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ABSTRACT 

This dissertation focuses on the biosynthetic production of aromatic fine 

chemicals in engineered Escherichia coli from renewable resources. The discussed 

metabolic pathways take advantage of key metabolites in the shikimic acid pathway, 

which is responsible for the production of the aromatic amino acids phenylalanine, 

tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde 

and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 

mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol 

dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, 

representing an improved host for the future production of benzaldehyde as a sole 

product. In addition, a novel alternative pathway for the production of protocatechuate 

(PCA) and catechol from the endogenous metabolite chorismate is demonstrated. Titers 

for PCA and catechol were achieved at 454 mg/L and 630 mg/L, respectively. To explore 

potential routes for improved aromatic product yields, an in silico model using 

elementary mode analysis was developed. From the model, stoichiometric optimums 

maximizing both product-to-substrate and biomass-to-substrate yields were discovered in 

a co-fed model using glycerol and D-xylose as the carbon substrates for the biosynthetic 

production of catechol. Overall, the work presented in this dissertation highlights 

contributions to the field of metabolic engineering through novel pathway design for the 

biosynthesis of industrially relevant aromatic fine chemicals and the use of in silico 

modelling to identify novel approaches to increasing aromatic product yields.   
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CHAPTER 1 

INTRODUCTION 

 

 

Abstract 

This chapter provides a brief overview of metabolic engineering and the 

motivation for biosynthetically producing aromatic fine chemicals. The metabolic 

pathways to renewably synthesize benzaldehyde, benzyl alcohol, para-hydroxybenzoate, 

protocatechuate, and catechol via metabolites of the shikimic acid pathway are 

introduced. Finally, Chapter 1 concludes with the dissertation organization. 
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1.1 Background and motivation 

Over the last several decades, metabolic engineering has proven to be a powerful 

means of producing a large number of specialty chemicals using readily available 

renewable resources as the starting material in genetically engineered microorganisms. 

Thanks to advancements in parallel fields, such as high throughput genomic sequencing 

and protein engineering, our ability to identify and characterize pathways, whose natural 

products are of industrial significance, has evolved. To date, numerous commodity 

chemicals including biofuels, such as ethanol(Ingram et al. 1998, Woodruff, Boyle, and 

Gill 2013, Clomburg and Gonzalez 2010), butanol(Lan and Liao 2011, Dusséaux et al. 

2013, Nielsen et al. 2009), and long chain fatty acids(Zhang, Rodriguez, and Keasling 

2011, Lu 2010, Radakovits et al. 2010, Work et al. 2012), fine chemicals, such as plastic 

precursors like styrene(McKenna and Nielsen 2011b), hydroxystyrene(Qi et al. 2007b, 

Verhoef et al. 2009), and isoprene(Erickson, Nelson, and Winters 2012), as well as 

pharmaceutical precursors, like artemisinic acid(Ro et al. 2006) and (R)-1,2-

phenylethanediol(McKenna et al. 2013b), have been synthesized renewably in 

recombinant microbes.  

This impressive feat has been achieved by transferring enzymes, or pathways, 

with desirable biocatalytic properties from one (or more) organisms, via plasmid-based 

recombinant DNA technology, to hosts that may be readily engineered. However, 

redirecting a microbial host’s natural metabolism to overproduce non-natural products 

comes with a price, as hosts are often ill-equipped to handle the imposed metabolic 

burden(Jones, Kim, and Keasling 2000). Genetically modifying a microbial host inflicts a 

considerable degree of stress by forcing it to 1. harbor and stably maintain foreign DNA, 
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2. redirect key metabolic regulatory machinery involved in transcription and translation, 

and 3. overcome the presence of antibiotics and toxic pathway byproducts. As a result of 

the metabolic burden associated with the overproduction of proteins, engineered hosts 

most commonly suffer from reduced growth rates, lower biomass yields, and inclusion 

body (protein aggregate) formation. In addition, while natural systems have evolved to 

control pathway flux, recombinant pathways often suffer from flux imbalances which 

limit achievable titers and yields while imposing unnecessary burden on the host(Dueber 

et al. 2009). Thus, the field of metabolic engineering has been working diligently to apply 

advancements in synthetic biology to overcome bottlenecks, reduce burden, and achieve 

higher titers of biosynthetically produced commodity chemicals(Keasling 1999, Dueber 

et al. 2009)    

1.2 Motivation for renewably synthesizing aromatic fine chemicals  

 While most of the attention in the field of metabolic engineering has been on the 

biosynthetic production of transportation fuels, in response to the growing concern of the 

depletion of oil reserves, what is often overlooked is the numerous fine chemicals which 

are also produced from petroleum. In particular, nearly all aromatic compounds are 

derived, in one fashion or another, from petroleum derived BTX (benzene, toluene, and 

the three isomers of xylene) aromatics(Radwan et al. 1997, Schobert and Song 2002). 

BTX aromatics are used as precursors for the synthetic production of numerous fine 

chemicals including phenol (used to make phenolic resins)(Schobert and Song 2002, 

Schmidt 2005), styrene (used to make plastics)(McKenna and Nielsen 2011b, Miller, 

Newhook, and Poole 1994), ethylbenzene (a precursor to styrene)(Miller, Newhook, and 

Poole 1994), cumene (an aromatic building-block)(Schmidt 2005), and terephthalate (a 
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component of PET plastics)(Sako et al. 2000), to name a few. Once petroleum resources 

are depleted, however, alternative and renewable routes for the production of these 

essential commodity chemicals will be a necessity. Metabolic engineering and the 

engineering of microbes via recombinant DNA technology offers one such approach to 

renewably synthesizing chemicals of industrial significance(Adkins et al. 2012). 

  To date, numerous BTX derivatives have been biosynthetically produced in 

engineered microbes from renewable resources, including styrene(McKenna and Nielsen 

2011b), hydroxystyrene(Qi et al. 2007b), phenol(Wierckx et al. 2005b), and 

vanillin(Kim, Kim, and Lee 2008), to name a few. This was accomplished via the de 

novo construction of heterologous pathways in engineered microorganisms taking 

advantage of endogenous aromatic metabolites. To date however, neither benzene, 

toluene, or any isomer of xylene has been produced renewably; therefore, researchers 

must continue to discover new routes to biosynthetically produce their derivatives. Thus, 

the focus of this work will be to construct and characterize novel pathways for the 

renewable synthesis of aromatic fine chemicals, in particular: the flavor compounds 

benzaldehyde and benzyl alcohol,  and the phenolic antioxidants para-hydroxybenzoate, 

protocatechuate and catechol. 

1.3 Metabolic Pathways 

 To renewably synthesize aromatic fine chemicals in engineered E. coli, the 

shikimic acid pathway offers a valuable source of aromatic precursors to which 

engineered pathways may be linked to central metabolism. The shikimic acid pathway is 

a tightly regulated pathway responsible for the production of the proteinogenic aromatic 

amino acids phenylalanine, tyrosine and tyrptophan(Keseler et al. 2005). As illustrated in 
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Fig. 1.1, the pathway begins by the condensation of phosphoenolpyruvate (PEP) and D-

erythrose-4-phosphate (E4P) to form 3-deoxy-D-arabino-heptulosonate-7-phosphate 

(DAHP) via the expression of DAHP synthase. E. coli possess three isozymes of DAHP 

synthase including aroF, aroG, and aroH which are regulated both transcriptionally and 

allosterically in the presence of tyrosine, phenylalanine, and tryptophan, respectively. 

Transcriptional regulation is mediated by the DNA-binding transcriptional repressors 

TyrR (tyrosine and phenylalanine) and TrpR (tryptophan), which bind to chromosomal 

DNA at the transcription initiation site in the presence of the respective amino acids. In 

addition to tight regulation of carbon entering the shikimic acid pathway, consumption of 

the key metabolite chorismate, at which point the pathways for the three aromatic amino 

branches off, is also tightly regulated. Here, chorismate may either be directed toward 

tryptophan via the enzyme TrpE (anthranilate synthase component I), phenylalanine via 

the enzyme PheA (phenylpyruvate forming bi-functional chorismate mutase/prephenate 

dehydratase), or tyrosine via the enzyme TyrA (4-hydroxyphenylpyruvate forming bi-

functional chorismate mutase/prephenate dehydratase)(Keseler et al. 2005). Similar to the 

DAHP synthase isozymes, expression of TyrA and TrpE is controlled both 

transcriptionally (mediated by TyrR and TrpR, respectively) and allosterically; 

meanwhile, PheA is regulated only via allosteric enzyme inhibition(Keseler et al. 2005). 

To achieve high flux through the shikimic acid pathway and thus achieve high titers of 

biosynthetically produced aromatic fine chemicals, a suitable host in which feedback 

regulation has been relieved is a necessity. 
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Figure 1.1 Biosynthetic routes for the production of aromatic fine chemicals. 
Multiple arrows indicate that several steps are occurring but not illustrated. Dashed arrows 

indicate that the metabolite demonstrates feedback repression via allosteric enzyme inhibition, 

transcriptional repression, or both.  

 

To overcome the feedback regulation imposed on the shikimic acid pathway, a 

feedback resistant mutant, E. coli NST74 ATCC 31884, has previously been engineered 

to overproduce phenylalanine(Tribe 1987b). As a result of mutagenesis, mediated via the 

chemomutagen NTG (N-methyl-N'-nitro-N-nitrosoguanidine) and high throughput 

selection on phenylalanine anti-metabolite plates containing p-fluoro-DL-phenylalanine, 

NST74 possesses mutations which relieve the allosteric enzyme inhibition of AroF, 



7 
 

AroG, AroH, and PheA(Tribe 1987b). In addition, the phenylalanine operator PheO and 

the DNA-binding transcriptional repressor TyrR were also mutated to promote the 

production of phenylalanine. In controlled bioreactor experiments, NST74 has been 

shown to achieve titers as high as 1.98 g/L of phenylalanine(Tribe 1987b). With such a 

high flux through the shikimic acid pathway, NST74 represents an ideal host platform for 

further genetic engineering to biosynthetically produce aromatic fine 

chemicals(McKenna and Nielsen 2011b).       

 In addition to mutating the feedback resistant enzymes (AroF, AroG, AroH, and 

PheA) of the shikimic acid pathway, various other strategies have been employed to 

increase flux. As previously described, carbon enters the shikimic acid pathway via the 

condensation of PEP and E4P(Keseler et al. 2005). As a product of glycolysis and the 

immediate precursor of the TCA cycle, PEP is a readily available endogenous metabolite 

and it is believed that flux entering the pathway is limited by the bioavailability of E4P. 

E4P is the final product of the pentose phosphate pathway (which is responsible for 

purine and pyrimidine biosynthesis) and is readily incorporated into glycolysis via the 

reversible transketolase reaction, expressed by tktAB in E. coli(Keseler et al. 2005). 

Overexpression of tktA in E. coli has been shown to redirect flux from glycolysis into the 

pentose phosphate pathway yielding higher tiers of E4P and thus higher flux through the 

shikimic acid pathway(Draths et al. 1992, Curran et al. 2013b). A similar approach, while 

crude, involves knocking out the pentose phosphate by deletion of glucose-6-phosphate 

dehydrogenase (expressed in E. coli as zwf) and forcing flux to be redirected via the 

reversible transketolase reaction. When combined, overexpression of transketolase and 

deletion of the pentose phosphate pathway have been shown to work synergistically to 
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improve the bioavailability of E4P, as reported in the yeast Saccharomyces 

cerevisiae(Curran et al. 2013b).    

 As summarized by Fig. 1.1, the shikimic acid pathway possesses a plethora of 

endogenous precursors for the biosynthetic production of aromatic fine chemicals. To 

start, the metabolite chorismate, whose consumption is naturally regulated by E. coli, 

offers a means to achieve the biosynthetic production of protocatechuate (PCA) and 

catechol. This is achieved by first converting chorismate to the phenolic acid para-

hydroxybenzoate (pHBA). pHBA may then be hydroxylated to yield PCA, which may 

subsequently be decarboxylated to produce the phenolic diol catechol. Previous reports 

have demonstrated that PCA and catechol may be biosynthetically derived from the 

metabolite dehydroshikimate (DHS)(Curran et al. 2013b, Draths and Frost 1994); 

however, we propose this alternative pathway may represent a more suitable platform. 

Downstream of the shikimic acid pathway, the intermediate metabolite phenylpyruvate 

(the immediate precursor to phenylalanine) also represents a platform for the biosynthetic 

production of the aromatic flavor and fragrance compounds benzaldehyde and benzyl 

alcohol. This is achieved by first converting phenylpyruvate to (S)-mandelate. 

Subsequently, (S)-mandelate is then converted to phenylglyoxylate which may then be 

decarboxylated to yield benzaldehyde. E. coli, however, has been found to possess 

numerous alcohol dehydrogenases with activity on benzaldehyde, and thus has the innate 

ability to convert benzaldehyde to benzyl alcohol. The pathways mentioned above, and 

illustrated in Fig. 1.1, will be described in greater detail in the proceeding chapters.       
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1.4 Dissertation organization 

 This dissertation is organized into five chapters. Chapter 1 provides a brief 

discussion on the motivation of the research and recent advancements in the field of 

metabolic engineering. This chapter also provides an outline of the metabolic pathways to 

achieve the biosynthetic production of the monoaromatic fine chemicals of interest from 

renewable resources in recombinant E. coli. In Chapter 2, the biosynthetic production of 

the fine chemicals benzaldehyde and benzyl alcohol from renewable resources in 

engineered E. coli is demonstrated, for the first time (Figure 1.1, Aim 1). In Chapter 3, a 

novel biosynthetic route toward the production of para-hydroxybenzoate, 

protocatechuate, and catechol is discussed (Figure 1.1, Aim 2). In Chapter 4, elementary 

mode analysis was used to screen alternative carbon substrates to increase the 

bioavailability of PEP and E4P and ultimately increase flux through the shikimic acid 

(Figure 1.1, Aim 3). Finally, in Chapter 5, conclusions and future works are discussed.  
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CHAPTER 2 

ENGINEERING ESCHERICHIA COLI FOR RENEWABLE BENZYL ALCOHOL 

PRODUCTION 

Abstract 

Benzyl alcohol is an aromatic hydrocarbon used as a solvent and an intermediate 

chemical in the pharmaceutical, cosmetics, and flavor/fragrance industries.  The de novo 

biosynthesis of benzyl alcohol directly from renewable glucose was herein explored 

using a non-natural pathway engineered in Escherichia coli. Benzaldehyde was first 

produced from endogenous phenylpyruvate via three heterologous steps, including 

hydroxymandelate synthase (encoded by hmaS) from Amycolatopsis orientalis, followed 

by (S)-mandelate dehydrogenase (encoded by mdlB) and phenylglyoxylate decarboxylase 

(encoded by mdlC) from Pseudomonas putida ATCC 12633. The subsequent rapid and 

efficient reduction of benzaldehyde to benzyl alcohol occurred by the combined activity 

and native regulation of multiple endogenous alcohol dehydrogenases and/or aldo-keto 

reductases. Through systematic deletion of competing aromatic amino acid biosynthesis 

pathways to promote endogenous phenylpyruvate availability, final benzyl alcohol titers 

as high as 114 ± 1 mg/L were realized, representing a yield of 7.6 ± 0.1 mg/g on glucose 

and a ~5-fold improvement over initial strains. 

 

This work was published as:  

Pugh, S., McKenna, R., Halloum, I., & Nielsen, D.R. Engineering Escherichia coli for 

renewable benzyl alcohol production. Metab Eng Comm 2, 39-45 (2015) 
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2.1 Introduction 

Benzyl alcohol is a naturally occurring monoaromatic alcohol with a broad range 

of commercial applications and a current market price of $2000-2500 USD/ton. With 

both low volatility and toxicity yet strong polarity, benzyl alcohol is attractive as a safe 

and effective solvent, particularly for use with polymers and in applications including the 

production of inks, paints, glues, and hardening products (e.g., epoxy resins) (Stellman 

1998, Stoye and Freitag 1998, Ash and Ash 2009).  Additionally, while benzyl alcohol 

itself confers a floral scent, it is more commonly employed as a precursor to synthesize a 

variety of other ester products with numerous flavor/fragrance uses, including in the 

manufacture of food products (Fenaroli and Burdock 1995), as well as high value hygiene 

and cosmetic products.  For example, prior reports have found benzyl alcohol to be used 

in 322 cosmetic formulations belonging to 43 product categories (Nair 2001).  

Meanwhile, as it renders a bacteriostatic effect at even low concentrations (Marriott 

2010), benzyl alcohol is also commonly used as a topical agent and preservative in the 

pharmaceutical and healthcare industries (Wilson and Martin 1999, Felton 2013, 

Meinking et al. 2010).  

Benzyl alcohol is naturally synthesized by many plants, notably accumulating in 

edible fruits and tea leaves, as well as in the essential oils of ylang-ylang, jasmine, and 

hyacinth (Budavari et al. 1989).  In such cases, however, benzyl alcohol contents have 

rarely been found to surpass even ~30 mg/kg (COE 1992) rendering these natural sources 

as unsuitable for supporting a commodity scale benzyl alcohol bioproduction efforts. 

Accordingly, conventional production of benzyl alcohol is achieved from petroleum-

derived feedstocks.  Most commonly this occurs from benzyl chloride (considered a 
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‘probable carcinogen’) via alkaline hydrolysis (e.g., with sodium hydroxide) (Yadav and 

Mehta 1993).  In addition to employing energy intensive and harsh reaction conditions, 

this process suffers from sustainability concerns as it involves the use of non-renewable 

feedstocks. 

As an alternative and more sustainable approach, the de novo biosynthesis of 

benzyl alcohol directly from renewable glucose was herein explored through the 

systematic engineering of a non-natural biosynthetic pathway engineered in the bacterium 

Escherichia coli.  The proposed pathway, which utilizes phenylpyruvate as its immediate 

endogenous precursor, is illustrated in Figure 2.1. First, phenylpyruvate is converted to 

(S)-mandelate via expression of hydroxymandelate synthase (hmaS) from Amycolatopsis 

orientalis. Though its native substrate is 4-hydroxyphenylpyruvate, HmaS has also been 

shown to display activity on phenylpyruvate (Sun et al. 2011). (S)-Mandelate is 

subsequently converted to benzaldehyde by co-expression of two genes derived from the 

mandelate degradation pathway of Pseudomonas putida ATCC 12633 (Tsou et al. 1990).  

