
Analysis and Design of Native File System Enhancements for Storage Class Memory

by

Raymond Robles

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2016 by the

Graduate Supervisory Committee:

Violet Syrotiuk, Chair

Sohum Sohoni

Carole-Jean Wu

ARIZONA STATE UNIVERSITY

May 2016

 i

ABSTRACT

As persistent non-volatile memory solutions become integrated in the

computing ecosystem and landscape, traditional commodity file systems architected

and developed for traditional block I/O based memory solutions must be

reevaluated. A majority of commodity file systems have been architected and

designed with the goal of managing data on non-volatile storage devices such as

hard disk drives (HDDs) and solid state drives (SSDs). HDDs and SSDs are attached

to a computing system via a controller or I/O hub, often referred to as the

southbridge. The point of HDD and SSD attachment creates multiple levels of

translation for any data managed by the CPU that must be stored in non-volatile

memory (NVM) on an HDD or SSD. Storage Class Memory (SCM) devices provide the

ability to store data at the CPU and DRAM level of a computing system. A novel set

of modifications to the ext2 and ext4 commodity file systems to address the needs of

SCM will be presented and discussed. An in-depth analysis of many existing file

systems, from multiple sources, will be presented along with an analysis to identify

key modifications and extensions that would be necessary to execute file system on

SCM devices. From this analysis, modifications and extensions have been applied to

the FAT commodity file system for key functional tests that will be presented to

demonstrate the operation and execution of the file system extensions.

 ii

DEDICATION

To Christine, Gemma, and Auggie.

 iii

ACKNOWLEDGMENTS

The first person I would like to thank is my thesis advisor and committee

chair, Dr. Violet Syrotiuk. Dr. Syrotiuk took a big risk taking me on as a master’s

thesis student. In spite of my unique situation and thesis subject, Dr. Syrotiuk

agreed to work with me and became a source of inspiration with her experience and

passion for research. She taught and mentored me in my research methodology and

well as in my thesis writing. I am also immensely grateful for her patience with the

multiple delays in my thesis. This thesis would not have been possible without her

relentless support and mentoring.

I am grateful to my committee members Dr. Sohum Sohoni and Dr. Carole-

Jean Wu for their support and willingness to be a part of my thesis committee.

I would like to formally acknowledge the original authors, and Intel work

colleagues, of the DAX ext2/4 code, Matthew Wilcox and Ross Zwisler. Without their

vision and insight into the ext2/4 file systems, there would be no DAX.

I am grateful to my co-worker, and Linux guru, Keith Busch for answering all

my silly Linux questions; Claes Olsson, my manager, who allowed me the flexibility

to complete this thesis while working full-time; Carolyn Foster, my colleague, who

covered for me so many times at work that I lost count.

Most importantly, I am extremely grateful to my wife Christine and her

tireless, unconditional, and unrelenting love and support that provided me the

motivation and strength to do that which I thought could not be done. I dedicate this

thesis to you and our children.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... v

LIST OF FIGURES .. vi

CHAPTER

1 INTRODUCTION .. 1

Problem Definition .. 1

Additional Considerations .. 5

2 BACKGROUND .. 7

Motivation ... 7

File System Architecture ... 12

3 METHODOLGY 18

The FAT File System ... 18

Direct Acces (DAX) Extension ... 22

SCM Extenstion for FAT (SEFT) .. 24

4 ANALYSIS 44

Directory Operations ... 44

File Operations ... 46

Performance .. 48

5 CONCLUSION ... 52

Discussion ... 52

Future Work... 55

REFERENCES ... 57

APPENDIX

A SEFT CODE KERNEL PATCH .. 59

 v

LIST OF TABLES

Table Page

1. POSIX File Attributes Stored in an Inode .. 14

2. Buffer Head Structure Key Member Fields .. 30

3. Peformance Measurements (QD = 1, # Threads = 1, AIO) 49

4. Portability Matrix of SCM Extension Components 55

 vi

LIST OF FIGURES

Figure Page

1. General System Architecture for Storage Access 3

2. Intel Z87 Chipset and Peripherals .. 4

3. Inode Pointer Structure .. 15

4. Inode and Dentry Relationship ... 16

5. FAT File System Architecture in Linux .. 19

6. Memory Page Structure ... 21

7. Fat Address Space Operations Function Pointer Table 28

8. Diagram of fat_get_block Call Tree ... 31

9. Pseudo Code for seft_io Function .. 35

10. SEFT Block Architecture in the FAT File System 43

11. Bandwidth and IOPS Measurements ... 50

12. I/O Latency Measurements ... 50

 1

CHAPTER 1

INTRODUCTION

Problem Definition

Persistent memory solutions are becoming more prevalent in computer

systems, from desktops to high-end enterprise data center solutions. As this type of

non-volatile memory (NVM) penetrates the ecosystem, existing operating system

software must evolve to meet the ever changing performance enhancements that

accompany these persistent memory solutions. In particular, file systems have

traditionally been architected and designed with the premise that all persistent

storage is accessed through a traditional block I/O storage interface. However, in

conjunction with new platform architectures, persistent memory solutions can be

attached directly to the memory bus and central processing unit (CPU), creating a

new and unique challenge for existing file systems.

At a high level, persistent memory solutions that can be directly attached to

the memory bus or CPU are referred to as Storage Class Memory (SCM). SCM is a

form of memory that has capacity and economics that are similar to storage but with

performance that is similar to memory [4]. Essentially, SCM is memory that runs at

dynamic random access memory (DRAM) speeds but is non-volatile (i.e., persistent

across power cycles). To ease the transition and integration of SCM, changes are

necessary to commodity file systems native to existing operating systems. To

address the necessity of commodity file system modifications, emerging memory

technologies must be examined. SCM solutions can be directly attached to the

memory bus, bypassing any need to go through a traditional block I/O storage path,

 2

thus reducing traditional block storage I/O latency. This reduction in block storage

I/O latency is the key to the required file system modifications.

The latency of an I/O can be defined as the time it takes a user space

application to submit an I/O request, from start to finish. This latency includes the

time spent in the operating system software, on the physical bus, at the storage

device, and then back up the full stack again. SCM devices enable processors, and

their running code, to access persistent storage through memory load/store

instructions. Using load/store instructions on memory is orders of magnitude faster

than accessing data on a traditional storage block device attached to a platform

controller hub (PCH). This enables simpler and faster techniques for storing

persistent data. However, access to SCM devices attached through the memory bus

means the SCM device itself must be memory mapped to the system’s address

space. This presents an interesting problem with respect to many file system

semantics such as file creation, file deletion, file security, and modifying file size due

to file writes.

Another interesting aspect of this research is identifying and understanding

the modifications to existing file systems that are necessary because these existing

file system architectures were implemented with the premise that all persistent data

storage would require block I/O requests through some type of I/O controller, as

seen in Figure 1. In this diagram, normal block I/O requests would go through an I/O

controller or PCH (sometimes referred to as a “southbridge”) in order to access (read

or write) persistent data on media such as spinning hard disk drives (HDDs) or solid

state drives (SSDs). As shown in Figure 1, there are multiple “layers” necessary for

accessing this data.

 3

Figure 1 – General System Architecture for Storage Access

First, a CPU initiated I/O request must be sent to the southbridge or PCH. This

usually means translating the CPU I/O request across a system bus, such as the

Direct Media Interface (DMI) or Flexible Display Interface (FDI). This represents the

first level of translation needed. Second, the storage controller in the southbridge

chipset must handle the incoming I/O request and translate the I/O request from a

DMI/FDI command to a storage-specific protocol request. Common storage

controllers within a PCH include the Advanced Hardware Controller Interface (AHCI)

which is used for Serial Advanced-Technology Attachment (SATA), Serial Attached

SCSI (SAS), and Universal Serial Hub (USB). In Figure 1, the storage devices are

represented by the “Peripherals” component.

These common storage protocols are bus protocols and require a second level

of translation from the DMI/FDI request received to a storage protocol command.

This is done by the storage controller attached to the PCH (in Figure 1, this would be

 4

represented by the controller communicating with the SATA, SAS, or USB ports and

attached devices). Finally, the translated storage data request must be sent out on

the physical storage link (SATA, SAS, or USB bus) to the attached device [17]. These

multiple layers of translation add to the overall I/O latency, which is in addition to

the actual storage access time. The CPU cycles to process the I/O becomes large and

any running code/process on the CPU must give up context and handle any

responses asynchronously (i.e., interrupts) in order to prevent large delays or stalls

in executing code (although this is not a hard requirement as there certain scenarios

where synchronous I/O is desirable). In Figure 2 below, an Intel Z87 chipset is

presented to show the relationship between CPU (Intel Core Processor), Chipset

(Intel Z87), and 6 x SATA ports (SATA HDDs/SSDs) [23].

Figure 2 – Intel Z87 Chipset and Peripherals

 5

Additional Considerations

The use of SCM directly attached to the memory bus or CPU alleviates the

need to go through the southbridge to reach the persistent memory storage devices.

Therefore, accessing SCM becomes similar to accessing DRAM memory, both in

access latency and bandwidth. This is the key advantage to SCM; access time is

drastically reduced compared to traditional block storage access. It should also be

noted that SCM technology can be attached directly to the southbridge or to the

storage controller on the southbridge itself. Many new SSDs are designed with a

Peripheral Component Interface (PCI or PCIe, where “e” is for Express), and the

internal topology of chipsets are implemented with a PCI or PCIe domain of buses.

While attaching a SCM device to the southbridge does contradict the truest definition

of what SCM is, there are architectures where SCM can be attached at any of these

points and still meet the intent of the original definition.

In many cases, file systems are even optimized for spinning media such as

HDDs by accounting for sector and head locations of previous I/O transactions.

Because SCM devices will be implemented with solid state semiconductor memory,

there is no need to architect or design file systems to keep track of recently accessed

locations on media. Additionally, many file systems rely heavily on a buffer cache or

page cache, provided by the native operating system (OS) kernel, for faster access

to recent data [9]. With SCM devices, the need to use any caching disappears due to

the low latency access of using loads and stores to access data. Using a page/buffer

caching solution would actually add unnecessary CPU cycles to the already short I/O

latency. Removing access to a page/buffer cache is also advantageous in that it

reduces time spent in the file system code and resolving common cache hit/miss

problems.

 6

Additionally, when storage devices are attached directly to the memory bus

they share system resources such as the bandwidth of the memory bus, the CPU

cache, and the Translation Look-aside Buffer (TLB) [1]. Without modifications, the

overhead of an existing commodity file system could have negative performance

effects. Any file system modifications must consider these performance factors to

help eliminate any unnecessary overhead. Also, when storage devices are attached

to the memory bus, the overhead associated with interfacing through an emulated or

generic block layer can have a negative performance impact. Modifications to the file

system should take into account these overheads. SCM devices will require the need

to address traditional file system operations (i.e., open, close, read, write) via

memory mapped addresses (i.e., loads/stores), which is the axiom of utilizing SCM

devices effectively and efficiently. Essentially, persistent memory must be treated

like a memory mapped device, but at the same time with traditional functions such

as opening and closing. In addition, memory mapped on a SCM device must be

changed when a file is deleted, or grows from its initial size. Current native

commodity file system architectures do not address these additional considerations.

In this thesis, background and relevant work on current commodity file

systems, and how they may interact with SCM technologies, will be presented in

Chapter 2. Additionally, in Chapter 3, a novel set of modifications from an existing

prototype will be ported to an existing commodity file system to address the needs of

SCM. The commodity file system used for analysis in this thesis is the File Allocation

Table (FAT) file system. SCM extensions for the FAT file system for handling file

creations, deletions, and I/O operations will also be presented in Chapter 3. An

analysis of the research will be presented in Chapter 4. Conclusions and future work

for further research in transitioning current file systems to SCM technologies will be

discussed in Chapter 5.

 7

CHAPTER 2

BACKGROUND

Motivation

Emerging breakthroughs in persistent memory, or non-volatile memory

solutions, have created a need to revisit what is known and understood about

current file system architectures and how they access data. Most file system

architectures are based on the concept that block I/O storage requests must be used

to access persistent data. As discussed, this is no longer a constraint for storage

class memory. There are a current set of research efforts and prototypes addressing

issue such as this research topic. Some of these efforts include hybrid flash/DRAM

file systems [24], object based storage class memory file systems [1, 2], and novel

file system prototypes that have been architected from the ground up [6], as well as

adding extensions to existing commodity and native file systems. One particular

prototype extension for the ext2 and ext4 file systems will discussed in great detail

and also be used as the basis for the FAT file system extension modifications.

To best address the background and motivation of this research topic, an

understanding of the current challenges is needed. The current challenges with

existing file systems can be broken down in to four main categories [2]. The first

category is performance overhead associated with sharing system resources that a

file system would not normally access (i.e., memory management unit). The second

category is contiguous file addresses for very large files. Normally, this is not an

issue for block I/O storage, but because SCM requires memory to be memory

mapped during run-time, consideration must be given to files that are larger than

normal. The third category is run time memory mapping for file allocation. This

 8

category addresses the issues of having to create and delete files through the

process of having to memory map memory at any time the system is up and

running. Finally, the fourth category is unsure write ordering which describes the

issue of how an SCM-aware file system should be aware of writes that complete out

of order.

Performance Overhead

As discussed above, when storage devices are attached directly to the

memory bus, they share system resources such as the bandwidth of the memory

bus, the CPU cache, and the TLB. Without any modifications, the overhead of an

existing file system architecture could prove to be too cumbersome and actually slow

down overall system performance due to the sharing of critical resources.

Additionally, interacting through a traditional block I/O interface will have a negative

performance impact due to the overhead associated with preparing read and write

requests as well as interacting with a page/buffer cache that will never be used for

data stored on SCM devices. Some of the current existing solutions for this problem

involve using existing resources in a new and novel manner. For example, SCMFS

uses the existing memory management unit (MMU) to help speed up the process of

address translation [2, 3]. Reusing the MMU provides additional support for data

access from the TLB and MMU caches; this helps speed up translation operations of

virtual addresses to physical addresses and provides protection mechanisms for

users. However, assumptions are made in this approach to using the existing MMU.

The assumption is that there is a way for firmware and/or software to distinguish

persistent non-volatile memory from volatile memory attached to the same memory

bus. The assumption allows for the existing MMU to be used to manage space on

 9

these SCM devices. Mappings need to be persistent across power cycles (clean and

dirty), therefore address mappings must be hardened on persistent memory

whenever space is allocated (i.e., file creation).

Contiguous Address Space for Large Files

Many existing file systems manage large files by using direct and indirect

blocks to track data stored at different physical locations on storage media. The ext2

and ext4 file systems take this exact approach [21]. This approach makes reads and

writes to files on SCM devices difficult to execute since now many levels of

indirection must be followed in order to traverse the large array of fragmented data

blocks. Also, this approach requires many different data structures to manage the

locations, and the creation and deletion of these memory mapped blocks. The ext4

file system uses the same type of direct and indirect blocks for large files, however it

also uses journaling (the concept of writing to a “journal” or “log” that is stored in

volatile memory and written to persistent storage at intervals) to help offset some of

performance overhead of having many indirect blocks for large files [6, 21]. Some

existing prototype designs, such as SCMFS, each have files with contiguous logical

address space inside them. Then SCMFS will build the file system on virtual address

space and use page mapping to keep all blocks logically contiguous (NOTE: not

physically contiguous). Therefore, there is no longer a need for complicated data

structures, but rather just the starting logical address and size. Physical locations of

data could be available through page mapping data structures, leveraging the

existing OS infrastructure provided by the MMU. It should be noted that in this

prototype solution, creating the file system address space on top of logically

 10

contiguous memory provides no real measure of value as physical mappings must

still be managed and translated via the MMU.

Dynamic File Space Allocation

In traditional file systems, data blocks are allocated “on-demand” for file

creation and growth (writes, appends, etc.). Space can also be freed immediately

upon file deletion, although many times only file metadata is deleted and actual data

is kept latent on the storage media. That latent data is usually later cleared or

zeroed via a process called garbage collection [21]. However, on SCM devices,

because storage must be memory mapped into the kernel address space, frequent

allocation and de-allocation can produce lower performance through the MMU and

create a new set of problems for memory mapped address space that is normally

only mapped once at boot time. Any additional instructions added to the data path

are considered extremely detrimental to overall I/O bandwidth, throughput, and

most importantly latency. When the OS loads at boot time, memory that is memory

mapped can consist of PCI configuration space for devices attached to the PCI bus,

devices attached to the I/O controller hub of a system for the purposes of performing

block or disk storage I/O and interfacing with the specific controller’s register set, or

special volatile memory attached to the memory bus. The concept of memory

mapping these controllers and devices at boot time is ideal because all system

resources are “unused” and free memory is “physically contiguous” at this point

allowing for large amounts of memory to be mapped.

One possible solution is to pre-allocate blocks, like null blocks/files, that can

be used dynamically for creating or growing files. However, the downside to this is

fragmentation and needing a background process to handle the de-allocation of null,

 11

or recently freed, data blocks. If all memory mapping is done by pre-allocating

blocks at boot time, there is no accurate method to adjust the mapping size and

regions based on workload. This essentially creates a secondary issue of having to

deal with statically allocated, or boot time memory mapped memory, when there

was no indication of how much memory would actually be needed as the system “up”

time ran longer and longer. Another solution is to provide an abstraction to

dynamically memory map SCM regions at run time, so that no additional overhead is

needed to pre-allocate data blocks at run time or to have to clean up pre-allocated

blocks that have recently been de-allocated, or deleted. Along with the need for

runtime memory allocation/de-allocation, there is a new requirement that gives the

file system the ability to perform these dynamic memory mappings. Fortunately,

most operating system kernels provide a framework by which modules such as file

systems can perform a mapping between logical sectors on a HDD/SSD to a kernel

space address and page frame number. There would also be a need for memory

system functions to grow or shrink files, and their affiliated memory mapped

locations.

Write Sequencing

Writes are often cached, but not always flushed from cache in the order in

which they were received from user space. There is no guarantee that writes are

occurring on persistent storage in the same way they were issued from the

processor, and its running code. Traditionally, file systems will issue block I/O write

requests to a device attached on the southbridge of a system. These requests will go

out sequentially, and may be cached by the cache manager. The method of how data

is evicted from cache for write requests is not consistent across all machines.

 12

Therefore there is no guarantee of write ordering. This problem is exacerbated by

the fact SCM devices attached to the memory bus no longer need to traverse the

traditional block I/O storage block (which is serialized). Additionally, out of order

(OOO) pipelined processors can rearrange reads and writes for performance policies

enforced at the processor level. To address the potential data integrity issues from

reordering of reads and writes, some level of fencing and serialization must be

implemented within the file system to ensure that data written is consistent with

respect to expectations from a system level. Providing some type of fencing will

guarantee atomicity for certain sets of commands to finish, and be written to

persistent storage, before completing the next batch of commands that depend on

the consistency of that data. Serialization can then be guaranteed within each of the

fenced operations. Many file systems do address this issue via locking combined with

the removal of the page/buffer cache from the direct I/O path.

File System Architecture

One definition of a file system is a mechanism or methodology for how data is

stored on a physical storage medium. Without a file system, data that must be

written to storage would just be stored in a raw format with no real method of how

the data was stored or how it would be retrieved. A file system provides a method by

which data can be grouped together into referable objects, called files, as well as

contain information about the data being written (i.e., size of data written, where

data is located on the disk, etc.) [21]. This method also allows the data to be

retrieved at a later point in time without concern for integrity or correctness of the

data [22]. Almost all file systems share similar concepts and structures. In the Linux

kernel, there is a generic framework for file system usage and several structures that

 13

can, and should, be used by file system developers. In Linux, this file system

framework is referred to as the virtual file system switch (VFS). The VFS provides a

set of standard interfaces for upper layer applications to perform file I/O over a

diverse set of file systems. The VFS provides the abstraction layer, separating the

POSIX user space interface functions (i.e., open) from the details of how a particular

file system implements that actual behavior [20]. The following sections address

some of the key common file system concepts and components that needed to be

addressed to modified for the research within this thesis.

