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ABSTRACT  

   

For reading DNA bases more accurately, a series of nitrogen-containing aromatic 

heterocycles have been designed and synthesized as candidates of universal reader to 

interact with all naturally occurring DNA nucleobases by hydrogen bonding interaction 

and eventually is used to read DNA by recognition tunneling. These recognition 

molecules include 6-mercapto-1H-benzo[d]imidazole-2-carboxamide, 5-(2-

mercaptoethyl)-1H-imidazole-2-carboxamide, 5-(2-mercaptoethyl)-4H-1,2,4-traizole-3-

carboxamide and 1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide. Their formation of 

hydrogen bonding complexes with nucleobases was studied and association constants 

were measured by proton NMR titration experiments in deuterated chloroform at room 

temperature. To do so, the mercaptoethyl chain or thiol group of these reading molecules 

was replaced or protected with the more lipophilic group to increase the solubility of 

these candidates in CDCl3. The 3' and 5' hydroxyl groups of deoxyadenosine (dA), 

deoxyguanosine (dG), deoxycytidine (dC) and thymidine (dT) were protected with tert-

butyldimethylsilyl (TBDMS) to eliminate hydrogen bonding competition from the 

hydroxyl protons with these candidates as well as to increase the solubility of the 

nucleosides in CDCl3 for NMR titration experiment. Benzimidazole and imidazole 

containing readers exhibited the strongest H-bonding affinity towards DNA bases where 

pyrrole containing reader showed the weakest affinity. In all cases, dG revealed the 

strongest affinity towards the readers while dA showed the least.  

The molecular complex formation in aqueous solution was studied by 

electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry. The 

formation of both 1:1 and 2:1 complexes between one or two reading molecules and a 
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DNA nucleotide were observed by ESI mass. A series of amino acids and carbohydrates 

were also examined by mass spectrometry to show the formation of non-covalent 

complexes with imidazole reader in aqueous solution. The experimental results were 

compared by calculating energies of ground state conformers of individual molecules and 

their complexes using computer modeling study by DFT calculations. These studies give 

insights into the molecular interactions that happen in a nanogap during recognition 

tunneling experiments.  
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CHAPTER 1 

INTRODUCTION 

1.1. DNA Sequencing 

DNA sequencing is a tool to determine the exact order of nucleotides in a DNA 

strand. More precisely, it is a methodology to determine the order of four DNA bases 

namely adenine, thymine, guanine and cytosine in a DNA molecule. It is an indispensable 

tool in rapidly expanding biological and medicinal research fields such as forensic 

biology,1,2 biotechnology,3 virology4,5 and medical diagnosis6,7 to find diseases associated 

with genes and discovery of drugs. DNA sequencing is used to determine sequence of 

individual genes,8,9 chromosomes10 and entire genomes.11 In 1953, James Watson and 

Francis Crick suggested the double helix structure of DNA.12 Soon after the discovery, 

various types of DNA sequencing methods have been reported. Sanger sequencing is the 

standard method for DNA sequencing based on two dimensional chromatography and 

fluorescence-based detection.13 The high demand for low cost sequencing has compelled 

the development of next-generation sequencing technologies which can parallelize the 

sequencing process producing thousands or millions of sequences simultaneously.14,15 It 

is intended to lower the cost of DNA sequencing beyond what is possible with standard 

dye-terminator methods.16 

 

1.2. Sanger Sequencing 

In the 50’s, Dr. Fred Sanger first determined the sequence of amino acids in a protein. 

He showed that the 51 amino acids of the insulin were arranged in a specific order.17 

Since the genetic code determines the order of amino acids, the DNA sequence is 
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collinear with the amino acid sequence. However, knowing the amino acid sequence of a 

protein does not tell us the exact nucleotide sequence of its gene. Because genetic code is 

redundant and more than one codon can code for an amino acid. In the early 70’s, he 

developed the method to determine the exact sequence of nucleotides in a gene. It is 

known the famous Sanger method or the chain termination method for DNA sequencing 

or first generation sequencing.18 He was awarded the noble prize in chemistry for this 

invention in 1980. The method is described in the following scheme (Figure 1.1).19 It 

utilizes a high fidelity DNA-dependent polymerase to generate a complimentary copy to 

a single stranded DNA template.20,21 

To sequence a DNA, a double stranded DNA is denatured to a single stranded DNA 

by heating. The DNA splits into a template strand (blue in step 1) and a complementary 

strand. A primer (yellow) is annealed to the template strand to add external nucleotides to 

the strand later. The template stranded DNA with attached primer was added into four 

reaction vials following the addition of DNA polymerase and dNTP's. One of these 

dNTP’s is usually labelled with 31P or 35S atom to determine the DNA sequence later. 

Modified nucleotides (ddNTP’s) are added to the reaction mixtures. Only one type of 

ddNTP is added to each reaction mixture (step 2). Chain termination occurs when a 

ddNTP is added to the growing strand because of the lack of 3’-OH group in ddNTP. The 

DNA strands are now separated based on their size by gel electrophoresis on acrylamide 

gel. A sample of each of the four reaction mixtures is added into separate lane on the gel. 

It can separate polynucleotide chains in size by 1 nucleotide. A current is set up across 

the gel and negative bias is applied to the added nucleotide end. As the DNA are 

negatively charged, it starts to move towards the positive electrode. Smaller fragments 
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travel faster than larger fragments. After it is developed, an autoradiograph is taken (step 

3). Because one of the dNTPs is radiolabeled, the radiograph will show bands of DNA 

strands. The bands are used to find out the DNA sequence. Each reaction mixture has the 

same primer, therefore all strands begin with the same sequence. Each chain in a 

particular flask ends with the corresponding ddNTP present in the flask. For example if a 

DNA strand is taken from a ddATP flask, it will end with adenosine nucleotide. This 

information is used to sequence the complete DNA by reading the various bands in the 

radiograph (step 4). Sanger method is considered the “gold standard” for sequencing. 

Modern day Sanger sequencing instrument is capillary based automated electrophoresis 

which typically analyzes 8 to 96 sequencing reactions simultaneously. 

 

Figure 1.1. Schematic of DNA sequencing by Sanger method 
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1.3. Next Generation Sequencing 

Over the past decade, DNA sequencing has rapidly transitioned from the Sanger 

method to next generation sequencing (NGS). NGS has become an indispensable tool for 

genomics, making great strides toward diagnosis of diseases in clinics.22 NGS sequences 

in a massively parallel manner,23 dominated by technologies that use polymerases to 

synthesize complementary strands along DNA targets so that DNA sequences can 

sequentially read out by optically imaging fluorescent signals resulting from 

incorporation of dye labeled nucleotides24 or electronically measuring released protons 

during incorporation of natural triphosphates.25 Since its advent, NGS has reduced the 

sequencing cost from about US $10 million to thousands of dollars.26 With a state-of-the-

art NGS machine, an individual human genome can be finished in a few days. Compared 

to Sanger sequencing (> 800 Q20 read length), 27 however, NGS has shorter read length 

(~150 bases for single end, www.illumina.com; or 200 bases, www.lifetechnologies.com) 

and lower raw sequencing accuracy.23,28 These shortcomings present challenges for use of 

NGS. First, NGS requires much higher sequencing coverage than the Sanger method for 

de novo assembly of genomes with a comparable quality.29 It generates sequencing data 

in a rate of 100 gigabases (Gb) per single genome for moderate coverage (~30-fold). The 

deluge of sequencing data requires a computing cluster or supercomputer for their 

analysis.30 Secondly, short reads couldn’t encapsulate long blocks of repetitive 

sequences, resulting in fragmented assemblies for repetitive sequences longer than the 

read length. Given the fact that nearly half of the human genome is filled with repeats 

(ranging in size from 1 - 2 bases to millions of bases),31 a new platform is needed to 

address the repeat issue.  
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Current progress in nanopore sequencing has opened a new avenue to develop the 

sequencing technologies. A nanopore is an orifice with diameters comparable to that of a 

DNA double helix (ca. 2 nanometers) have been investigated as a physical means for the 

sequencing.32,33 It should be able to read very long segments and simplyfy sample 

preparation elimination the use of costly biochemical reagents, such as polymerases or 

ligases. A nanopore can function as a fluidic channel to conduct ions under a volatage 

bias. When it is embeded in a thin membrane that separates two chambers filled with 

conductive electrolytes, DNA molecules can electrophoretically translocate through the 

nanopore, the ionic currents would transiently be reduced because the flow of ions is 

blocked by DNA.34 This is a mechanism used by a commercial product MinION for 

sequencing DNA by protein nanopores (www.nanoporetech.com). Since there is no 

theoretic limit on length of the DNA translocation, the nanopore DNA sequencing will 

have potential to solve the assembly issues related to the short reads of NGS, providing a 

high speed and low cost process of sequenceing. However, the protein nanopore 

sequencing suffers from low accuracy (85%).35 Gundlach and coworkers have 

demonstrated that the current blockade in a protein nanopore (Mycobacterium smegmatis 

porin A, referred to as MspA) is a collected event of four nucleotides (quadromer),36 and 

the 256 possible quadromers produce a significant number of redundant current levels.37 

Despite many years of efforts, the nanopore has not achieved a single base resolution in 

DNA sequenicng. Branton et al pointed out that “even an infinitely short channel would 

not achieve the required resolution” and alternative readout methods are required for the 

nanopore DNA sequencing.38 
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1.4. Sequencing by Recognition Tunneling  

An alternative method to the measurement of ion current blockades39 is proposed 

by measuring the electron tunneling current across a translocating DNA molecule 

through a nanogap.40 We have used a Scanning Tunneling Microscope (STM) where the 

two electrodes (gold or palladium) are functionalized by a reader molecule. The distance 

between these two electrodes are in nanometers (2-3 nm). When a DNA base passes 

through the electrodes, it is captured by the reader molecules due to the formation of 

hydrogen bonding complexes (Figure 1.2) and generates electronic signals as spikes. 

 When benzamide reader is used for recognition of DNA bases, it is found that it 

can read all DNA bases, A, C, G except T.41 In addition, there is significant overlaps of 

the electric signal peaks. In order to be able to read all DNA bases accurately we 

designed universal readers following a set of guidelines. The molecule should contain 

multiple hydrogen bonding sites with multiple donors and acceptors sites. It should have 

Figure 1.2. Cartoon illustrating (A) A tunneling device embedded in a nanopore to 

read DNA bases when they sequentially translocate through a nanopore; (B) 

Recognition interactions in the nano-gap where read molecules (universal reader) 

attached to the electrodes catch a DNA base by forming a hydrogen bonding complex 

to cause electronic spikes. 
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high conductance and small size to fit into a nanopore without impeding the DNA 

translocation. It should have variable conformations in order to catch all DNA bases. It 

has to be electrochemically stable under physiological conditions. We selected five 

membered aromatic nitrogen heterocycles because of their π-excessive nature (6 π 

electron shared by 5 atoms).42 Based on these principles we have designed four universal 

readers ICA, BCA, TCA and PCA which can read all four naturally occurring 

nucleobases by recognition tunneling. 