Specifically, conversion of (S)-mandelate to phenylglyoxylate by (S)-mandelate 

dehydrogenase (mdlB) followed by decarboxylation of phenylglyoxylate to benzaldehyde 

by phenylglyoxylate decarboxylase (mdlC). The production of benzyl alcohol from 

benzaldehyde has been reported to occur naturally in E. coli as a result of the native 

function of multiple endogenous alcohol dehydrogenases (ADHs) and/or aldo-keto 

reductases (AKRs).  For example, E. coli yqhD has been shown to display substantial 

activities with respect to the NADPH-dependent reduction of benzaldehyde 

(Sulzenbacher et al. 2004). Meanwhile, in another recent study it was demonstrated that 

the native regulation and activity of multiple ADHs/AKRs from E. coli (specifically, 
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yqhD, yjgB, and yahK) was sufficient for the rapid and efficient in vivo reduction of 2-

phenylacetaldehyde to 2-phenylethanol – a structurally similar aromatic substrate-product 

pair likewise synthesized via a heterologous pathway (Koma et al. 2012b). This study 

outlines our recent progress towards the systematic engineering of the proposed benzyl 

alcohol pathway, along with preliminary efforts in host strain engineering to improve 

initial product titers and yields. 

 
Figure 2.1 Proposed pathway for benzaldehyde and benzyl alcohol biosynthesis from 

glucose by engineered E. coli. Dashed arrows indicate multiple steps. Black and gray arrows 

indicate native and heterologous pathway steps, respectively. Abbreviations: 

phosphoenolpyruvate (PEP), D-erythrose-4-phosphate (E4P), 3-deoxy-D-arabino-heptulosonate-

7-phosphate (DAHP). 
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2.2 Materials and Methods 

2.2.1 Bacterial Strains and Media 

All strains constructed and used in this study are listed in Table 2.1. E. coli 

NEB10-Beta was obtained from New England Biolabs (NEB, Ipswich, MA) and was 

used for all cloning work and the plasmid propagation. E. coli NST74 (ATCC 31884) – a 

previously developed, feedback-deregulated phenylalanine overproducer (Tribe 1987a) – 

was obtained from the American Type Culture Collection (ATCC, Manassas, VA) and 

used as the initial host platform for aromatics production. P. putida ATCC 12633 was 

also obtained from the ATCC and served as the genetic source of mdlB and mdlC. E. coli 

JW2581-1, JW4014-2, and JW0911-1 were all obtained from the Coli Genetic Stock 

Center at Yale University (CGSC, New Haven, CT) and used as the source of genetic 

materials for the chromosomal deletion of tyrA, tyrB, and aspC, respectively. 

E. coli and Pseudomonas sp. were routinely cultured in Luria-Bertani (LB) broth 

supplemented with ampicillin (100 mg/L), chloramphenicol (34 mg/L), and kanamycin 

(40 mg/L), as appropriate. For aromatics production, strains were cultured in a 

phosphate-limited minimal media with 15 g/L glucose (herein referred to as “MM1”), 

previously adapted from that of Qi et al. (Qi et al. 2007b) and described by McKenna and 

Nielsen (McKenna and Nielsen 2011b). To compensate for auxotrophies introduced in 

mutant strains, MM1 media was supplemented with tyrosine (0.1 g/L) and aspartate (3 

g/L), as appropriate.   
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Table 2.1. Strains and plasmids constructed and/or used in this study. 

Strains Description Source 

E. coli NEB10-Beta 

araD139 ∆(ara,leu)7697 fhuA lacX74 galK16 

galE15 mcrA f80d(lacZ∆M15)recA1 relA1 

endA1 nupG rpsL rph spoT1∆(mrr-hsdRMS-

mcrBC) 

NEB 

E. coli NST74 

aroH367, tyrR366, tna-2, lacY5, aroF394(fbr), 

malT384, pheA101(fbr), pheO352, 

aroG397(fbr) 

ATCC  

P. putida 

ATCC12633 
Source of mdlB, mdlC, mdlD ATCC  

E. coli JW2581-1 source of tyrA::FRT-Kan-FRT CGSC 

E. coli JW4014-2 source of tyrB::FRT-Kan-FRT CGSC 

E. coli JW0911-1 source of aspC::FRT-Kan-FRT CGSC 

E. coli NST74A NST74 ΔtyrA::FRT This study 

E. coli NST74AB NST74 ΔtyrA::FRT ΔtyrB::FRT This study 

E. coli NST74ABC NST74 ΔtyrA::FRT ΔtyrB::FRT ΔaspC::FRT This study 

Plasmids Description Source 

pTrc99A Ptrc, pBR322 ori, lacIq, Amp
R
 

Prather Lab, 

MIT 

pTrcCOLAK Ptrc, ColA ori, lacIq, Kan
R
 

McKenna et al. 

2013 

pUC57-HmaS 
pMB1 ori, Amp

R
, hmaS (codon optimized for 

E. coli) 
Genscript 

pHmaS 
hmaS of pUC57-HmaS inserted into the NcoI 

and EcoRI sites of pTrcCOLAK 
This study 

pHmaS-MdlC 

mdlC of P. putida ATCC 12633 inserted into 

the XbaI and HindIII sites of pHmaS with 

second Ptrc inserted ahead of mdlC between the 

BamHI and XbaI sites 

This study 

pMdlB 
mdlB of P. putida ATCC 12633 inserted 

between the NcoI and EcoRI sites of pTrc99A 
This study 

  

2.2.2 Plasmid Construction 

All plasmids used in this study are also listed in Table 2.1.  The plasmid 

pTrcCOLAK, a fusion of pTrc99A and pCOLADuet-1 (Invitrogen, Carlsbad, CA), was 

developed in house as previously described (McKenna et al. 2013b). The 

hydroxymandelate synthase encoding gene, hmaS from A. orientalis, was synthesized to 
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include codon optimization for high-level expression in E. coli by Genscript (Piscataway, 

NJ) and harbored in plasmid pUC57-HmaS. To construct pHmaS, codon optimized hmaS 

was PCR amplified from pUC57-HmaS and inserted between the NcoI and EcoRI sites of 

pTrcCOLAK. Subsequently, mdlC was PCR amplified from the gDNA of P. putida 

ATCC 12633 and inserted between the XbaI and HindIII sites of pHmaS. To ensure high-

level expression of mdlC, a second Ptrc promoter was inserted ahead of mdlC (between 

the BamHI and XbaI sites), resulting in pHmaS-MdlC.  To construct pMdlB, mdlB was 

PCR amplified from P. putida ATCC 12633 gDNA and inserted between the NcoI and 

EcoRI sites of pTrc99A. 

Custom DNA oligonucleotide primers were designed and synthesized by 

Integrated DNA Technologies (Coralville, IA). Genomic DNA (gDNA) was prepared 

from cultures using the ZR Fungal/Bacterial DNA MiniPrep (Zymo Research, Irvine, 

CA) according to vendor protocols. All genes were PCR amplified using Phusion High-

Fidelity DNA Polymerase (NEB) according to standard protocols. Amplified linear DNA 

fragments were purified using the DNA Clean & Concentrator kit (Zymo Research) 

according to manufacturer protocols. Purified DNA was subsequently digested using 

appropriate restriction endonuclease enzymes (NEB) at 37ᵒC for 3 h. Digested fragments 

were gel purified using the Zymoclean Gel DNA Recovery kit (Zymo Research) and 

ligated using T4 DNA ligase (NEB) at 4ᵒC overnight. Ligation reactions were 

transformed into chemically competent E. coli NEB10-Beta (NEB) and selected by 

plating on LB solid agar containing appropriate antibiotics (as above). Subsequently, 

transformant pools were screened first by colony PCR (using the same primers as for 
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cloning) and then by restriction digest mapping.  Final plasmid constructs were verified 

by sequencing. 

2.2.3 Construction of E. coli deletion mutants 

Chromosomal in-frame gene deletions were accomplished via a protocol adapted 

from the one-step inactivation method of Datsenko and Wanner (Datsenko and Wanner 

2000b). Deletion cassettes for all targeted loci, each of which harbored a kanamycin 

resistance gene flanked by FLP recognition target sites, were PCR amplified from the 

gDNA of appropriate Keio collection mutants (Table 2.1) (Baba et al. 2006). In each 

instance, primer pairs were designed to amplify 300 bp of homology both upstream and 

downstream of the target gene sequence. Subsequent recombination steps were 

performed as previously described (Datsenko and Wanner 2000b). 

2.2.4 Assaying recombinant pathway function via whole cell biotransformation studies 

E. coli NST74 was co-transformed with both pHmaS-MdlC and pMdlB. Single 

colonies were selected from the transformant pool and seed cultures were grown in 5 mL 

LB broth with appropriate antibiotics at 37ᵒC while shaking at 200 RPM overnight. Each 

seed culture was used to inoculate 50 mL LB supplemented with 20 g/L glucose and 

appropriate antibiotics in a 250 mL baffled shake flasks.  Upon reaching an optical 

density at 600 nm (OD600) of ~0.7, cultures were induced by addition of 0.25 mM IPTG. 

Culturing continued overnight before cells were harvested by centrifugation at 3,000 x g, 

washed twice with pH7 phosphate buffered saline (PBS) solution, and re-suspended in 50 

mL pH7 PBS with 5 g/L glucose and 1 g/L phenylpyruvate.  Cultures were incubated at 

37
o
C while levels of each of phenylpyruvate, phenylalanine, (S)-mandelate, 

phenylglyoxylate, benzaldehyde, and benzyl alcohol were subsequently monitored in the 
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media for the next 7 h by periodic sampling for high performance liquid chromatography 

(HPLC) analysis. This experiment was repeated in triplicate to provide estimates of 

standard error. 

2.2.5 Benzyl alcohol production directly from glucose by engineered E. coli strains 

 To test for benzyl alcohol production directly from glucose, each of E. coli 

NST74, NST74A, NST74AB, and NST74ABC were co-transformed with pHmaS-MdlC 

and pMdlB. Seed cultures were prepared as above and used to inoculate 50 mL MM1 

media in a 250 mL baffled shake flask supplemented with appropriate antibiotics and, as 

needed, required amino acids. Cultures were grown at 37ᵒC while shaking at 200 RPM 

for 10 h prior to induction by addition of 0.25 mM IPTG. Culturing continued for an 

additional 96 h, during which time media samples were routinely removed and prepared 

for analysis by HPLC. All cultures were performed in triplicate to provide estimates of 

standard error. 

2.2.6 Assaying benzyl alcohol toxicity 

Cursory estimates of benzyl alcohol toxicity against E. coli NST74 were obtained 

by monitoring for changes in growth rate and yield that occur following its exogenous 

addition to growing cultures at different concentrations. Cultures were grown in 50 mL 

MM1 media in 250 mL baffled glass shake flasks at 37ᵒC while shaking at 200 RPM.  At 

an OD600 of ~0.5, benzyl alcohol was added to the cultures at final concentrations ranging 

from 0 to 2 g/L. Growth was then routinely monitored by measurement of OD600 for an 

additional 6 h. All cultures were performed in triplicate to provide estimates of standard 

error. 



19 
 

2.2.7 Metabolite analysis by HPLC 

Samples were prepared by centrifuging 1 mL of culture at 10,000 x g for 3 min to 

pellet and remove cells. Supernatants were transferred to an HPLC vial with a Teflon-

lined cap. HPLC analysis was performed using a Hewlett Packard 1100 series HPLC 

system (Agilent, USA). Metabolites were separated using a reverse-phase Hypersil Gold 

aQ polar end capped C18 column (4.6 mm x 150 mm; Thermo Fisher, USA) maintained 

at 45ᵒC and measured with a diode array detector operated at 215 nm (for phenylalanine, 

(S)-mandelate, phenylpyruvate, and benzyl alcohol) and 255 nm (for phenylglyoxylate 

and benzaldehyde). Samples (5 μL) were injected into a mobile phase with a constant 

total flow rate of 0.95 mL/min. The mobile phase consisted of ‘solvent A’ consisting of 

nanopure water, and ‘solvent B’ consisting of HPLC-grade methanol (99.8% pure). 

Beginning as a mixture (vol./vol.) of 95% solvent A and 5% solvent B, a linear gradient 

was then applied over 8 min until reaching 20% solvent A and 80% solvent B. This 

condition was then held for 2 min before a second liner gradient was applied over 4 min 

until reaching 95% solvent A and 5% solvent B. Under these conditions, phenylalanine, 

phenylglyoxylate, (S)-mandelate, phenylpyruvate, benzyl alcohol, and benzaldehyde 

were eluted at 4.3, 4.6, 5.9, 6.2, 7.1, and 7.8 min, respectively. Standard solutions were 

developed for each species and used as external calibrations to determine concentrations.   
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2.2.8 Measurement of biomass growth 

Optical density measurements at 600 nm (OD600), performed with a DU800 

spectrophotometer (Beckman Coulter, Brea, CA), were used to determine biomass 

concentration. Dry cell weight (DCW) was then predicted using an established 

conversion factor (1 OD600 = 0.26 g/L) (Guo et al. 2012).  

2.3 Results and discussion 

2.3.1 Investigating heterologous enzyme and pathway function 

Recombinant activity of all candidate enzymes as part of the composite pathway 

was first assayed by investigating the conversion of exogenously supplied 

phenylpyruvate by E. coli NST74 pHmaS-MdlC pMdlB resting cells. As illustrated in 

Figure 2.2, the entire 1 g/L of initially added phenylpyruvate was consumed within the 

first 7 h of the experiment.  In this time, phenylglyoxylate first accumulated before then 

being mostly consumed within ~1.5 h. As phenylglyoxylate was consumed, both 

benzaldehyde and benzyl alcohol began to accumulate, doing so at similar initial rates.  

After 1 h, however, benzaldehyde accumulation slowed, reaching a maximum titer of 60 

± 9 mg/L at 3 h before then gradually declining through the remainder of the experiment. 

Benzyl alcohol finally emerged as the major pathway metabolite, approaching a maximal 

titer of 203 ± 5 mg/L by 7 h (note: by 24 h, (S)-mandelate, phenylglyoxylate, and 

benzaldehyde were undetected or present only at trace levels while benzyl alcohol titers 

reached 222 ± 3 mg/L; data not shown). In addition, however, phenylalanine also 

accumulated, reaching a titer of 610 ± 30 mg/L after 7 h. At this level, the competing 
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biosynthesis of phenylalanine was responsible for consuming 63% of supplied 

phenylpyruvate, with only 32% ultimately being converted to benzyl alcohol.  

 
Figure 2.2 Demonstrating pathway function and monitoring metabolite flux via a 

whole resting cell biotransformation assay using exogenous phenylpyruvate and E. coli 

NST74 pHmaS-MdlC pMdlB. The conversion of 1 g/L phenylpyruvate (open diamonds) to 

phenylalanine (solid circles), (S)-mandelate (solid squares), phenylglyoxylate (open circles), 

benzaldehyde (open triangles), and benzyl alcohol (solid diamonds) was monitored over the 

course of 7 h. Error bars reported at one standard deviation from triplicate experiments.         

 

Several relevant insights were gained through this initial assay.  First, the 

candidate heterologous enzymes and proposed pathway are functionally expressed in E. 

coli under the examined conditions.  Second, a flux bottleneck emerged early on at MdlC, 

possibly as the result of a cofactor (i.e., NAD(P)
+
) limitation that was later balanced and 

eliminated as flux proceed to benzyl alcohol via the NAD(P)H-dependent reduction of 
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benzaldehyde. Third, despite only expressing hmaS, mdlB, and mdlC (which encode the 

three steps from phenylpyruvate to benzaldehyde; Figure 2.1), metabolite flux continued 

efficiently through benzaldehyde to benzyl alcohol, confirming that one or more of E. 

coli’s native AKRs and/or ADHs with activity on benzaldehyde were expressed and 

functional under the conditions studied.  Moreover, considering that cultures were not 

previously adapted with or even exposed to benzaldehyde, the native regulation of said 

gene(s) was not part of a benzaldehyde-inducible response, but rather was likely the 

subject to constitutive expression.  Lastly, native phenylalanine biosynthesis clearly 

emerged as a significant competitor for phenylpyruvate availability (Figure 2.1).  This 

suggests that the engineered pathway, or at least its first committed step (i.e., HmaS), was 

poorly competitive against the native function of phenylalanine aminotransferase (i.e., 

TyrB). 

2.3.2 Benzyl alcohol biosynthesis from glucose by using E. coli NST74 as production 

host 

Having demonstrated the initial and promising function of the engineered 

pathway, benzyl alcohol biosynthesis directly from glucose was next investigated. With 

E. coli NST74 as the initial production host, however, benzyl alcohol accumulation to a 

maximum titer of only 23 ± 2 mg/L was possible in 96 h. Instead, phenylalanine again 

accumulated as the major end product, reaching up to 900 ± 160 mg/L. This observation 

agrees well with the outcomes of the phenylpyruvate biotransformation study (Figure 

2.2), and was likely a result of the limited affinity of HmaS for phenylpyruvate as 

substrate.  Although HmaS is known to demonstrate activity on phenylpyruvate, its 

natural and preferred substrate is 4-hydroxyphenylpyruvate.  Accordingly, HmaS 
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displays a nearly 70-fold lower affinity for phenylpyruvate (Km 0.45± 0.04 mM) versus 

4-hydroxyphenylpyruvate (Km 6.5 ± 0.8 µM) (He, Conrad, and Moran 2010).  However, 

as no other isoenzymes specific for (S)-mandelate are presently known, HmaS remains 

the only suitable candidate at this time.  Future isolation or engineering of a superior 

mandelate synthase will likely be required to achieve increased metabolite flux into the 

benzyl alcohol pathway, thereby improving achievable titers and yields.  For now, the 

prospect of enhancing benzyl alcohol production by preserving phenylpyruvate 

availability was examined by eliminating competing aromatic amino acid biosynthesis 

pathways.  

