followed by a 

deionized water rinse. During electroplating, the backside of the Si cell was covered 

with a Teflon sheet to limit Al deposition to only the front Ni seed layer. Al 

electroplating was self-aligned and conducted under a constant current density of ~15 

mA/cm2 at a temperature of ~80˚C. The thickness of the resultant Al layer is ~25 µm. 
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A final annealing was performed in a rapid-thermal processing furnace in air at 

temperatures ranging from 150˚C to 400˚C for 1 min to improve the front Al/Ni 

contact. 

 
Figure 5.7 Fabrication process flow for an all-Al p-type crystalline-Si solar cell. 

 

 Figure 5.8 shows a schematic cross-section of the all-Al p-type Si solar cell 

obtained. Figure 5.9 is a photograph of a finished all-Al cell, with a size of 2.54×2.54 

cm2. The two rectangular pads next to the cell are the contact points for electroplating 

of Al. The electroplated Al on the Ni seed layer is dense and continuous along the 

finger openings, as shown in Figure 5.9. To characterize the Al deposit on the Ni seed 

layer, the composition and crystal structure were examined by EDX and XRD. The 

performance of the cell with different annealing temperatures was characterized by a 

solar simulator. Electroluminescence (EL) was conducted to reveal process 
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imperfections and surface defects of the cell. 

 
Figure 5.8 Schematic cross-section of an all-Al p-type crystalline Si solar cell. 

 

 
Figure 5.9 Photo of a finished all-Al p-type cell (2.54×2.54 cm2) with electroplated Al 

front and screen-printed Al back electrodes. 
 

5.4 Results and Discussion 

 Figure 5.10 shows the EDX analysis and XRD pattern of electroplated Al on a Ni 

seed layer. In Fig. 5.10(a), the deposit displays only one strong peak of Al around 1.5 

keV without any other peaks of different materials, suggesting a pure Al deposit. As 
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shown in Fig. 5.10(b), all four peaks of the deposit are related to Al and identified as 

Al(111), (200), (220), and (311), respectively, further confirming that the composition 

of the deposit is pure metallic Al. 

 
Figure 5.10 (a) EDX spectrum and (b) XRD pattern of electroplated Al on a Ni seed 

layer. 
  

 The effect of final annealing in air at temperatures from 150˚C to 400˚C on cell 

performance has been examined. The cell was characterized under standard conditions: 

AM 1.5G, 100 mW/cm2, 25˚C. The area of the cell is 2.54×2.54 cm2, and the front 

finger electrode accounts for ~4.5% of the cell area. Table 5.2 summarizes the one-sun 
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parameters of the all-Al p-type Si cell at three different annealing temperatures. 

Figure 5.11 shows the normalized efficiency of the cell as a function of contact 

annealing temperature. The normalized efficiency is defined as the ratio of η/ηo, 

where η is the measured efficiency and ηo is the efficiency of the cell before 

annealing.  

Table 5.2 One-sun parameters of an all-Al Si solar cell with three 
different annealing temperatures. 

 
Voc 

(mV) 
Jsc 

(mA/cm2) 
FF 
(%) 

ηηηη    
(%) 

Rsh 

(ΩΩΩΩcm2) 
Rs 

(ΩΩΩΩcm2) 

No 
annealing 

617 35.84 64.3 14.2 181 0.75 

Annealed 
at 200˚C 

(best) 
626 35.98 64.6 14.6 212 0.79 

Annealed 
at 400˚C 

601 35.56 50.9 10.7 23 1.65 

 

 In Table 5.2, it can be seen that the cell before annealing already shows a low 

shunt resistance (Rsh) of 181 Ω-cm2, which we believe is the reason for the low 

fill-factor of 64.3%. A possible reason for the low shunt resistance is the possible 

damage to the shallow emitter junction during front SiNx patterning by 

photolithography. Multiple rounds of cell fabrication have been carried out to 

optimize the shunt resistance, as shown in Figure 5.12. In each fabrication round, we 

modified only the photolithography step to minimize damage to the emitter junction. 

It is noted that the cell efficiency improves with an increasing shunt resistance. 

