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ABSTRACT 

 

Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great 

potential in widespread, low–cost photovoltaic cells. A thorough material selection process 

was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing 

and possibly eliminating contamination during thin film growth. The design process 

focused on identifying materials that do not produce volatile components when exposed to 

high temperatures and high sulfur pressures. Once the materials were identified and design 

was completed, the ultra–high vacuum growth system was constructed and tested. 

Pyrite thin films were deposited using the upgraded sequential vapor deposition 

chamber by varying the substrate temperature from 250°C to 420°C during deposition, 

keeping sulfur pressure constant at 1 Torr. Secondary Ion Mass Spectrometry (SIMS) 

results showed that all contaminants in the films were reduced in concentration by orders 

of magnitude from those grown with the previous system. Characterization techniques of 

Rutherford Back–scattering Spectrometry (RBS), X–Ray Diffraction (XRD), Raman 

Spectroscopy, Optical Profilometry and UV/Vis/Near–IR Spectroscopy were performed 

on the deposited thin films. The results indicate that stoichiometric ratio of S:Fe, structural–

quality (epitaxy), optical roughness and percentage of pyrite in the deposited thin films 

improve with increase in deposition temperature. A Tauc plot of the optical measurements 

indicates that the pyrite thin films have a bandgap of 0.94 eV.  
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CHAPTER 1 

INTRODUCTION 

1.1 Operation and efficiency of single–cell photovoltaic cell 

A p–n junction photovoltaic (PV) cell operates by absorbing a photon of light with 

energy greater than or equal to bandgap of its material. The electrons and holes that are 

generated drift to the edge of the depletion region and then through the semiconductor 

neutral region and then, are collected at their respective electrodes. The efficiency of a PV 

cell primarily depends on: (i) fraction of light with energies above the bandgap, (ii) energy 

lost to thermalization of photons above the bandgap and (iii) the ratio between the time 

charge carriers take to cross the depletion region and their lifetimes. According to Shockley 

and Queisser [1], recombination between electrons and holes resulting in radiation, i.e. 

radiative recombination, determines the detailed balance limit for efficiency by setting a 

limit to minority carrier lifetimes. This theoretical limit of efficiency, also called Shockley–

Queisser limit, has maximum value of 30% at 1.1 eV bandgap exposed to sunlight of 1.5 

global air mass, as shown in Fig. 1. 

 

Fig. 1. Plot showing dependence of efficiency of single–junction solar cell on bandgap [1] 
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From the data published by Green, M. A. et al. (2015) [2], crystalline silicon (x–Si) 

photovoltaic cells have obtained an efficiency of up to 25.6% ± 0.5%, when measured at 

25°C in a global AM 1.5 spectrum (1000W/m2). On the other hand, low–cost photovoltaic 

technologies such as amorphous silicon (a–Si) and micro–crystalline silicon have exhibited 

efficiencies as high as 10.2% ± 0.3% and 11.4% ± 0.3%, respectively. Thin film cells 

based on gallium arsenide (GaAs), chalcogenides such as copper indium gallium selenide 

(CuInxGa1-xSe2; CIGS) and cadmium telluride (CdTe) respectively show cell efficiency of 

28.8% ± 0.9%, 20.5% ± 0.6% and 21.0% ± 0.4% [2]. Due to its low absorption cross–

section and high processing cost, x–Si does not show promise for a low–cost, thin film PV 

device. However, toxicity, scarcity and thereby the cost associated using As, In, Ga and Cd 

in the GaAs, CIGS and CdTe cells limits their potential for wide–spread use in the future. 

Thus, when seeking alternatives for present PV materials, these drawbacks along with the 

need of decrease in cost, must be given prime importance. 

