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ABSTRACT 

    DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, 

playing decisive roles in functionality, appearance, diseases development and other 

physiological phenomena. Hence, sequencing of these biomolecules acquires the prime 

interest in the scientific community. Single molecular identification of their building blocks 

can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling 

Microscope (STM). A single layer of specially designed recognition molecule is attached to the 

STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA 

nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their 

different binding interactions with the recognition molecules, the analyte molecules generate 

stochastic signal trains accommodating their “electronic fingerprints”. Signal features are used 

to detect the molecules using a machine learning algorithm and different molecules can be 

identified with significantly high accuracy. This, in turn, paves the way for rapid, economical 

nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing 

(NGS) techniques. 

    To read DNA nucleotides with high accuracy in an STM tunnel junction a series of 

nitrogen-based heterocycles were designed and examined to check their capabilities to interact 

with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These 

recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole 

proved to be best among them showing DNA nucleotide classification accuracy close to 99%. 

Also, Imidazole reader can read an abasic monophosphate  (AP), a product from depurination 

or depyrimidination that occurs 10,000 times per human cell per day. 
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    In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene 

(Pyrene reader) based on stacking interactions, which should be more specific to the canonical 

DNA nucleosides. In addition, Pyrene reader showed higher DNA base-calling accuracy 

compare to Imidazole reader, the workhorse in our previous projects. In my other projects, 

various amino acids and RNA nucleoside monophosphates were also classified with 

significantly high accuracy using RT. Twenty naturally occurring amino acids and various RNA 

nucleosides (four canonical and two modified) were successfully identified. Thus, we envision 

nanopore sequencing biomolecules using Recognition Tunneling (RT) that should provide 

comprehensive betterment over current technologies in terms of time, chemical and 

instrumental cost and capability of de novo sequencing.  
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CHAPTER 1 

 INTRODUCTION 

1.1 DNA, RNA and Protein: The Central Dogma 

    The human body is a miraculous creation of nature. A countless number of complex and 

delicate processes are taking place synchronously. “The central dogma” of life narrates 

apparently the most decisive one among them. An enzyme, called RNA polymerase initiates 

the decoding process of genomic blueprint from the gene, a stretch up to several thousands 

of DNA base-pairs and creates a messenger-RNA or mRNA molecule with the free 

nucleotides from the nucleus as it slides along the DNA strand. This process is called 

“transcription” and the mRNA strand reciprocates the sequence of the DNA stretch. mRNA 

is then modified by discarding sections corresponding to non-coding DNA stretch of the gene. 

This edited mRNA leaves the nucleus and arrives at “ribosome” to serve as the protein 

manufacturing template. The mRNA code is interpreted by the ribosome and different amino 

acids are delivered to the ribosome by transfer-RNA or tRNA, followed by the formation of 

an amino acid chain according to the mRNA base array. This process is known as 

“translation”. As the last amino acid molecule is coupled to the strand, it arranges itself into a 

complex spatial conformation and forms a protein molecule. 

1.2 Protein  

    Proteins can be described as the constitutional elements of organisms and can be considered 

as one of the most important biomolecules for life. They play various roles such as 

transporters, enzymes and much more. There are 20 different naturally occurring amino acids 

which serve as the building blocks of all these proteins. An amino acid can be joined with a 
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couple of others by amide bonds and repetition results a one-dimensional chain of amino acids 

called peptide. The sequence of amino acids in a peptide is considered as the primary structure 

of a protein and controls the local folding of the chain or the secondary structure of protein. 

One or more long peptide chains form protein molecules and its overall folding and spatial 

orientation in known as the tertiary structure.   

1.2.1 Protein Sequencing: Motivation 

    Even after successful sequencing of the complete human genome, plenty of mysteries about 

gene expression and subsequent protein production remain unresolved. The presence of 98% 

non-coding part in human genome barely contributes to the knowledge of protein biomarkers 

for various diseases.[1]  The specific functions of non-coding DNAs are yet to be understood 

accurately but the effort behind sequencing this preeminent portion of the human genome 

seems rather impractical to resolve much smaller protein sequences or their corresponding 

manufacturing templates. Resolving the primary structure of proteins i.e. amino acid sequences 

in the peptide can serve the purpose itself and would help us to understand gene mutation, 

virus invading and required personalized medicine. 

    In addition to that, proteins have countless numbers of protein variants as a consequence 

of RNA splicing and post-translational modifications. Secondly, protein variants related to 

diseases are frequently present in extremely low concentrations. In the case of nucleic acids, 

low concentrations can be amplified using the polymerase chain reaction, but there is no 

analogous process for proteins. Hence, to develop protein biomarkers sequencing of proteins 

at single-molecular level is crucial. 
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1.3 Popular Methods 

1.3.1 Edman Degradation 

    Edman degradation method for peptide sequencing was discovered by Pehr Edman.[2] This 

approach relies on the labeling of the first amino acid at the N-terminal and consequent 

degradation and identification through a chromatography technique. First, the peptide is 

exposed to phenylisothiocyanate, which reacts with the uncharged amino group of the N-

terminal amino acid and a cyclic phenylthiocarbamoyl intermediate is formed. In the second 

step, the first N-terminal peptide bond is cleaved under a mild acidic condition and a 

phenylthiohydantoin (PTH) derivative of the N-terminal amino acid is formed. This PTH-

amino acid is then identified by chromatography or electrophoresis technique. Ion 

chromatography is the most used among them which depends on the difference in binding 

affinity of the ions or polar species with the ion exchange resin. After separation, the PTH-

Figure 1.1. Mass-spectrometry experimental work-flow for protein/peptide sequencing 
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amino acids can be characterized by UV/Visible spectroscopy, utilizing the Ninhydrin 

reaction, which produces a purple colored product.   

1.3.2 Mass Spectrometry 

    Mass spectrometry based methods for protein sequencing are extremely popular in the 

present research environment. Ionization of target protein/peptide is the most important step 

and can be achieved by either electrospray ionization (ESI) or matrix-assisted laser 

desorption/ionization (MALDI) technique (figure 1.1[3]). Generally, protein is digested by a 

protease enzyme to create shorter peptide fragments and separated from each other by high 

pressure liquid chromatography (HPLC). Peptides are then sequentially analyzed by 

introducing them to the mass spectrometer directly from the HPLC column and ionizing using 

ESI or MALDI technique. The ionized peptide is then analyzed by the mass analyzer and 

compared to a database to discover its sequence. This process is repeated till the last peptide 

fragment is introduced into the mass spectrometer from the HPLC column. 

1.3.3 Limitations 

    The major drawback related to Edman degradation method is the inability to sequence long 

polypeptides. Peptide chains longer than 50-60 (30, to be more accurate) are difficult to 

sequence due to incompletion of the cyclic derivative formation step and as a result, longer 

peptides need to be cleaved into shorter fragments, making the process much more 

complicated. Secondly, Edman degradation method becomes inactive in the case of peptides 

with chemically modified N-terminal amino acids or if the N-terminal amino acid is buried 

inside the protein cavity. For mass spectrometer techniques, peptide chain length could be 

improved compared to Edman degradation method. But, performing de novo sequencing is 

still challenging using mass spectrometry techniques. Besides, both methods are unable to 
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differentiate between enantiomeric and isobaric amino acids, which is imperative to 

understand the primary structure of proteins in a proper way. 

1.4 The Human Genome & DNA 

    The genome can be regarded as the blueprint for any organism and constructed by basic 

building blocks known as deoxy-ribonucleic acid or DNA.  It carries all the genetic and 

biological information of various organisms (along with some viruses) and responsible for 

instructions about their reproduction, development and metabolism. Long DNA strands 

formulate “genes”, codes for different complex biological processes. All these genes are 

embedded in 23 pairs of “chromosomes” which reside in cell-nucleus.  

 1.4.1 “The DNA” and Its Structure 

    The answer to the question “What is DNA?” can be given as “Arguably the most important 

molecule in genetics and biochemistry”. In 1953, James Watson, Francis Crick and Maurice 

Wilkins solved the complex structure of DNA[4, 5] and were awarded the Noble prize in 1962 

for this monumental work. DNA is a macromolecule with a unique double helix structure 

made of two complementary strands.[4] Each strand is made of polymeric phosphate-

deoxyribose backbone and four different kinds of nucleobases: Adenine(A), Guanine(G), 

Cytosine(C) and Thymine(T) as shown in figure 1[6]. A strand can also be described as a long 

thread of subunits called nucleotides made of a nucleobase and a phosphate-deoxyribose 

moiety. Both strands are anti-parallel to each other in a sense that if we follow an arrow from 

the 5’ carbon to the 3’ carbon of any deoxyribose sugar they are in opposite direction in the 

complementary strands. This intricate structure of DNA is maintained by two kinds of non-

covalent interactions: hydrogen bonding between hydrogen bonding sites of complementary 

nucleobase-pairs and π-π stacking interaction between aromatic surfaces of the nucleobases.[7] 
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G-C and A-T are called complementary base-pairs as G(or C) only binds with C(or G) and 

A(or T) only binds with T(or A) by three and two hydrogen bonds, respectively. In a double 

helix structure of B-form (most common) DNA, the distance between two adjacent 

nucleotides is nearly 0.3nm and diameter of the helix is approximately 2nm.[8] 

 

Figure 1.2. Structure of DNA double helix 
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1.5 DNA Sequencing 

    DNA sequencing possesses the goal of resolving the order of nucleotides in a DNA strand. 

Most of the techniques determine this order in single-stranded DNA (ssDNA) rather than in 

double-stranded DNA (dsDNA) due to ease of the process. As we move along, I will describe 

some sequencing methods and it will appear that when we target a ssDNA to sequence down, 

we determine the sequence of the complementary strand instead, in most of the processes. 

But, at the end of the process, we have the complete sequence of the double helix. 

1.6 DNA Sequencing: Motivation  

   DNA sequencing always has been a famed topic in the science community. The reason 

behind is its broad application in so many research fields. Here I mention some of the most 

popular applications of DNA sequencing. 

1.6.1 Personalized Medicine 

    Whole Genome Sequencing (WGS) cost has declined in an unreal manner from $2.7 Billion 

to just several thousand dollars and the consequence is a bright future for personalized 

medicine. The idea is to obtain the clinically complete Human Genome data of any individual 

and predict the future diseases that individual is going to develop and prescribe the treatments 

for his/her present and predicted diseases. Recent astonishing development on genome and 

exome sequencing methods and increasing volume of the available database of genomic 

information from diverse cases of patient’s genome, infectious agents and pathogen genome 

indicate that personalization of disease prognosis and following therapeutic is not far. [9, 10] 
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1.6.2 Genetic Variation in Humans and Human Diseases:  

    Knowledge of rare sequence variants in human germline genome or genome of an 

infectious pathogen can help us to understand human diseases pathogenesis, predictive 

development of the disease and its response towards treatment.  An elaborated comparison 

study on the human genome that is healthy and in the phase before unfolding its death causing 

disease and the genome sequence variant associated with the disease is required. [11, 12] 

1.6.3 Cancer Study 

    Carcinogenesis or Oncogenesis, the process of development of cancer is caused by genetic 

or epigenetic mutations of the normal healthy cells. Several top-notch, highly collaborative 

projects on cancer study (such as International Cancer Genome Consortium, Cancer Genome 

Atlas etc.) have been focusing on the sequence of genomes and exomes of different 

individuals, carrying various well-known categories of cancer malignancies. The idea is to 

recognize the mutations related to Oncogenesis. It is also necessary to differentiate genomic 

structure of cancer cells from non-cancerous cells. In addition, knowledge of tumor genome 

helps the cancer therapeutic strategies.[10] 

1.6.4 Understanding the Immune System Response 

    Plasma cell produced Immunoglobulin (Ig) protein (or commonly known as an antibody) 

plays a significant role in recognizing and nullifying pathogens (various viruses and bacteria). 

Along with Ig, T-cell or T lymphocytes are also important in immune system due to its cell-

mediated immunity. Proper monitoring of genetic rearrangements of the Ig receptors of B 

cells (cells of the adaptive immune system) and T-cell receptors of T cells (also part of the 

adaptive immune system) can immensely help in understanding the immune system response 

and autoimmune disorders in human.  Sequencing of Ig gene rearrangement can be used as a 
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tool for tracking interactions between viral pathogens (e.g. HIV) and response on the adaptive 

immune system. This approach can also be a pathfinder against various autoimmune diseases 

and immunodeficiency disorders.[10, 13-15] 

1.6.5 Crime Forensic 

    Advancement in DNA sequencing provides great help in the field of crime forensic. 

Sequencing of a genomic sample found in a crime spot can be matched to an existing database 

of criminal profiles (such as FBI’s CODIS) to find any criminal suspect. Similarly, DNA 

samples from different criminal cases can be compared to each other to check if there is a 

common suspect. In addition, this tool also can help to identify any missing personal from 

dead-body or other related samples. Exploiting different genome variants, one can identify 

whether a suspect profile belongs to any specific ancestry (e.g. European, African or Asian 

origin). Predictions also can be made on physical characteristics such as eye color or hair color 

of an unknown suspect.[16] Sequencing giants are also providing special instruments particular 

to this field (such as Illumina’s MiSeq FGx Forensic Genomics System).[17] 

1.7 RNA 

    RNA is also a crucial biomolecule, as important as DNA and completes the bio-molecular 

series known as “nucleic acid” along with DNA. Unlike DNA, RNA is a single-stranded 

molecule and the strands are constructed with polymeric phosphate-ribose backbone and four 

different kinds of nucleobases: Adenine(A), Guanine(G), Cytosine(C) and Uracil(U). Though 

DNA does not have any variety, different types of RNAs (mRNA, t-RNA, non-coding RNA, 

r-RNA etc.) are present depending on various structural and functional properties. All these 

different RNAs found in a cell at any point of time combine together defines the 

“transcriptome” of that cell at that definite moment and physiological environment. 

http://www.illumina.com/systems/miseq-fgx.html
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1.8 RNA Sequencing: Motivation 

    People have been talking about DNA sequencing for most of the time when it comes to 

understanding the human genome, neglecting the importance of profiling RNA structures. 

Though, the scenario has been changed abruptly in recent times with realizing the importance 

of “transcriptome” for complete knowledge of genome. During the production of RNA from 

DNA through transcription, the process of alternative splicing helps to generate various 

mRNA codes from a single gene.[18] As a consequence, several proteins can be synthesized 

from a single gene code. Hence, profiling all those resulting mRNAs after RNA splicing is 

critical. Also, single nucleotide polymorphisms (SNP) or mutations can occur during 

transcription, whereas post-transcriptional modifications occur beyond transcription and 

affect further alternation. All these phenomena require RNA sequencing to understand their 

powerful effects on protein production. Though RNA sample purification processes can be 

more complicated, still most of the popular DNA sequencing techniques are capable of 

sequencing RNA due to their structural similarities.  

1.9 Evolution of DNA Sequencing 

1.9.1 Starting Point: Sanger Sequencing 

    In 1977, the discovery of the Sanger Sequencing method, also named as Chain-termination 

method by the noble laureate Frederick Sanger and his co-workers, was nothing short of a 

revolution in the field of genetics and biochemistry.[19] Before being outshined by the 
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‘nextgen’ sequencing techniques, Sanger method was by far the standout approach for almost 

three decades.  

    Method: The method starts with denaturing dsDNA to ssDNA as its separates out to 

template strand and complementary strand (figure 2[20]). The template strand is combined 

with a primer by annealing. The primer is a short nucleic acid chain that helps DNA 

polymerase to start DNA replication. Next step is setting up four reaction containers, all of 

them having the sequencing target, the primer attached DNA strand and followed by addition 

of DNA polymerase and free nucleotide or dNTPs (one of them is radiolabeled with 

radioactive S or P), sequentially. Then only one type of ddNTPs (di-deoxy nucleotide 

triphosphates) is added to each container. The trick is the absence of –OH group in ddNTPs 

that stops DNA replication as it is unable to react with the next dNTP. Hence, terminates the 

Figure1.3. Work-flow of Sanger chain-termination method 
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chain. Then polyacrylamide gel electrophoresis is used to run all four reaction mixtures in 

separate lanes of the gel, and smaller DNA fragments move faster and further from the 

negative end to the positive end. The presence of radiolabeled dNTPs shows various bands as 

an X-ray of the gel is taken. In the end, the sequence can be traced down by reading these 

DNA bands across the X-ray film.[19, 21] Though modern platforms use capillary gel 

electrophoresis instead of polyacrylamide gel (figure 2). 