Inodes

 A file system manages two things for every file: the file data and the data

that describes that file data. The latter is often referred to as metadata (the data

that describes the file data) and is one of the key components of any file system

[18]. Metadata describing file data usually consists of information such as the name

of the file, the date the file was created, the date the file was last modified, the

owner, its file permissions, etc. Almost all file system use inodes to represent both a

file and a directory. Most of the metadata described is stored within the inode, and

this inode is identified by an integer [18]. How and when inodes are created is file

system specific. Some file systems may choose to allocate all inodes supported upon

being first mounted resulting in a fixed number of files that can be created. Some file

systems choose to only allocate inodes when they are needed upon file or directory

creation. While other file systems that use a fixed number of inodes use a

methodology called extents that extends memory of a file by using pre-allocated

blocks. Regardless of the allocation method, inodes generally all store the same type

of information. Any file system that is Portable Operating System Interface (POSIX)

 14

compliant requires certain attributes to be stored about the file. These attributes are

described in Table 1 below. Note that the file name itself is not a required field in the

inode to be POSIX compliant. This is because files can potentially have multiple

names and if multiple names hard link to the same inode, then the names are all

equivalent. The operating system will immediately convert a file name to an inode

number then discards the file name. However, the file system will still manage and

keep the file name, just not in the inode (this will be described the next section).

Field Description

Size File size in bytes

Device Id The device containing the file

User Id User id of file owner

Group Id Group id of the file

File Mode File type and how it can be accessed

User Flags Flags used for file protection

Timestamps Used for inode and file access times

Link Count Number of hard links to this inode

Data Pointers Pointers to disk blocks storing file contents

Table 1 – POSIX File Attributes Stored in an Inode

 Inodes are managed by the file system to keep track of the metadata for a

given file. However, the inode also stores pointers to the list of blocks where the data

is stored on the block storage device [18]. This inode pointer structure is used in the

inode to provide access to the list of data blocks associated with a given file. Most

modern file systems use 15 pointers for data. The first 12 are used to point to blocks

 15

containing actual file data and are referred to as direct pointers. Figure 3 below

illustrates this design. One pointer points to a singly indirect block of pointers, each

of which refers to file data blocks. Another pointer points to a doubly indirect block,

which is the same as a singly indirect block, but with one extra layer of block

pointers. And the third is triply indirect block, which is the same as a doubly indirect

pointer, except with a third block pointer indirection table.

Figure 3 – Inode Pointer Structure

Directory Entry

 It is important to note that inodes represent the underlying file data and

because files can have multiple names (note that the path is included in the file

name), an inode cannot store all the associated file names. Therefore, directory

entries, or more commonly referred to as dentries, contain the name of a file in

 16

relation to that file’s location in the directory tree of a file system. In short, the

inodes represent and describe the file data whereas dentries are the glue that hold

the inodes and files together by relating inode numbers to file names. Dentries also

enable directory caching which keeps the most recently used files in DRAM for

quicker access (versus having to look up inodes stored on disk). Another use for

dentries is the file system traversal between directories and the files stored. In

essence, the dentry represents the relationship between an inode and the parent

directory to which the inode belongs. Figure 4 below shows a very simple directory

structure with four inodes (bar2, bar1, foo, and ‘/’) and three dentries (“bar1”,

“bar2”, and “foo”). The first dentry will have a name “bar1”, an inode pointer to the

bar1 inode, and a parent dentry pointer that points to the dentry for foo. All other

dentries follow this model, one inode pointer for the underlying data and one parent

pointer for the parent dentry. The dentry will always contain the file name and a

function pointer to look up the inode associated with that dentry (or file name).

Figure 4 – Inode and Dentry Relationship

 17

A good analogy of the relationship between inodes and dentries is that of data

that is stored in DRAM versus data that is stored on persistent storage media. The

dentry list that is created and maintained by the file system is nothing but a volatile

list that is created at mount time. The dentry list contains only names and a subset

of important metadata information. The dentry list is used for quick lookup of files

and directories so that the file system may search for a file or directory without

having to send performance expensive reads and write to persistent media, the

inode. Simply put, it is the file name cache of the file system. The inode is a more

permanent construct and is part of the metadata that is written to persistent storage

(via the update mechanism for that particular file system – i.e., log structured). The

inode contains all the metadata associated with the object as described above. The

inode is only updated on permanent storage when necessary, but often the updates

may sit in a journal or log depending on the file system architecture. This is because

updating the inode on physical permanent storage is a costly operation for the file

system just to maintain metadata.

File System Operations

It is important to distinguish between operations performed by a file system

and operations performed on a file system. Operations on a file system such as

mount, unmount, init, statfs, sync, etc. all operate on the file system itself. As

mentioned above, these operations are performed by the VFS. The VFS also provides

the interfaces to perform some of the more common file operations, but note that

these operations that are carried out by a file system on either a file itself or its

inode. Only when file system specific semantics and operations are needed does the

VFS invoke the specific file system module.

 18

CHAPTER 3

METHODOLOGY

The FAT File System

The FAT file system is a legacy file system that is still used today for many

reasons; it is robust and simple. While the FAT file system offers relatively good

performance, it does not compete with many modern file systems designed for

performance. However, one of the primary reasons that it has lasted so long (it was

first introduced in 1977) is compatibility. Nearly every commodity operating system

for personal computers, mobile devices and embedded applications supports the FAT

file system, and thus it is the perfect solution for format in data exchange between

computers and devices of any type [10, 11]. While the FAT file system is not the

default file system for commodity operating systems, it is the file system most often

used for portable storage devices like universal serial bus (USB) storage devices,

SSD memory cards, and flash memory cards. Common default file systems for

operating systems include the extended fourth (ext4) file system for Linux, the New

Technology File System (NTFS) for Windows, and the Hierarchical File System (HFS)

Plus for Mac OS X. However, due to the usage of FAT, data can easily be exchanged

between these operating systems without issue since FAT support is natively

supported. It is also worth noting that FAT is also used in the boot stages of

extensible firmware interface (EFI) compliant computers. Again, due to the non-

specific nature of pre-boot environments (prior to an OS loading), there must still be

a way to manage files and data on storage devices.

 The FAT file system architecture within Linux is depicted in Figure 5 below.

Note that like most file systems within Linux, there are components that use the

 19

native VFS framework. But there are also other functions that are FAT specific and

must be handled by FAT file system code. It is work noting that the FAT file system

will use the page/buffer cache for most I/O requests (for performance reasons) [8].

Figure 5 – FAT File System Architecture in Linux

 The common POSIX interfaces such as open, close, ioctl, etc. are handled by

the FAT file system module due to the specific nature of how it handles inode and file

allocation. But once files are created, performing read and write operations to a file

can be routed through the VFS provided by the Linux kernel. The name of the file

system originates from the file system's prominent usage of an index table, the File

Allocation Table, statically allocated at the time of formatting. The table contains

 20

entries for each cluster, a contiguous area of disk storage. Each entry contains either

the number of the next cluster in the file, or else a marker indicating end of file,

unused disk space, or special reserved areas of the disk. The root directory of the

disk contains the number of the first cluster of each file in that directory; the

operating system can then traverse the FAT table, looking up the cluster number of

each successive part of the disk file as a cluster chain until the end of the file is

reached. In much the same way, sub-directories are implemented as special files

containing the directory entries of their respective files.

The FAT file system was chosen for the SCM modifications and analysis due to

the compatibility across all operating systems environments. FAT is a well-

documented file system with a long history and provides a viable platform on which

to test the SCM modifications. However, as with all file systems, there are

disadvantages. One such disadvantage is when using drives or partitions over a

certain size (200 MiB – 2GiB), the FAT file system is not recommended. This is

because as the size of the volume increases, performance with FAT will quickly

degrade. This is counter-productive to the purpose of what SCM technology provides.

FAT partitions are limited in size to a maximum of 4 Gigabytes (GB) under Windows

NT and 2 GB in MS-DOS, but even before these sizes are reached, the overhead

associated with updating the FAT partition table become too costly to be effective for

performance. This is one of the primary reasons the FAT file system is not used as a

default file system for commodity operating systems. Finally, the FAT file system

does not support or implement any type of journaling or logging. While this help

performance (at the right file system size), there is no protection for in flight data or

data that is residing in the page/buffer cache on any type of error condition or dirty

shutdown of a system.

 21

Memory Page Management

 To understand how the FAT file system allocates space for files, an

understanding of how Linux manages memory is needed. Memory is typically

partitioned and handled into 4KiB chunks, often referred to as pages (or memory

pages). A page in memory can represent an equivalent set of blocks found within a

file on a traditional block storage device. The distinction between a page and its

component blocks is important. A 4KiB page in memory is likely represented by eight

512-byte logical sectors, or blocks, that reside on the block storage media. There are

a few different Linux kernel data structures which contain information about this

page as illustrated in Figure 6 below.

Figure 6 – Memory Page Structure

A memory page may be mapped into one or more processes’ address spaces.

For each such mapping, there will be a page table entry (PTE) which performs the

translation between the user-space virtual memory address and the physical

memory address where the page actually resides [13]. There is other information in

 22

the PTE, including a "dirty" bit. When an application modifies the page, the processor

will set the dirty bit, allowing the operating system to respond by (for example)

writing the page back to its backing store. Note that if there are multiple PTEs

pointing to a single page, not all PTEs may have coherent data as to whether the

page is dirty or not. The only way to know for sure is to scan all existing PTEs and

see if any of them are marked dirty [13].

The Linux kernel maintains a separate data structure known as the system

memory map. The system memory map contains one page structure for every

physical page known to exist. This structure contains information about the page,

including a pointer to the page's backing store (if any), a data structure allowing the

associated PTEs to be found, and a set of page flags. One of those flags is a dirty bit,

another flag which notes that the page is in need of writing to its backing store.

Finally, there is another set of structures which may be associated with this page,

the buffer head. The buffer head goes back to the earliest days of Linux. It can be

thought of as a mapping between a logical sector or block on disk and its copy in

kernel system memory. The buffer head is not central to Linux memory management

in the way it once was, but a number of file systems (including the FAT file system)

still use buffer heads to handle their disk I/O tracking. Note that there is not

necessarily a buffer head structure for every block found within a page. If a file

system has reason to believe that only some blocks need writing, it does not need to

create a buffer head structure for the rest.

Direct Access (DAX) Extension

 The DAX file system extensions for the second extended and fourth extended

(ext2 and ext4, respectively) file systems were first introduced into the upstream

 23

Linux kernel in version 4.0 [5]. The intent of the DAX extension was to reduce the

overhead of unnecessary kernel buffer cache accesses, or page cache accesses. From

the perspective of the OS kernel, SCM appears and behaves like any other storage

device in the system. Therefore, the native file system will perform data access in a

traditional manner with no regard that the storage media is of type SCM. A kernel

page cache is used by an OS kernel to accelerate data accesses to files on traditional

non-SCM like persistent storage (i.e., HDDs/SSDs). When a read or write occurs, a

native file system will also “cache” the data access in the page cache. This allows

faster access to the data at a later time without the increased overhead of having to

access slower persistent storage. An OS kernel will utilize portions of DRAM memory

for the page cache [9].

This traditional manner of accessing data to and from the kernel page cache

for optimization purposes after the storage access completes can also happen in

replacement of persistent storage access. However, because of the direct mapping of

SCM to system memory, once the file system writes to the SCM memory, there is no

longer a need for the file system to copy the data to and from the kernel page cache.

At this point, the data is already stored in a location that is persistent, but also has

the capability of being recalled with the access time equivalent to DRAM [9]. DAX

removed this unnecessary and inefficient functionality for SCM device access. In

order to modify a commodity file system to support SCM devices with maximum

performance and efficiency, the 21-part DAX patch set was ported from ext2/4 to the

FAT file system. In porting the DAX changes, a formal understanding of the

modifications necessary at both a file system specific and agnostic layer were

formalized.

 24

SCM Extension for FAT (SEFT)

 Much of the FAT file system implementation in Linux relies on an existing file

system framework already in place provided by the kernel (i.e., VFS). The intent

behind providing a file system framework for developers is for compatibility, ease of

creation, commonality, and portability. Since the FAT and ext2/4 file systems have

numerous differences (and similarities), not all components of DAX were necessary

to port. However, there were components of FAT that needed to be modified that

were not part of the original DAX extensions for ext2/4. This was due to the fact that

there were several differences in the way FAT allocates memory and keeps track of

these memory allocations. As discussed previously, FAT allocates memory in chunks

called ‘clusters’. Clusters vary in size, but for the experiments in this thesis, FAT16

was used which means the FAT cluster size was equal to 2KiB. The following sections

outline the modifications made for the porting of DAX to the FAT file system, with

each section describing the change and identification of non-abstractable

components.

Inode Modifications

SEFT introduced a new inode flag to indicate an I/O request is targeted for a

file (or its backing store) that has been allocated on a SCM block storage device, and

henceforth will be referred to as a SEFT I/O. The distinction of SEFT I/O and SEFT

inodes is necessary in order to determine code paths to take when I/O requests are

sent to a SCM storage block device. For example, when an I/O is detected to a SEFT

inode, multiple steps are taken to ensure that buffered writes or page cache updates

do not occur. The inode flag must be set during every inode allocation, and whether

 25

the flag is set or not is determined by where the inode is created. If the inode is

being created in the FAT file system with SEFT enabled (via compilation flags which

will be discussed later), then the inode flag is set. Mounting the FAT file system with

the SEFT extension will insure that every inode (and corresponding) file created on

that file system will have this new SEFT flag set. The new flag will help determine the

correct SEFT functions to invoke as well as avoid unnecessary functions like calling

buffered writes and performing page/buffer cache operations. Additional accessor

methods and macros were added to the FAT file system to address the identification

of inodes for files and directories on SEFT devices. Note that SEFT could be turned

off and on via a file system mount parameter, but was enabled by default for ease of

implementation.

File Mapping Modifications

Added checks for SEFT I/O in order to avoid page cache (buffered) reads and

writes within the direct access functions native to the FAT file system. The direct

access functions native to FAT could be invoked by user functions such as mmap or

ioremap. In addition, there are also read and write iterator functions in the VFS

portion of the Linux kernel that will invoke direct access function pointers. Upon

return from these VFS read and write iterator functions if a read or write did not

finish, or a hole was found, or there was an early EOF, then the read or write iterator

functions will fall down a separate code path to perform a buffered read or write to

the page cache so the rest of the I/O can be performed on actual storage at a later

time. Meanwhile the page cache has the most updated copy of the read or write data

(albeit the pages with the data or that would need to be paged in and the page cache

would be dirty). This is a typical mechanism for handling I/O that may need to be

 26

buffered for processing in the future. However, with an SCM block storage device,

buffered and delayed I/O must be avoided so as to not introduce additional I/O

latency overhead or page/buffer cache thrash that is not necessary.

Block Device Direct Access

Functions were introduced to retrieve a system kernel address for directly

addressable memory on block storage devices. File systems will translate mapping of

a virtual address space buffer to logical block addresses (LBAs) on a block storage

device. Because SCM devices must be byte addressable, the granularity of an LBA is

not sufficient (typical granularity for a block storage device is 512 bytes). Therefore,

SEFT must be able to take any LBA and convert it to a memory address that will later

be used to perform reads and writes. This conversion is done in part by new

functions introduced in SEFT and existing code in block device direct access

functions. This change is one of the key pillars of the SEFT file system. Upon

receiving a read or write request from the VFS, a user space virtual buffer has been

passed as a source or destination buffer. This translates to a memory address for the

I/O request. The file system then retrieves the first free or available LBA on the SCM

storage device and creates a mapping of this user space virtual memory buffer to

said LBA. Note that the physical memory address is also obtained for DMA purposes.

Once the I/O request is converted to an LBA on the SCM device, the new

function called seft_get_addr will then take the LBA mapped and convert it to a page

frame number (PFN) and memory address. This destination address on the SCM

block storage device is obtained by allocating a two clusters of memory, which equal

4KiB (each FAT cluster is typically 2KiB). The allocation of two clusters represents

one OS kernel system memory page, which is 4KiB as described earlier. These two

 27

clusters of memory are then mapped to the next free, available LBA ranges on the

SCM device. From here, the 4KiB represents the two 2KiB clusters on the SCM block

storage device and can be directly accessed because it has been memory mapped to

the new seft_get_addr function in SEFT. The PFN and memory address returned are

directly mapped to these two clusters. Therefore, reads or writes (i.e., loads and

stores) to this memory address will translate in to offsets from the start of the 4KiB

page boundary, which also happens to be the start of the two clusters on the SCM

storage device.

This memory mapped address is the destination address of the FAT file

system “memcpy” for the I/O request (note that Linux uses a structure called

iov_iter to represent requests and uses these structures to actually do the memory

copies). But this is the I/O in action and no additional communication with the SCM

device is needed. Because the memory space is memory mapped to the kernel

address space, once this memcpy is complete, the I/O is done. Therefore, no

involvement with the buffer/page cache is needed. It is important to note that block

storage devices traditionally format their physical media in sectors (or blocks). And

these sectors are usually 512 bytes in length. Although it is worth noting that many

storage devices today support sector sizes of 4KiB so that each sector can align with

host memory page size thus allowing direct memory access (DMA) engines to copy

data without having to translate between two different source and destination sizes.

SEFT I/O Functions

At the heart of the changes for SEFT are two new I/O functions (seft_do_io

and seft_io). The primary purpose of these functions is to perform the actual write to

the physical storage media on the SCM device, but through a kernel-level memcpy

 28

utility function that is specific to the underlying platform architecture (i.e., x86).

While the purpose of this function is simple, it must perform multiple steps to setup

up the read or write correctly. These new seft_do_io and seft_io functions are called

directly from the function fat_direct_IO (note that seft_io is invoked directly from

seft_do_io). The fat_direct_IO function existed previously to handle I/O in a FAT file

system that was targeted for a file that was memory mapped into user space. This

function is invoked because it is mapped to the .direct_IO function pointer in the FAT

file system address space operations (aops) function pointer table. The function

pointer table is shown in Figure 7 below.

Figure 7 – Fat Address Space Operations Function Pointer Table

Traditionally, the function fat_direct_IO would invoke the direct I/O function

of the underlying storage device. For example, FAT currently invokes the function

blockdev_direct_IO because I/O is typically routed to block devices (i.e.,

HDDs/SSDs). The function blockdev_direct_IO is a generic library function for all file

systems to use for doing mmap I/O that first attempts to access the page cache.

However, to implement the direct memcpy functionality that avoids this page cache

access, a new I/O function was needed. This new functionality can be kept

 29

abstracted and portable with the assumption that all I/O structures are generic to

other native file systems.

At the center of the new seft_io function is a loop that will iterate on the

number of bytes that need to be written or read. The condition on which the loop

iterates is whether the current file position pointer is at the end of the amount of

data that needs to be written or read. For example, if there is 1MiB of data that

needs to be written, and the current file pointer position is at 0 (the beginning of the

file), then the loop will iterate until all the data is written and the file pointer is at

1MiB. Each iteration of the loop starts with a check to see if the current file pointer

position is equal to the end of the allocated space. Simply put, the loop checks to see

if space must to be allocated for the read or write (i.e., an empty file or appending at

the end of a file). If the current file pointer position is at the end of the file, then a

new size is calculated that is specific to the underlying method that the FAT file

system uses to allocate blocks.

