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ABSTRACT

Modern systems that measure dynamical phenomena often have limitations as to

how many sensors can operate at any given time step. This thesis considers a sensor

scheduling problem in which the source of a diffusive phenomenon is to be localized

using single point measurements of its concentration. With a linear diffusion model,

and in the absence of noise, classical observability theory describes whether or not

the system’s initial state can be deduced from a given set of linear measurements.

However, it does not describe to what degree the system is observable. Different

metrics of observability have been proposed in literature to address this issue. Many

of these methods are based on choosing optimal or sub-optimal sensor schedules from a

predetermined collection of possibilities. This thesis proposes two greedy algorithms

for a one-dimensional and two-dimensional discrete diffusion processes. The first

algorithm considers a deterministic linear dynamical system and deterministic linear

measurements. The second algorithm considers noise on the measurements and is

compared to a Kalman filter scheduling method described in published work.
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Chapter 1

INTRODUCTION

1.1 Introduction

Modern systems for measuring spatial dynamic phenomena are often comprised

of a distributed network of individual sensors that may be individually controlled. In

many cases, all the sensors do not operate simultaneously due to constraints, such as

bandwidth, sampling rate, and power [1, 2]. For certain systems, such as active sonar

networks, only one sensor may be activated at a time to avoid signal interference

[2]. The problem of sensor selection arises in many applications, such as defense

and surveillance [1], management of wireless sensor networks [3], monitoring chemical

plants [4], and robotics [5]. To accommodate such constraints, it is desirable to find

optimal or near-optimal sensor schedules as the dynamical system propagates in time.

This thesis considers two related variants of this general sensor management prob-

lem, both of which entail known and deterministic linear system dynamics and linear

measurements. In the first, the measurements are also deterministic while in the

second, the measurements are affected by additive Gaussian noise. In both cases, de-

termining the system’s initial condition from the measurements will enable its entire

state trajectory to be deduced. With deterministic measurements, reconstructing the

initial condition from the measurements is seen to be an observability problem. The

criterion for optimal sensor scheduling in this situation is taken to be the numerical

conditioning of the equation for the initial condition in terms of the measurement

sequence as in [6].

With noisy measurements, it will generally be impossible to obtain the initial
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condition exactly. Rather, it must be estimated from the noisy measurement data,

and the optimality criterion will be in terms of the statistics of this estimate. With

Gaussian measurement noise, the problem of determining an optimal measurement

sequence has the character of a Kalman filtering problem and has been studied in

[7, 8]. The approach developed in this thesis is compared both qualitatively and

quantitatively with the one described in [8].

1.2 Sensor Scheduling

An optimal sensor schedule can be resolved a priori when the state and noise

properties are known [7]. With this knowledge, the schedule can be derived in an

open-loop method before any measurements are taken [8]. The problem in sensor

scheduling is selecting k sensors from n possible sensors at each time step to opti-

mize a particular performance metric. Given a finite library of sensor configurations

from which to choose a measurement in each time epoch, determining an optimal se-

quence of sensor configurations is generally NP-hard [9]. For this reason, sub-optimal

“greedy” algorithms are proposed in this thesis for both problems described above in

section 1.1.

1.3 Diffusion Applications

Many physical phenomena propagate through a medium by diffusion, and mod-

eling of such propagation is well studied in mathematical and scientific literature.

An important physical example is diffusion of chemical or biological particulates in

aerosol, as might arise if such a contaminant is released into air or water. Such leaks

can cause safety and environmental issues [10]. In the case of spills or leaks from

remote storage facilities or pipelines, some time may pass between the initial release

and commencement of the process of collecting measurements to determine the initial

2



release point.

This work assumes that the linear-stochastic diffusion model is known, the source

is localized (e.g., a contaminant is leaking from a single rupture in a pipeline), and

that the measurements may or may not be collected from the time of the initial

release. Although this work focuses on the reconstruction of the initial state at the

time of the first measurement, if measurements begin after some time has passed,

running the system backward to the point of a single concentration can yield release

location. The discrete diffusion models are in the class described in section 1.1.

1.4 Observability Basics

Two important concepts in modern control theory, introduced in the 1960s by

Kalman [11, 12, 13, 14], are controllability and observability. Consider a discrete-

time linear dynamical system with numerous inputs and outputs. This system is

modeled by the following equations:

xk+1 = Axk +Buk

yk = Cxk

(1.1)

where k ≥ 0 denotes the discrete time step, xk ∈ RN represents the state vector,

the system dynamics are given by the matrix A ∈ RN×N , the control matrix (or

input matrix) is given by B ∈ RN×P , and the control vector (or input vector) is

represented by uk ∈ RP . Linear sensors are modeled by the matrix C ∈ RM×N , and

the measurements are given by yk ∈ RM .

These two concepts answer significant questions regarding the state vector. Ob-

servability asks [15]: After measurements are taken over a finite time interval, can the

state vector xk be determined? Controllability asks [15]: Given an initial state vector

x0, is there a sequence of control vectors uk which can transform x0 into a desired

xk within a finite time? Observability describes the relationship between the state
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vector and the measurements and is characterized by the matrices A and C. Control-

lability describes the relationship between the state vectors and control vectors and

is characterized by the matrices A and B. The system in this work is uncontrolled

diffusion; the control vector is zero for all k (or equivalently B = 0). Therefore, the

remainder of this section will examine the relationship between the state vector and

the measurements.

Definition 1.4.1. [16] The system (1.1) is said to be observable if, for any unknown

initial state x0, there exists a finite time K such that knowledge of the inputs uk and

the measurements yk for k = 0, . . . , K suffices to uniquely determine the initial state

x0. Otherwise, the system is unobservable.