    Drawbacks: Though it opened a new horizon in the world of biochemistry, drawbacks 

related to Sanger method forced it to be a back-bencher as modern day research deals with a 

gigantic amount of sequencing data. Pivotal challenges lie in the gel separation technique due 

to the inability of automation and handle many parallel separation processes, 

simultaneously.[22] Also, the requirement of a large amount of template DNA for each 

reaction and lengthy nature of the whole process were the driving force for the evolution of 

new sequencing strategies.[23] 

1.9.2 Next Generation Sequencing 

    Advantages over Sanger sequencing: From the early years of the new century Sanger chain-

termination method started to lose its flare as the “next-generation sequencing” (NGS) 

techniques challenged it with their prime advantage of massively parallel and high throughput 

characteristics. The amount of data originated from a single run with the NGS is enormous 

compared to that of Sanger sequencing. As a consequence, NGS provides very high speed and 

the year-long projects with Sanger sequencing can be finished in no time employing NGS. 

Though NGS has the issue of less accuracy on each run, a high degree of coverage makes it 

highly accurate after overall data assembly.[22] 
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    Roche 454 GS FLEX: dsDNA is first fragmented in smaller strands (300-800bps) by the 

method called Nebulization using a Nebulizer (figure 1.4 [24]). The fragmented dsDNAs are 

ligated with adapters and denaturized to ssDNA by heating. Attached DNA adapters help with 

purification, quantification, amplification and sequencing of the target DNA in a sequential 

manner. Each of the ligated strands is then added to a bead (by adding a large excess of beads) 

followed by emulsification so that each DNA fragment containing beads separate out into a 

small oil emulsion. Next step is the amplification of DNA fragments in each fragment-bead 

complexes inside oil emulsions in the presence of added primer, DNA polymerase and dNTPs. 

These emulsions are now called emulsion PCR micro-reactors. Amplification produces 

approximately 1 million new fragments on the surface of each bead. Then the emulsions are 

broken and these beads are loaded into pico-titer plate (PTP) where only a single bead loads 

inside each micro-well followed by the addition of packing beads, enzyme beads and PPiase 

beads. Next is the pyrosequencing step, in which a pyrophosphate unit is released when one 

dTNP gets incorporated into the strand during DNA strand elongation by polymerase 

followed by conversion of pyrophosphate into ATP by sulfurylase. This ATP is then utilized 

a 
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e 
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Figure1.4. Work-flow of Roche GS FLEX sequencing method 
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by luciferase to oxidize luciferin and create a chemiluminescence event which is captured by 

detector and results consequential base identification and sequencing.[22, 25] 

    Drawbacks: High cost of various enzymes, lengthy sample preparation process and 

crosstalk between clonally amplified neighboring beads inside PTP are still challenges to 

overcome in this NGS technique. [25] 

    Illumina: Illumina’s Hi Seq 2500 sequencer is currently one of the most popular platform 

and capable of generating 120 Gb data per rapid single run in 29 hours using dual flow-cell. 

[26] As shown in figure 1.5,[27] fragmented dsDNA is first ligated with double stranded 

adapter molecules at both terminals and then denatured to ssDNA. Next, these fragments are 

attached to the complementary oligo-adapter containing glass-slides of the flow-cell in a 

‘Bridge’ orientation due to the presence of adapter at both ends of the fragments. One of the 

adapters serve as primers and synthesize the reverse strand in the presence of dNTPs and 

enzyme. Both complementary strands are then dissociated from each other and the same 

process is repeated extensively resulting “Bridge-amplification” of the target DNA fragment 

and producing millions of clonally amplified clusters. Each flow-cells contains approximately 

150 million clusters, whereas each cluster contains around 1000 fragments.  All the reverse 

strands are then washed off, leaving only forward strands, ready for sequencing. Then a primer 

is hybridized to adapter sequence so that 3’ ends are blocked to avoid unwanted priming of 

the cluster fragments. Differently color-coded and fluorescence-tagged nucleotides are then 

added for synthesizing the complementary strands. After each addition of nucleotides, clusters 

are excited by lasers, identifying the base from the color code of the nucleotides and read the 
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sequencing. Hence, this sequencing process is also termed as “Sequencing by Synthesis” 

(SBS).[27] 

Figure 1.5. Work-flow for Sequencing by Synthesis (SBS) by Illumina  
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    Life Technology’s Ion Torrent benchtop instrument adopt a simpler strategy from other 

massively parallel sequencing methods. High throughput methods (Illumina’s HiSeq 2500, 

Roche 454 GS FLEX, Life technology’s SOLiD, Complete Genomics etc.) are the perfect 

choice for larger and demanding genomic research such as cancer, personal genomics and 

human genome study. But in the case of small laboratories with smaller genomic projects 

where lower reagent cost, brief work-flow and shorter runtime are more important than high 

throughput, Ion Torrent platform is more popular instead of its lower throughput.[22] Ion 

Torrent uses a semiconductor chip containing millions of wells. The process begins with DNA 

fragmentation and denaturation (200-400bps long) followed by attachment of each fragment 

to a bead and performing clonal amplification by emulsion PCR inside micro-droplets. Each 

amplified bead then flows into a micro-well of the semiconductor chip. Next, the chip is 

D 

Figure 1.6. (A-C) Ion-Torrent method and (D) related chemistry 
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flooded with one of the four DNA nucleotides in the presence of polymerase and as soon as 

a nucleotide binds with the ssDNA fragment, a H+ is released resulting change in the pH of 

the micro-well.[28] This pH change is converted to readable voltage change and indicates 

nucleotide incorporation. Hence, we have the base-call. A double change in voltage represents 

two same nucleotide incorporation, consecutively and no change in voltage designate a 

deletion site (figure 1.6).[22, 28] 

1.9.3 Drawbacks of NGS and Drive for Single Molecular Sequencing 

    Even with all the success of NGS, it possesses an innate problem during sequencing DNA 

samples with long repetitive segments, a familiar characteristic of long genomes (such as the 

human genome) along with various bacterial genomes.[29, 30] The inability of long reads 

(NGS can provide reads only a few hundreds bp long), causing high error rates creating a 

roadblock for de novo genome sequencing[31] and failed to meet the four gold standards set 

by the National Human Genome Research Institute (NHGRI, 2004): 1) high accuracy (1 error 

in 10,000 bases or less), 2) very long reads, 3) high throughput and 4) cost as low as $1000 per 

genome. After all those techniques, nanopore-based sequencing techniques have emerged as 

the most potent candidates to reach the goal. The possibility of very long reads (10kb already 

achieved by ONT), fast and direct sequencing from freshly obtained data, the absence of 

complicated sample preparation and presence of sophisticated and cheap semiconductor and 

microfluidics device processing makes it a star contender to cover all four gold standards. 

1.10 Example of Single Molecular Methods 

    Pacific Biosciences launched their Single Molecule Real Time (SMRT) sequencing platform 

on 2011. Different color-coded fluorescence tagged nucleotides are used which are able to 
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cleave the fluorescence tags during replication of the target ssDNA in the presence of 

polymerase as the tags are attached to the phosphate chains rather than to the base, unlike 

other fluorescence-based sequencing. When a nucleotide incorporates a fluorescence event 

occurs which is detected by the ZMWs (zero-mode waveguides) as shown in figure 1.7.[32] 

These are nanophotonic visualization cylinder with approximately a diameter of 70nm and 

100nm depth.[32] As a nucleotide is incorporated by polymerase its fluorescence tag gets 

illuminated for several milliseconds and the detector receives a signal burst corresponding to 

the nucleotide. This process repeats and different nucleotides give their corresponding 

fluorescence signal bursts and help to get the sequence. 

    According to a report from Macquarie in 2013, Illumina is by far the leading company in 

$1.1 billion sequencing market, with a stake of 64%. Life Technologies hold the second spot 

by capturing 22% of the market, while Pacific Biosciences, Roche and Complete Genomics 

Figure 1.7. (A-F) SMRT sequencing work-flow 
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are mostly competing for the remaining 14%.[22] Following table summarizes various 

sequencing specifications (such as sequencing chemistry, read length, etc.), advantages and 

disadvantages of the five most popular sequencing platforms.[22] 

1.11 Nanopore Sequencing 

    Over the past decade, DNA sequencing technology has rapidly transitioned from Sanger 

sequencing to next-generation sequencing (NGS). NGS has become an indispensable tool for 

genomic medicine, making great strides in the diagnosis of diseases in clinics.[33] Since its 

advent, NGS has reduced the sequencing cost from about US $10 million to thousands of 

dollars.[34] With a state-of-the-art NGS machine, an individual human genome can be finished 

in a few days. Compared to Sanger sequencing (> 800 Q20 read length),[35] however, NGS 

has shorter read length (~ 150 bases for single end, www.illumina.com; or 200 bases, 

www.lifetechnologies.com) and lower raw sequencing accuracy.[36, 37] These shortcomings 

present challenges for use of NGS. First, NGS requires much higher sequencing coverage 

than the Sanger method for de novo assembly of genomes with comparable quality.[38] It 

generates sequencing data at a rate of 100 gigabases (Gb) per single genome for moderate 

coverage (~30-fold). The deluge of sequencing data requires a computing cluster or 

supercomputer for their analysis.[39] Secondly, short reads couldn’t encapsulate long blocks 

of repetitive sequences, resulting in fragmented assemblies for repetitive sequences longer than 

the read length. Given the fact that nearly half of the human genome is filled with repeats 

(ranging in size from 1 - 2 bases to millions of bases),[30] a straightforward way to address the 

repeat issue is increasing the read length to span as many of these repeats as possible. 

Nonetheless, the ultimate solution is to have a method that can faithfully and continuously 

read the entire sequence of a chromosome from one end to another. 

http://www.illumina.com/
http://www.lifetechnologies.com/
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    Current progress in nanopore sequencing has opened a new avenue to develop the 

sequencing technologies. A nanopore is an orifice with a nanometer diameter, which can 

function as a fluidic channel to conduct ions under a voltage bias. When it is embedded in a 

thin membrane that separates two chambers filled with conductive electrolytes, DNA 

molecules can electrophoretically translocate through the nanopore. Subsequently, the ionic 

currents would transiently be reduced because the flow of ions is blocked by DNA. [40] This 

is a mechanism used by a commercial product MinION for sequencing DNA by protein 

nanopores (www.nanoporetech.com). Since there is no theoretical limit on the length of the 

DNA translocation, the nanopore DNA sequencing will have the potential to solve the 

assembly issues related to the short reads of NGS, providing a high speed and low cost process 

of sequencing. However, the protein nanopore sequencing suffers from low accuracy 

(85%).[41] Gundlach and coworkers have demonstrated that the current blockade in a protein 

nanopore (Mycobacterium smegmatis porin A, referred to as MspA) is a collected event of 

four nucleotides (quadromer), [42] and the 256 possible quadromers produce a significant 

number of redundant current levels. [43] Despite many years of efforts, the nanopore has not 

achieved a single base resolution in DNA sequencing. Branton et al pointed out that “even an 

infinitely short channel would not achieve the required resolution” and alternative readout 

methods are required for the nanopore DNA sequencing.[44]  

1.12 Molecular Science & Scanning Probe Techniques 

    After their invention in 1980’s, Scanning Probe Microscopy (SPM) techniques, namely 

Scanning Tunneling Microscope (STM) and Atomic Force Microscopy (AFM) became 

exceedingly popular for imaging surfaces and understanding their topography. Compared to 

traditional microscopy and spectroscopy techniques, which rely on the interaction between 
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the sample and electron or electromagnetic radiation, these SPM methods exploit the 

interaction between a specific probe and the sample. Hence, they have added the benefit of 

gaining detailed topographic information as the probes are atomically precise and capable of 

interacting at the atomic level. The ability to maintain a non-contact profile during the 

measurement has provided these techniques the advantage of non-destructive approach with 

respect to the sample. Involved working principles are different from each other as STM relies 

on electron tunneling between probe and sample (figure 1.8[45]), whereas AFM exploits other 

atomic forces (such as van der Waals force) to bend its cantilever when probe interacts with 

the surface. As a consequence, unlike AFM, STM is limited to conducting surfaces only. But, 

the exponential nature of tunneling signal makes it superior in resolution. Apart from imaging 

and topography, analytical techniques like Scanning Tunneling Spectroscopy (STS), STM 

Controllable Break Junction etc. turned STM into a pathbreaker in molecular electronics 

research. STM has the unique feature to maintain a constant and controllable gap between 

probe and surface, makes it capable of acting as a biosensor. Measuring molecular conductance 

and exploring biomolecular interactions are routine experiments nowadays, which were mere 

theoretical possibilities a couple of decades back. 

1.12.1 Molecular Electronics 

    The field of molecular electronics is devoted to the utilization of organic molecules as 

components of electronic devices. Though major breakthroughs in molecular electronics have 
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been achieved in the last couple of decades, early footprints can be discovered in 1970’s, 

instead. [46, 47] The original motivation behind molecular electronics is to replace the 

traditional CMOS (complementary metal oxide semiconductor) materials with organic 

molecules and overcome the barrier of miniaturization limit of transistors inside a computing 

chip. From a neutral perspective, still way to go to make it a reality. However, the latest 

improvements in this area such as fabricating robust, repeatable molecular junctions and 

reliability of well-developed “non-equilibrium Green’s function” theoretical methods paved 

Figure 1.8. Schematic diagram and simplified instrumentation of Scanning Tunneling  

Microscope 
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the way of understanding the molecular properties in a nanostructure or even as a single 

species, resulting various new applications of this highly interdisciplinary research area.[48] 

Fields like molecular sensor,  solar energy and thermoelectric have gained significant 

acceleration, consequently. Required smaller size of molecules (generally, 1-100 nm) and 

availability of convenient synthesis methods are prime advantages of molecular electronics. 

This method is an excellent tool as molecules can be easily designed and engineered according 

to its role and desired specifications in the molecular device. Intermolecular interactions 

Figure 1.9. (A) STM scanner installed in STM head kept over spring stage, (B) STM 

scanner with connection cable and (C) STM fluid sample plate 
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between molecules also form stable nanostructures which is another important aspect of 

molecular electronics.[49]  

1.12.2 Instrumentation of Scanning Tunneling Microscope 

    The most important parts of the STM instrumentation are the STM head (figure 1.9.A), 

scanner (figure 1.9.B) and fluid sample-cell (figure 1.9.C). STM controller and computer are 

other two important integral parts of the STM (not shown), which regulate the experiment, 

control the servo and record data. The scanner has a small holder in front for installing the 

probe and a connection cable for connecting itself with the STM head. The sample plate is 

connected and placed under the STM head such that the substrate is very close to the probe 

(~200-300 µM) and this z coordinate can be adjusted by a pair of moving magnetic screws. 

The scanner has piezoelectric elements that manage the movement of the probe in x, y and z 

directions. These movements can be controlled by preamplifiers and regulated by computer 

control. 

1.12.3 Physical Background of Scanning Tunneling Microscope: Quantum Tunneling 

    Scanning Tunneling Microscope (STM) is a revolutionary invention of Gerd Binnig and 

Heinrich Rohrer at IBM-Zurich in 1981, which won them the Noble prize in 1986.[50] STM 

is based on a quantum mechanical principle called “Electron-tunneling”. If a microscopic 

particle faces an energy barrier which has higher energy than the energy of the particle itself, 

then the particle will always have a finite probability to tunnel through that energy barrier. This 

quantum mechanical phenomenon is known as “Tunneling”. In STM, tunneling of the 

electron is considered. Now, according to Schrodinger equation, the wavefunction of an 

electron to tunnel through a potential energy barrier (of energy P) is, 
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𝜓(𝑥) = 𝐴𝑒𝑥𝑝 {−√
2𝑚(𝑃 − 𝐸)

ℏ2
𝑥} 

    where, E is the energy of the electron. (P-E) is actual barrier height for the tunneling 

electrons and specifically for STM it is equal to the average work-function (φ) of the metal tip 

and the metal substrate. m is the mass of an electron. 