 2.3.3 Host strain engineering to improve precursor availability and benzyl alcohol 

production 

In addition to metabolite flux losses to phenylalanine (Figure 2.2), the competing 

biosynthesis of tyrosine has also previously been found to detract from achievable titers 

and yields of other aromatic chemicals similarly derived from the phenylalanine 

biosynthesis pathway (McKenna et al. 2013a).  Accordingly, disruption of both tyrosine 

and phenylalanine biosynthesis was systematically examined in support of enhancing 

benzyl alcohol production.  While deletion of tyrA (a bifunctional chorismate 

mutase/prephenate dehydratase) resulted in greater flux of prephenate through the 

phenylalanine branch of the pathway (leading to 53% higher phenylalanine titers; 

NST74A in Table 2.2), increased production of benzyl alcohol was not coincidentally 

observed (both titer and yield were reduced).  To preserve phenylpyruvate, phenylalanine 

aminotransferase activity was next targeted for disruption. E. coli possesses three 

aminotransferases with reported activity on phenylpyruvate, including tyrB, aspC, and 
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ilvE (the latter two are nominally functional on aspartate and branched-chain amino 

acids, respectively) (Keseler et al. 2005). Prior studies have shown that by deleting both 

aspC and tyrB (which possesses nearly 1,000-fold higher activity than aspC) while 

leaving ilvE intact, flux of phenylpyruvate to phenylalanine can be reduced to all but the 

minimal level required to avoid generating a complete phenylalanine auxotroph (Sun et 

al. 2011, Keseler et al. 2005). Accordingly, strains NST74AB and NST74ABC were next 

constructed and tested as benzyl alcohol production hosts. As illustrated in Table 2.2, 

benzyl alcohol titers were nearly doubled to 45 ± 4 mg/L using NST74AB, and further 

increased to 114 ± 1 mg/L (a ~5-fold increase) using NST74ABC.  In both cases, 

increased benzyl alcohol production was met with corresponding decreases in both 

phenylalanine and net biomass accumulation, with the latter likely resulting from fitness 

losses due to reduced amino acid biosynthesis.  It should also be noted that no 

benzaldehyde accumulation was observed at any time for any strains, again confirming 

that sufficient expression of E. coli’s associated AKRs and/or ADHs was achieved via 

native regulation alone. At its maximum achievable output, the current yield of benzyl 

alcohol on glucose reached 7.6 ± 0.1 mg/g, or just 3.2% of its theoretical maximum value 

(240 mg/g; note: the theoretical yield of phenylalanine on glucose has been reported as 

0.4 mol/mol (Juminaga et al. 2012)). 
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Table 2.2. Comparison of benzyl alcohol, phenylalanine, and biomass produced after 72 h 

by different E. coli host strains each harboring pHmaS-MdlC pMdlB.   

Host Strain 

Benzyl Alcohol Phenylalanine Biomass (DCW) 

Titer 

(mg/L) 
Yield (mg/g) 

Titer 

(mg/L) 
Yield (mg/g) 

Titer 

(g/L) 
Yield (g/g) 

NST74 23 ± 3 1.5 ± 0.2 900 ± 160 60 ± 10 2.2 ± 0.2 0.15 ± 0.02 

NST74A 7 ± 1 0.5 ± 0.1 1380 ± 20 92 ± 1 1.7 ± 0.1 0.11 ± 0.01 

NST74AB 45 ± 4 3.0 ± 0.2 550 ± 20 37 ± 1 1.1 ± 0.1 0.07 ± 0.01 

NST74ABC 114 ± 1 7.6 ± 0.1 410 ± 20 27 ± 1 0.9 ± 0.1 0.06 ± 0.01 

2.3.4 Assaying the effect benzyl alcohol on E. coli growth 

In addition to the potential fitness reducing effects caused by disrupting aromatic 

amino acid biosynthesis pathways (Table 2.2), it is possible that benzyl alcohol 

accumulation in the culture medium further contributed to the observed reduction in 

biomass growth.  This was a particularly relevant concern in this study because, as 

discussed above, benzyl alcohol is known to possess and is often specifically utilized for 

its bacteriostatic properties (Marriott 2010). To understand the potential toxic effects 

associated with benzyl alcohol accumulation, as well as to estimate future limits on 

achievable titers, a growth challenge assay was lastly performed using exogenous benzyl 

alcohol. Although exogenous addition does not fully represent the expected environment 

when benzyl alcohol is instead synthesized intracellularly, this approach has been to 

provide at least useful first approximations of toxicity for other aromatic products against 

E. coli (McKenna et al. 2013a, Pugh et al. 2014).  As seen in Figure 2.3, the initial 

growth rate was reduced in the presence of 0.25 g/L benzyl alcohol, but not growth yield.  

However, as the benzyl alcohol concentration was increased to 0.5 g/L and beyond, both 
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growth rates and yields continued to decline.  In the presence of as much as 0.75 g/L 

benzyl alcohol growth was completely halted following exposure. From this, the toxicity 

limit of benzyl alcohol against E. coli was approximated to be ~0.75 g/L. Lucchini et al. 

reported a value of ~0.4 g/L, albeit with respect to a different strain of E. coli and under 

different culture conditions (Lucchini, Corre, and Cremieux 1990).   

 

Figure 2.3 Product toxicity of benzyl alcohol. Growth response of E. coli NST74 to 

benzyl alcohol addition at concentrations of 0 g/L (solid squares), 0.25 g/L (open circles), 

0.5 g/L (solid triangles), 0.75 g/L (open squares), 1 g/L (solid circles), and 2 g/L (open 

triangles). Error bars reported at one standard deviation from triplicate experiments.     

 

The toxicity of most aromatic hydrocarbons against E. coli and other Gram-

negative bacteria has commonly been suggested to be non-specific in nature, occurring as 

a result of species lipophilicity which leads to accumulation within the cytoplasmic 
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membrane, whereupon structural integrity and function become damaged (Meylan et al. 

1999, Ramos et al. 2002).  To this end, species with logKO/W values of 1-5 have been 

found to impose significant toxicity against bacteria (note: for benzyl alcohol, logKO/W = 

1.10) (Ramos 2004).  At the levels observed here, however, benzyl alcohol toxicity 

against E. coli was interestingly found to be poorly represented by a general toxicity 

model that was previously developed to relate the relative toxicity threshold of an 

aromatic hydrocarbon with its relative affinity for membrane accumulation (as quantified 

via the membrane-water partition coefficient, KM/W, and predicted using a previously 

developed model (Sikkema, de Bont, and Poolman 1994)) (McKenna et al. 2013a).  

Despite providing a strong linear correlation for several other monoaromatic solvents 

(i.e., styrene, (S)-styrene oxide, (R)-1,2-phenylethanediol, trans-cinnamate, p-

hydroxystyrene), the apparent toxicity threshold of benzyl alcohol determined here was 

~3-fold lower than its predicted level (~2-2.5 g/L).  This implies that other, more specific 

stress factors may also be contributing to the overall toxicity of benzyl alcohol.  Others 

have also found the toxicity of related aromatic alcohols to be due to both general and 

specific mechanisms (Lucchini, Corre, and Cremieux 1990).  Although a causal 

relationship was not fully elucidated, exposure to the closely related aromatic alcohol 2-

phenylethanol, for example, has been shown to lead to decreased rates of both DNA and 

RNA synthesis, on top of expected membrane stresses (Lucchini et al. 1993).  Still, as 

current achievable benzyl alcohol titers remain well below the apparent toxicity 

threshold, it is unlikely that toxicity was a significant, productivity-limiting factor in this 

study.  However, strategies to address this concern will ultimately be required as future 

strain and pathway engineering efforts lead to further improved benzyl alcohol 
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production.  One attractive approach to this end would involve the expression solvent 

efflux pumps to actively expel inhibitory products from the cell as they are produced 

(Dunlop 2011, Dunlop et al. 2011). This strategy appears to be a particularly promising 

for aromatic products such as benzyl alcohol since several resistance-nodulation-cell 

division (RND) family efflux pumps from Pseudomonas sp. are known to display activity 

on aromatic species (Ramos et al. 2002, Rojas et al. 2001, Kieboom et al. 1998). 

As discussed above, prior works have shown that several ADHs and/or AKRs are 

involved in the native ability of E. coli to reduce benzaldehyde to benzyl alcohol.  As we 

began to explore this phenomenon in the context of E. coli benzyl alcohol production (for 

example, we found that initial rates of benzaldehyde reduction by NST74 yahK yjgB 

were nearly 5-fold lower than by NST74; data not shown), however, a concurrent study 

by Kunjapur et al. reported an insightful and comprehensive investigation to this very 

same end (Kunjapur, Tarasova, and Prather 2014).  Ultimately, an E. coli strain was 

engineered in that study with reduced aromatic aldehyde reduction (RARE) abilities.  

Lacking 3 AKRs (dkgB, yeaE, dkgA), 3 ADHs (yqhD, yahK, yjgB), and the 

transcriptional activator yqhC, E. coli RARE converted less than 12% of exogenous 

benzaldehyde to benzyl alcohol after 24 h.  For comparison, despite lower initial rates of 

benzaldehyde reduction by NST74 yahK yjgB, all added benzaldehyde was ultimately 

converted to benzyl alcohol within 24 h (data not shown).  In related works, meanwhile, 

Rodriguez and Atsumi also explored the engineering of an E. coli strain deficient in 

aldehyde reductase activity (Rodriguez and Atsumi 2014).  Although benzyaldehyde was 

not evaluated as a substrate, the related aromatic 2-phenylacetaldyde (produced 

endogenously from phenylpyruvate by Kivd) was investigated.  In this case, a mutant 
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lacking 12 aldehyde reductase encoding genes (eutE, yahK, yqhE, gldA, ybbO, yghA, 

yqhD, adhP, eutG, yiaY, yjgB, fucO) was incapable of reducing 2-phenylacetaldyde to 2-

phenylethanol.  The similarly observed importance of deleting yqhD, yahK, and yjgB 

further underscores their likely and general role in E. coli’s native ability to reduce 

aromatic aldehydes. 

This insight is important not only for understanding how the host genotype 

influences flux through the engineered pathway, but also, if this terminal step can be 

predictably controlled the proposed pathway could furthermore be leveraged to explore 

the de novo biosynthesis of benzaldehyde as an alternative end product.  With a global 

annual production exceeding 90,000 tons (second to only vanillin), benzaldehyde, is a 

particularly important flavor molecule in the food and fragrance industry (Satrio and 

Doraiswamy 2001, Culp and Noakes 1990, Krings and Berger 1998), in addition to 

serving as a precursor to several fine chemicals and pharmaceutical precursors (e.g., (L)-

phenylacetylcarbinol, or L-PAC) (Rosche et al. 2001).  Such prospects will be the subject 

of future investigations. 
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2.4 Conclusion 

A non-natural pathway to synthesize benzyl alcohol from glucose has been 

established in E. coli.  Furthermore, through additional strain engineering to control the 

native reduction of benzaldehyde it is expected that the same materials could furthermore 

be employed to establish a biosynthetic route to benzaldehyde.  As the pathway is 

currently limited by low activity at the first committed step, further efforts in enzyme 

engineering and/or bioprospecting along with the systematic optimization of expression 

conditions are needed to ultimately elevate key production metrics to viable levels. 
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CHAPTER 3 

RATIONAL ENGINEERING OF A NOVEL PATHWAY FOR PRODUCING THE 

AROMATIC COMPOUNDS P-HYDROXYBENZOATE, PROTOCATECHUATE, 

AND CATECHOL IN ESCHERICHIA COLI 

Abstract 

p-Hydroxybenzoate, protocatechuate, and catechol represent fine and/or commodity 

chemicals useful as antioxidants and building-block molecules.  To date, however, these 

species have been largely overlooked as focal end-products.  An existing route employing 

protocatechuate and catechol as intermediates suffers from the need for multiple 

auxotrophies to preserve precursor (3-dehydroshikimate) availability. A novel, modular 

route from endogenous p-hydroxybenzoate has been engineered in Escherichia coli for 

the individual biosynthesis of all three products from renewable glucose while 

minimizing auxotrophy generation.  To enhance endogenous biosynthesis of p-

hydroxybenzoate, native chorismate pyruvate lyase (ubiC) was over-expressed. p-

Hydroxybenzoate was converted to protocatechuate by a hydroxylase (pobA) from 

Pseudomonas aeruginosa. Catechol was produced by the additional co-expression of 

protocatechuate decarboxylase from Enterobacter cloacae. Systematic expression of 

appropriate pathway elements in phenylalanine overproducing E. coli enabled initial 

titers of 32 ± 4, 110 ± 8, and 81 ± 15 mg/L for p-hydroxybenzoate, protocatechuate, and 

catechol, respectively. Disruption of chorismate mutase/prephenate dehydratase (pheA) to 

preserve endogenous chorismate then allowed maximum titers of 277 ± 2, 454 ± 11, and 

451 ± 44 mg/L, respectively, at glucose yields of 5.8, 9.7, and 14.3% of their respective 
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theoretical maxima.  Catechol titers were further improved to 630 ± 37 mg/L in a batch 

bioreactor study.  The proposed pathway can furthermore serve as a platform for other 

bioproducts, including the bioplastics precursor cis,cis-muconate. 

 

This work was published as: Pugh, S., McKenna, R., Osman, Marwan, Thompson, B. & 

Nielsen, D.R.. Rational engineering of a novel pathway for producing the aromatic 

compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli. 

Process Biochemistry  49, 1843-1850 (2014). 
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3.1 Introduction 

  Aromatic compounds represent a broad class of fine and commodity chemicals 

with a diversity of industrial and consumer applications. Conventionally, however, their 

production occurs almost exclusively from non-renewable petroleum resources, typically 

using carcinogenic benzene as feedstock. As a more sustainable and ‘green’ alternatives, 

several prior studies have successfully demonstrated the engineering of microorganisms 

to produce a variety of aromatic chemical products directly from renewable, biomass-

derived sugars.  Notable recent examples have included the engineering of microbes to 

produce the monomer compounds p-hydroxystyrene and styrene (McKenna and Nielsen 

2011a, Qi et al. 2007a), fragrances/flavors such as 2-phenylethanol and 2-phenylacetic 

acid (Koma et al. 2012a, Kang et al. 2014), as well as building-block commodity 

chemicals such as phenol (Kim et al. 2013, Wierckx et al. 2005a). In most cases, the 

synthesis of these products from renewable feedstocks has been enabled only through i) 

the functional reconstruction of naturally occurring but non-inherent biosynthetic 

pathways or ii) through the de novo engineering of novel and non-natural pathways (Lee 

et al. 2012).  

p-Hydroxybenzoate (pHBA), protocatechuate (PCA), and catechol represent three 

additional aromatic products of commercial and industrial significance.  pHBA and PCA 

are naturally occurring phenolic acids possessing both antioxidant and anti-inflammatory 

properties (Pacheco-Palencia, Mertens-Talcott, and Talcott 2008). Both species are 

commonly found at low levels in numerous vegetables, fruits, nuts, tea, and wine (Lin et 

al. 2007, Pietta et al. 1998, Tian et al. 2009), and are most notably major metabolites 

produced in acai fruit (Euterpe oleracea), where their natural accumulation can reach 
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levels as high as 892 ± 52 and 630 ± 36 mg/kg, respectively (Pacheco-Palencia, Mertens-

Talcott, and Talcott 2008).  In addition to these benefits, PCA has been shown to display 

chemopreventative effects in gastric carcinoma cells as a result of induced in vitro 

apoptosis (Lin et al. 2007).  Meanwhile, although it too possesses antioxidant properties, 

catechol is most commonly used as a precursor for synthesizing fine chemicals such as 

artificial flavors and fragrances (notably vanillin, eugenol, and guaiacol) (Mageroy et al. 

2012, Rhodia 2012), as well as in the larger scale production of many agrochemicals, 

pesticides, and pharmaceuticals (Rhodia 2012).  

 Microbial production of PCA and catechol has been demonstrated before, 

however, rarely as terminal end products or as part of a focused study.  In prior works, for 

example, Draths and Frost established in E. coli a non-natural biosynthetic route to 

cis,cis-muconate which utilizes both PCA and catechol as pathway intermediates (Draths 

and Frost 1994).  As illustrated in Figure 3.1, this established pathway (which was also 

recently reconstructed in yeast (Curran et al. 2013a, Weber et al. 2012)) utilizes as its 

immediate endogenous precursor 3-dehydroshikimate (DHS), an intermediate of aromatic 

amino acid biosynthesis used in the shikimic acid pathway (Keseler et al. 2005).  DHS is 

first converted to PCA by DHS dehydratase before PCA decarboxylase subsequently 

converts PCA to catechol, with said activities most commonly imparted in E. coli via the 

co-expression of aroZ and aroY from Klebsiella pneumoniae, respectively. However, 

despite the demonstrated activity of this non-natural pathway, robust flux through this 

route in E. coli has only ultimately been achieved upon deletion of shikimate 

dehydrogenase (encoded by aroE) to conserve endogenous DHS (Niu, Draths, and Frost 

2002).  This strategy, however, consequently creates in E. coli an auxotrophy for each of 
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the proteinogenic aromatic amino acids phenylalanine, tyrosine, and tryptophan and the 

aromatic vitamins p-aminobenzoate, pHBA, and 2,3-dihydroxybenzoate (collectively 

used in the production of tetrahydrofolate, ubiquinone, and menaquinone).  As a result, in 

minimal salts media, supplementation of these amino acids and vitamins is required for 

growth and product formation (Niu, Draths, and Frost 2002). Although nutrient 

supplementation is facile at the laboratory scale, this strategy is less sustainable and 

uneconomical as it suffers from higher media costs and poor scalability.  