Semiconductors like copper zinc tin sulfide (Cu2ZnSnS4; CZTS), pyrite (FeS2) and 

copper oxide (CuO) have been identified as materials which could potentially overcome 

the drawbacks of conventional PV materials and attain wide–spread use by the PV industry 

in the future [3]. Each of these semiconductors are comprised on inexpensive materials and 

have: (a) an appropriate bandgap for efficient conversion, (b) low toxicity, (c) low 

extraction cost, and (d) a high absorption cross–section [4]. 

1.2 Pyrite as a candidate for thin film photovoltaic cells 

Fig. 2 shows the binary phase diagram of iron and sulfur. As noted in Table 1, there 

are several iron sulfides with different iron (Fe) and sulfur (S) stoichiometric ratios, 
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different crystal structures and thus, different properties. This has proven to make the 

synthesis of a phase–pure, high–quality pyrite thin film challenging. 

 

Fig. 2. Iron – Sulfur binary phase diagram [5] 

Table 1. Sulfides present in iron–sulfur phase diagram [5] 

Phase Composition, wt. % S Crystal structure 

γFeS 36.5 to 41 * 

Troilite; βFeS 36.5 to ~38 Hexagonal 

αFeS 36.5 to ~38 * 

Pyrite; βFeS2 ~53.5 Cubic 

Marcasite; αFeS2 ~53.5 Orthorhombic 

* Crystal structure can be hexagonal or monoclinic. 
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1.3 Deposition of pyrite thin films 

Experimental techniques used to grow pyrite thin films include chemical vapor 

transport (CVT), metal–organic chemical vapor deposition (MOCVD), spray pyrolysis 

methods and sulfurization of iron and iron oxides [4]. These methods extensively rely on 

the use of chemical compound precursors which can be expensive and toxic. 

A high vapor pressure of sulfur is required when using physical vapor deposition 

(PVD) techniques to synthesize pyrite. Vahidi M. et al. (2013) developed a simple and 

robust PVD layer–by–layer growth process to make high–quality, single phase pyrite thin 

films from their elemental constituents, S and Fe [6]. This technique was subsequently 

modified by Wertheim A. to achieve better control of sulfur pressure and substrate 

temperature. This is the sequential vapor deposition system in which heated substrates are 

alternately exposed to iron in high vacuum and sulfur at high pressure (0.1 Torr – 1 Torr) 

using a rotating substrate holder mechanism as seen in fig. 3. 

 

Fig. 3. Schematic diagram of sequential evaporation system [6] 
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The films deposited in this system were found to have a significant level of 

contamination in the thin films arising from re–evaporation of the reaction products 

between sulfur and chamber components (eg. gaskets, substrate heater and electrical 

feedthroughs). My work focused on reducing the concentration of contaminants and 

improving the quality of deposited thin films. I have followed a similar deposition process, 

however, growths were performed at higher sulfur pressure, i.e. 1 Torr. The following 

chapters elaborate on the motivation for this project, the procedures followed when 

conducting experiments, results of characterization techniques and conclusions based on 

these results. 
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CHAPTER 2 

MOTIVATION 

 

 In a study conducted by Wadia C. et al. (2009) [3], the potential to produce 

inexpensive and efficient photovoltaics for widespread use was evaluate for 23 inorganic 

semiconductors.  The investigators took into account the single junction efficiency limits, 

cost of extraction of respective raw materials, worldwide material reserves and the 

electricity production potential. 

Iron pyrite (FeS2), crystalline silicon (x–Si), amorphous silicon (a–Si) and gallium 

arsenide have raw material cost of $1.9 x 10-8, $3.9 x 10-4, $1.8 x 10-6 and $2.5 x 10-3 for 

every watt ($/W) of the potential amount of electricity produced by photovoltaic cells made 

from these materials. About 55% of total installed cost for existing PV comes from the 

module cost. If pyrite–based photovoltaic cells could be produced with inexpensive 

methods and also achieve the same performance as x–Si, it could produce 102 to 103 times 

the current global annual electricity consumption compared to 10-2 to 10-1 times achievable 

by x–Si [3]. 

