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ABSTRACT

A moving overlapping mesh methodology that achieves spectral accuracy in space

and up to second-order accuracy in time is developed for solution of unsteady incom-

pressible flow equations in three-dimensional domains. The targeted applications are

in aerospace and mechanical engineering domains and involve problems in turboma-

chinery, rotary aircrafts, wind turbines and others. The methodology is built within

the dual-session communication framework initially developed for stationary overlap-

ping meshes. The methodology employs semi-implicit spectral element discretization

of equations in each subdomain and explicit treatment of subdomain interfaces with

spectrally-accurate spatial interpolation and high-order accurate temporal extrapo-

lation, and requires few, if any, iterations, yet maintains the global accuracy and

stability of the underlying flow solver. Mesh movement is enabled through the Arbi-

trary Lagrangian-Eulerian formulation of the governing equations, which allows for

prescription of arbitrary velocity values at discrete mesh points.

The stationary and moving overlapping mesh methodologies are thoroughly vali-

dated using two- and three-dimensional benchmark problems in laminar and turbulent

flows. The spatial and temporal global convergence, for both methods, is documented

and is in agreement with the nominal order of accuracy of the underlying solver. Sta-

tionary overlapping mesh methodology was validated to assess the influence of long

integration times and inflow-outflow global boundary conditions on the performance.

In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statis-

tics are validated against the available data. Moving overlapping mesh simulations

are validated on the problems of two-dimensional oscillating cylinder and a three-

dimensional rotating sphere. The aerodynamic forces acting on these moving rigid

bodies are determined, and all results are compared with published data. Scaling

i



tests, with both methodologies, show near linear strong scaling, even for moderately

large processor counts.

The moving overlapping mesh methodology is utilized to investigate the effect of

an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded

airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed

for steady inflow incident upon the airfoil oscillating between angle of attack 5.6◦and

25◦with reduced frequency k = 0.16. Results are contrasted with subsequent DNS of

the same oscillating airfoil in a turbulent wake generated by a stationary upstream

cylinder.
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Chapter 1

INTRODUCTION

1.1 Motivation

Within the engineering and physical communities, there are many important prob-

lems that involve fluid flow around moving bodies, including propellers and blades

on rotor- and watercraft, wind turbines, stirred reactors, maneuvering aircraft, and

biological flows such as blood flow through a pumping heart. Many of these problems

include complex physics, often involving turbulence interactions which require high-

accuracy computational methods for reliable flow field predictions. However, accurate

modeling of the fluid flow around complex moving geometries has traditionally been

a challenging task. Many flow solvers that can handle such problems have limitations

in the types and ranges of motion that an object may travel. Other methods must

introduce additional computational schemes to maintain sufficient resolution near

moving wall boundaries. In all cases, greater computational accuracy and efficiency

is desirable.

Many problems require irregular inflow conditions to model realistic situations,

such as upstream disturbances or incoming turbulence incident upon moving rigid

bodies. While finding approximations for such problems using a single domain can be

very difficult, decomposing the domain into overlapping subdomains that are allowed

to move independent of one another greatly simplifies the process, and also allows

for consistent grid resolution near moving wall boundaries. However, the majority of

existing methods that can accommodate these problems are employed in low-order

solvers and use low-order interface interpolation methods. The following literature
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review sheds additional light on the many short-comings inherent in current schemes

developed to handle moving rigid body problems. The development of a domain

decomposition method within a high-order global method, allows for more accurate

flow approximations at a lower computational cost, giving users greater flexibility

over grid resolution, rigid-body motion, and global solution accuracy.

1.2 Literature Review

The present discussion will introduce previous computational developments in

domain decomposition for use with stationary grids, and will then give an overview

of previous methods developed for the approximation of fluid flow around moving

rigid bodies, including advantages and shortcomings.

Domain Decomposition. Finding numerical solutions to partial differential equa-

tions (PDEs) by decomposing the computational domain into smaller subdomains is

an idea that has been around for well over a century. Domain decomposition methods

have been utilized for several different purposes, including straightforward paralleliza-

tion [8, 9, 10, 11], simplified mesh generation for complex geometries [12, 13, 14, 15],

and the ability to use different parameters or methods in different subdomains [16,

17, 18, 19]. These techniques exist in many forms, and each has its strengths. Some

decompose the global domain into overlapping subdomains [20, 21, 22, 23, 24, 25],

while others employ non-overlapping subdomains [26, 16, 14, 27, 28, 29]. Some use

explicit interpolation techniques for values at interface boundaries [16, 30, 27, 31], and

others carry out implicit interpolation [32, 33, 29, 34, 20, 21, 35, 36, 37]. Domain de-

composition techniques have been developed for use with several numerical methods

including finite difference [21, 12, 16, 30], finite element [32], finite volume [24, 38],

and spectral methods [28, 29].
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The earliest known research in domain decomposition methods was performed by

H.A. Schwarz whose work was published in 1870 [20]. The original Schwarz Alternat-

ing Method, initially proposed for analytical calculations [39], was developed for the

global solution of boundary value problems for harmonic functions [22] decomposed

into overlapping subdomains, Ω = Ω1 ∪ Ω2. The solution in the first subdomain (Ω1

with boundaries ∂Ω1 ∩ ∂Ω and Γ1 = ∂Ω1 \ ∂Ω) is found using the global boundary

conditions on ∂Ω1 ∩ ∂Ω and corresponding values from Ω2 at the previous iteration

on Γ1. The solution of Ω2 is then found by using values from the solution in Ω1 on Γ2.

These two steps are iterated until sufficient convergence is reached (see [40, 39, 41]).

In the 1960’s, Volkov generalized the original Schwarz Alternating Method into

a numerical domain decomposition technique, in a form of the Composite Mesh Dif-

ference Method (CMDM) [21]. CMDM used finite difference methods to solve the

2-dimensional Poisson equation numerically on overlapping grids. His research laid

the foundation for subsequent techniques that extended the use of CMDM to other

elliptical and hyperbolic PDEs, and boundary value and initial value problems, with

the ability to use curvilinear meshes (see [42, 43, 44, 45, 13]). Overlapping domain

decomposition methods have also been developed to model complex equations and

handle various difficulties in solving practical problems. The Chimera Grid Scheme,

introduced in [46], employs overset (overlapping) grids for modeling flows in complex

geometries. Shortly after initial development it was enhanced for use with three di-

mensional flows modeled by the Euler equations [47] and later with the addition of

the thin-layer Navier-Stokes equations. More recently, Chimera Grid techniques have

been used to model various problems with complex geometries [48, 49]. Subsequently,

Henshaw and Schwendeman [24, 11] developed a method for using overlapping mesh

techniques in modeling high-speed reactive flows, in two and three dimensions.
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In addition, techniques that employ non-overlapping grids (sometimes called patched

grids) were developed. Examples include a zonal approach that uses a flux-vector

splitting technique for the determination of interface values in Euler equations [50,

51, 52, 53], Lions method [26] that uses an iterative technique to arrive at the correct

values to be passed between non-overlapping subdomains in solving Laplace’s equa-

tion and more general second-order elliptic problems, Dawson’s approach [16] that

solves the heat equation using an explicit finite difference formula to determine the in-

terface values and allows for different time stepping to be used in different subdomains.

Non-overlapping grid techniques have also been extended and employed in solving the

advection-diffusion equation [27] and the Navier-Stokes equations [52, 29]. Some of

the more recently developed non-overlapping domain decomposition methods achieve

very high finite global accuracy [54] and some even spectral accuracy [28, 14, 55, 29].

In [29], Manna, Vacca, and Deville describe a spectral non-overlapping domain de-

composition method for solving the Navier-Stokes equations in three dimensions. The

Mortar Element Method [28, 14], which was built upon the original Spectral Element

Method (SEM) [56, 10, 57], adds additional flexibility to SEM by allowing the global

domain to be composed of non-conforming, yet non-overlapping, elements.

While non-overlapping mesh methods allow some flexibility in mesh generation,

the constraints in these techniques inhibit additional flexibility that is seen in over-

lapping mesh methods. By allowing variable overlap size, a broad range of potential

mesh configurations are supported with overlapping methods, thus allowing for more

simplified mesh generation. Additionally, overlapping methods provide a convenient

framework for further extension towards moving domain methods, allowing for gen-

eral and unconstrained motion of rigid body parts through the background stationary

meshes [58, 59, 60, 61].
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So far, existing overlapping grid methods for the time-dependent PDE coupling

have been traditionally relying on low-order, finite-difference or finite-volume schemes.

Although some of the methods have been extended to achieve higher-order spatial

convergence, using extended stencil finite-difference or compact schemes, the upper

bound of the global accuracy has been usually limited to four [30, 31, 62], and at

most six [63, 64, 65, 34, 66]. Recently, Brazell, Sitaraman and Mavriplis developed a

high-order overlapping Discontinuous Galerkin solver for compressible equations, that

uses Lagrangian interpolation at interface boundaries, and documented a polynomial

convergence up to fourth order [67].

One of the inherent challenges with overlapping grid methods is to minimize the

errors that are introduced due to the coupling of the individual subdomain solutions

into the global solution. The coupling errors consist of spatial errors and temporal

errors, and have to be treated separately. Spatial errors are introduced by the spa-

tial interpolation stencil employed to obtain a function value at the interface points

of one domain from the gridpoint values in the adjacent domains at the same time

level. Some overlapping mesh methods circumvent the spatial error by requiring that

the gridpoints in overlapping domains exactly coincide [68, 69], thus fully conserv-

ing communicated information, with the drawback of decreased flexibility in mesh

generation. Other methods that do not require the exact match of the gridpoints

and thus are more flexible, use finite order interpolation schemes to determine values

from adjacent subdomains. Although simple linear interpolation techniques have been

popular [13, 16, 70, 36, 71], it was shown by Chesshire and Henshaw [13] that an inter-

polation scheme should be consistent with the accuracy of the underlying solver and

higher-order interpolation is required to maintain the accuracy of the coupled solution

with high-order methods. Thus, in fourth- and sixth- order methods [67, 30, 34, 31]
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where the mesh overlap size remains constant, a generalized Lagrangian interpolation

method of the matching order (fourth or sixth) was employed.

Temporal errors in domain decomposition methods employing implicit timestep-

ping schemes occur due to the fact that the values in two separate subdomains cannot

be determined simultaneously for the current timestep without the correct interface

values, yet the correct interface values cannot be known without the current solution

in the subdomains. Thus implicit subdomain coupling methods either write the in-

terpolation dependencies into the global matrix [13, 33, 34], or couple independent

subdomain solutions through the use of Schwarz-like iterations [20] to ensure inter-

face value convergence [35, 36, 37, 38]. Global convergence of the variables in adjacent

subdomains often requires many, sometimes hundreds [36], or even thousands [38] it-

erations, the number generally being dependent upon the PDE, the overlap size, and

time step [72, 73]. Henshaw [74] shows that the convergence rates when solving elliptic

PDE’s on overlapping subdomains can be reduced by using a multigrid solver with a

smoothing algorithm near interface boundaries. However, if the coupling scheme does

not introduce temporal errors larger than those of the global timestepping scheme,

the global temporal accuracy will be preserved [75], particularly the interface values

need not strictly match, but must merely be “consistent”. The notion of consistency

has been previously used when constructing and analyzing interpolation and itera-

tion schemes for the overlapping grid methods [37], where consistency was interpreted

in a spatial sense. In [75], Peet and Fischer propose an explicit temporal interface

extrapolation algorithm for the overlapping grid methods that preserves the overall

temporal accuracy, and analyzed its stability. The proposed coupling scheme, which

is utilized by the current methodology, is essentially “temporally consistent” (the dif-

ferences between the interface values due to temporal coupling are guaranteed to be

smaller than the temporal error of the underlying flow solver).
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Accommodating Moving Bodies. In the ensuing review of previous techniques

for approximating the flow around moving bodies, the methods can be categorized

into two general classes: global-mesh methods and zonal-mesh methods (also referred

to as embedded grid, Chimera, or domain decomposition methods). In global-mesh

methods, a single grid is used to model the fluid flow around moving bodies, using

either fixed-mesh or body-conforming mesh schemes.

Fixed-mesh methods, such as immersed boundary and fictitious domain, perform

calculations on a global (non-decomposed) Eulerian mesh that does not conform to

the fluid-solid interface. (Note that while many of these methods are commonly

applied to fluid-fluid interface problems, the focus of this work will be on their ap-

plications to fluid-solid interface problems). The immersed boundary method, which

was originally introduced by Peskin in 1972 to model the blood flow through a pump-

ing heart [76, 77], allows for flow solutions to be computed around irregular shaped

objects by tracking Lagrangian points at the interface boundary against the Eule-

rian (fixed) mesh where the fluid flow is calculated. The mesh within an immersed

boundary solver need not conform to the fluid-solid interface, and the no-slip bound-

ary conditions at fluid-solid interfaces are enforced by adding a body forcing term to

the governing equations using either continuous or discrete forcing [78, 79]. In the

similar fictitious domain method, first introduced by Glowinski et al. [80, 81, 82],

the boundary conditions on the surface of rigid bodies are enforced by including dis-

tributed Lagrange multipliers in the governing equations. While several advances have

been made to improve efficiency of both immersed boundary and fictitious domain

methods [79], the accuracy of such methods is lacking, with few fixed-mesh methods

even reaching second-order spatial accuracy [83, 84, 85, 86, 87]. In addition, resolu-

tion near interface boundaries is inconsistent as the object moves, requiring dynamic

remeshing techniques such as adaptive mesh refinement (AMR) to maintain sufficient
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resolution, especially when attempting to capture characteristics of boundary layer

flows over moving bodies [88, 89, 90].

In contrast, body-conforming methods ensure more consistent resolution near

moving boundaries, though mesh generation is usually a more complex task. As

solid interfaces move, the mesh must also move and deform, thus inhibiting large

displacements which would cause detrimental mesh distortions. Body-conforming

methods include Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) and

Arbitrary Lagrangian-Eulerian (ALE) methods. In the DSD/SST method, as origi-

nally presented by Tezduyar et al. [91, 92], the governing equations for incompressible

fluid flow, the Navier-Stokes equations, are defined using the space-time formulation,

where the global time interval of the simulation is divided into subintervals called

space-time slabs, and discretization is performed using interpolation functions in the

four-dimensional space-time domain. The shape and orientation of the spatial do-

main is given by the shape of the individual space-time slabs, where solution on each

slab is solved using a finite element formulation, thus treating moving boundaries

throughout the global time interval [93]. The ALE method combines the Lagrangian

and Eulerian formulations of the incompressible Navier-Stokes equations by chang-

ing the material derivative to account for additional convection introduced by the

velocity of the moving grid points. Original developments into the combination of

Eulerian and Lagrangian formulations began in the sixties [94, 95], though the stan-

dardized ALE method was developed by a group at Los Alamos National Lab [96, 97]

where it was applied to finite difference methods. This ALE formulation was ex-

tended to finite element methods in the seventies and eighties [98, 99, 100, 101, 102],

with later extension to the spectral element method by Ho and Patera [103, 104].

In both of these techniques large rigid body movements cause large mesh distortions

and possibly entanglement of the computational grid. To remedy this problem, many
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methods remesh the global domain when distortions become large, though remeshing

is a computationally expensive process [79]. Another possible remedy is to allow the

global mesh to move with the body in a rigid-body type of motion, but this creates

challenges for the enforcement of boundary conditions at moving global boundaries.

Decomposing the global domain into a collection of subdomains, as in the class of

zonal mesh methods, would allow for large rigid body movements of one domain within

another, avoiding the need for remeshing and replacing global boundary conditions

on moving domains with local interface conditions. Among this class, for example,

are sliding mesh methods, which decompose the domain into non-overlapping sub-

domains, thus greatly restricting the types of grid motion that can be performed.

While sliding mesh solvers can effectively perform simulations involving rotating ge-

ometries, they cannot be applied to important problems involving translational or

deforming motion. Several variations of these solvers are commonly used for simu-

lations of stirred reactors [105, 106, 107, 108, 109] and propellers/blades on rotor-

craft [110, 111, 112, 113]. Sliding mesh methods are typically coupled with finite

volume methods, although other solvers are also used, such as finite element meth-

ods [114, 109]. Global spatial accuracy for sliding mesh methods, which is most often

limited by the accuracy of the interpolation of values among subdomains, reaches up

to 2nd-order [111, 113].

On the other hand, overlapping mesh methods allow for arbitrary rigid body

motions, and do not have the same movement restrictions as sliding mesh solvers

since constraints on mesh alignment are alleviated. While overlapping mesh methods

are commonly used for rotating machinery simulations as well [115, 116, 60, 117, 118,

119], they have additionally been applied to simulate flows involving other types of

body motions. These include flows around moving cylinders [61, 120], piston-driven

flows [61, 121], biological flows such as flows through moving valves and hearts [122,
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123], aerodynamic flows such as three element airfoils [59], plunging wings [120], and

store separation from a wing [124, 125, 126, 59, 127], as well as flows around moving

ships [128, 129].

Moving overlapping mesh methods are based on overlapping domain decomposi-

tion methodologies which were discussed previously. While there are few techniques

among stationary overlapping grid methods which exceed fourth-order global accu-

racy [34, 130, 65], and the situation is even more challenging for moving overlapping

mesh methods. The literature search did not result in any methods with verified

global accuracy higher than the second-order [61]. While some methods use higher-

order (fourth or fifth) integration schemes within individual subdomains [122, 129],

trilinear interface interpolation is usually employed, which restricts the global accu-

racy to second.

1.3 Overview and Accomplishments

In this dissertation, a spectrally-accurate moving overlapping mesh method is

introduced for the incompressible fluid flow around moving rigid bodies, that is based

on a spectral-element method using the ALE formulation of the governing equations.

The Spectral Element Method, which can be perceived as a high-order extension of

the Finite Element Method, divides a domain into several conforming and adjacent

elements [56, 10, 57]. The volume within each element is discretized using Nth-

order tensor-product Lagrange interpolating polynomials on Gauss-Lobatto-Legendre

nodal points. Approximations in all elements are coupled at the boundaries to form

a global solution [57], which achieves spectral convergence with p- (polynomial order)

refinement.

The moving overlapping mesh methodology utilizes N th-order Lagrangian inter-

polation, on non-uniform Gauss-Lobatto-Legendre grids, to arrive at a spectrally-
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accurate (with p-refinement) interpolation scheme that allows us to maintain the

global spectral accuracy of the coupled solution. The method also achieves high-

order spatial convergence with h- (grid) refinement, where the order of accuracy

is equal to the polynomial order (N). The explicit temporal extrapolation coupling

scheme is used for coupling the solutions of incompressible Navier-Stokes equations

on moving overlapping grids, and is consistent with the global temporal accuracy

of the SEM solver. This novel scheme achieves a specified order of accuracy with a

small number of iterations. It ensures that the temporal error between the values in

the subdomains at the interfaces is equal to the temporal accuracy of the underly-

ing SEM solver. Assuming that this holds true, the interface values need not be an

exact match, while still maintaining the global accuracy of the solution. While the

accuracy of the extrapolation scheme is maintained in the absence of iterations, the

stability of the formulation can generally be improved by implementing a low number

of Schwarz-like iterations [75].

While the underlying ALE and multidomain coupling formulation is flexible enough

to handle any arbitrary prescribed body motion, including deforming movements,

such as, for example, in biolocomotion, this dissertation concentrates on prescribed

solid motion as a rigid body, thus undermining the need for mesh deformation. How-

ever, the methodology will be described in a general sense, which would allow one to

reproduce it, if needed, for any arbitrary motions.

This moving overlapping mesh methodology can have important implications in

the advancement of aerospace, mechanical and other branches of engineering. In this

dissertation, the methodology is extended to pressing problems in aerodynamics by

investigating of the influence of the upstream disturbances on the flow around pitching

airfoils. This problem has direct relevance to aircraft and helicopter aerodynamics,

the efficiency of wind turbine energy production, and the design of other rotating
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machinery. Research regarding pitching airfoils typically focuses on the effects that

pitching frequency, pitching amplitude, Reynolds number, and Mach number, have

on the aerodynamics of the flow, yet, unsteady inflow conditions can also affect the

aerodynamics of pitching airfoils in a critical manner. For example, turbulence, gusts,

and vortices caused by upstream structures, objects, or atmospheric conditions create

unsteady inflow conditions for helicopter rotors, wind turbine blades, and wings on

maneuvering aircraft, that can greatly affect the aerodynamic forces.

The present work describes the following specific achievements I have made through-

out the progression of my research:

• Advanced the development of the overlapping mesh methodology for stationary

meshes

• Performed tests for the validation of the stationary overlapping mesh method-

ology

• Extended development of the overlapping mesh methodology for use with mov-

ing subdomains

• Validated the moving overlapping mesh methodology

• Ensured adequate parallel scalability and timing data of both methodologies

• Performed 2D and 3D simulations of dynamically pitching airfoils

• Compared results of dynamically pitching airfoil simulations with each other

and with published experimental and numerical data

• Investigated the effects of upstream disturbances on dynamically pitching air-

foils
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The remainder of the paper will be structured as follows. In Chapter 2, the

methodology for solving fluid flow problems on moving overlapping subdomains is put

forth, including the mathematical derivation and numerical discretization of governing

equations for fluid flow on subdomains using the ALE framework. In Chapters 3

and 4, results are presented for two- and three-dimensional validation simulations,

in stationary and moving overlapping mesh tests, respectively, then Chapter 5 gives

results from the parallel scalability and timing study. Chapter 6 utilizes the moving

overlapping mesh methodology to analyze the effects of upstream disturbances on a

dynamically pitching three-dimensional airfoil. A summary and description of future

work is described in Chapter 7.
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Chapter 2

NUMERICAL METHODOLOGY

2.1 Mathematical Formulation

2.1.1 Governing Equations

Ω1(t)

Ω2(t)

Γ12

Γ21

∂ΩN

∂ΩD

∂Ωw

∂ΩN

∂ΩN

w[2]

Figure 2.1: Schematic of the global domain and moving subdomains. The dashed
line denotes a hole cut in the subdomain Ω1(t), which is covered by Ω2(t).

In the current methodology, a two or three dimensional global solution domain

is decomposed into two overlapping subdomains, Ωg(t) = Ω1(t) ∪ Ω2(t), which may

be time dependent and allowed to move with velocity w[i](x, t), an example of which

is seen in Figure 2.1. For the sake of generality, the methodology is formulated as

if both domains are moving, assuming that a stationary domain has w[i](x, t) = 0.

In this dissertation, subdomain movement is implemented as rigid bodies, although

the Cartesian velocity w(x, t) can still be a function of x, for example in the case

14



of rotation. The fluid motion in each subdomain is governed by the incompressible

Navier-Stokes equations which are represented in non-dimensional form in space Rd,

as shown below

Ω1(t)


D u[1]

D t
= −∇ p[1] +

1

Re
∇ 2u[1]

∇ · u[1] = 0

(2.1)

and

Ω2(t)


D u[2]

D t
= −∇ p[2] +

1

Re
∇ 2u[2]

∇ · u[2] = 0

(2.2)

where u is the velocity vector, p is the pressure, D/Dt is the material derivative,

and the Reynolds number, Re = U L/ν, is based on a characteristic velocity, length

scale and kinematic viscosity. The bracketed superscript signifies the corresponding

subdomain.

The global domain boundary is defined ∂Ωg = ∂(Ω1 ∪ Ω2). Outflow boundaries,

as presented on the right side of Figure 2.1, are described with Neumann conditions,

∂Ωg
N(t), and inflow boundaries (left side of Figure 2.1) are described with Dirichlet

conditions, ∂Ωg
D(t). Local subdomain boundaries that are not also part of the global

boundary are termed interface boundaries, Γij ≡ ∂Ωi(t) \ ∂Ωg(t). Conditions at

moving solid wall boundaries are defined within a local subdomain, ∂Ωi
W (t). The

generalized initial and boundary conditions for each subdomain are presented below

u[1],[2](x, 0) = u0(x), x ∈ Ω1,2(0) (2.3a)

u[1],[2](x, t) = ud(x, t), x ∈ ∂Ωg
D(t) (2.3b)

∇u[1],[2](x, t) · n̂ = 0, x ∈ ∂Ωg
N(t) (2.3c)

u[1],[2](x, t) = w[1],[2](x, t), x ∈ ∂Ω1,2
W (t) (2.3d)

u[1](x, t) = u[2](x, t) x ∈ Γ12‖Γ21 (2.3e)

with n the unit outward pointing surface normal.
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2.1.2 Arbitrary Lagrangian-Eulerian Formulation

A fluid matter in computational physics is typically treated as a continuum and

its motion governed by the Navier-Stokes Equations (2.1) and(2.2) In the Lagrangian

formulation, the observer follows material particles as they move, while in the Eulerian

formulation observation is done in the laboratory frame, where coordinates remain

fixed. From a computational standpoint, the mesh used in the Lagrangian formulation

follows the fluid particles, as in the computation of free surface flows, for example.

Although difficulties arise when severe mesh deformations occur, especially in regions

with large velocity gradients and reverse flow zones. In the Eulerian formulation, the

mesh remains fixed, allowing for large fluid deformations, though complexities arise

in the computation of moving body problems.

In the current methodology, a well known hybrid approach is employed, called the

Arbitrary Lagrangian-Eulerian (ALE) formulation, which decouples the mesh motion

from the fluid motion and formulates the equations of fluid motion in a coordinate

system moving with the computational mesh. In what follows, a brief description of

the idea is presented [102, 57, 131].

The position of a material point, or particle, within a continuous media is ex-

pressed in terms of material coordinates,

X = (X1, X2, X3) . (2.4)

that are related to the initial positions of the fluid particles within the media.

On the other hand, within the laboratory frame spatial coordinates are fixed in

time

x = (x1, x2, x3) , (2.5)
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and the relationship between material and spatial coordinates can be expressed in

terms of a mapping that returns the spatial coordinates of a particle at a specified

time when given its material coordinates

xi = F (Xi, t) . (2.6)

The inverse of this mapping returns the material coordinates of a particle, given its

spatial coordinates

Xi = F−1 (xi, t) . (2.7)

The ALE formulation introduces a third coordinate system, also dependent on space

and time, which we will call the reference coordinate system, χχχ. This coordinate

system is defined for a reference domain which is representative of the computational

mesh and is allowed to move in an arbitrary manner. A mapping can be defined that

returns the reference coordinates of a particle when given its spatial coordinates

χi = G (xi, t) , (2.8)

with inverse mappings also defined.