 

1.5. Determining Association Constants from Titration Experiment  

A common approach to study supramolecular interaction is a titration of the guest 

to a solution of the host, and measuring changes of some physical property through 

NMR,43,44 UV-Vis,45,46 fluorescence47,48 and other techniques such as isothermal 

calorimetry49,50 etc. Despite the simplicity of the techniques, there are important concerns 

that need to be taken care of to obtain reliable results. Choice of method (e.g. NMR or 

UV-Vis) and choice of stoichiometric binding model are very important depending on the 

type of systems and environments are used. Another aspect is to select a suitable 

concentration range of host and guest before experiment. Finally a non-linear regression 

method51,52 is preferred over a linear regression method for better result. In a NMR 

titration method, a solution of guest molecule is gradually added to a solution of host 

molecule while the change in chemical shift of certain nucleus is measured. The resulting 

information is fitted to a suitable binding model and association constant Ka is obtained 

from the equation and fitting curve. It is then compared against literature results available 

from a different measurement. 
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1.6. HypNMR Program for Titration Curve Fitting  

In our present study we have used HypNMR 2008 program from hyperquad 

protonic software53 to measure association constants from average chemical shifts for 1:1 

and 1:2 complex formation between one host and one or two guest molecules 

respectively. It is assumed that the equilibrium is attained very rapidly (fast-exchange) on 

the NMR time scale so that the chemical shift for a given nucleus is a mole fraction-

weighted average over all of the chemical species in which the nucleus is present. Data 

input is comprised of the chemical shifts of the NMR peaks in relation to the analytical 

concentrations of reagents in the solution and sometimes it pH. The program can handle 

data in which the chemical shift(s) of one or more nuclei may be assigned in some spectra 

and not in others. It is used to determine the stability constant of  host-guest reaction, 

dimerization reaction,54 natural polyprotic bases in solution,55 fluorinated polyamines 

from 13C NMR data56 etc. The program was originally written for the DOS operating 

system as a set of stand-alone FORTRAN programs and enhanced later to run on 

Windows operating systems. The stability constant refinement part is written using 

FORTRAN program and compiled with 32-bit compiler for additional precision. It can be 

used on multi reagent system with many stability constant involved. There is no 

restriction on the number of resonant nuclei being accounted for and the number of data 

points being used. Finally it generates cumulative stability constants in terms of common 

logarithm and from which stepwise stability constants are derived. 

 

1.7. Cumulative and Stepwise Stability Constants 

The stability constant (Ka) for an association reaction H + G = HG is defined by the 
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equation [HG] = Ka[H][G] where H is a host molecule and G is a guest molecule and [H], 

[G], [HG] are the concentrations of host, guest and host-guest complex respectively in 

equilibrium. Cumulative stability constants also known as overall stability constants refer 

to the formation of a species from the reagents. For example, the cumulative formation 

constant for HG2, β2, is defined by [HG2] = β2[H][G]2 whereas the stepwise constant, K2, 

for the formation of HG2 from HG and G is defined by [HG2] = K2[HG][G]. 

 

1.8. NMR Titration Equation  

In an NMR titration experiment the host concentration is usually kept constant while 

the guest concentration is varied from zero to fairly high. Host is usually more expensive 

(or more synthetically challenging) compared to guest. For a simple 1:1 equilibrium system 

between H and G (Figure 1.3, a), the equilibrium constant for the formation of HG complex 

can be written as Ka = [HG]/[H][G]. 

Figure 1.3. (a)–(c) Three typical equilibrium for 1:1, 1:2 and m:n systems: H = host, G 

= Guest and HxGx = host–guest complex of interest, Kx = the thermodynamic 

association constant for a particular interest and βmn = overall association constant for 

an m : n host–guest complex formation. (d) A typical binding isotherm. 
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Similarly, for a 1:2 equilibrium system between one H and two G molecules (Figure 1.3, 

c), the stepwise equilibrium constants for the formation of [HG] and [HG2] complexes can 

be written in terms of K1 and K2. 

 

In general in case of the formation of a supramolecular complex involving m Host and n 

Guest molecules, the overall stability constant can be written as βmn above. 

Now the equation for the 1:1 equilibrium can be rewritten in terms of concentration of 

[HG] where [G]0 and [H]0 are the total concentrations of guest and host respectively 

according to the equations, [H]0 = [H] + [HG] and [G]0 = [G] + [HG] following the mass 

balance equation (Figure 1.4) 

Figure 1.4. Expression of [HG] as a function of [H]0, [G]0 and Ka 

 



  11 

Now, if nc is mole fraction of complex [HG], then nc = [HG]/[H]0 

If, δh and δc are the chemical shifts of H and HG, then at fast exchange condition, 

δ = nhδh + ncδc = ncδc + (1-nc)δh = (δc- δh)nc + δh; where δ is the population average 

chemical shift or observed chemical shift (δobs) 

Now rewriting the above equation we get, nc = (δ - δh)/(δc - δh) and replacing nc by [HG] 

we get, [HG]/[H]0 = (δ - δh)/(δc - δh) 

Now if δ - δh = y and δc - δh = n; where “n” is a number, not a mole fraction; [H]0 = A, 

[G]0 = x and Ka = K; 

Then, [HG]/[H]0 = y/n, or [HG] = y[H]0/n = yA/n,  

Now putting this in the above final equation (Figure 1.4) we get  

 

This equation can be solved using origin curve fitting. Using this method the binding 

constant of a 1:1 equilibrium can be solved. But solving a 1:2 equilibrium requires further 

analysis of a very complex equation (not shown here). We need a program like HypNMR 

which can handle multi equilibrium equation and can calculate association constant.  

 

1.9. Electrospray Ionization Mass Spectrometry (ESI-MS)  

Electrospray ionization (ESI) is an analytical technique used in mass spectrometry 

that can provide information about molecular mass and structure of analyte molecules 

after their conversion to ions. The analyte molecules are introduced into ionization source 

by electrospray in which high voltage is applied to liquid solution to create positive and 

negative charged ions. The ions travel through the different parts of the mass 

spectrometer and being analyzed by quadrupole analyzer according to their mass/charge 

y = [0.5*(A+x+1/K)-(sqrt(0.25*(A+x+1/K)^2-A*x))]*n/A 
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(m/z) ratio. A typical mass spectrum show the relative abundance of the signals according 

to their m/z ratio.57 The basic components of the ESI-mass spectrometer is shown (Figure 

1.5).58 It has been extensively used in clinical biochemistry,59 qualitative and quantitative 

analysis of antibiotics in pharmaceutical formulation,60 and drug discovery.61 It has 

emerged as a powerful tool in the life science to determine the identity,62,63 quantity,64,65 

and structural properties66,67 of the protein molecules.  

The electrospray ionization technique was first reported by Masamichi Yamashita 

and John Bennett Fenn in 1984.68 John Fenn was awarded the Noble Prize in Chemistry 

in 2002 for the development of electrospray ionization for the analysis of biological 

macromolecules.69 The following is a diagram of a second-generation ESI-MS apparatus 

from Dr. Fenn’s lab.70 It shows a liquid sample is injected through a needle spray syringe 

into the instrument, desolvation process occurs, charged droplets evaporates, then goes to 

the gas phase and being analyzed by quadrupole analyzer (Figure 1.6). ESI is a soft 

ionization technique and proved to retain the identity of a non-covalent complex in the 

gas phase after ionization (without fragmentation). This technique has been extremely 

Figure 1.5. The basic components of the ESI-mass spectrometer 
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helpful and universally applied to detect and identify molecular complexes. However a 

single mass spectrum does not provide any structural information about the molecular 

complex being analyzed. To overcome this problem, ESI is coupled with a tandem mass 

spectrometry (ESIMS/MS). 

1.10. Ionization Mechanism in Electrospray Mass Spectrometry 

Sample solution is prepared by mixing the analyte(s) of interest with a solvent. The 

choice of solvent is generally a mixture of water and methanol71 or acetonitrile. The 

sample solution is infused into the ES chamber through a stainless steel hypodermic 

needle spray syringe with a flow rate between 1 and 20 µL/min. In some cases, small 

amount of acetic acid is added into the analyte solution to increase the concentration of 

protons that facilitate the ionization process. A voltage is applied to the needle tip. This 

potential at the needle tip charges the surface of the emerging liquid, dispersing it by 

Coulomb forces into a fine spray of charged droplets. Due to the presence of the electric 

Figure 1.6. Diagram of a Second-generation ESI-MS Apparatus from Fenn’s Lab 

(Late 1980’s) showing ion desolvation process. Small, charged droplets produced by 

the electrospray evaporate, generating a high electric field at the droplet surface. 

Analyte molecules that were dissolved in the droplet can attach to charges and be 

lifted into the gas phase by this field 
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field, the charged droplets migrate toward the inlet end of the glass capillary at the end 

wall of the chamber (see label 4 in figure 1.6). There is a continuous flow of heated inert 

gas or bath gas of nitrogen or carbon dioxide in addition to the high temperature of the 

ESI source.72 This drying gas evaporates solvent from each droplet and decreases its size. 

During this process, the charge density on a droplet surface increases until the Rayleigh 

limit is reached at which the Coulomb repulsion becomes of the same order as the surface 

tension. The resulting instability called “Coulomb explosion” causes to tear apart the 

original droplet producing many smaller, more stable charged droplets known as daughter 

droplets or progeny droplet (Figure 1.7).58 The new droplets undergo desolvation and 

Coulomb fission again. This sequence repeats until the radius of curvature of a daughter 

droplet becomes small enough that the field due to the surface charge density is strong 

enough to desorb ions from the droplet into the “quasi-molecular” ions which are 

required for mass analysis. Final production of gas-phase ions can be explained by two 

major theories: the ion evaporation model73,74 and the charge residue model.75 Some of 

these ions that enters the glass capillary, emerges as a supersonic free jet in the first two 

vacuum chambers. A major portion of this free jet passes through a skimmer into a 

second vacuum chamber and delivers ions to the analyzer with a quadrupole mass filter. 