 In chapter 1, I discussed fundamental aspects of operation, cell efficiency and 

material choice for a photovoltaic cell. Large bandgap materials (> ~1.3 eV) absorb a 

relatively small part of the available spectrum, thereby exhibiting smaller short–circuit 

current (ISC), while small bandgap materials absorb broad section of the spectrum, but 

exhibit a lower open–circuit voltage (VOC). Poor quality semiconductors with significant 

concentrations of midgap levels have low carrier mobilities and minority–carrier lifetimes, 

also resulting in poor cell efficiencies. Such performance degrading levels are formed by 
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native and impurity defects. Although the sequential evaporation process developed by my 

group showed great promise to make stoichiometric, high–structural quality pyrite thin 

films, methods to prevent high level of contamination during deposition had not been 

developed. The primary objective of my project was reduction and elimination of 

contaminants in deposited pyrite thin films. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

In this chapter, the procedures used to carry out the experiments in this project are 

outlined. The first section, 3.1, describes the design, fabrication and testing of the new 

upgraded growth system. In the second section, 3.2, procedures for depositing pyrite thin 

films are elaborated. Finally, in section 3.3, the capabilities and methodology of 

characterization techniques has been reviewed. 

3.1 Design of substrate holder for upgraded chamber 

The secondary ion mass spectrometry (SIMS) analysis performed on thin films 

deposited using sequential vapor deposition chamber designed by Vahidi M. et al. [6] 

indicated large concentrations of impurities such as copper (Cu), chromium (Cr), nickel 

(Ni) and manganese (Mn). The copper impurity arose from re–evaporation of products of 

reaction of sulfur with components of vacuum chamber, mainly, gaskets used for vacuum-

sealing flanges and electrical feedthroughs used to supply power to the heating elements. 

The source of tungsten impurity was identified to be the iron–evaporation crucible. The 

source for Ni, Cr and other constituents was the heated stainless steel substrate holder, 

bottom–plate and bottom–disc. These components were exposed to high sulfur pressures 

and temperatures (300°C – 450°C), which resulted in a strong reaction with sulfur. To 

eliminate contamination, it is necessary to eliminate materials which react with sulfur and 

form volatile products. Fig. 4 shows a schematic of the deposition chamber indicating main 

components of the system. 
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Fig. 4. Design of the chamber used of pyrite thin film deposition showing important parts 
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Fig. 5. Design images of the substrate heater assembly used in the upgraded chamber 

Some common metals, compounds and ceramics commonly used in vacuum 

systems were chosen for investigation. For each candidate material, potential reaction 

products formed when exposed to sulfur under the temperature and pressure conditions 

present in chamber were determined using appropriate phase diagrams, including those 

presented as Ellingham diagrams (fig. 6). To carry out this experiment, the amount of sulfur 

required to attain a pressure of 100 Torr in the ampoule was determined. Then a specimen 

of each candidate material was weighed, placed in a separate ampoule with appropriate 

amount of sulfur and then vacuum–sealed. To test the materials under accelerated 

degradation conditions, the ampoules were subsequently heated in a tubular furnace at 

temperature to 450°C for 24 hours. After the heat treatment, each of the materials was 

removed from the ampoules and characterized using X-Ray Diffraction (XRD) for phase 

identification, Rutherford Back-scattering Spectrometry (RBS) for determination of the 

thickness and composition of the reacted layer and Thermo-gravimetric Analysis (TGA) 

for quantifying the volatility of the reaction products. 
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Fig. 6. Ellingham diagram of known sulfides [8] 

3.2 Deposition of pyrite thin films 

The substrate holder for deposition of pyrite thin films was designed to hold 4 

substrates of dimensions 1 cm x 1 cm x 500 μm. I typically used following substrates: 1 x 
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Si (100), 2 x SiO2–coated Si and 1 x Al2O3 (r–plane) for the following reasons. Iron pyrite 

(FeS2) and silicon (Si) both have a cubic structure and the lattice mismatch is only 0.25% 