Further optimization of the front patterning process is needed. Alternatively, laser 

ablation should be employed here due to its less damage to the emitter junction, and it 

is faster and cleaner than photolithography. On the other hand, the cell without 

annealing shows good performance in short-circuit current density (Jsc) and series 
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resistance (Rs), suggesting that the electroplated Al is continuous without voids and 

thus low resistivity. 

 
Figure 5.11 Normalized efficiency of an all-Al p-type cell as a function of contact 

annealing temperature. 
 

 
Figure 5.12 Comparison of cell efficiency and shunt resistance between fabrication 

rounds. 
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As shown in Figure 5.11 and Table 5.2, annealing at 200˚C results in a 

slightly-increased open-circuit voltage (Voc) and fill factor (FF). However, the 

efficiency drops drastically when the annealing temperature exceeds 200˚C. This is 

different from the Cu/Ni electrode which is annealed between 250˚C and 400˚C in an 

inert gas [31]. As the annealing temperature goes above 250˚C, the shunt resistance 

starts to decrease and eventually reaches 23 Ω-cm2 and the series resistance starts to 

increase all the way to 1.65 Ω-cm2 at 400˚C. At the same time, the open-circuit 

voltage is reduced by 25 mV between 200˚C and 400˚C. 

There are multiple reasons for the effect of annealing temperature on cell 

performance. Our annealing furnace is not a dedicated, clean Si furnace, so there can 

be metallic contaminations into the cell during annealing for the lower open-circuit 

voltage. The formation temperature of Ni silicide starts at 250˚C. Its formation at the 

Ni/Si interface increases the series resistance while thinning the emitter junction. The 

later reduces the shunt resistance of the cell. Another possibility for the increased 

series resistance is the increased Al2O3 thickness in the Al electrode when the 

annealing temperature exceeds 200˚C. Further investigation into different annealing 

environments for electroplated Al is needed. 

Figure 5.13 is an EL image of an all-Al p-type cell. The light intensity of the 

image is inversely proportional to the local resistance, so poorly contacted and 

resistive regions show up as dim and dark areas. It can be seen that the areas between 

finger electrodes are dim, suggesting that the emitter junction may be too shallow and 

has a relatively high sheet resistance. This supports our hypothesis that the emitter 

junction is shallow and can be easily damaged during patterning. Dark straight marks 

in the image are likely caused by scratching during shipping, which are another 

possible reason for the low shunt resistance of the cell. 
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Figure 5.13 EL image of an all-Al p-type mono-Si solar cell. 

  

 Figure 5.14 is the I-V curve under one-sun illumination for the all-Al p-type cell 

after annealing at 200˚C, which is one of the best-efficiency cells so far. The 

efficiency is 14.6% with an open-circuit voltage of 626 mV, a short-circuit current of 

~36 mA/cm2, and a fill factor of 64.6%. The fill factor still has room for improvement, 

which may be limited by the patterning process for the SiNx layer. If a higher fill 

factor of 80% can be achieved, the efficiency of this all-Al cell will reach 18%. This 

shows both the potential of Al electroplating as the metallization process for the front 

finger electrode on n-type Si and the importance of an appropriate patterning process 

for the front SiNx layer. 
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Figure 5.14 I-V curve under one-sun illumination for an all-Al p-type Si solar cell 

annealed at 200˚C. 
 

5.5 Summary 

 An all-Al p-type mono-Si solar cell, with an electroplated Al front electrode and 

a screen-printed Al back electrode, has been demonstrated. The cell is fabricated on 

partially-processed commercial p-type mono-Si cells obtained from a production line. 

It is shown that dense, continuous and pure metallic Al fingers can be electroplated 

onto a Ni seed layer. The effect of annealing for the Al/Ni electrode in air at different 

temperatures on the performance of the cell has been investigated. Annealing at 200˚C 

results in the best-performance cell with an efficiency of 14.6%. Further optimization 

of the cell fabrication process, in particular a suitable patterning technique for the 

front SiNx layer, is expected to increase the efficiency of the cell to ~18%. 
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CHAPTER 6 CONCLUSION AND FUTURE OUTLOOK 