Any solvent molecule or uncharged molecule are removed from the capillary inlet by the 

continuous flow of bath gas. Depending on the objective of the experiment and species 

being analyzed, suitable solvent, dry gas temperature and flow rate of bath gas is 

designed. The ions observed by mass spectrometry are protonated molecular form 

[M+H]+ and/or single or multiply sodium ions [M+nNa-(n-1)H]+ form. Multiply charged 

ions such as [M+nH]n+ are often observed for large macromolecules.  
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1.11. Tandem Mass Spectrometry (MS2): Collision-Induced Dissociation 

Tandem means arrangement of two or more objects one behind another.58 Tandem 

mass spectrometry also known as MS/MS or MS2 is a method where the parent ions are 

subjected to two or more sequential stages of mass analysis according to their m/z ratio. 

In the first stage of mass spectrometry (MS1) ions are formed in the ion source and 

separated according to m/z ratio. In the second stage (MS2), a parent ion of interest is 

Figure 1.7. Schematic representation of the electrospray ionization 

process 

Figure 1.8. Schematic of a tandem mass spectrometry 
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selected and fragmented by collision-induced dissociation to generate product ions which 

are detected by a second detector in the mass spectrometry (Figure 1.8).76  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  17 

CHAPTER 2 

DESIGN AND SYNTHESIS OF UNIVERSAL READERS FOR RECOGNITION OF 

DNA BASES TRHOUGH ELECTRON TUNNELING 

2.1. Design of Universal Reader Candidates for Hydrogen Bonding interactions with 

DNA Nucleobases  

We intially used benzamide (Ba, Figure 2.1) for recognition tunneling (RT) 

because a majority of hydrogen bonding motifs existing in DNA bases are a form of 

donor and acceptor alternation so that the amide group is a good moiety for the 

recogntion interactions. Our data show that the benzamide moiety reads DNA base A, C, 

G, and methylated C but T.77 This could be because the molecule lacks flexibility and 

suffcient hydrogen bonding sites to interact with the DNA base. Therefore, we designed 

and synthesized 4(5)-2-mercaptoethyl-1H-imidazole-2-carboxamide (ICA, Figure 2.1) 

for RT, which bears mutiple hydrogen bonding sites and a flexible linker. As metioned 

above, the imidazole-2-carboxamide functions as a universal reader to interact with DNA 

bases. It provides us a framework to explore new structures for RT. As illustrated in 

Figure 2.1. Three candidates were derived from tuning the imidazole ring. First one is 1-

(2-Mercaptoethyl)-1H-pyrrole-3-carboxamide (PCA), the pyrrole ring of which has 

higher π electron densities on the aromatic carbons than the imidazole ring, second one is 

5-mercapto-1H-benzo[d]imidazole-2-carboxamide (BCA) that extends the π system of 

the imidazole ring and is more rigid, and third one is 3-(2-mercaptoethyl)-1H-1,2,4-

triazole-5-carboxamide (TCA) that has one more hydrogen bonding sites than imidazole. 

The studies on these molecules should give us more insights into effects of chemical 

structures on recognition of DNA bases. It should be noted that each of these molecules is 
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connected with a thiol function either through a two-carbon chain or its equivalent in 

length (see BCA in Figure 2.1 where the thiol is placed at a position of two carbon-

carbon bonds away from the imidazole ring as drawn in red) for their attachment to 

electrodes. 

 

2.2. Hydrogen Bonding Properties of Universal Reader Candidates 

In our design, we render these molecules flexible in their conformations to 

facilitate their interactions with DNA bases. For example, the amide group is connected 

to the heterocyclic ring via a σ bond so it can free rotate. As a result, the pyrrole 

carboxamide (PCA) exists in two different conformations, designated as Syn and Anti, 

(Figure 2.2). Furthermore, the azole ring exists in tautomeric forms due to 

interconversion of the N-H proton between the ring nitrogen atoms. Our previous report 

indicated that the tautomeric proton of ICA would preferably take a configuration with 

Figure 2.1. Universal reader candidates derived from tuning the imidazole-2-carboxamide 

molecule 
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the NH2 of the amide at its trans position,40 which is stabilized by the intramolecular 

hydrogen bond. Our 1H NMR data show that the ICA has two tautomer more uniformly 

distributed with a ratio of 1 : 0.95, compared to BCA (1 : 0.72) and TCA (1 : 0.60 : 0.24) 

(Figure 2.2). It should also be noted from the chemical shifts that the tautomeric protons 

in the molecules have different acidities with an order of triazole’s (TCA) > 

benzoimidzole’s (BCA) > imidazole’s (ICA).  

 

2.3. Recognition of DNA Bases by Electron Tunneling through Hydrogen Bonding 

Complexes in Nanogaps 

We have used Scanning Tunneling Microscope (STM) to quickly create a nanogap 

for studies of recognition tunneling (RT). In a typical RT experiment, a tunneling current 

was set at 4 pA with a voltage bias of 0.5 V, which corresponded to a nanogap of ~ 2.4 

Figure 2.2. (A) Interconvertible conformation of the universal reader PCA, and proton 

tautomer of ICA, BCA, and TCA; (B) 1HNMR spectra of tautomer (10 mM DMSO-d6). 
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nm distance.78 The measurement followed a process of mounting a Pd probe and a Pd 

substrate both functionalized with a molecular reader to a PicoSPM scanning tunneling 

microscope, stabilizing the tunnel junction in a phosphate buffer (1.0 mM, 7.4 pH) until a 

clean baseline was generated (~ 2 h), introducing an analyte solution (typically 100 M 

in 1.0 mM phosphate buffer, pH 7.4) to the liquid cell, and collecting current recordings 

for ~ 20 min under a predefined tip-substrate bias (Figure 2.3). In a typical RT spectra, 

peak amplitude is defined as the height of the current spike from the tunnel current 

baseline and peak width is define as the width of the current spike at half of its maximum 

height (see Figure 2.3).  

Figure 2.3. (a) A schematic of scanning tunneling microscope (STM) for recognition 

tunneling experiment; (b) Control trace in absence of any analyte molecule; (c) Typical 

RT spectra showing clusters; (c) Parameters of peaks obtained during a RT experiment. 
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In our present study, four naturally occurring DNA nucleoside monophosphates 

(referred to as dAMP, dCMP, dGMP and dTMP) were used as analytes (See Figure 

2.4). For each analyte, four separate measurements were carried out separately with 

freshly made probes, substrates, and samples. Figure 2.4 presents typical recognition 

spectra of DNA nucleotides recorded in STM tunneling junctions functionalized with 

different molecular readers.  

Figure 2.4. RT spectra generated with: (i) BCA, (ii) ICA, (iii) PCA, (iv) TCA 

functionalized tip and substrate at a setting point of 4 pA and 0.5 V. 
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Initially the spikes were analyzed by their averaged peak amplitude and peak width 

(date is not shown). The distributions of amplitude and peak width were very similar 

among different readers as well as individual DNA nucleotides. This may be explained 

by that these nucleotides form similar structures with different reader molecules in the 

nanogap, resulting in similar tunneling pathway. Nonetheless, a RT spectrum bears rich 

information on the trapped molecules beyond the above-mentioned parameters. 

In order to call DNA bases, the tunneling current data were sequentially subjected to 

Fourier transform and cepstrum conversion, which produced a plethora of features for 

each of spikes and clusters. When those features were utilized to identify individual DNA 

bases, we found that there was no single feature that can be employed alone to effectively 

distinguish any two of DNA nucleotides from one another. However, a combination of 

two individual features has given a leap in the calling rate. As shown in Figure 2.5, a two-

D plot can separated two DNA nucleotides dAMP (red dots) and dGMP (green dots) 

from each other with an efficiency (P, defined as accuracy) of 0.68 for the reader 

molecule BCA, 0.7 for ICA, 0.62 for PCA, and 0.79 for TCA.79  

Figure 2.5. Two-D histograms of different readers’ features where the brightness of each 

point represents the frequency value of the pair of features for dAMP (red) and dGMP 

(green), the accuracy (P) with which data can be assigned increases compared to one-D 

plot. Colors are yellowed with overlapped points. 
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The two-dimensional plot demonstrates an effective approach to calling DNA bases 

from the tunneling data. We have adapted a Support Vector Machine, SVM, a machine-

learning algorithm to carry out the multidimensional analysis, which was previously 

applied to analyze the tunneling data generated with ICA.80 Using the SVM method, the 

highest accuracy for each individual DNA nucleotide a reader molecule can achieve is 

listed in Table 2.1. These reader molecules read DNA bases differently with an accuracy 

order of BCA > ICA > TCA > PCA on average. Thus, PCA is removed from as a 

universal reader candidate due to its low accuracy. In contrast, BCA does not only have 

higher accuracy but also read DNA bases much less discriminately than ICA and TCA, 

based on their mean values and standard deviations of accuracy for four nucleotides. As a 

result, BCA is an ideal candidate of the universal reader for identification of DNA bases 

by RT.  

 

Table 2.1. Highest accuracy (%) that can be achieved with different readers for 

determining individual DNA nucleotides by RT 

 dAMP dCMP dGMP dTMP Mean ± σ 

BCA 98.5 98.8 98.7 98.9 98.7 ± 0.1 

ICA 96.5 97.4 96.4 98.1 97.1 ± 0.8 

PCA 90.1 89.8 89.2 88.2 89.3 ± 0.8 

TCA 94.3 95.5 96.5 99.0 96.3 ± 2.0 
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2.4. Recognition of DNA Bases by - Stacking as an Alternative to Hydrogen 

Bonding in Nanogaps by Electron Tunneling 

We have studied hydrogen bonding interactions to read DNA bases and other 

molecules such as amino acids81 and sugars by recognition tunneling. We also designed a 

new universal reader 1-(2-mercaptoethyl)pyrene (Py) based on π-π interactions, which 

should be more specific to the canonical DNA bases (see Figure 2.6). We found that the 

pyrene reader (Py) identified DNA bases with accuracy of 96.7% for dTMP, 97.1% for 

dGMP, 98.8% for dAMP, and 99.4% for dCMP, significantly higher than the 

imidazole-2-carboxamide reader ICA that had the accuracy of 96.4% for dGMP, 96.5% 

for dAMP, 97.4% for dCMP, and 98.1% for dTMP. However, ICA can read an abasic 

(AP) monophosphate, a product from spontaneous base hydrolysis or an intermediate of 

base excision repair. Our data analysis indicates that the signals of AP cannot be 

distinguished from those of DNA bases generated by ICA, but those by Py (see Figure 

2.7).82 Thus, sequencing DNA using both - stacking and hydrogen bonding based 

universal readers in parallel should generate more comprehensive genome sequences than 

current technologies.  

 

Figure 2.6. 1-(2-mercaptoethyl)pyrene (Py) 
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2.5. Synthesis of Universal Reader Candidates 

We have developed new methods to synthesize these universal reader candidates. 