    The probability of the electron to tunnel can be expressed as, 

𝜓(𝑥)2 =  𝐴2𝑒𝑥𝑝 {−2√
2𝑚(𝑃 − 𝐸)

ℏ2
𝑥} 

1.13 Conductance in Metal-Molecule Nanostructure 

    For macroscopic materials, the conductance can be expressed as, 

𝐺 = 𝜎
𝐴

𝐿
 

    So, the conductance of a material is proportional to its cross-sectional area (A) and inversely 

proportional to its length (L). σ is the proportionality constant, known as specific conductivity 

and have characteristic value for specific material. 

    However, for the molecular level or nano-scale conductance measurements, the previous 

relationship cannot be considered because of the significant difference in transport property 

of nano-scale systems when compared to macroscopic systems. Transport in nano-scale metal-

molecule system is assumed to be an elastic tunneling process and corresponding tunneling 

conductance can be described by Landauer’s formula. At finite bias and a series of quantum 

modes, the conductance will be as follows, 
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𝐺 =
2𝑒2

ℏ
∑ |

𝑖𝑗

𝑇𝑖𝑗|2 

    Where, Tij is the probability for the electron to transmit from ith mode of one electrode 

(i.e. tip or substrate) to the jth mode of the other electrode. When there is only a single atomic 

contact between the two electrodes (i.e. tip and substrate), then ∑Tij= 1and conductance will 

be equal to 
2e2

ℏ
 , which is known as the quantum of conductance and has a value of 77.5 μS. 

  The tunnel current in the tunnel gap between tip and substrate is, 

𝐼 = 𝐼0exp (−βd) 

or  𝐼 = 𝐺0Vexp (−βd) 

    where, d is the distance between tip and substrate, I0 is highest obtained current on atomic 

point contact and G0 is the corresponding conductance. V is the applied bias between tip and 

substrate. Hence, the tunnel current is proportional to applied bias and decays exponentially 

with increasing tunnel gap distance, having β as the decay constant. β can be expressed as, 

β = 2√
2mφ

ℏ2
 

where, φ is the energy barrier for tunneling or commonly known as the work function of the 

metal electrodes. 

    Now, if a molecular system is present in the gap, a set of molecular orbitals are generated 

in the gap. In such condition, Fermi level of metal electrode resides between lowest 

unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). 
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Hence, effective barrier height reduces in the presence of such molecular system in the gap. 

So, decay constant is modified to, 

β = 2√
2m(EMO − E)

ℏ2
 

As a consequence of a reduction in β value, the conductivity in the gap will increase. 

1.14 Different Transport Regimes 

    Electron transport in metal-molecule-metal junction can occur through two different 

mechanisms. They are known as i) Tunneling and ii) Hopping. Dependence of electron 

transport on several factors such as temperature and length of the molecular system are 

different for these two transport regimes. [51] 

1.14.1 Hopping 

    In longer molecular wires (≥4nm) [51], hopping is the predominant mechanism for 

transport. In hopping transport mechanism, charge carriers move from one electrode to the 

other by a series of transfer between adjacent appropriate sites within the molecular system 

(figure 1.10).[52] Hence, unlike tunneling, it is a multistep process and often known as 

multistep hopping. Hopping is a thermally activated transport process. This thermal activation 

process is Arrhenius type, having an activation energy (Ea) for the transport process. As a 

consequence, hopping has a strong dependence on temperature. Thermally activated motions 

of nuclei, such as bond vibration, provide favorable geometry to the molecular system to 

originate electronic coupling and charge transfer. Unlike tunneling, conductance through 

hopping transport shows proportional dependence with the inverse of length (L-1) of the 

molecular system.[52, 53] Hopping conductance can be expressed as,  
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𝐺 ∝
1

𝐿
exp (−

Ea

k𝑇
) 

where k is Boltzmann constant and T is absolute temperature. 

1.14.2 Tunneling  

    On the other hand, tunneling is the transmission of an electron through a potential barrier 

of certain height and thickness. In tunneling transport, the particle always has some finite 

probability to transmit to the other side of the barrier. In contrast to multistep hopping, 

tunneling is a single step transport mechanism. Charge transport occurs through tunneling in 

the case of smaller molecular system (≤ 4-5nm)[51, 52] and smaller tunnel gap. Experimental 

studies have shown temperature invariant nature of this process.[51] Strong exponential 

dependence of conductance on the length of the molecular system (L) is a characteristic of 

tunneling transport. From the expression of tunnel conductance, exponential decrease with L 

can be shown as,  

𝐺 = 𝐺0exp (−𝛽𝐿) 

where β is known as the decay constant and G0 is the quantum of conductance.  

Figure 1.10. Mechanism of tunneling and hopping. 
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1.15 Recognition Tunneling 

    Ohshiro and Umezawa opened the door for a new technique for molecular recognition 

utilizing hydrogen bonding.[54]  A gold probe, modified with a thiolated-DNA base was 

scanned separately over monolayers of different analytes, attached to a gold substrate. In the 

case of complementary base pairing between thiolated-DNA and the analyte, greater charge 

transfer is resulted due to stronger “mechanical adhesion” due to hydrogen bonding. This can 

be explained as the longer stay of the probe over the analyte which enhances the conductance. 

Inspired by this study, Lindsay group investigated and proved that specific DNA-base pairing 

can be identified by measuring the decaying tunnel current while a DNA-base modified STM 

tip is withdrawn from a gold substrate, functionalized by a SAM of nucleoside.[55] The 

stiffness of such DNA-base pairing and strength of these hydrogen bonding complexes were 

measured from similar tunnel junction experiments in their subsequent study. [56] Moving 

one step further, Lindsay group designed another decaying tunnel current experiment, where 

the STM tunnel junction was constituted with a DNA-base modified probe and metal 

substrate functionalized with a Guanidinium SAM. Then short DNA oligomers were absorbed 

over Guanidinium SAM by means of hydrogen bonding between Guanidinium and phosphate 

groups of DNA oligomers (fig 1.11)[57]. Though sensitivity of these decay current 

experiments were far from single base resolution (approximately 20 bases reside in the tunnel 

gap) yet the observed sensitivity of specific base pairing promised a highly potential sensor 

device for recognizing bio-analytes exploiting hydrogen-bond mediated tunneling current. 

Another different approach was invented by Lindsay group[58] for DNA-base pair 

recognition. Instead of measuring decaying tunnel current as a function of the probe and 

substrate separation, a fixed distance was imposed between the two electrodes and varying 
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tunnel current data was recorded with time. Random change in the current level was obtained 

as the molecular pair on the electrodes continuously bonded and released from inter-molecular 

hydrogen bonding interactions. As a consequence, time-current data traces appeared as 

“telegraph noise”. This molecular junction configuration was termed as “tethered molecular 

pair”. 

    In the very next year (2010), another study by Chang et al.[59] adopted somewhat different 

strategy and introduced free DNA nucleosides inside a tunnel junction, where both, STM 

Figure 1.11. Decaying tunnel-current experiments using STM tunnel junction with three 

molecular members. 
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probe and substrate are functionalized with a universal “recognition molecule” or “reader 

molecule”. This junction set-up was defined as “free analyte configuration”. Then current-

time traces were recorded instead of measuring decay current. This technique provided the 

advantage of using a “universal reader molecule” for all analytes unlike requirement of analyte-

specific functionalization of the probe or the substrate. A clean, spikeless tunnel current 

baseline was obtained in the absence of any analyte inside the junction, while injection of DNA 

Figure 1.12. Different categories of Recognition Tunneling and characteristic “telegraph 

noise” 
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base solution generates a train of stochastic tunnel current spikes. Henceforth, Recognition 

Tunneling could be categorized into a couple of classes, namely “tethered molecular pair” and 

“free analyte” as described above. Figure 1.12[60] shows the simplified models for these two 

experimental configurations. In both the cases, a constant baseline conductance (GBL) is 

maintained to attain an approximately fixed gap between the functionalized probe and 

substrate. The current level increases and corresponds to “on conductance” (GON) as soon as 

the molecular bridge forms. It is quite obvious that an optimized gap between the probe and 

substrate is one of the important prerequisites of these experiments if not the most. Chang et 

al.[59] reported a gap distance of approximately 2.5 nm (fig 1.12) for their tunnel junction with 

benzamide reader modified gold electrodes. Though it is intrinsically hard to maintain perfectly 

fixed gap throughout the experiment, yet sustaining constant baseline conductance serves the 

purpose, adequately. Among the two, “free analyte” approach gained superior attention due 

its universal nature i.e. same tunnel junction could be used for different analytes. This 

characteristic creates a possibility to sequence heteropolymers of biomolecules (ssDNAs, 

peptides, etc.) if they could be dragged between such tunnel gap, slowly enough to read each 

single building blocks from their characteristic current spikes.   Figure 1.13 describes the 

physical picture of these molecular junctions. The conductance of a pure metal tunnel junction 

(without any molecular present) possessing a gap separation L can be approximated as, [60] 

𝐺 ≈ 𝐺₀ exp(−1.02√𝜙𝐿) = 𝐺₀ exp(−𝛽𝐿) 
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    Here ϕ is the work function which is equal to the difference (V – EF). V is the potential 

barrier facing by the electrons inside the metal and EF is the Fermi energy of the metal 

electrodes. 𝛽 is known as the electronic decay length and express the decrease in conductance 

with increasing gap distance. In this situation, there is no available state in between the 

electrodes to assist electron transport. But, new energy levels (the state in bold line is an 

example, figure 1.13.A)[60] are generated with the introduction of a molecular bridge spanning 

the gap. As a consequence, the barrier encountered by the tunneling electron is reduced from 

ϕ to ΔE and conductance is modified to, 

𝐺′ ≈ 𝐺₀ exp(−1.02√𝛥𝐸𝐿) = 𝐺₀ exp(−𝛽′𝐿) 

β΄ is the electronic decay length of the bridged metal-molecular junction, which itself can be 

properly expressed with the help of a linear combination of atomic orbitals coming from 

atomic components (E1, E2, E3 etc. in figure 1.13.B) of the molecule and hopping matrix 

elements of neighboring orbitals. In figure 1.13.B, H12, H23, H34 etc. describe the interactions 

among adjacent atomic orbital of the molecule, whereas HL1 and H4R define the interactions 

between left and right metal electrodes and their neighboring atomic contact orbitals. Hence, 

Figure 1.13. (A-B) Energy description of metal-molecule junction involved in Recognition 

Tunneling 
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the elastic transmission (assuming the non-interacting nature of the electrons) of the metal-

molecule junction can be calculated using the Green’s function: 

𝐺𝐿,𝑅(𝐸) ~𝛴
〈𝐿ǀ𝜓𝑛〉⟨𝜓𝑛|𝑅⟩

𝐸 − 𝐸𝑛 − 𝑖𝜕
 

Here ψn is the nth state of the metal-molecule junction. These are basically reformed molecular 

orbitals including the interaction with the metal electrodes, commonly termed as probe and 

substrate. En  is the eigenenergy of the nth state and 𝜕 is a quantity that tends to zero, whereas 

L and R states with energy E within the left and right metal electrodes, respectively. Now, the 

conductance of this metal-molecule junction can be determined by following expression,  

G =
2𝑒2

ℏ
∫ 𝑇(𝐸)𝑑𝐸

𝑒𝑉/2

−𝑒𝑉/2

 

Where T(E) is the transmission function near the metal Fermi level and V is the applied bias 

voltage between the electrodes.  
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CHAPTER 2 

FROM GOLD ELECTRODE TO PALLADIUM ELECTRODE 

 

2.1 Disadvantages with Gold Tunnel Junctions 

    In most of the research experiments related to electron tunneling and molecular 

conductance measurements, gold has been the metal of choice to the scientific community. 

Whether it is in mechanical break junction experiments[61], in the repetitive formation of 

molecular junctions[62] or measuring single molecular conductance employing self-assemble 

molecular junctions[63] , gold always has been the preferred electrode material. 

 2.1.1 Plastic Deformation 

    Two crucial properties of gold have made it so popular. Firstly, thiol self-assembly on Au 

is a very straightforward process with enough understanding of the details[64]. Also, Au has 

high plastic deformation that leads to specific features in break junction measurements[65]. 

But, some other studies prefer tunnel junctions with less or ideally no plastic deformation 

during the experiments.[60] [66] These experiments require fixed gap in the tunnel junction 

which might be an issue with Au tunnel junctions. Instead, plastic deformation can lead to a 

geometrically unstable junction. 

2.1.2 Diffusion of Gold into Silicon 

    Gold diffuses reasonably fast into silicon as interstitial impurities[67, 68] creating structural 

defects in the silicon crystal. These interstitial gold atoms then occupy substitutional sites by 

any of the two controversially competing pathways: “Frank-Turnbull” mechanism[69] or 

“kick-off” mechanism.[70] As a consequence, an undesirable electronic defect is generated in 
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the silicon crystal of the semiconductor device, known as “deep level traps”. [71, 72] These 

defects trap the charge carriers and affects their velocity within the semiconductor. In addition, 

the non-radiative lifetime of the carriers is shortened by the traps leading to a detrimental 

effect on semiconductor device quality. But, the diffusivity of palladium into silicon is 20 to 

50 (depending on temperature) times lower to that of gold[73]. Hence, compare to gold, 

palladium is much more compatible with CMOS (complementary metal oxide semiconductor) 

devices. 

2.2 Conductance 

    A higher level of tunnel conductance is always desirable for molecular electronics study as 

it provides better signal to noise ratio for all these measurements. In a theoretical finding, 

Lawson et al. [74] showed that molecular junctions consist of a pair of metal electrodes bridged 

with phenyl-dithiol exhibit higher conductance in case of palladium compare to that of gold. 

Hence, palladium might be a better choice to obtain larger current signals from recognition 

tunneling measurements.  

2.3 Fabrication of Palladium Substrate 

    Electron beam evaporated palladium thin films (200 nm thick) were used for all recognition 

tunneling experiments. All the films were made in ASU CSSER cleanroom using the Lesker 

PVD75 Electron Beam Evaporator (Lesker# 3). Circular silicon wafers (10 cm diameter) were 

purchased from Silicon Quest International and 99.99% pure palladium and titanium metal 

targets were bought from Kurt J. Lesker Company. Prior to use, silicon wafers were cleaned 

with hydrofluoric acid. Over the silicon wafer, a thin Ti adhesive layer (5nm thick) was 

deposited at a deposition rate of 0.02 nm/sec. Pd layer was deposited over that Ti adhesive 
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layer maintaining a deposition rate of 0.1 nm/sec. Small squares of 1 cm × 1 cm were cut 

before any measurement. STM images show that the surface was not very smooth and small 

grains are apparent (figure 2.1). [75] 

 

2.4 Palladium Probe Preparation 

    Palladium probes were made from Pd wires with 0.25 mm diameter (from California Fine 

Wires) after electrochemical etching in con. HCl and Ethanol mixture (1:1) followed by partial 

insulation with polyethylene. Probes with leakage current > 1 pA were discarded and the rest 

were modified with reader molecule and used in RT measurements. 

2.4.1 Probe Etching 

    Etching profile is really crucial. Etched tips should not be too long and triangular kind of 

shape at the top part of the tip is preferable.  Also, we need a sharp enough tip for the 

Figure 2.1. STM image of the bare palladium substrate. The Images was taken using a 

Scanning Tunneling Microscope (Agilent) interconnected with a computer system. 

Movement of the tip and set up of tunnel parameters (set point and bias) were controlled 

by PicoSPM software. Several 100nm × 100nm and 250nm × 250nm square areas were 

scanned for acquiring images of bare palladium substrate. Pt-Ir (90:10) tips were used and 

scanning was done in air. Scan rate was 3 lines/sec during image acquisition. 
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experiment. But, etching an extremely sharp tip frequently combines a long profile with the 

sharpness. Also, there is a chance of over exposure after coating for too sharp tips. On the 

other hand, if we try to make the profile broader and shorter there is a good chance of having 

a blunt tip, which may have a problem of a bad experiment along with a chance of over-

coating. Sacrificing the sharpness to some extent is preferable to attain a broader and shorter 

etching profile as problems like bad imaging, over-coating is rare compared to the problem of 

leakage.  

    For the 1st step of etching, a value of 35 kHz was used in the signal generator. A voltage of 

30 V and current range of 280-350 mA were fixed. The 1st step is to basically obtain a roughly 

long and sharp shape to start with the 2nd step.  