Derivatives with respect to time of a physical quantity related to the flow can be

expressed in terms of any of the coordinate systems defined above. The derivative

with respect to time in the material frame (often called the Lagrangian or material

derivative) of some physical quantity f(xi, t), is defined

∂f

∂t

∣∣∣∣
Xi

, (2.9)

where the derivative is taken with Xi held constant. Derivatives with respect to time

in the laboratory frame (Eulerian derivative)

∂f

∂t

∣∣∣∣
xi

(2.10)
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and derivatives with respect to time in a reference frame (ALE derivative)

∂f

∂t

∣∣∣∣
χi

(2.11)

are likewise defined. Thus the material velocity of a particle is given by

ui =
∂xi
∂t

∣∣∣∣
Xi

,

or in vector form

u =
∂x

∂t

∣∣∣∣
X

. (2.12)

Due to its ease of handling large fluid distortions, fluid flow is typically expressed

using the Eulerian formulation, where quantities in the conservation equations (2.1)

and (2.2) are given in terms of the laboratory frame, using coordinates x. Thus, con-

vective terms arise to account for the motion of the particles relative to the laboratory

frame [131]. Thus, the material derivative can be expressed using the multivariate

chain rule to give

∂f(xi, t)

∂t

∣∣∣∣
Xi

=
∂f

∂t

∣∣∣∣
xi

+
∂f

∂xi

∂xi
∂t

∣∣∣∣
Xi

=
∂f

∂t

∣∣∣∣
xi

+
∂f

∂xi
ui (2.13)

or in vector form

Df

Dt
=
∂f

∂t

∣∣∣∣
x

+
∂f

∂x
· u

=
∂f

∂t

∣∣∣∣
x

+ u · ∇f (2.14)

where D
Dt

is introduced to denote a material (or Lagrangian) derivative, as expressed

in (2.1) and (2.2). Note that previous equations can be generalized by replacing the

scalar function f with some vector function [57].
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In a similar manner the mesh velocity, w, is defined using the reference domain

wi =
∂xi
∂t

∣∣∣∣
χi

,

or

w =
∂x

∂t

∣∣∣∣
χχχ

, (2.15)

and an ALE derivative is likewise formulated to account for convective terms that

arise due to the relative motion between the reference and laboratory coordinate

systems

∂f(xi, t)

∂t

∣∣∣∣
χi

=
∂f

∂t

∣∣∣∣
xi

+
∂f

∂xi

∂xi
∂t

∣∣∣∣
χi

=
∂f

∂t

∣∣∣∣
xi

+
∂f

∂xi
wi (2.16)

or expressed in vector format

δf

δt
=
∂f

∂t

∣∣∣∣
x

+
∂f

∂x
·w

=
∂f

∂t

∣∣∣∣
x

+ w · ∇f (2.17)

where δ
δt

is introduced to denote an ALE derivative.

The material derivative can now be formulated for use with the reference domain

by expressing (2.14) in terms of (2.17) [57]

Df

Dt
=
δf

δt
−w · ∇f + u · ∇f

=
δf

δt
+ (u−w) · ∇f. (2.18)

We see that if w = 0, the traditional formulation of the material derivative is recovered

as used in the Eulerian description, and if w = u the convective terms vanish leaving

only a partial derivative holding χχχ constant as used in the Lagrangian description.
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Equation (2.18) can be generalized by replacing the scalar function f with a vector

function, such as velocity, u [57]. It is used in the Navier-Stokes equations (2.1) and

(2.2) for moving domain fluid flow problems, which thus become for the decomposed

global domain

Ω1(t)


δu[1]

δt
+ (u[1] −w[1]) · ∇u[1] = −∇ p[1] +

1

Re
∇ 2u[1]

∇ · u[1] = 0

(2.19)

and

Ω2(t)


δu[2]

δt
+ (u[2] −w[2]) · ∇u[2] = −∇ p[2] +

1

Re
∇ 2u[2]

∇ · u[2] = 0

(2.20)

where initial and boundary conditions as given in (2.3) remain unchanged. We see

that the governing equations are now formulated with respect to the moving mesh,

which allows for convenient numerical integration of equations of motion with respect

to moving domains.

2.2 Numerical Formulation

Equations (2.19) and (2.20) in moving overlapping subdomains are coupled through

the interface conditions given in (2.3e). In the numerical solution of these equations,

the values at interfaces are determined through the explicit interpolation from the

solution in the adjacent subdomain at several previous time instances, thus obtaining

the interface value, u
[j]
int(x, t). This value essentially serves as a boundary condition,

u[i](x, t) = u
[j]
int(x, t), for the subdomain Ωi on the boundary Γij at time t. Thus,

solutions of (2.19) and (2.20) can be computed independently after interface values

are exchanged.
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Hence, the numerical formulation within each subdomain is identical. In the

following sections, the subdomain superscripts (Ωi → Ω, u[i] → u, w[i] → w, p[i] → p)

are omitted, except where additional clarity is needed.

2.2.1 Global Variational Form

The ALE formulation of the governing equations, (2.19) and (2.20), is cast into

variational form by multiplying each equation with a test function v(x, t) ∈ H1
0(Ω(t)),

and then integrating over the whole domain. Note that both the test function, v(x, t)

and the domain Ω(t) are dependent on time due to the moving reference frame. The

variational form of the problem becomes: Find u(x, t) ∈ H1
b(Ω(t)), p(x, t) ∈ L2(Ω(t))

such that (
δu

δt
,v

)
+ ((u−w) · ∇u,v)

+(∇p,v)− 1

Re

(
∇2u,v

)
= 0 ∀v(x, t) ∈ H1

0(Ω(t))

−(q,∇ · u) = 0 ∀ q(x, t) ∈ L2(Ω(t)),

(2.21)

where the inner product of two scalar functions a and b is defined

(a, b) =

∫
Ω(t)

a(x, t) b(x, t) dV, ∀ a, b ∈ L2(Ω(t)), (2.22)

and where L2(Ω(t)) represents the space of square-integrable functions, and H1(Ω(t))

represents the space of square-integrable functions whose first derivatives are square-

integrable as well. H1
0(Ω(t)) is the subspace of H1(Ω(t)) with v(x, t) = 0 on Dirichlet,

∂ΩD(t), and interface, Γij,boundaries, whileH1
b(Ω(t)) is the subspace ofH1(Ω(t)) with

u(x, t) = ud(x, t) on ∂ΩD(t), u(x, t) = w(x, t) on ∂ΩW (t), or u[i](x, t) = u
[j]
int(x, t) on

Γij.

Integration by parts gives

(
∇2u,v

)
→
∫
∂Ω(t)

v∇u · n̂ dA−
∫

Ω(t)

∇u : ∇v dV. (2.23)
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where “:” denotes a Frobenius inner product. The first integral on the right-hand

side goes to zero since v(x, t) = 0 on the boundaries, thus the weak form of (2.21)

is given by performing integration by parts on the terms − 1
Re

(∇2u,v) and (∇p,v),

giving 1
Re

(∇u,∇v) and −(p,∇ · v) for those terms respectively.

Although test functions, v(x, t) are time dependent, they are defined in the ALE

formulation to satisfy the following property [57]

δv

δt
= 0. (2.24)

In addition, the integrand of the unsteady term, δu/δt · v, will give rise to inconsis-

tencies upon temporal discretization unless the time derivative is taken outside of the

integral [132]. This is done by first performing integration by parts on the unsteady

term (
δu

δt
,v

)
→
∫

Ω(t)

δu

δt
· v dV =

∫
Ω(t)

[
δ (u · v)

δt
− u · δv

δt

]
dV, (2.25)

where the second term in the integrand on the right hand side goes to zero because

of the property defined in (2.24).

The Reynolds transport theorem for the time evolution of a volume integral

with respect to the reference domain as derived by Truesdell and Toupin [132] (see

also [57]), is given as

δ

δt

∫
Ω(t)

f dV =

∫
Ω(t)

(
δf

δt
+ f∇ ·w

)
dV. (2.26)

This allows (2.25) to be expressed as∫
Ω(t)

δ (u · v)

δt
dV =

δ

δt

∫
Ω(t)

u · v dV −
∫

Ω(t)

(∇ ·w)u · v dV. (2.27)

Combining (2.27) with the convective terms, the first two inner products in (2.21)

take the explicit form

δ

δt

∫
Ω(t)

u · v dV +

∫
Ω(t)

[(u · ∇)u− (∇ ·w)u− (w · ∇)u] · v dV, (2.28)
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in which the convective terms can be expressed in compact form by utilizing the

incompressibility constraint, ∇ · u = 0

δ

δt

∫
Ω(t)

v · u dV +

∫
Ω(t)

v · (∇ · [uu− uw]) dV. (2.29)

Thus, the weak variational form of the global Navier-Stokes equations in the ALE

formulation becomes

δ

δt
(u,v) + (∇ · [uu− uw] ,v)

−(p,∇ · v) +
1

Re
(∇u,∇v) = 0 ∀v(x, t) ∈ H1

0(Ω(t))

−(q,∇ · u) = 0 ∀ q(x, t) ∈ L2(Ω(t)),

(2.30)

2.2.2 Spatial Discretization

In the present implementation of the spectral element method, a moving domain,

Ω(t), is decomposed into several conforming elements

Ω(t) =
E∑
k=1

Ωk(t), (2.31)

where global inner products are expressed

(a, b)|Ω(t) =
E∑
k=1

(ak, bk)|Ωk(t) . (2.32)

The governing equations (2.30) are spatially discretized within each element by

defining finite dimensional subspaces, XN ⊂ H1(Ω(t)) and Y N ⊂ L2(Ω(t)), onto

which the search spaces, H1(Ω(t)) and L2(Ω(t)), are projected. The subspaces are

defined

XN = H1(Ω(t)) ∩ PN

Y N = L2(Ω(t)) ∩ PN−2,

(2.33)

with PN the space comprised of all N th or lower-order polynomials.
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A function, independent of time, exists for each element Ωk that maps it from the

ALE frame with reference coordinates χχχ ∈ Ωk, to a d-dimensional primary element,

Ω̂ = [−1,+1]d, with primary coordinates, r ∈ Ω̂:

r = M̃k(χχχ) (2.34)

with the inverse

χχχ = M̃−1
k (r). (2.35)

Recall that the time dependent function, G(x, t), defined in (2.8), and its inverse,

determine reference coordinates, χχχ, from spatial coordinates, x, and vice versa. Thus,

to map element k from its geometry and orientation in the laboratory frame to a d-

dimensional primary element a double mapping must take place

r = M̃k

(
G(x, t)

)
, (2.36)

where the inverse returns the element to the laboratory frame

x = G−1
(
M̃−1

k (r, t), t
)
. (2.37)

However, from a practical computational perspective, a time dependent mapping

determines the primary element directly from the element in the laboratory frame

with a function Mk(x, t), where the tilde has been dropped

r =Mk(x, t) ≡ M̃k

(
G(x, t)

)
(2.38)

and vice-versa

x =M−1
k (r, t) ≡ G−1

(
M̃−1

k (r, t), t
)
. (2.39)

Collocation points within the primary element are defined with Gauss-Lobatto

Legendre (GL) quadrature in the velocity space, ξj ∈ [−1,+1], and Gauss Legendre
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(G) quadrature used to define nodal points in the pressure space, ηj ∈]−1,+1[. Thus

posing the problem (2.30) with finite-dimensional subspaces: Find u(r, t) ∈ XN
b ,

p(r, t) ∈ Y N such that

δ

δt
(u,v)GL + (∇ · [uu− uw] ,v)GL

+
1

Re
(∇u,∇v)GL − (p,∇ · v)G = 0 ∀v(r, t) ∈ XN

0 (2.40)

−(q,∇ · u)G = 0 ∀ q(r, t) ∈ Y N (2.41)

where the global inner products (2.32) on G and GL nodes are denoted.

Lagrange interpolating polynomials, φi(r), are employed as basis functions to

span the discretized velocity space PN , and pressure space PN−2, with the Lagrange

polynomials satisfying the constraint

φ i(ξj) = δij, (2.42)

where δij is the Kronecker delta.

A major benefit of Gaussian quadratures is they allow for high order polynomials

to be numerically integrated with high levels of accuracy. A polynomial, f(r), is

integrated along a 1-dimensional primary length, −1 ≤ r ≤ 1, using GL quadrature∫ 1

−1

f(r)dr ≈
N∑
l=0

ωlf(ξl), (2.43)

with ξl the GL quadrature collocation points, and their associated weights ωl, or using

G quadrature ∫ 1

−1

f(r)dr ≈
N∑
l=0

σlf(ηl), (2.44)

where ηl are the G quadrature collocation points, and σl are their corresponding

weights [57].
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A scalar field fk(x) in Ωk(t), is discretized for a one-dimensional element

fk
(
M−1

k (r, t)
) ∣∣

Ωk(t) ≈
N∑
i=0

fk,iφi (r) , r ∈ [−1, 1] , (2.45)

and for a two-dimensional element

fk
(
M−1

k (r, t)
) ∣∣

Ωk(t) ≈
N∑
i=0

N∑
j=0

fk,ijφi (r1)φj (r2) , r1, r2 ∈ [−1, 1]2 , (2.46)

where Lagrange polynomials obey (2.42) andM−1
k (r, t) returns the spatial coordinates

of the element (2.38). We now have an approximation for fk(x) that is continuous

throughout the element, Ωk(t), once the coefficients fk,ij are determined.

2.2.3 One-Dimensional Operators

In this section, the matrix discretizations for the inner products in (2.40) and

(2.41) are presented, first expressed for one dimensional variable (unbolded), on the

primary interval r = [−1, 1]. Inner products are performed locally for each element,

with element index, k, denoting a local variable.

The inner product in the first term on the left side of equation (2.40) is discretized

as

(
u(r, t), v(r, t)

)
k,GL

=

∫
Ω̂

uk(r, t)vk(r, t)dr

≈
∫

Ω̂

(
N∑
i=0

uk,i(t)φi(r)

)(
N∑
j=0

vk,j(t)φj(r)

)
dr

≈
N∑
j=0

vk,j(t)
N∑
i=0

uk,i(t)

∫
Ω̂

φi(r)φj(r)dr

≈ vTk (t)B̂ uk(t) (2.47)

where a hat over an unbolded variable denotes a one dimensional matrix opera-

tor for the primary length, and an underline denotes a vector of coefficients, v =
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(v0, v1, . . . , vN). The mass matrix, B̂, can be computed using GL quadrature weights

B̂ij =

∫
Ω̂

φi(r)φj(r)dr

≈
N∑
l=0

ωlφi(ξl)φj(ξl). (2.48)

Due to the Lagrangian basis function property in (2.42), the mass matrix simplifies

to an (N + 1)× (N + 1) diagonal matrix with the quadrature weights along the main

diagonal, B̂ = diag(ωl).

In a similar manner, the inner product in the third term on the left side of equation

(2.40) is discretized(
∂u(r, t)

∂r
,
∂v(r, t)

∂r

)
k,GL

=

∫
Ω̂

u′k(r, t)v
′
k(r, t)dr

=

∫
Ω̂

(
N∑
i=0

uk,i(t)φ
′
i(r)

)(
N∑
j=0

vk,j(t)φ
′
j(r)

)
dr

=
N∑
j=0

vk,j(t)
N∑
i=0

uk,i(t)

∫
Ω̂

φ′i(r)φ
′
j(r)dr

= vTk (t)Â uk(t) (2.49)

where the stiffness matrix, Â, in terms of GL quadrature becomes

Âij =

∫
Ω̂

φ′i (r)φ
′
j (r) dr

=
N∑
l=0

ωlφ
′
i (ξl)φ

′
j (ξl) . (2.50)

In terms of the spectral differentiation matrix

D̂ij ≡
dφj
dr

∣∣∣∣
r=ξi

(2.51)

and using GL quadrature, the stiffness matrix (2.50) can be written

Âij =
N∑
l=0

ωlD̂liD̂lj. (2.52)
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The pressure term in equation (2.40) is represented in weak form using G quadra-

ture. However, ∇ · v values are defined at GL points, and therefore, the pressure

values are interpolated to GL quadrature for compatibility. Thus the pressure term

is discretized(
p(r, t),

∂v(r, t)

∂r

)
k,G

=

∫
Ω̂

pk(r, t)v
′
k(r, t)dr

≈
∫

Ω̂

(
N−1∑
i=1

pk,i(t)φi(r)

)(
N∑
j=0

vk,j(t)φ
′
j(r)

)
dr

≈
N∑
j=0

vk,j(t)
N−1∑
i=1

pk,i(t)

∫
Ω̂

φi(r)φ
′
j(r)dr

≈ vTk (t)
ˆ̃
D
T

p
k
(t) (2.53)

where
ˆ̃
D is a local Derivative matrix defined using a weighted interpolation opera-

tor and the weighted one-dimensional derivative matrix. The inner product in the

continuity equation (2.41) in one dimension is discretized in a similar manner(
q(r, t),

∂u(r, t)

∂r

)
G

≈ qT
k

(t)
ˆ̃
D uk(t). (2.54)

For the nonlinear convective term (expressed in long format as in (2.28)), each

term is integrated separately, and later combined for a full expression. The first inner

product using one dimensional variables is discretized(
u(r, t)

du(r, t)

dr
, v(r, t)

)
k,GL

=

∫
Ω̂

uk(r, t)u
′
k(r, t)vk(r, t)dr

≈
∫

Ω̂

(
N∑
i=0

uk,i(t)φi(r)

)(
N∑
j=0

uk,j(t)φ
′
j(r)

)(
N∑
m=0

vk,m(t)φm(r)

)
dr

≈
N∑
m=0

vk,m(t)
N∑
j=0

uk,j(t)
N∑
i=0

uk,i(t)

∫
Ω̂

φi(r)φ
′
j(r)φm(r)dr (2.55)
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and similarly for the other two terms(
w(r, t)

du(r, t)

dr
, v(r, t)

)
k,GL

≈ (2.56)

N∑
m=0

vk,m(t)
N∑
j=0

uk,j(t)
N∑
i=0

wk,i(t)

∫
Ω̂

φi(r)φ
′
j(r)φm(r)dr

and (
dw(r, t)

dr
u(r, t), v(r, t)

)
k,GL

≈ (2.57)

N∑
m=0

vk,m(t)
N∑
j=0

uk,j(t)
N∑
i=0

wk,i(t)

∫
Ω̂

φ′i(r)φj(r)φm(r)dr

Combining the three convective terms gives([
u
du

dr
− wdu

dr
− dw

dr
u

]
, v

)
k,GL

≈ vTk (t)Ĉk(t)uk(t) (2.58)

The time dependent convective operator, Ĉk(t), can be computed using GL quadra-

ture weights

Ĉk
ij(t) =

N∑
m=0

(
uk,m(t)− wk,m(t)

) ∫
Ω̂

φm(r)φ′j(r)φi(r)dr

−
N∑
m=0

wk,m(t)

∫
Ω̂

φ′m(r)φj(r)φi(r)dr. (2.59)

Utilizing GL quadrature, Ĉk
ij(t) becomes

Ĉk
ij(t) =

N∑
m=0

(
uk,m(t)− wk,m(t)

) N∑
l=0

ωlφm(ξl)φ
′
j(ξl)φi(ξl)dr

−
N∑
m=0

wk,m

N∑
l=0

ωlφ
′
m(ξl)φj(ξl)φi(ξl)dr, (2.60)

which, upon using the property in (2.42), simplifies to

Ĉk
ij(t) =

(
uk,m(t)− wk,m(t)

)
ωiD̂ji −

N∑
m=0

wk,m(t)ωiD̂miδij. (2.61)
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Notice that the convective operator is a nonlinear, time dependent operator defined on

each element k due to its dependence on velocity, u, while all other (linear) operators

in SEM are not element-dependent and not time-dependent. Additional details are

found in [57] and [133] concerning the discretization of convective, pressure, and

continuity terms, with corresponding operators.

2.2.4 Extension to Multiple Dimensions

In order to extend the applicability of the derived operators for use with multi-

dimensional calculations, the tensor-product operations must be performed on the

one-dimensional operators. As an example, the one-dimensional mass matrix is ex-

tended to three-dimensions by performing two tensor products

B̂ = B̂ ⊗ B̂ ⊗ B̂, (2.62)

which has dimensions (N + 1)d × (N + 1)d, where the underline denotes a multidi-

mensional operator. Thus, inner products are given(
u(t), v(t)

)
k,GL

= vTk (t)B̂ uk(t), (2.63)

for multi-dimensional scalar variables on the primary element, where uk(t) and vk(t)

denote coefficients of scalar variables in higher dimensions, u(x, t). Scalar coefficients

of multiple-dimensional variables are stored in vector form as (in a two-dimensional

case)

f
k
(t) =



fk,1(t)

fk,2(t)

...

fk,l(t)

...

fk,N (t)


=



fk,00(t)

fk,10(t)

...

fk,ij(t)

...

fk,NN(t)


, (2.64)
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where coefficients are arranged in a vector from l = 1 to l = N with l = 1+i+(N+1)j

and the length of the vector is N = (N+1)2. Coefficient arrays for three-dimensional

variables are reordered in a similar manner.

2.2.5 Extension to Deformed Geometries

Additional modifications are made for geometries not conforming with the primary

element definition, [−1, 1]d. Recall that, in the current methodology, time dependent

functions, (2.38) and (2.39), exist to map an element, Ωk, from its physical coordinates

in the laboratory frame to the primary frame, or vice-versa. Derivatives of one frame

are mapped to the other using a matrix formulated by the chain rule.


∂
∂r1

...

∂
∂rd

 =


∂x1
∂r1

(t) · · · ∂x1
∂rd

(t)

...
. . .

...

∂xd
∂r1

(t) · · · ∂xd
∂rd

(t)


k


∂
∂x1

...

∂
∂xd

 (2.65)

The determinant of this chain rule matrix is the time dependent transformation

Jacobian

Jk(r, t
n) =

∣∣∣∣∣∣∣∣∣∣
∂x1
∂r1

(t) · · · ∂x1
∂rd

(t)

...
...

∂xd
∂r1

(t) · · · ∂xd
∂rd

(t)

∣∣∣∣∣∣∣∣∣∣
k

(2.66)

Derivation of operators for use with deformed geometries includes the Jacobian within

the inner product calculations, and thus the Jacobian defined at the discrete colloca-

tion points is present in the definition of the matrix operators. For an element, Ωk,

in the laboratory frame, the unsteady term, for example, is expressed

(u (x, t) , v (x, t))k,GL = vTk (t)Bk(t)uk(t), (2.67)
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with an element index, k, and time-dependence, t, given to the mass operator. The

operator hat is dropped to signify that the operator is now element and time de-

pendent, no longer conforming to the primary element definition. The operator time

dependence arises from the presence of a Jacobian, which is a function of time for

moving grids, in its definition. For example, the mass operator in two dimensions:

Bk,îıj̂(t) =

∫
Ω̂

φiφı̂φjφ̂Jk(r1, r2, t) dr

≈
N∑
l=0

N∑
m=0

ωlωmφi(ξl)φı̂(ξl)φj(ξm)φ̂(ξm)Jk(ξl, ξm, t). (2.68)

2.2.6 Coupling Local Elements

The operators have, thus far, been expressed for systems within an individual

local element. An aggregation of elemental inner products is performed to generate

unassembled operators used for calculations within each global subdomain.

(u(x, t), v(x, t))nGL =
E∑
k=1

vTk (t)Bk(t)uk(t) = vTL(t)BL(t)uL(t) (2.69)

with subscript “L” used to represent a global unassembled array. This summation

leads to block diagonal mass operator BL(t) ≡ diag (Bk(t)), and subsequently block

diagonal matrices for other operators CL(t) ≡ diag(Ck(t)), AL(t) ≡ diag(Ak(t)) and

DL,i(t) ≡ diag(Dk,i(t)). The subscript i in the interpolating derivative operator

arises since a slightly different matrix is used for each dimension of the problem due

to direction dependence in multidimensional vector lexicographical ordering. Notice

that in unassembled arrays, which contain E · (N + 1)d values, continuity at element

boundaries is not enforced, since adjacent elements need not contain identical values

at their shared boundaries. Continuity is thus imposed by mapping an unassembled

array (uL) into an assembled array (u), in which adjacent elements reference the same

values at shared boundaries. This process is performed with a connectivity operator,

Q, that maps unassembled arrays to assembled arrays, and vice versa, through gather
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u(t) = QTuL(t) (2.70)

and scatter

uL(t) = Qu(t) (2.71)

operations. The absence of a subscript denotes a global assembled array, in which

inter-element continuity is enforced by shared values at adjacent element boundaries.

Assembled arrays thus contain fewer than E · (N + 1)d values, since no duplicate

entries exist for values that lie on boundaries of adjacent elements. The operator,

Q, is given by a matrix composed of “ones” and “zeros” which are arranged so that

when Q is multiplied with an assembled array, values located at an element boundary

are assigned to every element that includes the boundary in the global unassembled

array. Likewise, the transpose of Q maps an unassembled array to a more condensed

assembled array. The connectivity operator can act on both coefficient arrays and

other operators [57]. Although an element moves and/or deforms, its relative po-

sition with respect to other elements in the subdomain remains the same, thus the

connectivity operator is independent of time.

Gather and scatter operations are useful in global calculations of discretized values,

as is seen in the inner-product of u(x, t) and v(x, t) using assembled velocity coefficient

arrays operated upon by the unassembled mass operator

(u(x, t), v(x, t))GL = vTL(t)BL(t)uL(t)→ vT (t)QTBL(t)Qu(t). (2.72)

Global calculations for the other discretized terms in (2.40) and (2.41) is also per-

formed by utilizing gather and scatter operations.
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2.2.7 Extension to Vector Space

The multidimensional representation of the problem is given by the summation of

individual scalar arrays

(
u(x, t),v(x, t)

)
=

d∑
i=1

(
ui(x, t), vi(x, t)

)
⇒
(
u(x, t),v(x, t)

)
GL

=
d∑
i=1

vi,L(t)BL(t)ui,L(t)

⇒
(
u(x, t),v(x, t)

)
GL

= vL(t)BL(t)uL(t) (2.73)

where bolded variables represent vector-valued coefficient arrays and operators that

act on such arrays. The vector-valued coefficient arrays, u(t) and v(t), are constructed

by adjoining scalar-valued arrays, as (u1(t), u2(t), u3(t))T . Operators for vector-valued

arrays, BL(t), are constructed with operators for scalar-valued arrays, BL(t), to form

block diagonal matrices.

2.2.8 Spatially Discretized Equations

Upon spatial discretization, the Navier-Stokes equations (2.1) and (2.2) become

d

dt

(
B(t)u(t)

)
= −C(t)u(t)− 1

Re
A(t)u(t) + D̃

T
(t) p(t) (2.74)

D̃(t)u(t) = 0 (2.75)

where, recall the functions u(t) and p(t) are functions of time, and time-dependent

operators are defined by

A(t) = QTAL(t)Q, (2.76)

B(t) = QTBL(t)Q, (2.77)

C(t) = QTCL(t)Q, (2.78)

D̃ = D̃LQ. (2.79)
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2.2.9 Temporal Discretization

In the current implementation of the methodology, the spatially discretized gov-

erning equations are temporally discretized using kth-order backward differentiation

(BDFk), which is an implicit temporal discretization method based on a truncated

Taylor series of the time derivative [57]. Assuming constant time stepping, the BDFk

scheme applied to the spatially discretized momentum equation (2.74) takes the form

1

∆t

k∑
p=0

βpkB
n−pun−p = −Cn un − 1

Re
Anun + D̃

T,n
pn (2.80)

where the superscript n denotes the current timestep and the coefficients βpk are given

in Table 2.1.