For example, if a file is empty and 1MiB of data needs to written, then the

seft_io function will calculate how much space needs to be allocated and mapped on

the SCM device by calling the native fat_get_block function of the FAT file system.

The fat_get_block function performs multiple tasks, but the essence of its role is to

retrieve the sectors (or LBAs) on the physical media storage that are mapped to the

memory buffer used for the read or write request. In the Linux kernel, there are

multiple structures that are used to represent the mapping of sectors/LBAs to

memory addresses. One structure is the buffer_head structure (as described above).

Historically, a buffer_head structure was used to map a single sector, or block, of

typical size 512 bytes, within a memory page (i.e., 4KiB), and as the unit of I/O

through the file system and block layers [12]. Today, the basic I/O unit has changed

 30

(to a block I/O structure), and buffer_heads are used for extracting sector/block

mappings (via calls like fat_get_block) [12].

Because memory page size in Linux is 4KiB and typical sectors sizes on block

storage devices are 512 bytes, data read or written to a particular sector/LBA on

physical block storage media must also be tracked as an offset into a memory page.

This is one of the primary purposes of the buffer_head structure. Every page of

system kernel memory is 4K, therefore, each page has eight sectors/LBAs mapped to

it (4KiB = 8 * 512). The key buffer_head structure members are defined in Table 2

below.

Field Description

b_page Memory page this buffer_head is mapped to

b_blocknr Starting block (sector) number this buffer_head represents

b_size Size of the mapping

b_data Pointer to data within the page

b_bdev Pointer to physical block storage media device

Table 2 – Buffer Head Structure Key Member Fields

Upon the first iteration of the seft_io loop, when an empty or new file is

encountered, and space must be allocated, b_size is set to zero since there is no size

associated with the file and no memory mappings have been created. The

buffer_head structure is passed as a pointer reference to fat_get_block to be filled

out by the FAT file system specific method. As shown in Figure 8 below,

fat_get_block will call fat_bmap [7]. The function fat_bmap will attempt to map any

sectors/LBAs, that contain valid data (via analyzing file pointer position and offset),

and map those sectors/LBAs to FAT clusters and kernel memory. The mapping would

be represented by the buffer_head structure. However, in the example used in this

 31

thesis, when this file is first accessed, it is empty. Therefore, no mapping exists for

this file. In short, since this is the first time this file has been accessed since the

system powered up, it has not been memory mapped. This is one of the critical

axioms of modifying native commodity file systems to work with SCM devices. Files

are constantly memory mapped, either for the first time, or because the file size is

changing. If there is a downside to SCM devices and how modern file systems must

interact with them, this is it. However, it is arguable as to whether the overhead

associated with the constant memory mapping outweighs the overhead associated

with passing I/O requests through two layers of translation down to a traditional

block storage device attached to a southbridge.

Figure 8 – Diagram of fat_get_block Call Tree

 32

The first call to the fat_bmap function is expected to fail if the file is being

created for the first time (or is being accessed for the first time since power on).

Therefore, when the fat_bmap function returns a status indicating no block mapping

occurred, the fat_get_block function will determine that the FAT file system must

allocate and map new memory. The first step in doing this is by calling the function

fat_add_cluster as shown in Figure 8 above. The function fat_add_cluster is native to

the FAT file system and will perform two major steps: allocate clusters and then add

them to a cluster chain associated with the current inode. As described earlier, the

FAT file system represents physical memory space allocation with clusters. Each

cluster represents a certain size, or chunk, of contiguous data in a file. Clusters can

be chained together via pointers until a cluster points to an end of file (EOF)

delimiter (instead of another cluster entry). From within fat_add_cluster, the function

fat_alloc_cluster will be invoked, which performs the actual allocation of a cluster by

finding the next available cluster in a pool of free clusters associated with the current

kernel process. Once the next free cluster is discovered, a pointer to the next free

cluster entry is returned. The pointer returned by the function fat_add_cluster is

then used in a call to the function fat_chain_add. The function fat_chain_add takes

the cluster that was just discovered and adds it to the cluster chain associated with

the inode for this read/write request.

After the above sequence has occurred, the space for the write request has

been allocated by the FAT file system, and therefore space can now be successfully

memory mapped. As shown in Figure 8, the function fat_bmap is called for a second

time. However, this time fat_bmap is called after updating parameters and variables

indicating how much space was just allocated. From fat_bmap, the function

fat_bmap_cluster is invoked with the cluster that was just allocated to get the first

 33

data cluster associated within the file system. Finally, the function fat_clus_to_blknr

is called to translate the cluster allocated to a physical sector/LBA on the block

storage device. The final outcome of calling the function fat_bmap is to get the

physical sector/LBA address and the number of sectors/blocks that were mapped.

These two pieces of information are then passed to the seft_clear_blocks, which then

calls bdev_direct_access. These two functions serve the purpose of mapping the

physical sector/LBA to a kernel memory address (as well as a PFN) and then

performing a memsets to zero (to clear out any latent data). At this point, the buffer

head is updated via the function call map_bh. The function map_bh will associate the

physical sector/LBA address to the b_blocknr field, as well as set the b_size field to

the size of the data that needs to be read or written. This mapping of the buffer head

structure is the product of the new seft_io function calling fat_get_block, and will

enable the loop to continue processing the direct I/O request.

After the seft_io loop gets the blocks associated with this read/write request,

a condition is checked to see if there is a hole in the allocation of clusters for this file.

In the context of the FAT file system, a hole is defined as a non-mapped region of a

file. This condition could be due to a failure to map a part of the file or the buffer

head was not updated successfully. In most cases, a hole in the file is not common.

After the check for the hole in the file, the loop then calls the function seft_get_addr.

As mentioned above, the purpose of this function is to take in the buffer head

information (i.e., physical sector/LBA address and size) and convert it to a memory

mapped address and PFN, which can be directly accessed by the file system (i.e.,

memory load/store). Once this address is retrieved, the loop will then add the

current position of the first write to the memory address just received. In the

example used in this thesis, the current position at this point is zero since the file has

not been written yet. Also, the size is updated to reflect the total size of the read or

 34

write request minus the value of the first write position, which is zero in the

example. In subsequent loop iterations, the update of the address and size will

happen through common address calculations based on how much data was

successfully written on the current loop iteration.

Once the memory address, size, and current position are updated, the seft_io

function will perform the memcpy function from the user space buffer to the memory

mapped location on the SCM device. The method by which the memory copy is

performed is specific to the underlying architecture (32 or 64 bit, x86, SPARC, etc.).

Therefore, a common memory library function that uses a special I/O structure is

used to perform the memcpy. The common I/O structure used is the iov_iter

structure and is provided natively by the Linux kernel [15]. At a high level, the

iov_iter structure is used to describe a buffer (in this case, a user space buffer) that

may be scattered in both physical and virtual memory [14]. The use of the iov_iter

structure helps the portability and sustainability of SEFT as well as reuses a common

structure in many other file systems.

The iov_iter structure is similar to how a scatter gather list (SGL) works in

that it contains an array, or vector, of addresses that point to the scattered pieces of

physical memory that make up the user space buffer. The iov_iter structure has

numerous helper functions defined in the Linux kernel to assist in the copying of data

to and from these buffers. For writes from the iov_iter user buffer to the memory

address of the SCM block storage device, the copy_from_iter function is used. For

reads in the other direction, the copy_to_iter function is used. There is a third case

where a read request is attempting to read a hole in a file mapping, in which case

the iov_iter_zero function is called. This function will copy zeros to the iov_iter

mapped buffer to reflect the hole in the file mapping. Finally, as the loop nears its

first iteration, the memory address being written to is updated along with the size to

 35

reflect the amount of data that was just read or written with the iov_iter functions.

Figure 9 below contains the pseudo code for the seft_io function.

Figure 9 – Pseudo Code for seft_io Function

 36

Cluster Allocation

As described earlier, the FAT file system uses memory clusters to represent

files. The primary function responsible for cluster allocation is fat_add_cluster. As

described earlier, the function fat_add_cluster will perform two tasks: search and

find an available cluster to be used and then add that free cluster to a cluster chain

for the inode representing the file. The function fat_add_cluster is called from the

function fat_get_block which is used to retrieve any existing sector/LBA allocations

for a given file. However, because a file may or may not have been allocated clusters

previously, the function fat_get_block may fail to find any previously allocated

clusters. For files that are initially created, the first call to the function fat_get_block

will always fail to find any existing clusters. Therefore, the fat_get_block function will

call fat_add_cluster for empty files. One of the inherited shortcomings of the FAT file

system is this process by which files are allocated clusters.

 In order to add clusters to an inode for a file, the function fat_alloc_clusters

must be called. However, when it is called from within the function fat_get_block, it

is called with the purpose of only allocating one cluster. A single cluster in a

traditional FAT16 file system of relatively small size (<100Mib) is equal to 2KiB.

Unfortunately, this cluster size does not align well with system memory page size in

the Linux kernel, which is 4KiB. Since all memory mappings are performed on a

system memory page boundary, allocating only one cluster at a time is insufficient

and creates data integrity issues. This is one of the other critical axioms of modifying

commodity and native file system for SCM block storage device support. In the initial

porting modifications from DAX, there were no modifications made to the native ext2

or ext4 file systems with respect to file block allocations. This is because both the

ext2 and ext4 file systems allocate memory for files in 4KiB chunks. Therefore, when

 37

initial experiments were run on SEFT, numerous file corruption issues were observed

since the cluster allocation was not modified to match the needed 4KiB allocation

boundaries.

 After extensive triage and debugging, the FAT file system contained a

shortcoming in that it only allocates a single cluster for every call of fat_add_cluster.

Interestingly, there exists a comment in the code that reads “TODO: multiple cluster

allocations would be desirable”, which confirms other usages for the FAT file system

also possibly requiring allocation of more than one file cluster at a time. The

modification to the fat_add_cluster algorithm introduced a check for a SEFT inode,

which implied that two clusters (equaling 4KiB) needed to be allocated. Upon

detection of a SEFT inode, a loop iterates twice over the calls to the functions

fat_alloc_clusters and fat_chain_add. This modification translates back up to the

seft_io function and its call to fat_get_block, which returns 4KiB of allocated

memory, instead of 2KiB.

This modification to the fat cluster allocation mechanism is a prime example

of how the framework of the native file system on which SCM support is being added

cannot be ignored or overlooked. Every file system has its own method of allocating

and tracking memory chunks used for files. And while many native file systems

allocate memory chunks on 4KiB boundaries, others do not. Examples of the latter

include specialized or legacy file systems that are architected and designed to work

across multiple system platform architectures, operating systems, or embedded

devices. No assumptions can be made on the reliability of the file memory allocation

method without heavy investigation in to how the needs of the SCM modifications

must be met. In short, the file memory allocation methodology cannot be easily

ported from one file system to another, but instead is file system specific.

 38

Block Device Direct Access

The function responsible for creating the mapping between the physical

sectors/LBAs on the SCM storage block device and a directly accessible kernel

memory address is bdev_direct_access. The function bdev_direct_access is called

from within two locations in the SEFT modifications: seft_clear_blocks and

seft_get_addr. Both of these functions are utility functions within the SEFT extension

code to obtain the memory addresses directly mapped from physical sectors/LBAs for

the purposes of clearing the storage space or for performing a memcpy. By

definition, the function bdev_direct_access is tasked with obtaining the address for

directly-accessible memory. Essentially, the function will return the PFN and address

of the memory that needs to be read or written on the SCM storage block device

without the need to call ioremap, kmap, or a similar function. The first issue

encountered with the function bdev_direct_access was a check for support of direct

access operations for block devices.

In order to test the SEFT extension code, or any other direct access type of

storage, a simulated SCM device must be used because no commercial or non-

commercial SCM devices exist today. For this thesis, a block RAM (random access

memory) device was chosen to represent the SCM storage block device. The Linux

kernel provides up to 16 RAM disk options via the files that can be located in the

directory /dev. The block RAM disk works as a typical file (everything in Linux is

represented as a file). The RAM disk file can be assigned memory so that any

component of the OS can read or write to the RAM disk file as if it were writing to a

traditional block storage media device. RAM disks are common simulation devices on

which modifications can be tested. Once the RAM disk (file) has been assigned

backing storage memory, a partition can be created on top of the file as well as a file

 39

system created and mounted. This will allow any user or kernel layer component to

access the file as if it were a real HDD, SSD, or SCM block storage device. However,

because the SEFT (and also the DAX) extension code is treating this RAM disk as

memory addressable, the configuration of RAM disks had to be modified in the

compile time environment. These modifications required adding a new menuconfig

item (i.e., compiler #define) for the Linux kernel compile process. The new config

parameter is CONFIG_BLK_DEV_RAM_SEFT and its purpose is to support the SEFT

extension in order to allow direct access to RAM block devices. This addition avoids

double buffering data in the page cache before copying to the RAM block device. This

configuration also prevents RAM block devices from being allocated from highmem.

Within the Linux kernel itself, a compile time switch was added to the file

/drivers/block/brd.c (this file represents the block RAM disk functionality) to wrap a

new function brd_direct_access. The function brd_direct_access was part of the DAX

extension and was ported to SEFT without the need of modification. However, the

ease of portability was due to the fact that DAX also used a RAM block disk to test

functionality. With another type of storage medium (such as true SCM block storage

devices), modifications to this function would be necessary to fit the underlying

mapping of sectors/LBAs to physical memory. The primary purpose of the

brd_direct_access function is to take in a sector for a particular RAM block device

and convert it to a kernel memory address and PFN. This function,

brd_direct_access, is called from the bdev_direct_access function describe above, via

a function pointer in the function pointer table named block_device_operations. This

allows the lower layer of the RAM block device method for mapping the address and

PFN to be abstracted away from the upper layer of the FAT file system when calling

bdev_direct_access.

 40

The function bdev_direct_access does not, and should not, know that the

backing storage media is a true SCM device or not. It just needs to know that it’s a

block device represented by a block device (bdev) structure pointer with direct

access capability. Within the bdev structure is the function pointer table to handle all

requests that are specific to that type of block storage (in the case of this thesis, a

RAM block disk). The block_device_operations function pointer table contains a

function pointer entry called .direct_access. It is this function pointer entry that is

populated with the brd_direct_access function. Therefore, any calls to the

.direct_access function pointer for a RAM block device come to brd_direct_access.

This is another one of the key axioms of SEFT, and the portability of such a

modification that could be done for other file systems. This lower layer direct access

function for RAM block devices must be changed for true SCM devices or any other

type of SCM simulation devices.

The second issue discovered with bdev_direct_access was a secondary check

in the function to ensure that any sector passed in was aligned on a 4KiB memory

page boundary. The reason for this discrepancy is because FAT does not natively

allocate memory on 4KiB memory page boundaries. The DAX extension code relied

on the underlying ext2 and ext4 framework for allocating memory for files. The

memory allocated for ext2 and ext4 were always aligned to 4KiB memory page

boundaries. However, because the FAT file system is a legacy file system around 30

years old, its file allocation method (clusters) does not always allocate on 4KiB

memory page boundaries. As described above, the FAT file system will allocate

clusters of relative size depending on the implementation of FAT (FAT12, FAT16,

FAT32) and the size of the overall disk/device on which FAT was mounted. In the

example for this thesis, FAT natively allocates 2KiB clusters and it was described

above how this had to be rectified in order to work with the current Linux kernel and

 41

SEFT. Because FAT allocates on non-4KiB memory page boundaries, the secondary

check in bdev_direct_access consistently failed. Although the modification was made

to always allocate 4KiB of memory per FAT cluster allocation, this secondary check

for 4KiB alignment had to be removed because the offset at which user data could be

stored could potentially start at a cluster that maps to a sector that is not on a 4KiB

memory page boundary. Upon removal of the 4KiB memory page boundary

alignment check, all SEFT I/O succeeded in getting passed to the .direct_access

function pointer in the block device operations table for the associated RAM disk

device.

Filemap for Direct I/O

The filemap functionality lives in the memory management (MM) component

of the Linux kernel. The relevant modifications here are related to the overall

architecture of how all file systems integrate with the Linux kernel. As described

earlier, there are common components of all file systems that utilize common file

system code provided by the Linux kernel. One example of such common code is the

generic read and write file functions. This group of functions live in the

/mm/filemap.c file and serve the purpose of providing a generic interface to read or

write file data. The function itself does all the work needed for actually writing data

to a file. More importantly, it will call all the proper sub-functions based on whether a

direct I/O or a standard buffered read/write is needed. However, all I/O to a SCM

storage block device will be direct I/O. Therefore, the direct I/O code path within the

generic_file_direct_write and generic_file_direct_read functions must always go

through the .direct_IO function pointer defined in the address_space_operations

structure used in the file structure defined by the Linux kernel. The file structure

 42

defined by Linux contains an address_space structure. This address_space structure

describes the memory and page mappings to the current file. Within this

address_space structure, used by the file structure, is the address_space_operations

(aops) function pointer table. It is within this aops table that the .direct_IO function

pointer will be invoked when a direct I/O request is detected. The .direct_IO function

pointer is set to fat_direct_IO in the /fs/fat/inode.c file. Therefore, any file created in

a FAT file system, including SEFT I/O, will get routed to the function fat_direct_IO.

As explained earlier, the fat_direct_IO function will invoke the new seft_do_io and

seft_io functions.

Compiler Modifications

All of the changes described above for the SEFT extension required

modifications to the Linux kernel build environment. First, because new files were

introduced, the Makefile under the /fs directory had to be modified to compile the

new SEFT module (two new files were seft.c and seft.h). Second, the Kconfig file was

modified to include a new compiler define (i.e., #define) for SEFT called

CONFIG_FS_SEFT. The Kconfig files provide a way to configure a Linux kernel build.

The Linux kernel build process has two parts: configuring the kernel options and

building the kernel source with those options [16]. To configure the kernel, a user

launches a text or graphical based kernel configuration tool. The kernel configuration

tool prompts users to select kernel options to be included, or excluded, from the

Linux kernel compilation process. Because the Kconfig file in the /fs directly was

modified to add SEFT as an option, when a user launches the kernel configuration

tool, there is an option presented under the File Systems sub-menu to turn on, or

off, the SEFT extension. Finally, as mentioned previously, a new kernel define was

 43

added for the block RAM device direct access configuration, which was needed to

support SEFT on top of RAM block devices. An updated block architecture with all

SEFT extension changes is shown in Figure 10 below.

Figure 10 – SEFT Block Architecture in the FAT File System

 44

CHAPTER 4

ANALYSIS

Directory Operations

The initial testing and analysis of the SEFT extension was broken down into

four components for typical VFS operations: mount, initialize, file creation, and file

deletion. However, it should be noted that other functions were tested as well, which

will be listed later in this section. In order to analyze the testing, a formalized

method for testing was first designed. As described in several publications [19, 20],

a typical flow for testing VFS functionality on a file system is as follows:

1. Create the temporary backing store (RAM disk)

2. Perform a mkfs on the backing store

3. Mount the RAM disk (and file system) to a directory

Once the RAM disk is mounted to a directory, any operations performed on that

directory or sub-directories will invoke the FAT file system with SEFT extension. As

stated earlier, for this thesis, a RAM disk of size 100 MiB was used for test. Upon

successful creation of the RAM disk backing store, the file system was created and

mounted with the following commands below. Note that /dev/ram7 is the backing

store, or RAM disk, used for test and /mnt/fat is a temporary directory setup for test

purposes.

 mkfs –t fat /dev/ram7

 mount /dev/ram7 /mnt/fat

 45

The use of print statements and the kernel log (accessed via the dmesg

command) allowed the execution of the file system to be verified at differing points

in time. Initially, the file system mount action was the first to be tested. Since the

SEFT modifications centered on I/O, there were no changes to how the FAT file

system was mounted, other than to enable the SEFT code by default. In addition to

mounting the file system, the initialization sequence was also verified. After the

successful mount, the following sequence of tests were successfully performed.