PCA was synthesized by a six-step process starting from commercially available 2-

trichloroacetyl pyrrole (Scheme 2.1). This compound was reacted with chlorosulfonyl 

isocyanate (CSI) to produce corresponding cyano compound 1.1 in 80% yield. 

Trichloroacetyl group was converted to carboxylic acid by hydrolysis using sodium 

hydroxide to produce 1.2 in 90% yield. Decarboxylation under high temperature and 

using copper chromite catalyst produced 1.3 in 65% yield.83 It was converted to its 

sodium form by reacting with sodium hydride, followed by reacting with benzyl 2-

bromoethyl sulfide, which produced 1-(2-(benzylthio)ethyl)-1H-pyrrole-3-carbonitrile 

(1.4) in a 45% yield. The compound 1.4 was converted to 1-(2-(benzylthio)ethyl)-1H-

pyrrole-3-carboxamide (1.5) by hydrolysis of the cyano group in a mixed solution of 

Figure 2.7. Examples of RT spectra generated with: (i) ICA functionalized tip and 

substrate at set point 4 pA and 0.5 V; (ii) Py functionalized tip and substrate at a set point 

of 2 pA and 0.5 V. 
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sulfuric acid and trifluoroacetic acid with a 80% yield, based on a method reported in 

literature.84 Removing the benzyl group of compound 1.5 with sodium in liquid ammonia 

at -78°C produced the desired compound PCA in a 50% yield.  

 

 

 

BCA was synthesized by a five step process starting from commercially available 2-

nitro-4-thiocyanatoaniline (Scheme 2.2). It was converted to free thiol according to 

literature reported procedure85 to produce 2.1 in 96% yield. Thiol group was protected by 

benzyl group by reacting with benzyl bromide to provide compound 2.2 in 70% yield. 

The nitro group was reduced to amino group by reacting with sodium dithionite to 

provide compound 2.3 in 83% yield. The next step cyclication reaction was performed 

following the literature reported by Zavarzin and coworkers using oxamic acid 

monothiooxamide as an intermediate.86 Compound 2.4 was synthesized in a one-pot 

reaction by heating a mixture of 4-(benzylthio)benzene-1,2-diamine (2.3)87 with 

chloroacetamide and sulfur in the presence of triethyl amine in a fair yield (53%). We 

Scheme 2.1. Synthesis of 1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide (PCA) 
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fully characterized the compound 2.4 with 1H and 13C NMR, and high-resolution mass 

spectrometry. Debenzylation of 2.4 with sodium readily furnished the universal reader 

BCA with a 68% yield. 

 

 

 

In a similar way, TCA was synthesized by four steps starting from 3-bromopropane 

nitrile as the commercial available starting material (Scheme 2.3). It was converted to 

compound 3.1 where bromine was replaced by benzylthio group in 65% yield. It was 

converted to 3-(benzylthio)propanenitrile salt (3.2)88 by reacting with anhydrous HCl in 

ether and benzyl mercaptan in 97% yield. Then a key reaction of imido thioester with 

hydrazide was followed.89 In this step compound 3.2 was reacted with oxamic hydrazide 

to form 1,2,4-triazole-5-carboxamide (3.3) in 40% yield. Finally, debenzylation of 3.3 

with sodium furnished the compound TCA in 41% yield. 

Synthesis of 4(5)-(2-(mercaptoethyl)-1-H-imidazole-2-carboxamide (ICA) was 

carried out following the literature.40 

Scheme 2.2. Synthesis of 6-mercapto-1H-benzo[d]imidazole-2-carboxamide (BCA) 
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Scheme 2.3. Synthesis of 5-(2-mercaptoethyl)-4H-1,2,3-triazole-3-carboxamide (TCA) 

 

2.6. Synthesis of Pyrene Reader Candidate 

Synthesis of pyrene reader was reported in the following scheme (Scheme 2.4). It 

was synthesized in three steps from commercially available 1-bromopyrene. Purchased 1-

bromopyrene (95% purity) was first purified by silica gel flash chromatography eluting 

with hexane, dried at 40°C overnight, and stored over drierite under vacuum. THF was 

freshly distilled over sodium prior to use. Nitrogen was flowed through drierite before it 

went into the reaction vessel. Ethylene oxide (1.2 M solution in dichloromethane) was 

stored over molecular sieves for two days before use. In the first step a Grignard reaction 

was performed between 1-bromopyrene and ethylene oxide to provide compound 4.1 in 

40% yield. The hydroxyl group was protected by tosyl group by reacting with tosyl 

chloride to provide 4.2 in 82% yield. The tosyl was replaced by thioacetate to produce 4.3 

in 78% yield. It was converted to free thiol by in situ addition of pyrrolidine to produce 

Py in quantitative yield (not shown in the scheme but synthesis is reported). 
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Scheme 2.4. Synthesis of S-(2-(pyren-1-yl)ethyl) ethanethioate 

 

2.7. Experimental Procedures  

Reagents and solvents were purchased from commercial suppliers (Sigma-

Aldrich, Alfa Aesar, Fluka, TCI America) and used as received unless otherwise noted. 

All experiments requiring anhydrous conditions were performed in flame-dried glassware 

under nitrogen atmosphere. Reactions were monitored by thin layer chromatography 

(TLC) using glass plates precoated with silica gel (EMD Chemicals Inc.). Flash 

chromatography was performed in an automated flash chromatography system 

(CombiFlash Rf, Teledyne Isco, Inc.) with silica gel columns (60-120 mesh). 1H NMR 

and 13C NMR spectra were recorded on Varian INOVA 400 (400 MHz) and Varian 

INOVA 500 (500 MHz) spectrometers at 25°C at the Magnetic Resonance Research 

Center at Arizona State University. Chemical shifts (δ) are given in parts per million 

(ppm) and are referenced to the residual solvent peak (CDCl3: δH = 7.26 ppm, CD3OD: δH 

= 3.31 ppm, DMSO-d6: δH = 2.50 ppm). Coupling constants (J) are expressed in hertz 

(Hz) and the values are rounded to the nearest 0.1 Hz. Splitting patterns are reported as 

follows: br, broad; s, singlet; d, doublet; dd, doublet of doublets; t, triplet; dt, doublet of 
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triplets; q, quartet and m, multiplet. High resolution mass spectra (HRMS) are acquired at 

the Arizona State University CLAS High Resolution Mass Spectrometry Facility. 

 

2-trichloroacetylpyrrole-4-carbonitrile (1.1). 2-Trichloroacetylpyrrole (6.0 g, 28.23 

mmol) was dissolved in acetonitrile (30 mL) and cooled in ice bath. A solution of 

chlorosulfonyl isocyanate or CSI (9.6 g, 67.84 mmol) in acetonitrile (9 mL) was added 

dropwise into the stirred solution. The reaction mixture was warmed to room temperature 

and stirred for 12h. It was then cooled in ice bath, DMF (24 mL) was added, heated first 

to 50°C for 1h and then stirred at room temperature for 3h. The mixture was poured onto 

crushed ice (~100 g) and extracted with CH2Cl2 (3×40 mL). The combined organic layers 

were washed with aqueous sodium hydrogen carbonate (1% 30 mL), brine (30mL), dried 

over MgSO4, filtered and concentrated by rotary evaporator. The residue was separated 

in a silica gel column by flash chromatography using a gradient of ethyl acetate (0-30% 

for 3h) in hexane. Compound 1.1 was obtained as white solid (5.35 g, 80%). 1H NMR 

(400 MHz, CDCl3): δ 9.80 (s, br, 1H, pyrrole-NH), 7.59 (s, 1H, Ar-H), 7.58 ppm (s, 1H, 

Ar-H); HRMS (EI+) m/z: calculated for C7H3N2OCl3: 235.9311; measured: 235.9318. 
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4-cyano-1H-pyrrole-2-carboxylic acid (1.2). Compound 1.1 (4.0 g, 16.84 mmol) was 

added in an aqueous sodium hydroxide solution (2M, 40 mL) cooled in ice bath. It was 

warmed to room temperature and stirred for 2h during which solution became cloudy. 

The solution was acidified with concentrated HCl and the precipitate of product was 

collected by vacuum filtration, washed with cold water and dried at 110°C overnight. The 

product 1.2 (2.07 g, 90%) was obtained as a pale brown solid and used without further 

purification. 1H NMR (400 MHz, DMSO-d6): δ 12.98 (s, br, 1H, COOH), 12.70 (s, br, 

1H, pyrrole-NH), 7.76 (s, 1H, Ar-H), 7.12 ppm (s, 1H, Ar-H); 13C NMR (100 MHz, 

DMSO-d6): δ 160.9, 130.6, 125.0, 117.1, 116.2, 92.9 ppm; HRMS (EI+) m/z: calculated 

for C6H4N2O2: 136.0273; measured: 136.0269. 

 

1H-pyrrole-3-carbonitrile (1.3). Compound 1.2 (1.8 g, 13.24 mmol) was mixed with 

quinoline (12 mL) followed by the addition of copper chromite catalyst (1.2 g). The 

stirred mixture was heated in an oil bath at 160°C for 3h. The resulting brown mixture 

was cooled, diluted with ether (200 mL) and filtered through celite bed to remove 

insoluble materials. The ether solution was washed with four portions (30 mL each) of 
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1M HCl and then with aqueous sodium bicarbonate solution (5%). The pale yellow ether 

layer was collected, dried over MgSO4, filtered and concentrated by rotary evaporator. 

The residue was separated in a silica gel column by flash chromatography using a 

gradient of ethyl acetate (0-30% for 3.5h) in hexane. Compound 1.3 was obtained as pale 

yellow solid (0.8 g, 65%). 1H NMR (400 MHz, CDCl3): δ 9.29 (s, br, 1H, pyrrole-NH), 

7.31 (m, 1H, pyrrole-H), 6.80 (m, 1H, pyrrole-H), 6.47 ppm (m, 1H, pyrrole-H); 13C 

NMR (100 MHz, DMSO-d6): δ 126.2, 119.7, 117.6, 111.8, 92.7 ppm; HRMS (APCI+) 

m/z: calculated for C5H4N2+H: 93.0453; measured: 93.0455. 