Note, however, that in the ALE formulation of the problem, the values Bnun

are defined at the GL points in the current mesh configuration (at tn) while the

values Bn−pun−p are defined at the GL points in a previous mesh configuration (at

tn−p). Recall that in the ALE formulation, calculations are carried out with respect

to the moving mesh, not with respect to the laboratory frame. Thus to illustrate that

BDFk scheme gives approximations with the correct temporal order of accuracy in

the laboratory frame of reference, let

B(x, t) ≡ Bnun

and

B(x−∆x, t−∆t) ≡ Bn−1un−1

for a one dimensional problem, where the change in spatial location must obey the

constraint ∆x = w∆t, with w the mesh velocity. The BDF2 scheme, for example,
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then gives

δ

δt
B(x, t) ≈ BFD2[B] =

1

∆t

(
3

2
B(x, t)− 2B(x− w∆t, t−∆t)+

1

2
B(x− 2w∆t, t− 2∆t)

)
, (2.81)

where the ALE derivative is again used for emphasis. Performing multivariable Taylor

expansion for the last two terms gives

B(x− w∆t, t−∆t) = B −∆t
∂B
∂t
− w∆t

∂B
∂x

+

1

2

(
∆t2

∂2B
∂t2

+ 2w∆t2
∂2B
∂x∂t

+ w2∆t2
∂2B
∂x2

)
+O[∆t3] (2.82)

and

B(x− 2w∆t, t− 2∆t) = B − 2∆t
∂B
∂t
− 2w∆t

∂B
∂x

+(
2∆t2

∂2B
∂t2

+ 4w∆t2
∂2B
∂x∂t

+ 2w2∆t2
∂2B
∂x2

)
+O[∆t3], (2.83)

where B ≡ B(x, t) in (2.82) and (2.83). Inserting (2.82) and (2.83) into (2.81) gives

δ

δt
B(x, t) ≈ BFD2[B] =

∂B
∂t

+ w
∂B
∂x

+O[∆t2], (2.84)

which is, indeed, a second order temporal approximation to the ALE derivative de-

fined in (2.17).

Karniadakis et al. [134] showed that an explicit kth-order extrapolation (EXTk)

method for approximation of the convection term maintains the stability of the BDFk

scheme, and thus also circumvents the need for implicit treatment of the nonlinear

term

Cn un ∼=
k∑
q=1

γqkC
n−q un−q, (2.85)
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where the coefficients γqk are given in Table 2.1. We can illustrate that the EXTk

scheme maintains the desired temporal order of accuracy on moving meshes by ex-

pressing the non-linear term as

C(x− w∆t, t−∆t) ≡ Cn−1un−1,

for a one dimensional problem, thus giving for EXT2

C(x, t) ≈ EXT2[C] = 2C(x− w∆t, t−∆t)− C(x− 2w∆t, t− 2∆t), (2.86)

where upon substituting the multivariable Taylor expansions (2.82) and (2.83) gives

C(x, t) ≈ EXT2[C] = C(x, t) +O[∆t2]. (2.87)

βp1 βp2 βp3 γp1 γp2 γp3

p=0 1 3/2 11/6

p=1 -1 -2 -3 1 2 3

p=2 1/2 3/2 -1 -3

p=3 -1/3 1

Table 2.1: Coefficients for the BDFk and EXTk schemes, k=1,2,3 [57, 75]

After some rearrangement, the temporally and spatially discretized Navier-Stokes

equations (2.74) and (2.75) become

Hnun − D̃
T,n
pn = fn (2.88)

D̃
n
un = 0 (2.89)

where the Hamiltonian operator

Hn =

(
β0

∆t
Bn +

1

Re
An

)
, (2.90)
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and the right hand side

fn = −
k∑
p=1

βpkB
n−pun−p −

k∑
q=1

γqkC
n−qun−q. (2.91)

We see that explicit handling of the nonlinear convective terms permits the discretized

governing equations to be expressed as a Stokes problem.

2.2.10 Neumann Boundaries

Homogeneous Neumann boundary conditions, on ∂ΩN , are satisfied in the weak

form of the governing equations (2.30) due to integration-by-parts performed on the

inner product, (∇2u,v), which is presented in (2.23). The resulting integral over the

domain boundary, ∂Ω, contains the term ∇u · n̂, and thus vanishes due to the Homo-

geneous Neumann boundary conditions, ∇u(x, t) · n = 0,x ∈ ∂ΩN . Furthermore, we

see that the Homogeneous Neumann boundary conditions are automatically satisfied

in SEM since test functions were chosen such that v ∈ H1
0(Ω), so the integral under

consideration vanishes regardless, as discussed in Section 2.2.1 [57].

2.2.11 Dirichlet and Moving Wall Boundaries

Boundary conditions at moving wall and Dirichlet boundaries are satisfied by

adding an additional constraint to the problem. First, a description of how ho-

mogeneous, or zero, boundary conditions are prescribed and proceed to setting up

inhomogeneous boundary conditions.

Homogeneous Conditions An unassembled Mask matrix, ML, is used in the dis-

cretized representation of the problem for the satisfying of homogeneous Dirichlet

boundary conditions. The Mask matrix is constructed such that its main diagonal is

composed of values of one, though in positions that correspond to nodes on Dirichlet

38



or moving wall boundaries the value is set to zero, thus satisfying un = 0 on ∂Ωg,n
D and

∂Ωn
W . In the current implementation of the methodology, boundary conditions are

assigned to nodes only upon initialization of the simulation, so while mesh movement

may change the physical position of the nodes, their position in the global arrays re-

mains constant, and consequently the Mask matrix is independent of time. The Mask

matrix may enforce homogeneous boundaries on, for example, the term involving the

Mass operator

(
u(x, t),v(x, t)

)
→ vT,nQTMLB

n
LMLQun. (2.92)

Inhomogeneous Conditions Inhomogeneous Dirichlet and moving wall bound-

aries are given by prescribed non-zero values obtained from discretization of equa-

tions (2.3b) and (2.3d), respectively. To impose this condition, the solution, un is

separated into a homogeneous part, un0 , that satisfies the homogeneous conditions on

Dirichlet and moving wall boundaries, and an inhomogeneous part, unb , that satisfies

conditions at Dirichlet, und on ∂ Ωg,n
D , and moving wall, wn on ∂ Ωn

W , boundaries. The

homogeneous part is also a solution of the discretized equations (2.88) and (2.89),

and as such it remains on the left-hand side of the problem. The inhomogeneous part

is given by any function that is continuous through the domain and satisfies the con-

ditions on ∂ Ωg,n
D and ∂ Ωn

W , and it thus alters the right-hand side of equations (2.88)

and (2.89). Such a function, unb , can be constructed using any inexpensive projection

method [57].

2.2.12 Interface Conditions

Search Step In our present moving overlapping mesh methodology, a search pro-

cedure is performed once at the beginning of each timestep, as illustrated the the

schematic presented in Figure 2.3, whose purpose is to find and determine the pri-
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mary coordinates of each interface node at the current timestep, x[i],n ∈ Γij,n, in terms

of its location within the other subdomain, Ωj,n. Upon initialization of the problem,

each interface point is flagged in order that the search procedure be enacted only for

interface points. Since each subdomain moves relative to the other, the locations of

interface points within the other subdomain change at each timestep. Even in the

case of one stationary subdomain in the laboratory frame, the positions of its inter-

face nodes within the moving subdomain certainly change, and thus the coordinates

must be updated at each timestep. Upon the occasion that an interface node moves

outside of the other subdomain, user imposed Dirichlet boundary conditions will be

enforced at that point.

The first task within the search step is to determine which element in Ωj,n encom-

passes the physical coordinates of the interface point x[i],n ∈ Γij,n. This is carried out

by comparing the physical coordinates of the point with the lines (or faces) that define

each element within Ωj,n. When the encapsulating element, Ωj,n
k , is determined, the

coordinates of the interface point in the laboratory frame, x[i],n are mapped to pri-

mary coordinates, r[j] ∈ [−1, 1]d, of the element Ωj,n
k . Figure 2.2 shows this mapping

from physical to primary coordinates for different timesteps. We see that the search

procedure must necessarily be performed at each timestep.

The search is treated as an optimization procedure to determine an interface

point’s primary coordinates, r[j], within the element Ωj,n
k

min
r∈[−1,1]d

hn(r), (2.93)

where hn(r) =
∣∣∣x[i],n −M−1,[j]

k (r, tn)
∣∣∣2, and M−1

k (r, tn) is the function (2.39) that

maps primary coordinates , r, to physical coordinates, x[j],n, at time tn in the phys-

ical element Ωj,n
k . Newton-Raphson iterations are performed until optimization is
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Figure 2.2: Illustrative representation of points on interface boundaries being
mapped to reference coordinates at time tn and tn+1.

achieved:

rp+1 = rp − S−1,n (rp)hn (rp) , (2.94)

where p is the iteration index, and Sn (r) = ∂hn/∂r.

Interpolation Step I will first describe a spatial interpolation approach to be done

at each time step to find conforming values for the latest solution across the interface,

and then address the temporal interpolation.

a)Spatial Interpolation

Suppose the solution at time step tn has just been determined. Our task is to

find the corresponding matching interface values with spectral accuracy. Thus, N th-

order Lagrangian interpolation is used that is consistent with the accuracy of the

global SEM spatial scheme (2.46). Upon completion of the search step, the primary

coordinates of each interface point are known within the corresponding elements in
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the other subdomain. Consequently, the interpolated velocity value, u
[j],n
int (x[i],n), is

calculated from the solution in Ωj,n with the interpolation formula

u
[j],n
int (x[i],n) =

N∑
l=0

N∑
m=0

u
[j],n
k,lmφl

(
r

[j]
1

)
φm

(
r

[j]
2

)
, x[i],n ∈ Γij. (2.95)

where the interpolated velocity is used at the corresponding interface point, x[i],n ∈

Γij,n in Ωi,n. Since velocity coefficients u
[j],n
k,lm and associated Lagrange polynomials

φl(r
[j]) were previously determined by the SEM scheme, the correct determination of

primary coordinates r, which was performed in the search step, returns the spectrally

accurate interpolated value u
[j],n
int (x[i],n).

b)Temporal Extrapolation

To ensure specified temporal accuracy of the global time stepping scheme for the

moving overlapping mesh methodology, an interface coupling scheme of the desired

temporal accuracy must be developed. Here, we aim at designing a scheme that

would keep a specified order of accuracy even without iterations. That would allow

us to achieve a specified order of accuracy with a minimum number of iterations.

The current work uses the IEXTm scheme developed previously for the stationary

overlapping grid approach [75, 135]. To clarify the description, the scheme is first

stated for stationary grids, and then applied to the moving grids.

For stationary grids, the IEXTm scheme takes solution from m previous time

steps and uses explicit extrapolation of mth order to find u with mth-order accuracy

u[i],n
q =

m∑
p=1

γpmu
[j],n−p
int

(
x[i]
q

)
, x[i]

q ∈ Γij (2.96)

where q corresponds to a spatial index of discrete variables in a vector notation, and

extrapolation weights, γpm, as used in the IEXTm scheme are found in Table 2.2 for up

to m = 3. Thus, interpolated values of velocity are determined for previous timesteps
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γp1 γp3 γp3

p=1 1 2 3

p=2 -1 -3

p=3 1

Table 2.2: IEXTm schemes, m=1, 2, 3 [75]

using equation (2.95) and those values are utilized in (2.96) to satisfy conditions on

stationary interface boundaries.

For moving grids, one has to be careful when applying this scheme, since the

physical position of the mesh points change with time. The velocity value u
[i],n
q which

corresponded to the interface boundary point x
[i]
q in stationary grids, now corresponds

to the interface boundary point which is now a function of time x
[i],n
q . Taking into

account the temporal dependence of the interface points, equation (2.96) for moving

grids in the current ALE formulation should be rewritten as

u[i],n
q =

m∑
p=1

γpmu
[j],n−p
int

(
x[i],n−p
q

)
, x[i],n−p

q ∈ Γij,n−p (2.97)

Note that physical coordinates used for interpolation are taken at previous locations,

xn−p, rather than their location at the current time, xn. Recall that in the ALE

formulation of the problem, changes in fluid velocity over time are taken with re-

spect to the reference (or ALE) frame, or with the reference coordinates, χ, held

constant, as denoted by the ALE derivative used in equations (2.19) and (2.20). So

it becomes necessary to interpolate at locations fixed to the moving interface points,

since the added convective terms already take the relative mesh motion into account

in the global calculations. Although, to ensure that the IEXTm scheme maintains

the desired temporal order of accuracy with respect to the laboratory frame, u
[j],n−p
int
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is expressed as one dimensional velocity

u
[j]
int(x

[i]
q − w[i]

q ∆t, t−∆t) ≡ u
[j],n−1
int

(
x[i],n−1
q

)
,

which for IEXT2

u
[j]
int(x

[i]
q , t) ≈ IEXT2[u

[j]
int] =

2u
[j]
int(x

[i]
q − w[i]

q ∆t, t−∆t)− u[j]
int(x

[i]
q − 2w[i]

q ∆t, t− 2∆t), (2.98)

where upon substituting the multivariable Taylor expansions (2.82) and (2.83) gives

u
[j]
int(x

[i]
q , t) ≈ IEXT2[u

[j]
int] = u

[j]
int(x

[i]
q , t) +O[∆t2]. (2.99)

Explicit temporal extrapolation changes the stability properties of the global

solver, even for stationary grids. The effects of IEXTm on stability were analyzed

for a simplified example using the one-dimensional heat equation solved with a back-

ward differentiation scheme [75]. It was found that larger mesh overlap size and an

increased number of Schwarz-like iterations improved the stability of the simplified

problem. Although not formally analyzed, similar stability issues were found in mov-

ing overlapping mesh incompressible flow simulations. To stabilize the solver in the

present moving grid methodology, Schwarz-like iterations are performed in addition to

the IEXTm scheme, similar to our previous stationary overlapping grid solver [135].

Interface conditions (2.3e) for the lth iteration are defined

u[i],l=1,n
q =

m∑
p=1

γpmu
[j],lmax,n−p
int (x[i],n−p

q )

u[i],l>1,n
q = u

[j],l−1,n
int (x[i],n

q )

 x[i]
q ∈ Γij (2.100)

where the first iteration uses extrapolated values (2.97) from previous solutions at

interface nodes, and succeeding iterations use the latest solution in the other subdo-

main for interpolated values. While velocity and pressure values are dependent on
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the iteration count, the linear operators are not since geometry and position do not

change with iterations. Since the nonlinear convection operator is treated explicitly,

only values from previous timesteps are used in its calculation, and thus iterations do

not affect its values at the current timestep.

Note that upon interpolation and extrapolation the boundary conditions on in-

terfaces are enforced in a similar manner as Dirichlet and moving wall boundaries,

with the unassembled Mask matrix zeroing out interface boundary points and with

non-zero values at interfaces being treated as inhomogeneous Dirichlet boundaries,

that is, assigning values at interfaces through a continuous function given on the

right-hand side of the equations.

In the present moving overlapping mesh formulation, no more than three iterations

were needed to attain stable solutions for the cases tested. While stability when using

the IEXT scheme is necessarily enhanced with a small number of iterations, this is

vastly different from implicit coupling methods that require iteration counts in the

hundreds to achieve the desired temporal convergence.

2.2.13 Mesh Velocity

Mesh velocity is assigned on a point-by-point basis, with each GL node being

assigned its own velocity value. Thus when prescribing mesh velocity, care must be

taken to ensure that large mesh deformation or mesh entanglement is avoided. In

all test simulations presented here, one of the meshes is held stationary while the

other is translated and/or rotated as a rigid body, although the methodology allows

for movement of both meshes, including the ability to handle deforming subdomains.

Velocity values are prescribed to the discrete GL points once at the beginning of each

timestep, after which the mesh geometry is updated accordingly (see Figure 2.3). The

geometry of the grids remain unchanged for the remainder of the timestep.
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Since the mesh geometry is updated once per timestep, the search step is only

required once per timestep as well to determine the correct primary coordinates of

each interface point in terms of the coincident elements in the neighboring mesh. The

interpolation step, however, is required once per iteration to ensure that the most

recent solution set is used for the interface conditions.

2.2.14 Iterative Solver

2.2.15 Fully-Discretized Equations

Decomposing u for inhomogeneous boundary condition treatment gives the full

discretized equations for two moving overlapping subdomains in block matrix form

with iteration and timestep indices gives

In Ω1 :

 H[1],n −D̃
T,[1],n

−D̃
[1],n

0


 u

[1],l,n
0

p[1],l,n
L

 =

 F[1],l,n(u[2],n)

F [1],l,n
p (u[2],n)

 , (2.101)

In Ω2 :

 H[2],n −D̃
T,[2],n

−D̃
[2],n

0


 u

[2],l,n
0

p[2],l,n
L

 =

 F[2],l,n(u[1],n)

F [2],l,n
p (u[1],n)

 . (2.102)

where the double underlined assembled operators are now modified with the unassem-

bled Mask matrix for satisfying Dirichlet, moving wall, and interface boundary con-

ditions

An = QTMLA
n
LMLQ, (2.103)

Bn = QTMLB
n
LMLQ, (2.104)

Cn = QTMn
LCLMLQ, (2.105)

D̃
n

= D̃
n

LMLQ (2.106)
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and

Hn =

(
β0

∆t
Bn +

1

Re
An

)
. (2.107)

The arrays on the right-hand side of (2.101) and (2.102) include the inhomoge-

neous Dirichlet, moving wall, and interface boundary conditions, all represented by

ub. Therefore, some of the values in ub are dependent upon interpolated/extrapolated

values from the adjacent subdomain, and thus are dependent upon iteration count

F[i],l,n(u[j],n) = f [i],n −QTMLH
[i],n
L u

[i],l,n
b,L (u[j],n), (2.108)

F [i],l,n
p (u[j],n) = D̃

[i],n

L u
[i],l,n
b,L (u[j],n), (2.109)

with

Hn
L =

(
β0

∆t
Bn
L +

1

Re
An
L

)
. (2.110)

Note that assembled operators are subdomain dependent, since they depend on dif-

ferent Jacobians, and time dependent, since Jacobians change as the mesh moves,

although they are not iteration dependent for reasons stated in Section (2.2.12).

Thus, every variable in equations (2.101) - (2.110) depend upon the mesh movement

because of either the ever changing Jacobian, or the discrete mesh velocity essential

in the determination of the convective terms. Mask matrices and Connectivity oper-

ators are subdomain dependent, although they do not depend upon time or iteration

count.

The coupling terms in the right-hand side of (2.101) and (2.102), and the velocities

ul,n0 are updated at the beginning of each iteration and the Stokes problems are solved

independently for each subdomain. While bolded operators represent block-diagonal

formulations of the scalar-valued operators, as discussed previously, the interpolating

derivative operator is defined D̃ =
[
D̃1 D̃2 D̃3

]
to ensure proper multiplication of

D̃
T

and p
L
.
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Details regarding the implementation of the Stokes solver for calculations of solu-

tions in individual subdomains are found in [10, 57, 135].

Initialization

Update Mesh 
Geometry

Stokes Solve

Search Step

Interpolation Step

l=lmax?Yes No

Time
Advance

Iterate
(l=l+1)

Update SEM 
Operators

Calculate Mesh 
Velocity

Figure 2.3: Basic procedures for computation of moving overlapping mesh method-
ology. Steps requiring global communication are in italic.

2.3 Parallel Communication

The dual-session communication framework, our previous development for sta-

tionary overlapping mesh problems, was utilized in the current methodology for the

communication between two separate subdomains. The framework allows for inde-

pendent computations in different sessions, while enabling the sessions to communi-

cate with each other as needed. In our implementation for present validation tests,

one session uses the SEM to solve for flow using the standard Eulerian formulation
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of the governing equations, while the other session finds solutions on a moving do-

main with the ALE formulation of the problem described in Chapter 2. Within each

session, communication among local processors is handled with MPI Intracommuni-

cators, while global communication is accomplished through the establishment of an

MPI Intercommunicator (Figure 2.4). Presently, all values are passed locally using

Intracommunicators, while the interpolated values for use at interface boundaries are

additionally passed to the other session via the Intercommunicator. This communica-

tion of interface values is the foundation for weak coupling between two subdomains,

and occurs once per iteration.

Intracomm 1

Session 1

Intracomm 2

Session 2

Intercomm

Figure 2.4: Dual-session communication framework for parallel communication
among two independent sessions

When a simulation is first initiated, each processor scans through the GL points in

its custody and flags any points with interface boundary conditions. Since interface

boundaries in the current implementation are not altered throughout the simulation,

this flagging is performed only once per simulation. The interface flags are saved, and

the boundary conditions at those points are set to inhomogeneous Dirichlet conditions.

The total number of interface points found within one session is divided equally

among the processors in the other session, and the point identities (including physical

coordinates in the laboratory frame) are sent via the Intercommunicator to processors

in the other session. Upon receipt of point identities, the local session determines if

each point lies within its subdomain boundary, and if it does not, the point is sent back
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to its originating session where it is treated with user prescribed Dirichlet condition.

For all flagged points within the subdomain’s boundaries, the Search Step is initiated

to determine, first, which local element encompasses each point. When such elements

are found the points are sent to the local processors which are responsible for the said

elements. The search step continues by determining the primary coordinated of each

point with respect to the element in which it lies. When the search step is completed,

the Interpolation Step is initiated to determine the spectrally accurate values for use

at all interface points. The values are passed back to the neighboring session via the

Intercommunicator, and are distributed locally through Intracommunicators to the

processors requiring the interface point data. The interpolated values are utilized

locally as inhomogeneous Dirichlet conditions at the interface boundaries.

Messages passed via the MPI communicators are optimized for parallel perfor-

mance through utilization of the Crystal Router Algorithm [136]. Note that in the

present formulation the mesh geometry is updated only at the beginning of a timestep,

and thus the search step, requiring one global communication to and from each ses-

sion, need be performed only once per timestep. Although, the interpolation step, also

requiring one global communication to and from each session, is performed once per

iteration to ensure the most up-to-date values are used at interface boundaries. All

other computations are performed independently within each local session, allowing

for optimum parallel scalability, as demonstrated in Chapter 5.
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Chapter 3

STATIONARY OVERLAPPING MESH VALIDATION

In this chapter, I demonstrate performance of the developed overlapping grid

method, on two- and three-dimensional laminar and turbulent problems, with the

focus on spatial and temporal orders of convergence, accuracy in the presence of

outflow disturbances and long integration times, and the ability of the method to

reproduce correct turbulence characteristics on overlapping domains.

3.1 Convecting Walsh’s Eddies

A simulation of convecting eddies in a two-dimensional periodic global domain

was used to assess the spatial and temporal accuracy of the overlapping mesh method

since an exact solution to the problem is readily available [137]. Walsh’s discussion of

non-convecting eddy solutions to the Navier-Stokes Equations states that if the initial

conditions are set as ũ = a where a satisfies ∆a = λa, ∇·a = 0 in Ω, then ũ = eνλt a,

ν is kinematic viscosity, is a solution with the pressure defined as ∇p̃ = −ũ ·∇ũ. The

“tilde” denotes the values corresponding to a frame of reference where the locations

of the eddies do not change with time (or convective frame of reference if the eddies

convect). The eigenvalues λ can be expressed in terms of n and m, arbitrary non-

negative integers, λ = −(n2 +m2), with corresponding eigenfunctions formed by the

product of sin[nx̃] or cos[nx̃] with sin[mỹ] or cos[mỹ]. Linear combinations of the

eigenfunctions form stream functions satisfying the Navier-Stokes Equations, from

which velocity and pressure solutions can be found. For the eddies, convecting with

the constant velocity (u0, v0), the Walsh’s solutions need to be transformed into a
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stationary frame of reference by using the coordinate transformation: x = x̃+u0t, y =

ỹ + v0t. For our test case, the following exact solutions were used,

u(x, y, t) = e−25tν(−cos[5(y − v0t)] + cos[4(y − v0t)]sin[3(x− x0t)]) + u0,

v(x, y, t) = e−25tν(−sin[5(x− x0t)]−
3

4
cos[3(x− x0t)]sin[4(y − v0t)]) + v0, (3.1)

where ν = 0.05. The corresponding solution for pressure (not presented in the orig-

inal paper by Walsh [137]) is documented in Appendix A, together with the further

discussion of the derivation. Since pressure in this case is not prescribed as a bound-

ary condition, it is defined up to an arbitrary constant, thus the pressure is computed

with the zero mean, both in numerical and exact solution.

3.1.1 Mesh Configuration

The overlapping mesh configuration used for the present simulation consists of

an exterior mesh with a vacancy in the middle and an interior mesh, either circular

or square, that covers the vacancy (Figure 3.1). Note that the grid points (includ-

ing on the interface boundaries) are not coincident with grid points in the adjacent

subdomain. This is done in order to test for correct interpolation of values between

the two meshes. Single mesh simulations, which were performed for comparison with

two-mesh simulations, used a mesh with the same h-resolution as the exterior mesh

shown in Figure 3.1.

Figure 3.2 presents the pressure contours for the overlapping simulations with

circular and square interior meshes. The snapshots contain two sets of contour lines

in sections where the subdomains overlap, although the continuity between the values

in the two meshes make their differences indiscernible in most of the overlap region.
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(a) Circular Interior Mesh (b) Square Interior Mesh

Figure 3.1: Two-mesh domains for convecting eddies simulations, with element
boundaries shown.

(a) Circular Interior Mesh (b) Square Interior Mesh

Figure 3.2: Pressure contours taken after the 600th timestep using 7th-order poly-
nomial approximation and third-order temporal scheme with ∆t = 1 · 10−4. IEXT3
was performed using two iterations. The darkest lines represent a pressure of 0.8078
while the faintest lines represent a pressure of -2.710.

3.1.2 Accuracy
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In this section, the spatial and temporal convergence of the grid overlapping

method is investigated. The L2 velocity error in each subdomain is calculated as

L2 error (uuu[i]) =

√∫
Ωi

(uuu
[i]
ex − uuu[i]

comp)2dV

2V [i]
, (3.2)

where V [i] is the volume of the subdomain Ωi (the factor of two arises from the fact

that for 2D problems two volume integrals are summed together, one for u velocity

and one for v velocity, thus dividing by two results in the average), and the L2 pressure

error as

L2 error (p[i]) =

√√√√∫Ωi

(
p

[i]
ex − p[i]

comp

)2

dV

V [i]
, (3.3)

where uuu
[i]
ex, p

[i]
ex are the exact values and uuu

[i]
comp, p

[i]
comp are the computational approxi-

mations.

The spatial accuracy plots (Figure 3.3) show clear spectral convergence with p-

refinement with respect to L2-errors in velocity and pressure. Notice also that a

comparison of the plots for the circular and square interior meshes yields very similar

results; the spatial errors for the simulation with a circular interior mesh being slightly

larger than those for the square interior mesh case. This effect is due to a slightly

slower (albeit still exponential) convergence of the SEM method with curvilinear

meshes [138, 57, 139], and not due to the overlapping procedure. The spatial errors

reported for single mesh simulations are slightly lower that their double mesh counter-

parts. This is attributed to the lower h-resolution of the interior mesh (see Figure 3.1),

which also affects the accuracy of values used at interface boundaries of the exterior

mesh.

The temporal accuracy plots (Figures 3.4 and 3.5) contain the results of simula-

tions performed with IEXTk (k = 1 − 3) and third order time stepping compared

with ∆t, (∆t)2 , (∆t)3 plots. The temporal convergence analysis was performed with
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(a) Circular Interior Mesh
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(b) Square Interior Mesh

Figure 3.3: Spatial accuracy for simulations using third-order time stepping scheme,
with IEXT3 using three iterations. The I, E, and S in the key refer to the interior
mesh in the two mesh simulation, the exterior mesh in the two mesh simulation, and
the single mesh (square) simulation, respectively. The errors were collected after 1000
timesteps for simulations with ∆t = 1 · 10−4.