In view of these limitations and the potential significance of each of pHBA, PCA, 

and catechol as renewable bioproducts, the objective of this study is to engineer a novel 

and non-natural modular enzyme pathway in E. coli with which to systematically explore 

their biosynthetic potential as individual focal end products of interest.  In contrast to the 

established route presented above, the proposed pathway, which is also illustrated in 

Figure 3.1, alternatively utilizes pHBA as its immediate endogenous precursor. By 

focusing on pHBA as the immediate endogenous pathway precursor, the biosynthesis of 

all aromatic amino acids and vitamins is more readily preserved, improving the overall 

sustainability of the overall process.  To promote the endogenous production of pHBA 

from chorismate, chorismate pyruvate lyase can first be over-expressed.  Next, pHBA can 

be hydroxylated to PCA via pHBA hydroxylase.  Lastly, as in the established pathway, 

PCA can be decarboxylated to catechol by way of PCA decarboxylase. Furthermore, as 

seen in Figure 3.1, these heterologous chemistries render the proposed pathway as more 

thermodynamically favorable than the established route. 
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Figure 3.1. Novel and established pathways engineered for producing pHBA, 

PCA, and catechol from glucose. Black arrows represent enzyme steps native to E. 

coli whereas gray arrows are heterologous; dotted arrows represent multiple enzymatic 

steps; feedback regulation is shown using thin dotted lines with flat heads. Abbreviations: 

phosphoenolpyruvate (PEP), D-erythrose-4-phosphate (E4P), 3-deoxy-D-arabino-

heptulosonate-7-phosphate (DAHP).  ΔrG'° is the change in Gibbs free energy due to 

reaction as determined using the online tool eQuilibrator 

(http://equilibrator.weizmann.ac.il) at a reference state of 25
o
C, pH 7, and ionic strength 

of 0 M. 
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3.2 Materials and Methods 

3.2.1 Strains and media   

All strains used in this study are listed in Table 3.1. E. coli NEB 10-beta was 

obtained from New England Biolabs (Ipswich, MA) and was used for routine cloning 

work, as well as for the propagation and storage of all plasmids. E. coli NST74 (ATCC 

31884; aroH367, tyrR366, tna-2, lacY5, aroF394(fbr), malT384, pheA101(fbr), pheO352, 

aroG397(fbr)), a previously-engineered phenylalanine over-producing strain (Tribe 

1987a), was obtained from the American Type Culture Collection (ATCC, Manassas, 

VA) and was used as the initial host platform for all aromatic chemical production.  E. 

coli BW25113 was obtained from the Coli Genetic Stock Center at Yale University 

(CGSC, New Haven, CT) and served as the genetic source of ubiC, which encodes  

chorismate pyruvate lyase. Pseudomonas aeruginosa PAO1 (DSMZ 22644) was obtained 

from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell 

Cultures (DSMZ, Braunschweig, Germany) and served as the genetic source of pobA, 

which encodes pHBA hydroxylase. Klebsiella pneumoniae PZH572 (ATCC 25955) was 

obtained from the ATCC and served as the genetic source of aroY, which encodes PCA 

decarboxylase. E. coli JW2580-1 was obtained from the CGSC and served as the genetic 

source of the pheA::kan
R
 cassette used to disrupt pheA in E. coli NST74  

E. coli cultures were routinely cultivated in Luria-Bertani (LB) broth.  For 

aromatics production, a phosphate-limited minimal media (herein referred to as “MM1”) 

was used, as adapted from McKenna et al. (McKenna and Nielsen 2011a). MM1 was 

composed of glucose (20 g/L), MgSO4·7H2O (0.5 g/L), (NH4)2SO4 (4.0 g/L), MOPS 

(24.7 g/L), KH2PO4 (0.3 g/L), K2HPO4 (1.0 g/L) and 5 ml/L ATCC Trace Mineral 
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Supplement (Catalog No. MD-TMS): EDTA (0.5 g/L), MgSO4·7H2O (3.0 g/L), 

MnSO4·7H2O (0.5 g/L), NaCl (1.0 g/L), FeSO4·7H2O (0.1 g/L), Co(NO3)2·6H2O (0.1 

g/L), CaCl2 (0.1 g/L), ZnSO4·7H2O (0.1 g/L), CuSO4·5H2O (0.01 g/L), AlK(SO4)2 (0.01 

g/L), H3BO3 (0.01 g/L), Na2MoO4·2H2O (0.01 g/L), NaSeO3 (0.001 g/L), NaWo4·2H2O 

(0.1 g/L), and NiCl2·6H2O (0.02 g/L). As required when working with a pheA 

background, ,MM1 was supplemented with phenylalanine at an initial concentration of 

0.1 g/L.  For plasmid maintenance, cultures were also appropriately supplemented with 

ampicillin (100 mg/L) and kanamycin (40 mg/L). 
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Table 3.1. List of strains and plasmids engineered and/or used in this study. 

Strains Description Source 

E. coli NEB-10 

beta 

araD139 ∆(ara,leu)7697 fhuA lacX74 galK16 galE15 mcrA 

f80d(lacZ∆M15)recA1 relA1 endA1 nupG rpsL rph 

spoT1∆(mrr-hsdRMS-mcrBC) 

New England 

Biolabs 

E. coli BW25113 source of ubiC CGSC 

E. coli JW2580-1 source of pheA::kan
R
 CGSC 

E. coli NST74 
aroH367, tyrR366, tna-2, lacY5, aroF394(fbr), malT384, 

pheA101(fbr), pheO352, aroG397(fbr) 
ATCC 

E. coli 

N74dpheA 
NST74 ΔpheA This study 

P. aeruginosa 

PAO1 
source of pobA DSMZ 

K. pneumoniae 

PZH572 
source of aroY ATCC 

E. cloacae 

ATCC 13047 
source of ECL_01944 ATCC 

   
Plasmids Description Source 

pTrc99A Ptrc, pBR322 ori, lacIq, Amp
R
 

Prather Lab, 

MIT 

pTrcCOLAK Ptrc, ColA ori, lacIq, Kan
R
 

McKenna et al. 

(2013) 

pKD46 araC, araBp, repA101(ts) and R101 ori, Amp
R
 CGSC 

pCP20 FLP, ts-rep, [cI857](lambda)(ts), Amp
R
 CGSC 

pUbiC 
ubiC of E. coli BW25113 inserted into the NcoI and EcoRI 

sites of pTrc99A 
This study 

pPobA 
pobA of P. aeruginosa inserted into the XbaI and HindIII 

sites of pTrc99A 
This study 

pUbiC-PobA 
pobA of P. aeruginosa inserted into the XbaI and HindIII 

sites of pUbiC 
This study 

pAroY 
aroY of K. pneumoniae ATCC 25955 inserted into the NcoI 

and EcoRI sites of pTrcCOLAK 
This study 

pECL 
ECL_01944 of E. cloacae ATCC 13047 inserted into the 

NcoI and EcoRI sites of pTrcCOLAK 
This study 

 

3.2.2 Plasmid Construction. 

All plasmids constructed and used in this study are listed in Table 3.1. Custom DNA 

oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA). 

Genomic DNA (gDNA) was prepared using the ZR Fungal/Bacterial DNA MiniPrep kit 

(Zymo Research, Irvine, CA) according to manufacturer protocols. All genes were PCR 

amplified using Phusion High-Fidelity DNA Polymerase (New England Biolabs) and 
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standard protocols. Amplified linear DNA was purified using the DNA Clean & 

Concentrator kit (Zymo Research, Irvine, CA) according to manufacturer protocols. 

Purified DNA was subsequently digested using appropriate restriction endonucleases (all 

from New England Biolabs) at 37ᵒC for three hours. Digested fragments were 

subsequently purified using the Zymoclean Gel DNA Recovery kit (Zymo Research) and 

ligated together using T4 DNA ligase (New England Biolabs) at 4oC overnight. Ligation 

reactions were transformed into chemically competent E. coli NEB10-beta, with selection 

performed by plating on LB solid agar with appropriate antibiotics. Transformant pools 

were screened by colony PCR using the same primers used in cloning initial fragments.  

Plasmid sequences were further confirmed by restriction digest mapping and gene 

sequencing.   

Using the compatible expression vectors pTrc99A and pTrcCOLAK [20], all 

pathway genes were expressed under the control of the strong, IPTG-inducible trc 

promoter and lacIq repressor system. To construct pUbiC, ubiC was PCR amplified from 

the gDNA of E. coli BW25113 and inserted between the NcoI and EcoRI sites of 

pTrc99A. Subsequently, pobA was PCR amplified from the gDNA of P. aeruginosa 

DSMZ 22644 and inserted between the XbaI and HindIII sites of pUbiC, resulting in the 

construction of pUbiC-PobA. To construct pAroY, aroY was PCR amplified from the 

gDNA of K. pneumoniae ATCC 25955 and inserted between the NcoI and EcoRI sites of 

pTrcCOLAK. Lastly, to construct pECL, ECL_01944 was PCR amplified from the 

gDNA of E. cloacae ATCC 13047 and inserted between the NcoI and EcoRI sites of 

pTrcCOLAK. 
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3.2.3 Gene deletion 

Chromosomal in-frame deletion of pheA in E. coli NST74 was accomplished via a 

method modified from that of Datsenko and Wanner (Datsenko and Wanner 2000a). 

Briefly, the deletion cassette pheA::kan
R
 flanked by the FLP recognition target (FRT) 

sites was PCR amplified from the gDNA of E. coli JW2580-1 using primers with 300 bp 

homology upstream and downstream of pheA. Subsequent steps were the same as 

previously described (Datsenko and Wanner 2000a). This resulted in the construction of 

E. coli NST74 ΔpheA, referred to as N74dpheA. 

3.2.4 Toxicity assay of pHBA, PCA and catechol 

The toxicity of pHBA, PCA, and catechol against E. coli NST74 was estimated by 

assaying for relative change in growth rate and yield following the exogenous addition of 

each individual species to growing cultures as a function of concentration. Cells were 

cultures in 50 mL MM1 media in 250 mL baffled glass shake flasks at 30ᵒC to an OD600 

of ~0.5, at which point either pHBA, PCA, or catechol was added to the flasks at an array 

of final concentrations and growth was monitored via OD600 for an additional 6 h. All 

experiments were performed in triplicate to provide an estimate of standard error.  

 

3.2.5 Assaying in vivo enzyme functionality using whole resting cells 

 To assess the functionality of the candidate enzymes, including PobA for pHBA 

hydroxylase activity as well as AroY and ECL for PCA decarboxylase activity, in vivo 

resting cell assays were performed.  E. coli NST74 was individually transformed with 

each of pPobA, pAroY, and pECL before seed cultures of the resultant strains were 
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prepared in 5 mL LB broth with 100 mg/L ampicillin or 40 mg/L kanamycin, as 

appropriate, and grown overnight at 37
o
C. Subsequently, 0.5 mL of each seed was used to 

inoculate 50 mL of LB broth supplemented with antibiotics and 0.5% glucose in a 250 

mL baffled shake flask. Upon reaching mid-exponential phase (OD600 ~0.5), cultures 

were induced by the addition of 0.25 mM IPTG. Culturing then continued for 24 h at 

37
o
C, at which point cells were collected by centrifugation at 3,000 x g for 10 min. Cell 

pellets were washed once in pH 7 phosphate buffered saline solution (PBS) before then 

finally being re-suspended to an initial OD600 of ~4 in pH 7 PBS supplemented with 500 

mg/L of pHBA to assess the hydroxylase activity of PobA or 500 mg/L of PCA to 

compare the decarboxylase activity of AroY and ECL.  Subsequently, 10 mL of each 

suspension was transferred to a sealed 15 mL glass Hungate tube and cultures were 

incubated for 2 h at 37ᵒC with shaking at 250 rpm while aqueous samples periodically 

drawn for metabolite analysis by HPLC, as described below. All experiments were 

performed in triplicate to provide an estimate of standard error. 

3.2.6 Production of pHBA, PCA, and catechol from glucose in shake flask cultures  

E. coli NST74 and the phenylalanine auxotroph N74dpheA were each 

transformed with either pUbiC or pUbiC-PobA, for the biosynthesis of pHBA or PCA, 

respectively, or co-transformed with pUbiC-PobA and pAroY or pECL for the 

biosynthesis of catechol. Seed cultures (0.5 mL) were subsequently used to inoculate 50 

mL MM1 media in 250 mL baffled shake flasks supplemented with appropriate 

antibiotics and, in the case of N74dpheA-derived strains, phenylalanine. The initial pH of 

the medium was ~7.2 and was maintained at >6 throughout the experiment by the 

periodic addition of 1 M monobasic potassium phosphate solution. Cultures were grown 
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at 32ᵒC with shaking at 250 rpm until reaching an OD600 of ~0.5, at which point they 

were induced by the addition of 0.25 mM IPTG. Culturing then continued for an 

additional 72 to 96 h, during which time aqueous samples were periodically drawn for 

metabolite analysis by HPLC. Product yields were determined as the net moles of product 

synthesized per total moles of glucose consumed.  Yields were represented as a 

percentage of their theoretical maxima using an established estimate of the theoretical 

maximum yield of phenylalanine from glucose of 0.40 mol/mol (Juminaga et al. 2012). 

All experiments were performed in triplicate to provide an estimate of standard error. 

3.2.7 Production of catechol from glucose in a batch bioreactor   

E. coli N74dpheA was co-transformed with pUbiC-PobA and pECL and a 15 mL 

seed culture was prepared in LB broth supplemented with appropriate antibiotics 

overnight. The seed was then used to directly inoculate a 2 L BIOSTAT Aplus Sartorius 

bioreactor containing 1 L of MM1 supplemented with appropriate antibiotics and 

phenylalanine. Temperature, agitation, and aeration were held constant at 32ᵒC, 200 rpm, 

and 1.5 L/min, respectively. Culture pH was maintained at 6.9 throughout by the 

automated addition of 1M KH2PO4 solution. Culturing continued for a total period of 86 

h, during which time samples were taken periodically for biomass and metabolite 

analysis. 

3.2.8 HPLC analysis 

HPLC analysis of all metabolites was conducted using a Hewlett Packard 1100 

series HPLC system (Santa Clara, CA) coupled with a UV/vis detector. Separation of 

metabolites was achieved using a reverse-phase Hypersil Gold aQ polar endcapped C18 
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column (4.6 mm x 150 mm; Thermo Fisher, USA). Samples (5 μL) were injected at a 

total constant flow rate of 1 mL/min with a mobile phase consisting of 85% 5 mM 

sulfuric acid (pH of 2) and 15% acetonitrile. Temperature was held constant at 45ᵒC. The 

eluent was monitored via DAD detector at 215 nm for the detection of phenylalanine, 

PCA, and catechol, and 260 nm for pHBA.  Glucose was also measured by HPLC, as 

previously described (McKenna et al. 2013a).  

3.3 Results and Discussion 

3.3.1 Assessing the toxicity of pHBA, PCA and catechol 

The cytotoxic effects of pHBA, PCA, and catechol were first individually assayed 

to establish an estimate of how their accumulation in cultures will impact host fitness.  

Due to their hydrophobic nature, aromatic compounds commonly accumulate within the 

core of the lipid-bilayer comprising the cytoplasmic membrane, leading to increases in 

membrane fluidity and loss of structural integrity (Meylan et al. 1999, Ramos et al. 

2002).  The impact of pHBA, PCA, and catechol on E. coli growth was assessed 

following their exogenous addition to early exponential phase cultures at increasing 

concentrations (Figure 3.2).  Although this approach does not wholly represent the 

culture environment expected when said species will instead be produced intracellularly, 

this method has been found to provide at least a reasonable first approximation of the 

toxicity of other aromatic products against E. coli (McKenna et al. 2013a).  As seen in 

Figure 3.2, whereas E. coli growth rates were reduced in the presence of all three species 

at elevated concentrations, with critical limits (above which no growth was observed 

following addition to cultures) emerging at approximately 1.5, 1.5, and 3-4 g/L for 

pHBA, PCA, and catechol, respectively. These levels were interpreted as the maximum 
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toxicity thresholds for each species.  For solvent-like molecules, the octanol-water 

partition coefficient (logKO/W) is correlated with intra-membrane accumulation and thus 

cytotoxicity. In particular, those species with logKO/W values of 1-5 have been found to 

impose significant toxicity against bacteria (Ramos 2004). For reference, logKO/W values 

of pHBA, PCA, and catechol are approximately 1.56, 1.06, and 0.88, respectively.  

Accordingly, it should be expected that the relative toxicities of the three target products 

would follow as: pHBA > PCA > catechol. However, the finding that pHBA and PCA 

imposed similar toxicity thresholds could suggest that E. coli possesses an improved 

ability to tolerate the former.  This is perhaps due to the native ability of E. coli to 

assimilate pHBA into its ubiquinone (i.e., coenzyme Q) biosynthesis pathway.  As an 

inner membrane protein, 4-hydroxybenzoate octaprenyltransferase (encoded by ubiA) 

may lessen the extent by which pHBA accumulates in the membrane via its partial 

conversion to 3-octaprenyl-4-hydroxybenzoate, thereby reducing its inhibitory effect.  

This hypothesis, however, was not further tested in a ubiA background as control due to 

the essential role that ubiquinone plays in E. coli during aerobic respiration (Kwon, 

Kotsakis, and Meganathan 2000).  Regardless, and for the purposes of this study, these 

assays suggest that toxicity limitations will be most likely to arise when pHBA and PCA 

constitute the focal end-products of interest. Moreover, swift conversion of pHBA and 

PCA via pHBA hydroxylase and PCA decarboxylase, respectively, may emerge as an 

important consideration when the pathway is ultimately extended to catechol. 