6.1 Conclusion 

 Crystalline-Si solar cells dominate the PV industry with ~90% of commercial 

market share today thanks to the well-developed technology established by the 

Si-based microelectronics industry. Despite the rapid growth in global installed 

capacity and significant drop in module price, the relatively high manufacturing cost 

associated with crystalline-Si solar cells is one of the main roadblocks to widespread 

utilization of solar electricity. In order to reach grid parity, the reduction of 

manufacturing costs by using low-cost processing techniques and materials has been a 

key focus of Si-PV research. This work proposed an alternative metallization 

technique to address the cost issue associated with front Ag electrodes of 

crystalline-Si solar cells, which is room-temperature Al electroplaing. It has been 

found that dense and adherent Al deposits with low electrical resistivity can be 

obtained directly on Si substrates by electroplating over a wide range of temperatures. 

For reliable and low-resistivity Al deposits, the pre-bake and deposition temperatures 

should be slightly above 100˚C. The resistivity of electroplated Al is in the high 10–6 

Ω-cm range, similar to that of screen-printed Ag. Compared to screen-printed Al with 

>700˚C firing temperature, the maximum process temperature for electroplated Al is 

well below 400˚C, which is beneficial for the n-side metallization of Si solar cells.  

 With the advantages of being a non-vacuumed and low-temperature metallization 

technique, Al electroplating has been integrated into the fabrication of commercial 

p-type monocrystalline-Si solar cells. Photolithography is employed to pattern the 

front SiNx dielectric layer, but laser ablation is a better choice due to the fact that it is 

faster and cleaner. To overcome the issue of poorly-adherent Al deposits on Si 

substrates with >1 Ω-cm resistivity, the electroplated Al front electrode has a Ni seed 
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layer to facilitate the current distribution during plating. It has been found that dense, 

continuous and pure metallic Al fingers can be electroplated onto a Ni seed layer. An 

all-Al p-type mono-Si solar cell, with an electroplated Al front electrode and a 

screen-printed Al back electrode, has been successfully demonstrated. Annealing at 

200˚C results in the best-performing cell with an efficiency of 14.6%. This shows that 

Al electroplating is a promising candidate of metallization techniques to substitute for 

conventional screen-printing of Ag electrodes. Further optimization of the cell 

fabrication process, in particular a suitable patterning technique for the front SiNx 

layer, is expected to increase the efficiency of the cell to ~18%. 

 

6.2 Future Outlook 

 The cell structure with electroplated Al front electrode discussed in Chapter 5 is 

based on p-type Si wafers. Currently, about 93% of crystalline-Si module production 

is based on p-type Si wafers while the n-type Si wafers only have a market share of 

7%, as shown in Figure 6.1 [27]. This is due to two main reasons:  

 1) Until 1980s, PV was mostly used for space applications where p-type Si is 

 more durable since it is more tolerant to high energy particle radiation in space. 

 2) The processing sequence, particularly the phosphorus diffusion for the n+ 

 emitter formation, is well established in industrial solar cell production for many 

 years.  

However, many researchers have studied phosphorus-doped n-type Si for PV since 

then and confirmed its superior electrical properties compared to the p-type Si. First, 

n-type Si is less sensitive to the harmful metallic impurities, such as interstitial Fe 

(Fei), which are usually present in the feedstock Si or introduced during cell 

manufacturing. These impurities can degrade bulk lifetime and cell performance by 
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introducing SRH recombination centers. Therefore, n-type Si has higher minority 

carrier lifetime and longer diffusion length compared to p-type Si with a similar 

impurity concentration, which provides n-type Si solar cells opportunity to achieve 

higher cell efficiency than p-type Si solar cells [60]. Second, due to the absence of 

boron, n-type Si does not suffer from light-induced degradation (LID) which can 

cause reduction in 0.5~1% absolute cell efficiency [61]. The LID is cause by 

boron-oxygen (B-O) complexes which are formed by prolonged light exposure of 

boron-doped p-type Si.  

 As a consequence, cell structures based on n-type Si wafers have attracted 

considerable attention in the research and development of Si solar cells in recent years, 

including the development of industrial tools and technologies for commercializing 

n-type Si cells. SunPower and Panasonic are two of the companies which use n-type 

Si wafers for high efficiency solar modules today. According to the ITRPV, it was 

predicted that the market share of n-type monocrystalline Si may reach ~30% by 2022. 