17th order polynomials to make certain that the problem was fully converged spatially

to ensure more accurate determination temporal convergence rates. However, since

full spatial convergence is achieved in the current test problems for polynomial orders

greater than 12, future temporal convergence test use lower order polynomials. As

expected, the order of interface extrapolation is the limiting factor for the temporal

accuracy, even though the third order temporal scheme was used in all cases. The

results of the simulations generally meet the expected order of temporal convergence.

Note that a larger number of iterations with a lower order interface extrapolation

scheme will improve the temporal accuracy, though increase the computational cost.

Figures 3.6 and 3.7 illustrate the errors given by the same eddy simulation with

Dirichlet boundary conditions prescribing the exact velocity at the global domain

boundary. Both L2 and L∞ errors are plotted for spatial and temporal convergence.
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Figure 3.4: Temporal accuracy of the velocity for the square interior mesh simu-
lation. The solid line represents the results for IEXT1, the dashed line represents
IEXT2, and the dotted line represents IEXT3. In each case, the IEXTk scheme used
three iterations. The lines to the right of the break are plots of ∆t, (∆t)2, (∆t)3

for comparison with the simulation results. These results were collected for the 17th

polynomial order of approximation, at time 1 · 10−1.
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Figure 3.5: Temporal accuracy of the pressure for the square interior mesh simu-
lation. The solid line represents the results for IEXT1, the dashed line represents
IEXT2, and the dotted line represents IEXT3. In each case, the interface extrapola-
tion used three iterations. The lines to the right of the break are plots of ∆t, (∆t)2,
(∆t)3 for comparison with the simulation results. These results were collected for the
17th polynomial order of approximation, at time 1 · 10−1.

Looking at the L∞ norm of the error, defined by

L∞ error (u[i]) =
max

(∣∣∣u[i]
ex − u[i]

comp

∣∣∣)
max

(∣∣∣u[i]
ex

∣∣∣) , (3.4)
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shows that the largest error within the global domain also achieves spectral spatial

convergence and 3rd order temporal convergence for both velocity and pressure.
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Figure 3.6: Spatial accuracy for square interior mesh tests with global Dirichlet
boundary conditions using the third order time stepping scheme, with IEXT3 using
three iterations. The I, E, and S in the key refer to the interior mesh in the two
mesh simulation, the exterior mesh in the two mesh simulation, and the single mesh
(square) simulation, respectively. The errors were collected after 1000 timesteps for
simulations with ∆t = 1 · 10−4.
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Figure 3.7: Temporal accuracy for square interior mesh simulations with global
Dirichlet boundary conditions using the third order time stepping scheme, with
IEXT3 using three iterations. The labeled line shows the expected order of tem-
poral convergence, while the lines for velocities and pressures are displayed according
to the legends in Figure 3.6 (Single mesh data is not included here). These results
were collected for the 13th polynomial order of approximation, at time 1 · 10−1.
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Figure 3.8 shows the absolute errors of velocity magnitude in the interior and

exterior subdomains. Since Dirichlet conditions are used on the global boundaries,

it is expected that the largest errors in the exterior subdomain should be near the

interface boundaries, as is the case. Interestingly, the largest errors within the interior

subdomain do not lie near interface boundaries, but correspond to areas of largest

fluid velocity magnitude. While there are distinct concentrated areas of larger error,

all errors throughout the global domain are of the same order of magnitude.

(a) Interior Mesh (b) Exterior Mesh

Figure 3.8: Contour plot of the absolute error in velocity magnitude values in the
interior and exterior subdomains for a simulation with global Dirichlet boundary
conditions, using 7th order polynomials, third order timestepping, and IEXT3 using
three iterations. The snapshot is taken at time 1 · 10−1. The darkest contour lines
correspond to a value of 2.5 · 10−4 and lightest contour lines 1.0 · 10−4. The exterior
subdomain has a maximum error of 2.799 · 10−4 and the interior subdomain has a
maximum error of 3.48 · 10−4.

Investigation of the convergence rates (of the L∞ norm of error) with respect to

refinement of the average element size is illustrated in Figures 3.9 and 3.10 for square

and circular interior mesh simulations with solutions approximated by 5th, 7th, and

9th order polynomials. We see that the h-refinement convergence tests generally show

rates for velocity error of order hN with square meshes, and convergence rates for pres-
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sure error of order hN−1 since pressure solutions are approximated on G rather than

GL quadrature. Circular interior mesh simulations give velocity error convergence

rates that are of order hN−1 for coarse h-resolutions, while pressure error generally

maintains convergence rates of order hN−1, as seen previously. Errors in circular mesh

cases cease to decline at coarser resolutions than when square meshes are used. The

lower order h-refinement convergence rate of the circular mesh is likely the leading

cause of the slower, though still exponential, p-refinement convergence rate of the

circular mesh illustrated in Figure 3.3.
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Figure 3.9: L∞ error with respect to element size (∆x × ∆x) for square interior
mesh simulations. Simulations were performed with ∆t = 1 × 10−4 with the third
order temporal scheme and IEXT3 using three iterations. Bold solid lines are the
convergence rate reference lines, and are labeled with the corresponding convergence
rate. 60



 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1  1

L∞
 E

rr
o
r

Average Element Size (Δx)

(Δx)4

X-Velocity (I)
Y-Velocity (I)

X-Velocity (E)
Y-Velocity (E)

(a) Velocity Errors, 5th-Order Polynomials

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1  1

L∞
 E

rr
o
r

Average Element Size (Δx)

(Δx)4

Pressure (I)
Pressure (E)

(b) Pressure Errors, 5th-Order Polynomials

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.1  1

L∞
 E

rr
o
r

Average Element Size (Δx)

(Δx)6

(c) Velocity Errors, 7th-Order Polynomials

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1  1

L∞
 E

rr
o
r

Average Element Size (Δx)

(Δx)6

(d) Pressure Errors, 7th-Order Polynomials

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.1  1

L∞
 E

rr
o
r

Average Element Size (Δx)

(Δx)7

(e) Velocity Errors, 9th-Order Polynomials

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.1  1

L∞
 E

rr
o
r

Average Element Size (Δx)

(Δx)8

(f) Pressure Errors, 9th-Order Polynomials

Figure 3.10: L∞ error with respect to average element size (∆x×∆x) for circular
interior mesh simulations. See caption of Figure 3.9 for runtime parameters.
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Initial tests show that the overlap size has little effect on the accuracy, and a large

effect on stability. For convecting eddy test problems using square interior meshes

with overlap size of about half of an element width, six iterations were needed for

stability, while an overlap size that included only 2 GL points required nearly 500

iterations. An overlap size that included only one GL point proved to be unstable

even up to 1000 iterations per timestep using 7th order polynomials. Future work

will provide concrete details regarding how the accuracy and stability of the method

is impacted by the size of the subdomain overlap.

The velocity and pressure profile plots for the overlapping mesh simulation are

presented in Figure 3.11. As illustrated by the profile plots, good continuity exists in

the transitions between the two meshes.
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Figure 3.11: Cross-section profiles of the square interior mesh case through the
center of the domain: The solid line illustrates the interior mesh data and the dotted
line illustrates the exterior mesh data. These profiles were taken after 1000 timesteps
from a third order simulation with IEXT3 using three iterations. The 7th order
polynomial approximation was used with ∆t = 1 · 10−4

3.2 Convecting Taylor Vortex

The computation of a two-dimensional convecting vortex traveling through a long,

narrow domain composed of two overlapping subdomains with inflow-outflow global
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boundary conditions is performed to test: 1) error behavior over long integration

times; 2) influence of inexact outflow conditions on the overlapping grid solution.

For that, two overlapping meshes are constructed to be long and narrow, with an

overlapping region in the center of the global domain (see Figure 3.12). The vortex

enters the left boundary of the global domain, traveling with a constant prescribed

convecting velocity U∞, ultimately exiting the right boundary. The top, bottom, and

left boundaries of the global domain are assigned Dirichlet boundary conditions for

velocity, and the right boundary is assigned outflow conditions, defined by

pnnn− 1

Re
∇uuu · nnn = 0 on ∂ΩO, (3.5)

where ∂ΩO is the outflow boundary, and nnn is the vector normal to the outflow bound-

ary.

Figure 3.12: Mesh configuration for single convecting Taylor vortex simulations
showing element boundaries.

The tangential velocity of a single incompressible Taylor vortex [140, 19, 141] in

a convective frame of reference is prescribed by the equation

ũθ =
Mr

16πν2t2
exp

(
−r̃2

4νt

)
, (3.6)

where M is an invariant of the flow. As in the previous section, the variables with a

tilde correspond to a convective frame of reference. The parameters t, ν, and M are

altered to obtain the desired vortex radius r̃d, which is defined as the distance from

the center of the vortex to the location of the maximum tangential velocity, and the

desired maximum tangential velocity, ũθmax. A relationship for the vortex radius is
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found by solving dũθ(r)
dr̃

= 0, giving

r̃d =
√

2νt0 (3.7)

from which ν and an arbitrarily chosen time, t0, can be manipulated to give the

desired radius. Using this relationship, an equation is derived for M that gives a

vortex with the desired radius and maximum tangential velocity

M =
16π · ũθmax · ν2 · t20√

2νt0
e1/2. (3.8)

Since only a tangential velocity component exists, the momentum equation in the

radial direction reduces to

ũ2
θ

r̃
= −1

ρ̃

∂p̃

∂r̃
. (3.9)

Thus, solving for the pressure of a non-convecting Taylor vortex gives

p̃ = − M2ρ̃

256π2ν3t3
exp

(
−r̃2

2νt

)
, (3.10)

where M is defined in equation (3.8).

Solution of the convecting vortex in a stationary frame of reference is then obtained

by transforming polar coordinates of a convective frame into Cartesian coordinates

of a stationary frame and adding (U∞, 0) to the corresponding (ũ, ṽ) velocity, while

pressure is obtained from (3.10) with the account for coordinate transformation, as

in Appendix A. As in the previous section, pressure with the zero mean is taken in

both exact and numerical solutions.

In the present simulations, the maximum tangential velocity is given as a percent-

age of the convecting velocity, namely ũθmax/U∞ = 100%, which represents a very

strong disturbance and a demanding test for the numerical method. Simulations were

performed at a Reynolds number (Re = U∞r̃d/ν) of 140.
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Figure 3.13: u-velocity contours when the vortex is in the overlapping region (1060th

timestep), using 9th-order polynomial approximations and 3rd order temporal scheme,
with ∆t = 1×10−4. IEXT3 was used with four iterations. The darkest lines represent
a nondimensional velocity of 1.277, and the faintest 0.7234.
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Figure 3.14: L2-errors as the vortex travels through the domain, where 9th order
polynomials are used for spatial approximations and third order time-stepping was
used with ∆t = 1 × 10−4. IEXT3 with four iterations was used for interface values.
The solid line represents the errors of the single mesh configuration, the dashed line
represents the errors in the left mesh of the two-mesh case, and the dotted line
represents the errors in the right mesh. The velocity errors have been normalized by
the corresponding value of the maximum velocity at each time.

3.2.1 Accuracy

Figure 3.13 presents the u-velocity contours for the vortex as it resides in the

overlap region. Contour lines are displayed by both the left and right meshes, although

no detectable differences are observed. As the vortex travels through the domain the

errors remain fairly constant (Figure 3.14). Note that in Figure 3.14 the errors as the

vortex leaves the global domain through the the outflow boundary are not included,
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to concentrate our attention on the errors as the vortex travels into and out of the

overlapping region. The errors as the vortex leaves through the outflow boundary are

several orders of magnitude larger (on the order of 10−3 for velocity and pressure) due

to the outflow boundary prescribing non-exact pressure, thus altering the computed

solution. The initial conditions prescribed in this problem place the vortex outside of

the domain, giving nearly uniform unidirectional flow throughout the computational

domain, thus initial computational errors are very low. As the vortex convects into

the computational domain we see that the error values increase, as expected, for both

single mesh and two mesh problems, after which the error gradually decreases. As

the vortex enters and leaves the overlapping region the pressure errors spike since

pressure is not interpolated at interface boundaries, although the errors are localized

and do not significantly propagate into the domain (See Figure 3.15). The velocity

errors remain largely unaffected by the vortex movement across the interfaces. The

large errors experienced as the vortex crosses the global outflow boundary occur in

both single mesh and two mesh problems, and they arise due to prescribed pressure

at the outflow boundary that does not match the exact solution. Figure 3.16 shows

the pressure error contours in the right subdomain when the outflow errors are at a

maximum (which occurs when the center of the vortex is aligned with the outflow

boundary of the global domain). The contours are given on a log-scale so that the

faintest line represents a pressure error value of 5 × 10−6 while the darkest lines,

representing a pressure error value of 1× 10−3, are localized at the outflow boundary.

Convergence tests, illustrated in Figure 3.17, show spectral convergence with re-

spect to polynomial-order refinement, and the expected third-order temporal conver-

gence. Errors were recorded when the vortex was centered in the overlapping region.
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(a) Errors in Left Subdomain @ t = 12.6

(b) Errors in Right Subdomain @ t = 8.5

Figure 3.15: Pressure errors (
∣∣pexact − pcomp

∣∣) throughout the domain as the vortex
enters (b) and leaves (a) the overlapping region. 9th order polynomials are used for
spatial approximations and third order time-stepping was used with ∆t = 1 × 10−4.
IEXT3 with four iterations was used for interface values. The darkest contour lines
represent an error value of 1.4 × 10−6 and the lightest contours represent an error
value of 2.3× 10−7.

Figure 3.16: A snapshot of the pressure error contours at t = 20.5 when the errors
due to the vortex leaving the global domain reach a maximum. The contour lines are
given in logscale with the darkest lines representing a value of 1×10−3 and the lightest
lines representing 5× 10−6. For runtime parameters see the caption of Figure 3.15.

The profile plots in Figure 3.18 are taken through the center of the vortex when

the vortex resides in the overlapping region. The values in the overlapping region

show strong agreement between results in the two subdomains.
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Figure 3.17: L∞ errors with respect to polynomial order and ∆t refinement for
the left (L) and right (R) meshes in two mesh simulations and for single mesh (S)
simulations. In the temporal convergence plots, the line types correspond to those
used in the spatial convergence plots, and the bold solid line is the ∆t3 reference.
Spatial convergence plots used timestep ∆t = 1 × 10−3, and Temporal convergence
plots were performed with 14th-order polynomials. In all cases, the BDF3/IEXT3
schemes were used with four iterations per timestep.

3.3 Turbulent Pipe Flow

In this section, a simulation of fully-developed turbulent pipe flow is performed to

assess the applicability of the developed overlapping grid method to three-dimensional
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Figure 3.18: Profile plots through the center of the vortex when the vortex resides
in the overlapping region: The left mesh data is illustrated by a solid line while the
right mesh data is illustrated by a dotted line. 9th order polynomials and a third
order temporal scheme with ∆t = 1 × 10−4 were used for solution approximations.
Four iterations were used each timestep with the IEXT3 scheme.

turbulent flow cases. A direct numerical simulation (DNS) of the flow was performed

with a bulk Reynolds number Reb = UbD
ν

= 5300 to correlate with experiments

performed in [142]. Sinusoidal perturbations in the θ and z directions were given in

the initial flow conditions to enable more rapid transition to a turbulent state. The

results were compared with the experimental and numerical data widely available

from [142].

3.3.1 Mesh Configuration

A cross-sectional view of the inside and outside meshes is illustrated in Figure 3.19,

and the length of the global pipe domain is 6 times longer than the pipe diameter D.

The inside mesh contains a total of 1716 elements while the outside mesh contains

6000 elements, giving ∼0.6M and ∼2.1M gridpoints in the inside and outside meshes

respectively using 6th-order polynomial approximations. Periodic boundary condi-

tions are assigned at the ends of the global pipe domain. Single mesh simulations
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were performed on a mesh of the same configuration as the inside mesh of Figure 3.19,

though with 7th-order polynomial approximations.

(a) Inside Mesh: Diameter=0.9D

r
θ

z

(b) Outside Mesh: Diameter=1.0D

Figure 3.19: Cross section views of the inside and outside meshes for turbulent pipe
flow (only the element boundaries are shown and not the GL points).

The overlapping grid methodology allows for efficient placement of refined ele-

ments in the locations where it is most needed. Thus, our outside mesh has much

finer resolution in all radial, azimuthal and streamwise directions, enabling accurate

representation of the boundary layer structures, while the inside mesh can be signifi-

cantly coarser, minimizing the total number of elements and improving aspect ratios

of the cells compared to a single domain. Since Gauss-Lobatto quadrature is used to

determine the positions of the nodes between element boundaries, the spacing is not

constant. Given this grid structure, the largest spacing among the nodes in elements

near the center of the pipe (given in Cartesian coordinates) are ∆x+ = ∆y+ ≈ 8.121

(∆x = ∆y ≈ (2.250 × 10−2)D) and ∆z+ ≈ 39.044 (∆z ≈ (1.082 × 10−1)D). (Wall

units, or plus units, are given by x+ = uτx/ν and so forth for the other coordi-

nate directions, where uτ =
√
τw/ρ is the friction velocity). The smallest spacing
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among nodes in the center-most elements are ∆x+ = ∆y+ ≈ 2.941 (∆x = ∆y ≈

(8.150 × 10−3)D) and ∆z+ ≈ 14.138 (∆z ≈ (3.918 × 10−2)D). The largest spac-

ings among nodes in the outermost element of the outside mesh are ∆r+ ≈ 0.7311

(∆r ≈ (2.026 × 10−3)D), (∆rθ)+ ≈ 4.4 (∆rθ ≈ (1.219 × 10−2)D), ∆z+ ≈ 25.4

(∆z ≈ (7.039× 10−2)D), while the smallest spacings (including nearest the wall) are

∆r+ ≈ 0.2648 (∆r ≈ (7.338 × 10−4)D), (∆rθ)+ ≈ 1.6 (∆rθ ≈ (4.434 × 10−3)D),

∆z+ ≈ 9.2 (∆z ≈ (2.550 × 10−2)D). Note that the width of the outermost element

near the wall is ∆ r+
el = 3.1 (∆ rel = (8.590 × 10−3)D) which means that this entire

element lies well within the viscous sublayer which has a thickness of about 5 wall

units. Comparatively, the point nearest the wall given in [142] is ∆r+ = 0.94.

3.3.2 Forcing

In the absence of a prescribed pressure gradient, the flow rate in a periodic pipe will

eventually tend to zero due to viscous dissipation. Thus, a mechanism for sustaining

the flow rate must be implemented in the simulations. In this work, a flow control

scheme based upon incremental adjustment of the pressure gradient for maintenance

of the bulk flow rate, Ub, is utilized. The adjusted pressure gradient is determined

using the current and previous values of the bulk flow rate, Un
b and Un−1

b , and the

target bulk flow rate, Ub:(
∂p

∂z

)n
= α

(
1 + Ub/U

n
b

2

)(
∂p

∂z

)n−1

, (3.11)

where

α = 1− D

U b∆t

(
Un
b − Un−1

b

U b

)
. (3.12)
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In single domain simulations the determination of the current bulk flow rate is a

straightforward task using fluid velocity and the domain volume

Un
b =

1

V

∫
Ω

undV. (3.13)

However, in overlapping mesh simulations, a simple summation of the flow rates

within each subdomain accounts for the value in the overlapping region twice,

Un
b 6=

1

V [1]

∫
Ω1

u[1],n dV +
1

V [2]

∫
Ω2

u[2],n dV. (3.14)

Thus, a modified determination of the global bulk flow rate must be devised to circum-

vent the repeated values. For that, the modified flow rates at individual subdomains

z-axis

Ω1

Ω2 Ω2,non

Ω1,non

Ωo

Figure 3.20: An axisymmetric cross section view of the inside and outside subdo-
mains. Shaded areas denote regions where inside and outside subdomains overlap.
Different regions are represented by different superscripts, namely, ‘o’ denotes an
overlapping region, and ‘non’ a non-overlapping region, while subdomain reference
numbers are also included.

are defined by

U
[i],n
b =

1

V [i]

∫
Ωi
γ u[i],n dV, (3.15)

where

γ =


1 in Ωi,non, i = 1, 2

1

2
in Ωo

(3.16)
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and domain superscripts correspond to those illustrated in Figure 3.20. The sum of

the modified flow rates gives the correct value for the global flow rate:

Un
b = U

[1],n
b + U

[2],n
b . (3.17)

In general, the overlap region does not coincide with the element boundaries, thus the

weights γ for the integration in Eq. (3.15) are assigned on a GL pointwise basis. If

an element lies completely within the overlap region, the integration (3.15) effectively

returns half of the actual flow rate in the element. However, if an element partially

lies within the overlap region, only some of the GL points will be halved, resulting in a

non-smooth integrand, thus reducing the accuracy of the numerical integration based

on GL quadrature. While decreased accuracy in the calculation of Ub for a small

portion of the domain will affect the value given for the global bulk flow rate, its

effect will be small since the lower-order integration is localized to affected elements.

The global bulk flow rate (3.17) of the decomposed domain is used to adjust the

global pressure gradient (3.11), thereby maintaining a prescribed value of Ub. The

effectiveness of the current flow control scheme to maintain a prescribed flow rate

for the overlapping turbulent case is demonstrated in Figure 3.21. Pressure gradient

(3.11) is subsequently used to calculate the wall shear stress τw = −D
4
∂p
∂z

and friction

velocity uτ =
√
τw/ρ for the normalization of turbulent statistics.

3.3.3 Accuracy

The present DNS simulations were performed using second order time-stepping

with ∆t = 1 × 10−3, while IEXT2 was employed with two iterations for interface

values. Second order temporal schemes, rather than third as in other tests, were used

in this case to achieve an increase in computational speed, to allow for turbulent

statistics to be collected over longer time periods. The flow was allowed to develop
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Figure 3.21: Modified flow rates of the individual domains, and the global bulk flow
rate. The dashed line represents the modified flow rate of the inside mesh, the dotted
line represents the modified flow rate of the outside mesh, the solid line represents
their sum, which is the global bulk flow rate controlled to U b.

until the non-dimensional time tUb/D = 1350 was reached, after which turbulent

statistics was collected for another 500 time units. Figures 3.22 and 3.23 show the

results of the present simulation compared to the numerical and experimental results

found in [142] for the mean normalized velocity and the root mean squared velocity.

The present results give turbulent statistics that correlate well with the published

data from several simulations and experiments. The present simulation gives a cen-

terline Reynold’s Number Rec = UcD
ν

= 6815 compared to Rec= 6950 in the DNS

results [142], and Reτ Reynolds number Reτ = uτD
ν

= 360.9 compared to the value

of 360 reported in [142].

The velocity fluctuation contours shown in Figures 3.24 and 3.25 display good

continuity between the two subdomains. The figures show that, in general, the ve-

locity fluctuations near the pipe wall are larger than the fluctuations near the center.

Evidence of the ejection of lower speed fluid (dashed contour lines) from the boundary
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Figure 3.22: Average velocity profile of turbulent pipe flow normalized by the cen-
terline velocity: The symbols represent the data presented in [142] (DNS(E): direct
numerical simulation performed by Eggels & Nieuwstadt, DNS(U):direct numerical
simulation performed by Unger & Friedrich, HWA: hot-wire anemometry, LDA: laser
Doppler anemometry, PIV: particle image velocimetry) while the lines represent the
data found using the simulation discussed here. Lines for the inside and outside
meshes are both displayed on the plot, though the same line style is used to improve
readability. The present simulation data was found using 6th-order polynomials and
second order temporal scheme with ∆t = 1×10−3. IEXT2 was performed at interfaces
with two iterations for multimesh simulations.

layer and the sweeping motion of higher speed fluid (solid contour lines) toward the

pipe wall is seen in the mushroom shaped contour lines displayed in Figure 3.25.
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Figure 3.23: u+
rms profile of turbulent pipe flow. The symbols represent the data

presented in [142] while the lines represent the data obtained from the simulation
discussed here. The T and S subscripts refer to the present two-mesh and the single
mesh simulations, respectively. Refer to the caption of figure 3.22 for parameter
specifications and details regarding abbreviations.
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(a) Radial Velocity Fluctuations

(b) Azimuthal Velocity Fluctuations

(c) Axial Velocity Fluctuations

Figure 3.24: Contours of fluid velocity fluctuations in a length-wise cross section
of the pipe at non-dimensional time of 3000. Solid and dashed contours represent
positive and negative velocity fluctuations, respectively. The darkest contour lines
in the radial (a) and azimuthal (b) velocity fluctuation plots represent values of 0.2
and -0.2 for solid and dashed, with step size of 0.02 between contours. The darkest
contour lines in axial velocity fluctuation plot (c) represent values of 0.45 and -0.45
for solid and dashed, with step size of 0.045 between contours. Refer to the caption
of figure 3.22 for parameter specifications.
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Figure 3.25: Contours of axial fluid velocity fluctuations in a cylindrical cross section
of the pipe. Refer to the caption of Figure 3.24 for details regarding axial velocity
fluctuation contours.
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Chapter 4

MOVING OVERLAPPING MESH VALIDATION

The capability of the moving overlapping grid method will be demonstrated through

two- and three-dimensional validation simulations. The spatial and temporal accu-

racy of the scheme will be displayed, and the method’s ability to realistically model

fluid flow when influenced by moving rigid bodies is illustrated.

4.1 Convecting Two-Dimensional Eddies

The spatial and temporal convergence rates were determined with a simulation

of convecting eddies in a periodic global domain, comprised of two subdomains,

for which an exact solution exists [137]. Walsh [137] proposed an exact solution

to the incompressible Navier-Stokes equations for non-convecting eddies with ini-

tial conditions ũ(x, 0) = a(x). Specifically, if ∆a = λa and ∇ · a = 0 in Ω, then

ũ(x, t) = eνλt a(x), where ν is the kinematic viscosity, with pressure determined by

∇p̃(x, t) = −ũ(x, t) · ∇ũ(x, t). The tilde indicates that the values are taken in the

frame of reference where the eddies’ locations are stationary in time.

We can express the eigenvalues as λ = −(n2 + m2), where n and m are non-

negative integers, which gives eigenfunctions that are products of Sin[nx̃] or Cos[nx̃]

with Sin[mỹ] or Cos[mỹ]. Stream functions that solve the governing equations are

formed using linear combinations of the eigenfunctions. For convecting eddies, the

solution is taken from the frame of reference where the eddies remain stationary,

which is accomplished through the coordinate transformation x = x̃+u0t, y = ỹ+v0t,

where (u0, v0) is the convection velocity. For the present verification simulations, the
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following velocity solution is used

u(x, y, t) = e−25tν(−cos[5(y − v0t)] + cos[4(y − v0t)]sin[3(x− u0t)]) + u0,

v(x, y, t) = e−25tν(−sin[5(x− u0t)]−
3

4
cos[3(x− u0t)]Sin[4(y − v0t)]) + v0. (4.1)

The solution for pressure is determined from ∇p̃(x, t) = −ũ(x, t) · ∇ũ(x, t), a full

expression and a detailed derivation is found in [135]. Zero mean values for exact and

computational pressure solutions are used for comparison, since the incompressible

governing equations allow for any arbitrary mean pressure.