Consider the following uncontrolled discrete-time linear system:

xk+1 = Axk

yk = Cxk

(1.2)

where the state vector is xk ∈ RN , the system matrix is A ∈ RN×N , the measurement

matrix is C ∈ RM×N , and the measurements are yk ∈ RM . It can be shown that any

state can be realized with knowledge of the system dynamics A and initial state x0.

For example, the following states are written in terms of x0.

x1 = Ax0

x2 = Ax1 = A(Ax0) = A2x0

x3 = Ax2 = A(A2x0) = A3x0

...

This leads to a system expression equivalent to (1.2):

xk = Akx0 (1.3a)

yk = CAkx0 (1.3b)

4



The observability matrix Φ comes from the measurements expression (1.3b):

y0

y1

...

yn−1


=



CA0

CA1

...

CAn−1


x0.

Definition 1.4.2. [13] The system observability matrix Φ ∈ RMN×N is defined by

Φ =



CA0

CA1

...

CAn−1


. (1.4)

Theorem 1. [17] A linear discrete-time system is completely observable if and only

if the observability matrix Φ has full rank.

The measurements vector y = [y0 . . . yn−1]T in (1.3b) is a linear combination of the

columns of Φ, meaning that the measurements lie in the column space of Φ, which is

expressed as

y = Φx0.

In addition to lying in the column space, in order for a unique solution to exist, the

dimension of the null space should be identically zero. Therefore, following Theorem

1, if the observability matrix Φ is full rank, then x0 can be uniquely obtained by

x0 = (ΦTΦ)−1ΦTy. (1.5)

Theorem 2. [17] The discrete-time observability Gramian is defined as

W̃ =
∞∑

m=0

(AT )mCTCAm. (1.6)

The discrete-time observability Gramian W ∈ RN×N for k = 0, . . . , N − 1 equates

to

W = ΦTΦ. (1.7)
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1.5 Diffusion Matrix

The system model used in this thesis is a diffusive system. In one dimension

and two dimensions, this system takes the form of a discrete-time heat equation.

The following sections describe the realization of these systems as linear difference

equations in the form (1.2).

1.5.1 Diffusion of a One-Dimensional System

Consider the following boundary value problem where the boundary conditions

are given for two specific locations [18]:

u
′′
(x) = f(x) for 0 < x < 1, (1.8)

with Dirichlet boundary conditions u(0) = 0 and u(1) = 0. The finite difference

method may be used to approximate the solution. The grid points are equally spaced

by the distance h, where h = 1/(N + 1). The solution consists of points on the

grid with values U0, U1, . . ., UN+1. The central difference approximation has the

expression

1

h2
(Uj−1 − 2Uj + Uj+1) = f(xj) for j = 1, 2, ..., N, (1.9)

where U0 and UN+1 are excluded because these boundary values are known. The

unknown values are expressed in the form of a set of linear equations D1b = f where

b = [U1, U2, . . . , UN ]T and f = [f(x1), f(x2), . . . , f(xN)]T . The second-order difference

N x N matrix D1 is written as

D1 =
1

h2



−2 1 0 · · · 0

1 −2 1
. . .

...

0 1 −2
. . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −2


(1.10)

6



with the following eigenvalues and eigenvectors, respectively [18]:

λp =
2

h2
(cos(pπh)− 1) for p =1, 2, . . . , N, (1.11a)

up = [sin(pπh) · · · sin(pπNh)] for p =1, 2, . . . , N. (1.11b)

This linear system is used to model the one-dimensional diffusion system. Consider

the following diffusion equation:

ut = αuxx for 0 ≤ x ≤ 1, (1.12)

with Dirichlet boundary conditions u(0) = 0 and u(1) = 0, where α represents the

diffusion coefficient with units (length2/time). The forward finite-difference method

is expressed as
Uk+1
j − Uk

j

∆t
= α

Uk
j−1 − 2Uk

j + Uk
j+1

h2
(1.13)

The superscript indicates the discrete time step. Solving for the unknown Uk+1
j , the

equation gives

Uk+1
j = (1− 2γ)Uk

j + γUk
j+1 + γUk

j+1 (1.14)

where γ = α∆t
h2 . The system matrix A is

A =



1− 2γ γ 0 · · · 0

γ 1− 2γ γ
. . .

...

0 γ 1− 2γ
. . . 0

...
. . . . . . . . . γ

0 · · · 0 γ 1− 2γ


. (1.15)

In order for the system A to be stable, ∆t = rh2 where αr < 1
2
. The matrix A written

in terms of the matrix D1 (1.10) is expressed as [6]

A = I + α∆tD1. (1.16)
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Its eigenvalues are

λp = I + α∆t(
2

h2
(cos(pπh)− 1))

= 1 + 2γ(cos(pπh)− 1) for p = 1, 2, . . . , N,

(1.17)

and the eigenvectors are equivalent to up in (1.11b).

This discrete-time linear dynamical system (1.2) has the state vector

xk = [Uk
1 , U

k
2 , . . . , U

k
N ]T .

1.5.2 Diffusion of a Two-Dimensional System

The discrete-time linear dynamical system for the two-dimensional case is found in

a manner similar to the one-dimensional system. Consider the following second-order

partial differential equation:

ut = αuxx + αuyy for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

with Dirichlet boundary conditions u(x, 0) = 0 and u(0, y) = 0. The solution may be

approximated using a finite difference in the form of a (N + 2) × (N + 2) grid with

the equation

α
Ui−1,j − 2Ui,j + Ui+1,j

(∆x)2
+ α

Ui,j−1 − 2Ui,j + Ui,j+1

(∆y)2
= f(xi, yj)

where i = 1, 2, . . . , N and j = 1, 2, . . . , N because there are N ×N unknowns. Figure

1.1 illustrates the two-dimensional grid. With equally distanced grid points ∆x =

∆y = h = 1/(N + 1), equation (1.5.2) yields

α
1

h2
(Ui+1,j + Ui,j+1 − 4Uij + Ui−1,j + Ui,j−1) = f(xi, yj).