46 
 

 

 

Figure 3.2. Toxicity analysis of pHBA, PCA, and catechol in E. coli. Growth 

response of E. coli NST74 to the exogenous addition of: pHBA (upper) at 0 g/L (solid 

circles), 0.5 g/L (open triangles), 1 g/L (solid diamonds), 1.5 g/L (open circles), 2 g/L 

(solid triangles), and 2.5 g/L (open diamonds); PCA (middle) at 0 g/L (solid circles), 0.5 

g/L (open triangles), 1 g/L (solid diamonds), 1.25 g/L (open circle), 1.5 g/L (solid 

triangle), 2 g/L (open diamonds), and 2.5 g/L (solid squares); catechol (lower) at 0 g/L 

(solid circles), 1 g/L (open triangles), 2 g/L (solid diamonds), 2.5 g/L (open circles), 3 

g/L (solid triangles), 3.5 g/L (open diamonds), and 4 g/L (solid squares). 

3.3.2 Screening and selecting pathway enzymes 

The first step of the proposed, modular biosynthetic pathway involves the 

conversion of endogenous chorismate to pHBA via chorismate pyruvate lyase (Figure 

3.1). In E. coli, this inherent reaction is catalyzed by UbiC which, as alluded to above, 

naturally functions as the first step in the ubiquinone biosynthesis pathway (Keseler et al. 

2005). However, native production of pHBA is tightly regulated such that it does not 
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naturally accumulate to above trace levels. In NST74 alone, pHBA production was not 

detected.  Furthermore, in a preliminary experiment, PCA production was similarly 

undetected in a control strain where pobA was overexpressed in NST74 (data not shown).  

Thus, to recruit sufficient chorismate flux into the proposed pathway and enhance 

endogenous pHBA biosynthesis, ubiC was overexpressed from pUbiC in the 

phenylalanine overproducing strain NST74.  In glucose minimal media, the resultant 

strain produced pHBA at titers reaching up to 32 ± 4 mg/L (or 0.23 ± 0.03 mM) after 96 

h, as seen in Table 3.2. Meanwhile, in addition to pHBA, phenylalanine also accumulated 

as a significant co-product, reaching up to 1.28 ± 0.03 g/L (or 7.75 ± 0.18 mM).  As 

pHBA and phenylalanine share chorismate as a common branch-point precursor, this 

suggested that, even when over-expressed, UbiC was outcompeted by the native activity 

of PheA (Figure 3.1).  It should be noted that NST74 possesses a feedback-deregulated 

copy of PheA.  Furthermore, while chorismate also serves as a precursor to tryptophan 

and tyrosine, as the transcription of both trpE and tyrA remain subject to tight feedback 

repression in NST74, neither of these species were detected in the culture media.  



48 
 

Table 3.2.  Shake flask production of pHBA, PCA, catechol and phenylalanine (Phe), as well 

as biomass.  Not detected: n.d., biomass dry cell weight: DCW. 

Host Plasmid 
End 

Product 

Aqueous Product Titer (mg/L) 

at: 
Final 

Phe 

(g/L) 

Yield 

(mg/g-

glucose) 

Final 

DCW 

(g/L) 
48 h 72 h 96 h 

NST74 pUbiC pHBA 28 ± 2 29 ± 2 32 ± 4 
1.28 ± 

0.03 

2.1 ± 

0.3 
2.6 ± 0.1 

N74dpheA pUbiC pHBA 251 ± 5 269 ± 1 277 ± 2 n.d. 
17.8 ± 

0.2 
2.0 ± 0.1 

         
NST74 

pUbiC-

PobA 
PCA 92 ± 7 110 ± 8 110 ± 8 

1.20 ± 

0.05 

7.1 ± 

0.6 
2.6 ± 0.2 

N74dpheA 
pUbiC-

PobA 
PCA 426 ± 13 442 ± 10 454 ± 10 n.d. 

33.2 ± 

0.7 
1.9 ± 0.1 

         

NST74 

pUbiC-

PobA  

pECL 

catechol 80 ± 18 81 ± 15 80 ± 14 
1.04 ± 

0.07 

6.0 ± 

1.0 
1.3 ± 0.1 

N74dpheA 

pUbiC-

PobA  

pECL 

catechol 394 ± 62 440 ± 50 451 ± 44 n.d. 
35.1 ± 

2.6 
1.1 ± 0.2 

 

Extension of the proposed pathway to PCA would next be possible via the co-

expression of pHBA hydroxylase.  Several Pseudomonas sp. have been shown capable of 

performing this reaction as part of a larger pHBA degradation pathway.  In this innate 

pathway, which ultimately links to central metabolism via the β-ketoadipate pathway 

(Kemp and Hegeman 1968), NADPH-dependent pHBA hydroxylase activity is encoded 

by pobA.  Interestingly, the sequence of PobA and related isoenzymes is highly 

conserved amongst Pseudomonas sp., with ~85% homology observed, for example, 

between P. aeruginosa PAO1, P. putida KT2440, P. fluorescens A506, and P. stutzeri 

A1501. PobA from P. aeruginosa PAO1 was selected for screening as a candidate 

pathway enzyme and its in vivo activity was evaluated in E. coli resting cells. When 

supplied with 480 ± 21 mg/L (3.5 ± 0.2 mM) of exogenous pHBA, its full and 

stoichiometric conversion to PCA (reaching up to 535 ± 22 mg/L or 3.5 ± 0.2 mM) 



49 
 

occurred in ~90 min (Figure 3.3A), confirming the functional expression of PobA in E. 

coli. 

Finally, the proposed pathway could be extended to catechol by the additional co-

expression of PCA decarboxylase. It has previously been shown that this can be achieved 

in E. coli by expression of aroY from K. pneumoniae (Draths and Frost 1994).  In 

addition, the locus ECL_01944 from E. cloacae (hereafter referred to as ECL) has also 

been reported to encode a PCA decarboxylase (Curran et al. 2013a).  Although the 

heterologous activity of ECL_01944  in S. cerevisiae has been confirmed, its analogous 

function in E. coli has not yet been reported. To determine which homolog possesses the 

greatest activity in E. coli, a series of comparative in vivo resting cell assays were 

performed. Here, exogenous PCA was supplied to whole resting cells prepared from 

NST74 pECL and NST74 pAroY, expressing ECL_01944 and aroY, respectively. As 

illustrated in Figure 3.3B, PCA was stoichiometrically converted to catechol in just 60 

min by both strains (note, whereas NST74 pECL showed slightly faster rates of PCA 

conversion, the difference was not statistically significant; p > 0.5, n = 3). The observed 

comparable activities are likely a consequence of the similarity between the predicted 

amino acid sequences of AroY (502 AA) and ECL (495 AA), which were found to be 

89% identical (analysis not shown).  Ultimately, ECL_01944 was selected for the second 

step of the proposed pathway owing the novelty associated with its expression in E. coli. 
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Figure 3.3. Screening of candidate pathway enzymes via in vivo resting cell assays.   A) 

Conversion of pHBA (open squares) to PCA (open triangles) by NST74 pPobA.  B) 

Conversion of PCA (triangles) to catechol (circles) by cultures of NST74 pECL (solid 

symbols) or NST74 pAroY (open symbols). Error bars reported at one standard deviation 

from triplicate experiments. 

 

3.3.3 Production of pHBA, PCA, and catechol from glucose in E. coli NST74 

Having confirmed the activity of all candidate pathway enzymes in E. coli in isolated 

biotransformation studies, the stepwise construction of a modular pathway for individual 

biosynthesis of pHBA, PCA, and catechol directly from glucose was next explored.  

NST74 served as the initial host background for all three products and the collective 

results are compared in Table 3.2 (note, the results for pHBA were also reported above).   

In all cases, production stopped after 48-72 h following the depletion of available 
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glucose.  In the case of PCA, co-expression of ubiC and pobA allowed its accumulation 

as the major end product at up to 110 ± 8 mg/L (or 0.71 ± 0.05 mM) after 96 h.  The 

additional co-expression of ECL, meanwhile, enabled catechol production as the major 

end product at up to 80 ± 14 mg/L (or 0.73 ± 0.13 mM) in the same time. It should also 

be noted that, in all cases, no intermediate accumulation was observed (i.e., no pHBA or 

PCA and no pHBA were detected when catechol and PCA were the respective end 

products of interest), suggesting that the net activity of each pathway step was sufficient 

to preclude the occurrence of a metabolite flux bottleneck.  Meanwhile, when compared 

to the production of pHBA alone (i.e., when ubiC was solely expressed), further 

extension of the pathway to PCA and catechol resulted in 3.2- and 3.4-times greater net 

accumulation of these focal end-product, respectively.  Whereas in the case of catechol it 

would be conceivable that this sizable increase resulted from its reduced toxicity relative 

to pHBA (Figure 3.2), the same argument would clearly not hold true for the equally 

inhibitory PCA.  Rather, a more likely explanation for the increased metabolite flux 

through the pathway observed upon introducing pobA or pobA and ECL stems from the 

fact that UbiC suffers from severe allosteric feedback inhibition by pHBA (Siebert, 

Severin, and Heide 1994, Holden et al. 2002). Prior studies have shown, for example, that 

UbiC exhibits a 13-fold higher affinity for its product pHBA (Kp = 2.1 µM) than for its 

substrate chorismate (Km = 29 µM) (Gallagher et al. 2001, Nichols and Green 1992, 

Holden et al. 2002).  As a result, in the presence of 25 or 100 M pHBA, reductions in 

reaction velocity by 51 and 83% have been observed in vitro, respectively (Siebert, 

Severin, and Heide 1994). Whereas this limitation could perhaps be overcome through 

protein engineering, the residues involved in pHBA binding have so far not been 
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specifically identified.  In the present case, however, by converting pHBA to PCA via 

PobA (a reaction with highly favorable thermodynamics; ΔrG'° = -398.4 kJ/mol) soon 

after its endogenous biosynthesis, UbiC activity and flux through the first committed 

pathway step appear to be maintained at elevated levels.   

Meanwhile, significant co-production and the terminal accumulation of 

phenylalanine was also observed for all three strains, reaching levels of at least 1.04 ± 

0.07 (or 6.29 ± 0.43 mM). Again, this suggests that the engineered pathways were not 

able to effectively compete with native phenylalanine biosynthesis for precursor 

chorismate.  Host engineering strategies to overcome this limitation were next 

systematically explored. 

3.3.4 Host engineering to increase pHBA, PCA, and catechol production from glucose 

To preserve chorismate availability for use in the engineered pathways, the 

bifunctional chorismate mutase/prephenate dehydrogenase encoded by pheA was first 

deleted from the background of NST74. Using the resultant strain (i.e., N74dpheA) as 

host, after 96 h (Table 3.2), maximal titers of pHBA, PCA, and catechol reached 277 ± 2, 

454 ± 10, and 451 ± 44 mg/L, respectively (or 2.00 ± 0.01, 2.95 ± 0.06, and 4.10 ± 0.39 

mM), improvements of 4.1- to 8.7-fold over NST74. At this output, product yields (which 

were similarly increased relative to the NST74 background; Table 3.2) from glucose 

represented 5.8, 9.7, and 14.3% of their respective theoretical maxima (0.40 mol/mol in 

each case [22], or 337, 376, 269 mg/g, respectively).  One consequence to this strategy, 

however, was an apparent decrease in biomass production, suggesting a reduction in host 

fitness.  In addition, further reduced biomass production in catechol producing strains 

was likely due to the increased metabolic burden associated with carrying as additional 
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plasmid and over-expression of an additional pathway enzyme.  As in NST74, the 

greatest pathway flux was observed when PCA and catechol were the focal products of 

interest, again presumably due to the relieved inhibition of UbiC by pHBA. 

Recently, another novel and alternative route through catechol (to cis,cis-

muconate) was established in E. coli [32].  Said route stemmed instead from endogenous 

anthranilate, using a heterologous anthranilate 1,2-dioxygenase from P. aeruginosa to 

produce catechol. An improvement over the established route was also realized with this 

pathway in terms of the need to generate just a single (tryptophan) auxotrophy to achieve 

appreciable production levels.  Whereas the biosynthesis of catechol as an end-product 

was not investigated in that study, maximal titers of cis,cis-muconate via the extended 

pathway reached 389 mg/L, indicating a maximal metabolite flux of 2.74 mM through 

the pathway.  Although this is just 67% of the level demonstrated here, a direct and fair 

comparison is difficult to make at this point as it is unclear what effect the additional co-

expression of catechol 1,2-dioxygenase might impose on either pathway or cell system. 

While the generation of a single auxotrophy here is a certain improvement over 

the multiple auxotrophies created in support of the established route through catechol 

(Figure 3.1), a more robust approach might be to instead explore a gene knockdown 

strategy as a means to preserve chorismate availability. Previous studies have found, for 

example, that the use of small regulatory RNAs (sRNAs) are well suited for such 

applications [33, 34], and have been used to boost the production of aromatic amino acids 

[35].  Alternatively, replacement of the feedback deregulated copy of pheA in NST74 

with its wild-type, allosterically-inhibited parent might be sufficient for restricting 
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chorismate flux of through this competing step.  The relative merits and prospects of 

these approaches are now being explored.  

3.3.5 Production of catechol from glucose by E. coli in a batch bioreactor 

An important practical limitation experienced in shake flask cultures was the need 

to perform regular and manual pH adjustments, due largely to the poor buffering capacity 

provided by MM1 media.  Moreover, since PobA is known to be an oxygen-dependent 

hydroxylase, it was postulated that poor rates of oxygen transfer experienced in shake 

flask cultures could have limited the overall activity at this step.  To address these 

practical limitations with the goal of enhancing overall production of the terminal 

pathway product, catechol production was lastly investigated under controlled culture 

conditions in a batch bioreactor. The collective results are presented in Figure 3.4, 

wherein it can be seen that a total of just over 630 ± 37 mg/L catechol (or 5.72 ± 0.34 

mM) was produced by E. coli N74dpheA pUbic-PobA pECL in 86 h.  This represents a 

~40% improvement over that achieved in shake flask cultures but at a nearly equivalent 

glucose yield (36.2 ± 1.9 mg/g; see Table 3.2).  Similar to the study of Curran et al. 

(Curran et al. 2013a), the slight accumulation of PCA was observed early in the culture 

(i.e., within the first ~24 h), reaching as high as 137 mg/L.  Although PCA was 

subsequently re-assimilated into the pathway and converted to catechol, its intermediary 

accumulation indicates the potential of a flux bottleneck existing at PCA decarboxylase. 

This is likely a consequence of the fact that the thermodynamics of said reaction are only 

slightly favorable (ΔrG'° = -0.9 kJ/mol).  The observed lack of accumulation of pHBA 

through the duration of the culture, meanwhile, suggests that PobA activity was not rate 

limiting.  This is not surprising as dissolved oxygen was abundant in the bioreactor at all 
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times and, again, this reaction is highly favorable thermodynamically (ΔrG'° = -398.4 

kJ/mol). 

 

Figure 3.4. Production of catechol by E. coli N74dpheA pUbic-PobA pECL in a batch 

bioreactor. Concentrations of glucose (open squares), pHBA (solid squares), PCA 

(solid triangles), and catechol (open circles). 

 

As the inhibitory limit of catechol against E. coli was estimated at about 3-4 g/L, 

the ability to produce just 630 ± 37 mg/L of catechol after 86 h in a batch bioreactor 

suggests that end-product toxicity was of little concern in this study and that another 

factor was surely productivity limiting. As flux bottlenecks were not observed along the 

engineered pathway, it is likely that the pathway was limited by the availability of 

precursor chorismate.  As the original host background (i.e., NST74) was capable of 



56 
 

producing up to 7.75 mM phenylalanine in shake flask cultures, if the entire chorismate 

supply were instead diverted to pHBA, PCA, or catechol, maximal titers of 1070, 1195, 

and 855 mg/L would instead be expected, respectively.  However, the maximum flux of 

metabolites through the engineered pathways never exceeded 4.10 mM under otherwise 

analogous culture conditions.  This could be due to the fact that, despite improving the 

availability of chorismate to the engineered pathways, pheA deletion imposed a negative 

impact net chorismate biosynthesis.  This would be consistent with the observed fitness 

reduction in pheA strains, as indicated by the 15-27% lower biomass production relative 

to the NST74 background.   

3.3.6 Future applications 

Through its stepwise extension, the modular pathway presented here was used to 

synthesize three unique aromatic chemicals as individual products of interest.  This same 

approach can, however, be further applied to incorporate additional chemistries and target 

other products of interest. For instance, catechol has been extensively studied as an 

intermediate in the biosynthesis of cis,cis-muconate, a product of importance in 

bioplastics applications as it can serves as a precursor for the chemical synthesis of adipic 

acid (used to produce nylon-6,6 and polyurethanes) as well as terephthalic acid (an 

important monomer compound) (Curran et al. 2013a). The presented pathway could be 

readily extended from catechol to cis,cis-muconate via the additional co-expression of 

catechol-1,2-dioxygenase, as encoded, for example, by catA from Acinetobacter baylyi 

(Draths and Frost 1994, Curran et al. 2013b). This suggests that the presented pathway, 

which herein has enabled the biosynthesis of pHBA, PCA, and catechol, could 
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furthermore serve as a versatile platform for future studies in pathway engineering and 

biorefining. 

3.4 Conclusion 

 The stepwise and individual production of pHBA, PCA, and catechol from 

glucose has been demonstrated through the engineering of a novel and modular 

biosynthetic pathway in E. coli.  This study not only establishes a novel route to these 

aromatic building-block chemicals, but it also represents a sustainable platform for 

producing other useful products of industrial importance. 
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CHAPTER 4 

EXPLORING STRATEGIES TO ENHANCE FLUX THROUGH THE SHIKIMIC 

ACID PATHWAY FOR IMPROVED PRODUCTION OF AROMATIC CHEMICALS 

 

Abstract 

Aromatic chemical products derived from precursors of the shikimic acid pathway 

are often produced at low titers and yields due to tight regulation of the shikimic acid 

pathway at several key points both through feedback regulation as well as precursor 

availability. Though strains of E. coli have been engineered to overcome feedback 

regulation, precursor availability, namely phospoenolpyruvate (PEP) and erythrose-4-

phosphate (E4P), remains a limiting factor. Here, an in silico model applying elementary 

mode analysis (EMA) was used to identify and then examine the individual and 

combined effect of several novel strategies aimed at optimizing precursor stoichiometry 

as a means to maximize product-to-substrate (Yps) and product-to-biomass yields (Ypx). 