 

1-(2-(benzylthio)ethyl)-1H-pyrrole-3-carbonitrile (1.4). A solution of 1H-pyrrole-3-

carbonitrile (100 mg, 1.08 mmol) in anhydrous DMF (0.5 mL) was added dropwise into a 

suspension of NaH (39 mg, 1.62 mmol) in anhydrous DMF (1.0 mL) at 0 °C under 

nitrogen. The mixture was stirred for 30 min, to which a solution of 2-bromoethyl benzyl 

sulfide (301 mg, 1.30 mmol) in anhydrous DMF (0.5 mL) was added dropwise. The 

reaction mixture was stirred at room temperature for 12 h, followed by the addition of a 

saturated NH4Cl solution of (10 mL) and extracting the mixture with ethyl acetate (3 × 10 

mL). The combined organic phase was washed with brine three times (each 10 mL), dried 

over MgSO4, filtered, and concentrated by rotary evaporator. The residue was separated 

in a silica gel column by flash chromatography using a gradient of ethyl acetate (0-30% 

in 3 h) in hexane. Compound 1.4 was obtained as a colorless liquid (117 mg, 45%). 1H 
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NMR (500 MHz, CDCl3): δ 7.27-7.36 (m, 5H, ArH), 7.07 (t, J = 1.8 Hz, 1H, pyrrole-H2), 

6.58 (dd, J = 2.7 Hz, J = 1.8 Hz, pyrrole-H5), 6.40 (dd, J = 2.7 Hz, J = 1.7 Hz, pyrrole-

H4), 3.90 (t, J = 7.0 Hz, 2H, SCH2CH2), 3.58 (s, 2H, PhCH2), 2.71 ppm (t, J = 7.0 Hz, 

2H, SCH2CH2); 
13C NMR (125 MHz, CDCl3): δ 137.8, 129.1, 128.9, 128.1, 127.6, 122.2, 

116.9, 112.5, 93.1, 50.3, 36.7, 32.4 ppm; HRMS (APCI+): found m/z 243.0962; 

calculated for C14H14N2S+H: 243.0956.  

 

1-(2-(benzylthio)ethyl)-1H-pyrrole-3-carboxamide (1.5). Compound 1.4 (100 mg, 

0.413 mmol) was added into a mixture of  trifluoroacetic acid (0.8 mL) and aqueous 

solution of sulfuric acid (1.0 mL, 20% v/v) at room temperature. The resulting mixture 

was heated at 75°C with stirring for 16 h. TLC analysis indicated the reaction was 

completed (eluent: 5% methanol in dichloromethane; Rf = 0.37). The solution was 

neutralized by the addition of a saturated NaHCO3 solution (10 mL), extracted with ethyl 

acetate (3 × 10 mL). The combined organic phases were washed with brine (10 mL), 

dried over MgSO4, filtered and concentrated by rotary evaporator. The residue was 

separated in a silica gel column by flash chromatography with a gradient of methanol (0-

5% in 3 h) in dichloromethane to obtain compound 1.5 (86 mg, 80%). 1H NMR (400 

MHz, CDCl3): δ 7.22-7.30 (m, 5H, ArH), 7.19 (t, J = 1.6 Hz, 1H, pyrrole-H2), 6.52 (dd, J 

= 2.8 Hz, J = 2.0 Hz, pyrrole-H5), 6.38 (dd, J = 2.8 Hz, J = 1.6 Hz, pyrrole-H4), 5.98 (s, 

br, 2H, amide NH2), 3.85 (t, J = 7.0 Hz, 2H, SCH2CH2), 3.52 (s, 2H, PhCH2), 2.66 (t, J = 
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7.0 Hz, 2H, SCH2CH2) ppm; 13C NMR (100 MHz, CDCl3): δ 167.2, 138.0, 129.2, 128.9, 

127.6, 124.4, 122.0, 119.4, 108.4, 50.2, 36.7, 32.5 ppm; HRMS (APCI+): found m/z 

261.1064; calculated for C14H16N2OS+H: 261.1062. 

 

1-(2-mercaptoethyl)-1H-pyrrole-3-carboxamide (PCA). A solution of compound 1.5 

(50 mg, 0.19 mmol) in anhydrous THF (1.0 mL) was added to liquid ammonia (~2 mL) 

at -78°C under nitrogen and the resulting solution was stirred for 10 min. Small pieces of 

freshly cut sodium were added one after the last one disappeared until a blue color was 

able to remain unfading for 3 min, and then NH4Cl was added until the blue color 

disappeared. The ammonia was allowed to evaporate at room temperature under a flow of 

nitrogen. The organic solvent was removed by rotary evaporation. The residue was 

separated in a silica gel column by flash chromatography with a gradient of methanol (0-

10% in 2.5 h) in dichloromethane. Product PCA was obtained as a white solid (16 mg, 

50%). 1H NMR (400 MHz, CDCl3): δ 7.28 (t, J = 2.0 Hz, 1H, pyrrole-H2), 6.63 (dd, J = 

2.9 Hz, 2.3 Hz, pyrrole-H5), 6.40 (dd, J = 2.9, 1.9 Hz, pyrrole-H4), 5.81 (s, br, 2H, amide 

NH2), 4.06 (t, J = 6.6 Hz, 2H, SCH2CH2), 2.84 (dt, J = 8.4, 6.6 Hz, 2H, SCH2CH2), 1.33 

(t, J = 8.6, 1H, SH) ppm; 13C NMR (100 MHz, CDCl3): δ 167.0, 124.5, 122.1, 119.5, 

108.4, 53.3, 26.3 ppm; HRMS (APCI+): found m/z 171.0595; calculated for 

C7H10N2OS+H: 171.0592. 
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4-amino-3-nitrobenzenethiol (2.1). 2-nitro-4-thiocyanatoaniline (3.51 g, 18 mmol) was 

used as the commercially available starting material to synthesize compound 2.1 (2.94 g, 

96%) following the procedure reported in literature.85 

 

4-(benzylthio)-2-nitroaniline (2.2). Triethylamine (2.44 mL, 17.65 mmol) was added 

into a solution of 2.1 (2.0 g, 11.76 mmol) in dichloromethane (20 mL) and stirred for 30 

min. Benzyl bromide (1.68 mL, 14.12 mmol) was added into the solution and it was 

stirred for 16 h at room temperature. The reaction mixture was diluted by adding 

dichloromethane (80 mL), washed with saturated sodium bicarbonate solution (50 mL) 

and brine (50 mL), dried over MgSO4, filtered and concentrated by rotary evaporator. 

The residue was separated in a silica gel column by flash chromatography using a 

gradient of ethyl acetate (0-10% in 3 h) in hexane. Compound 2.2 was obtained as red 

solid (2.1 g, 70%). 1H NMR (400 MHz, CDCl3): δ = 8.10 (d, J = 2 Hz, 1H, ArH), 7.19-

7.29 (m, 6H, ArH), 6.67 (d, J = 8.8 Hz, 1H, ArH), 6.08 (s, br, 2H, NH2), 3.99 (s, 2H, 

SCH2Ph); 13C NMR (100 MHz, CDCl3): δ = 144.3, 140.5, 137.7, 132.4, 130.5, 129.3, 

128.8, 127.6, 122.8, 119.5, 41.3 ppm; HRMS (APCI+): m/z calculated for 

C13H12N2O2S+H: 261.0698; measured: 261.0694. 
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4-(benzylthio)benzene-1,2-diamine (2.3). Compound 2.2 (1.0 g, 3.85 mmol) was 

dissolved in 50% aqueous ethanol (total volume 40 ml). Sodium dithionite (4.02 g, 23.10 

mmol) was added portion wise into the solution over a period of 20 min. The stirred 

solution was gradually heated to 100°C and refluxed for about 10 min while the red 

solution became colorless. It was cooled at room temperature and the solvents were 

evaporated in rotary evaporator. The crude was extracted with boiling methanol (3 × 50 

ml) and filtered through celite bed under vacuum suction. Silica gel was added to the 

solution and concentrated by rotary evaporator. The residue was separated in a silica gel 

column by flash chromatography using a gradient of methanol (0-2% in 2 h) in 

dichloromethane to obtain 2.3. Yield: 0.73 g (83%). 1H NMR (400 MHz, CDCl3): δ = 

7.18-7.24 (5H, m, ArH), 6.67-6.72 (2H, m, ArH), 6.55 (1H, d, J = 8.0 Hz, ArH), 3.95 

ppm (2H, s, CH2), 3.33 (4H, broad, NH2),; 
13C NMR (100 MHz, CDCl3): δ = 138.7, 

135.2, 134.9, 129.2, 128.6, 127.2, 125.4, 125.2, 121.3, 117.1, 41.7 ppm; HRMS (APCI+): 

m/z calculated for C13H14N2S+H: 231.0956; measured: 231.0957. 
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6-(benzylthio)-1H-benzo[d]imidazole-2-carboxamide (2.4). 2-Chloroacetamide (0.19 

g, 2.0 mmol) was added to a mixture of 2.3 (0.46 g, 2.0 mmol), sulfur (0.26 g, 8.1 mmol) 

and triethyl amine (0.5 mL) in DMF (5 mL). The reaction mixture was stirred at 45°C for 

16 h, cooled to room temperature, diluted with water (20 mL), and extracted with ethyl 

acetate (3 × 20 mL). The combined organic phases were washed with brine three times 

(each 10 mL), dried over MgSO4, filtered and concentrated by rotary evaporator. The 

residue was separated in a silica gel column by flash chromatography with a gradient of 

methanol (0-5% in 4 h) in dichloromethane to obtain compound 2.4 (0.3 g, 53%). 1H 

NMR (400 MHz, DMSO-d6): δ 13.15 (s, 1H, imidazole NH), 8.24 (s, broad, 1H, amide 

NH2), 7.82 (s, broad, 1H, amide NH2), 7.63 (d, J = 8.0 Hz, 1H, ArH), 7.43 (d, J = 8.8 Hz, 

1H, ArH), 7.19-7.32 (m, 6H, ArH), 4.21 (2H, d, J = 8.8 Hz, CH2); HRMS (APCI+) m/z: 

calculated for C15H13N3SO+H: 284.0858, measured: 284.0853. 

 

6-mercapto-1H-benzo[d]imidazole-2-carboxamide (BCA). A solution of compound 

2.4 (0.1 g, 0.35 mmol) in anhydrous THF (1.0 mL) was added to liquid ammonia (~3 

mL) at -78°C under nitrogen and the resulting solution was stirred for 10 min. Small 

pieces of freshly cut sodium were added one after the last one disappeared until a blue 

color be able to remain unfading for 3 min, and then NH4Cl was added until the blue 

color disappeared. The ammonia was allowed to evaporate at room temperature under a 

flow of nitrogen. The organic solvent was removed by rotary evaporation. The residue 
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was separated in a silica gel column by flash chromatography with a gradient of methanol 

(0-10% in 3 h) in dichloromethane to obtain compound BCA (47 mg, 68%). 1H NMR 

(400 MHz, DMSO-d6): δ 13.10 (m, 1H, imidazole NH), 8.20 (s, broad, 1H, amide NH2), 

7.79 (s, broad, 1H, amide NH2), 7.58-7.65 (m, 1H, ArH), 7.40-7.45 (m, 1H, ArH), 7.15-

7.22 (m, 1H, ArH), 5.59 (m, 1H, SH) ppm; HRMS (APCI+) m/z: calculated for 

C8H7N3OS+H: 194.0388; measured: 194.0383. 