1. Create a single, top level directory

2. Create multiple, top level directories

3. Create a secondary sub-directory under first level directory

4. Create multiple sub-directories under first level directory

5. Create additional sub-directories at multiple levels

6. Delete directory, with no sub-directories

7. Delete directory, with sub-directories and parent directories

8. Delete entire directory tree under root folder in file system

9. Rename directories, with and without sub-directories

With the above tests, all inode mappings were confirmed using the tree

command with the --inode parameter to display inodes associated with each

directory. In analyzing the results of the directly testing, it was clear that the SEFT

modifications had little effect on directory operations. While inodes and dentries are

created and managed for all directories, because there is no backing store associated

with a directory, there was no authentic need to invoke the new SEFT extension code

introduced.

 46

File Operations

After successful directory testing, the initial file creation and deletion

operations tests were performed. There were two options available for testing

methodology: POSIX open/close and native file editors. In an attempt to more

closely match how an end user would create files, the native file editor method was

used for test purposes. Most Linux operating system vendors (OSVs) provide the vi

or vim tool by default as part of the operating system image. The file editor tool

vi/vim is a common command line editor tool used for a variety of reasons, hence its

selection for testing. It is worth nothing how vi/vim creates files before proceeding

with the analysis of file creations and deletions. First, vi/vim will create what is called

a swap file for every file that is created. This is a backup file that can be used to

recover file data should anything bad occur while a system is running. The swap files

are hidden from the user using vi/vim, and are often times stored in special

directories in order to ensure that the backup file is not lost with the original file in

case the entire directory suddenly becomes deleted or corrupted. The practice of

creating a backup file that cannot be seen by an end user is common for other file

editors such as Microsoft Word, GNOME gEdit, and Emacs (just to name a few).

In testing the SEFT extension modifications, a file was opened with the

command line: vi testfile.txt. This one command triggered multiple actions with the

FAT file system. It should be noted that directory location for file testing was

determined to be irrelevant, as all issues encountered during file testing occurred

regardless of where the file was in a directory tree. The multiple actions that

occurred all revolved around the allocation of the inode and clusters for the file being

created with vi/vim. As described earlier, the allocation of blocks for files by the FAT

file system is different than ext2/ext4. The ext2/4 file system always allocates blocks

 47

on 4KiB boundaries. Linux natively supports 4KiB memory allocation, which is

inherited by the ext2/4 file system (ext4 is the default file system for the Linux

kernel). However, because FAT was developed so long ago, its file allocation is

unique and also varies depending on the overall file system size. Therefore, the

initial port of DAX to FAT did not work because of the file allocation issues. The SEFT

I/O functions were designed to loop through the size of an I/O request. However,

every call to the SEFT I/O function had a theoretical maximum (called the bh_max)

set when getting the blocks for a particular file/inode.

The call to retrieve the blocks would discover only 2KiB of memory could be

allocated at a time and that became the upper limit. Therefore, any I/O coming down

(for a 4KiB request, because all access are done on 4KiB page boundaries) would

return only after reading or writing 2KiB of data. This caused the secondary I/O to

come down to finish reading or writing the other 2KiB of data, but because the

memory page associated with the I/O request contained the first 2KiB (or 4

sector/LBAs), the same chunk of data was retrieved. This led to the issue of reading

and writing to the same sectors/LBAs, and eventual data corruption. Once the

allocation issue was fixed (to allocate 4KiB of memory for every I/O), the data

integrity issues were resolved. However, this confirms that not every file system can

support the DAX or SEFT extensions. The determination is how the underlying file

memory is allocated. It is also worth noting that because 2KiB clusters were

allocated for files by the FAT file system, file chunks didn’t always start on 4KiB

boundaries. The file chunks could, and often would, start on 2KiB boundaries, thus

creating a problem for the mapping of LBAs to kernel address space (via

bdev_direct_access). Multiple checks for 4KiB memory page alignment had to be

removed in order to successfully perform reads and writes.

 48

Performance

 Analysis of performance with the SEFT modifications is limited due to the fact

that no SCM devices exist in the market. All testing, for this research and others, is

reliant on emulation. The most common form of emulation is RAM disk. However,

using RAM disk provides a common denominator for testing. Because the primary

purpose of SCM extensions is to reduce overall I/O latency, testing performed had

the following criteria.

 Queue depth of one

 Single threaded

 Synchronous I/O completions

The queue depth of one insured that latency measurements were showing

statistics for one I/O request at a time. If a queue depth larger than one was used,

then results would become mixed because the CPU time (cycles) spent processing an

I/O to a SEFT device would also be accounting for other outstanding I/O requests.

Using a queue depth of one insures that CPU cycles, and latency measurements,

would be for a single I/O. The same can be said for using single threaded tests. If

more than one worker thread were to be used, then the CPU cycles, and therefore

latency measurements, would not accurately represent a single I/O request. Multiple

worker threads would cause multiple I/O requests to the file system. This is also true

for asynchronous I/O (AIO) completions. Hence the need for synchronous I/O

completions. AIO completions would cause an overlap in I/O requests being

processed by the file system, which is contradicts the measurement of a single I/O.

As for other parameters, such as transfer size, the value is less relevant as

long as the value remains the same for both performance measurements with and

 49

without SEFT. For the purposes of this research, 4KiB random reads and random

writes were used as this is an often used benchmark for storage performance

measurements. It should be noted that the performance tool used was FIO. FIO

stands for flexible I/O tester and was created for the purpose testing “flexible”

workloads to a storage device [25]. The FIO test script used contains the following

commands below.

[global]

ioengine=sync

rw=randwrite

size=2M

directory=/mnt/fat/fio

thread=1

iodepth=1

direct=1

bs=4k

[ray-randwrite-2M]

This script will test random writes, changing the “rw” field to randread will

test random reads. The random reads and random writes test will test the 4KiB size

I/O requests to a file in the FAT file extension with and without the SEFT extension.

The results are shown in Table 3 and Figures 10 and 11 below.

Workload Bandwidth (KiB/s)
Throughput

(IOPS)
Latency (us)

4K RR (SEFT) 512000 128000 5.36

4K RR (non-SEFT) 1000 256000 1.93

4K RW (SEFT) 512000 128000 6.68

4K RW (non-SEFT) 1000 256000 1.98

Table 3 – Performance Measurements (QD = 1, # Threads = 1, AIO)

 50

Figure 10 – Bandwidth and IOPS Measurements

Figure 11 – I/O Latency Measurements

The bandwidth and IOPS (I/Os per second) showed mixed results. The

bandwidth was orders of magnitude higher with the SEFT extension code (averaging

512 MiB/s). But the IOPS were exactly half with the SEFT extension code (averaging

0

100000

200000

300000

400000

500000

600000

4K RR (SEFT) 4K RR (non-SEFT) 4K RW (SEFT) 4K RW (non-SEFT)

Bandwidth and IOPS

Bandwidthn (KiB/s) Throughput (IOPS)

0

1

2

3

4

5

6

7

8

4K RR (SEFT) 4K RR (non-SEFT) 4K RW (SEFT) 4K RW (non-SEFT)

Latency (us)

Latency (us)

 51

128KiB IOPS). However, this lower IOPS can be attributed to the most surprising

measurement, the increase in latency. IOPS are a directly result of latency. If latency

is higher per I/O, then IOPS will be slower. Because the I/O latency was just below 2

microseconds on the non-SEFT FAT file system, the IOPS were significantly lower.

The bandwidth increase seen with the SEFT extension is attributed to the fact that

more data per second was transferred (versus the non-SEFT FAT file system). It can

be concluded that while throughput increased, there is still a significant CPU

overhead being added by the SEFT extension code executing. The numbers

measured in this research are somewhat contradictory, but also make sense

considering a new code path was added. The new SEFT code path was not originally

designed for the FAT file system, especially with respect to file allocation, so there

are improvements that could be made to SEFT that could allocate memory more

efficiently.

 52

CHAPTER 5

CONCLUSION

Discussion

The analysis of the port of the DAX extension to the FAT file system revealed

several key data points around the viability and portability of a common file

extension for supporting SCM storage block devices. Several key issues were

identified prior to the investigation and research into the SEFT modifications. Those

key issues were performance overhead, contiguous address space for large files,

dynamic (run-time) memory mapping of files, and write order. However, the issues

identified during the research and implementation of SEFT were different from those

issues identified prior. The key issues identified during the implementation more

accurately reflected the portability and compatibility of a SCM file system extension.

The key issues identified during implementation were file space allocation, mapping

of logical sectors/blocks on a SCM storage block device to kernel memory, and

configuring the underlying storage medium to be able to align to system memory

page size. And while important, the initial four key issues really defined the potential

architectural limitations of such a file system extension.

To address the initial four key issues, an examination of the SEFT

implementation provides answers to all four. First, the performance overhead of

sharing system resources with a file system is a challenging task to identify or

measure. A system would require a heavy I/O workload to any SCM block storage

device in addition to performing complex, CPU and MMU intensive operations in order

to fully realize the bottleneck that would, or could, be encountered. However, even

with such workloads, the variability of system resources and configurations would

 53

drastically affect the results of any such measurements. In short, the performance

overhead of shared resources, such as the MMU, is not a reliable source for analysis

and measurement as every system differs in resource capabilities. The SEFT

modifications use several native Linux kernel memory libraries, structures, and

operations. It would be difficult to identify and measure the resource utilization of

operations originated by SEFT.

 The second issue of contiguous address space for large files was a testament

of the unknown. This original issue/concern was based on the concept that all

memory mapped regions must be physically contiguous. However, this assumption

turned out to be false. This was due in large part to how OS kernels memory map

PCI configuration space (which is one of the most common scenarios to memory map

an external device to the system’s memory map). However, what was not

understood at the time of the initial investigation was that not all memory mapped

space need be physically contiguous. And this is true for any type of storage block

device (SCM, RAM disk, or otherwise). The physically contiguous requirement of

memory that is memory mapped is specific to PCI configuration space due to the

nature of how PCI devices must be compatible across all systems. PCI devices

present a set of common and uncommon registers sets. The PCI specifications

explicitly state that in order to maintain compatibility with all systems, the address

space that is being mapped must be physically contiguous for direct memory

addressing (DMA) purposes. However, with block storage devices, because all data is

accessed via LBAs, there is no need to ensure the memory mapping is physically

contiguous because the LBAs are described by buffer head structures that are linked

in the memory page structure. This was a critical finding in the implementation of

SEFT.

 54

For the third initial issue, run time memory allocation, some file systems

actually prevent this from happening, and instead force all allocation of resources to

be done at run time. At the same time, some file systems do allocate resources upon

mount time. Therefore, providing a common run time solution would not be effective

as resource management, in particular memory mapping of address space, because

resource management is file system specific. The initial concern here revolved

around the time taken to memory map files. However, during the implementation of

SEFT, it became clear that memory mapping at run time is not an issue due to the

nature of how easily the Linux kernel maps memory. As files are created and

deleted, the data block storage to kernel memory translation must happen

regardless of whether memory has been mapped ahead of time. The act of doing the

memory mapping does not place any additional overhead or resource contention on

the file creation and deletion process.

The fourth issue of write ordering turned out to be a non-issue due to the

removal of the page/buffer cache from the SEFT I/O path. Since there is no buffering

above the file system layer in any kernel, SEFT I/O requests that come down will be

processed in the order in which they were received. The file system will bypass any

buffered reads or writes and perform all I/O in real time via loads and stores. This

ensures that write ordering is preserved.

The key issues discovered during the implementation of SEFT are really the

key issues that determine portability and compatibility. As identified above, all of the

issues revolved around how individual file systems allocate memory for files and map

the LBAs to the kernel memory address space. In Table 3 below, each of the key

issues identified through the research have been categorized with respect to file

system frameworks and portability. Note that for the SEFT I/O functions, in order to

maintain portability (and remain file system agnostic), the SCM file system extension

 55

must use the OS native structures that represent I/O commands and requests,

memory, user space buffers, and the arrangement of sectors on storage block

devices.

Key SCM Extension Components
File System

Agnostic

Operating

System Agnostic

File Space Allocation No No

Logical Block to Memory Mapping No No

SCM Extension I/O Functions Yes* Yes

Inode Modification and Detection Yes No

SCM Test Infrastructure Yes No

Table 4 – Portability Matrix of SCM Extension Components

Future Work

 There are many areas of file system extensions that can be investigated for

future work with respect to SCM memory. The future potential work can be

categorized into three categories: continuation of portability, performance

enhancements, and functional enhancements. Each of these categories has its own

challenges and assumptions. With the continuing study of portability, the emergence

of commercial SCM devices will help accelerate this investigation. From this thesis, to

other similar papers and file system prototypes, there has not been a completely file

system agnostic solution (including SEFT). Because of the nature of file systems and

memory management, there are few ways to abstract all the functionality of reading

and writing data to a storage medium that do not include using native structures. Of

course, abstraction and glue layers can always be introduced in order to provide

buffering between the heart of a SCM extension and the file system on which it runs.

 56

But, the concept of adding shim or glue layers goes against the very principle of

emerging SCM technologies. SCM technologies reduce the device access latency

times down to single millisecond numbers, and possibly even further (i.e., hundreds

of nanoseconds). Introducing even the smallest piece of unnecessary code adds to

overall I/O latency. The overall I/O latency was once driven by the storage media

access time, but now the time spent in the OS kernel now become relevant,

especially as we get closer to nanosecond storage media access times. There is a

point of diminishing returns when trying to develop an overly portable or compatible

piece of software, and with SCM devices, that point is an important factor for

performance.

 The potential performance and functional investigation work should center on

what can be done to help users access their data faster and easier. Much of this may

be determined by the type of SCM technologies that are released, as well as which

ones become viable market solutions. The storage ecosystem is constantly evolving

and there are innovative solutions introduced every year to squeeze more and more

performance and functionality out of our computers. But SCM is a game-changing

technology, thus opening the doors to a wider array of possible solutions.

 57

REFERENCES

[1] Y. Kang, J. Yang, E. L. Miller, “Object-based SCM: An Efficient Interface for

Storage Class Memories,” in Proceedings of 2011 IEEE 27th Symposium on Mass

Storage Systems and Technologies (MSST).

[2] X. Wu and A. L. Narashimha Reddy, “SCMFS: A File System for Storage Class

Memory,” in Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, Article No. 39.

[3] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, M. Swift,

“Aerie: Flexible File-System Interfaces to Storage-Class Memory”, in

Proceedings of the 9th European Conference on Computer Systems, Article No.

14.

[4] Storage Class Memory, Towards a disruptively low-cost solid-state non-volatile

memory, IBM Almaden Research Center. URL

http://researcher.watson.ibm.com/researcher/files/us-

gwburr/Almaden_SCM_overview_Jan2013.pdf

[5] M. Wilcox, DAX: Page cache bypass for file systems on memory storage. URL

https://lwn.net/Articles/618064/

[6] PMFS: A file system for persistent memory. URL https://github.com/linux-

pmfs/pmfs/blob/master/ Documentation/filesystems/pmfs.txt, 2013

[7] A. Brouwer, FAT under Linux, The FAT filesystem. URL

http://www.win.tue.nl/~aeb/linux/fs/fat/fat-2.html

[8] Description of the FAT32 File System. URL https://support.microsoft.com/en-

us/kb/154997

[9] T. Krenn, Linux Page Cache Basics. URL https://www.thomas-

krenn.com/en/wiki/Linux_Page_Cache_Basics

[10] File Allocation Table. URL https://en.wikipedia.org/wiki/File_Allocation_Table

[11] Design of the FAT File System. URL

https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system

[12] L. Torvalds, Buffer Heads. URL

http://yarchive.net/comp/linux/buffer_heads.html

[13] J. Corbet, A Nasty File Corruption Bug – Fixed. URL

http://lwn.net/Articles/215235/

[14] J. Corbet, The iov_iter Interface. URL https://lwn.net/Articles/625077/

https://support.microsoft.com/en-us/kb/154997
https://support.microsoft.com/en-us/kb/154997

 58

[15] J. Corbet, Asynchronous block loop I/O. URL https://lwn.net/Articles/535034/

[16] G. Kroah-Hartman, The Kernel Configuration and Build Process, The Linux

Journal. URL http://www.linuxjournal.com/article/6568

[17] Platform Controller Hub. URL

https://en.wikipedia.org/wiki/Platform_Controller_Hub

[18] J. Layton, What’s an Inode? Linux Magazine. URL http://www.linux-

mag.com/id/8658/

[19] B. Fields, Virtual File System Switch. URL

http://www.fieldses.org/~bfields/kernel/vfs.txt

[20] M. Tim Jones, Anatomy of the Linux Virtual File System switch. URL

http://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/

[21] M. Tim Jones, Anatomy of the Linux File System. URL

http://web.archive.org/web/20150505112327/http://www.ibm.com/developer

works/linux/library/l-linux-filesystem/

[22] Inode Pointer Structure. URL

https://en.wikipedia.org/wiki/Inode_pointer_structure

[23] Intel Z87 Chipset Platform Diagram. URL

http://www.intel.com/content/www/us/en/chipsets/performance-chipsets/z87-

chipset-diagram.html

[24] S. Qiu and A. L. Narashimha Reddy, “NVMFS: A Hybrid File System for

Improving Random Write in NAND-flash SSD,” in Proceedings of 2013 IEEE 29th

Symposium on Mass Storage Systems and Technologies (MSST).

[25] FIO(1) – Linux Man Page. URL http://linux.die.net/man/1/fio

 59

APPENDIX A

SEFT CODE KERNEL PATCH

 60

GitHub Link to Repo – https://github.com/rcrobles/sxf-linux-4.3.5.git

diff --git a/drivers/block/Kconfig b/drivers/block/Kconfig

index 1b8094d..d564f18 100644

--- a/drivers/block/Kconfig

+++ b/drivers/block/Kconfig

@@ -404,6 +404,17 @@ config BLK_DEV_RAM_DAX

 and will prevent RAM block device backing store memory from being

 allocated from highmem (only a problem for highmem systems).

+config BLK_DEV_RAM_SEFT

+ bool "Support SCM Extension for FAT (SEFT) to RAM block devices"

+ depends on BLK_DEV_RAM && FS_SEFT

+ default n

+ help

+ Support filesystems using SEFT to access RAM block devices. This

+ avoids double-buffering data in the page cache before copying it

+ to the block device. Answering Y will slightly enlarge the kernel,

+ and will prevent RAM block device backing store memory from being

+ allocated from highmem (only a problem for highmem systems).

+

 config CDROM_PKTCDVD

 tristate "Packet writing on CD/DVD media"

 depends on !UML

diff --git a/drivers/block/brd.c b/drivers/block/brd.c

index b9794ae..334cdfc 100644

--- a/drivers/block/brd.c

+++ b/drivers/block/brd.c

@@ -103,7 +103,7 @@ static struct page *brd_insert_page(struct brd_device *brd,

sector_t sector)

 * restriction might be able to be lifted.