    The 2nd step is very subtle and more important. We can achieve the desired shape or profile 

in this step. Firstly, a couple of dips (fast dipping and taking out) in the solution keeping the 

voltage at ~20V was done and the probe was checked under the microscope. If the profile is 

still long another couple of dips may be required. To make it sharper, subtle lowering of 

voltage (~12-15V) is needed. We do not need to be concerned about the current during the 

dipping of tips in the 2nd step etching as it is too subtle to control. If the tip is blunt after many 

trials, we have to start over with the 1st step etching. Hence, it a trial and error process in the 

2nd step rather than having a strict protocol to follow. 

2.4.2 Probe Coating 

    The coating is much easier compared to etching. The traveling distance of the tip during 

coating (i.e. length of the coated portion) was maintained in the range ~7-7.5 mm. Coating 

temperature is a variable parameter which may change with the humidity or local temperature 

of the lab and probably with the profile of the top part of the etched tips. A temperature range 
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of 210-225˚C can be used as a  can be considered as the starting point. For a well-coated tip, 

the protrusion should as small as it can be. If there is no apparent protrusion under the 

microscope, the tip may be over-coated or it still can be a good tip after checking in STM. At 

the same time, tips with very small obvious exposure under the microscope are really good 

too. So, while checking under the microscope there is always a boundary of uncertainty. 

Hence, it is preferable to check the leakage for both, tips with no obvious exposure and those 

with very small protrusion before functionalizing them with the reader molecule. If they have 

leakage the same tip can be made useable after few more trials with the coating if it appears 

that the etching profile did not have any problem. Lastly, because this fabrication process 

(etching and coating) is not totally automated, required adjustments can vary a little bit from 

person to person. 

 

Figure 2.2. Preparation of STM probe (a) after electrochemical etching, (b) during 

polyethylene insulation and (c) after insulation 
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2.5 Tunneling Transport Through Water Molecules: Water Signals with Gold 

Electrodes 

    In their latest work with gold tunnel junction and 4(5)-(2-mercaptoethyl)-1H-imidazole-2-

carboxamide as the reader molecule, Chang et al. found that some considerable 

signals were obtained in absence of any nucleotide at 0.5 V bias and 6pA set-point 

(corresponding to 12pS tunnel gap conductance) of tunnel junction during control 

experiments with phosphate buffer only.[76] These current spikes were generated by tunneling 

through small layer structured water molecules (figure 2.3).[60] Though these water signals, on 

average, are shorter than the current spikes generated from the DNA bases yet distribution of 

water spikes shows a considerable overlap with spike distributions of DNA bases.[76] These 

signals were completely vanished when gap conductance was reduced to 8pS (0.5V bias & 4pA 

set-point). But, no considerable current signal was generated by nucleotides after their 

introduction in the tunnel junction, at this tunneling condition (0.5V bias & 4pA set-point).  

    Electron tunneling through water molecules has been proved by several works on this topic. 

Tunneling through layer structure of water molecules (figure 2.4) was shown by Zinn and 

Porter[77] by their tunneling measurement through a thin water layer residing between a pair 

of spherical mercury electrodes.[77] More studies[78, 79] were able to show evidence of 

Figure 2.3. Chain structure of water 
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electron tunneling through a small number of water molecules in tunneling experiments using 

STM. Boussaad et al. found that tunneling current through water medium between a pair of 

fixed nano-electrodes switches between two discrete levels. According to them, tunneling can 

occur via local states of water layer and that causes the switching of tunnel current to a higher 

level. [62] The assumption is that the local states of layer structured water reside close enough 

to the Fermi level of metal nano-electrodes and make tunneling through water feasible. 

Tunneling measurements in chloroform showed no such switching of tunnel current 

providing strong statement in favor of tunneling through the water.[62] Now, electron 

Figure 2.4. Two level switching of tunneling current in a metal-water-metal 

junction[2-4] 
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tunneling through a definite layer or chain structure of water molecules is possible if 

intermolecular motion of water can be neglected on the time scale of fast tunneling process. 

Then tunneling occurs for several distinct configurations of water layer structure which can 

be called “frozen configurations”.[80] In typical STM experiment, the order of tunneling time 

is ~ 10-16 s. Hence, intermolecular solvent motion and effect of intramolecular solvent 

dynamics are indeed negligible on the time scale of tunneling process. Consequently, static or 

frozen water configurations can be assumed during tunneling through water layer 

structure.[80]  
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CHAPTER 3 

SURFACE CHARACTERIZATION OF SELF-ASSEMBLED MONOLAYERS OF 

VARIOUS RECOGNITION MOLECULES 

    All different reader molecules were synthesized in our lab by my project collaborators and 

before performing any recognition tunneling experiment, palladium substrate and partially 

insulated probes were needed to be functionalized. It was imperative to optimize the 

functionalization condition for different readers and characterize the formation of self-

assembled monolayer using various surface characterization techniques. I used FTIR (Fourier 

Transform Infra-Red) spectroscopy, Water contact angle measurement, Thickness 

measurement by Ellipsometry, XPS (X-ray Photoelectron Spectroscopy) characterization and 

ARXPS (Angle-resolved X-ray Photoelectron Spectroscopy) thickness measurement. It 

should be mentioned that all surface characterization experiments were performed only on 

modified metal substrates and modified probes were not suitable for these measurements due 

to their minuscule dimensions.  

3.1 Formation of Self-Assembled Monolayers 

    Electron beam evaporated palladium substrates (as described in chapter 2) were cut into 

small square pieces of 1 cm2 × 1 cm2 dimension and used as the substrates for self-assembled 

monolayers. 

3.1.1 Imidazole Reader 

    0.5 mM ethanolic solution was prepared in properly degassed ethanol. A small piece of 

palladium substrate was then hydrogen flamed for approximately 30 seconds and immersed in 

~2 ml freshly prepared solution of Imidazole reader. After 16-18 hours, palladium substrate 
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was taken out of the solution and washed thoroughly with plenty of ethanol to ensure that the 

SAM is devoid of any physical absorption over it. The substrate is then blown dry with argon 

flow and used for experiments, immediately. 

3.1.2 Triazole Reader & Pyrrole Reader 

    Exactly similar functionalization condition was used to form SAMs of Triazole reader and 

Pyrrole reader.  

3.1.3 Benzimidazole Reader 

    Following the same protocol did not work well in case of Benzimidazole reader as measured 

thickness was quite higher than the expected value, suggesting a large extent of physical 

absorption. The concentration of the solution and deposition time were optimized and 10 μM 

solution concentration and 10-12 hours deposition period was proved to be fruitful to achieve 

proper monolayer. 

3.1.4 Pyrene Reader 

    100μM ethanolic solution of reader molecule was prepared and Pyrrolidine was added to 

the solution for thioacetate deprotection (1:100 molar ratio for Pyrene reader and Pyrrolidine). 

After a couple of minutes, Palladium probes and substrates were dipped into this free thiol 

solution and kept for 6-8 hours for modification and washed thoroughly with ethanol followed 

by nitrogen or argon flow before any experiment.  

3.1.5 2-Phenylethane Thiol 

    A palladium substrate was immersed in an ethanolic (degassed) solution of 2-Phenylethane 

thiol (50 μM) for 2.5 h, washed thoroughly with ethanol, dried under a nitrogen flow, and used 

immediately. 
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3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

3.2.1 Introduction 

    Infrared spectroscopy has been an attractive technique for the material scientists for a long 

period of time for characterization of organic, inorganic compounds, polymers, self-assembled 

monolayers and so on. But, for any sample to be analyzed by this technique has to be IR active, 

which means the molecule must possess at least one vibrational motion that can change the 

dipole moment of the molecule in order to absorb IR radiation. These vibrational motions are 

called IR active modes. When a sample is irradiated by infrared radiation, different frequency 

of that radiation is absorbed by the sample depending upon the presence of different IR active 

modes in the sample. These IR active modes represent different structural moieties or 

functional groups within the sample and a fingerprint of those functional groups can be 

detected by their IR absorbance. 

Figure 3.1. Simplified schematic of components of FTIR instrument 
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3.2.2 Working principle & Instrumentation 

    Originally, dispersive infrared spectroscopy technique was used to irradiate different IR 

frequency separately and record corresponding IR absorbance, making it a slow process. 

Fourier Transform Infrared (FTIR) spectroscopy is an ingenious improvement over the 

ancestor technique as the entire frequency range of the IR radiation can be focused on the 

sample and resulting absorbance can be recorded, simultaneously. This makes FTIR far more 

advantageous regarding the speed and sensitivity. Modern FTIR instrument is composed of 

four vital components. IR radiation source, interferometer, detector and digital analysis setup. 

[81] IR radiation is emitted from a water-cooled IR source and enters into the interferometer 

which employs a beamsplitter to divide the original beam into two parts. These two beams 

again couple with each other at the beamsplitter, after one of them reflects from a fixed mirror 

and the other beam reflects from another movable mirror that can change its distance (order 

of few millimeters) from the beamsplitter. As a consequence, an optical path difference is 

generated among these beams, resulting interference between them. The signal of the 

recombined beam that comes out of the interferometer after the interference is called an 

“interferogram”. This is represented as a plot of beam intensity (as vertical axis) versus optical 

path difference or OPD (as horizontal axis) and is a time domain spectrum as OPD depends 

on scan-time and movable mirror velocity. An interferogram in FTIR is associated with 

recombined beams from all the frequency components, simultaneously.[81] As this IR beam 

is channelized through the sample different frequency components are absorbed by the sample 

and the residual beam is transmitted to the detector. An interferogram is then obtained from 

the detector response carrying all the spectral information in the time domain. In the digital 

analysis setup, this interferogram is converted into a frequency domain IR spectra employing 

a mathematical process called Fourier Transformation. Typical IR spectrum is represented as 
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wavenumber (reciprocal of wavelength) as the horizontal axis and corresponding absorbance 

or percentage transmittance as the vertical axis. Transmittance (T) is defined as the ratio of 

transmitted beam intensity (I) and incident beam intensity (I0), whereas, Absorbance (A) is 

expressed as the logarithm of the reciprocal of transmittance. 

𝐴 = log10(1/𝑇) = − log10 𝑇 = −log10(𝐼/𝐼0) 

3.2.3 Experimental 

    FTIR spectrum of the pure powder sample of reader molecule and SAM over palladium 

substrate were recorded and compared to test the functionalization. A Nicolet 6700 FT-IR 

instrument from Thermo Electron Corporation, combined with an MCT detector was used 

for the purpose. But different accessories were required for pure powder and organic thin film 

samples due to their obvious difference in physical properties.  

Smart Orbit 

    Smart Orbit, a single reflection diamond ATR (Attenuated Total Reflection) accessory was 

used to record spectrum for pure powder samples. An ATR crystal is made of highly dense 

material and has a high value of refractive index. IR beam with an incident angle larger than 

the critical angle gives total internal reflection and generates an evanescent wave that comes 

into the contact with the sample (figure 3.2.A)[82]. The sample absorbs energy from the 

Figure 3.2. IR beam path for (a) single bounce ATR and (b) Specular reflectance 

A B 
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evanescent wave according to the presence of active vibrational modes present in it and results 

in attenuation of energy in the wave. This attenuated IR beam is then directed to the detector 

and interferogram is generated, followed by its conversion to FTIR spectrum.[83] Befor the 

collection of the powder sample data, a background run was performed each time after 

cleaning the sample stage properly with methanol. Then approximately 0.5 mg sample was 

mounted on the sample stage and spectrum was recorded with 128 scans at 4 cm-1 resolution. 

Smart SAGA 

    FTIR of SAM samples were obtained using SAGA (Specular Apertured Grazing Angle) 

accessory which relies on the principle of “specular reflectance”. In this technique, a high angle 

of incidence is maintained (80° with respect to surface normal) to create a long traveling path 

for the IR beam through the sample, (figure 3.2.B)[82] resulting very high sensitivity.[83] Use 

of integrated germanium polarizer also boosts the sensitivity as it reduces the S-polarized light 

which is generally responsible for diminishing sensitivity of spectral data. During spectrum 

recording, SAM samples were laid upside down over a circular pore with a diameter of 8 mm, 

which acts as the active specimen area for interaction with the IR beam. A clean bare palladium 

substrate (from the same batch that we used for SAM preparation) was used to collect 

background spectrum, prior to measuring any SAM sample. 256 scans and 4 cm-1 resolution 

was maintained during each spectrum collection. OMNIC program was used for smoothing 

and baseline correction of the recorded spectrum. 

3.2.4 Result 

Imidazole 
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The vibration around 3300 cm-1 is assigned to N-H stretching, 1690 cm-1 to C=O stretching 

and ~2920 cm-1 to aliphatic C-H stretching from methylene group. 

Benzimidazole 

    The vibration around 3300 cm-1 is assigned to N-H stretching and 1690 cm-1 to C=O 

stretching. 

 

Triazole 

Figure 3.3. FTIR spectrum of Imidazole (a) powder sample and (b) SAM on Pd 

Figure 3.4. FTIR spectrum of Benzimidazole (a) powder sample and (b) SAM on Pd 
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    The vibration around 3400 cm-1 is assigned to N-H stretching, 1690 cm-1 C=O stretching 

and ~2920 cm-1 aliphatic C-H stretching from methylene group. 

Pyrrole 

    The vibration around 1690 cm-1 is assigned to C=O stretching and ~2925 cm-1 to aliphatic 

C-H stretching from methylene group, and 2560 cm-1 S-H stretching, which is absent in SAM 

spectrum.  

 
Figure 3.6. FTIR spectrum of Pyrrole (a) powder sample and (b) SAM on Pd 

Figure 3.5. FTIR spectrum of Triazole (a) powder sample and (b) SAM on Pd 
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Pyrene 

The vibration around 3040 cm-1 is assigned to aromatic C-H stretching, 1600 cm-1 aromatic 

C-C stretching, ~2925 cm-1 aliphatic C-H stretching from methylene group, and 2564 cm-1 

S-H stretching, which is absent in SAM spectrum. 

2-Phenylethane Thiol 

    The vibration around 3020 cm-1 is assigned to aromatic C-H stretching, ~1600 cm-1 

Figure 3.7. FTIR spectrum of Pyrene (a) powder sample and (b) SAM on Pd 

Figure 3.8. FTIR spectrum of 2-Phenylethane thiol (a) powder sample and (b)SAM on 

Pd 
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aromatic C-C stretching, ~2930 cm-1 aliphatic C-H stretching from methylene group, and 

2568 cm-1 S-H stretching, which is absent in the SAM spectrum. 

3.3 Thickness: Ellipsometry 

    Ellipsometry is a popular technique that measures optical constants and thickness of thin 

films with thickness ranging from several microns to sub-nanometer. It is a non-contact and 

non-destructive method and as a result, can be applied to various kinds of samples like metals, 

semiconductor, dielectrics, polymers, organic films and so on.  The related working principle 

relies on detecting the shift of polarization of polarized light after its reflection and/or 

refraction from the sample. The polarization change is interpreted by a couple of variables 

known as amplitude ratio (ψ) and phase difference (Δ). Hence, other surface properties such 

Figure 3.9. Polarization of light. 
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as roughness, crystallinity, doping concentration, etc. that can affect optical response can also 

be evaluated by Ellipsometry.  

3.3.1 Introduction & Working principle 

Light is a combination of electric and magnetic waves fluctuating perpendicular to each other 

and also perpendicular to the direction of propagation of light. But, the polarization state of 

light is dictated by the electric field only.  If the electric field vector oscillates in a straight line 

with respect to time on a plane that is perpendicular to the direction of propagation of light, 

we call it a linearly polarized light. An electric wave can also be added to another electric wave 

that is perpendicular to the original wave, generating a new resultant wave with new 

polarization state.  When an electric wave is joined in-phase (nπ) by another wave, a linear 

polarization state is obtained with a shift in orientation. In the case of two equal amplitude 

waves merging completely out-of-phase (nπ/2) a circular polarization results. But, for two 

waves with different amplitudes and/or arbitrary phase difference (in between nπ and nπ/2) 

we obtain an elliptical polarization. This is the resultant polarization state that is obtained in 

Figure 3.10. Propagation and polarization of light wave during Ellipsometry. 
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Ellipsometer when the linearly polarized incident light is transformed after reflection and 

transmittance from the sample. Hence, the technique is named as Ellipsometry. The 

component of light that oscillates in the plane of incident is called p-polarized light and the 

component oscillating perpendicular is termed as s-polarized light. When light incident on the 

sample these two components are in phase and overall polarization state is linear. But, this 

two components reflect differently from the sample and results elliptical polarization (figure 

3.9).[84] This difference is represented as complex reflection ratio. 