(FeS2: 5.418 Å; Si 5.431 Å). The SiO2–coated Si substrates have an amorphous and 

insulating thermal–oxide buffer layer of approximately 2000 Å. Prior to loading substrates 

in the chamber, the surfaces were cleaned by ultra–sonicating them in semiconductor–

grade acetone followed by isopropyl alcohol for 5 minutes. All substrates, except Si (100), 

were rinsed with de–ionized (DI) water which was subsequently blown off with dry N2 gas 

and then mounted onto the substrate holder. Silicon substrates were subjected to an 

additional etch step in order to remove the native oxide layer from its surface. The Si 

substrate surface was exposed for 3 minutes to a freshly prepared 5% (by volume) solution 

of HF acid in DI water, followed by rinsing with DI water and blow–off with dry N2. 

Immediately after this step, the Si substrate was mounted on the substrate holder, which 

was subsequently loaded into the chamber and connected with the substrate heater 

assembly. The chamber was then pumped down to high vacuum conditions and typically 

left overnight to achieve a low base pressure (typically on the order of 1.2 × 10-5 Torr). 

For conducting each deposition experiment, a single–step temperature sequence for 

substrate heater was used. The raw materials used for deposition experiments were iron 

(Alfa Aesar; 99.98% metals basis purity) and sulfur (STREM Chemicals; 99.999% purity) 

loaded into their respective crucibles. Iron was evaporated from an alumina–coated 

tungsten crucible heated by passing constant current (37.5 A) through it. The sulfur 

pressure was maintained at either 100 mTorr or 1 Torr by heating sulfur–evaporation 

crucible to corresponding temperature of 147°C or 180°C. Through the course of the 

experiment, substrate holder along with substrate stage assembly was rotated inside the 
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substrate heater at rotation speed of ~5 rpm. The substrate temperature chosen for each 

deposition was varied between 250°C and 425°C (in steps of 25°C). Substrates were heated 

from room temperature to the deposition temperature, held at that temperature in presence 

of iron–evaporation and sulfur at 1 Torr for growth duration (90 minutes), annealed at same 

temperature for 30 minutes and then cooled to room temperature in vacuum. When the 

substrates reached the deposition temperature and the sulfur crucible temperature was 

stable at 147°C or 180°C, the iron–evaporation crucible was heated up to temperature in 

~1 minute and its shutter was opened. After 90 minutes, the shutter was closed and the 

current supplied to the iron–evaporation crucible was brought down to zero over a period 

of 2 minutes. During annealing, the substrate temperature and 1 Torr sulfur pressure were 

maintained at same values as during deposition. At the end of annealing stage, the current 

supplied to the substrate heater as well as the sulfur–evaporation crucible was stopped and 

the substrates were allowed to cool to room temperature. After each deposition, the 

substrates with their deposited thin films were removed from the chamber for 

characterization. 
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Fig. 7. Plot showing profile of process parameters for deposition at 350°C and 1 Torr 

3.3 Characterization of deposited thin films 

Rutherford Back-scattering Spectrometry (RBS) was performed to qualitatively 

determine the composition, stoichiometry and thickness of the deposited thin films. RBS 

was performed under non–resonance, as well as at oxygen resonance, conditions to 

improve the sensitivity of detecting oxygen incorporation in the films. Quantitative 

analysis of these measurements was carried out using RUMP software simulations. 

Due to limited resolution of RBS and relatively close atomic weights of iron and 

contaminant metals identified earlier, Helium Induced X–ray Emission was also performed 

to determine the impurity content. 