4.1.1 Simulation Configuration

The global 2π × 2π two-dimensional domain is decomposed into an interior and

exterior mesh as discussed in Section 3.1 for stationary subdomains. The exterior

mesh contains a vacancy at its center which is covered by the interior mesh. Two

configurations of interior grids were used, a circular mesh and a square mesh, as seen

in Figure 3.1. In all simulations the exterior mesh was held stationary and the interior

mesh was constrained to move in a prescribed fashion. Note that this motion is a

type of “pseudo”, or “virtual”, motion as the movement of the mesh should have no

effect on the flow since there are no solid structures contained within. In the first

set of verification cases, both circular and square interior meshes were constrained to

rotate, while in succeeding simulations sliding motion was prescribed.

Simulations were performed with Re = 20, where the Reynolds number is defined,

Re = L∗U∗/ν∗, with L∗ the reference length, U∗ the reference velocity, and ν∗ the

kinematic viscosity. Quantities with stars denote the dimensional quantities, and

the ones without stars are non-dimensional. All non-dimensional length and velocity

variables are given here, with the presumption that corresponding dimensional coun-

terparts were normalized by L∗ taken here as L∗ = L∗x/(2π), where L∗x is the domain
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length in x direction, and by U∗ equal to the eddy convection velocity in x-direction

as discussed below.

4.1.2 Rotating Mesh Accuracy

The first set of validation simulations investigates the spatial and temporal ac-

curacy of our moving overlapping mesh method with rotating grids. Interior meshes

were rotated counter-clockwise as rigid bodies about their center of mass, which also

coincided with the center of the global domain [π, π], with non-dimensional angular

velocity Ω = Ω∗L∗/U∗ = π/4.

In Figure 4.1, velocity magnitude contours are shown for rotating interior mesh

simulations with fluid convection velocity u0 = u∗0/U
∗ = 1 and v0 = v∗0/U

∗ = 0.3, one

with the circular and one with the square interior mesh. This particular convection

velocity was chosen so that direct comparison with the results of stationary over-

lapping mesh case published in [135] was possible. Note that in the overlap region,

two sets of contour lines are presented, although the continuity of values between the

two subdomains is such that discrepancies between values in the overlap region are

difficult to visually detect.

Results are compared with data from the previously validated overlapping mesh

methodology for stationary meshes, where Figure 4.2 shows velocity errors with re-

spect to p-refinement. Results from the moving overlapping mesh methodology closely

correlate with the stationary overlapping mesh data. The exterior mesh data achieves

full convergence at 14th-order polynomial approximations in circular interior mesh

simulations, and 13th-order polynomial approximations for square interior mesh sim-

ulations, using the chosen non-dimensional timestep of ∆t = U∗∆t∗/L∗ = 1 × 10−4.

Circular interior mesh simulations converge slightly slower (although still exponen-

tially) than the square interior mesh simulations. This is a result of the slightly lower
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(a) Circular Interior Mesh (b) Square Interior Mesh

Figure 4.1: Velocity magnitude contours of rotating interior mesh simulations at
1000 timesteps. The darkest contour lines represent a non-dimensional velocity mag-
nitude of three, while the lightest lines, zero. The simulations were performed with
8th-order polynomial approximations, and ∆t = U∗∆t∗/L∗ = 1 × 10−4 using second
order temporal accuracy and IEXT2, with two iterations per timestep.

convergence rate of the SEM with curvilinear meshes [138, 57, 139, 135], and not a

result of the moving overlapping mesh methodology. In spite of slightly different slope

values, each mesh in each case achieves spectral spatial convergence, using spectral

Lagrangian interpolation at moving subdomain interfaces.

Temporal accuracy of the same rotating interior mesh configuration is presented in

Figure 4.3. The accuracy in each case achieves the expected third-order convergence

rate, where the four iterations for IEXT3 were used.

Pressure accuracy also achieves spectral spatial convergence and the desired third-

order temporal convergence rate for each subdomain in both rotating circular and

square interior mesh cases. Figure 4.4 shows the data for the case with a rotating

square interior mesh.
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Figure 4.2: Velocity errors with respect to changing solution polynomial order. The
tests were performed with timestep ∆t = 1 × 10−4 using BDF3 and IEXT3, with
four iterations per timestep. The (St) denotes data from stationary overlapping mesh
simulations. The interior mesh in both sets of tests was rotated with non-dimensional
angular velocity Ω = π/4, and errors were collected after 1000 timesteps.

4.1.3 Sliding Mesh Accuracy

Accuracy of data from sliding interior mesh simulations is comparable to that

of the rotating simulations discussed above. With sliding mesh simulations for this

configuration, one needs to be careful that the interior mesh does not slide out of the

vacancy, because interface boundaries would then become Dirichlet boundaries which

would need to be prescribed - a situation which is possible to accommodate, but was

not desirable for a consistent convergence testing in the present simulations. With

the sliding mesh velocity of w = w∗/U∗ = 1.5 used in the current test case, the square

interior mesh, for example, would begin to slide out of vacancy at t ≈ 0.733. For the

determining the accuracy of the method, which is the goal here, errors are recorded

at time t = 0.1. Data for sliding square mesh cases are presented here, but note

that sliding circular mesh simulations yield similar results, and conclusions drawn for
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Figure 4.3: Velocity errors with respect to changing timestep. The tests were per-
formed with polynomial order of 17, and used BDF3 and IEXT3, with four iterations
per timestep. Errors were collected at non-dimensional time t = 0.1. The (St) denotes
data from stationary overlapping mesh simulations, and a reference line is displayed
for comparison to the expected convergence rate. The interior mesh in both sets of
tests was rotated with non-dimensional angular velocity π/4.

the former can also be applied to the latter. Figure 4.5 illustrates the spatial and

temporal convergence of convecting eddy simulations with the interior mesh sliding

to the right with velocity w = 1.5.

Similar to the rotating mesh cases, the results in the exterior mesh fully converge

at 13th-order polynomial approximations, and interior mesh at 14th-order polynomial

approximations for the chosen timestep ∆t = 1× 10−4. The temporal accuracy plot

shows that the expected third-order temporal convergence is maintained using third-

order interface extrapolation (four iterations were performed). Pressure data also

exhibits spectral spatial accuracy and third-order temporal accuracy as illustrated in

Figure 4.6. Note that the errors for the sliding mesh simulations are actually slightly
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Figure 4.4: Pressure errors for square interior mesh simulations. All tests were
performed using BDF3 and IEXT3 with four iterations per timestep. The spatial
convergence tests were performed with timestep ∆t = 1 × 10−4 and results were
collected after 1000 timesteps. The temporal convergence tests were performed with
17th-order polynomials and results were collected at t = 0.1. The (St) denotes data
from stationary overlapping mesh simulations. The interior mesh in both sets of
simulations was rotated with non-dimensional angular velocity Ω = π/4.

lower than in a corresponding overlapping stationary mesh case, a fact that will be

explained shortly.
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Figure 4.5: Velocity errors for square sliding interior mesh simulations. The spa-
tial accuracy tests were performed with ∆t = 1 × 10−4 (errors collected after 1000
timesteps), and the temporal accuracy tests were performed with polynomial order
of 17 (errors collected at t = 0.1. Each case used BDF3 and IEXT3, with four
iterations per timestep. The (St) denotes data from stationary overlapping mesh
simulations [135], and a reference line is displayed in the temporal accuracy plot for
comparison to the expected convergence rate. The interior mesh was prescribed a
sliding velocity of w = 1.5 to the right.
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Figure 4.6: Pressure errors for square sliding interior mesh tests. The spatial accu-
racy tests were performed with ∆t = 1× 10−4 (errors collected after 1000 timesteps),
and the temporal accuracy tests were performed with polynomial order of 17 (errors
collected at t = 0.1). Each case used BDF3 and IEXT3, with four iterations per
timestep. The (St) denotes data from stationary overlapping mesh simulations [135],
and a reference line is displayed in the temporal accuracy plot for comparison to
the expected convergence rate. The interior mesh was prescribed a sliding velocity
w = 1.5 to the right.
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4.1.4 Influence of Mesh Velocity

The value of mesh velocity introduces another possible parameter affecting global

error. Figures 4.7 and 4.8 show how the errors are affected by the velocity of the

moving interior mesh. In all sliding mesh cases the velocity error is at a minimum

when the mesh velocity (wx) is equal to the convection velocity (u0). In cases using

the second order temporal scheme, the errors in the moving mesh increase quadrat-

ically with the absolute value of the relative mesh velocity (|wx − u0|), and in cases

using first order timestepping, the errors increase nearly linearly. The errors seen

in the stationary exterior mesh remain fairly constant since nothing changes in each

subsequent test except for the values interpolated at its interface boundaries.

We see similar quadratic and linear increase in velocity errors for the rotating

interior mesh tests as the angular velocity (wΩ) of the interior mesh increases (Fig-

ure 4.8). Minimum errors in these rotating mesh tests are found when wΩ = 0. While

errors increase with moving mesh velocity, they generally remain of the same order

of magnitude in the range of mesh velocities investigated.

Note that although the absolute value of the errors increase, spatial errors still con-

verge exponentially, and temporal errors with third-order, as illustrated in Figure 4.9

for sliding square interior mesh simulations.

Recall that looking at eddies convecting to the right with velocity ur in a stationary

frame of reference is analogous to stationary eddies being viewed in a frame moving to

the left with velocity ur. Thus, varying the fluid convection velocity (u0) should yield

similar results to varying the mesh velocity (wx). In Figure 4.10 the errors reported

by the interior mesh for two sets of simulations are compared, in one set the interior

mesh velocity is set to zero and the fluid convection velocity (u0) is changed, and in

the other set, u0 is kept at 0 and wx is changed. The comparison is made by plotting
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Figure 4.7: Velocity errors with respect to sliding mesh velocity. 14th-order poly-
nomials were used for solution approximations to ensure full spatial convergence and
a timestep of ∆t = 1 × 10−4 was used. Errors were collected at t = 0.1. Convection
velocity was set: u0 = 1 and v0 = 0.

errors against the relative velocity (ur = u0−wx) for the two simulation sets. We see

that the two sets of data indeed give very similar error results, though we see that at

large relative velocities, ur, the sliding mesh simulations report slightly lower errors

than stationary mesh simulations. This occurs since the exterior mesh maintains

slightly higher accuracy in sliding mesh simulations because it remains stationary

(having a smaller relative velocity), thus the interior mesh, in these cases, interpolate

89



0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

8e-06

9e-06

-3 -2 -1 0 1 2 3 4 5 6

L2
E
rr

o
r

Interior Mesh Angular Velocity (wΩ*)

Interior Mesh
Exterior Mesh

1.50e-07(x - 0.0)2 + 3.39e-08

(a) Rotating Interior Square Mesh using

BDF2/IEXT2

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

-3 -2 -1 0 1 2 3 4 5 6

L2
E
rr

o
r

Interior Mesh Angular Velocity (wΩ*)

Interior Mesh
Exterior Mesh

8.61e-08(x - 0.0)2 + 3.77e-08

(b) Rotating Interior Circular Mesh using

BDF2/IEXT2

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

-3 -2 -1 0 1 2 3 4 5 6

L2
E
rr

o
r

Interior Mesh Angular Velocity (wΩ*)

x-intersection: -3.467e-02

Interior Mesh
Exterior Mesh

-3.48e-04 x - 9.44e-06
3.17e-04 x + 1.36e-05

(c) Rotating Interior Square Mesh using

BDF1/IEXT1

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

-3 -2 -1 0 1 2 3 4 5 6

L2
E
rr

o
r

Interior Mesh Angular Velocity (wΩ*)

x-intersection: -6.391e-02

Interior Mesh
Exterior Mesh

-2.64e-04 x + 3.61e-06
2.63e-04 x + 3.73e-05

(d) Rotating Interior Circular Mesh using

BDF1/IEXT1

Figure 4.8: Velocity errors with respect to rotating mesh angular velocity. 14th-order
polynomials were used for solution approximations to ensure full spatial convergence
and a timestep of ∆t = 1×10−4 was used. Errors were collected at t = 0.1. Convection
velocity was set: u0 = 1 and v0 = 0.

values at their interface boundaries that are more accurate, consequently improving

the solution accuracy.

We see from Figures 4.7 and 4.8 that the rate at which errors increase is dependent

upon the order of the temporal scheme used. In general, the Courant number, ex-

pressed using the one-dimensional formulation for simplicity, in moving subdomains

can be expressed as C = ur∆t/∆x, where each of the values ur = |u− w|, w, and
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Figure 4.9: Velocity (V) and pressure (P) errors for square sliding interior mesh
tests, with prescribed sliding velocity w = 6.5 to the right. The spatial accuracy tests
were performed with ∆t = 1 × 10−4 (errors collected after 1000 timesteps), and the
temporal accuracy tests were performed with polynomial order of 17 (errors collected
at t = 0.1). Each case used BDF3 and IEXT3, with four iterations per timestep.
A reference line is displayed in the temporal accuracy plot for comparison to the
expected convergence rate. Convection velocity is the same as the convergence rate
tests discussed above (u0 = 1.0, v0 = 0.3).
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Figure 4.10: Velocity errors in the interior mesh with respect to relative velocity.
Simulations were performed with 14th-order polynomial approximations and ∆t =
1× 10−4. Second-order temporal scheme and IEXT2 were used with two iterations.
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∆x are taken at individual GL points. The value of the relative velocity ur will be

dominated by the mesh velocity, w, for large enough w values. Thus by changing ∆t

inversely proportionally to w maintains the value fo the Courant number, and the

errors then remain quite constant as illustrated in Figure 4.11. The same result is

accomplished by changing ∆t inversely proportionally to the convection velocity, u,

in a stationary mesh case, as illustrated in Figure 4.11.
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Figure 4.11: Velocity errors in the interior mesh with respect to relative velocity,
ur. Simulations were performed with 14th-order polynomial approximations with the
second-order temporal scheme and IEXT2 were used with two iterations. Simulations
represented by the solid line were all performed with ∆t = 1× 10−4, and the dashed
lines represent data from simulations where ∆t was varied inversely proportional to
the mesh velocity (a) or fluid convection velocity (b). Thus, for ur = 2, ∆t = 1×10−4

and for ur = 4, ∆t = 5× 10−5 when considering the dashed lines.
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4.2 Two-Dimensional Oscillating Cylinder

The fluid flow around moving cylinders has been a subject of great interest since

the early research of Magnus [143] in 1852, and since then, the topic of oscillating,

or vibrating, cylinders in cross-flow has been the focus of several experimental and

computational studies [144, 2, 145, 146, 147]. In the 1960’s, Koopmann [2] and others

performed several experiments regarding uniform flow past oscillating cylinders and

established conditions “for which the vortex wake frequency is controlled by the driv-

ing frequency of the cylinder”. Koopmann’s findings regarding ‘lock-in’ frequencies

have become a standard by which others have validated the use of new experimen-

tal and computational methods. In 1998, Blackburn et al. [1] published detailed

results regarding the forces acting on an oscillating cylinder in steady crossflow us-

ing simulations that utilized a spectral element code, similar to the current method,

although performed with a single mesh in a moving reference frame. This published

data established detailed characteristics of the flow which allows for comparison and

validation of the present work. The following data seeks to illustrate that the moving

overlapping mesh methodology accurately describes the fluid flow interacting with

two-dimensional moving solid bodies.

For the present oscillating cylinder simulations, the domain is assigned a uniform

free stream velocity U∗∞ at the left boundary with outflow conditions assigned on the

opposing side. Outflow conditions are defined, in non-dimensional form,

p n̂− 1

Re
∇u · n̂ = 0 on ∂ΩO, (4.2)

where n̂ is the normal unit vector and ∂ΩO is the outflow boundary. Here, all spatial

variables are non-dimensionalized with the cylinder diameter D∗, and velocity vari-

ables with the free-stream velocity U∗∞, with Re = U∗∞D
∗/ν∗. Symmetry boundary

conditions are imposed on the top and bottom of the domain. The horizontal velocity

93



of the cylinder is set to zero, while the vertical component of motion is governed by

the equation

y(t) = y0 + Asin(2πf0t), (4.3)

where A = y∗max/D
∗ (y∗max is the largest vertical displacement of the cylinder) repre-

sents the non-dimensional amplitude and f0 = f ∗0D
∗/U∗∞ represents the non-dimensional

frequency of oscillation. The cylinder is initially placed at (0,0) such that y0 = 0 in

(4.3), with the global domain spanning from x = −10 to 50 diameters, and y = −15

to 15 diameters. We also define the frequency ratio F = f ∗0 /f
∗
v where f ∗v is the vortex

shedding frequency of the fixed cylinder.

The global domain is decomposed into two overlapping subdomains, with the

exterior mesh (see Figure 4.12) containing a vacancy for cylinder movement, and the

interior mesh containing the 2D cylinder. During the simulations, the exterior mesh

remains stationary while the interior mesh is constrained to move with the equation

of oscillation given by (4.3). The interior mesh is constructed not to slide out of the

global domain or out of the vacancy during the simulations.

(a) Interior

Mesh

(b) Exterior Mesh

Figure 4.12: Geometry of the oscillating cylinder case, with element boundaries
shown
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4.2.1 Stationary Cylinder

For accurate comparison with published data, the Strouhal number, or vortex

shedding frequency, from flow around the stationary cylinder was first determined us-

ing our previously validated overlapping mesh methodology (for stationary meshes) [135].

Strouhal number is given as St ≡ f ∗vD
∗/U∗∞, or just fv with the current normalization.

At Reynolds number of 200, our simulations produced a Strouhal number of 0.1998

compared with the Strouhal number found in Udaykumar et al. [147] of 0.198 and

the value found in Williamson et al. [146] of 0.197. The mean drag of our simulation

was 1.372, while Udaykumar et al. [147] found a value of 1.38, both at Re = 200.

Table 4.1 compares the values from our overlapping mesh methodology for fixed

meshes, at Re = 500, with values published by Blackburn et al. [1] for the stationary

cylinder in uniform flow, also with Re = 500. The Strouhal number is denoted by

St, while Ĉl represents the peak coefficient of lift, Cd is the mean (time-averaged)

coefficient of drag, and Cpb is the mean base pressure coefficient calculated from the

pressures at the furthest upstream (p∗0) and downstream (p∗180) points on the cylinder

surface, Cpb = 1 + 2(p∗180 − p∗0)/ρ∗U∗2∞ . The drag and lift on a stationary cylinder

in a uniform cross-flow changes with time due to vortex shedding. After a sufficient

startup time, the solution reaches an asymptotic state, indicated by values that repeat

periodically. The present simulation reached its asymptotic state at t = t∗U∗∞/D
∗ ≈

100, although averages were taken over the interval 300 ≤ t ≤ 600.
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Blackburn et al. [1] Present Data

St 0.2280 0.2281

Ĉl 1.200 1.202

Cd 1.460 1.461

−Cpb 1.506 1.504

Table 4.1: Results for a stationary cylinder in uniform flow compared with data
presented in [1]. The present data used 7th order polynomial approximations. Second
order timestepping and IEXT2 were used with two iterations per timestep. Present
averages were taken over the interval 300 ≤ t ≤ 600. In the present simulation
overlapping meshes were used.
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4.2.2 Oscillating Cylinder

Figure 4.13 depicts the x-direction velocity contours of vortices shed from an

oscillating cylinder as they travel from the interior mesh across the interface boundary

to the exterior mesh. The overlap region contains two sets of contour lines, and visual

inspection shows good continuity between the values reported by the two meshes in

the overlap region.

Figure 4.13: Enlarged plot of x-direction velocity contours of oscillating cylinder
simulation at Re=500 with A=0.25 and F=1.0, at t = 100. The lightest lines represent
velocity of u∗/U∗∞ = −0.5 while the darkest lines represent u∗/U∗∞ = 1.5. Solution
approximations are calculated using 7th-order polynomials, with ∆t = 2.5 × 10−3,
second-order global timestepping scheme and IEXT2 with two iterations.

The results given in [1] include detailed information about the mean drag forces,

the peak lift forces, and the mean pressure differences on the oscillating cylinder,

which are compared in Table 4.2 for a frequency ratio of 1.0 and non-dimensional

amplitude 0.25, at Re = 500 for both sets of data (illustrated in Figure 4.13). The

present simulation reached its asymptotic state at t ≈ 75, and the averages were

taken over the time interval 250 ≤ t ≤ 550 The frequency of vortex shedding, the

forces and pressure on the cylinder, and other flow characteristics correlate well with

published data.
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Blackburn et al. Present Data

Ĉl 1.776 1.781

Cd 1.414 1.417

−Cpb 1.377 1.377

Table 4.2: Results for an oscillating cylinder with Re = 500, F = 1.0 and A = 0.25 in
uniform flow compared with results in [1]. Present simulations were performed with
7th-order polynomial approximations, using second-order timestepping and IEXT2
with two iterations per timestep, and the averages were taken over the interval 250 ≤
t ≤ 550.

As mentioned above, Koopmann [2] observed certain frequencies and amplitudes

of oscillation that enabled ‘lock-in,’ where the vortex shedding frequency is equal to

the oscillation frequency of the cylinder. Outside of this lock-in region, the vortex

shedding frequency converges to the fixed-cylinder vortex shedding frequency denoted

as Strouhal frequency [2, 147]. Lock-in (or non lock-in) behaviour of the vortex

shedding is a result of the relationship between the vortex formation near the surface

of the cylinder and the changing velocity and acceleration of the cylinder with respect

to the fluid. Differing lateral fluid velocities resulting from the different amplitudes

and frequencies of oscillation in each case cause portions of the forming vortices to

detach at different positions with respect to the cylinder’s cycle. An extensive analysis

of this phenomena is found in [145]. Figure 4.14 shows lines that represent the lock-in

region established by Koopmann [2], with data from our moving overlapping mesh

method showing which simulations exhibited this lock-in behavior and which didn’t,

both experiments [2] and simulations used a Reynolds number of 200. Simulations

were performed with a non-dimensional amplitude (A = y∗max/D
∗) of 0.1 and 0.2 with

various oscillation frequencies. The present data displays good correlation with the

experimental results reported in [2]. Present simulations reached their asymptotic

98



states at t ≈ 75 after which the vortex shedding frequency was monitored for ≥ 100

non-dimensional time units to determine if lock-in behavior was exhibited.
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Figure 4.14: ’Lock-In’ data compared with experimental data from Koopmann [2].
The region inside the solid lines represents Koopmann’s lock-in region, the squares
represent simulations performed using the moving overlapping mesh method. The
filled squares are those simulations that displayed lock-in, while the hollow squares
are those simulations that did not exhibit lock-in behavior. All simulations were per-
formed with 7th-order polynomial approximations, using ∆t = 2.5×10−3 with second-
order global temporal scheme and IEXT2 with two iterations per timestep.Re = 200
was used for both sets of data.

We conclude that data from the present moving overlapping mesh methodology

gives results for two dimensional moving bodies interacting with fluid flow that ac-

curately correlates with other experimental and computational data. The present

methodology gives the expected forces and pressure on the cylinder, as well as accurate

vortex shedding frequency, and the presented lock-in data matches the experimental

findings of Koopman [2].

Although relatively small amplitude regimes documented in this section poten-

tially could be computed with a singe deforming mesh, the current two-mesh method

can be applied to more extreme cases, such as the one shown in Figure 4.15 with very

large amplitude of oscillations, A=2.5, that would be difficult to handle with a single
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mesh due to extreme mesh distortion. This case, to the author’s knowledge, has not

been studied before, and data for comparison does not exist.

Figure 4.15: Plot of y-direction velocity in the global domain for a cylinder oscillat-
ing with A = 2.5, F = 1, and Re = 200, taken at t = 125. The darkest contour lines
represent v = U∞ and the lightest lines v = −U∞. The simulation used 7th-order
polynomial approximations, with ∆t = 2.5× 10−4 with second-order global temporal
scheme and IEXT2 with two iterations per timestep.
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4.3 Rotating Sphere

In this test case, benchmarking of performance of the developed moving overlap-

ping grid method in the presence of moving bodies is extended to a three-dimensional

situation. Thus, a problem is considered where an incoming uniform stream interacts

with a rotating sphere, as a suitable benchmark. The choice of this particular test

problem is, again, spurred by a large amount of previous experimental and computa-

tional studies, facilitating a comparison of results.

Some of the earliest research regarding the flow past a rotating sphere was per-

formed by Maccoll in 1928 [148], who experimentally measured drag and lift forces

on spheres spinning with various angular velocities. Since that time, several projects,

both experimental and computational, have been performed focusing on the subject

(see [149, 150, 151, 152, 3, 153, 4, 5]), providing a large collection of data for com-

parison. The current validation study performs simulations of a transversely rotating

sphere (the axis of rotation is perpendicular to the flow) seeing that a large majority

of published research has been done regarding a sphere rotating in this manner, as

opposed to streamwise rotation. The primary purpose of this test is to illustrate ac-

curate simulation of three-dimensional fluid flow influenced by solid bodies in motion.

As illustrated in Figure 4.16, the global computational domain is decomposed

into two subdomains. A spherical mesh is formed around the solid walled sphere,

which is positioned to cover a vacancy within a large outer mesh. The inner mesh

is created to ensure that at least nine grid points lie within the boundary layer for

all the simulations for a sufficient resolution (boundary layer stays laminar in all the

simulations for low Reynolds numbers considered here). Steady inflow velocity U∗∞

is prescribed at one end of the outer mesh and outflow boundary conditions are set
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at the other, while the steady rotation of the sphere is imposed by establishing the

inner mesh velocity with the ALE formulation.

(a) Sliced Inner

Mesh

(b) Sliced Outer Mesh

Figure 4.16: Mesh geometry of transversely rotating sphere simulation [Not scaled
relative to each other]. The subdomains displayed have sections removed for visual-
ization of the solid sphere and vacancy for the inner and outer meshes respectively.

Note that although the current set-up could have been accomplished through a

single stationary mesh by assigning non-zero, rotating Dirichlet velocity conditions at

a sphere boundary, as was done in most of the computational simulations of this prob-

lem cited above [3, 153, 4, 5], the goal here is to find a suitable and well documented

test case for validation of our method. As such, the range of Reynolds numbers and

angular velocities investigated corresponds with those of other computational studies

of rotating spheres [3, 4, 5], which contain detailed data for comparison that is not

found in much of the experimental studies.
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Results are presented for several different inner mesh angular velocities, using

Reynolds numbers (Re = D∗U∗∞/ν
∗) of 100, 250, and 300, which correspond with

those reported in a computational study of Giacobello et al. [5] concerning trans-

versely rotating spheres. These Reynolds numbers lie within three different regimes

for uniform flow around a stationary sphere, of which a detailed investigation and

description can be found in the work of Johnson and Patel [154]. The flow around a

stationary sphere at Re = 20−210 is axisymmetric and steady, while a steady transi-

tion regime appears as Reynolds numbers increase beyond 210 and the flow becomes

non-symmetric, until Re ≈ 270 where the flow becomes unsteady and vortex shedding

begins to occur. When the rotation is added to the sphere, the flow patterns change

depending on the angular velocity, see discussion below. Thus, vortex shedding is

observed for some of the rotating cases with Re = 250 as opposed to a stationar case.