 

3-(benzylthio)propanenitrile (3.1). Benzyl mercaptan (1.05 g, 19.0 mmol) was added 

into a stirred solution of sodium hydride (60% in mineral oil, 1.16 g, 24.0 mmol) in 

anhydrous DMF (50 mL) at 0 0C under inert atmosphere. The reaction mixture was 

stirred for another 30 min followed by the slow addition of 3-bromopropanenitrile (2.68 

g, 20.0 mmol). The resulting mixture was allowed to warm at room temperature and 

stirred for 12 h while one of the starting materials was consumed completely. The solvent 

was removed by rotary evaporation. A saturated solution of aqueous NH4Cl was added 

into the mixture and extracted with chloroform (3×20 mL). The combined organic 

extracts were washed with brine (30 mL) and dried over magnesium sulfate. The solution 

was then filtered and concentrated by rotary evaporator. The crude product was purified 

by silica gel flash column chromatography. Pure product 3.1 (2.25 g, 65%) was obtained 

as pale yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 7.24-7.33 (5H, m, ArH), 3.78 

(2H, s, PhCH2), 2.64 (2H, t, J = 8.0 Hz, CH2), 2.47 ppm (2H, t, J = 8.0 Hz, CH2); 
13C 
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NMR (100 MHz, CDCl3): δ = 137.2, 128.9, 127.2, 118.3, 36.0, 26.2, 18.3 ppm; HRMS 

(APCI+): m/z calculated for C10H11NS+H: 178.0690; found: 178.0688. 

 

benzyl 3-(benzylthio)propanimidothioate hydrochloride (3.2). Hydrogen chloride was 

bubbled into a solution of 3.1 (2.0 g, 11.3 mmol) and benzyl mercaptan (2.0 mL, 17.0 

mmol) in anhydrous ethyl ether (120 mL) in an ice bath under nitrogen for 2 h. The 

solution was capped and allowed to warm to room temperature, stirred for another 24 h. 

The reaction solution then stood still for 2 h, from which the compound 3.2 crystallized 

out. The product was filtered through a Buchner funnel, washed with cold ethyl ether 

three times (each 20 mL), and dried in vacuum at room temperature overnight. It weighed 

3.7 g (yield: 97%). 1H NMR (400 MHz, CDCl3): δ 12.59 (s, br, 1H, NH2), 11.75 (s, br, 

1H, NH2), 7.21-7.39 (m, 10H, ArH), 4.78 (s, 2H, CSCH2Ph), 3.86 (s, 2H, PhCH2SCH2), 

3.20 (t, J = 7.2 Hz, 2H, SCH2CH2), 2.88 (t, J = 7.0 Hz, 2H, SCH2CH2) ppm; 13C NMR 

(100 MHz, CDCl3): δ 193.3, 137.8, 131.3, 129.8, 129.6, 129.5, 129.3, 129.0, 127.6, 39.3, 

37.5, 36.4, 29.8 ppm; HRMS (APCI+) m/z: calculated for C17H19NS2+H: 302.1037; 

measured: 302.1036. 
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5-(2-(benzylthio)ethyl)-4H-1,2,4-triazole-3-carboxamide (3.3). A solution of 3.2 (1.01 

g, 3.0 mmol) and oxamic hydrazide (0.31 g, 3.0 mmol) in anhydrous pyridine (10 mL) 

was refluxed at 110°C for 3 h. The solvent was removed by co-evaporating with toluene 

(5 mL × 2) by rotary evaporation. The yellow oily residue was dissolved in DMSO (15 

mL), to which water (50 mL) was added, resulting in a white precipitate. The product was 

filtered through a Buchner funnel, washed thoroughly with cold water (40 mL), cold 

ethyl ether (40 mL), and dried in vacuum at room temperature. It was then dissolved in 

boiling ethanol (~25 mL) and allowed to recrystallize by slowly cooling the solution 

down to room temperature, filtered, and dried in vacuum at 40 °C for overnight. 

Compound 3.3 was obtained as white crystals (0.31 g, 40%). 1H NMR (400 MHz, 

DMSO-d6): δ 14.26 (s, broad, 1H, NH), 7.83 (s, broad, 1H, NH2), 7.61 (s, broad, 1H, 

NH2), 7.21-7.32 (m, 5H, ArH), 3.74 (s, 2H, PhCH2), 2.97 (t, J = 7.2 Hz, 2H, SCH2CH2), 

2.77 ppm (t, J = 7.2 Hz, 2H, SCH2CH2); 
13C NMR (100 MHz, DMSO-d6): δ = 160.5, 

160.1, 156.1, 138.4, 128.8, 128.4, 126.8, 34.9, 28.7, 26.7 ppm; HRMS (APCI+) m/z: 

calculated for C12H14N4OS+H: 263.0967; measured: 263.0972. 
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5-(2-mercaptoethyl)-4H-1,2,4-triazole-3-carboxamide (TCA). A solution of compound 

3.3 (150 mg, 0.57 mmol) in anhydrous THF (1.0 mL) was added to liquid ammonia (~2 

mL) at -78°C under nitrogen and the resulting solution was stirred for 10 min. Small 

pieces of freshly cut sodium were added one after the last one disappeared until a blue 

color was able to remain unfading for 3 min, and then NH4Cl was added until the blue 

color disappeared. The ammonia was allowed to evaporate at room temperature under a 

flow of nitrogen. The organic solvent was removed by rotary evaporation. The residue 

was separated in a silica gel column by flash chromatography with a gradient of methanol 

(0-10% in 2 h) in dichloromethane. Product TCA was obtained as a white solid (40 mg, 

41%). 1H NMR (400 MHz, DMSO-d6): δ = 6.79 (s, broad, 1H, NH2), 6.71 (s, broad, 1H, 

NH2), 2.57 (t, J = 6.8 Hz, 2H, SCH2CH2); 2.43 (t, J = 6.8 Hz, 2H, SCH2CH2), 2.08 (t, J = 

2.0 Hz, 1H, SH); HRMS (APCI+) m/z: calculated for C5H8N4OS+H: 173.0497; 

measured: 173.0493. 
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2-(pyren-1-yl)ethanol (4.1). A solution of 1-bromopyrene (0.4 g, 1.42 mmol in 12 mL 

THF) was added onto magnesium turnings (0.1 g, 4.27 mmol) in a flame-dried Schlenk 

flask.90,91 It was refluxed at 70°C while the solution turned into dark brown color and 

continued to reflux for another 2 h. The resulting solution was cooled in ice bath followed 

by addition of ethylene oxide solution (3.6 mL, 4.27 mmol in 6mL THF). The mixture 

was allowed to warm to room temperature and stirred 12 h. It was cooled in ice bath then 

hydrolyzed by careful addition of HCl (5 mL 10%). Organic compounds were extracted 

with ethyl acetate (20 mL × 2). The combined organic layers were washed with brine (40 

mL), dried over MgSO4, filtered and dried in rotary evaporator. Product was purified 

through silica gel column by flash chromatography using a gradient of ethyl acetate (0 - 

20% for 3 h) in hexane. Compound 4.1 was obtained as yellow solid (0.14 g, 40%).  1H 

NMR (500 MHz, CDCl3): δ 8.29 (d, J = 9.0 Hz, 1H, ArH), 8.18 (d, J = 8.0 Hz, 2H, ArH), 

8.10-8.13 (m, 2H, ArH), 7.99-8.04 (m, 3H, ArH), 7.90 (d, J = 8.0 Hz, 1H, ArH), 5.29 (s, 

br, 1H, OH), 4.09 (t, J = 6.5 Hz, 2H, CH2CH2OH), 3.61 ppm (t, J = 6.5 Hz, 2H, 

CH2CH2OH); 13C NMR (125 MHz, CDCl3): δ 132.53, 131.52, 130.98, 130.42, 129.36, 

128.07, 127.68, 127.57, 127.09, 126.06, 125.24, 125.19, 125.00, 124.97, 123.30, 63.95, 

36.78, 29.85 ppm; HRMS (FAB+) m/z: calculated for C18H14O+H: 247.1123; measured: 

247.1129. 
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2-(pyren-1-yl)ethyl 4-methylbenzenesulfonate (4.2). Triethyl amine (0.08 mL, 0.55 

mmol) was added into a solution of compound 4.1 (45 mg, 0.18 mmol) and tosyl chloride 

(52 mg, 0.28 mmol) in 1.5 mL dichloromethane at room temperature. The resulting 

solution was stirred for 16 h followed by addition of saturated sodium bicarbonate 

solution (5 mL). Organic compounds were extracted by dichloromethane (3 × 10 mL). 

Combined organic extract was washed with brine (30 mL), dried over MgSO4, filtered 

and evaporated to dryness in rotary evaporator. Product was purified through silica gel 

column by flash chromatography using a gradient of ethyl acetate (0 - 20% for 3 h) in 

hexane. Compound 4.2 was obtained as white solid (60 mg, 82%). 1H NMR (500 MHz, 

CDCl3): δ 8.17 (q, J = 7.5 Hz, 2H, ArH), 7.95-8.05 (m, 6H, ArH), 7.76 (d, J = 7.5 Hz, 

1H, ArH), 7.33 (d, J = 8.5 Hz, 2H, ArH), 6.68 (d, J = 8.5 Hz, 2H, ArH), 4.44 (t, J = 7.0 

Hz, 2H, CH2CH2OTs), 3.64 (t, J = 7.0 Hz, 2H, CH2CH2OTs), 1.85 ppm (s, 3H, CH3); 
13C 

NMR (125 MHz, CDCl3): δ 144.28, 132.23, 131.37, 130.73, 130.65, 129.96, 129.17, 

128.87, 128.28, 127.80, 127.47, 127.40, 127.23, 126.08, 125.32, 125.13, 125.06, 124.80, 

124.79, 122.52, 70.41, 33.06, 21.05 ppm; HRMS (FAB+) m/z: calculated for 

C25H20O3S+H: 401.1211; measured: 401.1213. 