Secondary Ion Mass Spectrometry (SIMS) was used to determine level of 

contamination in the deposited films. SIMS was only performed on few films to study trace 

levels of contamination. 
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Glancing–angle X–ray Diffraction (GA–XRD) was performed on thin films 

deposited on Si (100) substrates to determine the crystal quality of the primary phase and 

the detection of any secondary phases of iron disulfide. Marcasite is a phase in iron-sulfur 

phase diagram that has chemical composition FeS2 and although it has orthorhombic 

crystal structure, peaks in the XRD pattern from both marcasite and pyrite occur at similar 

values of 2θ. Raman Spectroscopy was also used to distinguish between pyrite and 

marcasite as Raman shift occurs at distinct wavelengths for each of these phases. 

Measurements were performed using an optical profilometer to investigate the 

surface topography characteristics. Along with these, transmission and reflection 

measurements were also performed in UV/Vis/Near–IR range of spectrum to measure the 

absorption and absorbance of pyrite thin films with the aim of determining the bandgap of 

iron pyrite and detecting any mid–gap levels that may be present. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

4.1 Selection of material for substrate holder 

 As discussed earlier in section 3.1, a study was conducted to evaluate the potential 

use in the fabrication of substrate holder, bottom–plate and bottom–disc in the upgraded 

chamber. A list of the materials studied along with the enthalpy of formation of their 

respective sulfides is presented in Table 2. Visual examination of the materials after heating 

in sulfur environment led to elimination of copper and silver due to severe corrosion. The 

thickness of reacted layer and products of reaction were determined using RBS for the 

other materials. Based on these results, the potential materials for building substrate heater 

were identified to be: aluminum, alumina, Macor, Si and SiO2–coated stainless steel. 

Considering the constant physical contact between the bottom–plate and bottom–disc 

during substrate stage rotation, SiO2–coated stainless steel was ruled out. The intricate 

shape of components, brittle nature and high cost of manufacturing make Si and alumina a 

poor choice of material for this purpose. RBS results for the aluminum sample indicated a 

strong surface reaction, which is expected, given the high enthalpy of formation of Al2S3 

(-724 kJ/mol). A careful investigation of the Al–S, Al–Fe and Macor–related phase 

diagram indicates that no volatile products will form at least up to temperature of 530°C. 

To experimentally measure the volatility of products on the samples after the sulfur–

environment heat–treatment, thermo–gravimetric analysis (TGA) was performed. The 

observed initial gain in mass for all samples is due to buoyancy effect in the instrument. 
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Both Macor and aluminum showed a loss of mass at ~ 145°C (sulfur vapor pressure ~ 100 

mTorr). 

Table 2. Enthalpy of formation for sulfides of materials chosen for the study 

Material Sulfide Enthalpy of formation (kJ/mol) 

Aluminum (Al) 

Al2S3 -724 

AlS N/A 

Alumina (Al2O3) Same as above 

Macor * – 

Silver (Ag) Ag2S -32.59 

Copper (Cu) CuS -53.10 

Silicon (Si) SiS2 -254.60 

SiO2–coated SS Same as above 

* Macor is a machinable glass–ceramic with a rough composition of: 55% 

fluorophlogopite mica and 45% borosilicate glass [Courtesy: Corning Inc.] 

 

 

Fig. 8. Results of TGA for Al, Macor and SiO2–coated stainless steel samples 
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Fig. 9. RBS plot for Al sample showing reaction products and layer thicknesses 

 

Fig. 10. RBS plot for Macor sample showing no reaction with sulfur 
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4.2 Helium Induced X–ray Emission (HeIXE) 

 Aluminum was used to fabricate the substrate holder and bottom–disc of the heater 

assembly. Since the substrate holder surrounds and is also in direct physical contact with 

the substrates for the entire duration of the growth, it is essential to check if aluminum 

contaminates the deposited films in the upgraded chamber system. As mentioned in section 

3.2, the pyrite thin films were deposited on silicon, thermally–oxidized silicon and sapphire 

substrates. 

HeIXE was performed on a thin film deposited (PTF073015) on magnesium oxide 

(MgO) substrate. There was no detectable aluminum contamination in the deposited thin 

films up to the detection limit of ~100 ppm as shown in the next figure. 