Said strategies uniquely explored the effects of both medium design and host 

engineering.  Ultimately, a maximum theoretical product-substrate yield taking into 

account biomass accumulation (Yps+x) was identified in a co-fed culture of 70% D-

xylose and 30% glycerol. Additional improvements were identified to increase the 

theoretical maximum specific productivity by 10% by further deletion of genes encoding 

the PEP consuming enzymes Ppc (PEP carboxylase) and PykA and PykF (pyruvate 

kinase). 
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4.1 Introduction 

Biosynthesis of aromatic precursors in engineered microorganisms offers a 

renewable approach to producing commodity chemicals without relying on petroleum 

derived precursors. The shikimic acid pathway is an abundant source of aromatic 

precursors for the biosynthetic production of products of commercial interest, most 

notably styrene(McKenna and Nielsen 2011b), (R)- and (S)-styrene oxide(McKenna et al. 

2013b), phenol(Thompson, Machas, and Nielsen 2016), catechol(Draths and Frost 1994, 

Pugh et al. 2014), benzaldehyde(Pugh et al. 2015), and benzyl alcohol(Pugh et al. 2015). 

However, in order for the biosynthesis of most aromatic chemicals to become 

economically feasible, the allocation of carbon and energy toward product formation 

must be improved. Currently, products derived via the shikimic acid pathway commonly 

suffer from low product yields, for example, catechol biosynthesis via chorismate 

produced in an engineered phenylalanine overproducing mutant E. coli NST74 achieved 

a maximum 14.3% of the theoretical maximum yield in a glucose fed culture(Pugh et al. 

2014). Low yields of products derived from shikimic acid pathway precursors are likely a 

result of the numerous mechanisms of feedback regulation which limit native flux 

through the pathway. Formation of DHAP, the first metabolite of the shikimic acid 

pathway produced via the condensation of PEP and E4P, and chorismate, the key 

aromatic amino acid branch point, are tightly regulated through feedback regulation of 

phenylalanine, tyrosine, and tryptophan, as illustrated in Figure 4.1(Keseler et al. 2005).  
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Figure 4.1. Metabolic pathways for the production of aromatics.  Metabolic 

reactions for the consumption of glycerol, D-fructose, D-glucose, L-arabinose, D-xylose, 

and gluconate linked to central metabolism. The engineered pathway for the production 

of catechol is also illustrated. Multiple arrows indicate that several reactions are not 

illustrated while dashed arrows indicate feedback regulation.  
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While extensive work has been accomplished to reduce or remove the feedback 

regulation mechanisms through strain engineering, titers remain low due to poor flux 

through the shikimic acid pathway. Extensive research in increasing PEP and E4P 

bioavailability has been investigated; however, since PEP and E4P are key components 

of central metabolism, increasing their bioavailability remains a challenge. For example, 

PEP is an essential cofactor for the PEP:glucose phosphotransferase system (PTS) which 

is responsible for transporting and phosphorylating glucose to G6P. Researchers have 

constructed PTS
-
 mutants which, in theory, do not utilize PEP to phosphorylate glucose 

and thus may have increased bioavailability of PEP for the production of aromatic 

products; however, said PTS
-
 strains suffer from reduced growth rate (µ = 0.7 hr

-1
 to 0.1 

hr
-1

) and are thus unsuitable as a robust host platform for aromatic chemical 

production(Martínez et al. 2008). In addition to the consumption of PEP via PTS, 

conversion of PEP to pyruvate is the last step of glycolysis prior to carbon flux entering 

the TCA cycle. While deletion of the responsible pyruvate kinase isozymes pykA and 

pykF has previously been shown to increase the product-to-biomass yield (Ypx) of the 

shikimic acid precursor DHAP by 3.4-fold, production of a non-natural aromatic product 

was not demonstrated in that study(Gosset, Yong-Xiao, and Draths 1996). Parallel routes 

toward increasing E4P have also been considered for increasing aromatic biosynthesis. 

For example, overexpression of the transketolase tktAB, which is directly responsible for 

production of E4P, has been shown to be an effective strategy for increasing flux through 

the shikimic acid pathway. A study by Draths et al. demonstrated a nearly 2-fold 

improvement in flux by overexpressing tktAB(Draths et al. 1992); however, McKenna et 

al. observed a noticeable reduction in growth rate when the enzyme was overexpressed 
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but also observed a similar increase in product yield(McKenna et al. 2013b). In 

Saccharomyces cerevisiae, which possesses a homologous aromatic biosynthesis 

pathway design to E. coli, Curran et al. overexpressed the transketolase TKL1 and 

knocked out the glucose-6-phosphate dehydrogenase ZWF1, zwf in E. coli, to force flux 

from glycolysis into the pentose phosphate pathway through transketolase alone and 

ultimately observed a 24-fold improvement in titer achieving 141 mg/L of muconic 

acid(Curran et al. 2013b).  

Thus far, nearly all approaches toward improving shikimic acid pathway flux 

have focused on overexpressing or knocking out key pathway enzymes to control flux 

through glycolysis, to improve PEP availability, or the pentose phosphate pathway, to 

improve E4P availability. Alternatively, researchers have considered carbon substrates 

other than D-glucose to control metabolic flux and improve product-to-substrate yields. 

For example, production of ethanol has been achieved using glycerol(Shams Yazdani and 

Gonzalez 2008, Yazdani and Gonzalez 2007, Dharmadi, Murarka, and Gonzalez 2006), 

D-fructose(Jain, Toran-Diaz, and Baratti 1985), L-arabinose(Becker and Boles 2003), or 

D-xylose(Qureshi et al. 2006) as the sole substrate. While the substrates glycerol and D-

fructose enter metabolism through glycolysis, the pentose sugars L-arabinose and D-

xylose as well as gluconate are metabolized via the pentose phosphate pathway. This 

represents a unique opportunity to potentially balance flux through glycolysis and the 

pentose phosphate pathway by co-feeding different carbon substrates. We hypothesize 

that increasing precursor availability of PEP and E4P through a co-feeding strategy of 

mixed carbon sources will increase achievable yields in engineered aromatic pathways. 

To test our hypothesis in silico, we utilized elementary flux mode analysis (EMA) to 
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calculate relevant yields in a mixed carbon feeding strategy for the biosynthesis of the 

aromatic product catechol; though, the methods and results discovered in this study 

would apply to other aromatic products derived from the shikimic acid pathway. 

Previously, EMA has been used to evaluate metabolic networks and determine 

maximum theoretical product- and biomass-to-substrate yields(Trinh, Wlaschin, and 

Srienc 2009, Averesch and Krömer 2014). EMA is an efficient tool for analyzing flux 

through metabolic networks and the in silico identification/testing of novel strategies for 

optimizing product biosynthesis. EMA modelling utilizes the stoichiometry of all 

reactions composing a given metabolic network, as further confined by any the 

thermodynamic constraints of those reactions; reaction kinetics, however, not considered. 

As described by Trinh et al., the conservation of mass of metabolites in a system of 

defined volume (i.e., a bacterial cell) can be described by Eq.1 where C is the 

concentration vector of the metabolite, r is the reaction rate vector, S is the stoichiometry 

matrix, and µ is the dilution rate of the change in volume of the system (i.e., a change in 

size of an individual cell)(Trinh, Wlaschin, and Srienc 2009). Within a cell, however, it 

may be assumed that i) the reaction rate is much greater than the dilution rate and 

therefore the contribution of volume changes is negligible, and ii) at steady state there is 

no net accumulation of the metabolite; therefore, Eq. 1 may be simplified to Eq. 2. 

Thermodynamically, due to the irreversibility of some reactions within the metabolic 

network, the reaction rate of an individual reaction (ri) may be constrained to have a 

positive flux, as described by Eq. 3.  
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EMA uses Eq. 2 and 3 to calculate all possible unique solutions, also known as 

elementary modes (EMs). 

4.2 Materials and Methods   

4.2.1 Elementary flux mode analysis  

Modelling was conducted using the EFMTool 4.7.1 (available at 

http://www.csb.ethz.ch/tools/software/efmtool.html) in MATLAB R2013a on a Hewlett 

Packard EliteBook at 2.60 GHz (Terzer and Stelling 2008). Each EFM represents a 

single, steady state flux distribution of a functional pathway within the metabolic 

network. Average computation time was approximately 31.7 s (N = 7). 

 4.2.2 Metabolic Network 

The metabolic network was adapted from Averesch et al. (Averesch and Krömer 

2014), and further modified to include additional metabolic reactions as compiled from 

literature (Keseler et al. 2005). The modified metabolic network developed in this study 

is thereby uniquely capable of analyzing the effects of different substrate feeding 

strategies, including the following carbon and energy sources as well as their mixtures: 

D-glucose, glycerol, L- and D-arabinose, D-xylose, gluconate, and D-fructose. The 

metabolic network includes glycolysis, the pentose phosphate pathway, the TCA cycle, 

biomass formation, the glyoxylate cycle, and the electron transport chain. Amino acid 

biosynthesis was not considered in the metabolic model. The biosynthetic production of 

catechol via chorismate(Pugh et al. 2014) was used as a model pathway for the EMA in 
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silico model as illustrated in Figure 4.1. Table 4.1 summarizes the reactions comprising 

the entire metabolic network developed and used in this study. 

Table 4.1. Metabolic network comprising all reactions evaluated in the EMA model 

Reaction Function / Enzyme 

'--> 1 Glucose + 0 Glycerol + 0 L-Arabinose + 0 D-

Arabinose + 0 Xylose + 0 Gluconate + 0 Fructose' 

Mixed carbon feed (subscripts modified to 

specify substrate) 

'Product_ex -->' Product out 

'Biomass_ex -->'  Biomass_ex out 

'CO2 -->' Carbon dioxide out 

'Lactate -->' Lactate out 

'Ethanol -->' Ethanol out 

'Formate -->' Formate out 

'Acetate -->' Acetate out 

'SUCC_ex -->' Succinate out 

'--> P_ex' Phosphate in 

'--> O2' Oxygen uptake 

'--> NH3' Ammonia uptake 

'P_ex + ATP --> ADP + 2 P' Phosphate-transporting ATPase (EC 

3.6.3.27) 

'3 SUCC + ATP --> 3 SUCC_ex + ADP + P' Succinate export (ABC transporter) 

'Catechol + ATP --> Product_ex + ADP + P' Product export (ABC transporter) 

'Glucose + PEP --> G6P + PYR' Phosphotransferase system (EC 2.7.1.69) 

'Glucose + ATP --> G6P + ADP' Hexokinase (EC 2.7.1.1) 

'G6P <--> F6P' Glucose-6-phosphate isomerase (EC 5.3.1.9) 

'ATP + F6P --> ADP + F-16-BP' Phosphofructokinase (2.7.1.11) 

'F-16-BP --> F6P + P' Fructose 1,6-bisphosphatase (EC 3.1.3.11) 

'F-16-BP <--> GA3P + DHAP' Fructose 1,6-bisphosphate aldolase (EC 

4.1.2.13) 

'DHAP <--> GA3P' Triose-phosphate isomerase (EC 5.3.1.1) 

'GA3P + NAD + P <--> 13-PG + NADH' Glyceraldehyde-3-phosphate dehydrogenase 

(EC 1.2.1.12) 

'ADP + 13-PG <--> ATP + 3-PG' 3-Phosphoglycerate phosphatase (EC 

3.1.3.38) 

'3-PG <--> 2-PG' Phosphoglycerate mutase (EC 5.4.2.1) 

'2-PG <--> PEP' Phosphopyruvate hydratase (EC 4.2.1.11) 

'PEP + ADP --> PYR + ATP' Pyruvate kinase (EC 2.7.1.40) 

'PYR + ATP --> PEP + AMP + P' Phosphoenolpyruvate synthase (EC 2.7.9.2) 

'Glycerol + ATP <--> Glycerol-3-P + ADP' Glycerol kinase (EC 2.7.1.30) 

'Glycerol-3-P + UQ8 --> DHAP + UQ8H2' Glycerol-3-phosphate dehydrogenase (EC 

1.1.5.3) 
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'L-Arabinose --> L-Ribulose' L-arabiose isomerase (EC 5.3.1.4) 

'L-Ribulose + ATP --> L-RIBU-5P + ADP' L-ribulokinase (EC 2.7.1.16) 

'L-RIBU-5P --> XYL-5P' L-ribulose 5-phosphate 4-epimerase (EC 

5.1.3.4) 

'D-Arabinose --> D-Ribulose' D-arabinose isomerase (EC 5.3.1.3) 

'D-Ribulose + ATP --> RIBU-1P + ADP' D-ribulokinase 

'RIBU-1P --> DHAP + Glyald' D-ribulose-phosphate aldolase 

'Glyald + NAD --> Glycolate + NADH' Glycoaldehyde dehydrogenase (EC 1.2.1.21) 

'2 Glycolate --> 2 Glyoxylate' Glycolate oxidase (EC 1.1.99.14) 

'2 Glyoxylate --> TART' Glyoxylate carboligase (EC 4.1.1.47) 

'TART + NADH --> Glycerate + NAD' Tartronate semialdehyde reductase  

'Glycerate + ATP --> 2-PG + ADP' Glycerate kinase (EC 2.7.1.165) 

'Fructose + PEP --> F1P + PYR' PTS 

'F1P + ATP --> F-16-BP + ADP' 1-Phosphofructokinase (EC 2.7.1.56) 

'Xylose --> Xylulose' Xylose isomerase (EC 5.3.1.5) 

'Xylulose + ATP <--> XYL-5P + ADP' Xylulokinase (EC 2.7.1.17) 

'Gluconate + ATP <--> 6-P-Gluconate + ADP' Gluconate kinase (EC 2.7.1.12) 

'G6P + NADP --> GLC-LAC + NADPH' Glucose-6-phosphate 1-dehydrogenase (EC 

1.1.1.49) 

'GLC-LAC --> 6-P-Gluconate' 6-Phosphogluconolactonase (EC 3.1.1.31) 

'6-P-Gluconate --> KDPG' Phosphogluconate dehydratase (EC 4.2.1.12) 

'KDPG --> PYR + GA3P' 2-Keto-3-deoxygluconate-6-phosphate 

aldolase (EC 4.1.2.14) 

'6-P-Gluconate + NADP <--> RIBU-5P + CO2 + 

NADPH' 

Phosphogluconate dehydrogenase (EC 

1.1.1.44) 

'RIBU-5P <--> XYL-5P' Ribulose-phosphate 3-epimerase (EC 

5.1.3.1) 

'RIBU-5P <--> RIBO-5P' Ribose-5-phosphate isomerase (EC 5.3.1.6) 

'S7P + GA3P <--> RIBO-5P + XYL-5P' Transketolase (EC 2.2.1.1) 

'S7P + GA3P <--> E4P + F6P' Transaldolase (EC 2.2.1.2) 

'F6P + GA3P <--> E4P + XYL-5P' Transketolase (EC 2.2.1.1) 

'PYR + H-CoA + NAD --> AC-CoA + NADH + CO2' Pyruvate dehydrogenase complex (EC 

1.2.4.1, EC 2.3.1.12, EC 1.8.1.4) 

'Acetate + ATP + H-CoA --> AC-CoA + AMP + 2 P' Acetyl-CoA synthetase / Acetate-CoA ligase 

(EC 6.2.1.1) 

'AC-CoA + OAA --> CIT + H-CoA' Citrate synthase (E.C. 2.3.3.1) 

'CIT <--> ICI' Aconitase (EC 4.2.1.3) 

'ICI + NADP <--> 2-OXO + CO2 + NADPH' Isocitrate dehydrogenase (NADP dependent) 

(EC 1.1.1.42) 

'2-OXO + NAD + H-CoA --> SUCC-CoA + NADH + 

CO2' 

2-Oxoglutarate dehydrogenase complex (EC 

1.2.4.2, EC 2.3.1.61, EC 1.8.1.4) 

'SUCC-CoA + ADP + P <--> SUCC + H-CoA + ATP' Succinyl-CoA synthetase (EC 6.2.1.5) 

'SUCC + FAD --> FUM + FADH2' Succinate dehydrogenase (EC 1.3.5.1) 

'FUM + FADH2 --> SUCC + FAD' Fumarate reductase (EC 1.3.99.1) 

'FUM <--> MAL' Fumarase (EC 4.2.1.2) 
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'MAL + NAD <--> OAA + NADH' Malate dehydrogenase (EC 1.1.1.37) 

'ICI --> GLYOXY + SUCC' Isocitrate lyase (EC 4.1.3.1) 

'GLYOXY + AC-CoA --> MAL + H-CoA' Malate synthase (EC 2.3.3.9) 

'PEP + CO2 --> OAA + P' Ppc: Phosphoenolpyruvate carboxylase (EC 

4.1.1.31) 

'OAA + ATP --> PEP + ADP + CO2' Phosphoenolpyruvate carboxykinase (EC 

4.1.1.49) 

'MAL + NADP <--> PYR + CO2 + NADPH' Malic enzyme (NADP dependent) (EC 

1.1.1.40) 

'MAL + NAD --> PYR + CO2 + NADH' Malic enzyme (NAD dependent) (EC 

1.1.1.38) 

'PYR + H-CoA <--> AC-CoA + Formate' Pyruvate formate lyase (EC 2.3.1.54) 

'Formate --> CO2' Formate hydrogenlyase 

'PYR + NADH <--> Lactate + NAD' Lactate dehydrogenase (EC 1.1.1.28) 

'AC-CoA + NADH <--> ACA + NAD + H-CoA' Acetaldehyde dehydrogenase 

'ACA + NADH <--> Ethanol + NAD' Ethanol dehydrogenase  (EC 1.1.1.1) 

'AC-CoA + P <--> ACP + H-CoA' Phosphate acetyltransferase (EC 2.3.1.8) 

'ACP + ADP <--> Acetate + ATP' Acetate kinase (EC 3.6.1.7) 

'GLN + 2-OXO + NADPH --> 2 GLU + NADP' Glutamate synthase (NADP dependent) (EC 

1.4.1.13) 