 

S-(2-(pyren-1-yl)ethyl) ethanethioate (4.3). Compound 4.2 (55 mg, 0.138 mmol) was 

dissolved in 1.5 mL DMF followed by the addition of potassium thioacetate (24 mg, 
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0.206 mmol). The resulting mixture was stirred for 16 h at room temperature. Brine (10 

mL) was added into the reaction mixture and organic compounds were extracted with 

dichloromethane (2 × 10 mL). Combined organic extract was dried over MgSO4, filtered 

and evaporated to dryness in rotary evaporator. Product was purified through silica gel 

column by flash chromatography using a gradient of ethyl acetate (0 - 5% for 3 h) in 

hexane. Final product 4.3 was obtained as white solid (32 mg, 78%). 1H NMR (500 MHz, 

CDCl3): δ 8.42 (d, J = 9.5 Hz, 1H, ArH), 8.15-8.20 (m, 3H, ArH), 8.12 (d, J = 8.0 Hz, 

1H, ArH), 7.99-8.04 (m, 3H, ArH), 7.89 (d, J = 8 Hz, 1H, ArH), 3.60 (t, J = 8.0 Hz, 2H, 

CH2CH2S), 3.32 (t, J = 8.0 Hz, 2H, CH2CH2S), 2.41 ppm (s, 3H, CH3); 
13C NMR (125 

MHz, CDCl3): δ 196.17, 134.14, 131.49, 131.00, 130.47, 129.01, 127.86, 127.56, 127.10, 

126.02, 125.18, 125.17, 125.06, 125.03, 124.96, 123.30, 33.95, 30.87 ppm (two carbons 

were not identified); HRMS (FAB+) m/z: calculated for C20H16OS+H: 305.1000; 

measured: 305.1001. 

 

1-(2-Mercaptoethyl)pyrene (Py). Pyrrolidine (2 µL, 24.6 mol) was added into a 

solution of 4.3 (5 mg, 16.4 mol) in ethanol (1 mL) and stirred for 30 min at room 

temperature. Solvent was evaporated to dryness by rotary evaporator to obtain Py (4.3 

mg, 100%). Rf on TLC: 0.18 (9:1 hexane/ethyl acetate). HRMS (APCI+): found m/z 

263.0886; calculated for C18H14S+H: 263.0894. 
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CHAPTER 3 

ASSOCIATION STUDY BY NMR TITRATION 

3.1. Hydrogen Bonding Association Study 

We have determined associations of the hydrogen-bonding moieties of the reading 

molecules with DNA bases in an aprotic solvent (deuterated chloroform) by NMR 

titration. For doing so, the mercaptoethyl chains or thiol of these reading molecules were 

replaced with more lipophilic groups and designated as dICA, dBCA, dTCA, and dPCA 

(Figure 3.1). The synthesis of these modified readers were discussed later in this chapter. 

Four naturally occurring DNA nucleosides (designated as dA, dC, dG and dT) were 

protected on their hydroxyls with tert-butyldimethylsilyl (TBDMS) group to render them 

soluble in chloroform (Figure 3.2). Synthesis of these modified nucleosides discussed in 

literature.92 Because of their limited solubility in chloroform, the modified reader 

molecules were used as substrates for the NMR titration, where their concentrations held 

constant with minimum self-association.  

 

 

Figure 3.1. List of modified universal readers for hydrogen bonding association study 

by NMR titration 
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3.2. Determination of Association Constants by Studying Chemical Shift Change 

Previously, we determined the association constants of dICA with DNA bases by 

monitoring changes in chemical shifts of the amide protons (see Table 3.1).40 In the same 

manner, we determined association constants of dTCA and dPCA interacting with DNA 

bases by monitoring changes in chemical shifts of the amide protons. Figure 3.3 shows 

Figure 3.3. NMR titration spectra of dTCA amide proton in different concentrations of 

dT (0.0 to 62.5 mM) and corresponding chemical shift values at 297 K 

Figure 3.2. List of modified nucleosides where 3’ and 5’ hydroxyl groups are protected 

by TBDMS 
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changes in amide chemical shift of dTCA when titrated with dT. The amide proton of a 

1.0 mM dTCA solution was observed at 5.579 ppm in the absence of any dT titrator. The 

amide proton peak was detected very clearly throughout the titration range. A known 

volume of dT solution was added into the NMR tube containing dTCA and the chemical 

shift was recorded after each addition. The peaks shifted to the left with the increase of 

dT concentration. The observed chemical shift was 5.647 ppm when 7.0 mM dT was 

added with 0.068 ppm chemical shift change. When dT concentration was 50 times 

higher, the chemical shift change was 0.3 ppm. Similarly all the chemical shifts values 

were observed and reported corresponding to different dT concentrations (see Figure 

3.3). 

In chloroform, dBCA ring N-H proton clearly shows up two peaks for two 

tautomer in its 1H NMR spectrum. Figure 3.4 shows changes in chemical shift of the N-H 

proton with concentrations of dT. The chemical shifts of both amide and ring N-H 

protons moved to lower fields with increase in concentrations of the titrator, implying 

that these protons can hydrogen bond with DNA bases. The ring N-H proton or two 

tautomer of a 5.15 mM dBCA solution was observed at 10.348 ppm and 10.220 ppm in 

the absence of any dT titrator. These ring N-H proton peaks were detected very clearly 

throughout the titration range. A known volume of dT solution was added into the NMR 

tube containing dBCA and the chemical shift was recorded after each addition. Both 

peaks shifted to the left with the increase of dT concentration. The observed chemical 

shift was 10.348 ppm and 10.220 ppm for NH(1) and NH(2) respectively when 13.1 mM 

dT was added with 0.260 and 0.203 ppm chemical shift change. When dT concentration 

was 50 times higher, the chemical shift change was 0.80 and 0.69 ppm. Similarly all the 
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chemical shifts values were shown corresponding to different dT concentrations (Figure 

3.4). 

 

Similarly, when dBCA was titrated against dA in CDCl3, the ring N-H proton of 

two tautomer of a 5.15 mM dBCA solution was observed at 10.378 ppm and 10.243 ppm 

in the absence of any dA titrator. These ring N-H proton peaks were detected very clearly 

throughout the titration range. A known volume of dA solution was added into the NMR 

tube containing dBCA and the chemical shift was recorded after each addition. Both 

peaks shifted to the left with the increase of dA concentration. The observed chemical 

shift was 10.805 ppm and 10.559 ppm for NH(2) and NH(1) respectively when 10.5 mM 

dA was added with 0.427 and 0.316 ppm chemical shift change. When dA concentration 

Figure 3.4. NMR titration spectra of dBCA ring N-H proton in different concentrations 

of dT (0.0 to 192.5 mM) and corresponding chemical shift values at 297 K 
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was 40 mM, the chemical shift change was 1.514 and 1.225 ppm. Similarly all the 

chemical shifts values were shown corresponding to different dA concentrations (Figure 

3.5). 

 

The titration data were analyzed using HypNMR 2008 program from which 

association constants deduced, expressed as Logβ11 for a 1:1 complex and Logβ12 for a 

1:2 complex of substrate to titrator (Table 3.1). β11 is the overall or cumulative stability 

constant for 1:1 complex formation and β12 is the overall stability constant between two 

modified nucleosides and one reader molecule. At first glance, dICA and dBCA formed 

1:1 complexes with DNA bases more stable than dTCA and dPCA. This could be 

explained by more loss in entropy on dTCA and dPCA interacting with DNA bases than 

Figure 3.5. NMR titration spectra of dBCA ring N-H proton in different concentrations 

of dA (0.0 to 153.9 mM) and corresponding chemical shift values at 297 K 
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dICA and dBCA because dTCA has more tautomer forms and dPCA amide has more 

freedom to rotate. Also, these molecules form the hydrogen bonding complexes with an 

order of dG > dC > dT > dA. In comparison to a dA-dT base pair, dBCA forms more 

stable complexes with dA and dT, which indicates a multiplexed hydrogen bonding 

interaction. The NMR titration study shows that both dBCA and dICA can form 1:2 

complexes with DNA bases as well. dICA formed 1:2 complexes with dG and dC only. 

Whereas dBCA formed 1:2 complexes with all four nucleosides dA, dG, dC and dT. Due 

to poor solubility of these substrates in chloroform, however, we could not determine 

existence of 2:1 complexes by reversed titration. Now dBCA showed the presence or two 

tautomer in deuterated chloroform solution in the experimental titration experiments. The 

1:1 association constants were compared against the value obtained from origin curve 

fitting. It was found that the values are close to each other proving the reliability of this 

method. The control experiments were carried out titrating dT with dA. The titration data 

were then fit into the 1:1, 1:2 or 1:1/1:2 binding isotherm by nonlinear regression in the 

HypNMR program. It was found that the data from dTCA and dPCA were fit into the 

1:1 model and those from dBCA were fit into the 1:1/1:2 model convergently (see Figure 

3.6). Following the same procedure mentioned above, we determined the association 

constant of the Watson-Crick base pair dA-dT, which is close to the value reported in 

literature.93 Since all these reading molecules interact with each DNA bases differently, 

they were used to detect the nucleobase in a nanogap by recognition tunneling.  
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The dICA data was adopted from literature reference.40 

 

Table 3.1. Association constants determined from curve fitting of NMR titration data in 

chloroform* 

 

Substrate Titrator Log β11 Log β12 Log β11ʹ Log β12ʹ 

dICA1 

dA 1.08 ± 0.09    

dC 3.10 ± 0.10 5.04 ± 0.09 ̶ ̶ 

dG 3.31 ± 0.02 5.49 ± 0.01  ̶ 

dT 1.46 ± 0.05  ̶ ̶ 

dBCA 

dA 1.53 ± 0.04 2.79 ± 0.03 1.33 ± 0.07 2.68 ± 0.10 

dC 2.54 ± 0.10 3.83 ± 0.08 2.44 ± 0.07 4.01 ± 0.05 

dG 2.70 ± 0.04 5.18 ± 0.01 2.66 ± 0.01 5.15 ± 0.05 

dT 1.81 ± 0.01 2.79 ± 0.02 1.62 ± 0.01 2.65 ± 0.04 

dTCA 

dA 1.15 ± 0.01 ̶ ̶ ̶ 

dC 1.89 ± 0.04 ̶   

dG 2.12 ± 0.03 ̶ ̶ ̶ 

dT 1.20 ± 0.02 ̶ ̶ ̶ 

dPCA 

dA** 0.18 ± 0.01 ̶ ̶ ̶ 

dC** 0.73 ± 0.03 ̶   

dG 2.25 ± 0.08 ̶ ̶ ̶ 

dT** 0.32 ± 0.01 ̶ ̶ ̶ 

dA dT 1.44 ± 0.07 ̶ ̶ ̶ 

 

1 Adopted from reference.40 

* Each number is an average of two individual experiments. 

** The interactions were too weak to be accurately determined. 
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Curve fitting by HypNMR Program 

Each titration experiment was repeated at least two times and association 

constants were obtained by curve fitting analysis in HypNMR program. A 1:1 

equilibrium model was used for dTCA and dPCA readers and 2:1 model was used for 

dBCA reader. Fitting curves were reported in Figure 3.6 below.  