8



This can be written as D2b = f , where b = [U1,1, U2,1, . . . , UN,1, U1,2, U2,2, . . . , UN,N ]T .

The matrix D2 is N2 ×N2:

D2 =
α

h2



G I 0 · · · 0

I G I
. . .

...

0 I G
. . . 0

...
. . . . . . . . . I

0 · · · 0 I G


where the N ×N matrix G has the form

G =



−4 1 0 · · · 0

1 −4 1
. . .

...

0 1 −4
. . . 0

...
. . . . . . . . . 1

0 · · · 0 1 −4


and I is the N ×N identity matrix.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Index i

In
d
e
x
j

Location of Ui,j on a Two-Dimensional Grid

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

Figure 1.1: The figure illustrates the placement of Ui,j on a two-dimensional grid
where N = 7. The label on each point represents the position in the vector b.
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The eigenvalues of D2 with α = 1 are [18]

λp,q =
2

h2
((cos(pπh)− 1) + (cos(qπh)− 1)) (1.18)

for p = 1, 2, . . . , N and q = 1, 2, . . . , N where the total p, q combinations are N2. The

corresponding N2 × 1 eigenvector is [18]

ui,jp,q = sin(pπih) sin(qπjh). (1.19)

Solving for the unknown, Uk+1
i,j , similar to equation (1.14), the N2×N2 system matrix

A can be written as

A =



B γI 0 · · · 0

γI B γI
. . .

...

0 γI B
. . . 0

...
. . . . . . . . . γI

0 · · · 0 γI B


(1.20)

where B is the N ×N matrix:

B =



1− 4γ γ 0 · · · 0

γ 1− 4γ γ
. . .

...

0 γ 1− 4γ
. . . 0

...
. . . . . . . . . γ

0 · · · 0 γ 1− 4γ


. (1.21)

For a stable two-dimensional system, αr < 1
4
. The eigenvalues are

λp,q = I + α∆t
2

h2
((cos(pπh)− 1) + (cos(qπh)− 1))

= 1 + 2γ((cos(pπh)− 1) + (cos(qπh)− 1))

and the eigenvectors are equivalent to up in (1.19). This discrete-time linear dynamical

system (1.2) has state vector

xk = [Uk
1,1, U

k
2,1, . . . , U

k
N,1, U

k
1,2, U

k
2,2, . . . , U

k
N,N ]T .
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Chapter 2

BACKGROUND

In the interest of determining the initial state of the system, the observability of

the systems introduced in section 1.5. As noted in section 1.4, a system is said

to be observable when the initial state can be determined after a finite number of

measurements are taken as the system evolves over time. Theorem 1 gives a “yes-no”

answer as to whether or not the linear dynamical system is observable. However,

it does not specifically state to what degree the system is observable. To address

this, different metrics of observability utilizing the observability matrix have been

proposed. Equivalently, they can be applied to the observability gramian.

In many cases, the observability matrix or the observability gramian is built from a

collection of predetermined sensor configurations. These gramians are then compared

to each other against one or more performance metrics and the optimal configuration

is selected [19]. Because these sensor configurations are predetermined, they do not

clearly specify a method of choosing sensors as the system propagates to optimize

one or more observability performance metrics. One method of sensor scheduling

that has been proposed uses the condition number of the observability matrix Φ as a

performance metric and Rank Revealing QR (RRQR) factorization for the scheduling

algorithm [6].

2.1 Relation between the Observability Gramian and Estimation

Covariance

A measure is needed to quantify the quality of the initial state estimate in the

case of noisy measurements. One method used in optimal sensor selection is based
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on the Fisher information matrix (FIM) [20] [21]. The FIM F is associated with a

lower bound on the covariance of an unbiased estimate x̂ known as the Cramér-Rao

bound and given as

E[(x− x̂)(x− x̂)T ] < F−1 (2.1)

where x̂ is the estimate of x. When equality is achieved, the estimator x̂ is said to be

efficient, in which case it gives a minimum-variance estimate [20]. In this case, and

assuming x is Gaussian, the FIM is the inverse of the estimation covariance.

Consider the linear dynamical discrete-time system in (1.2), but with noise on the

measurements:

xk+1 = Axk

yk = Cxk + ηk

(2.2)

where ŷ are linear measurements with noise ηk modeled as i.i.d. zero-mean white

Gaussian vectors with variance ρ; i.e. ηk ∼ N (0, ρ). The estimation uncertainty and

the FIM are connected to the observably gramian ΦTΦ through the estimation co-

variance of the initial condition x0. The estimation covariance of the initial condition

x0 is

E[(x0 − x̂0)(x0 − x̂0)T ] = (ρ−1ΦTΦ)−1. (2.3)

The least-square estimator is efficient, therefore the Cramér-Rao lower bound equality

is achieved [22]. From Theorem 2, this shows equivalency between the discrete-time

observability gramian and the FIM F :

F = ρ−1ΦTΦ = ρ−1W. (2.4)

Sensor selection using the observability gramianW is directly related to the estimation

covariance of the initial condition.