Rp

Rs
= tanψ exp(iΔ) 

    tanψ represents the ratio of the modulus and Δ dictates the change in phase of p- and s- 

polarized light (figure 3.10[85] & 3.11[84]).  

Figure 3.11. Simplified schematic of Spectroscopic Ellisometry. 
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    A light source with a wavelength ranging from UV to IR can be used. Randomly polarized 

light comes out of the source and pass through a rotating polarizer that allows waves with p- 

and s-polarized states only. After reflection from the sample and consequent transition to 

elliptical polarization, the light beam again passes through a rotating analyzer which again 

separates linearly polarized waves having different orientations. The orientations of linearly 

polarized waves depend on the instantaneous orientation of the rotating analyzer. The light 

coming out of the analyzer is then collected by the detector and electrical signal is generated 

corresponding to amplitude ratio (ψ) and phase difference (Δ). ψ and Δ are functions of 

wavelength. Hence, they should always be reported along with the specific wavelength of light 

in use. These measured values of ψ and Δ are then used by an inbuilt model to determine 

important physical properties like thickness, optical constants, surface roughness, etc. Optical 

models are constructed by expected thickness of the film, complex refractive index, 𝑛` = 𝑛 +

𝑖𝑘 (n is the refractive index and k is the extinction coefficient) and complex dielectric constant, 

𝜀` =  𝜀1 + 𝜀2   (𝑛`2 =𝜀`). ψ and Δ are then calculated theoretically employing the model and 

compared with the experimentally obtained data. Regression analysis is used to fit the data 

changing the parameters of the optical model and the process is continued until a good fit is 

obtained. 

3.3.2 Experimental 

    LSE STOKES Ellipsometer (GAERTNER Scientific Corporation) was used for measuring 

the thickness of SAMs of different reader molecules on palladium substrates. Prior to the 

modification, bare metal substrates were cleaned by hydrogen flame annealing, followed by 

the determination of ellipsometric parameters (n & k), which were required for measurement 

of SAM thickness. A HeNe laser with a characteristic wavelength of 632.8 nm and incident 
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angle of 70° was maintained in the instrument. The refractive index of the organic SAM layer 

was set to 1.46 during thickness measurement. For each substrate, 5-7 measurements were 

taken at different locations on the substrate and values of the thickness were averaged out.  

3.3.3 Result 

    Experimentally obtained thickness of different monolayers are summarized in table 3.1. and 

molecular lengths of reader molecules in their free optimized state were calculated using 

SPARTAN and given in figure 3.14. for a preliminary comparison (though both must be 

somewhat different from each other for various reasons).  

Table 3.1. Measured thickness of SAMs formed by different reader molecules using 

Ellipsometry 

Name of the Reader Thickness by Ellipsometry 

(Å) 

Figure 3.12. Calculated length of four recognition molecules (ICA=Imidazole, 

TCA=Triazole, PCA=Pyrrole & BCA=Benzimidazole) by SPARTAN 
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Imidazole 7.6 ± 1.2 

Benzimidazole 8.1 ± 1.2 

Triazole 8.4 ± 1.3 

Pyrrole 9.1 ± 0.8 

Pyrene 8.6 ± 0.6 

2-Phenylethane Thiol 5.6 ± 0.9 

 

3.4 X-Ray Photoelectron Spectroscopy 

3.4.5 Introduction & Working Principle 

    In X-ray Photoelectron Spectroscopy (XPS), a beam of X-ray is utilized to irradiate a 

particular material and from the spectroscopic characteristic of the emitted photoelectrons, 

chemical identity and elemental electronic states of the sample is determined. XPS is also 

known as Electron Spectroscopy for Chemical Analysis (ESCA) due to its ability to resolve 

elemental composition and empirical chemical formula. XPS is a very popular surface analysis 

technique due to its sensitivity depth, which is limited to only about 10 nm from the top of 

the surface. A very high vacuum (10-9 torr) is maintained which results exceedingly long (30-

40 km) mean free path of emitted photoelectrons so that the electrons can travel to the 

detector without any inelastic collisions.[86]  The process starts with the incident of a photon 

with energy hν on the sample and consequent ejection of electrons from the core-shell of 

atoms. These electrons, known as photo-electrons, are removed to the vacuum level with a 

certain amount of kinetic energy. Now, as a consequence of hole formation in the core level, 

a higher level electron with higher energy comes down to lower energy core level and acquire 
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the hole with releasing the excess energy. This excess energy is often absorbed by some higher 

level electrons and emitted to vacuum as Auger-electrons. Hence, for Auger-electrons its 

kinetic energy depends only on the binding energy difference of the involved levels and 

independent of applied X-ray photon energy. But, in the case of photo-electrons, kinetic 

energy (KE) depends on the energy of the incident photon, binding energy (BE) of core level 

and also on the work function of the sample (φ). So, kinetic energy of photoelectrons can be 

expressed as 

𝐾𝐸(𝑝ℎ𝑜𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛) = ℎ𝜈 − 𝐵𝐸(𝑐𝑜𝑟𝑒 𝑙𝑒𝑣𝑒𝑙) − 𝜙(𝑠𝑎𝑚𝑝𝑙𝑒) 

   Therefore, having the knowledge of hν, φ and BE elemental detection can be done from the 

value of kinetic energy of the photo-electrons (figure 3.13) [87]. A monochromatic X-ray beam 

is required, otherwise, from a definite core level, photo-electrons with a variety of kinetic 

energy will reach the detector and assignment of elements or electronic states will be difficult. 

Figure 3.13. Working principle, instrumentation and sample XPS spectra  
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Surface sensitivity of XPS can be indicated by a property called “Sampling Depth”. It is 

defined as the depth from which 95% of all photo-electrons are scattered as they reach the 

surface and information can be obtained from these electrons.  Sampling depth depends on 

the mean-free-path of incident X-ray radiation (λ) and equals to 3λ for a definite XPS 

instrument. AlKα is the most popular X-ray source and has λ value in the range of 1-3.5 nm. 

Hence, for this condition sampling depth is in the range 3-10nm. 

3.4.6 Instrumentation 

   The X-ray beam is generated from a monochromatic source and irradiated on the sample. 

Then the ejected photo-electrons are collected by electron energy analyzer system and 

channelized to the electron-detector. The analyzer is a concentric hemispherical analyzer that 

is maintained at a certain bias to capture electrons with definite energy range. 

3.4.7 Experimental 

    VG ESCALAB 220i-XL photoelectron spectrometer with Al-Kα radiation (15keV) at 6 x 

10E-10 mbar base pressure was used to record X-ray photoelectron spectra of both powder 

samples and SAMs on Pd substrates. C(1s), Pd(3d), N(1s) and S(2p) core level spectra were 

recorded at a pass energy of 20 eV and wide scan spectra were obtained at a pass energy of 

150 eV. For determination of monolayer thickness, Angle-resolved XPS (ARXPS) was applied, 

where the thickness was measured three times on the same sample at three different angles of 

the incident energy beam. Tanuma Powell Penn 2M model was used for thickness calculation. 

Density data of different universal readers was required for thickness measurement and was 

calculated using Chemsketch program.  
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3.4.8 Result 

Table 3.2. Expected and measured elemental ratio of SAMs formed by different reader 

molecules using XPS 

 

Reader Atom % in XPS Ratio in XPS Expected ratio 

Imidazole S 5.17% 1 1 

C 26.77% 5.2 6 

N 12.22% 2.4 3 

Benzimidazole S 1.51 1 1 

C 25.7 17.02 9 

N 5.53 3.67 2 

Triazole S 5.52 1 1 

C 26.90 4.87 5 

N 20.71 3.75 4 

Pyrrole S 4.22 1 1 

C 30.93 7.33 7 

N 11.67 2.76 2 

 

3.9 Angle-Resolved X-Ray Photoemission Spectroscopy (ARXPS) 

    ARXPS is a depth profiling technique that is popularly used to determine the thickness of 

organic self-assembled monolayers on metal substrates. In this process, emitted 

photoelectrons are collected at various angles to the sample surface. Therefore, electrons are 
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detected coming from a different depth of the sample (figure 3.14).[86] The technique 

undergoes by stepwise tilting of the sample with respect to the kinetic energy analyzer. Surface 

sensitivity increases with increasing tilt angle with respect to the surface normal. ARXPS is 

advantageous over the sputtering process for thickness measurement due to its non-

destructive nature. 

3.9.1 Result 

    Thickness values obtained from ARXPS are summarized in table 3.3. and calculated density 

of the reader molecules using CHEMSKETCH, required for ARXPS study, are listed in table 

3.4. ARXPS thickness values are little higher compare to thickness obtained from 

Figure 3.14. Working principle of ARXPS 
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Ellipsometry. This can be attributed to the calculated density data, which may not be very 

accurate due to the use of a basic level program.  

Table 3.3. Measured thickness of SAMs formed by different reader molecules using Angle 

Resolved XPS 

Name of the Reader Thickness by ARXPS (Å) 

Imidazole 10.5 ± 1.3 

Benzimidazole 10.2 ± 1.9 

Triazole 12.6 ± 0.7 

Pyrrole 12.3 ± 1.8 

Pyrene 7.8 ± 0.4 

 

Table 3.4. Calculated density of different pure reader samples, required for thickness 

measurements of SAMs using Angle-Resolved XPS 

Reader Density (gm/cc) [calculated 

using Chemsketch] 

Imidazole 1.35 ± 0.06 

Benzimidazole 1.53 ± 0.06 

Triazole 1.44 ± 0.06 

Pyrrole 1.30 ± 0.10 

Pyrene 1.26 ± 0.06 
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3.10 Water Contact Angle Measurement  

    Contact angle measurement is a very popular technique to characterize surface coating.  The 

value of water contact angle on a surface indicates the hydrophilicity or hydrophobicity of the 

material.  

3.10.1 Introduction & Working Principle 

    Liquid contact angle (θc) for a liquid droplet on a solid surface is defined as the angle 

between the solid-liquid interface and liquid-vapor interface. It also can be described as the 

angle between the solid surface and the tangent drawn through the liquid from the contact 

point of the solid, liquid and vapor phase together (figure 3.15). For a liquid droplet, 

thermodynamics between the three phases can be explained by Young equation as follows, 

γSG = γLG cosθc + γSL 

Figure 3.15. Definition  of Contact Angle 
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where, γSG = Interfacial tension between solid and vapor, γLG = Interfacial tension between 

liquid and vapor, γSL = Interfacial tension between solid and liquid figure 3.15).[88] Generally, 

contact angles are measured by computer program from a two-dimensional image recorded 

by a CCD camera. In a common contact angle measurement instrument, all these components 

are integrated together with the movable (required for focusing by the camera) sample stage 

and LED light (for illuminating the droplet). 

3.10.2 Experimental 

    Water contact angles were measured for hydrogen annealed palladium substrate prior to 

SAM formation and for functionalized substrate after SAM formation using an Easydrop 

Drop Shape Analysis System (KRȔSS GmbH, Hamburg). The volume of each water droplet 

for static contact angle measurements was 1 µL. 5-6 measurements were taken at different 

locations of the each functionalized and unfunctionalized palladium substrates.  

3.10.3 Result 

    All contact angle values are listed in table 3.5. Bare hydrogen flame annealed palladium 

substrate showed a contact angle value of 8°-10°. The SAMs with amide group and azole 

moiety are hydrophilic and give a value in the range 30°-40°, whereas Pyrene and 2-PET SAMs 

are hydrophobic, as expected due to the presence of only hydrocarbon functionalities. 

Table 3.5. Values of water contact angle of SAMs formed by different reader molecules 

 

Name of the Reader Water Contact Angle (°) 

Imidazole 33.1 ± 5.1 
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Benzimidazole 39.3 ± 4.2 

Triazole 35.7 ± 4.0 

Pyrrole 40.3 ± 2.8 

Pyrene 67.8 ± 4.5 

2-Phenylethane Thiol 79.5 ± 4.1 
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CHAPTER 4 

RECOGNITION TUNNELING OF AMINO ACIDS EMPLOYING HYDROGEN 

BONDING 

 

4.1 Introduction 

    In this project, we showed that single amino acids can be identified by trapping the 

molecules between two electrodes that are coated with a single layer of sensor molecules, then 

measuring the electron tunneling current across the Scanning Tunneling Microscope 

junction. A given molecule can bind in more than one ways in the junction and we, therefore, 

use a machine-learning algorithm to distinguish between the sets of electronic ‘fingerprints’ 

Figure 4.1. Naturally occuring amino acids and their three letter codes 
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associated with each binding motif. This technique is known as “recognition tunneling” 

(described in chapter 1) and can distinguish two isobaric amino acids, a pair of D and L 

enantiomers and a methylated amino acid from its non-methylated analogue. Along with 

different binding motifs, different dipole moment vector is also responsible for generating 

‘electronic fingerprints’ (figure 4.2.) for the corresponding analyte. Short peptide chains also 

can be identified.[89] The results suggest that direct electronic sequencing of single proteins 

could be possible by sequentially measuring the products of exopeptidase digestion, or by 

using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. 

 

 

Figure 4.2. Optimized binding orientation of L-Asn in the STM nano-gap 
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4.2 Experimental 

4.2.1 Preparation of Analytical Solutions 

    Amino acids were obtained from Sigma Aldrich (98% purity) and dissolved in 1 mM 

phosphate buffer (pH 7.4), made using water from a Milli-Q system with specific resistance 

of 18 milliohm-cm and total organic carbon contamination below 5 ppb. Peptides were 

obtained from CPC Scientific and solutions prepared as for the amino acids.[89] 

4.2.2 RT Experiment 

    We used two different PicoSPMs (Agilent Technologies) equipped with custom LabView 

interfaces for data acquisition. Tunnel current was sampled at 50 kHz. The -3 dB bandwidth 

of the current-to-voltage converter was 7 kHz, but useful signals were obtained out to the 

Nyquist limit of 25 kHz after correction for the instrumental response. The liquid cells were 

cleaned in Piranha (note: these solutions are potentially explosive and must be handled with 

extreme care) and rinsed with Milli-Q water and ethanol. The current set point was set to 4 

pA with 0.5 V bias applied (probe positive, as this results in less leakage) and the probe 

approached with integral and proportional gains set to 1.0. The surface was scanned to ensure 

that the grain structure of the Pd was clearly visible. The microscope was left to stabilize for 

Figure 4.3. Typical signal trace from (a) control and (b) Arg tunneling experiment 
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at least 2 h before signals were recorded, and the integral and proportional gains were then 

reduced to 0.1. The control (1.0 mM phosphate buffer at pH 7.4) was run before an amino-

acid solution was measured. Recordings were distorted by movement of the Z transducer 

during runs in which a series of high-amplitude spikes were recorded, but this artifact was 

common to all analytes and incorporated into the training of the SVM. We used different 

batches of substrates and probes for each run, usually recording four runs for each analyte. 

We also alternated measurements between different instruments. In this way, the influence of 

small changes in experimental conditions could be removed from the final analysis.[89] 

4.3 SVM Analysis 

Complete SVM data analysis process is described in chapter 8.  

4.4 Result & Discussion 

    Figure 4.3.a. shows tunnel current-time trace is clean with only phosphate buffer in the 

tunnel junction and after adding amino acid solution (Arg in figure 4.3.b.) in the junction ample 

of tunnel current spikes are generated. Following the same experimental procedure, control 

experiments are performed before measuring tunneling data for each amino acid. Typical 

tunneling current vs time data traces are showed for L-Asn (figure 4.4.a.), D-Asn (figure 4.4.b.), 

Figure 4.4. Typical signal trace from (a) L-Asn and (b) D-Asn 
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Gly (figure 4.5.a.), m-Gly (figure 4.4.b.), Leu (figure 4.6.a.) and Ile (figure 4.4.b.).[89] For 

complete data analysis by SVM, four data sets of each of these above mentioned amino acids 

are obtained. In addition, all twenty naturally occurring amino acids (figure 4.1.) and multiple 

small peptides have been tested to obtain recognition tunneling signals. I have contributed in 

the probe preparation, substrate fabrication and the recognition tunneling experiments of 

multiple amino acids. All twenty naturally amino acids showed recognition tunneling signals, 

though tryptophan and tyrosine required higher current set-point (6 pA & 10 pA, respectively, 

instead of 4pA).  