Re = 100 Regime Re = 250 Regime Re = 300 Regime

Ω Ω Ω

0.0 Steady 0.0 Steady 0.0 Fully Unsteady

0.05 Steady 0.05 Transitional 0.05 Fully Unsteady

0.1 Steady 0.078 Fully Unsteady 0.1 Fully Unsteady

0.25 Steady 0.1 Fully Unsteady 0.25 Fully Unsteady

0.3 Steady 0.2 Fully Unsteady 0.3 Fully Unsteady

0.5 Steady 0.3 Transitional 0.5 Steady

0.6 Steady 0.5 Steady 0.6 Steady

0.8 Steady 0.6 Steady 0.8 Transitional

1.0 Steady 0.8 Steady 1.0 Transitional

1.0 Steady

Table 4.3: A tabular listing of regimes for each rotating sphere simulation performed
in the present study.
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The drag and lift coefficients, determined by forces on the sphere: CD =

F ∗D/(
1
8
ρ∗fU

∗2
∞πD

∗2) and CL = F ∗L/(
1
8
ρ∗fU

∗2
∞πD

∗2), where ρ∗f is the fluid density, were

used in comparison with results reported in [3, 4, 5] and can be seen in Figure 4.17

where non-dimensional angular velocity is given by Ω = Ω∗D∗/(2U∗∞). Specific viscous

and pressure contributions to the total force are reported for additional comparison.

As can be seen from the figure, the forces calculated using our moving overlapping

mesh method correlate well with the published results found in [3, 4, 5]. Note that

the prescribed rotation of the sphere in the simulations of Kurose and Komori [3] (or

the boundary conditions applied at the sphere surface) are different than the rotation

prescribed in the present study and in [4, 5] (see [5] for details), which renders the

results of Ref. [3] to be slightly different.

For two of the higher Reynolds numbers, Re = 250 and Re = 300, Giacobello et al.

[5] observed three different regimes depending on the angular velocity: steady regime

when the vortex shedding is not observed throughout a duration of the simulations;

transitional regime when the vortex shedding initially occurs and then dies out; and

fully unsteady regime, with the vortex shedding persisting until the end of the simu-

lations (the flow was always in a steady regime for Re = 100 for the tested angular

velocities). We noticed a similar behavior in our simulations, with corresponding

regimes for our cases listed in Table 4.3.

For the Reynolds numbers Re = 250 and Re = 300, the Strouhal numbers of

the vortex shedding were calculated for the tested angular velocities and compared

them with the data of [3, 4, 5] in Figure 4.18. Following Giacobello et al. [5],

for the transitional cases (for which the vortex shedding initially occurs and then

dies out), we present initial and not final vortex shedding frequency (which would

be zero). Zero frequency in this plot thus corresponds to steady cases. As can be

seen, a comparison of Strouhal numbers for different angular velocities and Reynolds
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(c) Drag Coefficient, Re=250
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(d) Lift Coefficient, Re=250

: Figure continued on next page

numbers (see Figure 4.18) also shows excellent correlation with the published data,

again, apart from a slight divergence from the results in [3], calculated with different

rotating conditions.
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(e) Drag Coefficient, Re=300
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Figure 4.17: Comparison of force coefficients at Re=100, 250, and 300. Closed sym-
bols represent present data, and open symbols represent data reported in previous
publications [3, 4, 5]. Closed upright triangles represent the viscous contribution,
closed squares represent the pressure contribution, and closed diamonds denote the
total force coefficient in the present data. Open diamonds, open inverted triangles,
and open circles represent data given for the total force coefficient in [5], [4], and [3] re-
spectively. Open squares denote the pressure contribution, and open upright triangles
the viscous contribution, as reported in [5]. Each present simulation was performed
using 5th-order polynomial approximations with ∆t = 5 × 10−3, second-order global
temporal scheme and IEXT2 with two iterations per timestep.

Visual comparison of trailing vortices between present results and those of Ref. [5]

is performed in Figure 4.19 for Re = 250 and 300 for unsteady and transitional regimes

(initial vortices). Vortices are visualized using the λ2-criteria described in [155] at an

iso-value of λ2 = −8 × 10−4. As can be seen, the observed vortical structures reveal

excellent resemblance with the figures reported in [5].
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Figure 4.18: Comparison of Strouhal numbers given by the present simulations and
data presented in [3, 4, 5]. All data at Re = 250 is given with dashed lines, while
all data at Re = 300 is given with solid lines. Symbols represent data as follows:
hollow diamonds - present data with Re=250, hollow squares - present data with
Re = 300, hollow upright triangles - Kurose and Komori [3] with Re = 300, hollow
inverted triangles - Niazmand and Renksizbulut [4] with Re = 250, filled inverted
triangles - Niazmand and Renksizbulut [4] with Re = 300, hollow circles - Giacobello
et al. [5] with Re = 250, filled circles - Giacobello et al. [5] with Re = 300. All
present simulations were performed with 5th-order polynomial approximations and
∆t = 5 × 10−3, using second order temporal scheme and IEXT2 with two iterations
per timestep.
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(a) Re=250, Ω = 0.2, t = 492.5. Unsteady Regime

(b) Re=300, Ω = 0.05, t = 350. Transitional Regime

: Figure continued on next page
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(c) Re=300, Ω = 0.3, t = 260. Unsteady Regime

Figure 4.19: Visual comparison of shed vortices as reported in [5] (top visualiza-
tion in each subfigure) with present results (bottom visualization in each subfigure).
Vortex iso-surfaces are presented at λ2 = −8× 10−4 using the identification method
in [155]. The present simulations were performed using 5th-order polynomial approx-
imations and ∆t = 5 × 10−3, with second order time-stepping scheme and IEXT2
with two iterations per timestep. Visualizations of the wake are displayed up to 16
diameters downstream.
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Chapter 5

COMPUTATIONAL TIMING AND SCALING

5.1 Stationary Overlapping Meshes

In this section, scalability tests are performed for the developed stationary and

moving overlapping grid methods. The previous test case of the turbulent pipe flow

simulations (discussed in Section 3.3) is utilized as a platform for the scalability stud-

ies. However, the refined computational meshes (see Figure 5.1) were constructed,

with higher element counts than in the DNS simulations described above (see label

of Figure 5.2) in order to enable testing on high processors counts (up to 1024). The

global problem contains a total of 51.2k elements (12.8k in interior mesh, 38.4k in

exterior mesh)), with the total number of grid points varied based upon the polyno-

mial order used for solution approximations. The simulations were performed with

Reynolds number of 5300 based on the pipe diameter. The refined outside mesh con-

sists of three times the number of elements and collocation points as the inside mesh.

This discrepancy in the number of elements allows for testing of two methods for

processor allocations: equal allocation (same number of processors for each domain,

irrespective of the relative mesh sizes), and proportional allocation (processors allo-

cated proportionally to the number of elements the mesh contains, namely, the outside

domain was assigned three times as many processors as the inside domain). The re-

sults of the scalability tests, performed on the SDSC Gordon and TACC Stampede

clusters, are shown in Figures 5.2 and 5.3 with a refined single mesh pipe simulation

for comparison. Figure 5.2 shows the total CPU time for each simulation, divided by

the number of time steps and the total number of elements contained in the simula-

110



(a) Interior Mesh

r
θ

z

(b) Exterior Mesh

Figure 5.1: Cross-section of grids for two mesh pipe flow simulations. The displayed
meshes extend 6 pipe diameters in the z-direction.

tion, versus the total number of allocated CPUs, and Figure 5.3 contains two plots,

the second of which shows a comparison of timing data with respect to the number of

gridpoints per core. Figure 5.4 breaks down the time spent per timestep in different

aspects of the stationary overlapping mesh coupling procedures. We see that the

scaling of the stationary overlapping mesh methodology nearly reaches ideal scaling

in each presented case. Line sections that appear to achieve better than ideal scaling

are a result of inconsistent communication speeds among the nodes assigned to the

jobs, for example, slower communication speeds among nodes assigned to a 128 core

test compared with a 256 core test with faster communication speeds among the as-

signed nodes will appear to have better than ideal scaling. Several simulations were

performed for each case, and averages of the timing data is presented. As expected,

scaling for proportional CPU allocations yielded a speedup over equal allocations in

each of the tested cases, due to more consistent load balancing. However, while the

number of elements assigned per core is a good indicator of the work load, there is

more to consider when seeking to attain optimal speeds. For instance, the external

mesh contains 4800 element faces requiring interpolation from values in the other sub-
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domain, while the interior mesh contains only 1600 such faces. In the proportional

scaling tests, the outside mesh is assigned three times the number of cores that are

assigned to the inside mesh, though during the interpolation step the inside mesh

must determine values for three times as many interface points. The fewer processors

assigned to the inside mesh have a much larger work load during the overlapping

mesh procedures, as is illustrated in the plots of Figure 5.4 by the greater amount

of time the inside mesh spends for overlapping mesh procedures. While the propor-

tional allocation is a good starting point for speed optimization of a problem, each

simulation must be uniquely tested for additional speed-up.
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Figure 5.2: Computational time vs number of CPUs for simulations performed on
the SDSC Gordon cluster with different polynomial orders of approximation (N).
Grids used for double mesh simulations contain a total of 51.2k elements (12.8k in in-
side mesh, 38.4k in outside mesh), giving ∼17.6M, 26.2M, and 37.3M total gridpoints
for 6th, 7th, and 8th order polynomial approximations respectively. The single mesh
simulation consists of ∼41k elements giving ∼21.0M gridpoints for 7th order polyno-
mial approximations. The ’E’ denotes that the simulations were performed with an
equal number of processors allocated to each mesh, while ’P’ designates simulations
where processors were assigned to each mesh proportional to the number of elements
it contains. The single mesh simulation is signified by an ’S’.
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Figure 5.3: Computational scaling data for simulations performed on the TACC
Stampede cluster with different polynomial orders of approximation (N), using sec-
ond order temporal schemes with two iterations. Grids used for double mesh simula-
tions contain a total of 51.2k elements (12.8k in inside mesh, 38.4k in outside mesh),
with single mesh simulations (S) also containing a total of 51.2k elements, giving
∼17.6M, 26.2M, and 37.3M total gridpoints for 6th, 7th, and 8th order polynomial
approximations respectively. Double mesh simulations used proportional (P) CPU
allocation.
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Figure 5.4: Stationary overlapping mesh timing data for simulations performed on
the TACC Stampede cluster. All tests were performed with 8th order polynomials,
using second order temporal schemes with two iterations using a proportional alloca-
tion of CPUs. The solid lines with filled circles denote the total computational time
per timestep. Open diamonds represent the time spent in overlapping mesh initial-
ization (performed only once, before the first timestep), open squares represent the
time/timestep used for interpolation in the first iteration, open circles represent the
time/timestep used for interpolation in the second iteration, open upright triangles
represent the time/timestep for temporal extrapolation, and open inverted triangles
represent the total overlapping mesh communication time spent per timestep. Plots
(a) and (c) present the timing data, while plots (b) and (d) present the overlapping
mesh communication time as a percentage of the total time per timestep.
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5.2 Moving Overlapping Meshes

Scaling and timing analyses were performed with identical pipe geometry (Fig-

ure 5.1) and simulation parameters used in the stationary overlapping mesh tests so

that a one-to-one comparison could be made with corresponding data. Tests were

performed on Stampede supercomputing resources in conjunction with a computa-

tional resources allocation through XSEDE. In the present moving mesh tests, the

interior mesh is constrained to rotate with a rotational velocity of Ω∗ ≡ ΩD/Ub = 1,

where Ub is the bulk flow rate of fluid in the pipe, which, as in the test case of con-

vecting eddies, represents a “virtual movement” and does not affect the flow. For all

tests in this section, each mesh is assigned a number of processors proportional to the

number of elements it contained as described in the previous section.

The scaling analyses (Figure 5.5) show near linear strong scaling for both station-

ary and moving overlapping simulations. The collapse of data is much better when

scaled with gridpoints per core using different polynomial orders, indicating robust

parallel performance.

Figure 5.6(a) shows a breakdown of the percentage of wall time per timestep

spent in components of the moving overlapping mesh code that deal with inter-mesh

communications. Notice that the percentage of wall time spent in the interpolation

and extrapolation steps is very small while a much more sizable percentage of wall

time per timestep is expended in the search step. When comparing the wall time

spent in specific components of the code (Figure 5.6(b)), we see that the time spent

in routines handling inter-mesh communications remains fairly constant regardless of

the number of cores used.

Figure 5.7 illustrates the percent change in wall time per timestep going from the

traditional single mesh solver to the moving overlapping mesh solver (of the same
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Figure 5.5: Scaling of overlapping mesh simulations using 6th, 7th, and 8th order
polynomial approximations. Meshes are identical for moving and stationary mesh
cases. The timestepping scheme BFD2 with IEXT2 and two iterations per timestep
was used for each simulation.

total element count), and from the stationary overlapping mesh solver to the moving

overlapping mesh solver. While still maintaining scalability of the global code, moving

overlapping mesh simulations understandably spend more wall time per timestep than

the other two methods due to greater amounts of work and additional communications

performed during each timestep.
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Figure 5.6: Time spent in different components of the moving overlapping mesh
methodology. Filled circles represent total time per timestep, filled diamonds - time
spent in all components handling inter-mesh communication, filled inverted triangles
- the search step, filled upright triangles - extrapolation, hollow squares - 1st interpo-
lation step, filled squares - 2nd interpolation step. Simulations were performed with
8th order polynomials using BDF2 and IEXT2 with ∆t = 1× 10−3.
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mesh. For computational parameters see Figure 5.6.

117



Chapter 6

DYNAMIC STALL

6.1 Problem Introduction

A greater understanding of the aerodynamic forces acting on airfoils with a wide

variety of flow conditions is imperative in creating flexible models to improve the

fidelity of large scale aerodynamic simulations. While many aspects of airfoil aerody-

namics have been examined in depth, several facets have traditionally been difficult

to measure or simulate. The flow around pitching airfoils is one field of research that

has been studied for several decades, although much is unknown regarding the nature

of the flow when unsteady flow conditions are present. The flow around pitching air-

foils, especially as it relates to dynamic stall, has ramifications for the efficiency and

design of helicopter rotors [156, 157], wind turbines [158], other rotating machinery

such as compressors[159], as well as extensions to the maneuverability of fixed wing

aircraft [160, 161].

The general characteristics of pitching airfoils and mechanisms of dynamic stall are

well understood in the presence of steady inflow conditions, and several experimental

and computational projects have examined this topic. A dynamically pitching-upward

airfoil with steady inflow will generally maintain lift up to an angle beyond its static

stall angle where dynamic stall occurs. As an airfoil pitches upward, a large vortex,

referred to as a dynamic stall vortex (DSV), forms at the leading edge of an upward

pitching airfoil, creating a low pressure region, which then travels along the suction

side of the airfoil toward the trailing edge. The lower pressure on the suction side

of the airfoil increases the lift, until the vortex nears the trailing edge where it sepa-
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rates and a dramatic decrease in lift, dynamic stall, ensues. Dynamic stall research

typically focuses on the effects of altering pitching frequency, pitching amplitude,

Reynolds number, and Mach number, as well as possible ways to gain greater control

of dynamic stall [162, 163, 164, 165, 166, 167]. However, unsteady inflow conditions

can also play a crucial role in the aerodynamics of pitching and plunging airfoils.

Blades on wind turbines operating in yawed or unsteady flow conditions, for instance,

experience inflow velocity that is periodic with respect to azimuthal angle [168, 169].

Turbulence, gusts, and vortices caused by upstream structures, objects, or atmo-

spheric conditions create unsteady inflow for helicopter rotors, wind turbine blades,

and wings on maneuvering aircraft. In order to create a more complete realization

of dynamic stall phenomena, the various velocity fluctuations commonly experienced

by pitching airfoils in realistic situations need to be included in future research and

simulations.

At the present time, some experimental research has been performed to examine

the effects of unsteady inflow on pitching airfoils, while a much smaller amount of

computational work has been done in this area. In the 1970’s Pierce et al. [157] and

Kottapalli et al. [170] performed experiments on pitching helicopter blades using a

gust generator to produce periodic inflow conditions. Their results show that the

varying freestream velocity affects the pitching moment and drag experienced by

the blade, and that the magnitudes of the forces and moment change depending

on the phase difference between the airfoil oscillation and inflow velocity oscillation.

Similar experimental investigations have been performed more recently by Shi and

Ming on a pitching delta wing, for improvements in the design of super-maneuverable

aircraft [161, 160].

Experimental investigations of turbulence effects on pitching airfoils have been

performed by Conger et al. [171], Laneville et al. [172], and Chen et al. [173]. In the
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study by Chen et al., a turbulent wake was generated upstream of a ramping airfoil by

placing a small cylinder in the flow field. The experiment had a chord based Reynolds

number of 80,000. The effects of varied cylinder position with respect to the airfoil

were studied to compare the aerodynamic forces and moments with those experienced

by a pitching airfoil in steady freestream. Their work showed that dynamic stall events

occur at larger angles of attack in the presence of a turbulent wake when compared to

steady inflow cases, although different vertical positions of the cylinder had differing

effects on the aerodynamic forces.

Little computational research has been performed regarding pitching airfoils with

unsteady freestream flow due to the difficulty of traditional computational fluid dy-

namics (CFD) solvers in handling moving geometries with non-uniform inflow condi-

tions, including the computational cost of such simulations. Recent research published

by Gharali et al. [6, 168] investigates two-dimensional pitching airfoils in the presence

of periodic inflow velocity using finite volume methods. However, no known compu-

tational simulations of pitching airfoils have been performed with turbulent inflow

conditions, yet information from such simulations would be pivotal in improving the

fidelity of large scale models of systems with realistic flow conditions. These enhanced

models lead to improvements in the physical design of aircraft and wind turbines.

The moving overlapping mesh methodology allows us to decompose the global

computational domain into a moving mesh and a stationary mesh. By enabling one

part of the mesh to move, consistent resolution near the solid boundary of a mov-

ing object is easily maintained. A stationary background mesh allows for unsteady

boundary conditions to be straightforwardly implemented in the lab reference frame,

and for stationary objects to be placed elsewhere in the flow field.

This chapter simulates an extruded NACA0012 airfoil, with prescribed oscillatory

pitching motion, and the effects of the airfoil’s interactions with a turbulent wake
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generated by a small stationary cylinder that disturbs the upstream flow, similar

to experiments performed by Chen and Choa [173], are investigated. Aerodynamic

forces and the pressure values at the airfoil surface are compared among simulations

without the upstream disturbance, and simulations with the disturbance originating

at different positions within the upstream flow field. Initial pitching airfoil tests are

performed in two- and three-dimensions and results are compared with published find-

ings. Three-dimensional simulations are then performed with an upstream cylinder

generating a turbulent wake that is incident upon an oscillating airfoil. The effects of

the upstream disturbances are investigated with respect to the oscillating airfoil in a

steady flow field, including a comparison of Power Spectral Density functions derived

from the aerodynamic coefficients among all cases.

6.2 Validation and Comparison of 2D and 3D Simulations

This section will present DNS of two and three-dimensional pitching airfoil prob-

lems that have been performed both for validation and for comparison with each

other and with published data. In all present cases the global computational domain

is decomposed into two overlapping meshes. While unique mesh geometries are con-

structed for each simulation, the interior mesh, in each case, is constructed around

a NACA0012 airfoil, following the available data for comparison, and is constrained

to move with pitching motion. The background mesh is stationary and contains a

vacancy which is covered by the interior mesh. Three-dimensional meshes are gen-

erated by extruding two-dimensional meshes, and all 3D domains have a spanwise

width based on the airfoil chord length, s/c = 0.2. A two-dimensional cross-section

of the meshes used in sections 6.2.1 and 6.2.2 is illustrated in Figure 6.1
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Figure 6.1: A cross section of the global computational domain for steady inflow
simulations described in Sections 6.2.1 and 6.2.2, showing element boundaries of the
moving airfoil mesh within the stationary background mesh.

In all future problems the lift, drag, and pitching moment coefficients are given

by

CL =
L

1
2
ρU2
∞S

(6.1)

CD =
D

1
2
ρU2
∞S

(6.2)

CM =
M

1
2
ρU2
∞Sc

, (6.3)

where L is the lift force, D is the drag force, M is the pitching moment (or torque),

ρ is density, U∞ is the inflow velocity, and S is the planform area, and c is the chord

length.

6.2.1 Pitching-up Airfoil, Re=80,000

The first set of tests simulate the experimental problem described in [173] by

Chen and Choa with undisturbed inflow. A NACA0012 airfoil is pitched with constant

angular velocity from 0◦ to 30◦ with a reduced pitchrate of k ≡ Ωc/2U∞ = 0.01, where

Ω is the angular velocity and U∞ is the inflow velocity, and chord based Reynolds
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number, Re = 80, 000. 7th-order polynomial approximations are used for spatial

discretization within each element. Variable timestepping is used with the maximum

timestep ∆tmax = 2× 10−4, where the nondimensional time t = t∗U∗∞/c
∗, though the

average timestep in the present simulation is ∆tmean ≈ 4× 10−5. The timestep size is

altered when the Courant number (discussed in Section 4.1.4) departs from prescribed

upper and lower bound limits, which are chosen for stability and accuracy, but also

for efficient use of computational resources. Second order time integration (BDF2)

and IEXT2 at interfaces are used with two iterations per timestep. Grid spacings

are presented in Table 6.1. Steady inflow is prescribed on the left boundary with

∆sU/c ∆sL/c ∆n/c ∆zmin/c ∆zmax/c

5.7× 10−3 8.1× 10−3 3.4× 10−5 1.3× 10−3 4.2× 10−3

Table 6.1: Airfoil grid parameters for simulations in Sections 6.2.1 and 6.2.2: max-
imum GL point spacing on the upper (∆sU/c) and lower (∆sU/c) surfaces of the
airfoil, normal spacing on the upper airfoil surface at the mid-chord location (∆n/c),
and the minimum (∆zmin/c) and maximum (∆zmax/c) spanwise GL point spacing.
(The spanwise spacing is irrelevant in 2D simulations)

outflow conditions (3.5) at the right boundary. The top and bottom of the domain

have symmetry boundary conditions, and in 3-D simulations spanwise boundaries are

periodic. The 3-D mesh containing the airfoil is composed of ∼ 32k elements (∼ 17M

gridpoints with 7th-order polynomials) and the stationary background mesh contains

∼ 23k elements (∼ 12M gridpoints). Simulation time is normalized with the pitch-up

period, T (t/T ), thus at t = 1 the angle of attack of the airfoil is α = 30◦, and for

t/T > 1 the airfoil held at α = 30◦.

A comparison of the lift coefficients resulting from 2D and 3D simulations with the

experimental data is shown in Figure 6.2. We see that the 2D and 3D computational

results match each other quite well for the duration of the simulation, and while lift

coefficients match the experimental data during the first portion of the pitch-up cycle,
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the simulation results later diverge. Due to the computational cost of the 3D test,

only one cycle was performed, while Chen and Choa [173] averaged the results over

four separate pitch-up cycles, leading to smoother results. Additionally, Chen and

Choa [173] report a maximum of 25% tunnel blockage in their experiments, for which

they state no corrections were made, which is likely another cause of the discrepancy

between present simulation data and the experiments.
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Figure 6.2: Lift coefficient with respect to time of NACA0012 airfoil pitching at
reduced pitch rate k=0.01. The red curve represent present 3D data, the blue curve
represents present 2D data, and green ’x’ represent experimental data of Chen et
al. [173]. The simulation time is normalized with respect to the pitch-up period
(t/T ). Thus the airfoil reaches angle of attack of 30◦at t = 26.2, or t/T = 1, and is
held stationary for the remainder of the simulation.

Figure 6.3 illustrates the vorticity of the flow just after the Dynamic Stall Vortex

detaches from the suction surface of the airfoil. A comparison with the lift coefficient

at the same normalized time shows a dramatic decrease in lift.
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Figure 6.3: 3D spanwise vorticity plot at t = 18.45 or t/T ≈ 0.7. The plot shows
only the interior mesh which includes the airfoil.

6.2.2 2D Oscillating Airfoil at Re = 135, 000

In this test case, a two-dimensional pitching airfoil simulation is performed and

compared with the experimental lift results of Lee and Gerontakos [174]. Note that the

meshes used for this test case do not achieve sufficient resolution for a fully resolved

DNS of the flow with Re = 135, 000, yet a good comparison of the aerodynamic forces

may be expected (See, for example, [175] for a discussion of grid resolution effects in

pitching airfoil simulations).

A NACA0012 airfoil is pitched about its quarter-chord axis where the oscillatory

angle of attack is prescribed as

α = αmean + αampsin (2πft) , (6.4)
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where, in this case, the mean angle of attack αmean = 10◦, the amplitude of oscillation

αamp = 15◦, and the reduced frequency k = 0.1 where

k ≡ πfc/U∞. (6.5)

Grid resolution near the airfoil is presented in Table 6.1. 7th-order polynomials

are used for spatial discretization and dynamic timestepping (maximum timestep

∆t = 1× 10−4) with BDF2/IEXT2 using two iterations is utilized.

Figure 6.4 gives the lift coefficient values resulting from the three full cycles of

the present 2D computation compared with the experimental results in [174]. While

general values correspond well, we see that the simulation data contains moderate

fluctuations during upstroke, and large fluctuations during downstroke, when com-

pared with the experimental data. This is due mainly to the large ensemble average

performed on the data in [174], which was averaged over 100 pitching cycles. The

larger fluctuations encountered in the lift force during the downstroke phase, in a

single cycle, is consistent with published data from other 2D oscillating airfoil sim-

ulations [176, 6] (see also Figure 6.5 which was originally published in [6]). The lift

coefficients ensemble averaged over the three cycles presented in Figure 6.4, are pre-

sented in Figure 6.6 and we see that since the maximum lift peaks in the 2D data

do not occur at exactly the same angles of attack for each cycle, averaging such few

cycles has the effect of rounding out the maximum lift peaks.

The published two-dimensional computational results, displayed in Figure 6.5,

show that the sharp oscillations in the coefficient values are typical of two dimensional

data.
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Figure 6.4: Lift coefficients from present 2D tests compared with the experimental
data of Lee and Gerontakos (Black curve) [174].

6.2.3 2D and 3D Oscillating Airfoil at Re = 44, 000

This section compares two and three dimensional data using probelm setup pa-

rameters that will also be used to determine the influence of upstream disturbances

in future sections. While some 3D simulation results are presented here, a more

comprehensive presentation of the data is given in the next section for an in-depth

comparison with disturbed freestream flow cases.

A new set of meshes were constructed (Figure 6.7) with finer resolution upstream

of the airfoil to ensure that the statistics of the turbulent wake are properly captured.
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Figure 6.5: Lift coefficient values, as published in [6]. Black squares represent
the experimental data in [174], and each of the colored lines represent data from
2D Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations found in: red
curve [6], blue curve [176], green curve [177].
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Figure 6.6: Mean lift coefficient for 2D tests phase averaged over the three cycles
presented in Figure 6.4, compared with the experimental data of Lee and Gerontakos
(Black curve) [174].