'2-OXO + NH3 + NADPH <--> GLU + NADP' Glutamate dehydrogenase (NADP 

dependent) (EC 1.4.1.4) 

'GLU + NH3 + ATP --> GLN + ADP + P' Glutamine synthetase (EC 6.3.1.2) 

'GLN --> GLU + NH3' Glutaminase (EC 3.5.1.2) 

'NADPH + NAD --> NADP + NADH' NAD(P)+ transhydrogenase (EC 1.6.1.1) 

'NADH + FAD --> NAD + FADH2' Flavin reductase (NAD dependent) (EC 

1.5.1.36) 

'NADP + NADH + H[e] --> NADPH + NAD + H[c]' NAD(P)+ transhydrogenase (EC 1.6.1.2) 

'NADH + UQ8 + 4 H[c] --> NAD + UQ8H2 + 4 H[e]' NADH dehydrogenase 

'FADH2 + UQ8 --> FAD + UQ8H2' FADH2 dehydrogenase 

'UQ8H2 + 4 H[c] + 0.5 O2 --> UQ8 + 4 H[e]' Cyt_b0 / Cyt_bd oxidase 

'ADP + 4 H[e] + P <--> ATP + 4 H[c]' ATP synthase 

'AMP + ATP <--> 2 ADP' Adenylate kinase (EC 2.7.4.3) 

'ATP --> ADP + P' ATP hydrolysis 

'6965 NH3 + 206 G6P + 72 F6P + 627 RIBO-5P + 361 

E4P + 129 GA3P + 1338 3-PG + 720 PEP + 2861 PYR 

+ 2930 AC-CoA + 1481 OAA + 1078 2-OXO + 16548 

NADPH + 56357 ATP + 3548 NAD --> Biomass_ex + 

16548 NADP + 2930 H-CoA + 1678 CO2 + 56357 

ADP + 56357 P + 3548 NADH' 

Biomass_ex formation and maintenance 

'E4P + PEP --> DAHP + P' 3-deoxy-7-Phosphoheptulonate synthase (EC 

2.5.1.54) 

'DAHP --> DHQ + P' 3-Dehydroquinate synthase (EC 4.2.3.4) 

'DHQ --> DHS' 3-Dehydroquinate dehydratase (EC 4.2.1.10) 

'DHS + NADPH --> Shikimate + NADP' 3-Dehydroshikimate dehydratase (EC 

4.2.1.118) 
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'Shikimate + ATP --> Shikimate-3-P + ADP' Protocatechuate decarboxylase (EC 4.1.1.63) 

'Shikimate-3-P + PEP --> Carboxyvinyl-Shikimate-3-P 

+ P' 

Catechol 1,2-dioxygenase (EC 1.13.11.1) 

'Carboxyvinyl-Shikimate-3-P --> Chorismate + P' Chorismate synthase (EC 4.2.3.5) 

'Chorismate --> 4-Hydroxybenzoate + PYR' Chorismate lyase (EC 4.1.3.40) 

'4-Hydroxybenzoate + NADPH --> Protocatechuate + 

NADP' 

4-hydroxybenzoate 3-monooxygenase (EC 

1.14.13.2/EC 1.14.13.33) 

'Protocatechuate --> Catechol + CO2' Protocatechuate decarboxylase (EC 4.1.1.63) 

4.2.3 Yield Calculations 

 Both product and biomass yields may be determined from the in silico EMA 

model including the product-to-substrate yield (Yps; Eq. 4) and the biomass-to-substrate 

yield (Yxs; Eq. 5).These yields describe the maximum  achievable flux toward either 

product or biomass formation based on the consumption of the substrate. From a ratio of 

the product and biomass yields, the product-to-biomass yield (Ypx) may be determined 

as described by Eq. 6. The product-to-biomass yield describes the productivity of the 

culture on a biomass basis and can be used to understand the tradeoff between carbon 

flux toward product vs biomass formation. An alternative means of understanding the 

role of biomass formation in the model is to use the product-to-substrate plus biomass 

yield (Yps+x; Eq. 7). The product-to-substrate plus biomass yield is the maximum 

theoretical yield which takes into account the necessary flow of carbon toward biomass 

formation to support cell growth and reproduction. To further understand how the 

metabolic changes effect product formation taking into account biomass formation, the 

percent maximum achievable product yield may be calculated by taking a ratio of Eq. 4 

and Eq. 7 (Yps
max

; Eq. 8).        
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4.3 Results and Discussion 

4.3.1 Evaluation of different carbon sources 

Both PTS (including D-glucose and D-fructose) and non-PTS carbon sources 

(including glycerol, D-xylose, L- and D-arabinose, and gluconate) were evaluated in the 

in silico EMA model to elucidate how the different carbon sources might affect catechol 

(henceforth referred to as ‘product’) and biomass yields. As illustrated in Table 4.2, 

glycerol provided the highest maximum theoretical product-to-substrate and biomass-to-

substrate yields (Yps = 0.125 mol P/mol C and Yxs = 0.252 mol X/mol C) when 

compared on a per carbon basis of the carbon sources tested. In contrast to the other 

compounds tested, glycerol is the most highly reduced substrates and enters central 

metabolism closer to the TCA cycle.  Most notably, glycerol is not a PTS sugar and is 

metabolized by phosphorylation using ATP as a phosphate donor as opposed to 

consuming PEP. However, while glycerol supported the highest theoretical product-to-

substrate and biomass-to-substrate yields, it also suffered from the lowest product-to-

biomass yield Ypx = 0.454 mol P/mol X. The lower product-to-biomass yield resulted in 
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a lower maximum theoretical product-to-substrate yield plus biomass, Yps+x = 0.115 

mol P/mol C achieving only 91.4% of the theoretical maximum (Yps
max

).  

D-Glucose, the preferred carbon substrate of E. coli, supported the highest 

product-to-biomass yield Ypx = 0.956 mol P/mol X and was able to achieve 96% of the 

theoretical product-to-substrate yield plus biomass (Yps+x = 0.113 mol P/mol C). The 

higher efficiency of D-glucose as a carbon substrate is likely due to the fact that, unlike 

glycerol, D-glucose is efficiently metabolized in a manner that results in the production 

of both of the required shikimic acid pathway precursors, PEP and E4P. More 

specifically, as illustrated in Figure 4.1, upon transport and phosphorylation of D-glucose 

to D-glucopyranose 6-phosphate (G6P), flux proceeds through both glycolysis, resulting 

in the production of PEP, as well as the pentose phosphate pathway, resulting in the 

production of E4P. In contrast, D-fructose, for example, is also metabolized through 

glycolysis, however, it enters the pathway downstream of the first committed step to the 

pentose phosphate pathway (Zwf; glucose 6-phosphate 1-dehydrogenase). Thus, with 

consequently lower flux to E4P, fructose supports a lower maximum theoretical product-

to-substrate yield plus biomass (Yps+x = 0.107 mol P/mol C; Yps
max

 = 92.6%) and 

product-to-biomass yield (Ypx = 0.912 mol P/mol X). This observation suggests that a 

proper balance must be achieved between flux through both the pentose phosphate 

pathway (for generation of E4P) as well as glycolysis (to provide necessary essential 

biomass metabolites and notably PEP) to achieve high yields of shikimic acid precursors 

for aromatic chemical production.  
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Table 4.2. Carbon source evaluation of maximum theoretical yield coefficients  

 

Yps 

(mol P/ 

mol C) 

Yps 

(g P/g S) 

Yxs 

(mol X/ 

mol C) 

Yps+x 

(mol P/ 

mol C) 

Yps+x 

(%max) 

Ypx 

(mol P/ 

mol X) 

D-Glucose 0.118 0.431 0.118 0.113 96.0 0.956 

D-Fructose 0.116 0.424 0.117 0.107 92.6 0.912 

Glycerol 0.125 0.449 0.252 0.115 91.4 0.454 

D-Xylose 0.118 0.431 0.142 0.113 95.7 0.795 

L-Arabinose 0.118 0.431 0.142 0.112 95.5 0.792 

D-Arabinose 0.102 0.375 0.124 0.099 96.7 0.802 

Gluconate 0.108 0.363 0.108 0.097 90.3 0.900 

   

 

Interestingly, the pentose sugars D-xylose and L-arabinose have comparable 

maximum theoretical product-to-substrate plus biomass yields to D-glucose with D-

xylose having the highest, Yps+x = 0.113 mol P/mol C. The high achievable theoretical 

yields of the pentose sugars is possible since carbon can link directly to glycolysis and 

central metabolism either through the transketolase reaction (TktAB), which produces 

E4P as a product of the reaction, or via the Entner-Doudoroff pathway which connects 6-

P-Gluconate to GA3P via KDPG (Edd; phosphogluconate dehydratase and EdA; 2-Keto-

3-deoxygluconate-6-phosphate aldolase). These results demonstrate that high product 

yields can theoretically be achieved when carbon is fed directly to the pentose phosphate 

pathway as a result of enhanced E4P bioavailability as well as close linkage to glycolysis 

and central metabolism. Though D-xylose has a high product-to-substrate yield, it has 

nearly half the theoretical biomass-to-substrate yield as glycerol; thus, it was 

hypothesized that co-feeding glycerol and D-xylose may be able to achieve comparable, 

if not higher, product-to-substrate plus biomass yields than feeding D-glucose alone. 
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Figure 4.2. EFM distribution of biomass and product yields for the E. coli 

pathway networks for the production of catechol fed different carbon 

substrates. EFM plots include D-glucose (A), D-fructose (B), glycerol (C), L-arabinose 

(D), D-arabinose (E), D-xylose (F), and gluconate (G).  
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4.3.2 Optimization of product yield via co-feeding strategy 

For a co-feeding strategy to be effective in E. coli, the carbon substrates should, 

ideally, not compete for cofactor-mediated transport and phosphorylation (i.e., PTS 

sugars) nor should their exist enzymatic repression mechanisms. While D-glucose and 

glycerol co-feeding was considered to optimize product and biomass yields, co-feeding 

E. coli D-glucose with other carbon sources has often been unsuccessful as E. coli will 

preferentially consume D-glucose before consuming other carbon sources, a mechanism 

commonly referred to as carbon catabolite repression (CCR) (Brückner and Titgemeyer 

2002, Saier and Roseman 1976). On the other hand, no known repression or competition 

pathways for co-feeding glycerol and D-xylose exist; therefore, these carbon sources 

were considered in a co-fed in silico EMA model.  

 

 
Figure 4.3. In silico EMA model yields for co-fed D-xylose and glycerol cultures. 
The biomass yield Yxs is plotted in blue diamonds while the maximum product-substrate 

plus biomass yield Yps+x is plotted in red squares.  

 

 A range of D-xylose and glycerol ratios were considered in the EMA model. As 

illustrated in Figure 4.3, a maximum biomass-to-substrate yield Yxs = 0.78 mol X/mol S 
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was achieved at 35% D-xylose and 65% glycerol. As previously discussed, glycerol fed 

cultures have the highest theoretical biomass yields on a per carbon basis therefore it was 

expected that the maximum biomass yield was achieved when fed a higher ratio of 

glycerol. Conversely, at a higher D-xylose ratio of 70% D-xylose and 30% glycerol, the 

maximum product-substrate plus biomass yield Yps+x = 0.516 mol P/mol S was 

achieved at 98.2% of the theoretical maximum. On a per carbon basis, co-feeding 70% 

D-xylose and 30% glycerol can theoretically achieve a higher product-to-substrate yield 

(Yps+x = 0.117 mol P/mol C) than glucose alone (Yps+x = 0.113 mol P/molC).   These 

results can be interpreted visually in the EFM distribution plots in Figure 4.4. As 

illustrated, in the 100% glycerol case (A), the biomass yield is favored over product yield 

indicated by the higher number of EMs clustering in its favor. On the other hand in the 

100% D-xylose case (B), EMs cluster more in favor of the product yield. As expected, in 

the co-fed cases, the EM distribution clusters either in favor of biomass yield in the case 

of 35% D-xylose ad 65% glycerol (C), or a more balanced distribution between biomass 

and product yield like the 70% D-xylose and 30% glycerol case (D).      
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Figure 4.4. EFM distribution of biomass and product yields for the E. coli 

pathway networks. This includes the production of catechol co-fed D-xylose and 

glycerol. EFM plots include cultures fed 100% glycerol, 100% D-xylose (B), 35% D-

xylose and 65% glycerol (C), and 70% D-xylose and 30% glycerol (D).  

 It is hypothesized that a higher theoretical product-to-substrate yield was achieved 

in the co-feeding strategy as a result of carbon sourced from D-xylose being directly 

metabolized in the pentose phosphate pathway to yield E4P while carbon sourced from 

glycerol is metabolized via glycolysis to yield PEP. To test this hypothesis and decouple 

the effects of co-feeding carbon sourced from D-xylose and glycerol, the transketolase 

reaction (EC 2.2.1.1; E4P + XYL-5-P = F6P + GA3P), which is the key reversible link 

between glycolysis and the pentose phosphate pathway and the primary route toward E4P 

production, was removed from the metabolic network in the EMA model to simulate a 

ΔtktA knockout mutant. In the tktA mutant, E4P production is still achievable via the 

A 

C 

B 

D 
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transaldolase reaction (EC 2.2.1.2, S7P + GA3P = E4P + F6P). As described in Table 4.3, 

in a glucose fed culture model, deletion of tktA has a significant impact to the maximum 

theoretical product-to-substrate yield reducing Yps = 0.118 mol P/mol C in the wild-type 

(WT) to Yps = 0.111 mol P/mol C in the ΔtktA mutant. Since the transketolase reaction is 

the primary mechanism for E4P biosynthesis and carbon flux to reversibly enter the 

pentose phosphate pathway from glycolysis, it was expected that deletion of this pathway 

would have a negative impact on maximum product yields. However, since carbon from 

glucose can enter the pentose phosphate pathway via the glucose 6-phosphate 1-

dehydrogenase reaction (catalyzed by Zwf) to generate necessary biomass precursors and 

potentially re-enter glycolysis via the metabolites 6-P-gluconate and KDPG, the 

maximum theoretical biomass-to-substrate yield remained unchanged. The tktA knockout 

was then tested in the 70% D-xylose and 30% glycerol co-fed model and interestingly, no 

impact to the maximum theoretical product-to-substrate yield was observed compared to 

the wild-type. This confirms the hypothesis that the co-feeding strategy is tuned to drive 

flux toward product formation by feeding carbon directly to the necessary pathways to 

generate the shikimic acid pathway precursors E4P and PEP. However, unlike the 

glucose fed culture model, the co-fed model did observe a reduction in biomass-to-

substrate yield changing from Yxs = 0.173 mol P/mol C in the WT to Yxs = 0.168 in the 

ΔtktA mutant. This suggests that the transketolase reaction is necessary to generate 

biomass forming metabolites in the co-fed model. By knocking out tktA in the EMA 

model, the pentose phosphate pathway and glycolysis were decoupled to demonstrate that 

the increase in product-to-substrate yield in the co-feeding strategy was a result of 

directly feeding carbon to the pathways necessary for E4P and PEP production.  
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Table 4.3: Role of transketolase on product and biomass yields  

Carbon Source Genotype 
Yps  

(mol P/mol C) 

Yxs 

(mol X/mol C) 

Glucose WT 0.118 0.118 

Glucose ΔtktA 0.111 0.118 

70% D-Xylose + 30% Glycerol WT 0.119 0.173 

70% D-Xylose + 30% Glycerol ΔtktA 0.119 0.168 

 

4.3.3 Increasing product-to-biomass yield via strategic knock-out approach 

 Deletion of the PEP consuming pyruvate kinases PykA and PykF have previously 

been shown to increase the product-to-biomass yield of the shikimic acid pathway 

metabolite DHAP (Gosset, Yong-Xiao, and Draths 1996). Deletion of pykAF was tested 

in the EMA in silico model and the deletions had a marginal effect (<1% increase) on the 

product-to-biomass yield of a 100% D-glucose fed culture. In addition to the pyruvate 

kinase isozymes, deletion of phosphoenolpyruvate carboxylase (ppc) was also evaluated 

for its effect on specific productivity; however, no effect was observed in the wild-type 

host or the ppc and pykAF triple knock-out mutant. The developed metabolic network 

was accordingly modified to evaluate the individual and combined effect of pykAF and 

ppc knockouts in cultures co-fed with a 70% D-xylose and 30% glycerol mixture.  While 

deletion of ppc alone had no effect, deletion of both pyruvate kinase isozymes (pykAF) 

provided a ~7% increase in the product-to-biomass yield, increasing from Ypx = 0.679 

mol P/mol X in the wild-type background to Ypx = 0.711 mol P/mol X in the mutant. 