 */

 gfp_flags = GFP_NOIO | __GFP_ZERO;

-#ifndef CONFIG_BLK_DEV_RAM_DAX

+#if !defined(CONFIG_BLK_DEV_RAM_DAX) &&

!defined(CONFIG_BLK_DEV_RAM_SEFT)

 gfp_flags |= __GFP_HIGHMEM;

 #endif

 page = alloc_page(gfp_flags);

@@ -372,18 +372,22 @@ static int brd_rw_page(struct block_device *bdev,

sector_t sector,

 return err;

 }

-#ifdef CONFIG_BLK_DEV_RAM_DAX

+#if defined(CONFIG_BLK_DEV_RAM_DAX) ||

defined(CONFIG_BLK_DEV_RAM_SEFT)

 static long brd_direct_access(struct block_device *bdev, sector_t sector,

- void __pmem **kaddr, unsigned long *pfn)

+ void __pmem **kaddr, unsigned long *pfn)

 {

 61

 struct brd_device *brd = bdev->bd_disk->private_data;

 struct page *page;

- if (!brd)

+ if (!brd) {

 return -ENODEV;

+ }

+

 page = brd_insert_page(brd, sector);

- if (!page)

+ if (!page) {

 return -ENOSPC;

+ }

+

 *kaddr = (void __pmem *)page_address(page);

 *pfn = page_to_pfn(page);

diff --git a/fs/Kconfig b/fs/Kconfig

index da3f32f..0f78ef9 100644

--- a/fs/Kconfig

+++ b/fs/Kconfig

@@ -31,6 +31,13 @@ source "fs/btrfs/Kconfig"

 source "fs/nilfs2/Kconfig"

 source "fs/f2fs/Kconfig"

+config FS_SEFT

+ bool "SCM Extension for FAT (SEFT) Support"

+ depends on MMU

+ depends on !(ARM || MIPS || SPARC)

+ help

+ SEFT can be used on directly addressable persistent block devices

+

 config FS_DAX

 bool "Direct Access (DAX) support"

 depends on MMU

diff --git a/fs/Makefile b/fs/Makefile

index f79cf40..1a51e4e 100644

--- a/fs/Makefile

+++ b/fs/Makefile

@@ -30,6 +30,7 @@ obj-$(CONFIG_EVENTFD) += eventfd.o

 obj-$(CONFIG_USERFAULTFD) += userfaultfd.o

 obj-$(CONFIG_AIO) += aio.o

 obj-$(CONFIG_FS_DAX) += dax.o

+obj-$(CONFIG_FS_SEFT) += seft.o

 obj-$(CONFIG_FILE_LOCKING) += locks.o

 obj-$(CONFIG_COMPAT) += compat.o compat_ioctl.o

 obj-$(CONFIG_BINFMT_AOUT) += binfmt_aout.o

diff --git a/fs/block_dev.c b/fs/block_dev.c

index 073bb57..0838a90 100644

--- a/fs/block_dev.c

+++ b/fs/block_dev.c

@@ -29,6 +29,9 @@

 62

 #include <linux/log2.h>

 #include <linux/cleancache.h>

 #include <linux/dax.h>

+

+#include <linux/seft.h>

+

 #include <asm/uaccess.h>

 #include "internal.h"

@@ -153,12 +156,18 @@ blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter,

loff_t offset)

 struct file *file = iocb->ki_filp;

 struct inode *inode = file->f_mapping->host;

- if (IS_DAX(inode))

- return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,

- NULL, DIO_SKIP_DIO_COUNT);

- return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,

- blkdev_get_block, NULL, NULL,

- DIO_SKIP_DIO_COUNT);

+ if (IS_DAX(inode)) {

+ return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,

+ NULL, DIO_SKIP_DIO_COUNT);

+ } else if (IS_SEFT(inode)) {

+ printk(KERN_NOTICE "SEFT: blkdev_direct_IO: calling seft_do_io");

+ return seft_do_io(iocb, inode, iter, offset, blkdev_get_block,

+ NULL, DIO_SKIP_DIO_COUNT);

+ } else {

+ return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,

+ blkdev_get_block, NULL, NULL,

+ DIO_SKIP_DIO_COUNT);

+ }

 }

 int __sync_blockdev(struct block_device *bdev, int wait)

@@ -381,8 +390,9 @@ int bdev_read_page(struct block_device *bdev, sector_t

sector,

 struct page *page)

 {

 const struct block_device_operations *ops = bdev->bd_disk->fops;

- if (!ops->rw_page || bdev_get_integrity(bdev))

+ if (!ops->rw_page || bdev_get_integrity(bdev)) {

 return -EOPNOTSUPP;

+ }

 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);

 }

 EXPORT_SYMBOL_GPL(bdev_read_page);

@@ -412,8 +422,9 @@ int bdev_write_page(struct block_device *bdev, sector_t

sector,

 int result;

 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;

 const struct block_device_operations *ops = bdev->bd_disk->fops;

 63

- if (!ops->rw_page || bdev_get_integrity(bdev))

+ if (!ops->rw_page || bdev_get_integrity(bdev)) {

 return -EOPNOTSUPP;

+ }

 set_page_writeback(page);

 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);

 if (result)

@@ -455,17 +466,26 @@ long bdev_direct_access(struct block_device *bdev,

sector_t sector,

 if (size < 0)

 return size;

- if (!ops->direct_access)

+ if (!ops->direct_access) {

 return -EOPNOTSUPP;

- if ((sector + DIV_ROUND_UP(size, 512)) >

- part_nr_sects_read(bdev->bd_part))

+ }

+

+ if ((sector + DIV_ROUND_UP(size, 512)) > part_nr_sects_read(bdev-

>bd_part)) {

 return -ERANGE;

+ }

+

 sector += get_start_sect(bdev);

- if (sector % (PAGE_SIZE / 512))

- return -EINVAL;

+

+ if (sector % (PAGE_SIZE / 512)) {

+ printk(KERN_NOTICE "SEFT: bdev_direct_access: sector = 0x%llx,

PAGE_SIZE = 0x%lx\n",

+ (unsigned long long)sector, PAGE_SIZE);

+ }

+

 avail = ops->direct_access(bdev, sector, addr, pfn);

- if (!avail)

+ if (!avail) {

 return -ERANGE;

+ }

+

 return min(avail, size);

 }

 EXPORT_SYMBOL_GPL(bdev_direct_access);

@@ -480,8 +500,10 @@ static struct kmem_cache * bdev_cachep __read_mostly;

 static struct inode *bdev_alloc_inode(struct super_block *sb)

 {

 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);

+

 if (!ei)

 return NULL;

+

 return &ei->vfs_inode;

 64

 }

@@ -1636,6 +1658,7 @@ ssize_t blkdev_write_iter(struct kiocb *iocb, struct

iov_iter *from)

 ret = err;

 }

 blk_finish_plug(&plug);

+

 return ret;

 }

 EXPORT_SYMBOL_GPL(blkdev_write_iter);

diff --git a/fs/fat/cache.c b/fs/fat/cache.c

index 93fc622..e637e0d 100644

--- a/fs/fat/cache.c

+++ b/fs/fat/cache.c

@@ -127,6 +127,7 @@ static struct fat_cache *fat_cache_merge(struct inode

*inode,

 return p;

 }

 }

+

 return NULL;

 }

@@ -233,8 +234,9 @@ int fat_get_cluster(struct inode *inode, int cluster, int

*fclus, int *dclus)

 *fclus = 0;

 *dclus = MSDOS_I(inode)->i_start;

- if (cluster == 0)

- return 0;

+ if (cluster == 0) {

+ return 0;

+ }

 if (fat_cache_lookup(inode, cluster, &cid, fclus, dclus) < 0) {

 /*

@@ -257,8 +259,9 @@ int fat_get_cluster(struct inode *inode, int cluster, int

*fclus, int *dclus)

 }

 nr = fat_ent_read(inode, &fatent, *dclus);

- if (nr < 0)

- goto out;

+ if (nr < 0) {

+ goto out;

+ }

 else if (nr == FAT_ENT_FREE) {

 fat_fs_error_ratelimit(sb,

 "%s: invalid cluster chain (i_pos %lld)",

@@ -270,11 +273,14 @@ int fat_get_cluster(struct inode *inode, int cluster, int

*fclus, int *dclus)

 65

 fat_cache_add(inode, &cid);

 goto out;

 }

+

 (*fclus)++;

 *dclus = nr;

+

 if (!cache_contiguous(&cid, *dclus))

 cache_init(&cid, *fclus, *dclus);

 }

+

 nr = 0;

 fat_cache_add(inode, &cid);

 out:

@@ -287,17 +293,21 @@ static int fat_bmap_cluster(struct inode *inode, int

cluster)

 struct super_block *sb = inode->i_sb;

 int ret, fclus, dclus;

- if (MSDOS_I(inode)->i_start == 0)

+ if (MSDOS_I(inode)->i_start == 0) {

 return 0;

+ }

 ret = fat_get_cluster(inode, cluster, &fclus, &dclus);

- if (ret < 0)

+ if (ret < 0) {

 return ret;

+ }

+

 else if (ret == FAT_ENT_EOF) {

 fat_fs_error(sb, "%s: request beyond EOF (i_pos %lld)",

 __func__, MSDOS_I(inode)->i_pos);

 return -EIO;

 }

+

 return dclus;

 }

@@ -313,39 +323,50 @@ int fat_bmap(struct inode *inode, sector_t sector,

sector_t *phys,

 *phys = 0;

 *mapped_blocks = 0;

+

 if ((sbi->fat_bits != 32) && (inode->i_ino == MSDOS_ROOT_INO)) {

 if (sector < (sbi->dir_entries >> sbi->dir_per_block_bits)) {

 *phys = sector + sbi->dir_start;

 *mapped_blocks = 1;

 }

+

 return 0;

 66

 }

 last_block = (i_size_read(inode) + (blocksize - 1)) >> blocksize_bits;

 if (sector >= last_block) {

- if (!create)

+ if (!create) {

 return 0;

+ }

 /*

 * ->mmu_private can access on only allocation path.

 * (caller must hold ->i_mutex)

 */

- last_block = (MSDOS_I(inode)->mmu_private + (blocksize - 1))

- >> blocksize_bits;

- if (sector >= last_block)

+ last_block = (MSDOS_I(inode)->mmu_private + (blocksize - 1)) >>

blocksize_bits;

+ if (sector >= last_block) {

 return 0;

+ }

 }

 cluster = sector >> (sbi->cluster_bits - sb->s_blocksize_bits);

 offset = sector & (sbi->sec_per_clus - 1);

 cluster = fat_bmap_cluster(inode, cluster);

- if (cluster < 0)

+

+ if (cluster < 0) {

 return cluster;

- else if (cluster) {

+ } else if (cluster) {

 *phys = fat_clus_to_blknr(sbi, cluster) + offset;

- *mapped_blocks = sbi->sec_per_clus - offset;

- if (*mapped_blocks > last_block - sector)

+ //*mapped_blocks = sbi->sec_per_clus - offset;

+ *mapped_blocks = (sbi->sec_per_clus * 2) - offset;

+

+ fat_msg(sb, KERN_NOTICE, "SEFT: fat_bmap: *phys = 0x%llx",

(unsigned long long)*phys);

+ fat_msg(sb, KERN_NOTICE, "SEFT: fat_bmap: *mapped_blocks =

0x%lx", *mapped_blocks);

+

+ if (*mapped_blocks > last_block - sector) {

 *mapped_blocks = last_block - sector;

+ }

 }

+

 return 0;

 }

diff --git a/fs/fat/dir.c b/fs/fat/dir.c

index 4afc4d9..bd9d679 100644

 67

--- a/fs/fat/dir.c

+++ b/fs/fat/dir.c

@@ -1377,26 +1377,29 @@ found:

 dir->i_size = (dir->i_size + sbi->cluster_size - 1)

 & ~((loff_t)sbi->cluster_size - 1);

 }

+

 dir->i_size += nr_cluster << sbi->cluster_bits;

 MSDOS_I(dir)->mmu_private += nr_cluster << sbi->cluster_bits;

 }

+

 sinfo->slot_off = pos;

 sinfo->de = de;

 sinfo->bh = bh;

 sinfo->i_pos = fat_make_i_pos(sb, sinfo->bh, sinfo->de);

 return 0;

-

 error:

 brelse(bh);

 for (i = 0; i < nr_bhs; i++)

 brelse(bhs[i]);

+

 return err;

 error_remove:

 brelse(bh);

 if (free_slots)

 __fat_remove_entries(dir, pos, free_slots);

+

 return err;

 }

 EXPORT_SYMBOL_GPL(fat_add_entries);

diff --git a/fs/fat/fat.h b/fs/fat/fat.h

index be5e153..1d765cb 100644

--- a/fs/fat/fat.h

+++ b/fs/fat/fat.h

@@ -50,7 +50,10 @@ struct fat_mount_options {

 tz_set:1, /* Filesystem timestamps' offset set */

 rodir:1, /* allow ATTR_RO for directory */

 discard:1, /* Issue discard requests on deletions */

- dos1xfloppy:1; /* Assume default BPB for DOS 1.x floppies */

+ dos1xfloppy:1, /* Assume default BPB for DOS 1.x floppies */

+//#ifdef CONFIG_FS_SEFT

+ seft:1; /* 1 = SEFT enabled (SCM extensions), 0 = SEFT

disabled */

+//#endif

 };

 #define FAT_HASH_BITS 8

@@ -357,7 +360,11 @@ extern int fat_count_free_clusters(struct super_block *sb);

 /* fat/file.c */

 68

 extern long fat_generic_ioctl(struct file *filp, unsigned int cmd,

 unsigned long arg);

+

+

 extern const struct file_operations fat_file_operations;

+

+

 extern const struct inode_operations fat_file_inode_operations;

 extern int fat_setattr(struct dentry *dentry, struct iattr *attr);

 extern void fat_truncate_blocks(struct inode *inode, loff_t offset);

@@ -380,6 +387,9 @@ extern int fat_fill_inode(struct inode *inode, struct

msdos_dir_entry *de);

 extern int fat_flush_inodes(struct super_block *sb, struct inode *i1,

 struct inode *i2);

+extern int fat_get_block(struct inode *inode, sector_t iblock,

+ struct buffer_head *bh_result, int create);

+

 static inline unsigned long fat_dir_hash(int logstart)

 {

 return hash_32(logstart, FAT_HASH_BITS);

diff --git a/fs/fat/fatent.c b/fs/fat/fatent.c

index 8226557..1a5d716 100644

--- a/fs/fat/fatent.c

+++ b/fs/fat/fatent.c

@@ -527,7 +527,6 @@ int fat_alloc_clusters(struct inode *inode, int *cluster, int

nr_cluster)

 sbi->free_clusters = 0;

 sbi->free_clus_valid = 1;

 err = -ENOSPC;

-

 out:

 unlock_fat(sbi);

 mark_fsinfo_dirty(sb);

diff --git a/fs/fat/file.c b/fs/fat/file.c

index a08f103..f8883ad 100644

--- a/fs/fat/file.c

+++ b/fs/fat/file.c

@@ -6,6 +6,7 @@

 * regular file handling primitives for fat-based filesystems

 */

+#include <linux/fs.h>

 #include <linux/capability.h>

 #include <linux/module.h>

 #include <linux/compat.h>

@@ -14,8 +15,48 @@

 #include <linux/backing-dev.h>

 #include <linux/fsnotify.h>

 #include <linux/security.h>

+#include <linux/seft.h>

 #include "fat.h"

 69

+#ifdef CONFIG_FS_SEFT

+static int fat_seft_fault(struct vm_area_struct *vma, struct vm_fault *vmf)

+{

+ return seft_fault(vma, vmf, fat_get_block, NULL);

+}

+

+static int fat_seft_pmd_fault(struct vm_area_struct *vma, unsigned long addr,

+ pmd_t *pmd, unsigned int flags)

+{

+ return seft_pmd_fault(vma, addr, pmd, flags, fat_get_block, NULL);

+}

+

+static int fat_seft_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)

+{

+ return seft_mkwrite(vma, vmf, fat_get_block, NULL);

+}

+

+static const struct vm_operations_struct fat_seft_vm_ops = {

+ .fault = fat_seft_fault,

+ .pmd_fault = fat_seft_pmd_fault,

+ .page_mkwrite = fat_seft_mkwrite,

+ .pfn_mkwrite = seft_pfn_mkwrite,

+};

+

+static int seft_file_mmap(struct file *file, struct vm_area_struct *vma)

+{

+ if (!IS_SEFT(file_inode(file)))

+ return generic_file_mmap(file, vma);

+

+ file_accessed(file);

+ vma->vm_ops = &fat_seft_vm_ops;

+ vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;

+ //vma->vm_flags |= VM_MIXEDMAP;

+ return 0;

+}

+#else

+#define seft_file_mmap generic_file_mmap

+#endif

+

 static int fat_ioctl_get_attributes(struct inode *inode, u32 __user *user_attr)

 {

 u32 attr;

@@ -164,12 +205,11 @@ int fat_file_fsync(struct file *filp, loff_t start, loff_t end,

int datasync)

 return res ? res : err;

 }

-

 const struct file_operations fat_file_operations = {

 .llseek = generic_file_llseek,

- .read_iter = generic_file_read_iter,

 70

- .write_iter = generic_file_write_iter,

- .mmap = generic_file_mmap,

+ .read_iter = generic_file_read_iter,

+ .write_iter = generic_file_write_iter,

+ .mmap = seft_file_mmap,

 .release = fat_file_release,

 .unlocked_ioctl = fat_generic_ioctl,

 #ifdef CONFIG_COMPAT

diff --git a/fs/fat/inode.c b/fs/fat/inode.c

index 509411d..9fce733 100644

--- a/fs/fat/inode.c

+++ b/fs/fat/inode.c

@@ -19,6 +19,9 @@

 #include <linux/uio.h>

 #include <linux/blkdev.h>

 #include <linux/backing-dev.h>

+

+#include <linux/seft.h>

+

 #include <asm/unaligned.h>

 #include "fat.h"

@@ -95,16 +98,39 @@ static struct fat_floppy_defaults {

 static int fat_add_cluster(struct inode *inode)

 {

- int err, cluster;

+ int err = 0;

+ int cluster = 0;

+ int index = 0;

+

+ /* For SEFT I/O, need to allocate 4K (2 clusters) */

+ if (IS_SEFT(inode)) {

+ for (index = 0; index < 2; index++) {

+ err = fat_alloc_clusters(inode, &cluster, 1);

+ if (err) {

+ return err;

+ }

+

+ /* FIXME: this cluster should be added after data of this cluster is writed

*/

+ /* NOTE: After fat_alloc_clusters, the var clusters holds fat_ent.entry

value */

+ /* NOTE: After final call to fat_chain_add, inode->i_blocks = 8 */

+ err = fat_chain_add(inode, cluster, 1);

+ if (err) {

+ fat_free_clusters(inode, cluster);

+ }

+ } /* end for loop*/

+ } else {

+ err = fat_alloc_clusters(inode, &cluster, 1);

+ if (err) {

 71

+ return err;

+ }

+

+ /* FIXME: this cluster should be added after data of this cluster is writed

*/

+ err = fat_chain_add(inode, cluster, 1);

+ if (err) {

+ fat_free_clusters(inode, cluster);

+ }

+ }

- err = fat_alloc_clusters(inode, &cluster, 1);

- if (err)

- return err;

- /* FIXME: this cluster should be added after data of this

- * cluster is writed */

- err = fat_chain_add(inode, cluster, 1);

- if (err)

- fat_free_clusters(inode, cluster);

 return err;

 }

@@ -119,15 +145,19 @@ static inline int __fat_get_block(struct inode *inode,

sector_t iblock,

 int err, offset;

 err = fat_bmap(inode, iblock, &phys, &mapped_blocks, create);

- if (err)

+ if (err) {

 return err;

+ }

+

 if (phys) {

 map_bh(bh_result, sb, phys);

 *max_blocks = min(mapped_blocks, *max_blocks);

 return 0;

 }

- if (!create)

+

+ if (!create) {

 return 0;

+ }

 if (iblock != MSDOS_I(inode)->mmu_private >> sb->s_blocksize_bits) {

 fat_fs_error(sb, "corrupted file size (i_pos %lld, %lld)",

@@ -138,30 +168,58 @@ static inline int __fat_get_block(struct inode *inode,

sector_t iblock,

 offset = (unsigned long)iblock & (sbi->sec_per_clus - 1);

 if (!offset) {

 /* TODO: multiple cluster allocation would be desirable. */

- err = fat_add_cluster(inode);

- if (err)

 72

+ err = fat_add_cluster(inode);

+ if (err) {

 return err;

+ }

 }

- /* available blocks on this cluster */

- mapped_blocks = sbi->sec_per_clus - offset;

+

+ /* Available blocks on this cluster -- sbi->sec_per_clus = 4 */

+ /* For SEFT I/O, 8 blocks will be mapped... 2 clusters */

+ /* After call to fat_add_cluster, inode->i_blocks = 8 */

+ if (IS_SEFT(inode)) {

+ //mapped_blocks = (sbi->sec_per_clus * 2) - offset; // original

+ //mapped_blocks = inode->i_blocks - offset; // not sure we can rely on

i_blocks

+ mapped_blocks = (sbi->sec_per_clus * 2) - offset;

+ } else {

+ mapped_blocks = sbi->sec_per_clus - offset;

+ }

 *max_blocks = min(mapped_blocks, *max_blocks);

 MSDOS_I(inode)->mmu_private += *max_blocks << sb->s_blocksize_bits;

 err = fat_bmap(inode, iblock, &phys, &mapped_blocks, create);

- if (err)

+ if (err) {

 return err;

+ }

 BUG_ON(!phys);

- BUG_ON(*max_blocks != mapped_blocks);

+ //BUG_ON(*max_blocks != mapped_blocks);

+

+ /*

+ * Come back and add check for SEFT inode... if so, then

+ * must clear the blocks (initialized) before they are put in chain

+ * that it's not found by another thread before it's initialized.