The meshes were expanded in the normal and streamwise directions to ensure that

boundary condition effects do not negatively alter the flow approximation. Spatial

discretization is performed with 6th-order polynomials, and dynamic timestepping is

used with ∆tmax = 2×10−4 and BDF2/IEXT2 with two iterations per timestep. Grid

spacings at the airfoil surface are given in Table 6.2.

128



Figure 6.7: A cross section of the global computational domain for steady inflow
simulations described in Section 6.2.3, showing element boundaries of the moving
airfoil mesh within the stationary background mesh.

∆sU/c ∆sL/c ∆n/c ∆zmin/c ∆zmax/c

6.4× 10−3 9.0× 10−3 4.5× 10−5 1.3× 10−3 4.2× 10−3

Table 6.2: Airfoil grid parameters for simulations in Section 6.2.3. Refer to the
caption of Table 6.1 for description of column headings.

The prescribed angle of attack for the NACA0012 airfoil pitching about its quarter-

chord axis is prescribed as

α = 15.3◦ − 9.7◦cos (2πft) , (6.6)

where the reduced frequency (6.5) is k = 0.16.

Here, and in Section 6.3, simulation results are compared with the experimental

results of Panda and Zaman [7] for the validation, who used probes in the wake of

an oscillating airfoil to collect velocity and vorticity data of the flow in the wake.

The unsteady lift force, reported in [7], is divided into a non-circulatory component

and a circulatory component [178], where Panda and Zaman used the experimental
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wake data to approximate only the circulatory component of the lift force acting on

the airfoil. They argued that, while the addition of the non-circulatory component,

which they express as

Cl,NC(t) = παa

(
kcos(2πft)− 1

2
k2sin(2πft)

)
, (6.7)

where αa is the amplitude of the angle of attack oscillation, would change the values of

the total lift force, the difference is fairly minor, and even negligible at small reduced

frequencies [7]. This is illustrated in Figure 6.8 which shows circulatory lift data

measured in [7] at k = 0.16 and the calculated non-circulatory component of lift. In

the present simulations, the total lift coefficient values are compared with only the

circulatory component of lift that is published in [7].

Figure 6.8: The measured circulatory component of lift for an airfoil oscillating at
k=0.16 (solid line), and the calculated non-circulatory lift component (dotted line)
as presented in [7]

Three methods are described in [7] for approximating the circulatory component

of lift by integration of the phase averaged measured vorticity data. The authors

state that an unknown steady contribution to the lift approximation exists due to

vortices shed before the start of data collection, and thus the lift is assumed to be

zero at the minimum angle of attack in their lift coefficient plots. In the plots below,

data from [7] is shifted to give a lift value that matches present simulations at the
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minimum angle of attack. The experimental data collected in the wake was phase

averaged over 80 cycles [7].

In 2D simulations the average lift coefficient at 5.6◦ is CL|α=5.6◦ ≈ 0.5, thus the

lift coefficient values approximated and reported in [7] are shifted by a constant value

of 0.5 in Figure 6.9. We again see that present lift approximations during upstroke

correlate quite well with the experimental lift approximations of [7], though with

more fluctuations, while the downstroke values do not match as well. The average

of the last three cycles is displayed in Figure 6.9 (d), and the fluctuations are not

as strong, though the downstroke data is still quite different from the experimental

approximations.

Figure 6.10 presents the lift coefficient values for 3D simulations compared with

the experimental approximations [7]. Performing phase averages for simulations over

a large number of cycles, as was done for the experimental data, is not feasible consid-

ering the computational resources it would require, thus the instantaneous simulation

data is compared with the phase averaged experimental approximations. The 3D

simulation data correlates better with the experimental data than the 2D simulation

data, especially in the downstroke phase. We see that while the general shapes of

the curves are the same, the simulation data reports higher lift values than the ex-

perimental approximation, and though lift values during downstroke do not exactly

follow the experimental approximations, the same features are present, namely a local

minimum near α = 25◦ followed by an increase in lift, then another major stall event.

Following the major stall event during the downstroke, the lift values oscillate, in

both simulation and experimental data, until the airfoil reaches 5.6◦, when it begins

the next cycle. It is expected that averaging 3D simulation data over many cycles

would produce better corelation with the experimental results.
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Figure 6.9: Lift coefficients from present 2D tests compared with approximations
derived from experimental wake surveys by Panda and Zaman [7]. The green, blue,
and magenta lines represent the circulatory component of the lift coefficient approxi-
mated from experimental wake data, which was phase averaged over 80 cycles, using
methods 1, 2, and 3, respectively as published in [7].

A comparison of 2D and 3D simulations (Figure 6.11) shows that both simulations

report similar maximum and minimum lift coefficient values, and display the same

general features, though occurring at slightly different times. The main difference

between the two sets of data is the much more dominant and sharp fluctuations

seen in the two-dimensional values. Greater details will be given in the next section
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Figure 6.10: Lift coefficients from present 3D tests compared with approximations
derived from experimental wake surveys by Panda and Zaman [7]. See Figure 6.9
caption for description of curves representing experimental approximations.
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regarding the 3D case for comparison with disturbed flow cases.
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6.3 Influence of Upstream Disturbances

6.3.1 Problem Description and Setup

The present project simulates a NACA0012 airfoil with oscillatory pitching motion

and chord based Reynolds number Rec = 44, 000. Its interactions with a turbulent

wake generated by a small stationary cylinder, with diameter based Reynolds num-

ber ReD = 3900, that disturbs the upstream flow are investigated. Three cases are

investigated and compared as presented in Table 6.3. Case I corresponds to steady

inflow (without a cylinder wake) which will serve as the baseline case and provide

opportunities for validation with the previous experimental results [7]. Cases II and

III represent two different scenarios for investigating the effects of upstream distur-

bances on the pitching airfoil, featuring different vertical positioning of the upstream

cylinder with respect to the airfoil. In Case II, the cylinder is positioned at the same

level as the airfoil pitching axis, and in Case III the cylinder’s position is shifted

vertically down. Thus, in Case II, disturbances impact directly on the leading edge

of the airfoil for most of the pitching cycle, and in Case III, the effect of disturbances

is mostly confined to the pressure side of the airfoil. Case II can be categorized as a

stronger disturbance with respect to a steady inflow as compared to Case III.

Two meshes are used in the simulations: an inner airfoil mesh prescribed to move

with the airfoil pitching motion, and an outer background stationary mesh, that either

contains or does not contain a fixed solid cylinder inside. Overlapping meshes used

to perform the simulations of Cases I, II and III are shown in Figure 6.12.

In all three cases, the global domain has a streamwise, vertical and spanwise

lengths of Lx/c = 10, Ly/c = 6 and Lz/c = 0.2, respectively, where c is the airfoil

chord length. The inner airfoil mesh is the same for all the cases, with grid spacings at

the airfoil surface given in Table 6.4, and contains ∼ 54k elements (∼19M gridpoints).
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For the disturbed airfoil inflow cases, an outer background mesh contains an upstream

cylinder with the diameter of D ≈ c/11.25 triggering the disturbances. The horizontal

distance from the center of the cylinder to the pitching axis of the airfoil located at the

quarter-chord position is Lx = 1.2c, or, in terms of cylinder diameters, Lx ≈ 13.5D.

In Case II, the center of the upstream cylinder is on the same horizontal plane as the

quarter-chord axis of the airfoil, and in Case III the cylinder is shifted down by 0.15c,

or 1.6875D. The background mesh contains ∼16k elements (∼3.4M gridpoints) for

Case I and ∼21k elements (∼4.5M gridpoints) for Cases II and III.

Dynamic timestepping procedure was developed for the moving multidomain simu-

lations to ensure that sufficient temporal resolution is achieved while allowing efficient

use of computational resources. Our dynamic timestepping method takes the mesh

motion into account when calculating the Courant number for ALE simulations:

CALE = max
i
|Cxi,ALE + Cyi,ALE + Czi,ALE| (6.8)

where i enumerates all GL collocation points in the domain. The Courant number

for each coordinate direction is calculated

Cxi,ALE =
ui,rel ·∆t

∆xi
(6.9)

and the relative velocity ui,rel is calculated using the corresponding fluid velocity

(ui) and mesh velocity (ui,mesh) components at a gridpoint i, with ∆xi being the

characteristic stencil size in the corresponding direction,

ui,rel = |ui − ui,mesh|. (6.10)

Since the simulations are comprised of two subdomains, the maximum Courant num-

ber between the subdomains is determined and communicated at each timestep.

When the maximum Courant number goes above or below certain limits, the timestep
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is modified to keep the Courant number within the bounds, to yield computational

efficiency while providing stability. This procedure ensures that both subdomains

time-advance with the same timestep size.

Pitching airfoil simulations are performed using 6th-order polynomial approxima-

tions for spatial discretization within each element and dynamic timestepping with a

maximum timestep of ∆tmaxU∞/c = 2 × 10−4. The average timestep in the simula-

tions was approximately ∆tavgU∞/c ≈ 5 × 10−5. Simulations use second order time

integration with IEXT2 at interface boundaries and two intergrid iterations per time

step. For all the cases I, II and III, the simulations were run for four airfoil oscillation

cycles and took about 700 hours to complete on 1000 processors on SDSC Comet

cluster.

The NACA0012 airfoil was constrained to move with an oscillatory pitching mo-

tion about its quarter-chord axis prescribed as

α = αm − αa cos (2πft) , (6.11)

where α is the angle of attack, αm = 15.3◦ is the mean value, αa = 9.7◦ is the oscil-

lation amplitude, and the frequency, f , is expressed in terms of the nondimensional

reduced frequency, k ≡ πfc/U∞ = 0.16. Note that the airfoil oscillates between 5.6◦

and 25.0◦ angles of attack in the current motion.

For the global (outer) domain, steady uniform velocity U∞ is prescribed on the far

left boundary, outflow conditions on the right boundary, and symmetry conditions on

the top and bottom boundaries. Periodic conditions are prescribed on the spanwise

boundaries. The left, top and bottom boundaries of the inner (airfoil) mesh use inter-

face conditions to pass values between subdomains, as described in the next section,

while the right boundary is prescribed outflow conditions for a smooth propagation
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of shed vortices across the interface. Moving wall boundary conditions with fluid

velocity matching the airfoil velocity are prescribed at the surface of the airfoil.

Case Position of Cylinder (x
c
,y
c
) Position of Airfoil Quarter-Chord (x

c
,y
c
)

I No Cylinder (1.2, 0)

II (0, 0) (1.2, 0)

III (0,-0.15) (1.2, 0)

Table 6.3: Pitching airfoil cases (c is the airfoil chord-length).

∆sU/c ∆sL/c ∆n/c ∆zmin/c ∆zmax/c

6.4× 10−3 9.0× 10−3 4.5× 10−5 1.3× 10−3 4.2× 10−3

Table 6.4: Airfoil grid parameters for present pitching airfoil simulations: maximum
streamwise collocation point spacing on the upper (∆sU/c) and lower (∆sL/c) surfaces
of the airfoil, normal spacing on the upper airfoil surface at the mid-chord location
(∆n/c), and the minimum (∆zmin/c) and maximum (∆zmax/c) spanwise collocation
point spacing.

6.3.2 Oscillating Airfoil with Steady Inflow

In this section, the results of Case I are discussed, which are used as a baseline

for comparison with the two unsteady airfoil inflow cases. While some results for this

case were presented in Section 6.2.3, more comprehensive results are presented here

for comparison with Cases II and III.

Validation

Simulation results are compared with the experimental results of Panda and Zaman [7]

as discussed in Section 6.2.3. In the plots below, data from [7] is shifted (refer to

Section 6.2.3) to give a lift value that matches the average lift in present simulations

at the minimum angle of attack.
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(a) Steady airfoil inflow (Case I) (b) Disturbed airfoil inflow with an upstream

cylinder (Case II)

(c) Disturbed airfoil inflow with an upstream

cylinder shifted vertically (Case III)

Figure 6.12: Mesh configurations used in the current simulations of an oscillating
airfoil. Only element boundaries are shown.

Figure 6.13 presents the lift coefficient values for present simulations compared

with the experimental approximations [7]. The simulation was performed for a total

of four cycles, while only the last three are shown in Figure 6.13. Phase averaging the

simulation data over 80 cycles, as was done for the experimental data, is not feasi-

ble considering the computational resources it would require, thus the instantaneous

simulation data is compared with the phase averaged experimental approximations

that explains the prevalence of spikes in the simulation cases. We see that while

the general shapes of the curves are the same, the present simulation data reports

higher lift values than the experimental approximation, and though lift values during
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Figure 6.13: Lift coefficients from present tests compared with approximations de-
rived from experimental wake surveys by Panda and Zaman [7]. The red solid lines
represent present simulation data for Case I, while the magenta (dashed), cyan (dot-
ted), and gray(dash dot) lines represent the circulatory component of the lift coeffi-
cient approximated from experimental wake data, which was phase averaged over 80
cycles, using methods 1, 2, and 3, respectively as published in Panda and Zaman [7].

downstroke (the lower curves) do not exactly follow the experimental approximations,

the same features are present, namely a local minimum near the maximum angle of

attack α = 25◦ followed by an increase in lift at the downstroke, then another stall

event. Following the major stall event during the downstroke, the lift values oscillate,

in both simulation and experimental data, until the airfoil reaches its minimum angle

of attack, α = 5.6◦, after which it begins the next cycle. It is expected that aver-

aging simulation data over many cycles would produce smoother curves and better

correlation with the experimental results.

Physics of Dynamic Stall

Here, the physics of dynamic stall is investigated further, by performing flow vi-

sualizations and correlating the vortex dynamics observed in the flowfield with the

pressure coefficient values, at different angles of attack, to be later compared with the

disturbed airfoil inflow cases.

Visualizations of the the spanwise averaged streamwise velocity (Figure 6.14) and

spanwise vorticity (Figure 6.15) at different angles of attack show the clockwise ro-
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10.45°u

15.3°u

20.15°u

25.0°(max)

20.15°d

15.3°d

10.45°d

Figure 6.14: Zoomed-in spanwise averaged streamwise velocity plots during the
third cycle, at angles of attack posted in bottom left corner of each snapshot. The
subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest blue represents streamwise
velocity less than u/U∞ = −1, and darkest red greater than u/U∞ = 3

tating dynamic stall vortex (DSV) forming and traveling toward the trailing edge as

the airfoil pitches upward. In the α = 15.3◦u frame we find evidence of the boundary

layer beginning to separate at the leading edge of the airfoil, which leads to the for-

mation of a DSV seen in the α = 15.3◦u frame. As the DSV nears the trailing edge,

a counter-clockwise trailing edge vortex (TEV) forms, which appears in the α = 25◦

frame. When the airfoil begins its downstroke, another clockwise vortex forms at the

leading edge, which is smaller than the original DSV, and travels along the upper

surface of the airfoil until it detaches, creating a secondary TEV and causing another

stall event.
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Figure 6.15: Zoomed-in spanwise averaged spanwise vorticity plots during the third
cycle, at angles of attack posted in bottom left corner of each plot. The subscript
’u’ denotes upstroke and ’d’ downstroke. Darkest blue represents spanwise vorticity
of less than ωzU∞/c = −40 (corresponding with clockwise fluid motion), and darkest
red greater than ωzU∞/c = 40 (corresponding with counter-clockwise fluid motion).

By comparing the pressure coefficient values along the upper surface of the air-

foil (Figure 6.16) with the streamwise velocity (Figure 6.14) and spanwise vorticity

(Figure 6.15) plots we see that the position of low pressure valleys correlate with the

location of vortex centers. Evidence of the forming DSV is found in the α = 10.45◦u

curve by the low pressure at the leading edge of the airfoil. We see that the low pres-

sure region becomes stronger and propagates toward the trailing edge of the airfoil in

the α = 15.3◦u and α = 20.15◦u curves. When the airfoil reaches its maximum angle of

attack, the DSV and subsequent TEV have already detached. The α = 20.15◦d curve

shows evidence of a TEV resulting from the second major vortex system. After the

second major vortex detaches, the pressure values along the suction side of the airfoil
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Figure 6.16: Pressure coefficient values along the suction surface of the airfoil at
posted angles of attack during the third pitching cycle. The pressure coefficient values
are averaged in the spanwise direction. The subscript ’u’ denotes upstroke and ’d’
downstroke.

begin to normalize to a relatively constant value as the boundary layer re-attaches at

lower angles of attack.

Figure 6.17: Spanwise averaged spanwise vorticity plot when the center of the DSV
during the fourth cycle reaches x/c = 1.95 (t U∞/c = 27.9, α = 23.83ou) for Case I.
The circle outlines the volume over which the integral of vorticity is taken.

An indication of the strength of the DSV is obtained by performing a volume

average of the spanwise vorticity over a cylindrical volume centered at the vortex
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center:

Γ ≡

∣∣∣∫Vcyl ωz dVcyl

∣∣∣
Vcyl

, (6.12)

where Vcyl is the volume of the cylinder being considered, and the non-dimensional

spanwise vorticity, ωz ≡ ω∗z U
∗
∞/c

∗. The center of the vortex is located by comparing

the spanwise vorticity, streamwise velocity, and normal velocity components in the

spanwise averaged fields. Ideally, a vertical line going through center of a vortex would

show normal (vertical) velocities of zero, streamwise velocities that change sign at the

center of the vortex which would correspond with a minimum or maximum spanwise

vorticity. However, since the flow is turbulent, the best case was determined by careful

examination. The strength of the DSV (Γ) is determined as the center reaches the

x/c = 1.95 position in the flow field, and integration is performed over a cylindrical

volume with the radius of r/c = 0.25, as illustrated in Figure 6.17, and the width,

lz/c = 0.2, which corresponds to the span of the domain. Table 6.5 presents properties

of the DSV during the third and fourth pitching cycles.

Third Cycle Fourth Cycle

Vortex Location (y
c
) 0.240 0.208

Time (t U∞/c) 47.8 67.1

Angle of Attack (α) 24.19ou 23.72ou

Vortex Strength (Γ) 10.271 9.899

Table 6.5: Properties of the DSV during the third and fourth pitching cycles of Case
I as the center of the vortex reaches the x/c = 1.95 position in the flow field.
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6.3.3 Cylinder Wake Validation

Before the results of the oscillating airfoil subject to impingement of a turbulent

wake are presented, the wake turbulence data generated by an upstream solid circular

cylinder will be validateed, in the absence of the airfoil. Direct Numerical Simulations

of a 3D circular cylinder is performed with diameter based Reynolds number ReD =

3900, the same Reynolds number as in the coupled cylinder-airfoil simulation cases

described below. The validation is done to ensure that good turbulent statistics are

achieved for oscillating airfoil cases which are to be performed in the presence of a

turbulent wake generated by an upstream cylinder.

Figure 6.18: A cross-section view of the mesh used for simulations of the 3D cylinder
wake. Only element boundaries are shown.

DNS simulations of a single cylinder are performed using a mesh shown in Fig-

ure 6.18 and are conducted with 6th-order polynomial approximations and a fixed time

step ∆t = 5×10−5. The mesh dimensions based on a chord length are 3 c×1.6 c×0.2 c

in streamwise, vertical and spanwise directions, respectively, which corresponds to

33.8D × 18D × 2.26D in terms of cylinder diameter. The normal distance from the

surface of the cylinder to the nearest GL point is ∆n/D = 1.4 × 10−3. The grid

contains 15K elements (∼3.2M gridpoints). The mesh resolution, time step and nu-

merical parameters of the 3D cylinder simulation are similar to the parameters that

are used in oscillating airfoil simulations. This is done to ensure that the wake studied
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here possesses the same properties as the wake incident upon the airfoil in simulations

discussed in the next section.
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Figure 6.19: Time history of force coefficients on a cylinder at ReD = 3900. The
bottom axis displays time nondimensionalized with the airfoil chord length and the
top axis with the cylinder diameter. Grey lines denote the times at which new oscil-
lation cycles begin in oscillating airfoil simulations.

Figure 6.20: Velocity magnitude plot of a spanwise cross-section of the turbulent
wake behind the cylinder at t U∞/c = 19.6 (t U∞/D ≈ 220.5). An outline of the
NACA0012 airfoil has been superimposed on the image to illustrate the location of
the airfoil in the cylinder-airfoil simulations. Blue regions represent a value of 0 and
red regions a value of 1.5U∞.
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In pitching airfoil simulations, the airfoil begins pitching upward at t = 0, the

same time as the cylinder simulations start from steady initial conditions, and thus

the first cycle will serve to give the turbulent wake time to fully develop. The

time history of the lift and drag forces acting on the cylinder is illustrated in Fig-

ure 6.19. The unsteady effects on the cylinder are fully developed before t U∞/c =

10 (t U∞/D ≈ 112.82), allowing a sufficient time for the unsteady effects to propagate

into the very far wake of the cylinder, where the airfoil will be located, before the

second cycle begins. Figure 6.20 illustrates the velocity magnitude of the wake at

t U∞/c = 19.6 (t U∞/D ≈ 220.5), which is the time when the second pitching cycle

of the airfoil will begin. An outline of the airfoil is superimposed upon the image to

illustrate where the airfoil will be located in the cylinder-airfoil simulations. We see

that in the time it would take the airfoil to complete its first cycle, the turbulence in

the very far wake of the cylinder is fully developed.

The turbulent statistics for the wake behind the cylinder (without an airfoil) are

displayed in Figures 6.21, 6.22, and 6.23 for different streamwise locations. Statistics

were averaged over non-dimensional time of t U∞/D ≈ 100 and were collected after

the flow transitioned to fully turbulent.

Good correlation exists between present turbulent statistics and published data.

The vortex shedding frequency of the present simulation gives a Strouhal number,

St ≡ fD/U∞ = 0.216, agreeing well with the experimental data of the same case

presented by Cardell [185] which finds a Strouhal number of, St = 0.215± 0.005.

While turbulent statistics are not generally collected in the very far wake (x/D >

10), it is the region of particular interest in this case, since it is the location in the wake

where the airfoil will reside. Due to wake meandering in the very far wake, the statis-

tics were averaged over non-dimensional time of t U∞/D ≈ 350 to ensure smooth

statistics. For the NACA0012 airfoil at α = 0◦, the distances from the center of
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Figure 6.21: Turbulent wake statistics of the flow behind a cylinder at ReD = 3900 at
streamwise locations x/D=1.06 (top curve), 1.54 (middle curve), 2.02 (bottom curve).
The middle and bottom curves have been shifted according to the conventions in [179].
Lines represent present data, green ’x’ represent data from LES studies of Parnaudeau
et al. [180], blue ’*’ represent data from PIV investigations of Parnaudeau et al. [180],
light blue squares represent data from the B-Spline simulations of Kravchenko and
Moin [179], and red triangles represent DNS data from simulations of Ma et al. [181]

the cylinder to the leading edge, quarter-chord, mid-chord, three-quarter-chord, and

trailing edge locations on the airfoil are x/D = 10.7, 13.5, 16.4, 19.2, and 22.0, respec-

tively. Figure 6.23 displays the mean streamwise velocity and variance of streamwise

velocity at these locations in the wake. The wake width, defined by width of the
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Figure 6.22: Turbulent wake statistics of the flow behind a cylinder at ReD = 3900
at streamwise locations x/D=6.0 (top curve), 7.0 (middle curve), 10.0 (bottom curve).
The middle and bottom curves have been shifted according to the conventions in [179].
Lines represent present data, light blue squares represent data from the B-Spline
simulations of Kravchenko and Moin [179], red open squares represent data from
experiments of Ong and Wallace [182], magenta diamonds represent data from upwind
finite difference simulations of Beaudan and Moin [183], and inverted green triangles
represent data from central finite difference simulations of Mittal and Moin [184]

wake where the mean streamwise velocity difference is half of the difference at the

centerline (U∞− < u >= 1
2
(U∞− < u >0)), at the x/D = 10.7 location is about

0.13D or 0.012c.
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Figure 6.23: Turbulent wake statistics of the flow behind a cylinder at ReD = 3900
at streamwise locations x/D=10.7 (black solid), 13.5 (red dashed), 16.4 (maroon
dotted), 19.2 (light blue dash-dot), and 22.0 (grey dash-dot-dot). The blue (dotted)
and green (dashed) vertical lines represent the position of the pitching axis of the
airfoil relative to the wake for Case II and III respectively.
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6.3.4 Pitching Airfoil in a Turbulent Wake

In this section Cases II and III that correspond to disturbed airfoil inflow cases are

discussed. In Case II, the center of the upstream cylinder generating the freestream

disturbances is placed on the same horizontal plane as the quarter-chord axis of

the airfoil, and in Case III the center of the cylinder is 0.15c lower than the airfoil

quarter-chord axis. The meshes for these simulations are presented in Figures 6.12(b)

and 6.12(c), and the general description of the problem setup is done in Section 6.3.1.

In the coupled cylinder-airfoil DNS, the airfoil pitching simulations and the cylin-

der wake simulations are done concurrently (to ensure proper modification of the wake

by the downstream airfoil), and the airfoil begins its first cycle at initially steady flow

at time zero, before the cylinder wake has developed. It was demonstrated in the

previous section that the cylinder turbulent wake is fully developed for the entire

region wherein the airfoil resides by the beginning of the second cycle. Thus, the

ensuing discussion will focus on the second, third, and fourth cycles of the airfoil

motion (although the first cycle is often shown for completeness).
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Figure 6.24: Lift coefficient results compared among all three cases for the third
and fourth cycles.

150



A comparison of the lift coefficient loops among the three cases for the third

and fourth cycles (Figure 6.24) shows stark differences in the lift that the airfoils

experience in each case. The lift acting on the airfoil in Cases II and III during

upward pitching (top curves) are quite oscillatory due to the incoming turbulent

vortices shed from the upstream cylinder. However, note that the oscillations of lift

values in Case III are not as large as those displayed by Case II, since in Case III

the vortices are not directly incident upon the leading edge of the airfoil, but slightly

below it. We see that in Case I, the lift increases at a slightly steeper rate starting

at α ≈ 15ou, which corresponds to the formation of the DSV and its path along the

upper surface of the airfoil. In Cases II and III we do not find evidence of a steeper

rate of lift increase, and we find that in the high-lift regions, the lift in Case I is

generally greater than the lift in Cases II and III, both at upstroke and downstroke.

Judging by the position of the maximum lift peaks and a subsequent drop in lift, we

see that dynamic stall occurs earlier (at smaller angles of attack) in Case I than for

the airfoils with turbulent inflow. Details on the timing of the dynamic stall in each

case will be discussed further in future sections.