This underlines the potential of this material in industrial manufacturing.  

 
Figure 6.1 World market shares for different types of Si wafers. 
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 In our future plan, crystalline-Si solar cells based on n-type Si wafers with all-Al 

electrodes will be fabricated. The cell structure will feature an Al-alloyed p+ rear 

emitter and an n+ front surface field (FSF). The advantage of placing n+ surface field 

on the front side is that the damage to the shallow emitter junction can be avoided 

when photolithography is used for patterning the front dielectric layer. For solar cells 

with a rear emitter or back junction, the quality of Si wafers has to be high, i.e. this 

type of solar cells is mainly restricted to monocrystalline Si. Figure 6.2 schematically 

illustrates the cell structure. 

 
Figure 6.2 Schematic of solar cell structure with an Al-p+ rear emitter. Surface 

texturing is not shown. 
 

 The proposed fabrication process flow for an n-type Si solar cell featuring a rear 

emitter and all-Al electrodes is shown in Figure 6.3. The processing starts with a 

(100)-oriented phosphorus-doped n-type CZ Si wafer with a resistivity of ~5 Ω-cm 

and thickness of 200 µm. The Si wafer is first textured with random pyramids in a 

NaOH/isopropanol solution at 70°C. Then, phosphorus diffusion is performed on the 

front side using POCl3 source in a tube furnace around 850°C to form an n+ FSF. After 

the removal of phosphorus silicate glass, a 75 nm thick SiNx antireflection coating is 

deposited by PECVD on the n+ FSF. Subsequently, the backside Al electrode is screen 

printed and then the wafer goes through a firing step at ~750˚C, which forms the 
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Al-alloyed p+ rear emitter. The firing time and temperature should be carefully 

controlled to optimize the depth of p+ layer and to prevent voids from forming at the 

interface of Al and Al-Si alloys during the firing process. The front SiNx layer is 

patterned by photolithography, and the rest of the metallization process will be exactly 

the same as the steps discussed in Chapter 5. Since the damage to the emitter junction 

can be avoided, the shunting issue caused by Ni spiking during the contact annealing 

can be minimized, suggesting the contact annealing may be conducted at a higher 

temperature.  

 
Figure 6.3 Fabrication process flow of an n-type Si solar cell featuring a rear emitter 

and all-Al electrodes. 
 

 Based on the current electroplating setup in our lab, we can only do Al plating on 

Si solar cells with relatively small areas. The reason why we cannot do plating on 

large-area cells (156 mm by 156 mm) is due to the fact that the sheet resistance across 

the entire wafer will be very large even with a metal seed layer. This will lead to the 
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nonuniformity in thickness of the electroplated Al, which becomes thin on the region 

far away from the electrical contact. To make Al electroplating a more 

industry-compatible metallization technique, we need to improve the uniformity of 

electroplated Al across the whole wafer, which is why the development of 

light-induced Al plating is desired. As mentioned in Chapter 3, light-induced Cu 

plating has been investigated extensively by the PV industry and research centers in 

recent years, and several light-induced plating toolsets for metallization of Si solar 

cells are either commercially available today or under development. Figure 6.4 shows 

a schematic of electrochemical cell setup for light-induced Cu plating [63]. The 

light-induced plating process works on the same principle as the conventional 

electroplating process. However, the photo-generated carriers from a light source can 

facilitate the uniform distribution of current density across the grid pattern during 

plating. The process includes the immersion of a patterned cell into the electrolyte 

bath with an appropriate light source. A Cu electrode is connected to the anode of a dc 

voltage source. A protective potential is applied at the back of the solar cell in order to 

make the rear-side of the cell more cathodic, which helps to reduce the corrosion of 

the Al back electrode. The photo-generated electrons get swept to the n-side of solar 

cell by the built-in potential and recombine with the Cu ions, resulting in the 

deposition of Cu on the metal seed layer. Compared to electroless plating and 

electroplating, light-induced plating can be done more uniformly across the entire cell 

as the applied potential can bias the cell such that it operates closer to its short-circuit 

conditions [64]. Due to this important advantage, development of light-induced Al 

plating in our lab is included in the future plan.  
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Figure 6.4 Schematic of the electrochemical cell setup for light-induced Cu plating. 
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