 

Fig. 11. HeIXE plot showing no aluminum contamination of deposited thin film 
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4.3 Secondary Ion Mass Spectrometry (SIMS) 

Other contaminants such as copper (Cu), nickel (Ni), chromium (Cr) could not be 

detected and quantified by HeIXE due to the limited sensitivity of this technique. To 

measure the concentration of these contaminants, secondary ion mass spectrometry (SIMS) 

was performed on 2 representative thin films. Table 3 compares the SIMS results collected 

from deposited thin films in both chamber systems. The contamination level of aluminum 

in films deposited in the upgraded chamber is 1.2 ppm and 9.5 ppm, well below the HeIXE 

detection limit. The concentration of all the elemental contaminants has been reduced by 

at least 2 orders of magnitude for films deposited in this upgraded system with the Al 

substrate holder, over that from the old system with the stainless steel substrate holder. 

Table 3. Summary of SIMS performed on deposited thin films 

Impurity Element 

Impurity concentration (ppm) 

Old Chamber Upgraded chamber 

PD060814 PD061114 PTF102915 PTF111615 

Magnesium 1027 901 2.81 8.27 

Aluminum No data No data 1.20 9.52 

Chlorine 297 1216 14.31 0.00 

Calcium 217 100 0.61 16.22 

Titanium 361 201 0.13 2.95 

Chromium 188 223 2.03 5.64 

Manganese 311 264 1.15 11.01 

Nickel 694 2404 123.14 220.03 

Copper 2059 2462 2.80 1.19 

Zinc 1244 5064 30.20 42.41 

Bromine 7237 1094 0.00 0.00 

Molybdenum 13 16 0.00 0.00 

Tungsten 4 33 0.14 2.00 

Lead 270 335 0.00 0.00 
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 In order to eliminate contamination from copper, I replaced all copper gaskets with 

alternate materials. Aluminum gaskets were used in all cases, except for one Viton gasket 

between the top–nipple and substrate–heater housing assembly (refer to fig. 4). Viton was 

used in this case to save time when repairs were needed inside the chamber, an event that 

occurred relatively frequently during the initial stages of this project. Finally, I replaced all 

copper electrical feedthroughs with those made from iron. In this way, the use of copper in 

the chamber was completely eliminated. 

Lead was another contaminant found in films made with the first generation heater. 

This was found to come from a lubricant used on the rotating substrate stage. This lubricant 

was not needed or used in my design because of the more precise alignment tolerances 

between the substrate stage and polished bottom–disc. I found that the ever–present sulfur 

can work as a very effective lubricant itself. 

 Alumina–coated tungsten crucibles were used to evaporate iron. Although both 

chambers used crucibles of the same shape (fig. 8), in the old chamber, it was made by 

bending legs of a commercially available crucible design. Such bending resulting in 

cracking and flaking of alumina, thereby exposing the tungsten wire. We were able to 

reduce the tungsten impurity concentration in the deposited films by using “custom–made” 

crucibles that had their legs bent first and then followed by the application of the alumina 

coating [Courtesy: R. D. Mathis Company]. 

The source of chromium (Cr) and nickel (Ni) contamination was attributed to the 

substrate holder’s stainless steel being exposed to high temperatures in the sulfur growth 

environment. Evidence of etching could be seen throughout the heater assembly, especially 

in a circular erosion track in the bottom–plate near the substrate mounts in the old chamber. 
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By replacing these components with aluminum ones, the concentration of chromium (Cr), 

nickel (Ni), manganese (Mn), zinc (Zn) and titanium (Ti) is markedly diminished in the 

deposited thin films. Contamination from Ni, though lower than previous chamber, was 

still found to be considerable (120 ppm and 220 ppm in the two films). This contamination 

arises from Inconel, a nickel–chromium alloy, used in the outer sheath of Thermocoax 

wires used to heat the substrate heater and the sulfur–evaporation crucible. 