Figure 6.25 displays the aerodynamic forces and moments acting on the airfoil in

Cases I, II, and III with respect to time. A comparison of lift coefficient maxima

during the third cycle is presented in Table 6.6. We see that CL,max due to the DSV

is comparable among the three cases presented, although the maxima are achieved

at different times during the cycle. The secondary maxima of CL, caused by the

secondary vortex formed during downstroke, are noticeably different with Case I

reaching the largest value, followed by Case III, then Case II. This pattern seems

repeatable and is found in three out of four cycles during the simulation time (refer

back to Figure 6.25). For both the DSV and secondary vortex, CL,max is reached

earliest in Case I, next in Case III, and last in Case II, and this pattern is also
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Figure 6.25: A comparison of aerodynamic forces and moments among Cases I, II,
and III for all four cycles. The time (t U∞/c) is labeled along the bottom axis while
the corresponding angle of attack is along the top axis.

found in the other cycles presented in Figure 6.25. We see that incident disturbances

have the effect of delaying stall, similar to the experimental findings of Chen and

Choa [173] who showed that stall of a constant rate pitching upward airfoil occurs at

a later time when upstream disturbances are present. Additionally, it appears that

larger disturbances incident upon the airfoil’s leading edge (such as with in-line versus

shifted vertical position of the upstream cylinder) have the effect of delaying the stall
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Third Cycle

Case I Case II Case III

Maximum CL 2.623 2.596 2.576

Time of CL,max (t U∞/c) 46.735 47.890 47.485

α of CL,max 22.4◦u 24.3◦u 23.8◦u

Secondary Maximum CL 2.426 1.593 1.947

Time of CL,max2 (t U∞/c) 50.630 52.540 52.204

α of CL,max2 23.8◦d 19.7◦d 20.6◦d
Table 6.6: Comparison of lift coefficient maxima during the third cycle among all
three cases

to a greater extent, as well as reducing the value of the secondary lift maximum

(CL,max). These effects can perhaps be explained by the fact that the incoming

turbulence weakens the “native” vortical systems formed by a pitching airfoil motion,

and this interaction is more pronounced for stronger incident disturbances, as in Case

II.

Evidence of stall is seen in the drag values as well, with a steep decrease in drag

when stall occurs. After initial stall occurs in Case I, a steep increase in drag soon

ensues reaching drag values comparable to the first peak. This second drag peak

correlates with the formation of the TEV, and a sharp decrease in drag is again

witnessed as the TEV detaches. Cases II and III do not show clear signs of this large

drag peak due to the formation of the TEV. While the drag acting on the airfoil in

the turbulent inflow cases nearly reach the same global maximum values as those in

Case I (though at a later time), the drag in nearly all other portions of the cycle is

greatly reduced by upstream disturbances, with the larger incident disturbances of

Case II creating a greater drag reduction, than Case III. We see particular evidence

of this when looking at the drag peak due to the second major vortex formed during
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the airfoil downstroke in the third cycle, where Case I reports a local drag maximum

of CD ≈ 1.125 at α ≈ 23.8◦d, Case II: CD ≈ 0.512 at α ≈ 19.5◦d, and Case III:

CD ≈ 0.811 at α ≈ 22.6◦d. Others cycles of the simulations show similar patterns for

the drag coefficient.

The magnitude of the pitching moment of the airfoil remains small until a large

vortex begins to form on the leading edge of the airfoil, where a sharp increase in the

magnitude of the pitching moment is seen and continues to increase until the vortex

detaches from the surface of the airfoil. In Case I, large fluctuations in the pitching

moments are seen for the majority of the cycle, while in Cases II and III, we see a

large fluctuation in the pitching moment as a result of the DSV (though not as large

as in Case I), but the pitching moment remains small for the remainder of the cycle.

Again, we see that the larger incident disturbances in Case II diminish the magnitude

of pitching moment more so than the off-set disturbances of Case III. A comparison

of the phase averaged coefficient data (Figure 6.26) shows trends for lift, drag and

pitching moments that are in agreement with the previous discussion.
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Figure 6.26: A comparison of aerodynamic forces and moments phase averaged over
the last three cycles for Cases I, II, and III.

Visual inspection of the spanwise averaged streamwise velocity (Figures 6.27 and 6.28)

and spanwise vorticity (Figures 6.29 and 6.30) for Cases II and III shows evidence
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5.6°(min)

10.45°u

15.3°u

20.15°u

25.0°(max)

20.15°d

15.3°d

10.45°d

Figure 6.27: Zoomed-in spanwise averaged streamwise velocity plots of Case II
during the third pitching cycle, at angles of attack posted in bottom left corner of
each snapshot. The subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest blue
represents streamwise velocity less than u/U∞ = −1, and darkest red greater than
u/U∞ = 3

of a forming dynamic stall vortex in the 20.15ou frames, though not as large as the

DSV seen in the 20.15ou frames of Case I (Figures 6.14 and 6.15). However, note that

the forming DSV is larger in this frame for Case III than in Case II. Thus we see

that the formation of the DSV occurs earliest for the steady freestream case resulting

in the earliest detachment of the vortex and subsequent dynamic stall among the

three cases, as also evidenced in Figures 6.24 and 6.25. Again, since the disturbances

in Case II are larger upon the airfoil due to the cylinder’s vertical alignment, the

formation of the DSV occurs the latest among the three cases, leading to the latest

occurrence of dynamic stall.
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Figure 6.28: Zoomed-in spanwise averaged streamwise velocity plots of Case III
during the third pitching cycle. Refer to the caption of Figure 6.27 for further details.

Averages of the aerodynamic coefficient values over the duration of the simulations

are given in Table 6.7. We see that smallest aerodynamic coefficients are found in Case

II followed by Case III and Case I, aligning with the previous analysis of aerodynamic

forces where it is found that the larger incident disturbances given in Case II have the

largest effect in reducing the force coefficient values, followed by Case III and then

Case I.

A comparison of the pressure coefficients along the suction side of the airfoils in all

three cases (Figure 6.31), again gives evidence of the timing of the DSV formation.

The α = 20.15ou pressure profile plot shows that the DSV in Case I is roughly at

the half chord distance (where the center of the vortex is determined by the lowest

pressure values), the DSV is forming at the leading edge of the airfoil in Case II,
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Figure 6.29: Zoomed-in spanwise averaged spanwise vorticity plots of Case II during
the third cycle, at angles of attack posted in bottom left corner of each plot. The
subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest blue represents spanwise
vorticity of less than ωzU∞/c = −40 (corresponding with clockwise fluid motion), and
darkest red greater than ωzU∞/c = 40 (corresponding with counter-clockwise fluid
motion).

and the DSV is roughly at the quarter-chord location in Case III. When the pitching

airfoil begins its downstroke a second major vortex is formed at the leading edge. The

α = 20.15od plots shows evidence of the TEV in Case I resulting from the detachment

of the second major vortex, while the pressure values in Case II show that the second

major vortex is fairly weak and its center is located in front of the half chord location,

and in Case III, the center of the second major vortex is at about the three-quarter

chord location and appears to be much stronger than the vortex in Case II.

The strength of the DSV in Cases II and III is calculated with Eq. (6.12) as the

center of the vortex crosses the x/c = 1.95 position in the flow field (Figure 6.32), the
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Figure 6.30: Zoomed-in spanwise averaged spanwise vorticity plots of Case III dur-
ing the third cycle. Refer the caption of Figure 6.29 for further details.

CL 1.0656

Case I CD 0.3793

CM −0.1606

CL 0.8721

Case II CD 0.2559

CM −6.8568 · 10−2

CL 0.9726

Case III CD 0.2839

CM −0.1108

Table 6.7: Time averaged values of the aerodynamic force and moment coefficients.
The averaging was performed over the last three cycles of the simulation.

158



-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=25.0o

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=20.15o
d

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=15.3o
d

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=10.45o
d

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=5.6o

Case I
Case II
Case III

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=10.45o
u

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=15.3o
u

-6

-5

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8 1

C
p

x/c

α=20.15o
u

Figure 6.31: Spanwise averaged pressure coefficients along the suction surface of the
airfoil for Cases I, II and III during the third cycle at angles of attack posted in the
top center of each plot. The subscript ’u’ denotes upstroke and ’d’ downstroke.

Case I Case I Case II Case II Case III Case III

(3rd Cycle) (4th Cycle) (3rd Cycle) (4th Cycle) (3rd Cycle) (4th Cycle)

Vertical position ( y
c

) 0.240 0.208 0.146 0.187 0.168 0.199

Time (t U∞/c) 47.8 67.1 48.4 68.0 48.7 68.4

Angle of Attack (α) 24.19◦u 23.72◦u 24.77◦u 24.74◦u 24.93◦u 24.95◦u

Vortex Strength (Γ) 10.271 9.899 8.297 7.105 9.879 9.232

Table 6.8: Properties of the DSV during the third and fourth pitching cycles for all
three cases as the center of the vortex reaches the x/c = 1.95 position in the flow
field.
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Case I

Case II

Case III

Figure 6.32: Spanwise averaged spanwise vorticity plots when the center of the DSV
in the fourth cycle reaches the x/c = 1.95 position in the flow field for all three cases.
The circle outlines the volume over which the integral of vorticity is taken.

calculation parameters are the same as in Case I in Section 6.3.2. A comparison of all

the cases (see Table 6.8) shows that the DSV is strongest in Case I, next strongest in

Case III, and weakest in Case II, aligning with the pattern seen in most of the other

results presented here.

Recall that previous results suggested that the DSV forms earlier in the pitching

cycle for Case III compared to Case II, yet note that the DSV in Case III crosses the

x/c = 1.95 position at a later time than the DSV in Case II. A possible explanation to
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this effect is as follows. In Case III, a strong counter-clockwise rotating trailing edge

vortex forms early. As this TEV propagates upward, it creates a region with slower

streamwise velocity in the downstream path of the DSV. This slower moving fluid

decreases the propagation speed of the DSV. This effect is also witnessed in the other

cases, though the timing of the DSV and TEV formation do not produce a response

that is as impactful. These timing differences are presumably due to the turbulent

energy being concentrated in different regions of the flow field. For example, in the

25◦ frame of Figure 6.29 it appears that the disturbances created by the cylinder in

Case II play a larger role in the dynamics on the suction side of the airfoil, while in

Figure 6.30 we see that the turbulent interactions are concentrated on the pressure

side of the airfoil at its maximum angle of attack.

6.3.5 Power Spectral Densities of Aerodynamic Coefficients

The power spectral density (PSD) functions of the lift, drag, and pitching moment

coefficients are computed by importing the aerodynamic data into the periodogram

power spectral density estimate function in MATLAB. The aerodynamic coefficients

were calculated within the moving overlapping mesh simulation at nondimensional

time intervals of ∆t U∞/c = 0.05, and PSD functions were calculated from data

collected in pitching cycles two, three, and four, with cycle one being excluded since

the turbulent wake is not fully developed at the beginning of the simulation.

Figures 6.33, 6.34, and 6.35 give a side-by-side comparison of the PSD function

plots for lift, drag, and pitching moment coefficients respectively. As expected, the

dominant frequency peak in every case corresponds with the pitching frequency of

the airfoil, which shows that most of energy that is transferred to the airfoil occurs

near this frequency that was imposed upon the system. In the lift plots (Figure 6.33),

both Case II and Case III show another power peak corresponding with the vortex
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Figure 6.33: PSD functions of the lift coefficients for the three cases. The dashed
lines in the Case II and III plots designate the vortex shedding frequency of the
upstream cylinder.

shedding frequency of the upstream cylinder (indicated by dashed lines), suggesting

that a moderate amount of energy affecting the lift acting on the airfoil is transferred

by the turbulent wake. Note, however, that the peak at the cylinder vortex shedding

frequency is not as prominent in Case III, likely due to the fact that the turbulent

wake is not directly incident upon the airfoil’s leading edge. Each of the Case II PSD

function plots display this secondary peak, though in the case of the pitching moment

coefficient it is not quite as pronounced, indicating that the higher frequency energy

contributions from the upstream cylinder’s wake are not as crucial to the pitching

moments experienced by the airfoil as the forced pitching frequency imposed upon it.
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Figure 6.34: PSD functions of the drag coefficients for the three cases. The dashed
lines in the Case II and III plots designate the vortex shedding frequency of the
upstream cylinder.

In contrast, there are no noticeable peaks resulting from the upstream cylinder’s

wake in the drag and pitching moment PSD function plots for Case III. This suggests

that the energy transferred to the airfoil due to the pitching frequency plays a much

more important role in the determination of the drag force and pitching moment

experienced by the airfoil in Case III. All of this additionally indicates that a turbulent

wake incident upon the leading edge of a pitching airfoil is likely to play a larger role in

the forces and moments acting on the airfoil than in the case with the same turbulent

wake but incident upon the pressure side of the pitching airfoil. This is consistent

with the previous discussion showing stronger interaction of incoming turbulence with

the airfoil vortices in Case II.
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Figure 6.35: PSD functions of the pitching moment coefficients for the three cases.
The dashed lines in the Case II and III plots designate the vortex shedding frequency
of the upstream cylinder.

Following the normalization procedure employed in [186], I now focus on the

lower frequency region of the PSD function plots. In Figure 6.36, the frequency is

normalized by the pitching frequency of the airfoil (f = f/fα′), so that “1” now

represents the pitching frequency. Additionally, the PSD function is normalized by

the total power in the full range of frequencies computed (P/
∫∞

0
P (f)df), allowing

for more direct comparison of PSD functions among the three cases. The frequencies

lower than f/fα′ = 10 are displayed in Figure 6.36, where we clearly see higher-

order harmonics in every case which are prominent until about the fifth harmonic. In

general, the peaks at the pitching frequency and at the harmonics correspond quite

nicely among the three cases, though slight differences are apparent. In all of the
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Figure 6.36: PSD functions of aerodynamic coefficients for all three cases. The
power is normalized by the total power of the function within the frequency range
examined, and the frequency is normalized by the pitching frequency of the airfoil.

plots, the peaks at the harmonics are generally larger in Cases II and III than in Case

I. The harmonics, as discussed in [186], indicate that there is a non-linear interaction

between the pitching airfoil and the fluid which transfers energy from the pitching
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frequency to the harmonics, while larger harmonics denote more prevalent non-linear

interactions.
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Figure 6.37: The energy partition derived from the aerodynamic coefficient PSD
functions at the airfoil pitching frequency for Cases I (red, leftmost bars), II (blue,
center bars), and III (green, rightmost bars).

In each of the plots, the PSD function at the airfoil pitching frequency is largest

for Case I. The main peaks of Cases II and III in the PSD plot of CL lie almost

directly on top of each other, while careful inspection of the CD and CM PSD plots

shows that the main peak for Case III is larger than that of Case II. The energy

partition at the pitching frequency is calculated to achieve a more clear indication of

the prominence of non-linear interactions in each case [186]. The energy partition at

the pitching frequency is calculated by

Pf1 =

∫ 1.5

0.5
P (f)df∫∞

0
P (f)df

, (6.13)

where a value of “1” would indicate the absence of non-linear interactions, or that all

of the energy lies at the fundamental frequency. Thus we should expect that nonlinear
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interactions would be greater in a system that introduces upstream turbulence as we

do in Cases II and III, indicated by lower energy partition values at the pitching

frequency. Figure 6.37 displays the energy partition values at the airfoil pitching

frequency for the forces and moments in all three cases. We, in fact, see that the

values at this energy partition are greater for Case I than for the other cases, and

Case III is greater than Case II in every case, though only slightly for CL. This

implies that the greatest non-linear interactions occur in Case II where the turbulence

is more concentrated on the suction side of the airfoil (where the DSV vortices form),

followed by Case III where the turbulence is more prominent on the pressure side of

the airfoil, with non-linear interactions playing the smallest role in Case I performed

in the absence of an upstream wake. Also note that non-linear interactions appear

to play the largest role in the moments experienced by the airfoil (indicated by the

lowest energy partition values), which corresponds well with the results displayed in

the CM plot of Figure 6.25 that shows major reductions in the magnitude of pitching

moments throughout nearly the entire cycle when the pitching airfoil is in the presence

of a turbulent wake.
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Chapter 7

CONCLUSION

7.1 Summary

A moving overlapping grid methodology for two and three dimensional applica-

tions in a Spectral Element Method incompressible flow solver has been developed and

validated. Spectral accuracy is maintained for spatial discretization due to a spectral

interpolation at interface boundaries using solution approximations in a Nth-order

polynomial space on GL points. The global temporal accuracy of the flow solver is

also maintained with few, or no, iterations using solutions at previous timesteps to

form explicit extrapolation approximations at subdomain interfaces.

The stationary and moving overlapping grid methodologies have been validated

with several two- and three-dimensional simulations, comparing results to exact so-

lutions and experimental data. Results from stationary, rotating, and sliding mesh

simulations of two dimensional convecting eddies were compared with exact solu-

tions. As the polynomial order for solution approximations is increased, spectral

convergence of the global solution is observed. As the size of timestep is decreased,

keeping the polynomial order constant, the temporal accuracy of the global scheme is

maintained, as long as the interface extrapolation order is consistent with the global

temporal accuracy of the method. The errors of solution approximations in moving

subdomains is shown to increase quadratically/linearly with increasing mesh veloc-

ity using a second/first order temporal scheme, respectively, though the spatial and

temporal convergence rates are unaffected.
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Stationary overlapping mesh simulations of an incompressible Taylor vortex con-

vecting through a long two-dimensional global domain helped form a more complete

understanding of errors as flow features cross subdomain boundaries, and where dis-

turbances due to outflow boundary conditions are present downstream. It was ob-

served that as the vortex crossed a subdomain boundary, overall errors remained small

in the presence of outflow disturbances. The three dimensional fully-developed tur-

bulent pipe flow simulation on two overlapping meshes showed good agreement with

other physical and computational experiments. Turbulent statistics closely matched

those published in [142], including Rec, Reτ , mean velocity profile, and u+
rms profile

data.

Moving overlapping mesh simulations of an oscillating two-dimensional cylinder

produced results that compare well with experimental and other computational stud-

ies. Approximated aerodynamic forces were in line with published computational

data, and simulations showed lock-in behavior of vortex shedding matching experi-

mental findings [2]. Three-dimensional rotating sphere tests give lift, drag and vortex

shedding results that are in agreement with published data.

Parallel scaling and timing analyses show that both methodologies achieve near

linear strong scaling up to moderately high processor counts.

A turbulent wake incident upon a pitching airfoil largely affects the forces and

moments acting on the airfoil, and the flow structure of the fluid, including vortex

formation. Dynamic stall of a pitching airfoil occurs at a later time (and larger angle

of attack) when in the presence of a turbulent wake, due to the delayed formation,

and thus detachment, of the dynamic stall vortex. While the lift in a high-lift region

of a pitching cycle is slightly reduced with upstream disturbances, the drag and mag-

nitude of pitching moments are significantly reduced for most of the pitching cycle.

This implies that upstream disturbances can have both negative and positive effects
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on the performance of engineering systems, depending on the goals. For high-lift and

maneuvering aircrafts, the decrease in peak lift means reduced maneuverability and

implies the need to take it into account during pilot training and operation, as well

as in control systems development. However, the reduction in mean drag leads to

higher efficiencies of cyclic operations, such as in rotary-wing flight and wind turbine

power production, implying that formation flight and wind turbines in an array can

actually lead to an increase in performance with well designed positioning and con-

trol. Lower pitching moments additionally imply a decrease in the structural strain

on dynamically pitching blades and wings, potentially improving the life span of these

mechanical systems. Weaker dynamic stall vortices shed from the airfoil in disturbed

upstream flow could lead to less intrusive vortex interactions with downstream struc-

tures, as in the case of blade-vortex interaction.

7.2 Future Directions

Future development efforts will improve the moving mesh methodology for greater

flexibility and ease-of-use through dynamic hole cutting procedures to automate the

process of determining vacancies in the background mesh in real-time as the interior

mesh moves. The methodology will be enhanced to allow for global domain decompo-

sition into more than two overlapping subdomains, increasing flexibility to simulate

flows around even more complex stationary or moving geometries. Extensions to

other SEM formulations will be made, such as to the unstaggered grid formulation

with pressure approximations continuous at element boundaries (known as Pn-Pn),

thus requiring interpolation of pressure at interfaces. Future developments will estab-

lish 6 degree-of-freedom (6-DOF) modules for rigid body motion determined by flow

forces, rather than prescribed rigid body motion. This work will eventually provide

a framework for fluid-structure interaction problems allowing mesh deformations.
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The moving overlapping mesh methodology, in its present form, enables the inves-

tigation of many interesting and complex problems and applications. Hence, future

work will utilize the moving overlapping mesh methodology to perform additional

dynamic stall simulations with fully-developed turbulent inflow and with other types

of airfoil motion, such as plunging. Additionally, dynamic stall at higher Reynolds

numbers will be investigated for better application to conditions seen in flight and

wind energy. The methodology will be used in rotating wind turbine simulations

to investigate the influence of atmospheric turbulence and the impact of other wind

turbines on the flow. Additional applications can be made to turbomachinery and

rotor-stator interactions, maneuvering aircraft, the seakeeping ability of watercraft,

dynamic interface problems such as aircraft interaction with carrier ships for sea-

based aviation, and to many biological flows such as fish locomotion and artificial

heart valves.
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[98] J. Donéa, P. Fasoli-Stella, and S. Giuliani. Lagrangian and Eulerian finite ele-
ment techniques for transient fluid-structure interaction problems. In Structural
Mechanics in Reactor Technology. 1977.

[99] T. Belytschko, J.M. Kennedy, and D.F. Schoeberle. Quasi-Eulerian finite ele-
ment formulation for fluid-structure interaction. In American Society of Me-
chanical Engineers and Canadian Society for Mechanical Engineering, Pressure
Vessels and Piping Conference, Montreal, Canada, 1978.

[100] T. Belytschko, J.M. Kennedy, and D.F. Schoeberle. Quasi-Eulerian finite el-
ement formulation for fluid-structure interaction. Journal of Pressure Vessel
Technology, 102(1):62–69, 1980.

[101] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian–Eulerian finite
element formulation for incompressible viscous flows. Computer Methods in
Applied Mechanics and Engineering, 29(3):329–349, 1981.

[102] B. Ramaswamy and M. Kawahara. Arbitrary Lagrangian–Eulerian finite ele-
ment method for unsteady, convective, incompressible viscous free surface fluid
flow. International Journal for Numerical Methods in Fluids, 7(10):1053–1075,
1987.

[103] L.-W. Ho and A.T. Patera. A Legendre spectral element method for simulation
of unsteady incompressible viscous free-surface flows. Computer Methods in
Applied Mechanics and Engineering, 80(1):355–366, 1990.

[104] L.-W. Ho and A.T. Patera. Variational formulation of three-dimensional viscous
free-surface flows: Natural imposition of surface tension boundary conditions.
International Journal for Numerical Methods in Fluids, 13(6):691–698, 1991.

[105] J.Y. Murthy, S.R. Mathur, and D. Choudhury. CFD simulation of flows in
stirred tank reactors using a sliding mesh technique. In Institution of Chemical
Engineers Symposium Series, volume 136, pages 341–341. Hemsphere Publish-
ing Corporation, 1994.

179



[106] A. Bakker, R.D. LaRoche, M. Wang, and R.V. Calabrese. Sliding mesh simu-
lation of laminar flow in stirred reactors. Chemical Engineering Research and
Design, 75(1):42–44, 1997.

[107] K. Ng, N.J. Fentiman, K.C. Lee, and M. Yianneskis. Assessment of sliding
mesh CFD predictions and LDA measurements of the flow in a tank stirred by
a rushton impeller. Chemical Engineering Research and Design, 76(6):737–747,
1998.

[108] J.M. Bujalski, Z. Jaworski, W. Bujalski, and A.W. Nienow. The influence of
the addition position of a tracer on CFD simulated mixing times in a vessel
agitated by a rushton turbine. Chemical Engineering Research and Design,
80(8):824–831, 2002.

[109] C.A. Rivera, M. Heniche, F. Bertrand, R. Glowinski, and P.A. Tanguy. A par-
allel finite element sliding mesh technique for the simulation of viscous flows
in agitated tanks. International Journal for Numerical Methods in Fluids,
69(3):653–670, 2012.

[110] Y.M. Park and O.J. Kwon. Simulation of unsteady rotor flow field using un-
structured adaptive sliding meshes. Journal of the American Helicopter Society,
49(4):391–400, 2004.

[111] G. Barakos, R. Steijl, K. Badcock, and A. Brocklehurst. Development of CFD
capability for full helicopter engineering analysis. In 31st European Rotorcraft
Forum, Florence, Italy, Sept, 2005.

[112] H.J. Nam, Y.M. Park, and O.J. Kwon. Simulation of unsteady rotor-fuselage
aerodynamic interaction using unstructured adaptive meshes. Journal of the
American Helicopter Society, 51(2):141–149, 2006.

[113] R. Steijl and G. Barakos. Sliding mesh algorithm for CFD analysis of helicopter
rotor–fuselage aerodynamics. International Journal for Numerical Methods in
Fluids, 58(5):527–549, 2008.

[114] A. Buffa, Y. Maday, and F. Rapetti. A sliding mesh-mortar method for a
two dimensional eddy currents model of electric engines. ESAIM: Mathemat-
ical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse
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APPENDIX A

PRESSURE SOLUTION FOR WALSH’S EDDIES
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Convecting frame of reference Eddy solutions in a convecting frame of reference
can be found using the technique proposed by Walsh [137] and discussed in section 3.1.
For the present test case, we find these solutions from the initial conditions given by
the stream function

ψ̃(x̃, ỹ) = −1

5
cos[5x̃] +

1

4
sin[3x̃]sin[4ỹ]− 1

5
sin[5ỹ], (A.1)

leading to the following exact solution for u in a convecting frame of reference:

ũ(x̃, ỹ, t) = e−25tν(−cos[5ỹ] + cos[4ỹ]sin[3x̃]),

ṽ(x̃, ỹ, t) = e−25tν(−sin[5x̃]− 3

4
cos[3x̃]sin[4ỹ]), (A.2)

As in section 3.1, by tilde we denote the variables in a convecting frame of refer-
ence.

The solution for pressure is found from the relation ∇p̃ = −ũ · ∇ũ, which, in the
present case, leads to two partial differential equations for pressure:

∂p̃

∂x̃
= −ũ∂ũ

∂x̃
− ṽ ∂ũ

∂ỹ
(A.3)

∂p̃

∂ỹ
= −ũ ∂ṽ

∂x̃
− ṽ ∂ṽ

∂ỹ
(A.4)

Solving this set of equations by integration gives the solution for the pressure of
non-convecting eddies

p̃(x̃, ỹ, t) =
1

64
e−50tν(−16 + 16cos[6x̃] + 8cos[8x̃− 4ỹ]

32cos[2(x̃− 2ỹ)] + 9cos[8ỹ]− 8cos[4(2x̃+ ỹ)]

32cos[2(x̃+ 2ỹ)]− 4sin[3(x̃− 3ỹ)] + 32sin[5(x̃− ỹ)] (A.5)

+36sin[3x̃− ỹ]− 32sin[5(x̃+ ỹ)] + 36sin[3x̃+ ỹ]

−4sin[3(x̃+ 3ỹ)])

Stationary frame of reference To convert the above solutions to the stationary
frame of reference, we need to use the coordinate transformation

x = x̃+ u0t

y = ỹ + v0t, (A.6)

where (u0, v0) is the constant velocity of convection. That leads to the following
solution for velocity

u(x, y, t) = e−25tν(−cos[5(y − v0t)] + cos[4(y − v0t)]cin[3(x− u0t)]) + u0,

v(x, y, t) = e−25tν(−sin[5(x− u0t)]−
3

4
cos[3(x− u0t)]sin[4(y − v0t)]) + v0, (A.7)

while solution for pressure is obtained analogously as

p(x, y, t) = p̃(x− u0t, y − v0t, t) (A.8)

and not spelled out here due to a rather cumbersome final expression.
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