Figure 4.5. Typical signal trace from (a) Gly and (b) m-Gly 

a b

Figure 4.6. Typical signal trace from (a) Leu and (b) Ile 

 

b a 
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Figure 4.7. Signal features identify analytes. a, Peak amplitudes are exponentially 

distributed so provide little discrimination. Assigning the larger spikes to mGly (red curve) 

yields an accuracy (P=0.58) only slightly better than random (0.5). b,c, Particular Fourier 

components of the clusters show more separation, producing 74% (b) and 67% ( c) 

accuracies if called solely on the more probable value of the feature. The way in which 

these Fourier components reflect peak shapes in a cluster is illustrated by the signal traces 

inset in b and c, each trace having the feature value indicated. The high amplitude of high-

frequency components of the mGly signals (inset in c) is evident in the sharper spikes. 

Accuracy improves when multiple features are used together. d, Two-dimensional plot of 

probability density as a function of the two FFT feature values. The colour scale shows 

mGly data points as red and Leu points as green. Calling all the spikes with pairs of feature 

values that fall in the green regions as Leu and all the spikes with pairs of features that fall 

in the red regions as mGly produces a correct call 95% of the time. Only the yellow regions 

yield ambiguous calls. 
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We tried to differentiate the amino acids from their corresponding peak amplitudes, but the 

Figure 4.8. Closely related pairs of analytes can be significantly separated (>80%) using 

just two signal features together. All data are for pure solutions of one analyte. a–i, Chiral 

enantiomers D-Asn and L-Asn (a–c), Gly and mGly (d–f) and the isobaric isomers Leu and 

Ile (g–i) are quite well separated in two dimensional probability density maps (c,f,i), even 

when the distributions of any one signal feature are almost completely overlapped in one 

dimension (a,b,d,e,g,h). The two-dimensional maps plot probability densities for the analyte 

pairs as a function of both features, which, by themselves, produce separations only a little 

above random (0.51 to 0.64). Probabilities of making a correct call based on the probability 

densities are marked on c, f and i 
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distributions are so much overlapped that significant level of identification of individual amino 

acids appears to be difficult. Figure 4.7.a. represents average cluster amplitude distribution of 

m-Gly and Leu, indicating minimum amino acid identity can be revealed from this. But, as 

we consider a couple of frequency components (spectral domain features) of the same cluster 

data (figure 4.7.b. & 4.7.c.) moderate level (~0.7) of analyte differentiation probability can be 

achieved. Now, as we combine these pair of one-dimensional histograms and plot a two-

dimensional histogram a dramatically high data separation probability is obtained. Figure 4.7.d. 

Figure 4.9. Signal trace for Arg, colour-coded according to the peak assignments made by 

a machine learning algorithm (green, correct; red, wrong call; black, ‘water peak’; yellow, 

common to all amino acids). The red bars at the bottom mark signal clusters generated by 

a particular single-molecule binding event 
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shows m-Gly and Leu can be categorized with a significantly high probability of 0.95 where 

m-Gly and Leu data points clustered in the red and green colored areas on the diagram. The 

yellow patches represent overlapped data of the two amino acids. This is a proof of Cover’s 

theorem, which states that this kind of data separability improves in higher dimensions. Similar 

two-dimensional analysis to classify between L-Asn and D-Asn (enantiomeric pair), Leu and 

Ile (isobaric pair) and Gly and m-Gly (methylated analogue) produce minimum data 

classification probability of 0.8 (figure 4.8.). [89] 

    Instead of only two, when more signal features (say N) are used analyte separability reaches 

close to 100% in an N-1 dimensional hyperplane. Similarly, more than two amino acids (seven, 

in our case) are classified as it was done for a pair of amino acids. In this case, any one of the 

amino acids is classified individually from rest of the amino acids using a common data pool. 

    Signal spikes common to different analytes and rare spikes from control experiments (water 

signals) are identified as noise spikes during training the SVM and excluded during analysis. 

This obviously increases the accuracy of separation between the analytes. Figure 4.9. explains 

this in a color-coded sample tunnel current vs. time data train of Arg. SVM accurately calls the 

green spikes as Arg but give a wrong call (call it other than Arg) on the red spikes. Black and 

yellow spikes are identified as water signal and common noise spikes from all amino acids, 

respectively. The red bars under the signal train indicate different clusters corresponding to 

Table 4.1. Percentage accuracies of all seven amino acids 
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different binding events. Table 4.1. summarized the individual calling accuracies achieved after 

SVM analysis for seven amino acids that were previously mentioned. Separation accuracies in 

the order of 96-97% are obtained when single signal spikes have been used for the analysis. 

But, if majority voting is used for any three or five signal spikes from different signal clusters, 

calling accuracies reaches extremely close to 100%. 

    Mixtures of analytes are tested with recognition tunneling, also. Data for different 

concentration ratio of L-Asn and D-Asn mixtures are recorded and analyzed by SVM. It 

assigns all spikes in a cluster to only one amino acid and proves that each cluster corresponds 

to a single amino acid binding event inside the tunnel gap (figure 4.10.).[89] Though accurate 

analyte ratio could not be measured by SVM as the generation of clusters mostly depends on 

the diffusion of the amino acid molecules inside the nanogap, which may not be homogeneous 

for different amino acids. Hence, the number of clusters is not simply proportional to the 

number of analyte molecules in the system. Besides, different analyte has different binding 

strength and interaction with the recognition molecule. As a consequence, stronger binding is 

Figure 4.10. Data train obtained from a L-Asn and D-Asn mixture and analyzed by SVM 
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expected to produce longer cluster and generates more spikes than that in a short-lived cluster 

from a weaker binding.  So, the number of spikes do not indicate the amino acid ratio either. 

[89] 

4.5 Conclusion 

    Recognition tunneling (RT) can be used as a single molecular spectroscopy for recognizing 

different molecular classes. Its ability to differentiate between isobaric, enantiomeric molecules 

presents a great advantage over some other popular molecular recognition techniques (for 

example mass spectroscopy). All twenty naturally occurring amino acids generates signals in 

RT experiments. Also, isobaric amino acids and enantiomeric amino acids can be 

differentiated from each other with extremely high accuracy. All these provides a huge promise 

for single-molecule nanopore sequencer for peptide analysis employing RT.  
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CHAPTER 5 

RECOGNITION TUNNELING OF DNA NUCLEOSIDE MONOPHOSPHATES 

EMPLOYING HYDROGEN BONDING 

 

5.1 Introduction 

    To read DNA bases more accurately, we have synthesized a series of nitrogen-based 

heterocycles to examine their capabilities to interact with naturally occurring DNA 

nucleobases by hydrogen bonding in nanogaps. These recognition molecules are 

Benzimidazole (Bi), Imidazole (I), Triazole (T) and Pyrrole (P). The chemistry of complex 

formation in aqueous solution was studied by electrospray ionization mass spectrometry (ESI-

MS). The study shows strong 1:1 complex and weak 2:1 complex between one and two reading 

molecules respectively with one DNA base. All these reader molecules are able to recognize 

four DNA monophosphates with an accuracy over 90%, except Pyrrole reader. Benzimidazole 

reader shows the highest base calling accuracy compared to other three molecules. [90]  

    Electron tunneling between two electrodes spaced by a nanometers gap has been proposed 

as a mechanism to read DNA bases, [91], and much progress has been made in this field. [92] 

When a single stranded DNA pass through an electrode nanogap embedded in a solid-state 

nanopore, the interactions of an individual DNA base with the electrodes should result in 

changes in the tunneling currents (illustrated in Figure 5.1.A). The tunneling current is highly 

sensitive to changes in distance (~ an order of magnitude per 0.1 nm) and the distance between 

two adjacent bases in a single stranded DNA is ~ 4 Å. So, the tunneling measurement should 

provide a highly spatial resolved method for readout of DNA sequences. It has been 
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reported that nucleoside monophosphates and oligonucleotides can generate tunneling signals 

in a 0.8 nm nanogap,[93] but they overlapped one another. We rationalize that when two 

Figure 5.1. Cartoon illustrating (A) A tunneling device embedded in a nanopore to read 

DNA bases when they sequentially translocate through the nanopore; (B) Recognition 

interactions in the nano-gap where read molecules (universal reader) attached to the 

electrodes catch a DNA base by forming a hydrogen bonding complex and escalate electronic 

signals. 
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electrodes are functionalized with recognition molecules that can capture a DNA base to form 

a tunneling junction (Figure 5.1.B) [90], it allows the electrons to pass through the nanogap 

more efficiently and create electrical signals related to the particular DNA base. All of the 

DNA bases have their different chemical structures so that they can form distinguishable 

tunneling junctions, resulting in unique signatures for their identification. We call this method 

sequencing by recognition tunneling.[60] This approach should increase chemical sensitivity 

and specificity of a tunneling nanogap in the detection of individual DNA bases. For the 

recognition tunneling, a recognition molecule that can form complexes with the naturally 

occurring DNA base in the nanogap is critical. Previously, we designed 1-H-Imidazole-2-

carboxamide (I) as a universal reader.[94] It can form hydrogen-bonded triplets with DNA 

bases in the nanogap when attached to electrodes through a short carbon chain, as illustrate 

in figure 5.1.B. Our data show that I can recognize all of the DNA bases, but it only reach ~ 

80% accuracy for each DNA base on average. [76] That leaves room for us to improve 

chemically the molecular recognition. In this project, we put our efforts in developing new 

reader molecules to increase the reading accuracy. [90] 

5.2 Molecular Principles for Design of Universal Readers.  

    Our initial work on developing a universal reader began with benzamide (B) (Figure 5.2) 

[90] because the majority of hydrogen bonding motifs existing in DNA bases are a form of 

donor and acceptor alternation so that the amide group is a suitable moiety for the recognition 

interactions. Our data show that the benzamide moiety reads DNA base A, C, G, and 

methylated C but T. This prompted us to design and synthesize the first generation of reader 

molecule, 1H-imidazole-2-carboxamide (I), that contains more hydrogen bonding sites and a 

flexible linker, and we found out that it recognized all the DNA bases in nanogaps. Our data 
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indicates that the imidazole molecule has reached ~ 80% accuracy in identification of the five 

DNA bases, much higher than the random sampling (~ 20%). Thus, the imidazole-2-

carboxamide provides us a framework on which we can build a true universal reader. We have 

created three candidates of the universal reader by fine-tuning the chemical structure of the 

imidazole ring (Figure 5.2). [90] First one is 1-(2-Mercaptoethyl)-1H-pyrrole-3-carboxamide 

(P), the pyrrole ring of which has higher π electron densities on the aromatic carbons than the 

imidazole ring. The second one is 5-mercapto-1H-benzo[d]imidazole-2-carboxamide (Bi) that 

extends the π system of the imidazole ring and is more rigid, and third one is 3-(2-

mercaptoethyl)-1H-1,2,4-triazole-5-carboxamide (R) that has one more hydrogen bonding 

sites than imidazole. By studying these molecules, we should have more insights into effects 

of chemical structures on recognition of DNA bases. It should be noted that each of these 

molecules is connected with a thiol function either through a two-carbon chain or itsequivalent 

Figure 5.2. Different Universal reader candidates derived from the imidazole-2-carboxamide 

molecule 
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in length (see Bi in Figure 2 where the thiol is placed at a position of two carbon-carbon bonds 

away from the imidazole ring as drawn in red) for their attachment to electrodes. 

5.3 Experimental 

5.3.1 Preparation of Analytical Solutions 

    DNA monophosphates were obtained from Sigma Aldrich as sodium salts and dissolved in 

1 mM phosphate buffer (pH 7.4), made using water from a Milli-Q system with total organic 

carbon contamination below 5 ppb. 

5.3.2 RT Experiment 

    In a typical RT experiment, the measurement followed a process of mounting the 

functionalized Pd-STM probe and Pd-substrate to a PicoSPM scanning tunneling microscope, 

stabilizing the tunnel junction in a phosphate buffer (1.0 mM, 7.4 pH) until a clean baseline 

 

Figure 5.3. Schematic of Recognition tunneling typical control trace, signal cluster and signal 

spike 

 

Figure 5.4. Signal clusters for different DNA monophosphates with different universal 

readers at 4 pA set-point current and 500 mV probe bias
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was generated (~ 2 h), introducing an analyte solution (typically 100 M in 1.0 mM phosphate 

buffer, pH 7.4) to the liquid cell, and collecting current recordings under a predefined tip-

Figure 5.4. Signal clusters for different DNA monophosphates with different universal 

readers at 4 pA set-point current and 500 mV probe bias 

 



83 
 

substrate bias. Four naturally occurring DNA nucleoside monophosphates (dAMP, dCMP, 

dGMP and dTMP) were used as analytes. For each analyte, four separate experiments were 

run with freshly made probes, substrates, and samples. We used different batches of substrates 

and probes for each run, usually recording four runs for each analyte. We also alternated 

measurements between different instruments. In this way, the influence of small changes in 

experimental conditions could be removed from the final analysis. 

5.4 Result & Discussion 

   We have used Scanning Tunneling Microscope (STM) to create the nanogaps for studies of 

recognition tunneling (RT). In a typical RT experiment, for example, a tunneling current was 

set at 4 pA with a voltage bias of 0.5 V, which corresponded to a nanogap of ~ 2.4 nm distance. 

[95] Most of the readers gave better DNA monophosphate separation at 4pA set point 

compare to 2pA set point in STM. For all of the readers with 2pA set point, the level of 

separation is around 90%, which goes up to around 95% or more in case of 4pA set point. 
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This information concludes that a nanogap with 4pA set point gives optimum dimension. We 

propose that gap at 4 pA provides bridging conformations that are much different from each 

Figure 5.4. Signal clusters for different DNA monophosphates with different universal 

readers at 4 pA set-point current and 500 mV probe bias 

 

Figure 5.5. Different 1D histograms used to plot the best 2D histograms obtained for 

Imidazole reader to compare any two DNA monophosphates 
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other. Whereas at 2 pA the gap is so big that the bridging interactions with different DNA 

monophosphates have less differentiating features from each other. Four data sets for each 

DNA monophosphates were obtained at both 2 pA and 4 pA current set-point. But, I will 

describe mostly the result obtained at 4 pA as this is a proven better condition for RT 

experiments, providing better DNA recognition. Typical traces of data train of DNA 

monophosphate RT experiments with different reader molecules at 4pA current set-point in 

shown in figure 5.4. [90] 

    The servo on setting of the STM during RT experiment was a proven disadvantage for our 

DNA monophosphate separation purpose on the basis of tunnel current amplitude of 

different DNA monophosphates. The servo helps the instrument to maintain a fixed passage 

Figure 5.6. Highest obtained accuracies from 2D histogram for Imidazole Reader 
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of tunnel current between the source and drain. As a consequence, the nanogap in STM 

junction keeps changing its dimension as a function of different bridging conformation of 

reader molecules and analytes. Hence, tunnel current produced by different DNA 

monophosphates give a broad distribution, eventually. 