+ */

+ if (IS_SEFT(inode)) {

+ /*

+ * Block must be initialized before we put it in the chain so that

+ * it's not found by another thread before it's initialized.

+ */

+ err = seft_clear_blocks(inode, iblock, 1 << inode->i_blkbits);

+ if (err) {

+ fat_msg(sb, KERN_NOTICE, "SEFT: __fat_get_block: seft_clear_blocks

failed = 0x%x", err);

+ }

+ }

+

 set_buffer_new(bh_result);

 map_bh(bh_result, sb, phys);

 73

 return 0;

 }

-static int fat_get_block(struct inode *inode, sector_t iblock,

- struct buffer_head *bh_result, int create)

+int fat_get_block(struct inode *inode, sector_t iblock,

+ struct buffer_head *bh_result, int create)

 {

 struct super_block *sb = inode->i_sb;

 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;

@@ -211,13 +269,14 @@ static int fat_write_begin(struct file *file, struct

address_space *mapping,

 struct page **pagep, void **fsdata)

 {

 int err;

-

 *pagep = NULL;

+

 err = cont_write_begin(file, mapping, pos, len, flags,

 pagep, fsdata, fat_get_block,

 &MSDOS_I(mapping->host)->mmu_private);

 if (err < 0)

 fat_write_failed(mapping, pos + len);

+

 return err;

 }

@@ -227,6 +286,7 @@ static int fat_write_end(struct file *file, struct

address_space *mapping,

 {

 struct inode *inode = mapping->host;

 int err;

+

 err = generic_write_end(file, mapping, pos, len, copied, pagep, fsdata);

 if (err < len)

 fat_write_failed(mapping, pos + len);

@@ -235,6 +295,7 @@ static int fat_write_end(struct file *file, struct

address_space *mapping,

 MSDOS_I(inode)->i_attrs |= ATTR_ARCH;

 mark_inode_dirty(inode);

 }

+

 return err;

 }

@@ -247,7 +308,7 @@ static ssize_t fat_direct_IO(struct kiocb *iocb, struct iov_iter

*iter,

 size_t count = iov_iter_count(iter);

 ssize_t ret;

- if (iov_iter_rw(iter) == WRITE) {

 74

+ if (iov_iter_rw(iter) == WRITE) {

 /*

 * FIXME: blockdev_direct_IO() doesn't use ->write_begin(),

 * so we need to update the ->mmu_private to block boundary.

@@ -258,17 +319,30 @@ static ssize_t fat_direct_IO(struct kiocb *iocb, struct

iov_iter *iter,

 * Return 0, and fallback to normal buffered write.

 */

 loff_t size = offset + count;

- if (MSDOS_I(inode)->mmu_private < size)

- return 0;

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_direct_IO:

mmu_private = 0x%llx",

+ (long long)MSDOS_I(inode)->mmu_private);

+

+ // Commenting out for test... should we return here if mmu_private is

0?????

+ // NOTE: This probably should not fail after cluster allocation fix...

+ //if (MSDOS_I(inode)->mmu_private < size) {

+ // return 0;

+ //}

 }

 /*

 * FAT need to use the DIO_LOCKING for avoiding the race

 * condition of fat_get_block() and ->truncate().

 */

- ret = blockdev_direct_IO(iocb, inode, iter, offset, fat_get_block);

- if (ret < 0 && iov_iter_rw(iter) == WRITE)

+ if (IS_SEFT(inode)) {

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_direct_IO: calling

seft_do_io");

+ ret = seft_do_io(iocb, inode, iter, offset, fat_get_block, NULL,

DIO_LOCKING);

+ } else {

+ ret = blockdev_direct_IO(iocb, inode, iter, offset, fat_get_block);

+ }

+

+ if (ret < 0 && iov_iter_rw(iter) == WRITE) {

 fat_write_failed(mapping, offset + count);

+ }

 return ret;

 }

@@ -294,7 +368,11 @@ static sector_t _fat_bmap(struct address_space *mapping,

sector_t block)

 */

 int fat_block_truncate_page(struct inode *inode, loff_t from)

 {

- return block_truncate_page(inode->i_mapping, from, fat_get_block);

+ if (IS_SEFT(inode)) {

+ return seft_truncate_page(inode, from, fat_get_block);

 75

+ } else {

+ return block_truncate_page(inode->i_mapping, from, fat_get_block);

+ }

 }

 static const struct address_space_operations fat_aops = {

@@ -461,6 +539,18 @@ int fat_fill_inode(struct inode *inode, struct

msdos_dir_entry *de)

 inode->i_version++;

 inode->i_generation = get_seconds();

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[0] =

%d", de->name[0]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[1] =

%d", de->name[1]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[2] =

%d", de->name[2]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[3] =

%d", de->name[3]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[4] =

%d", de->name[4]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[5] =

%d", de->name[5]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[6] =

%d", de->name[6]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[7] =

%d", de->name[7]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[8] =

%d", de->name[8]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[9] =

%d", de->name[9]);

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_fill_inode: de->name[10] =

%d", de->name[10]);

+

 if ((de->attr & ATTR_DIR) && !IS_FREE(de->name)) {

 inode->i_generation &= ~1;

 inode->i_mode = fat_make_mode(sbi, de->attr, S_IRWXUGO);

@@ -473,7 +563,6 @@ int fat_fill_inode(struct inode *inode, struct

msdos_dir_entry *de)

 if (error < 0)

 return error;

 MSDOS_I(inode)->mmu_private = inode->i_size;

-

 set_nlink(inode, fat_subdirs(inode));

 } else { /* not a directory */

 inode->i_generation |= 1;

@@ -488,7 +577,15 @@ int fat_fill_inode(struct inode *inode, struct

msdos_dir_entry *de)

 inode->i_fop = &fat_file_operations;

 inode->i_mapping->a_ops = &fat_aops;

 MSDOS_I(inode)->mmu_private = inode->i_size;

- }

 76

+ }

+

+ /* Set i_flgs in inode to include S_SEFT based on sb mount option */

+ if (sbi->options.seft) {

+ inode->i_flags |= S_SEFT;

+ } else {

+ inode->i_flags &= ~S_SEFT;

+ }

+

 if (de->attr & ATTR_SYS) {

 if (sbi->options.sys_immutable)

 inode->i_flags |= S_IMMUTABLE;

@@ -538,6 +635,7 @@ struct inode *fat_build_inode(struct super_block *sb,

 }

 inode->i_ino = iunique(sb, MSDOS_ROOT_INO);

 inode->i_version = 1;

+

 err = fat_fill_inode(inode, de);

 if (err) {

 iput(inode);

@@ -640,6 +738,7 @@ static struct kmem_cache *fat_inode_cachep;

 static struct inode *fat_alloc_inode(struct super_block *sb)

 {

 struct msdos_inode_info *ei;

+ fat_msg(sb, KERN_NOTICE, "SEFT: fat_alloc_inode\n");

 ei = kmem_cache_alloc(fat_inode_cachep, GFP_NOFS);

 if (!ei)

 return NULL;

@@ -656,6 +755,7 @@ static void fat_i_callback(struct rcu_head *head)

 static void fat_destroy_inode(struct inode *inode)

 {

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_destroy_inode\n");

 call_rcu(&inode->i_rcu, fat_i_callback);

 }

@@ -700,6 +800,8 @@ static int fat_remount(struct super_block *sb, int *flags,

char *data)

 struct msdos_sb_info *sbi = MSDOS_SB(sb);

 *flags |= MS_NODIRATIME | (sbi->options.isvfat ? 0 : MS_NOATIME);

+ fat_msg(sb, KERN_NOTICE, "SEFT: fat_remount\n");

+

 sync_filesystem(sb);

 /* make sure we update state on remount. */

@@ -710,6 +812,7 @@ static int fat_remount(struct super_block *sb, int *flags,

char *data)

 else

 fat_set_state(sb, 1, 1);

 }

+

 77

 return 0;

 }

@@ -793,21 +896,23 @@ retry:

 if (wait)

 err = sync_dirty_buffer(bh);

 brelse(bh);

+

 return err;

 }

 static int fat_write_inode(struct inode *inode, struct writeback_control *wbc)

 {

 int err;

+ fat_msg(inode->i_sb, KERN_NOTICE, "SEFT: fat_write_inode\n");

 if (inode->i_ino == MSDOS_FSINFO_INO) {

 struct super_block *sb = inode->i_sb;

-

 mutex_lock(&MSDOS_SB(sb)->s_lock);

 err = fat_clusters_flush(sb);

 mutex_unlock(&MSDOS_SB(sb)->s_lock);

- } else

+ } else {

 err = __fat_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);

+ }

 return err;

 }

@@ -935,6 +1040,7 @@ enum {

 Opt_obsolete, Opt_flush, Opt_tz_utc, Opt_rodir, Opt_err_cont,

 Opt_err_panic, Opt_err_ro, Opt_discard, Opt_nfs, Opt_time_offset,

 Opt_nfs_stale_rw, Opt_nfs_nostale_ro, Opt_err, Opt_dos1xfloppy,

+ Opt_seftenable,

 };

 static const match_table_t fat_tokens = {

@@ -1050,6 +1156,10 @@ static int parse_options(struct super_block *sb, char

*options, int is_vfat,

 opts->tz_set = 0;

 opts->nfs = 0;

 opts->errors = FAT_ERRORS_RO;

+#ifdef CONFIG_FS_SEFT

+ /* Turn on SEFT by default when mounting */

+ opts->seft = 1;

+#endif

 *debug = 0;

 if (!options)

@@ -1232,6 +1342,12 @@ static int parse_options(struct super_block *sb, char

*options, int is_vfat,

 opts->discard = 1;

 78

 break;

+ /* Uncomment to allow enabling SEFT via FAT mount options */

+ /*case Opt_seftenable:

+ opts->seft = 1;

+ break;

+ */

+

 /* obsolete mount options */

 case Opt_obsolete:

 fat_msg(sb, KERN_INFO, "\"%s\" option is obsolete, "

@@ -1497,6 +1613,8 @@ int fat_fill_super(struct super_block *sb, void *data, int

silent, int isvfat,

 long error;

 char buf[50];

+ fat_msg(sb, KERN_NOTICE, "SEFT: fat_fill_super");

+

 /*

 * GFP_KERNEL is ok here, because while we do hold the

 * supeblock lock, memory pressure can't call back into

@@ -1755,8 +1873,7 @@ int fat_fill_super(struct super_block *sb, void *data, int

silent, int isvfat,

 out_invalid:

 error = -EINVAL;

- if (!silent)

- fat_msg(sb, KERN_INFO, "Can't find a valid FAT filesystem");

+ fat_msg(sb, KERN_INFO, "Can't find a valid FAT filesystem");

 out_fail:

 if (fsinfo_inode)

@@ -1792,6 +1909,7 @@ static int writeback_inode(struct inode *inode)

 ret = sync_inode_metadata(inode, 0);

 if (!ret)

 ret = filemap_fdatawrite(inode->i_mapping);

+

 return ret;

 }

@@ -1806,6 +1924,7 @@ static int writeback_inode(struct inode *inode)

 int fat_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2)

 {

 int ret = 0;

+

 if (!MSDOS_SB(sb)->options.flush)

 return 0;

 if (i1)

@@ -1816,6 +1935,7 @@ int fat_flush_inodes(struct super_block *sb, struct inode

*i1, struct inode *i2)

 struct address_space *mapping = sb->s_bdev->bd_inode-

>i_mapping;

 79

 ret = filemap_flush(mapping);

 }

+

 return ret;

 }

 EXPORT_SYMBOL_GPL(fat_flush_inodes);

@@ -1824,6 +1944,8 @@ static int __init init_fat_fs(void)

 {

 int err;

+ printk(KERN_NOTICE "SEFT: init_fat_fs\n");

+

 err = fat_cache_init();

 if (err)

 return err;

@@ -1841,6 +1963,7 @@ failed:

 static void __exit exit_fat_fs(void)

 {

+ printk(KERN_NOTICE "SEFT: exit_fat_fs\n");

 fat_cache_destroy();

 fat_destroy_inodecache();

 }

diff --git a/fs/fat/misc.c b/fs/fat/misc.c

index c4589e9..77aa394 100644

--- a/fs/fat/misc.c

+++ b/fs/fat/misc.c

@@ -87,8 +87,8 @@ int fat_clusters_flush(struct super_block *sb)

 fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);

 mark_buffer_dirty(bh);

 }

- brelse(bh);

+ brelse(bh);

 return 0;

 }

@@ -111,8 +111,10 @@ int fat_chain_add(struct inode *inode, int new_dclus, int

nr_cluster)

 int fclus, dclus;

 ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);

- if (ret < 0)

+ if (ret < 0) {

 return ret;

+ }

+

 new_fclus = fclus + 1;

 last = dclus;

 }

@@ -128,8 +130,10 @@ int fat_chain_add(struct inode *inode, int new_dclus, int

nr_cluster)

 80

 ret = fat_ent_write(inode, &fatent, new_dclus, wait);

 fatent_brelse(&fatent);

 }

- if (ret < 0)

+

+ if (ret < 0) {

 return ret;

+ }

 /*

 * FIXME:Although we can add this cache, fat_cache_add() is

 * assuming to be called after linear search with fat_cache_id.

@@ -144,8 +148,9 @@ int fat_chain_add(struct inode *inode, int new_dclus, int

nr_cluster)

 */

 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {

 ret = fat_sync_inode(inode);

- if (ret)

+ if (ret) {

 return ret;

+ }

 } else

 mark_inode_dirty(inode);

 }

@@ -155,6 +160,7 @@ int fat_chain_add(struct inode *inode, int new_dclus, int

nr_cluster)

 (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));

 fat_cache_inval_inode(inode);

 }

+

 inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);

 return 0;

diff --git a/fs/fat/namei_msdos.c b/fs/fat/namei_msdos.c

index b7e2b33..f31e9c83 100644

--- a/fs/fat/namei_msdos.c

+++ b/fs/fat/namei_msdos.c

@@ -137,6 +137,7 @@ static int msdos_find(struct inode *dir, const unsigned char

*name, int len,

 if (err)

 brelse(sinfo->bh);

 }

+

 return err;

 }

@@ -218,6 +219,7 @@ static struct dentry *msdos_lookup(struct inode *dir, struct

dentry *dentry,

 inode = ERR_PTR(err);

 }

 mutex_unlock(&MSDOS_SB(sb)->s_lock);

+

 return d_splice_alias(inode, dentry);

 81

 }

@@ -250,10 +252,11 @@ static int msdos_add_entry(struct inode *dir, const

unsigned char *name,

 return err;

 dir->i_ctime = dir->i_mtime = *ts;

- if (IS_DIRSYNC(dir))

+ if (IS_DIRSYNC(dir)) {

 (void)fat_sync_inode(dir);

- else

- mark_inode_dirty(dir);

+ } else {

+ mark_inode_dirty(dir);

+ }

 return 0;

 }

@@ -287,6 +290,7 @@ static int msdos_create(struct inode *dir, struct dentry

*dentry, umode_t mode,

 err = msdos_add_entry(dir, msdos_name, 0, is_hid, 0, &ts, &sinfo);

 if (err)

 goto out;

+

 inode = fat_build_inode(sb, sinfo.de, sinfo.i_pos);

 brelse(sinfo.bh);

 if (IS_ERR(inode)) {

@@ -299,8 +303,10 @@ static int msdos_create(struct inode *dir, struct dentry

*dentry, umode_t mode,

 d_instantiate(dentry, inode);

 out:

 mutex_unlock(&MSDOS_SB(sb)->s_lock);

+

 if (!err)

 err = fat_flush_inodes(sb, dir, inode);

+

 return err;

 }

@@ -647,6 +653,7 @@ static void setup(struct super_block *sb)

 static int msdos_fill_super(struct super_block *sb, void *data, int silent)

 {

+ // Super block not filled yet

 return fat_fill_super(sb, data, silent, 0, setup);

 }

@@ -654,6 +661,7 @@ static struct dentry *msdos_mount(struct file_system_type

*fs_type,

 int flags, const char *dev_name,

 void *data)

 {

 82

+ // Don't have the suber block yet

 return mount_bdev(fs_type, flags, dev_name, data, msdos_fill_super);

 }

diff --git a/fs/fhandle.c b/fs/fhandle.c

index d59712d..ccb3c9f 100644

--- a/fs/fhandle.c

+++ b/fs/fhandle.c

@@ -26,8 +26,9 @@ static long do_sys_name_to_handle(struct path *path,

 * support decoding of the file handle

 */

 if (!path->dentry->d_sb->s_export_op ||

- !path->dentry->d_sb->s_export_op->fh_to_dentry)

+ !path->dentry->d_sb->s_export_op->fh_to_dentry) {

 return -EOPNOTSUPP;

+ }

 if (copy_from_user(&f_handle, ufh, sizeof(struct file_handle)))

 return -EFAULT;

diff --git a/fs/inode.c b/fs/inode.c

index 78a17b8..ad973d3 100644

--- a/fs/inode.c

+++ b/fs/inode.c

@@ -207,6 +207,7 @@ static struct inode *alloc_inode(struct super_block *sb)

 inode->i_sb->s_op->destroy_inode(inode);

 else

 kmem_cache_free(inode_cachep, inode);

+

 return NULL;

 }

diff --git a/fs/namei.c b/fs/namei.c

index 33e9495..03dfcb2 100644

--- a/fs/namei.c

+++ b/fs/namei.c

@@ -2660,9 +2660,11 @@ int vfs_create(struct inode *dir, struct dentry *dentry,

umode_t mode,

 error = security_inode_create(dir, dentry, mode);

 if (error)

 return error;

+

 error = dir->i_op->create(dir, dentry, mode, want_excl);

 if (!error)

 fsnotify_create(dir, dentry);

+

 return error;

 }

 EXPORT_SYMBOL(vfs_create);

@@ -2999,6 +3001,7 @@ static int lookup_open(struct nameidata *nd, struct path

*path,

 error = security_path_mknod(&nd->path, dentry, mode, 0);

 if (error)

 83

 goto out_dput;

+

 error = vfs_create(dir->d_inode, dentry, mode,

 nd->flags & LOOKUP_EXCL);

 if (error)

diff --git a/fs/seft.c b/fs/seft.c

new file mode 100644

index 0000000..7e8c0da

--- /dev/null

+++ b/fs/seft.c

@@ -0,0 +1,841 @@

+/*

+ * fs/seft.c - SCM Extension for FAT filesystem code

+ * Copyright (c) 2016

+ * Author: Ray Robles <ray.c.robles@gmail.com>

+ * File contents taken from dax.c

+ * - Author: Matthew Wilcox <matthew.r.wilcox@intel.com>

+ * - Author: Ross Zwisler <ross.zwisler@linux.intel.com>

+ *

+ * This program is free software; you can redistribute it and/or modify it

+ * under the terms and conditions of the GNU General Public License,

+ * version 2, as published by the Free Software Foundation.