12



2.2 Observability Measure Metrics

Three different metrics were introduced by Müller and Weber [23] for observability

of linear systems. The first is

µ1 = λmin(W ), (2.5)

i.e., the smallest eigenvalue of the observability gramian W . The smaller µ1, the less

observable the system is for this metric. The eigenvector corresponding to µ1 is the

worst observable direction of the system. The second metric is

µ2 =
N

trace(W−1)
(2.6)

where N is the number of elements in the N × 1 state vector. Similar to (2.5), the

smaller µ2 is, the less observable the system according to this metric. The third

metric is

µ3 = det(W )
1
N (2.7)

The higher µ3 is, the more observable the system is based on this metric. An appli-

cation using metrics (2.5), (2.6), and (2.7) is satellite attitude control [23].

Dochain et al. [4] utilized the condition number of the observability matrix Φ as

a measure to determine sensor location:

κ(W ) =
σmax(W )

σmin(W )
(2.8)

where σmax represents the largest singular value and σmin represents the minimum

singular value. The condition number gives insight as to how a perturbation in the

input, the initial state vector, perturbs the output, the measurements. A smaller

condition number indicates a higher degree of observablity. It also measures the
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sensitivity in taking the inverse of the matrix. An application using metric (2.8) is in

determining optimal sensor locations for fixed bed bioreactors [4].

Waldraff et al. [24] used the smallest singular value as a metric:

NS(W ) = σmin(W ). (2.9)

This metric gives information about the weight of the least observable mode. An

application using metric (2.9) is determining optimal sensor locations for a tubular

reactor [24].

Van den Berg [25] proposed two methods which put focus is on the weight of the

most observable mode. The first is the spectral radius

ρ(W ) = σmax(W ), (2.10)

which gives information about the most observable mode. The second metric is

trace(W ) =
N∑
i=1

σi(W ), (2.11)

where a larger metric indicates a higher degree of observability. It also gives informa-

tion about the average degree of uncertainty in the estimate. These metrics ((2.10)

and (2.11)) have also been used for sensor placement a in tubular reactor [25].

Another metric, called a Figure of Merit (FOM), is a weighted sum of metrics

from the FIM: condition number, the trace, and the determinant of the observability

gramian [26]. The condition number gives information about the sensitivity of taking

the inverse; the trace gives the overall sensitivity; and the determinant gives the global

estimation uncertainty [26]. The metric is given as:

FOM = −β1 log(κ(W )) + β2 log(trace(W )) + β3 log(det(W )), (2.12)

where βi accounts for the normalization and weight of each term. A high metric

indicates a favorable sensor configuration. An application is sensor placement for

engine health monitoring [26].
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Chapter 3

MATHEMATICAL FORMULATION

Three algorithms are described in this chapter, one of which is in literature. The

first algorithm uses the condition number of the observability matrix κ(Φ) as a met-

ric. The second algorithm uses the trace of the inverse of observability gramian

trace(W−1) as the metric. The third algorithm is one described in [8], which also

uses trace(W−1) as the metric and will be compared with the second algorithm in

Chapter 4.

3.1 Sensor Scheduling Algorithm for Deterministic Measurements

The measure of observability used for this method is the condition number of the

observability matrix κ(Φ) (2.8), which provides information about the computational

tractability of performing the inverse of the observability matrix. To achieve the

highest degree of linear independence, the N columns of the observability matrix

should be orthogonal. The condition number of an orthonormal N × N real matrix

is 1 [27], which in this case, is the optimal value of this metric of observability.

In order to construct Φ with columns which are as orthogonal as possible, the

normalized Gram determinant will be utilized in formulating this algorithm. The

equation of a diffusive system is characterized as in (1.2), but now Cm ∈ R1×N is

chosen from a library C = {C1, . . . , CN} where Cm has a one as its mth element and

is otherwise zero:

xk+1 = Axk

yk = Cmk
xk + ηk

(3.1)

Physically, selecting Cm corresponds to taking a measurement at one point corre-
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sponding to the position of the mth sensor. The N ×N observability matrix for this

system is

Φ =


− Cm0A

0 −
...

− Cmn−1A
n−1 −

 . (3.2)

The Gram matrix [28] of the observability matrix (3.2) yields a matrix of inner

products given as

G = ΦΦT

=


〈
Cm0A

0, Cm0A
0
〉 〈

Cm0 , Cm1A
1
〉

. . .
〈
Cm0 , Cmn−1A

n−1
〉

...
. . .

...〈
Cmn−1A

n−1, Cm0A
0
〉 〈

Cmn−1A
n−1, Cm1A

1
〉

. . .
〈
Cmn−1A

n−1, Cmn−1A
n−1

〉

 ,
(3.3)

where the Gram matrix is G ∈ RN×N . To emphasize the angles between the vectors,

each vector is normalized to unit length; the normalized Gram matrix is given as

G̃ =


1

〈
Cm0

A0

||Cm0
A0|| ,

Cm1A1

||Cm1
A1||

〉
. . .

〈
Cm0A0

||Cm0
A0|| ,

Cmn−1
An−1

||Cmn−1
An−1||

〉
...

. . .
...〈

Cmn−1
An−1

||Cmn−1
An−1|| ,

Cm0
A0

||Cm0
A0||

〉 〈
Cmn−1

An−1

||Cmn−1
An−1|| ,

Cm1
A1

||Cm1
A1||

〉
. . . 1

 .
Using the bilinearity of the inner product, this becomes

G̃ =


〈
Cm0A

0, Cm0A
0
〉 〈

Cm0A
0, Cm1A

1
〉

. . .
〈
Cm0A

0, Cmn−1A
n−1

〉
...