4.4 Rutherford Backscattered Spectrometry (RBS) of deposited pyrite thin films 

The stoichiometry and thickness of deposited thin films was determined using RBS 

analysis and RUMP simulations. The average stoichiometric ratio of S:Fe was found to be 

2:1 for all deposition temperatures, except at low deposition temperatures of 300°C and 

320°C. This suggests that any less strongly bonded sulfur is desorbed during anneals above 

325°C. Note that the vapor pressure of sulfur is sufficiently high that we can rule out free 

sulfur on the surface being the main source of this excess sulfur component. 

 

Fig. 12. S:Fe ratio in deposited thin films determined from RBS simulation 
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4.5 X–ray Diffraction (XRD) of deposited pyrite thin films 

I found that increasing the substrate temperature yields better structural quality thin 

films, as judged by the full–width at half maximum (FHWM) of the pyrite (200) Bragg X–

ray diffraction peak. 

 

Fig. 13. FWHM of pyrite (200) peak in XRD plots of deposited thin films 

4.6 Raman Spectroscopy of deposited pyrite thin films 

Pyrite and marcasite are polymorphs of FeS2 with cubic and orthorhombic structure 

respectively. Surprisingly, almost all of the Bragg peaks observed in X–ray diffraction of 

these compounds occur at similar 2θ values. In contrast, the Raman spectra differ 

significantly. Raman peaks for pyrite occur at frequencies of 343 cm-1 (Ag), 379 cm-1 (Eg) 

and 430 cm-1 (Tg) while those for marcasite occur at 323 cm-1 and 386 cm-1 [12]. The Raman 

spectra which I obtained from Natural Pyrite samples (fig. 9), namely NP–Spain and NP–

Utah, contain peaks which are in close agreement with published data. 
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Fig. 14. Raman spectra from iron sulfides obtained using green (523 nm) excitation [12] 

 

Fig. 15. Raman spectra obtained from natural pyrite samples 

(Grey: NP–Spain; Blue and Orange: NP–Utah) 

By performing Raman spectroscopy measurements on deposited thin films, I was 

able to distinguish between pyrite and marcasite thin films. I also quantified the relative 
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percentage of marcasite phase in pyrite thin films by comparing relative intensities of most 

dominant Raman peaks. Some Raman spectra from deposited pyrite thin films showed a 

silicon substrate peak at ~520 cm-1. Raman spectra obtained from films showing Pyrite: 

Marcasite proportions of 99:1 and 49:51 are shown for visual comparison in fig. 16. In the 

subsequent figure, the percentage of pyrite in deposited thin films (i.e. pyrite:marcasite 

ratio) is seen to increase increases with increasing deposition temperature. 

 

Fig. 16. Raman spectra from films with Pyrite: Marcasite ratios of 99:1 and 49:51 

 

Fig. 17. Plot showing ratio between pyrite and marcasite phases present in deposited films 
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4.7 Optical topography of deposited pyrite thin films 

 The optical topography of the pyrite thin films deposited in the upgraded chamber 

was characterized using an optical profilometer (Zemetrics, Model ZeScope, at LeRoy 

Eyring Center for Solid State Science) with a depth resolution better than 1 Å. The figure 

below shows that the average roughness decreases with increasing deposition temperature. 

This can be attributed to improved diffusion and mass transport at elevated temperatures 

on the growth surface. 

 

Fig. 18. Plot showing relation between optical roughness of deposited thin films and 

deposition temperature 

4.8 UV/Vis/Near–IR spectroscopy of deposited pyrite thin films 

 Transmission and reflection measurements were performed on pyrite thin films 

deposited in the upgraded chamber using a spectrophotometer (PerkinElmer, Model 

Lambda 950 S with Automated Reflectance/Transmittance Analyzer (ARTA) accessory). 

The range of spectrum analyzed during measurements is 250 nm (4.96 eV) to 2000 nm 

(0.62 eV). The optics configuration of this tool is shown in the figure below. The substrate 
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is positioned at an angle of 10° with respect to incident beam. The angle between incident 

and transmitted beam is 180°, while that between incident beam and reflected beam is 20°. 