+ *

+ * This program is distributed in the hope it will be useful, but WITHOUT

+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

+ * more details.

+ */

+

+#include <linux/atomic.h>

+#include <linux/blkdev.h>

+#include <linux/buffer_head.h>

+#include <linux/seft.h>

+#include <linux/fs.h>

+#include <linux/genhd.h>

+#include <linux/highmem.h>

+#include <linux/memcontrol.h>

+#include <linux/mm.h>

+#include <linux/mutex.h>

+#include <linux/sched.h>

+#include <linux/uio.h>

+#include <linux/vmstat.h>

+

+int seft_clear_blocks(struct inode *inode, sector_t block, long size)

+{

+ struct block_device *bdev = inode->i_sb->s_bdev;

+ sector_t sector = block << (inode->i_blkbits - 9);

+

+ might_sleep();

+ do {

+ void *addr;

+ unsigned long pfn;

 84

+ long count;

+

+ count = bdev_direct_access(bdev, sector, &addr, &pfn, size);

+

+ if (count < 0)

+ return count;

+

+ BUG_ON(size < count);

+

+ while (count > 0) {

+ unsigned pgsz = PAGE_SIZE - offset_in_page(addr);

+

+ if (pgsz > count) {

+ pgsz = count;

+ }

+

+ if (pgsz < PAGE_SIZE) {

+ memset(addr, 0, pgsz);

+ } else {

+ clear_page(addr);

+ }

+

+ addr += pgsz;

+ size -= pgsz;

+ count -= pgsz;

+ BUG_ON(pgsz & 511);

+ sector += pgsz / 512;

+ cond_resched();

+ }

+ } while (size);

+

+ return 0;

+}

+EXPORT_SYMBOL_GPL(seft_clear_blocks);

+

+static long seft_get_addr(struct buffer_head *bh, void **addr, unsigned blkbits)

+{

+ unsigned long pfn;

+ sector_t sector = bh->b_blocknr << (blkbits - 9);

+ return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);

+}

+

+static void seft_new_buf(void *addr, unsigned size, unsigned first, loff_t pos,

+ loff_t end)

+{

+ loff_t final = end - pos + first; /* The final byte of the buffer */

+

+ if (first > 0)

+ memset(addr, 0, first);

+ if (final < size)

+ memset(addr + final, 0, size - final);

+}

 85

+

+static bool buffer_written(struct buffer_head *bh)

+{

+ return buffer_mapped(bh) && !buffer_unwritten(bh);

+}

+

+/*

+ * When FAT encounters a hole, it returns without modifying the buffer_head

+ * which means that we can't trust b_size. To cope with this, we set b_state

+ * to 0 before calling get_block and, if any bit is set, we know we can trust

+ * b_size. Unfortunate, really, since FAT knows precisely how long a hole is

+ * and would save us time calling get_block repeatedly.

+ */

+static bool buffer_size_valid(struct buffer_head *bh)

+{

+ return bh->b_state != 0;

+}

+

+static ssize_t seft_io(struct inode *inode, struct iov_iter *iter,

+ loff_t start, loff_t end, get_block_t get_block,

+ struct buffer_head *bh)

+{

+ ssize_t retval = 0;

+ loff_t pos = start;

+ loff_t max = start;

+ loff_t bh_max = start;

+ void *addr;

+ bool hole = false;

+

+ if (iov_iter_rw(iter) != WRITE)

+ end = min(end, i_size_read(inode));

+

+ while (pos < end) {

+ size_t len;

+ if (pos == max) {

+ unsigned blkbits = inode->i_blkbits;

+ long page = pos >> PAGE_SHIFT;

+ sector_t block = page << (PAGE_SHIFT - blkbits);

+ unsigned first = pos - (block << blkbits);

+ long size;

+

+ if (pos == bh_max) {

+ bh->b_size = PAGE_ALIGN(end - pos);

+ bh->b_state = 0;

+

+ /*

+ * Calling get_block will call the following functions:

+ *

+ * - fat_get_block()

+ * - __fat_get_block()

+ * - fat_bmap() ...first time with mmu_private = 0

+ * - fat_add_cluster()

 86

+ * - fat_alloc_cluster()

+ * - fat_chain_add()

+ * - investigate how return values of fat_chain_add make

mmu_private = 0x800

+ * - for seft io, we need this value to always be 0x1000

(4k)

+ * - <then mmu_private gets updated to 0x800 (for the 2k

cluster... 4 blocks)...>

+ * - fat_bmap() ...second time with mmu_private = 0x800

+ * - fat_bmap_cluster()

+ * - fat_get_cluster()

+ * - fat_clus_to_blknr()

+ * - <*phys and *mapped blocks get updated...>

+ *

+ * bh->b_size = (*mapped_blocks * 512) = 2K (1

cluster)... need to make this 2 clusters

+ * bh->b_blocknr = (*phys) = 0x12x or 0x13x

+ */

+ retval = get_block(inode, block, bh, iov_iter_rw(iter) ==

WRITE);

+ if (retval){

+ break;

+ }

+

+ if (!buffer_size_valid(bh)) {

+ bh->b_size = 1 << blkbits;

+ }

+

+ bh_max = pos - first + bh->b_size;

+ } else {

+ unsigned done = bh->b_size - (bh_max - (pos - first));

+ bh->b_blocknr += done >> blkbits;

+ bh->b_size -= done;

+ }

+

+ hole = iov_iter_rw(iter) != WRITE && !buffer_written(bh);

+ if (hole) {

+ addr = NULL;

+ size = bh->b_size - first;

+ } else {

+ retval = seft_get_addr(bh, &addr, blkbits);

+ if (retval < 0) {

+ break;

+ }

+

+ if (buffer_unwritten(bh) || buffer_new(bh)) {

+ seft_new_buf(addr, retval, first, pos, end);

+ }

+

+ addr += first;

+ size = retval - first;

+ }

 87

+

+ max = min(pos + size, end);

+ } else {

+ printk(KERN_NOTICE "SEFT: seft_io: (pos != max)... no handling -

while loop\n");

+ }

+

+ if (iov_iter_rw(iter) == WRITE) {

+ printk(KERN_NOTICE "SEFT: seft_io: (iov_iter_rw(iter) == WRITE)

********** while loop\n");

+ len = copy_from_iter(addr, max - pos, iter);

+ } else if (!hole) {

+ printk(KERN_NOTICE "SEFT: seft_io: (!hole) 2 ********** while

loop\n");

+ len = copy_to_iter(addr, max - pos, iter);

+ } else {

+ printk(KERN_NOTICE "SEFT: seft_io: (READ and hole == TRUE)

********** while loop\n");

+ len = iov_iter_zero(max - pos, iter);

+ }

+

+ if (!len) {

+ break;

+ }

+

+ pos += len;

+ addr += len;

+ } /* end while (pos < end) */

+

+ return (pos == start) ? retval : pos - start;

+}

+

+/**

+ * seft_do_io - Perform I/O to a SEFT file

+ * @iocb: The control block for this I/O

+ * @inode: The file which the I/O is directed at

+ * @iter: The addresses to do I/O from or to

+ * @pos: The file offset where the I/O starts

+ * @get_block: The filesystem method used to translate file offsets to blocks

+ * @end_io: A filesystem callback for I/O completion

+ * @flags: See below

+ *

+ * SEFT

+ *

+ * This function uses the same locking scheme as do_blockdev_direct_IO:

+ * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the

+ * caller for writes. For reads, we take and release the i_mutex ourselves.

+ * If DIO_LOCKING is not set, the filesystem takes care of its own locking.

+ * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O

+ * is in progress.

+ */

+ssize_t seft_do_io(struct kiocb *iocb, struct inode *inode,

 88

+ struct iov_iter *iter, loff_t pos, get_block_t get_block,

+ dio_iodone_t end_io, int flags)

+{

+ struct buffer_head bh;

+ ssize_t retval = -EINVAL;

+ loff_t end = pos + iov_iter_count(iter);

+

+ memset(&bh, 0, sizeof(bh));

+

+ if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {

+ struct address_space *mapping = inode->i_mapping;

+ mutex_lock(&inode->i_mutex);

+ retval = filemap_write_and_wait_range(mapping, pos, end - 1);

+ if (retval) {

+ mutex_unlock(&inode->i_mutex);

+ goto out;

+ }

+ }

+

+ /* Protects against truncate */

+ if (!(flags & DIO_SKIP_DIO_COUNT))

+ inode_dio_begin(inode);

+

+ retval = seft_io(inode, iter, pos, end, get_block, &bh);

+

+ if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)

+ mutex_unlock(&inode->i_mutex);

+

+ if ((retval > 0) && end_io) {

+ end_io(iocb, pos, retval, bh.b_private);

+ }

+

+ if (!(flags & DIO_SKIP_DIO_COUNT)) {

+ inode_dio_end(inode);

+ }

+ out:

+ return retval;

+}

+EXPORT_SYMBOL_GPL(seft_do_io);

+

+/*

+ * The user has performed a load from a hole in the file. Allocating

+ * a new page in the file would cause excessive storage usage for

+ * workloads with sparse files. We allocate a page cache page instead.

+ * We'll kick it out of the page cache if it's ever written to,

+ * otherwise it will simply fall out of the page cache under memory

+ * pressure without ever having been dirtied.

+ */

+static int seft_load_hole(struct address_space *mapping, struct page *page,

+ struct vm_fault *vmf)

+{

+ unsigned long size;

 89

+ struct inode *inode = mapping->host;

+

+ if (!page)

+ page = find_or_create_page(mapping, vmf->pgoff,

+ GFP_KERNEL | __GFP_ZERO);

+

+ if (!page)

+ return VM_FAULT_OOM;

+

+ /* Recheck i_size under page lock to avoid truncate race */

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;

+ if (vmf->pgoff >= size) {

+ unlock_page(page);

+ page_cache_release(page);

+ return VM_FAULT_SIGBUS;

+ }

+

+ vmf->page = page;

+ return VM_FAULT_LOCKED;

+}

+

+static int copy_user_bh(struct page *to, struct buffer_head *bh,

+ unsigned blkbits, unsigned long vaddr)

+{

+ void *vfrom;

+ void *vto;

+

+ if (seft_get_addr(bh, &vfrom, blkbits) < 0)

+ return -EIO;

+

+ vto = kmap_atomic(to);

+ copy_user_page(vto, (void __force *)vfrom, vaddr, to);

+ kunmap_atomic(vto);

+ return 0;

+}

+

+static int seft_insert_mapping(struct inode *inode, struct buffer_head *bh,

+ struct vm_area_struct *vma, struct vm_fault *vmf)

+{

+ struct address_space *mapping = inode->i_mapping;

+ sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);

+ unsigned long vaddr = (unsigned long)vmf->virtual_address;

+ //void __pmem *addr;

+ void *addr;

+ unsigned long pfn;

+ pgoff_t size;

+ int error;

+

+ i_mmap_lock_read(mapping);

+

+ /*

+ * Check truncate didn't happen while we were allocating a block.

 90

+ * If it did, this block may or may not be still allocated to the

+ * file. We can't tell the filesystem to free it because we can't

+ * take i_mutex here. In the worst case, the file still has blocks

+ * allocated past the end of the file.

+ */

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;

+ if (unlikely(vmf->pgoff >= size)) {

+ error = -EIO;

+ goto out;

+ }

+

+ error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);

+ if (error < 0)

+ goto out;

+ if (error < PAGE_SIZE) {

+ error = -EIO;

+ goto out;

+ }

+

+ if (buffer_unwritten(bh) || buffer_new(bh)) {

+ //clear_pmem(addr, PAGE_SIZE);

+ //wmb_pmem();

+ clear_page(addr);

+ }

+

+ error = vm_insert_mixed(vma, vaddr, pfn);

+

+ out:

+ i_mmap_unlock_read(mapping);

+

+ return error;

+}

+

+/**

+ * __seft_fault - handle a page fault on a SEFT file

+ * @vma: The virtual memory area where the fault occurred

+ * @vmf: The description of the fault

+ * @get_block: The filesystem method used to translate file offsets to blocks

+ * @complete_unwritten: The filesystem method used to convert unwritten blocks

+ * to written so the data written to them is exposed. This is required for

+ * required by write faults for filesystems that will return unwritten

+ * extent mappings from @get_block, but it is optional for reads as

+ * seft_insert_mapping() will always zero unwritten blocks.

+ * If the fs does not support unwritten extents, then it

+ * should pass NULL.

+ *

+ * When a page fault occurs, filesystems may call this helper in their

+ * fault handler for SEFT files. __seft_fault() assumes the

+ * caller has done all the necessary locking for the page fault

+ * to proceed successfully.

+ */

+int __seft_fault(struct vm_area_struct *vma, struct vm_fault *vmf,

 91

+ get_block_t get_block, seft_iodone_t complete_unwritten)

+{

+ struct file *file = vma->vm_file;

+ struct address_space *mapping = file->f_mapping;

+ struct inode *inode = mapping->host;

+ struct page *page;

+ struct buffer_head bh;

+ unsigned long vaddr = (unsigned long)vmf->virtual_address;

+ unsigned blkbits = inode->i_blkbits;

+ sector_t block;

+ pgoff_t size;

+ int error;

+ int major = 0;

+

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;

+ if (vmf->pgoff >= size)

+ return VM_FAULT_SIGBUS;

+

+ memset(&bh, 0, sizeof(bh));

+ block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);

+ bh.b_size = PAGE_SIZE;

+

+ repeat:

+ page = find_get_page(mapping, vmf->pgoff);

+ if (page) {

+ if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {

+ page_cache_release(page);

+ return VM_FAULT_RETRY;

+ }

+ if (unlikely(page->mapping != mapping)) {

+ unlock_page(page);

+ page_cache_release(page);

+ goto repeat;

+ }

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;

+ if (unlikely(vmf->pgoff >= size)) {

+ /*

+ * We have a struct page covering a hole in the file

+ * from a read fault and we've raced with a truncate

+ */

+ error = -EIO;

+ goto unlock_page;

+ }

+ }

+

+ error = get_block(inode, block, &bh, 0);

+ if (!error && (bh.b_size < PAGE_SIZE))

+ error = -EIO; /* fs corruption? */

+ if (error)

+ goto unlock_page;

+

+ if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {

 92

+ if (vmf->flags & FAULT_FLAG_WRITE) {

+ error = get_block(inode, block, &bh, 1);

+ count_vm_event(PGMAJFAULT);

+ mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);

+ major = VM_FAULT_MAJOR;

+ if (!error && (bh.b_size < PAGE_SIZE))

+ error = -EIO;

+ if (error)

+ goto unlock_page;

+ } else {

+ return seft_load_hole(mapping, page, vmf);

+ }

+ }

+

+ if (vmf->cow_page) {

+ struct page *new_page = vmf->cow_page;

+ if (buffer_written(&bh))

+ error = copy_user_bh(new_page, &bh, blkbits, vaddr);

+ else

+ clear_user_highpage(new_page, vaddr);

+ if (error)

+ goto unlock_page;

+ vmf->page = page;

+ if (!page) {

+ i_mmap_lock_read(mapping);

+ /* Check we didn't race with truncate */

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >>

+ PAGE_SHIFT;

+ if (vmf->pgoff >= size) {

+ i_mmap_unlock_read(mapping);

+ error = -EIO;

+ goto out;

+ }

+ }

+ return VM_FAULT_LOCKED;

+ }

+

+ /* Check we didn't race with a read fault installing a new page */

+ if (!page && major)

+ page = find_lock_page(mapping, vmf->pgoff);

+

+ if (page) {

+ unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,

+ PAGE_CACHE_SIZE, 0);

+ delete_from_page_cache(page);

+ unlock_page(page);

+ page_cache_release(page);

+ }

+

+ /*

+ * If we successfully insert the new mapping over an unwritten extent,

+ * we need to ensure we convert the unwritten extent. If there is an

 93

+ * error inserting the mapping, the filesystem needs to leave it as

+ * unwritten to prevent exposure of the stale underlying data to

+ * userspace, but we still need to call the completion function so

+ * the private resources on the mapping buffer can be released. We

+ * indicate what the callback should do via the uptodate variable, same

+ * as for normal BH based IO completions.

+ */

+ error = seft_insert_mapping(inode, &bh, vma, vmf);

+ if (buffer_unwritten(&bh)) {

+ if (complete_unwritten)

+ complete_unwritten(&bh, !error);

+ else

+ WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));

+ }

+

+ out:

+ if (error == -ENOMEM)

+ return VM_FAULT_OOM | major;

+ /* -EBUSY is fine, somebody else faulted on the same PTE */

+ if ((error < 0) && (error != -EBUSY))

+ return VM_FAULT_SIGBUS | major;

+ return VM_FAULT_NOPAGE | major;

+

+ unlock_page:

+ if (page) {

+ unlock_page(page);

+ page_cache_release(page);

+ }

+ goto out;

+}

+EXPORT_SYMBOL_GPL(__seft_fault);

+

+/**

+ * sef_fault - handle a page fault on a SEFT file

+ * @vma: The virtual memory area where the fault occurred

+ * @vmf: The description of the fault

+ * @get_block: The filesystem method used to translate file offsets to blocks

+ *

+ * When a page fault occurs, filesystems may call this helper in their

+ * fault handler for SEFT files.

+ */

+int seft_fault(struct vm_area_struct *vma, struct vm_fault *vmf,

+ get_block_t get_block, seft_iodone_t complete_unwritten)

+{

+ int result;

+ struct super_block *sb = file_inode(vma->vm_file)->i_sb;

+

+ if (vmf->flags & FAULT_FLAG_WRITE) {

+ sb_start_pagefault(sb);

+ file_update_time(vma->vm_file);

+ }

+ result = __seft_fault(vma, vmf, get_block, complete_unwritten);

 94

+ if (vmf->flags & FAULT_FLAG_WRITE)

+ sb_end_pagefault(sb);

+

+ return result;

+}

+EXPORT_SYMBOL_GPL(seft_fault);

+

+

+//#if 0

+#if 1

+

+#ifdef CONFIG_TRANSPARENT_HUGEPAGE

+/*

+ * The 'colour' (ie low bits) within a PMD of a page offset. This comes up

+ * more often than one might expect in the below function.