    Support Vector Machine (SVM) used various features associated with the spikes and 

clusters of different analytes to perform a classification. Various signal features were used for 

this purpose. FFT, cepstrum (Cepstrum is defined as inverse Fourier transformation of the 

log-magnitude of the Fourier spectrum) component of spike amplitude and so on. The goal is 
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to separate different analytes from each other with a high accuracy. We compared the base 

separation achieved by different universal readers at 4 pA set. Figure 5.5 summarizes different 

one-dimensional histograms used to plot the best two-dimensional histograms obtained for 

Imidazole reader to compare any two DNA monophosphates. As it can be seen that for any 

two DNA monophosphates they are mostly overlapped, giving a separation probability just 

Figure 5.8. Number of signal features introduced vs training accuracy, individual DNA base 

calling accuracy and average DNA base calling accuracy plot of different Readers 
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over random (0.5). Hence, the two-dimensional histograms are not well separated either, but 

separation probability increases to ~0.7, which is much better compare to using single signal 

feature. Two-dimensional histograms of other readers can be obtained similarly from their 

corresponding one-dimensional plots. This is an illustration of covers theorem showing that 

accuracy in pattern recognition increases with number of dimensions, which represents the 

number of signal features in our SVM analysis process. In two-dimensional separation, 

different reader molecules perform adequately, showing a moderate separation probability of 

~0.7. Triazole reader gives a better performance compare to others producing a value of ~0.8 

(figure 5.7). [90] 

    We compared the base separation achieved by different universal readers at 4pA set point 

with the help of more signal features. Benzimidazolezole reader clearly stands out as the best 

option to call all of the nucleoside monophosphates with high accuracy, whereas Pyrrole 

reader could not reach even 90% calling accuracy (89%). This could be explained by the lack 

of hydrogen bonding sites on Pyrrole ring. Triazole and Imidazole achieved similar values of 

calling accuracies, suggesting increment in the number of ring nitrogen atom from 2 to 3 does 

not affect the binding interactions to a large extent. Lastly, the highest calling accuracy 

obtained by Benzimidazole could be related to the expected higher conductance of the 

elongated aromatic system compares to other reader molecules. Another explanation could be 

drawn from the less number of orientations of Benzimidazole reader inside the tunnel gap, 

which might help to attain distinct binding conformation of the DNA monophosphates in the 

junction.  

    Figure 5.8 represents changes in number of signal features introduced vs training accuracy, 

individual DNA base calling accuracy and average DNA base calling accuracy for different 
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recognition molecules. We found in our two-dimensional analysis, Triazole performs better 

compare to other three reader molecules. Number of signal features vs. accuracy plot verifies 

that as Triazole obtains high accuracy with a lower number of features, whereas Benzimidazole 

and Imidazole require more number of features to attain comparable higher accuracy.  

5.5 Conclusion 

Eventually, Benzimidazole attains higher DNA base calling accuracy (average 98.7%) compare 

to Imidazole (average 97.1 %) and Triazole (average 96.6%). On the other hand, calling 

accuracy for Pyrrole reader never improved over 90% (average 89.3%). We need to mention 

that SVM analysis for different readers utilized different numbers of survived signal features 

(after feature correlation analysis). This depends on characteristics of water spikes, common 

spikes and RT spikes obtained from different readers and discussed in more detail in chapter 

8. Individual and average DNA base calling accuracies are summarized in table 5.1. [90]   

 dAMP dCMP dGMP dTMP Average 

Benzimidazole 98.5 98.8 98.7 98.9 98.7 

Imidazole 96.5 97.4 96.4 98.1 97.1 

Pyrrole 90.1 89.8 89.2 88.2 89.3 

Triazole 94.3 95.5 96.5 99.0 96.6 

 

Table 5.1. Calling Accuracies for Different Readers 
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CHAPTER 6 

RECOGNITION TUNNELING OF DNA NUCLEOSIDE MONOPHOSPHATES 

EMPLOYING AROMATIC STACKING INTERACTION 

 

  We demonstrate experimental evidence of strong π-π aromatic stacking interaction between 

DNA nucleotides and a couple of sensor molecules, deliberately designed for the purpose and 

attached to the electrodes (Pd probe and substrate) of a Scanning Tunneling Microscope 

(STM).  Non-equilibrium Green Function (NEGF) calculations of energy-optimized 

sandwiched π-π stacking structure of sensor molecule-nucleobase-sensor molecule complex 

(including slabs of Pd electrodes) complemented the experimental findings, nicely. Using the 

stochastic tunneling current spikes, obtained from STM experiments different nucleotides, we 

are able to detect and distinguish all four DNA nucleotides with a very high level of accuracy 

(98%) by employing a machine learning algorithm, called Support Vector Machine (SVM). 

Exploiting only a couple of signal features of the current spikes, two nucleotides are 

distinguished with 90% accuracy. Furthermore, the result shows that, sensor molecules with 

small aromatic rings (such as only benzene ring) are not suitable for strong stacking interaction 

with nucleotides. [96] 

6.1 Introduction 

    Several highly sophisticated techniques have been utilized so far to move towards the target 

of cheaper, faster and convenient genome sequencing[97]. After the early days of Sanger 

sequencing[98], amplification-based sequencing employing polymerase chain reactions have 

acquired huge popularity due to high throughput and low-cost factors.[31, 97, 99-101] But, 
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these methods face a massive roadblock for samples having repetitive DNA sequences, which 

is a common phenomenon in the case of large genomes (e.g. human genome) and for a verity 

of bacterial genomes.[29, 30] The inability of long reads, the requirement of the amplification 

step (can provide reads only few hundreds bp long), causing high error rates and challenging 

de novo genome sequencing.[31] Recently commercialized single molecule real-time sequencing 

(SMRT by Pacific Biosciences), without the need of any polymerase chain reactions for 

amplification, shows the capability of very long reads (10,000 bp, even longer) with fast 

sequencing rate and low cost per base sequence. Still this technique possesses challenges to 

improve on its notably high error rate (~13%) and very high instrumentation cost. [37] 

Figure 6.1. Schematic diagram of the experimental set-up in a Scanning Tunneling 

Microscope (STM), with Pyrene modified probe and substrate. A dGMP molecule is 

stacked in between the Pyrene molecules of the probe and substrate. 
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    After all those methods, nanopore-based sequencing techniques have emerged as the most 

potent candidates to reach the goal.[102, 103] Capability of very long reads (10kb already 

achieved by ONT), fast and direct sequencing from freshly obtained data, an absence of 

complicated sample preparation and presence of sophisticated and cheap semiconductor and 

microfluidics device processing make nanopore-sequencing a star contender.[102-106] 

    Studies have shown that, transverse tunnel conductance of analytes (e.g. nucleotides, amino 

acids) depends exceedingly on geometrical factors (e.g. orientation) [89, 107] instead of their 

intrinsic electronic features. Likewise, theoretical studies on ssDNA translocation through 

graphene nanopores demonstrate that ion current blockade generated by DNA translocation 

can be nucleotide specific but excessively dependent on the orientation of the 

nucleotides[108], which is immensely hard to control due to high speed of translocation 

events. 

    Successful experimental studies on molecular conductance measurements using break 

junction with STM[109-111] and theoretical studies on DNA sequencing exploiting 

nucleobase-aromatic system π-π stacking encouraged our sensor molecule designing and 

tunnel junction measurements. Theoretical studies on interactions between nucleobase and 

aromatic systems like Naphthalene, Boron Nitride and Graphene boosted our interest.[112-

114] Simulations showed the preference of parallel stacked orientation of the aromatic 

surfaces[115, 116] and from our Non-equilibrium Green Function (NEGF) calculations we 

obtained similar sandwiched π-π stacking structure of three-membered sensor molecule-

nucleobase-sensor molecule complex. 

    Though, a plethora of fascinating theoretical studies on stacking interaction between 

nucleotides and several different aromatic systems (Graphene nanoribbon, naphthalene, 
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Boron nitride, etc.) including their probable applications for DNA sequencing are available, a 

number of experimental studies in this area are still scarce. This study can play an important 

role to encourage towards such experimental exploration. 

    In this study, we recognize the DNA nucleotides through π-π stacking interaction with a 

pair of aromatic sensor molecules in an STM nanogap (figure 6.1)[96] and distinguish the 

nucleotides with a high level of accuracy, using SVM for signal decoding. Similar tunnel 

junction can be made on a nanopore device, possessing a couple of tunneling electrodes, 

functionalized with the same sensor molecules (Pyrene Reader), through which ssDNA can 

be pulled through and sequence down. The high translocation speed of ssDNA through solid 

state nanopres is a noted obstacle for nanopore sequencing. To counter this problem, a reliable 

strategy can be the use of non-covalent adhesive force between nucleobase and different 

aromatic molecules. Hence, stacking among the nucleotides and our sensor molecules is 

notably strong and may serve significantly to slower translocation.[96] 

6.2 Experimental 

6.2.1 Preparation of Analytical Solutions 

    DNA nucleotides (monophosphate sodium salt or neutral compound) were obtained from 

Sigma Aldrich and dissolved in 1 mM phosphate buffer (pH 7.4), made using water from a 

Milli-Q system with specific resistance of 18 MΩ-cm and total organic carbon contamination 

below 5 ppb. 
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6.2.2 RT Experiment 

    In a typical RT experiment, the measurement followed a process of mounting the 

functionalized Pd-STM probe and Pd-substrate to a PicoSPM scanning tunneling microscope,  

stabilizing the tunnel junction in a phosphate buffer (1.0 mM, 7.4 pH) until a clean baseline 

was generated (~ 2 h), introducing an analyte solution (typically 100 M in 1.0 mM phosphate 

buffer, pH 7.4) to the liquid cell, and collecting current recordings under a predefined tip-

Figure 6.2. (a) Current-time traces obtained after adding DNA nucleotides in a STM 

tunnel junction with 2-PET (2-Phenylethenethiol) modified Palladium probe and 

Palladium substrate. (b) Current-time traces obtained after adding DNA nucleotides in a 

STM tunnel junction with 2-PET modified Palladium probe and Pyrene reader modified 

Palladium substrate. 

Figure 6.3. Current-time traces obtained after adding 100 μM solution of (a) Abasic DNA 

nucleotide and (b) D-Glucose in tunnel junction 
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substrate bias. Four naturally occurring DNA nucleoside monophosphates (dAMP, dCMP, 

dGMP and dTMP) as well as two sugar molecules—deoxyribose-5-monophosphate and D-

glucose—were used as analytes. For each analyte, four separate experiments were run with 

freshly made probes, substrates, and samples.[96] 

 

6.3 Result and Discussion 

    We carried out the measurements using a setup as shown in Figure 6.1. We switched to 

Palladium electrodes from Gold electrodes as a reason of higher conductance and rigidity of 

Figure 6.4. (a) Energy-minimized structure of the pi-pi stacked complex between two 

Pyrene Readers (attached to Palladium electrodes) and Guanine nucleo-base. (b) Energy 

optimized structure of the pi-pi stacked complex between two Pyrene Readers (attached to 

Palladium electrodes/metal slabs) and Thymine nucleo-base. (c) Theoretically observed 

current vs bias plots for complex (a) [blue] and complex (b) [red]. 
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Palladium, resulting bigger gap distance in the tunnel junction and easier fabrication of the 

probes.[74, 75] Only PB buffer solution (1mM, 7.4 pH) generates overall clean baseline in the 

STM nano-junction of Palladium probe and substrate, functionalized with Pyrene Reader. 

Whereas, when we added all four DNA monophosphate solutions (in PB buffer) they give 

ample spikes, mostly part of spike-clusters. Sample spike-clusters for all four nucleotides are 

showed in figure 6.2(a). A three-membered aromatic stacking complex (Pyrene-Nucleotide-

Figure 6.5. (a-g) Two dimensional histograms representing extent of separation between 

any two of the four DNA nucleotides, using only two signal feature/ parameters. (a) dAMP 

& dCMP, (b) dAMP & dGMP, (c) dAMP & dTMP, (d) dCMP & dGMP, (e)dCMP & 

dTMP,  (f) dGMP & dTMP  The percentage of separation (P) for each pair of nucleotides 

combinations are showed on the lower right corner of the corresponding plot.  
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Pyrene) is believed to be formed and the resulting tunneling current through this non-covalent 

aromatic system gives rise to the current spikes. A substantial number of spikes are obtained 

with amplitude over 100pA, reciprocating our theoretically obtained value of several hundreds 

Table 6.1. Result summary of all different recognition tunneling experiments done with 

different tip and substrate modification for various analytes 

Analyte Tip 

modification 

Substrate 

modification 

RT Signals 

dGMP Pyrene  Pyrene  Yes 

Benzene Pyrene Yes 

Benzene Benzene No 

dAMP Pyrene  Pyrene Yes 

Benzene Pyrene Yes 

Benzene Benzene No 

dCMP Pyrene Pyrene  Yes 

Benzene Pyrene No 

Benzene Benzene No 

dTMP Pyrene  Pyrene  Yes 

Benzene Pyrene No 

Benzene Benzene No 

Abasic monophosphate Pyrene  Pyrene  No 

D-(+)-glucose Pyrene  Pyrene  No 
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of pico-amps for optimized Pyrene-Base (guanine)-Pyrene complex. Though the amplitude 

range is extremely broad probably due to the exponential dependence of tunnel current on 

Figure 6.6. 1D histograms used to generate the 2D histograms for different pair of DNA 

nucleotides. 
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spatial position. When both the electrodes are functionalized with 2-Phenylethanethiol (which 

is implied as Benzene Reader), tunneling spikes are absent [figure 6.2.b]. This can be attributed 

to the smaller aromatic surface of Benzene, which is unable to provide strong enough π-π 

stacking with the nucleobases. Study by Grimme et al. [115] also reveals that aromatic rings as 

large as having 10-15 carbon atoms show significantly strong interaction. Analytes devoid of 

any aromatic moiety have been analyzed. Abasic DNA monophosphate and D-(+)-glucose 

fail to show such tunneling current spike-clusters even with Pyrene modified probe and 

substrates (figure 6.3 & 6.4, respectively) [96], indicating π-π stacking specific sensing property 

of Pyrene reader, which can be utilized to differentiate nucleotides from sugars and non-

aromatic amino acids. Summary of all tunneling experiments with different analytes along with 

different set of probe and substrate modification is provided in Table1. [96]  

    Though obtained spike amplitudes were not specific to the different DNA 

monophosphates as corresponding amplitude distributions were closely overlaid, similar to 

the findings from our previous study on amino acids. [89]  According to Zhao et al. [89],  only 

tunnel current measurement through nucleotides may not be sufficient to discriminate them 

from each other as the orientation factor overwhelms the electronic-structural property of 

nucleotides. Hence, we use a complex machine learning algorithm, called Support Vector 

Machine (SVM) for nucleotide classification purpose as it uses a handful of other signal 

features rather than only considering tunnel current amplitude. In our recent work on amino 

acids, we demonstrated the great capability of SVM to discriminate between analytes with high 

calling accuracy. In the current work, we exploited 261 signal features related to the single 

spikes and clusters. All signal features are listed in chapter 8.  
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    It has been shown by Zhang et al. [107] that among all possible configurations for aromatic 

stacked complexes parallel situated aromatic rings show the highest stability. Similar 

configurations were obtained for our theoretically studied energy-minimized structures (figure 

6.4.a-b) [96] of such pi-pi stacked aromatic complexes. We used only nucleobases for the 

theoretical study instead of the complete nucleotides. Also, sugar and phosphate moieties do 

not have any significant contribution to stacking interaction. A distance of 0.7 nm was 

maintained between the aromatic surfaces of two Pyrene molecules. Complex with Guanine 

showed higher conductance compare to that of Thymine from the corresponding theoretical 

study on current vs. bias (figure 6.4.c).[96] Now, the theoretically obtained energy-minimized 

structures are the most probable ones. But, it is quite obvious to have a lot of different yet 

similar configurations that should be really close in energy to the most stable configurations. 

Hence, we didn’t expect to get much difference between the distributions of peak average 

amplitude of dGMP and dTMP. But as we plotted these distributions after control noise 

filtration by SVM, we found a noticeable difference between the distribution peaks.  

   We use only any two of the 261 signal features to generate two-dimensional histograms and 

check the extent to which any of the two analytes can be differentiated from each other. Every 

possible combination of two nucleotides (total six) was analyzed (figure 6.5). All these plots 

are created by combining a couple of one-dimensional histograms, each of which corresponds 

to one of the various signal features. The green and the red portion of the plot correspond to 

the non-overlapped region of the well-separated analytes, whereas the yellow (and yellowish) 

part shows the overlapped data points from both analytes. The black region of the plots is 

devoid of data points from any of the analytes. We use a non-linear algorithm for calculating 

the percentage of separation (P) in each case. A value of P = 0.5 (or 50%) corresponds to a 
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perfectly random case with no effective separation. As evident from (e) almost 90% separation 

between dCMP and dTMP was achieved using only couple of signal features. Whereas, the 

pair dGMP & dTMP showed least (67%) separated area on the histogram (f).  The one-

dimensional histograms for the used signal features are shown in figure 6.6. [96] 

    From using simply two signal features and discriminating only two analytes we proceed to 

distinguish all four nucleotides employing more signal features. As we introduce more and 

more signal features for the SVM analysis, it increases the base-calling accuracy. Average base-

calling accuracy is plotted against the number of signal features (or number of parameters used 

in SVM) in figure 6.7. A very high calling accuracy value of 98.0% can be achieved.                