. . .
...〈

Cmn−1A
n−1, Cm0A

0
〉 〈

Cmn−1A
n−1, Cm1A

1
〉

. . .
〈
Cmn−1A

n−1, Cmn−1A
n−1

〉


||Cm0A

0||2 · · · ||Cmn−1A
n−1||2

. (3.4)

The Gram determinant is represented as |G|, which satisfies [29]

0 ≤ |G| ≤
N∏
i=1

||Cmi−1
Ai−1||2 (3.5)

The upper and lower bounds of the normalized Gram determinant equate to

0 ≤ |G̃| ≤ 1

where zero signifies linear dependency and one indicates orthonormal vectors. With

this knowledge, a greedy algorithm [30] is used to formulate a sensor schedule. The
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algorithm begins by randomly selecting the sensor Cm0 for the initial time step k = 0.

For the next time step q, where q ≤ N − 1, a greedy algorithm tests each sensor Cmq

in the library. For each sensor, the normalized Gram determinant is built only from

the row vectors of Φ with the time steps k = 0, . . . , q. The sub-matrix of Φ for time

steps k = 0, . . . , q is

Φ̂ =


− Cm0A

0 −
...

− CmqA
q −

 (3.6)

and the normalized Gram determinant is formalized as

Ĝ =
Φ̂Φ̂T

||Cm0A
0||2 · · · ||CmqA

q||2
. (3.7)

The sensor Cmq which gives the maximum determinant among all N normalized Gram

determinants is assigned to that time step. This process is repeated until sensors have

been selected for all the time steps k = 0, . . . , N − 1. This schedule is then utilized

to collect measurements and subsequently find the initial state x0.
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Algorithm 1 Sensor Scheduling Algorithm based on the Gram determinant

i Define the one-dimensional (1.15) or two-dimensional (1.20) system diffusion

matrix A in (1.2).

ii Let k = 0, 1, . . . , N − 1 be the time steps and q represent the current time step

for which the sensor is being selected.

iii From the library C = {C1, . . . , CN}, randomly choose the first sensor location

Cm0 , to build the first row vector Cm0A
0 of Φ. Note: When a sensor is selected

from the library in any step of this algorithm, the library is replenished.

iv Let Φ̂ (3.6) represent the sub-matrix of the Φ matrix (3.2) which includes the

row vectors for time steps k = 1, . . . , q.

v Sequentially choose every Cm in the library to first compute the row vector

CmqA
q and then compute the normalized Gram determinant Ĝ (3.7) for the

corresponding Φ̂ matrix.

vi From the N normalized Gram determinants, choose the sensor Cm, which yields

the highest result.

vii If q 6= N − 1, repeat steps v. - vi. to select a sensor for the next q time step.

3.2 Sensor Scheduling Algorithm for Noisy Measurements

3.2.1 Method based on the Pseudoinverse

The measure of observability used for this method is the trace of the inverse of

observability gramian, trace(W−1), which gives information about the average degree

of uncertainty in the estimate. To minimize the degree of uncertainty of the initial

state x0, the sensor schedule focuses on minimizing the estimation covariance of the
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initial state. The estimation covariance of the initial state x0 for the system described

in (2.2) is given as

Px0 = ρ(Φ−1)(Φ−1)T

= ρ(ΦTΦ)−1

(3.8)

where Φ is the N × N observability matrix. For time steps k = 0, . . . , q where

q ≤ N − 1, the Φ matrix is (q + 1) × N expressed as Φ̂ in (3.6). In this case, the

inverse of Φ̂ is expressed in terms of the right pseudoinverse [31]

H = Φ̂T (Φ̂Φ̂T )−1. (3.9)

The estimation covariance is now expressed as

P̂x0 = ρHHT . (3.10)

In this algorithm, to avoid the inversion of Φ̂Φ̂T when the matrix is ill-conditioned,

the Singular Value Decomposition (SVD) is used. Let the SVD of Φ̂ be

Φ̂ =

[
U

]
N×N

[
ΣN 0

]
N×M

 V T


M×M

(3.11)

where U is an N ×N unitary matrix, V T is an M ×M unitary matrix, and ΣN is a

diagonal matrix with the singular values of Φ̂ along the diagonal. The SVD of H is
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formulated as

H = (V

 ΣN

0

UT )(U

[
ΣN 0

]
V TV

 ΣN

0

UT )−1

= (V

 ΣN

0

UT )(UΣ−2
N UT )

= V

 ΣN

0

Σ−2
N UT

= V

 Σ−1
N

0

UT .

(3.12)

The SVD of the estimate covariance Φ̂ can be expressed in terms of the SVD of the

right pseudoinverse H as

HHT = (V

 Σ−1
N

0

UT )(U

[
Σ−1

N 0

]
V T )

= V

 Σ−2
N 0

0 0

V T .

(3.13)

This relation shows that ΣN can be found directly from Φ̂ and by minimizing the trace

of Σ−2
N , the trace of the the right pseudoinverse H is also minimized. Therefore, H

does not need to be explicitly evaluated, meaning the inversion of Φ̂Φ̂T is not solved.

In this formulation, the sensor Cm0 for the initial time step k = 0 is arbitrarily chosen.

For the next time step q, a greedy algorithm tries each sensor Cmq in the library by

building Φ̂ (3.6). For each Φ̂ the trace of its SVD is found as

trace(Σ−2
q+1) =

q+1∑
i=1

1

σ2
i

. (3.14)

The sensor Cmq which yields the minimum trace is assigned to that time step.

This process is repeated until sensors have been selected for all the time steps k =
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0, . . . , N−1. This schedule is then utilized to collect measurements and subsequently

estimate the initial state x̂0.