Interestingly, while ppc had no effect as a single knockout, the ∆ppc ∆pykAF mutant 

provided a further increase in product-to-biomass yield, reaching Ypx = 0.741 mol P/mol 

X or a net increase of 9% over the wild-type background.         
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Table 4.4: Effect of strategic knock-outs on maximum yield coefficients  

Genotype 
Carbon Feed 

Strategy 

Yps 

(mol P/ 

mol C) 

Yxs 

(mol X/ 

mol C) 

Yps+x 

(mol P/ 

mol C) 

Yps+x 

(%max) 

Ypx 

(mol P/ 

mol X) 

WT 100% D-Glucose 0.118 0.118 0.113 96.0 0.996 

∆pykAF 100% D-Glucose 0.118 0.117 0.113 96.0 1.003 

∆ppc 100% D-Glucose 0.118 0.118 0.113 96.0 0.996 

∆ppc∆pykAF 100% D-Glucose 0.118 0.117 0.113 96.0 1.003 

WT 
70% D-Xylose + 

30% Glycerol 
0.119 0.173 0.117 98.2 0.679 

∆pykAF 
70% D-Xylose + 

30% Glycerol 
0.119 0.165 0.117 98.2 0.711 

∆ppc 
70% D-Xylose + 

30% Glycerol 
0.119 0.173 0.117 98.2 0.679 

∆ppc∆pykAF 
70% D-Xylose + 

30% Glycerol 
0.119 0.158 0.117 98.2 0.741 

∆ppc∆pykAF 
73% D-Xylose + 

27% Glycerol 
0.116 0.151 0.114 98.6 0.757 

 

 The effect of substrate ratio for D-xylose/glycerol mixtures was subsequently 

reevaluated for a host deficient in the two focal PEP consuming pathways (i.e., the ∆ppc 

∆pykAF mutant). As illustrated in Figure 4.5, in this case the maximum theoretical 

product-substrate plus biomass yield was achieved at 73% D-xylose and 27% glycerol, 

Yps+x = 0.693 mol P/mol C (or 0.114 mol P/mol C) achieving 98.6% of the theoretical 

maximum (Yps
max

). Overall, the maximum biomass yield shifted down from Yxs = 0.780 

mol P/mol S (or 0.173 mol P/mol C) in the wild-type host to Yxs = 0.711 mol P/mol S (or 

0.151 mol P/mol C) in the ∆ppc ∆pykAF mutant. Interestingly, the new biomass yield 

feed ratio optimum also shifted from 35% D-xylose to 40% D-xylose favoring a higher 

ratio of glycerol. The overall higher shift in D-xylose utilization for product and biomass 

yields indicates that the deletion of PEP consuming pathways increased PEP availability 

and E4P became the rate limiting metabolite. By increasing the D-xylose to glycerol ratio 

in the ∆ppc ∆pykAF mutant, the available pool of PEP and E4P was balanced leading to 
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new optimums for product and biomass yields. The effect on the yields can be observed 

in the EFM distribution illustrated in Figure 4.6.  

 

 
Figure 4.5. In silico EMA model yields for co-fed D-xylose and glycerol cultures 

in a wild-type and ∆ppc∆pykAF host background. The wild-type host is plotted in 

blue diamonds while the ∆ppc∆pykAF mutant is plotted in red squares. Plots include the 

maximum produce-substrate plux biomass yield Yps+x (top left), the biomass-substrate 

yield Yxs (top right), and the specific productivity Ypx (bottom left).  
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Figure 4.6. EFM distribution of biomass and product yields for the E. coli 

mutants to increase bioavailability of PEP. EFM plots include WT: 70% D-xylose 

and 30% glycerol (A), ∆pykAF: 70% D-xylose and 30% glycerol (B), ∆ppc: 70% D-

xylose and 30% glycerol (C), ∆ppc∆pykAF: 70% D-xylose and 30% glycerol (D), and 

∆ppc∆pykAF: 73% D-xylose and 27% glycerol (E).  

4.4 Conclusion  

 In this study, we illustrated how EMA can be used to characterize mixed-carbon 

feeds and tune metabolic flux to achieve an optimized ratio of precursor metabolites. By 
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feeding carbon directly into the pentose phosphate pathway via D-xylose, E4P 

bioavailability was increased, while co-feeding glycerol promoted the formation of PEP 

and biomass. EMA was further utilized to identify deletions which enhanced PEP 

bioavailability and maximum achievable product-to-substrate plus biomass yields. 

Though catechol was used as a surrogate for the model, the identified approaches could 

be applied to any aromatic product derived from the shikimic acid pathway. Overall, we 

demonstrated that EMA is an efficient means of identifying stoichiometric optimums to 

potentially improve product yields.     
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CHAPTER 5 

DISCUSSION AND FUTURE WORK 

 

Abstract 

The novel biosynthetic pathways presented in these works highlight new 

contributions to the field of metabolic engineering. However, further improvements are 

necessary to improve flux through the pathways to ultimately achieve higher titers and 

yields. Future works are discussed including the use of protein scaffolds to co-localize 

enzymes to overcome pathway imbalances for the biosynthesis of benzyl alcohol as well 

as an evaluation of alternative catechol production pathways.      
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5.1 Introduction 

 These works have demonstrated the biosynthetic production of benzyl alcohol and 

benzaldehyde, for the first time, as well as a novel route toward the biosynthetic 

production of para-hydroxybenzoate, protocatechuate, and catechol. Unlike the 

production of other aromatic products which are limited by product imposed toxicity, 

such as styrene for example (McKenna and Nielsen 2011b), these fine chemicals are 

limited by pathway flux and precursor availability. From the in silico EMA model, we 

identified that co-feeding glycerol and D-xylose in addition to targeted host knockouts 

may be able to enhance precursor availability, namely phosphoenolpyruvate and 

erythrose-4-phosphate, by feeding carbon directly to glycolysis and the pentose 

phosphate pathway. While increasing precursor availability may enhance flux through the 

engineered pathways, parallel approaches should be considered in future works in order 

to identify the optimal routes toward achieving high product titers and yields. For 

example, in the case of the benzyl alcohol pathway, the first heterologous enzymatic 

reaction (HmaS, hydroxymandelate synthase) has been identified to be the rate limiting 

step due to poor substrate affinity. Recent advances in protein scaffolds however have 

demonstrated that flux imbalances could be overcome by tuning the relative ratio of co-

localized pathway enzymes. On the other hand, unlike the benzyl alcohol pathway which 

has only one identified route for synthesis, a recent renewal of interest in catechol and 

muconic acid has led researchers to identify new and novel routes toward the 

biosynthesis of catechol. In this case, a thorough evaluation of the various routes should 

be conducted to identify the pathway capable of generating the highest titers and yields.       
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5.2 Using protein scaffold to overcome pathway flux imbalance to improve the 

biosynthetic production of benzyl alcohol  

As previously described in Chapter 2, flux entering the benzaldehyde and benzyl 

alcohol pathway is limited by the poor activity of hydroxymandelate synthase (HmaS) 

which has a 70-fold lower affinity for phenylpyruvate (Km 0.45± 0.04 mM) versus its 

preferred substrate 4-hydroxyphenylpyruvate (Km 6.5 ± 0.8 µM) (He, Conrad, and Moran 

2010).  Since no other isoenzymes specific for (S)-mandelate are known, HmaS remains 

the only suitable candidate for the biosynthetic pathway at this time. For the biosynthetic 

production of these products to be economically feasible, titer and product yields should 

be enhanced beyond its current state. For this goal to be realized, the poor flux entering 

the engineered pathway must be overcome; a feat which may successfully be 

accomplished utilizing a recent development in the field of synthetic biology, protein 

scaffolds.  

To address problems associated with plasmid based genetic engineering, such as 

metabolic burden and flux imbalances, various strategies have been developed (with 

mixed success), including strategies to modulate or improve transcription and translation 

(e.g., plasmid copy number(Jones, Kim, and Keasling 2000), promoter strength(Hammer, 

Mijakovic, and Jensen 2006), ribosomal binding site strength(Salis, Mirsky, and Voigt 

2009), and codon utilization(Tyo, Alper, and Stephanopoulos 2007)), as well as strategies 

to directly control flux of a particular reaction (e.g., gene circuits like toggle 

switches(Gardner, Cantor, and Collins 2000, Atkinson et al. 2003), logic gates(Hasty, 

McMillen, and Collins 2002, Goni-Moreno and Amos 2012), or even quorum 

sensing(Zhu et al. 2002, Fuqua, Parsek, and Greenberg 2001)). One of the more 
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prominent and developing techniques in synthetic biology is protein scaffolds (Dueber et 

al. 2009). 

 

 

 
Figure 5.1 Modular control of flux via synthetic protein scaffolds. (a). Illustrates 

how synthetic domains (circles with cut shapes) act as a scaffold to which enzymes with 

ligands (square, circle, and triangle) bind and co-localize. Enzyme structures represent 

MdlC(Hasson et al. 1998), MdlB(Sukumar et al. 2001), and HmaS(Brownlee et al. 2008) 

(b). Illustrates how the domains of the scaffold can be 'tuned', three configuration in 

which the third domain is varied is shown. 

 

Protein scaffolds offer a means of substrate channeling via in vivo co-localization 

of pathway enzymes. This regulatory control is accomplished by synthesizing a scaffold 

protein which possess 'domains' tethered via flexible poly-glycine-serine linkers. To date, 

the only three domains which have been characterized for this purpose include the rat 

derived GTPase binding domain (GBD), the mouse derived actin polymerization switch 

N-WASP (SH3),  and the mouse derived PSD95/DIgA/Zo-1 domain from the adaptor 

protein syntrophin (PDZ)(Dueber et al. 2009). The domains (GBD, SH3, and PDZ) act as 
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a docking station, as illustrated in Fig. 5.1, which can be tuned by varying the number of 

a particular domain in the scaffold. Each domain has a strong affinity for a particular 

ligand and the strength of the binding interaction may be quantified by the dissociation 

constant (Kd). The domains GBD, SH3, and PDZ have an affinity for their ligands of Kd 

= 1 µM, 0.1 µM, and 8 µM, respectively(Dueber et al. 2009). To co-localize enzymes, 

via protein scaffolds, the ligands are tethered to the enzyme on either the N or C-terminal 

separated by a flexible poly-glycine-serine linker. Synthetic protein scaffolds have 

proven effective in addressing flux imbalance by circumventing unfavorable equlibria 

and kinetics while also reducing the metabolic burden associated with over-expression of 

enzymes in a heterologous host (Dueber et al. 2009). In addition, co-localization 

minimizes potentially toxic intermediate metabolite accumulation as well as reduces the 

loss of intermediates through diffusion, stability, or competing pathways. Thus far, 

protein scaffolds have successfully been applied to achieve a 77-fold improvement in the 

production of mevalonate(Dueber et al. 2009), a 3-fold improvement in glucarate(Moon 

et al. 2010), and a 3-fold improvement in butyrate(Baek et al. 2013).  

To test the efficacy of protein scaffolds for improving pathway flux, three 

scaffold configurations were constructed and evaluated, described in Appendix A.1. 

Scaffold configurations included pTET-1:1:1, pTET-1:1:2, and pTET-1:1:4 representing 

GBD-SH3-PDZ, GBD-SH3-PDZ-PDZ, GBD-SH3-PDZ-PDZ-PDZ-PDZ, respectively. 

Said configurations were designed in a manner that holds the number of GBD and SH3 

domains constant (one of domain each) while varying the number of PDZ domains (one, 

two, or four). Then, by creating fusions between HmaS, MdlB, and MdlC and those 

ligands with affinity for PDZ, SH3, and GBD, respectively, multi-protein complexes with 
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tunable stoichiometry of pathway enzymes could be created. More specifically, by 

varying the relative number of co-localized subunits of HmaS, the net activity of this 

rate-limiting step could be increased relative to other pathway enzymes to balance and 

improve pathway flux.  

 

Figure 5.2 Assaying efficacy of protein scaffolds to enhance metabolic flux. 

Experiment compared E. coliNST74 (N74) harboring pHmaS
CO

(PDZ)-trc-MdlC(GBD) 

and pMdlB(SH3) as a control to NST74 harboring the aforementioned plasmids and the 

scaffolds pTET-1:1:1, pTET-1:1:2, or pTET-1:1:4 to create strains N74-1:1:1, N74-1:1:1, 

and N74-1:1:4. Cultures were grown in MM1 supplemented with appropriate amino acids 

and induced with 0.25 mM IPTG and 0.2μMaTc. Cultures were monitored over 96 hours, 

at which point maximum titers of benzyl alcohol (gray columns) were achieved. Error 

bars reported at one standard deviation from triplicate experiments.     

 

As illustrated in Fig 5.2, nearly a 2-fold improvement was observed in the strain 

N74-1:1:2 (1 MdlC: 1 MdlB: 2 HmaS) whose titers reached 53 mg/L as compared to the 

control N74 which reached 26 mg/L; however, it should be taken into account that strain 
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N74-1:1:2 achieved this feat while under the metabolic burden associated with harboring 

an additional plasmid, relative to the control. This result demonstrates that increasing the 

localized concentration of HmaS relative to MdlB and MdlC can increase flux through 

the metabolic pathway and confirms our hypothesis that the poor substrate affinity of 

HmaS for phenylpyruvate is imposing a rate-limiting flux imbalance. However, there 

seems to exist a local optima for co-localization of the pathway enzymes since in the 

cases N74-1:1:1 (1 MdlC: 1 MdlB: 1 HmaS) and N74-1:1:4 (1 MdlC: 1 MdlB: 4 HmaS) 

no titer improvements were observed. This preliminary experiment demonstrates that 

there is potential for increasing flux through the benzaldehyde and benzyl alcohol 

pathway; however, further experiments are required, including, i) testing alternative 

protein scaffold combinations which vary not only the relative number of HmaS enzymes 

but also MdlB and MdlC, ii) dependence of linker spacing to account for molecular space 

and protein folding considerations, iii) effect of domain-linker pairing to the heterologous 

enzymes (i.e., testing the use of the GBD or SH3 domain for HmaS as opposed to the 

PDZ domain), and iv) testing the effect of deleting the previously identified knockouts 

which enhance titer (tyrA, tyrB, and aspC).  

5.3 Catechol: multiple routes toward the same product 

A recent renewal of interest in muconic acid as a biosynthetic product has resulted in 

the identification of three additional pathways capable of achieving catechol as an 

intermediate to muconic acid. As described in Figure 5.3, in addition to the routes 

identified by Draths et al. (A) and by Pugh et al. (B), two additional pathways have been 

identified through the intermediate isochorismate, one through salicylate (C) and the 

other through 2,3-dihydroxybenzoate (D), as well as another pathway through the 
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tryptophan precursor anthranilate (E) (Draths and Frost 1994, Pugh et al. 2014, Lin et al. 

2014, Sun et al. 2013).  

 

Figure 5.3 Multiple routes toward catechol. The pathways to achieve catechol from 

the precursors 3-dehydroshikimate (A), para-hydroxybenzoate (B), 2,3-

dihydroxybenzoate (C), salicylate (D), and anthranilate (E) are illustrated. Consecutive 

arrows indicate that multiple steps which are not indicated.  

Thus far, no fair comparison has been performed to evaluate the various pathways 

head-to-head; therefore, it is difficult to determine which pathway can achieve the highest 

titer and product-to-substrate yield. For example, pathway A was first demonstrated in an 

E .coli ΔaroE knockout strain which lacked the native shikimate dehydrogenase activity 

and was thus an auxotroph for phenylalanine, tyrosine, and tryptophan. While pathway A 

from DHS utilizes less cofactors for synthesis of catechol (1 mol NADPH, ATP, and PEP 

per mol of chorismate produced), synthesis from the branch point chorismate may be a 

more desirable alternative to prevent the auxotrophies associated with the aroE deletion. 

Since consumption of catechol is tightly regulated both through transcriptional regulation 

as well as allosteric enzyme inhibition by phenylalanine, tyrosine, and tryptophan, native 
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metabolism alone may be capable of reducing flux to these essential metabolites thereby 

increasing the bioavailability of chorismate for catechol synthesis. This strategy was 

partly demonstrated in Chapter 3 in which the phenylalanine overproducing strain E. coli 

NST74 was engineered with the chorsimate mutase/ prephenate dehydrogenase activity 

knocked-out (E. coli NST74ΔpheA
fbr

). While the strain was an auxotroph for 

phenylalanine, titers for catechol achieved 630 mg/L with no measured co-production of 

either tyrosine or tryptophan. To further improve upon said approach and test the 

hypothesis for allowing native metabolism to regulate consumption of catechol thereby 

increasing the bioavailability of chorismate without an auxotrophy, the wild-type, 

feedback-regulated chorsimate mutase/prephenate dehydrogenase (PheA) could be 

replaced on the chromosome of NST74 to potentially create a chorismate overproducer.  

Alternatively, a wild-type strain of E. coli could be engineered to express the feedback 

resistant DHAP synthase isozymes (AroF
fbr

, AroG
fbr

, and AroH
fbr

). In order for the 

biosynthesis of catechol to be economically viable, auxotrophies should be avoided to 

reduce the cost of necessary exogenous supplementation of aromatic amino acids.    

The five catechol pathways were also compared from a thermodynamic perspective 

by estimating the change in the Gibbs energy of reaction under physiological conditions 

using eQuilibrator
2.0

 (http://equilibrator.weizmann.ac.il/). As illustrated in Figure 5.4, as 

the pathways proceed, the respective total change in Gibbs free energy decreases 

indicating that all pathways are thermodynamically favorable. Though the total change in 

Gibbs free energy is partially magnified by the number of reactions steps, the pathways 

from para-hydroxybenzoate (B), salicylate (D), and anthranilate (E) had the largest 

change in Gibbs free energy which may indicate that these pathways are more 
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thermodynamically favorable than the pathway from 3-dehydroshikimate (A). Future 

investigations to identify the best route toward catechol and muconic acid should 

compare the described pathways in a common host and media platform as well as under 

similar fermentation conditions. 

 

Figure 5.4 Gibbs free energy of reaction by enzyme step for the production of 

catechol. The change in Gibbs free energy was compared for the 5 catechol pathways 

illustrated in Figure 5.3.  

 

5.4 Conclusion 

 These works demonstrate the feasibility of synthesizing drop-in compatible 

aromatic fine chemicals in engineered microorganisms. Through the development of 

novel pathway design, the biosynthetic production of benzyl alcohol and benzaldehyde 

has been realized. Though flux through the pathway is limited due to poor substrate 

affinity, protein scaffolds have demonstrated a feasible means of overcoming said 

limitations in preliminary experiments. In addition, to benzyl alcohol and benzaldehyde, 

an alternative pathway toward the production of para-hydroxybenzoate, protocatechuate, 

and catechol was demonstrated. While alternative pathways have since been discovered 
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to achieve catechol, future work is necessary to determine the optimal route toward the 

product of interest. Lastly, through the use of elementary mode analysis, an in silico 

model was developed and it was discovered that co-feeding glycerol and D-xylose may 

increase PEP and E4P bioavailability thereby increasing flux toward the production of 

aromatic fine chemicals. Ultimately, the field of metabolic engineering requires 

development of new and novel approaches, such as those discussed throughout this 

dissertation, in order to bridge the fiscal gap between petroleum derived products and 

their renewable drop-in compatible alternatives.       
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