Figure 6.7. Plot for obtained nucleotide calling accuracy vs number of used 

parameters/signal features 
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    Use of different probes and substrates in each experiment causes micro-scale geometrical 

changes to one tunnel junction going from another. This creates minute differences in shape 

and characteristics of tunnel spikes and clusters obtained from different experiments even with 

the same analyte due to slight changes in the bonding (stacking) geometry. Hence, we perform 

predictive analysis to check the reproducibility of signal features for different experiments. 

SVM is trained with all the data sets of all four nucleotides, except one data set of any of the 

nucleotides which is going to be tested. Then the trained SVM is used to test predictive 

accuracy of the testing data set. For all nucleotides obtained ‘most likely’ predictive accuracy 

value is over 80%, whereas maximum predictive accuracy value for individual data set for 

different nucleotides went over 95%. This is encouraging considering the value would be 25% 

in case of perfect randomness. [96] 

6.4 Conclusion  

    Using our current STM study of single DNA monophosphates, we can propose a system 

which demonstrates strong π-π stacking between the nucleotides and sensor molecules. This 

study does not solely depend on amplitude distribution of tunnel current for nucleotide 

discrimination and able to achieve 98.0% accurate nucleotide-calling. Also, it can increase the 

DNA translocation time by means of stacking interaction through the solid state nanopore, 

Table 6.2. Highest accuracy (%) that can be achieved with different readers for 

determining individual DNA nucleotides by RT 
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coupled with a pair of atomically flat metallic electrodes modified with sensor molecules to 

measure tunneling current signatures from nucleotides.  
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CHAPTER 7 

RECOGNITION TUNNELING OF RNA NUCLEOSIDE MONOPHOSPHATES 

 

7.1. Introduction 

    In the recent years, RNA sequencing has become a compulsory and complementary 

research field for better interpretation of genomics. There are various types of RNAs (such as 

mRNA, tRNA, non-coding RNA, etc.) in a developed organisms like the human, controlling 

different processes inside a cell. Among them, mRNA or messenger RNA can be considered 

as the most important species in the mechanism of gene expression and protein production. 

Understanding RNA splicing, single nucleotide polymorphisms (SNPs) and post-

Figure 7.1. Naturally occurring and modified RNA nucleotide monophosphates used for 

recognition tunneling experiments 
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transcriptional modifications are of prime importance to predict physiological developments 

and diseases of an organism.[18] Most of the conventional NGS methods are used for 

RNA sequencing and possesses similar drawbacks that are faced in case of DNA sequencing. 

Hence, we targeted to identify RNA building blocks by recognition tunneling technique with 

an ultimate goal of their nanopore sequencing. 

7.2. Experimental 

7.2.1. Preparation of Analytical Solutions 

    RNA monophosphates were obtained from Sigma Aldrich as sodium salts and dissolved in 

1 mM phosphate buffer (pH 7.4), made using water from a Milli-Q system with a specific 

resistance of 18 MΩ-cm and total organic carbon contamination below 5 ppb. 

Figure 7.2. Example of a typical two Dimensional histogram with a pair of analytes [AMP 

(red) vs CMP (green)] 
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7.2.2. RT Experiment 

    In a typical RT experiment, the measurement followed a process of mounting the 

functionalized Pd-STM probe and Pd-substrate to a PicoSPM scanning tunneling microscope, 

stabilizing the tunnel junction in a phosphate buffer (1.0 mM, 7.4 pH) until a clean baseline 

was generated (~ 2 h), introducing an analyte solution (typically 100 M in 1.0 mM phosphate 

buffer, pH 7.4) to the liquid cell, and collecting current recordings under a predefined tip-

substrate bias. Four naturally occurring RNA nucleoside monophosphates (AMP, CMP, GMP 

and UMP) and two modified RNA nucleoside monophosphates (IMP and N-MeAMP) were 

used as analytes. For each analyte, four separate experiments were run with freshly made 

Figure 7.3. Plot for obtained RNA nucleotide calling accuracy vs number of signal features 

used 
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probes, substrates, and samples. We used different batches of substrates and probes for each 

run, usually recording four runs for each analyte.  

7.3. Result and Discussion 

    We have focused on six different ribonucleotide monophosphates (figure 7.1), four 

naturally occurring RNA building blocks (AMP, GMP, CMP & UMP) and a couple of 

modified ribonucleotide monophosphates (IMP & N-methyl AMP). Inosine monophosphate 

is an important molecule in metabolism and N-methyl adenosine is known as an activator of 

glycogen phosphorylase b. [117] All these six analytes showed recognition tunneling signals at 

4 pA tunnel current set-point and 500 mV probe bias with Imidazole reader as the recognition 

molecule.  

Table 7.1. Naturally occurring and modified RNA nucleotide monophosphates used for 

recognition tunneling experiments 
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     SVM analysis shows that two-dimensional separation could be achieved with high accuracy 

as presented in figure 7.2. Here AMP (red point) and CMP (green points) are separated with 

93% accuracy. Though with increasing number of analytes this RNA calling accuracy tends to 

lower down (figure 7.3) and the individual recognition level for N-methyl AMP is markedly 

low (83.6%). The overall RNA separation accuracy could reach only ~92%, which is 

significantly low compared to the accuracy obtained with DNA monophosphates (~97%) with 

the same recognition molecule at same experimental condition (4 pA current set-point and 

500 mV probe bias). The presence of an extra hydroxyl group (ribose sugar instead of de-oxy 

ribose) should possess some effect on molecular orientation in the tunnel gap, but it is difficult 

to predict the exact role of the hydroxyl group in differentiating the binding motifs of the 

nucleoside monophosphates. Table 1. summarizes the highest RNA calling accuracies of 

individual analytes and the average value.  

7.4 Conclusion 

    Work in this project is still going on and a couple of more modified ribonucleotides are yet 

to be examined. One of them is 8-oxoguanine monophosphate, which is closely related to 

carcinogenesis. Still, it can be concluded that ribonucleotides can be identified by recognition 

tunneling technique and an average RNA calling accuracy of over 90% (91.9% to be precise) 

can be achieved, promising the possibility of single molecular RNA sequencing using 

nanopore device. 
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CHAPTER 8 

DATA ANALYSIS: SUPPORT VECTOR MACHINE 

 

8.1 Support Vector Machine 

    Support Vector Machine (SVM) is a machine learning algorithm for classification, outlier 

detection and regression, commonly used in bioinformatics, pattern recognition and many 

more related fields. For classification task (which is our matter of interest), using a small set 

of training data SVM builds up an optimized hyperplane (in one or higher dimensional space) 

or series of hyperplanes and using them categorizes new testing data points. 

8.1.1 Theoretical Background 

    Figure 8.1.A presents an example of two classes of data. One is the empty circles and the 

other one is a class of black dots. As we can see, there are multiple boundary lines (H1, H2 and 

H3) that can separate the two classes from each other. But, are all these solution boundaries 

equally good? To formalize the idea of the betterment of the solution a “margin” is introduced, 

which can be explained as the width of the band around the solution (or decision) boundary 

without any training data-points residing inside the band. Training data-points lying on the 

edge of the margin supports the decision boundary and are called the support vectors. This is 

elaborated in figure 8.1.B, where H3 line (showing in black) proves to be the optimal solution 

boundary possessing the widest margin.  

    Suppose we have only two classes (yi) of data which are linearly separable in a two-

dimensional plane and a line can separate them from each other. The same idea corresponds 

to an N-1 dimensional separating hyperplane when each data point has N number of features 
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or dimensions. The separating line or one-dimensional hyperplane H3 can be mathematically 

described as (figure 8.1.B),  

𝑤 ∙ 𝑥 − 𝑏 = 0 

w is the unit vector normal to the hyperplane and b is an arbitrary number. Similarly, we can 

define the planes constructing the margins of this hyperplane, 

𝑤 ⋅ 𝑥𝑖 − 𝑏 ≥ 1 for black dots 

                                                w ⋅ xi − b ≤ −1 for black circles 

The width of the margin can be derived from above relations and is equal to 2/║w║. The 

optimized hyperplane should have the widest margin. Hence, maximizing 2/║w║ or 

minimizing ║w║ or ║w║2/2, maintaining the previous constraint of the margin (showed in 

the following relation) we can find the best solution for the hyperplane.  

yi(w ⋅ xi − b) − 1 = 0 

Now, this problem can be constructed as a Lagrangian formulation 

𝐿 =
1

2
‖w‖2 − ∑αi[yi(w ⋅ xi − b) − 1] 

where α is Lagrange multiplier. After solving this optimization problem, the solution 

hyperplane can be obtained as a linear combination of the training support vectors, 

w = ∑αiyixi 

    More theoretical details could be found from renowned work of Vladimir Vapnik, a famous 

Russian mathematician.[118] [119] 
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    Two classes of data can sometimes be linearly non-separable. This can happen with data 

that has some amount of noise, which is perfectly expected while dealing with practical 

experimental data sets. A common scenario is the presence of few data points of one class 

inside a dense cluster of the other class. A straight line can hardly provide a well-supported 

Figure 8.1. (A-B) Binary classification by support vector machine to find the best 
seperating boundary 

  

Figure 8.2. (A-B) Kernel transformation of non-linear data classes 
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decision boundary in such case. This has been exemplified in figure 8.2.A where no straight 

line can separate all the black dots from the empty circles. Hence, these two data classes are 

linearly non-separable in this space. A method of mathematical convenience called Kernel 

machine is used to transform the data into a different space where the classes are separable 

(figure 8.2.B). This transformation is often indicated with a function Ф(x) (figure 8.2). 

8.2 Data Analysis Process 

    We used the kernel-mode SVM available from https://github.com/vjethava/svm-theta. 

[89] Each spike above 15 pA in amplitude was characterized using the features listed in table 

8.1. JongOne Im and Brian Ashcroft carried out most of the part of SVM analysis related to 

different projects. 

Table 8.1. List and description of all signal features used for Support Vector Machine 

analysis 

 Feature Name Feature Description 

Primary  

Features 

P_max Amplitude Maximum amplitude of the peak 

P_average Amplitude Average current of the peak 

P_top Average Average of the peak above half maximum 

P_peak Width Full width at half maximum 

P_roughness 
Standard deviation of the peak above half 

maximum height 

P_frequency 
Number of peaks per millisecond over a window 

of 4096 

C_peaksInCluster Number of peaks in the cluster 
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C_frequency 
Number of peaks in cluster divided by 

millisecond length of cluster 

C_average Amplitude Average amplitude of all cluster peaks 

C_top Average 
Average amplitude of all peaks above half 

maximum 

C_cluster Width Cluster time length in millisecond 

C_roughness Standard deviation of whole cluster signal 

C_max Amplitude Average of the max of all the peaks in cluster 

Secondary  

Features 

P_totalPower Square root of the sum of power spectrum 

P_iFFTLow Average of the first three frequency bands 

P_iFFTMedium Average of the middle three frequency bands 

P_iFFTHigh Average of the highest three frequency bands 

P_peakFFT1 - 9 Downsampled FFT spectrum 

P_highLow_Ratio Ratio of P_iFFTLow to P_iFFTHigh 

P_Odd_FFT 
Sum of all odd frequencies from the non-

downsampled FFT 

P_Even_FFT 
Sum of all even frequencies from the non-

downsampled FFT 

P_OddEvenRatio Ratio of the odd to the even FFT sums 

P_peakFFT_Whole1 - 51 

Downsampled FFT spectrum into various 

bandwidths. (Lower frequency range, smaller 

bandwidth size) 

C_totalPower Square root of the sum of the power spectrum 
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C_iFFTLow Average of the first three frequency bands 

C_iFFTMedium Average of the middle three frequency bands 

C_iFFTHigh Average of the highest three frequency bands 

C_clusterFFT1 - 61 Downsampled FFT spectrum of cluster 

C_highLow Ratio of the odd to the even FFT sums of cluster 

C_freq_Maximum_Peak1 

- 4 

Frequency of the four dominant peaks in the 

spectrum, ordered by the height of the peaks 

C_clusterCepstrum1 - 61 
Spectrum of the power spectrum of the cluster, 

downsampled to 61 points 

C_clusterFFT_Whole1-

51 

Downsampled FFT spectrum into various 

bandwidths. 

(Lower frequency range, smaller bandwidth size) 

 

    The shape of each spike was characterized by constructing a fast Fourier transform (FFT). 

The resulting Fourier amplitude distribution was then downsampled using linear interpolation 

into nine bins of equal frequency intervals from zero to 25 kHz. FFT amplitudes (before 

downsampling) were averaged across three equally spaced frequency intervals (0–2.7 kHz, 8.4–

11.1 kHz and 22.3–25 kHz), and these averages were used as additional features, as was the 

ratio of the highest to lowest FFT bins useful. 

    Clusters contain additional information. They were identified with a Gaussian broadening 

algorithm. The peaks used to locate the clusters were subject to a 15 pA threshold, but once a 

cluster was identified, all the data in it were used for the analysis, so amplitudes down to the 

baseline were included. We also developed a series of features to describe these clusters. These 



115 
 

included the spike frequency within a cluster, as well as the Fourier spectrum of the whole 

cluster (deconvolved for instrumental response by spectral division). Clusters contain many 

more data points than individual spikes, so the downsampling of the FFT was much finer, 

with a total of 61 bins used (each one corresponding to 25 kHz/61 or 410 Hz in width). 

Cepstrum amplitudes were calculated from the Fourier transform of the power spectrum, 

downsampling again to 61 frequency bins. 

    So as not to bias the analysis towards features with bigger numerical values and ranges, we 

rescaled all features as follows. The distribution of each signal feature was measured for any 

one analyte (one of the DNA nucleotides, RNA nucleotides or amino acids). The scale factor 

and additive constant required to move the mean of the distribution to zero and the standard 

deviation to 1.0 were calculated. Feature values for all the other analytes were remapped using 

the same linear transformation.[89] 

    Feature selection was performed in three stages. First, those features that showed too much 

linear correlation were removed. All the data from the entire pool were used to generate a 

correlation matrix where correlations are shown by off diagonal elements. Trial and error 

resulted in rejecting all feature combinations for which correlation coefficient ≥ 0.7. We 

chose one feature from each overly correlated set to represent the set in the next stage of 

analysis.[89] 

    Second, a comparison was performed for each feature for its variation over repeated 

experiments on the same analyte versus the variation between the different analytes. One 

dimensional histograms of all feature values were compiled for each experimental run for a 

given analyte. The absolute values of the differences between the normalized histograms were 
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accumulated to give an ‘in-group’ fluctuation. The same procedure was carried out for all 

possible pairs of analytes to give an ‘outgroup’ measure of fluctuation. Parameters were then 

ranked by the magnitude of the ratio of out-group to in-group fluctuation and the worst 

parameters were dropped. Finally, the usefulness of the remaining features was evaluated by 

determining the identification accuracy obtained with a randomly selected group of them. A 

tree search was used to maximize the efficiency of this process. After this process, a definite 

number of signal features are survived and those were used for the SVM classification analysis 

of the analyte series. Different analyte series (such as DNA nucleotides, RNA nucleotides and 

amino acids) and different recognition molecules (Imidazole, Benzimidazole, Pyrrole, Triazole 

and Pyrene) possesses different binding motifs and dipole moment vectors. As a consequence, 

signal features varies differently for all these diverse data types and correlation analysis of the 

signal features shows unique results for all these varied data sets. For example, SVM analysis 

for Benzimidazole reader data sets survived with more signal features compared to that of 

Imidazole reader data sets. 

    A subset of known data is used to find the support vectors that best partition the known 

data and thus train the SVM. Generally, a small fraction of data is taken from each and every 

data-set for this training. Many combinations of this training data is chosen randomly and 

SVM was trained several times to check the reproducibility. Data from subsequent analyses 

are then identified according to on which side of the partition they reside. The theory that I 

described previously has considered only two classes of data. But, our projects most often 

required analysis of multiple analytes and multiclass SVM was built. The strategy was to build 

another binary classifier that separates one analyte from the rest (one versus rest) and repeating 

the same analysis for each analyte.[89] 
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    Full details of the SVM (written in Matlab) can be found in a download of the data analysis 

code available from https://svmsignalanalysis.codeplex.com/.  

https://svmsignalanalysis.codeplex.com/
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