Algorithm 2 Sensor Scheduling Algorithm based on the trace of the observability

matrix
i Define the one-dimensional (1.15) or two-dimensional (1.20) system diffusion

matrix A in (1.2).

ii Let k = 0, 1, . . . , N − 1 be the time steps and q represent the current time step

for which the sensor is being selected.

iii From the library C = {C1, . . . , CN}, randomly choose the first sensor location

Cm0 , to build the first row vector Cm0A
0 of Φ. Note: When a sensor is selected

from the library in any step of this algorithm, the library is replenished.

iv Let Φ̂ (3.6) represent the sub-matrix of the Φ matrix (3.2) which includes the

row vectors for time steps k = 1, . . . , q.

v Sequentially choose every Cm in the library to first compute the row vector

CmqA
q and then compute the SVD for the Φ̂ matrix to find its trace using

equation (3.14).

vi From the N computed traces, choose the sensor Cmq , which yields the smallest

trace.

vii If q 6= N − 1, repeat steps v. - vi. to select a sensor for the next q time step.

3.2.2 Method based on the Kalman Filter

Similar to Algorithm 2, the measure used for this method is the trace of the inverse

of observability gramian, trace(W−1). This method utilizes the sensor scheduling
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algorithm described in [8] to determine the initial state estimate x̂0. For the linear

dynamical discrete-time system in (3.1), the Kalman filter gives the pre-measurement

error covariance P̃k, the post-measurement error covariance P̆k, and the Kalman gain

matrix K as [32]

P̃k = AP̆k−1A
T (3.15a)

P̆k = [I −KkCmk
]P̃k (3.15b)

K = P̃kC
T
mk

[Cmk
P̃kC

T
mk

+ ρ]−1. (3.15c)

In the method described in [8], through the means of a greedy algorithm, the

sensor at each time step is selected from the library C which minimizes the trace of

the post-measurement error covariance P̆k. This schedule is then utilized to find the

estimate of the initial state x̂0. There is no noise on the dynamical system, only on

the measurements. In the Kalman filter, an initial P̆0 = νI needs to be specified.

With a deterministic system, ν = 0. In order to use this algorithm, a non-zero ν

should be defined. Different variances of ν can be tested to find the value which best

optimizes the algorithm for the given set of parameters of the system A. In general,

it was observed that a larger ν should be chosen for a diffusion system that is closer

to being unstable.
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Algorithm 3 Sensor Scheduling Algorithm described in [8]

i Define the one-dimensional (1.15) or two-dimensional (1.20) system diffusion

matrix A in (1.2).

ii Let k = 0, 1, . . . , N − 1 be the time steps and q represent the current time step

for which the sensor is being selected.

iii As the system propagates from time steps k = 0, 1, . . . , N − 1, for each time

step, sequentially test every Cm from the library C = {C1, . . . , CN} to see which

Cmq minimizes the trace of the post-measurement error covariance P̆q.
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Chapter 4

RESULTS

In both the deterministic and noisy measurements cases, the results are presented

in a similar manner. Two different γ parameters are considered, γ = 0.04 and γ =

0.004, for Algorithms 1 and 2 to illustrate the effects on the metric as the size N

increases in the one-dimensional case. Algorithms 1 and 2 are then used to show the

reconstruction of the initial state x̂0 using γ = 0.04 for both the one-dimensional and

two-dimensional systems, with N = 25 and N = 49, respectively. Algorithms 2 and

3 are compared for different variances for the one-dimensional system (N = 25) and

for the two-dimensional system (N = 49). The parameters γ = 0.04 and γ = 0.004

are used in this comparison.

4.1 Simulation Parameters

In this simulation, two different γ parameters are considered, γ = 0.04 and γ =

0.004. The parameter γ is determined by the diffusion rate of α and the ratio r. The

diffusion rate of α = 0.135 will be utilized, which models the diffusion rate of ethanol

in air is α = 0.135(cm/sec2) [33]. The two different r values which are as follows:

r1 = 8
27

and r2 = 4
135

. This results in γ values of γ = 0.04 and γ = 0.004, respectively.

4.2 Deterministic Measurements

Algorithm 1 is used to determine different schedules for different N values, which

represent the size of the one-dimensional system matrix A. For each schedule, the

same sensor, C30 is chosen for time step k = 0 and the condition number of the

observability matrix κ(Φ) is evaluated. Figures 4.1 and 4.2 demonstrate the results
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of Algorithm 1 for γ = 0.04 and γ = 0.004, respectively.
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Figure 4.1: Results of Algorithm 1 illustrate the condition number κ(Φ) as a function
of the N ×N dimension of the one-dimensional diffusive system A for a γ = 0.04.
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Figure 4.2: Results of Algorithm 1 illustrate the condition number κ(Φ) as a function
of the N ×N dimension of the one-dimensional diffusive system A for a γ = 0.004.

Figures 4.1 and 4.2 both demonstrate a linear logarithmic relationship between
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N and the condition number; as N increases, so does the the condition number. The

results for γ = 0.004 yield smaller condition numbers compared to γ = 0.04. This

may be a result of how far each γ is from instability.

4.2.1 One-Dimensional Diffusion System

The following simulation shown in Figures 4.3, 4.4, 4.5, and 4.6 is an example of

Algorithm 1 for a one-dimensional diffusive system with N = 25 and γ = 0.04.
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Figure 4.3: Sensor schedule determined by Algorithm 1 for the one-dimensional
diffusive system with γ = 0.04 and N = 25. The graph illustrates the sensor chosen
as the system propagates for time steps k = 0, . . . , 24.

In the sensor schedule illustrated in Figure 4.3, it can be observed that once

the algorithm chooses a sensor, the same sensor is not picked again for any of the

remaining time steps.

The Φ matrix is built from the sensor schedule and is used to reconstruct the

initial state x̂0 as

x̂0 = Φ−1y. (4.1)
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The reconstructed initial state x̂0 is used to solve for x̂24 as x̂24 = A24x̂0, and x̂12 as

x̂12 = A12x̂0 which is shown in Figure 4.4 and Figure 4.5, respectively.
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Figure 4.4: Algorithm 1 for the one-dimensional case with γ = 0.04 and N = 25.
The graph illustrates the state x̂24.
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Figure 4.5: Algorithm 1 for the one-dimensional case with γ = 0.04 and N = 25.
The graph illustrates the state x̂12.