+ */

+#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)

+

+int __seft_pmd_fault(struct vm_area_struct *vma, unsigned long address,

+ pmd_t *pmd, unsigned int flags, get_block_t get_block,

+ seft_iodone_t complete_unwritten)

+{

+ struct file *file = vma->vm_file;

+ struct address_space *mapping = file->f_mapping;

+ struct inode *inode = mapping->host;

+ struct buffer_head bh;

+ unsigned blkbits = inode->i_blkbits;

+ unsigned long pmd_addr = address & PMD_MASK;

+ bool write = flags & FAULT_FLAG_WRITE;

+ long length;

+ //void __pmem *kaddr;

+ void *kaddr;

+ pgoff_t size, pgoff;

+ sector_t block, sector;

+ unsigned long pfn;

+ int result = 0;

+

+ /* Fall back to PTEs if we're going to COW */

+ if (write && !(vma->vm_flags & VM_SHARED))

+ return VM_FAULT_FALLBACK;

+

+ /* If the PMD would extend outside the VMA */

+ if (pmd_addr < vma->vm_start)

+ return VM_FAULT_FALLBACK;

+

+ if ((pmd_addr + PMD_SIZE) > vma->vm_end)

+ return VM_FAULT_FALLBACK;

+

+ pgoff = linear_page_index(vma, pmd_addr);

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;

+ if (pgoff >= size)

+ return VM_FAULT_SIGBUS;

 95

+

+ /* If the PMD would cover blocks out of the file */

+ if ((pgoff | PG_PMD_COLOUR) >= size)

+ return VM_FAULT_FALLBACK;

+

+ memset(&bh, 0, sizeof(bh));

+ block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);

+

+ bh.b_size = PMD_SIZE;

+ length = get_block(inode, block, &bh, write);

+ if (length)

+ return VM_FAULT_SIGBUS;

+

+ i_mmap_lock_read(mapping);

+

+ /*

+ * If the filesystem isn't willing to tell us the length of a hole,

+ * just fall back to PTEs. Calling get_block 512 times in a loop

+ * would be silly.

+ */

+ if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE)

+ goto fallback;

+

+ /*

+ * If we allocated new storage, make sure no process has any

+ * zero pages covering this hole

+ */

+ if (buffer_new(&bh)) {

+ i_mmap_unlock_read(mapping);

+ unmap_mapping_range(mapping, pgoff << PAGE_SHIFT, PMD_SIZE,

0);

+ i_mmap_lock_read(mapping);

+ }

+

+ /*

+ * If a truncate happened while we were allocating blocks, we may

+ * leave blocks allocated to the file that are beyond EOF. We can't

+ * take i_mutex here, so just leave them hanging; they'll be freed

+ * when the file is deleted.

+ */

+ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;

+ if (pgoff >= size) {

+ result = VM_FAULT_SIGBUS;

+ goto out;

+ }

+

+ if ((pgoff | PG_PMD_COLOUR) >= size)

+ goto fallback;

+

+ if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {

+ spinlock_t *ptl;

+ pmd_t entry;

 96

+ struct page *zero_page = get_huge_zero_page();

+

+ if (unlikely(!zero_page))

+ goto fallback;

+

+ ptl = pmd_lock(vma->vm_mm, pmd);

+ if (!pmd_none(*pmd)) {

+ spin_unlock(ptl);

+ goto fallback;

+ }

+

+ entry = mk_pmd(zero_page, vma->vm_page_prot);

+ entry = pmd_mkhuge(entry);

+ set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);

+ result = VM_FAULT_NOPAGE;

+ spin_unlock(ptl);

+ } else {

+ sector = bh.b_blocknr << (blkbits - 9);

+ length = bdev_direct_access(bh.b_bdev, sector, &kaddr, &pfn,

+ bh.b_size);

+ if (length < 0) {

+ result = VM_FAULT_SIGBUS;

+ goto out;

+ }

+

+ if ((length < PMD_SIZE) || (pfn & PG_PMD_COLOUR))

+ goto fallback;

+

+ if (buffer_unwritten(&bh) || buffer_new(&bh)) {

+ int i;

+ for (i = 0; i < PTRS_PER_PMD; i++) {

+ //clear_pmem(kaddr + i * PAGE_SIZE, PAGE_SIZE);

+ //clear_pages(kaddr + i * PAGE_SIZE);

+ clear_page(kaddr + i * PAGE_SIZE);

+ }

+

+ //wmb_pmem();

+ count_vm_event(PGMAJFAULT);

+ mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);

+ result |= VM_FAULT_MAJOR;

+ }

+

+ result |= vmf_insert_pfn_pmd(vma, address, pmd, pfn, write);

+ }

+

+out:

+ i_mmap_unlock_read(mapping);

+

+ if (buffer_unwritten(&bh))

+ complete_unwritten(&bh, !(result & VM_FAULT_ERROR));

+

+ return result;

 97

+

+fallback:

+ count_vm_event(THP_FAULT_FALLBACK);

+ result = VM_FAULT_FALLBACK;

+ goto out;

+}

+EXPORT_SYMBOL_GPL(__seft_pmd_fault);

+

+/**

+ * seft_pmd_fault - handle a PMD fault on a seft file

+ * @vma: The virtual memory area where the fault occurred

+ * @vmf: The description of the fault

+ * @get_block: The filesystem method used to translate file offsets to blocks

+ *

+ * When a page fault occurs, filesystems may call this helper in their

+ * pmd_fault handler for SEFT files.

+ */

+int seft_pmd_fault(struct vm_area_struct *vma, unsigned long address,

+ pmd_t *pmd, unsigned int flags, get_block_t get_block,

+ seft_iodone_t complete_unwritten)

+{

+ int result;

+ struct super_block *sb = file_inode(vma->vm_file)->i_sb;

+

+ if (flags & FAULT_FLAG_WRITE) {

+ sb_start_pagefault(sb);

+ file_update_time(vma->vm_file);

+ }

+

+ result = __seft_pmd_fault(vma, address, pmd, flags, get_block,

complete_unwritten);

+ if (flags & FAULT_FLAG_WRITE)

+ sb_end_pagefault(sb);

+

+ return result;

+}

+EXPORT_SYMBOL_GPL(seft_pmd_fault);

+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

+

+/**

+ * seft_pfn_mkwrite - handle first write to DAX page

+ * @vma: The virtual memory area where the fault occurred

+ * @vmf: The description of the fault

+ *

+ */

+int seft_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)

+{

+ struct super_block *sb = file_inode(vma->vm_file)->i_sb;

+

+ sb_start_pagefault(sb);

+ file_update_time(vma->vm_file);

+ sb_end_pagefault(sb);

 98

+

+ return VM_FAULT_NOPAGE;

+}

+EXPORT_SYMBOL_GPL(seft_pfn_mkwrite);

+#endif

+

+/**

+ * seft_zero_page_range - zero a range within a page of a SEFT

+ * file

+ * @inode: The file being truncated

+ * @from: The file offset that is being truncated to

+ * @length: The number of bytes to zero

+ * @get_block: The filesystem method used to translate file offsets to blocks

+ *

+ * This function can be called by a filesystem when it is zeroing part of a

+ * page in a SEFT file. This is intended for hole-punch

+ * operations. If you are truncating a file, the helper function

+ * seft_truncate_page() may be more convenient.

+ *

+ * We work in terms of PAGE_CACHE_SIZE here for commonality with

+ * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem

+ * took care of disposing of the unnecessary blocks. Even if the filesystem

+ * block size is smaller than PAGE_SIZE, we have to zero the rest of the page

+ * since the file might be mmapped.

+ */

+int seft_zero_page_range(struct inode *inode, loff_t from, unsigned length,

+ get_block_t get_block)

+{

+ struct buffer_head bh;

+ pgoff_t index = from >> PAGE_CACHE_SHIFT;

+ unsigned offset = from & (PAGE_CACHE_SIZE-1);

+ int err;

+

+ /* Block boundary? Nothing to do */

+ if (!length)

+ return 0;

+

+ BUG_ON((offset + length) > PAGE_CACHE_SIZE);

+

+ memset(&bh, 0, sizeof(bh));

+ bh.b_size = PAGE_CACHE_SIZE;

+ err = get_block(inode, index, &bh, 0);

+ if (err < 0)

+ return err;

+ if (buffer_written(&bh)) {

+ //void __pmem *addr;

+ void *addr;

+ err = seft_get_addr(&bh, &addr, inode->i_blkbits);

+ if (err < 0)

+ return err;

+

+ clear_page(addr + offset);

 99

+ //clear_pmem(addr + offset, length);

+ //wmb_pmem();

+ }

+

+ return 0;

+}

+EXPORT_SYMBOL_GPL(seft_zero_page_range);

+

+/**

+ * seft_truncate_page - handle a partial page being truncated in

+ * a SEFT file

+ * @inode: The file being truncated

+ * @from: The file offset that is being truncated to

+ * @get_block: The filesystem method used to translate file offsets to blocks

+ *

+ * Similar to block_truncate_page(), this function can be called by a

+ * filesystem when it is truncating a SEFT file to handle the

+ * partial page.

+ *

+ * We work in terms of PAGE_CACHE_SIZE here for commonality with

+ * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem

+ * took care of disposing of the unnecessary blocks. Even if the filesystem

+ * block size is smaller than PAGE_SIZE, we have to zero the rest of the page

+ * since the file might be mmapped.

+ */

+int seft_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)

+{

+ unsigned length = PAGE_CACHE_ALIGN(from) - from;

+ return seft_zero_page_range(inode, from, length, get_block);

+}

+EXPORT_SYMBOL_GPL(seft_truncate_page);

diff --git a/fs/super.c b/fs/super.c

index 954aeb8..ae45449 100644

--- a/fs/super.c

+++ b/fs/super.c

@@ -970,6 +970,8 @@ struct dentry *mount_bdev(struct file_system_type

*fs_type,

 fmode_t mode = FMODE_READ | FMODE_EXCL;

 int error = 0;

+ printk("mount_bdev: entering");

+

 if (!(flags & MS_RDONLY))

 mode |= FMODE_WRITE;

diff --git a/include/linux/fs.h b/include/linux/fs.h

index 72d8a84..6525c3b 100644

--- a/include/linux/fs.h

+++ b/include/linux/fs.h

@@ -72,6 +72,7 @@ typedef int (get_block_t)(struct inode *inode, sector_t iblock,

 typedef void (dio_iodone_t)(struct kiocb *iocb, loff_t offset,

 ssize_t bytes, void *private);

 100

 typedef void (dax_iodone_t)(struct buffer_head *bh_map, int uptodate);

+typedef void (seft_iodone_t)(struct buffer_head *bh_map, int uptodate);

 #define MAY_EXEC 0x00000001

 #define MAY_WRITE 0x00000002

@@ -1751,6 +1752,11 @@ struct super_operations {

 #else

 #define S_DAX 0 /* Make all the DAX code disappear */

 #endif

+#ifdef CONFIG_FS_SEFT

+#define S_SEFT 16384 /* SCM Extensions for FAT... no page cache */

+#else

+#define S_SEFT 0 /* Disable SEFT */

+#endif

 /*

 * Note that nosuid etc flags are inode-specific: setting some file-system

@@ -1789,6 +1795,7 @@ struct super_operations {

 #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)

 #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)

 #define IS_DAX(inode) ((inode)->i_flags & S_DAX)

+#define IS_SEFT(inode) ((inode)->i_flags & S_SEFT)

 #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \

 (inode)->i_rdev == WHITEOUT_DEV)

@@ -2867,7 +2874,10 @@ extern void replace_mount_options(struct super_block

*sb, char *options);

 static inline bool io_is_direct(struct file *filp)

 {

- return (filp->f_flags & O_DIRECT) || IS_DAX(file_inode(filp));

+ //return (filp->f_flags & O_DIRECT) || IS_DAX(file_inode(filp));

+ return (filp->f_flags & O_DIRECT) ||

+ IS_DAX(file_inode(filp)) ||

+ IS_SEFT(file_inode(filp));

 }

 static inline int iocb_flags(struct file *file)

diff --git a/include/linux/seft.h b/include/linux/seft.h

new file mode 100644

index 0000000..2eae65b

--- /dev/null

+++ b/include/linux/seft.h

@@ -0,0 +1,46 @@

+#ifndef _LINUX_SEFT_H

+#define _LINUX_SEFT_H

+

+#include <linux/fs.h>

+#include <linux/mm.h>

+#include <asm/pgtable.h>

+

+ssize_t seft_do_io(struct kiocb *iocb, struct inode *inode,

 101

+ struct iov_iter *iter, loff_t pos, get_block_t get_block,

+ dio_iodone_t end_io, int flags);

+int seft_clear_blocks(struct inode *, sector_t block, long size);

+int seft_fault(struct vm_area_struct *vma, struct vm_fault *vmf,

+ get_block_t get_block, seft_iodone_t complete_unwritten);

+int __seft_fault(struct vm_area_struct *vma, struct vm_fault *vmf,

+ get_block_t get_block, seft_iodone_t complete_unwritten);

+

+#define seft_mkwrite(vma, vmf, gb, iod) seft_fault(vma, vmf, gb, iod)

+#define __seft_mkwrite(vma, vmf, gb, iod) __seft_fault(vma, vmf, gb, iod)

+

+int seft_zero_page_range(struct inode *, loff_t from, unsigned len, get_block_t);

+int seft_truncate_page(struct inode *, loff_t from, get_block_t);

+

+#ifdef CONFIG_TRANSPARENT_HUGEPAGE

+int seft_pmd_fault(struct vm_area_struct *, unsigned long addr, pmd_t *,

+ unsigned int flags, get_block_t, seft_iodone_t);

+int __seft_pmd_fault(struct vm_area_struct *, unsigned long addr, pmd_t *,

+ unsigned int flags, get_block_t, seft_iodone_t);

+#else

+static inline int seft_pmd_fault(struct vm_area_struct *vma, unsigned long addr,

+ pmd_t *pmd, unsigned int flags, get_block_t gb,

+ seft_iodone_t di)

+{

+ return VM_FAULT_FALLBACK;

+}

+#define __seft_pmd_fault seft_pmd_fault

+#endif

+

+int seft_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);

+

+static inline bool vma_is_seft(struct vm_area_struct *vma)

+{

+ printk(KERN_NOTICE "SEFT: vma_is_seft: entering");

+ return vma->vm_file && IS_SEFT(vma->vm_file->f_mapping->host);

+}

+

+#endif

diff --git a/mm/filemap.c b/mm/filemap.c

index 327910c..c9e032d 100644

--- a/mm/filemap.c

+++ b/mm/filemap.c

@@ -453,6 +453,7 @@ int filemap_write_and_wait_range(struct address_space

*mapping,

 } else {

 err = filemap_check_errors(mapping);

 }

+

 return err;

 }

 EXPORT_SYMBOL(filemap_write_and_wait_range);

 102

@@ -1719,7 +1720,7 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter

*iter)

 loff_t *ppos = &iocb->ki_pos;

 loff_t pos = *ppos;

- if (iocb->ki_flags & IOCB_DIRECT) {

+ if (iocb->ki_flags & IOCB_DIRECT) {

 struct address_space *mapping = file->f_mapping;

 struct inode *inode = mapping->host;

 size_t count = iov_iter_count(iter);

@@ -1727,9 +1728,11 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter

*iter)

 if (!count)

 goto out; /* skip atime */

+

 size = i_size_read(inode);

 retval = filemap_write_and_wait_range(mapping, pos,

 pos + count - 1);

+

 if (!retval) {

 struct iov_iter data = *iter;

 retval = mapping->a_ops->direct_IO(iocb, &data, pos);

@@ -1747,11 +1750,12 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter

*iter)

 * there was a short read because we hit EOF, go ahead

 * and return. Otherwise fallthrough to buffered io for

 * the rest of the read. Buffered reads will not work for

- * DAX files, so don't bother trying.

+ * SEFT files, so don't bother trying.

 */

 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||

- IS_DAX(inode)) {

+ IS_DAX(inode) || IS_SEFT(inode)) {

 file_accessed(file);

+ printk(KERN_NOTICE "SEFT: generic_file_read_iter: do not

perform buffered read\n");

 goto out;

 }

 }

@@ -2395,6 +2399,7 @@ generic_file_direct_write(struct kiocb *iocb, struct

iov_iter *from, loff_t pos)

 }

 data = *from;

+ printk(KERN_NOTICE "SEFT: generic_file_direct_write: calling mapping-

>a_ops->direct_IO\n");

 written = mapping->a_ops->direct_IO(iocb, &data, pos);

 /*

@@ -2418,7 +2423,9 @@ generic_file_direct_write(struct kiocb *iocb, struct

iov_iter *from, loff_t pos)

 103

 mark_inode_dirty(inode);

 }

 iocb->ki_pos = pos;

- }

+ } else {

+ printk(KERN_NOTICE "SEFT: generic_file_read_iter: written <= 0 after

.direct_IO (0x%zx)\n", written);

+ }

 out:

 return written;

 }

@@ -2495,6 +2502,7 @@ again:

 status = a_ops->write_begin(file, mapping, pos, bytes, flags,

 &page, &fsdata);

+

 if (unlikely(status < 0))

 break;

@@ -2576,15 +2584,18 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb,

struct iov_iter *from)

 loff_t pos, endbyte;

 written = generic_file_direct_write(iocb, from, iocb->ki_pos);

+

 /*

 * If the write stopped short of completing, fall back to

 * buffered writes. Some filesystems do this for writes to

- * holes, for example. For DAX files, a buffered write will

- * not succeed (even if it did, DAX does not handle dirty

+ * holes, for example. For SEFT files, a buffered write will

+ * not succeed (even if it did, SEFT does not handle dirty

 * page-cache pages correctly).

 */

- if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))

+ if (written < 0 || !iov_iter_count(from) || IS_DAX(inode) ||

IS_SEFT(inode)) {

+ printk(KERN_NOTICE "SEFT: __generic_file_write_iter: do not

performed buffered write\n");

 goto out;

+ }

 status = generic_perform_write(file, from, pos = iocb->ki_pos);

 /*

diff --git a/mm/huge_memory.c b/mm/huge_memory.c

index bbac913..4c9ff01 100644

--- a/mm/huge_memory.c

+++ b/mm/huge_memory.c

@@ -17,6 +17,9 @@

 #include <linux/shrinker.h>

 #include <linux/mm_inline.h>

 #include <linux/dax.h>

 104

+

+#include <linux/seft.h>

+

 #include <linux/kthread.h>

 #include <linux/khugepaged.h>

 #include <linux/freezer.h>

diff --git a/mm/page_io.c b/mm/page_io.c

index b995a5b..6d6adeb 100644

--- a/mm/page_io.c

+++ b/mm/page_io.c

@@ -239,6 +239,7 @@ int swap_writepage(struct page *page, struct

writeback_control *wbc)

 end_page_writeback(page);

 goto out;

 }

+

 ret = __swap_writepage(page, wbc, end_swap_bio_write);

 out:

 return ret;

diff --git a/mm/swapfile.c b/mm/swapfile.c

index 5887731..7e82a5e 100644

--- a/mm/swapfile.c

+++ b/mm/swapfile.c

@@ -151,6 +151,7 @@ static int discard_swap(struct swap_info_struct *si)

 cond_resched();

 }

+

 return err; /* That will often be -EOPNOTSUPP */