    

Fig. 19. Schematic diagrams showing optics arrangement in (a) transmission mode; (b) 

reflection mode 

 

Fig. 20. Arrangement of optics in ARTA accessory during transmission measurements 

The pyrite bandgap based on optical measurements has been reported to be 0.9 eV 

[10]. Fig. 11 shows the reflectivity data measured from pyrite thin films deposited in the 

upgraded chamber. The peak around 1.5 eV is attributed to 3d intraband transitions from 

3d t2g into the antibonding eg
* state and the second peak at ~ 4.0 eV has been attributed to 

interband transitions from S 3p band into the Fe 3d eg
* state [11]. The discontinuity in data 

points at ~1.48 eV in all the plots is due to an instrumental change in detector optics at this 
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energy. Using a Tauc plot (i.e. by plotting α2 versus photon energy), a bandgap energy of 

0.94 eV was found in the higher–quality films which were grown at higher temperatures 

and had the smallest below–bandgap absorption. This value is in close agreement with the 

reported values in literature [10]. 

 

Fig. 21. Reflectivity plot obtained from deposited pyrite thin films 
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Fig. 22. Transmission data obtained from deposited pyrite thin films 

   

 

Fig. 23. Variation in absorption coefficient with increasing photon energy 
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Fig. 24. Estimation of bandgap energy of pyrite thin films using optical method  
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CHAPTER 5 

CONCLUSIONS 

 

 Using a systematic material selection process, I designed, built and used a 

sequential–evaporation growth system to improve the structural quality, surface 

smoothness, chemical stoichiometry and phase purity of pyrite thin films. 

Stoichiometric pyrite thin films were obtained at all temperatures above 325°C. The 

smoothness of films, as measured by optical profilometer, and crystal quality, as judged by 

FWHM of X–ray diffraction pyrite (200) Bragg peak, improved with increasing deposition 

temperature up to highest temperature used, i.e. 420°C. The percentage of pyrite phase in 

the deposited thin films, as determined from Raman spectra, also increased with increasing 

deposition temperature up to a value of 100% at 420°C. SIMS measurements from thin 

films deposited in the upgraded chamber, with mostly Al parts, have contamination levels 

3 orders of magnitude smaller than those found for the older chamber, with mostly stainless 

steel and copper parts. Contamination from some elements such as bromine (Br), lead (Pb) 

and molybdenum (Mo) has been completely eliminated. 

Using a Tauc plot, I measured the bandgap energy of highest–quality pyrite thin 

films deposited using my chamber to be 0.94 eV. 
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CHAPTER 6 

FUTURE WORK 

 

In order to further reduce impurity concentrations in the deposited pyrite thin films, 

it is necessary to identify the source of the remaining contaminants. For example, nickel 

(Ni) is present in the Inconel alloy covering the Thermocoax heating elements. Alternative 

materials should be sought in order to completely eliminate sources of nickel 

contamination. An iron heating element might also be considered. A ceramic covering 

should also be used to cover the wiring, especially where the element enters the heater, 

since they are not thermally anchored and are thus at a much higher temperature than the 

rest of the wiring. A thorough study to determine the mean time to failure should be 

performed. 

It was noted that crystal quality and phase purity of pyrite thin films improves with 

increasing deposition temperature. In order to attain higher deposition temperatures, up to 

530°C for 1 Torr sulfur pressure, I would suggest that the aluminum bottom–plate and 

bottom–disc should be replaced with more heat–resistant materials, like Macor ceramics. 

Having optimized the chamber for high–structural quality pyrite thin film deposition, 

doping with donors dopants and acceptor dopants to form n– and p–type pyrite, 

respectively, can be considered as the next objective. The upgraded chamber built during 

this project is capable of incorporating an additional evaporation source on the bottom 

flange. 
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