The reconstructed initial state x̂0 is shown in Figure 4.6.
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Figure 4.6: Algorithm 1 for the one-dimensional case with γ = 0.04 and N = 25.
The graph illustrates the reconstructed initial state x̂0.

Figure 4.6 shows a single release point with the mean-square error (MSE) of

2.10× 10−28 (essentially machine precision).

4.2.2 Two-Dimensional Diffusion System

The following simulation shown in Figures 4.7, 4.8, 4.9, and 4.10 is an example of

Algorithm 1 for a two-dimensional diffusive system with N = 49 and γ = 0.04.
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Figure 4.7: Sensor schedule determined by Algorithm 1 for the two-dimensional
diffusive system with γ = 0.04 and N = 49. The graph illustrates the time steps at
which a sensor was chosen at each grid point corresponding to Ui,j.

Unlike the results shown in Figure 4.3, it can be observed in Figure 4.7 for these

parameters that the use of some sensors are repeated for a different time step and

some locations are not measured at any time step.

The reconstructed initial state x̂0, found using equation (4.1), is used to solve for

the x̂48 as x̂48 = A48x̂0, and x̂24 as x̂24 = A24x̂0 which is shown in Figure 4.8 and

Figure 4.9, respectively.
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Figure 4.8: Algorithm 1 for the two-dimensional case with γ = 0.04 and N = 49.
The graph illustrates the state x̂48.
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Figure 4.9: Algorithm 1 for the two-dimensional case with γ = 0.04 and N = 49.
The graph illustrates the state x̂24.
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Figure 4.10: Algorithm 1 for the two-dimensional case with γ = 0.04 and N = 49.
The graph illustrates the reconstructed initial state x̂0.

Figure 4.10 shows a single release point with a MSE of 1.7× 10−23.

4.3 Noisy Measurements

Algorithm 2 is used to determine different schedules for different N values, which

represent the size of the one-dimensional system matrix A. For each schedule, the

same sensor, C50 is chosen for time step k = 0 and the trace of the inverse of the

observability gramian trace((ΦTΦ)−1) is evaluated. Figures 4.11 and 4.12 demonstrate

the results of Algorithm 1 for γ = 0.04 and γ = 0.004, respectively.
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Figure 4.11: Results of Algorithm 2 illustrate the trace of the inverse of the ob-
servability gramian trace((ΦTΦ)−1) as a function of the N × N dimension of the
one-dimensional diffusive system A for a γ = 0.04.
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Figure 4.12: Results of Algorithm 2 illustrate the trace of the inverse of the ob-
servability gramian trace((ΦTΦ)−1) as a function of the N × N dimension of the
one-dimensional diffusive system A for a γ = 0.004.

Similar to Figures 4.1 and 4.2, Figure 4.11 demonstrates a linear logarithmic
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relationship between N and the trace; as N increases, so does the the trace. In

Figure 4.12, the slope of the curve seems to decrease as N increases. This may be

a result of the ill-conditioning of (ΦTΦ)−1 as N increases. As the matrix begins

to become ill-conditioned, it will produce larger singular values. The reciprocal of

a squared large singular value is small. Adding smaller numbers will decrease the

growth of the trace.

4.3.1 One-Dimensional Diffusion System

The following simulation shown in Figures 4.13, 4.14, 4.15, and 4.16 is an example

of Algorithm 2 for a one-dimensional diffusive system with N = 25 and γ = 0.04 and

noise variance ρ = 0.12.
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Figure 4.13: Sensor schedule determined by Algorithm 2 for the one-dimensional
diffusive system with γ = 0.04, N = 25, and measurement noise variance of 0.12.
The graph illustrates the sensor chosen as the system propagates for time steps k =
0, . . . , 24.

Similar to the results shown in Figures 4.3 and 4.7, it can be observed in Figure

4.13 for these parameters that once the algorithm chooses a sensor, the same sensor
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is not picked again for any of the remainder time steps.

The reconstructed initial state x̂0, found using equation (4.1), is used to solve for

the x̂48 as x̂24 = A24x̂0, and x̂12 as x̂12 = A12x̂0 which is shown in Figure 4.14 and

Figure 4.15, respectively.
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Figure 4.14: Algorithm 2 for the one-dimensional case with γ = 0.04, N = 25, and
measurement noise variance of 0.12. The graph illustrates the state x̂24.
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Figure 4.15: Algorithm 2 for the one-dimensional case with γ = 0.04, N = 25, and
measurement noise variance of 0.12. The graph illustrates the state x̂12.
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Figure 4.16: Algorithm 2 for the one-dimensional case with γ = 0.04, N = 25, and
measurement noise variance of 0.12. The graph illustrates the reconstructed initial
state x̂0.

Figure 4.16 shows a single release point with a MSE of 1.8× 10−2.

4.3.2 Two-Dimensional Diffusion System

The following simulation shown in Figures 4.17, 4.18, 4.19, and 4.20 is an example

of Algorithm 2 for a two-dimensional diffusive system with N = 49 and γ = 0.04.
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Figure 4.17: Sensor schedule determined by Algorithm 2 for the two-dimensional
diffusive system with γ = 0.04, N = 49, and measurement noise variance of 0.012.
The graph illustrates the time steps at which a sensor was chosen at each grid point
corresponding to Ui,j.

Similar to Figure 4.7, it can be observed in Figure 4.17 for these parameters that

the use of some sensors are repeated for a different time step and some locations are

not measured at any time step.

The reconstructed initial state x̂0, found using equation (4.1), is used to solve for

the x̂48 as x̂24 = A24x̂0, and x̂12 as x̂12 = A12x̂0 which is shown in Figure 4.18 and

Figure 4.19, respectively.
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Figure 4.18: Algorithm 2 for the two-dimensional case with γ = 0.04, N = 49, and
measurement noise variance of 0.12. The graph illustrates the state x̂48
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Figure 4.19: Algorithm 2 for the two-dimensional case with γ = 0.04, N = 49, and
measurement noise variance of 0.12. The graph illustrates the state x̂24
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Figure 4.20: Algorithm 2 for the two-dimensional case with γ = 0.04, N = 49, and
measurement noise variance of 0.12. The graph illustrates the reconstructed initial
state x̂0.

Figure 4.16 does not show a clearly visible single release point, which is reflected in

MSE value of 8.8× 103. Not only does the addition of noise effect the reconstruction

of the initial state, but the repeated use of a sensor, as seen in Figure 4.17, may also

increase the MSE value.

4.4 Comparison of Algorithm 2 and Algorithm 3

In the following simulations, Algorithm 2 and Algorithm 3 are compared over

different noise variances from 10−12 to 10−1. For each algorithm and variance, the

simulation is run 100 times and the MSE is solved for each simulation. The average

of the MSE is then plotted against its variance.
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4.4.1 One-Dimensional Diffusion System

Two different sets of parameters are used for Figure 4.21 and Figure 4.22. Both

experiment setups utilize a one-dimensional diffusion system of size N = 25 and the

initial P̆0 = 1002I for Algorithm 3. Figure 4.21 uses γ = 0.04 while Figure 4.22 uses

γ = 0.004.
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Figure 4.21: Average Mean-Square Error for Algorithm 2 and Algorithm 3 with
P̆0 = 1002I for N = 25, γ = 0.04 for a one-dimensional diffusion system.
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Figure 4.22: Average Mean-Square Error for Algorithm 2 and Algorithm 3 with
P̆0 = 1002I for N = 25, γ = 0.004 for a one-dimensional diffusion system.

In both experiments for Figures 4.21 and 4.22, Algorithm 2 yields a smaller average

MSE compared to Algorithm 3. When the system is closer to instability (γ = 0.04),

39



Algorithm 3 performs closer to Algorithm 2, especially for smaller noise variances.

When the system is further away from instability (γ = 0.004), the Algorithm 3

performs slightly more further away to Algorithm 2 compared to Figure 4.21. There

is even more of a difference for smaller variances.

4.4.2 Two-Dimensional Diffusion System

Two different sets of parameters are used for Figure 4.23 and Figure 4.24. Both

experiment setups utilize a two-dimensional diffusion system of size N = 49 and the

initial P̆0 = 1002I for Algorithm 3. Figure 4.23 uses γ = 0.04 while Figure 4.24 uses

γ = 0.004.
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Figure 4.23: Average Mean-Square Error for Algorithm 2 and Algorithm 3 with
P̆0 = 1002I for N = 49, γ = 0.04 for a two-dimensional diffusion system.
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Figure 4.24: Average Mean-Square Error for Algorithm 2 and Algorithm 3 with
P̆0 = 1002I for N = 49, γ = 0.004 for a two-dimensional diffusion system.

In both experiments for Figures 4.23 and 4.24, Algorithm 2 yields a smaller average

MSE compared to Algorithm 3. When the system is closer to instability (γ = 0.04),

Algorithm 3 performs closer to Algorithm 2 for smaller variances. When the system is

further away from instability (γ = 0.004), Algorithm 3 performs closer to Algorithm 2

for larger variances. However, for smaller variances, Algorithm 3 gives a much higher

average MSE value.
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Chapter 5

CONCLUSIONS

In modern networked distributed sensor systems, not all sensors operate simul-

taneously due to constraints. A sensor scheduling problem of estimating a localized

source from one-dimensional and two-dimensional discrete diffusion processes was

investigated as an observability problem. The definition of observability gives a “yes-

no” answer as to whether or not a system is observable. In order to describe the

extent of observability, different metrics of have been purposed to address this in

literature. Most of the sensor selection methods choose the optimal or sub-optimal

sensor location from predetermined sensor schedules. To determine a schedule as the

system propagates in time rather than choosing from a predetermined sensor combi-

nation, two greedy algorithms, Algorithm 2 and Algorithm 3 were purposed for the

one-dimensional and two-dimensional discrete diffusion processes.

In the case with no noise on the measurements, with interest in preforming nu-

merically stable inversion of the observability matrix, the condition number of the

observability matrix κ(Φ) was the metric. As the system propagates, Algorithm 1

builds the normalized Gram matrix for the observability matrix of each sensor in the

library, and the sensor yielding the highest condition number is selected for that time

step. The results of Algorithm 1 shows that as the size of the diffusion matrix N

increases, so does the condition number. Also, the further away from instability, the

lower the condition number.

In the case with with noise on the measurements, in order to focus on the average

degree of uncertainty in the estimated initial state, the trace of the observability

Gramian, trace(W−1) was used as a metric. As the system propagates, Algorithm
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2 builds the observability matrix and its SVD decomposition of each sensor in the

library, and the sensor yielding the smallest trace is selected for that time step.

Algorithm 2 is compared to Algorithm 3 and shows to produce a lower average MSE

value.

Future work could investigate the effects of allowing the algorithms to take more

than one point measurement. This also may allow editing or refinement of the al-

gorithm by investigating the interaction of the eigenstructure of the diffusive system

and the selection of sensors at any given time step.
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