 

3.3. Synthesis of Modified Universal Readers for NMR Titration Study 

Universal reader dBCA was synthesized in three steps starting from 4-amino-3-

nitrophenol as the commercially available starting material (Scheme 3.1). The hydroxyl 

group was protected by TBDMS to produce compound 5.1 in 95% yield. The nitro group 

Figure 3.6. Fitting curves obtained from HypNMR program for the determination of 

association constants 
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was reduced to amino group by reacting with sodium dithionite in presence of 50% 

aqueous ethanol to provide compound 5.2 in 94% yield. Finally cyclization reaction with 

2-chloroacetamide in presence of molecular sulfur provide dBCA in 25% yield.  

 

 

Scheme 3.1. Synthesis of 6-((tert-butyldimethylsilyl)oxy)-1H-benzo[d]imidazole-2-

carboxamide (dBCA) 

 

Universal reader dTCA was synthesized from 1-adamantaneethanol as the 

commercially available starting material (Scheme 3.2). Hydroxyl group was converted to 

tosyl group by tosylchloride reaction to produce compound 6.1 in 95% yield. Tosyl group 

was converted to cyanide by reacting with sodium cyanide to generate 6.2 in 77% yield. 

It was converted to salt 6.3 in 94% yield by reacting with bubbling anhydrous HCl in a 

solution of ethyl ether and benzyl mercaptan. Finally cyclization reaction with oxamic 

hydrazide in pyridine at high temperature gave dTCA in 60% yield. 
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3.4. Calculation of Hydrogen Bonding Energies by DFT Calculation 

Hydrogen bond strength in AT and GC base pairs (plain nucleic bases) are found 

to be -12.3 kcal/mol and -25.5 kcal/mol respectively by DFT calculation using B3LYP/6-

31G** basis set (Figure 3.7).94 We have calculated the hydrogen bonding energies of 

triplet complexes between two BCA readers and a nucleobase. The nucleobases used 

were 9-methyl purines and 1-methyl pyrimidines for simplicity of DFT calculation. Their 

optimized structures are shown and H-bond energies were reported in Table 3.2. The 

distances between two sulfur atoms were fixed at 2 nm for all the calculations. 

Scheme 3.2. Synthesis of 5-(2-(1-adamantyl)ethyl)-4H-1,2,4-triazole-3-carboxamide 

(dTCA) 

 

Figure 3.7. A-T and G-C base pairs showing only bases 
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Table 3.2. Optimized structures of Hydrogen Bonding triplet complexes with two BCA 

reader and a DNA base and their H-bonding energies obtained by DFT Calculation 

DNA Base 
Optimized structure 

(BCA-Base-BCA) 

H-bond 

energy 

(Kcal/mol) 

9-methyladenine 

(MeA) 

 

-18.1 

 

1-methylcytosine 

(MeC) 

 

-23.4 

9-methylguanine 

(MeG) 

 

-29.2 

1-methylthymine 

(MeT) 

 

-21.2 
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The complex with MeG showed the lowest hydrogen bonding energy (-29.2 Kcal/mol) 

compared to other nucleobases implying the most stable H-bonding complex formation 

with G base. Similarly the formation of the triplet complexes were calculated for all four 

universal reader candidates with all four methylated bases and reported in Table 3.3. For 

all four reader candidates, MeG formed the most stable hydrogen bonding complex 

compared to other nucleobases.   

 

Table 3.3. Calculated H-bonding energies (Kcal/mol) of triplet complexes in vacuum 

 

 MeA MeC MeG MeT 

BCA -18.1 -23.4 -29.2 -21.2 

ICA -17.1 -22.4 -30.9 -22.3 

PCA -12.6 -18.6 -28.3 -19.5 

TCA -19.0 -23.5 -31.2 -23.2 

 

 

3.5. Experimental Procedures  

Reagents and solvents were purchased from commercial suppliers (Sigma-

Aldrich, Alfa Aesar, Fluka, TCI America etc. as required) and used as received unless 

otherwise noted. All experiments requiring anhydrous conditions were performed in 

flame-dried glassware under nitrogen atmosphere. Reactions were monitored by thin 

layer chromatography (TLC) using glass plates precoated with silica gel (EMD 

Chemicals Inc.). Flash chromatography was performed in an automated flash 
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chromatography system (CombiFlash Rf, Teledyne Isco, Inc.) with silica gel columns 

(60-120 mesh). 1H NMR and 13C NMR spectra were recorded on Varian INOVA 400 

(400 MHz) and Varian INOVA 500 (500 MHz) spectrometers at 25°C at the Magnetic 

Resonance Research Center at Arizona State University. Chemical shifts (δ) are given in 

parts per million (ppm) and are referenced to the residual solvent peak (CDCl3: δH = 7.26 

ppm, CD3OD: δH = 3.31 ppm, DMSO-d6: δH = 2.50 ppm). Coupling constants (J) are 

expressed in hertz (Hz) and the values are rounded to the nearest 0.1 Hz. Splitting 

patterns are reported as follows: br, broad; s, singlet; d, doublet; dd, doublet of doublets; 

t, triplet; dt, doublet of triplets; q, quartet and m, multiplet. High resolution mass spectra 

(HRMS) are acquired at the Arizona State University CLAS High Resolution Mass 

Spectrometry Facility. 

 

1H NMR Titration Method 

1H NMR titration experiments were carried out using a Varian INOVA 500 

spectrometer operating at 500 MHz at 25°C. Chemical shifts are reported in ppm and 

referenced to CDCl3 residual peak (δH = 7.26 ppm). Deuterated chloroform (CDCl3) was 

purchased from Spectrum Chemical MFG CORP (99.8 atom % D). It was stored over 

activated molecular sieve (4 Å) in a glove box (0.5 ppm moisture and 0.05 ppm oxygen). 

Chemicals were dried at 40°C under vacuum for two days and stored over drierite. 

Solutions were prepared in glove box before each NMR titration. A gas tight syringe was 

used for the addition of nucleoside solution into the NMR tube. The addition was done as 

quickly as possible to minimize moisture entering into the system. Typically 0.6 mL of 

~5 mM dBCA, dPCA and ~1.0 mM dTCA were used in a NMR tube for the titration. 
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The guest solutions (modified nucleosides) were prepared to a concentration of around 

800 mM (0.2 mL) for dBCA and dPCA and around 500 mM for dTCA. CDCl3 was used 

as solvent to prepare these solutions. In a typical titration experiment, the titrating 

solution (guest) was added in 15-25 separate portions to the host solution and 1H NMR 

was recorded of the resulting mixture after each addition. For example, modified dT 

nucleoside solution with a concentration of 800 mM was added to dBCA solution (5.15 

mM) in an increasing order of 2.5, 5.0 and 10.0 µL aliquots up to a total volume of 190 

µL of dA. Similarly, a modified dT solution with a concentration of 500 mM was added 

to a 1.0 mM solution of dTCA in a certain increment up to a total volume of 180 µL of 

dT and chemical shifts of the amide proton were recorded after each titration. Titration 

data were analyzed by nonlinear regression analysis using the HypNMR2008 program. 

 

Computational Methods:  

DFT calculations were performed using Spartan’14 for Windows, a commercially 

available software from Wavefunction, Inc. Molecules were drawn in ChemDraw Ultra 

12.0 and imported to Spartan’14 to generate corresponding 3D structures as well as the 

hydrogen bonding complexes. Each structure was subjected to energy minimization using 

the built-in MMFF molecular mechanics prior to optimization calculation. The DFT 

calculations for hydrogen bonding complexes and individual structure optimization of 

reader molecules and N-methylated nucleosides were performed at their ground state 

equilibrium geometry conformation using B3LYP/6-31+G* basis set in vacuum.   
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4-((tert-butyldimethylsilyl)oxy)-2-nitroaniline (5.1). 4-amino-3-nitrophenol (0.5g, 3.25 

mmol) was added in anhydrous dichloromethane (10 mL) at RT under inert atmosphere. 

Imidazole (0.66g, 9.75 mmol) and catalytic amount of N,N-dimethyl aminopyridine 

(0.08g, 0.65 mmol) were added into the solution and stirred for 30 mins. Finally tert-

butyl dimethylsilylchloride (0.58g, 3.90 mmol) was added into the reaction mixture and 

stirred for 16h at RT. Upon completion, dichloromethane (50 mL) was added into the 

reaction mixture and washed with saturated sodium bicarbonate solution (30 mL×2). The 

organic layer was further washed with brine (30 mL), dried over MgSO4, and 

concentrated in rotary evaporator. The residue was purified by flash column 

chromatography to obtain the pure product (0.83g, 95%) as a red solid 5.1. 1H NMR (500 

MHz, CDCl3): δ = 7.56 (1H, d, J = 3.0 Hz, ArH), 6.98 (1H, m, ArH), 6.72 (1H, d, J = 9.0 

Hz, ArH), 5.80 (2H, broad, NH2), 0.98 (9H, m, tert-butyl), 0.19 ppm (6H, m, SiCH3); 
13C 

NMR (115 MHz, CDCl3): δ = 146.7, 139.8, 130.4, 120.1, 115.2, 26.0, 18.5, -4.21 ppm. 
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4-((tert-butyldimethylsilyl)oxy)benzene-1,2-diamine (5.2). Compound 5.1 (0.4 g, 1.49 

mmol) was dissolved in 50% aqueous ethanol (20 ml) and then sodium dithionite (1.56 g, 

8.96 mmol) was added portion wise over a period of 20 min. The stirred solution was 

gradually heated to 70°C and refluxed for about 10 min while the red solution became 

colorless. Heating was stopped when the red color disappeared. It was cooled to room 

temperature and the solvents were evaporated to dryness using rotary evaporator. Water 

(20 mL) was added to the crude and extracted with dichloromethane (30 mL×3). The 

combined organic layers were washed with brine (30 mL), dried over MgSO4, and 

concentrated in rotary evaporator. The residue was purified by flash column 

chromatography to obtain the pure product 5.2 (0.33g, 94%) as brown solid. 1H NMR 

(400 MHz, CDCl3): δ = 6.55 (1H, d, J = 8.4, ArH), 6.24 (1H, d, J = 2.4, ArH), 6.19 (1H, 

m, ArH), 3.23 (4H, s, broad, NH2), 0.96 (9H, m, tert-butyl), 0.15 ppm (6H, m, SiCH3). 

 

6-((tert-butyldimethylsilyl)oxy)-1H-benzo[d]imidazole-2-carboxamide (dBCA).  

2-Chloroacetamide (0.47 g, 5.0 mmol) was added to a prepared mixture of 5.2 (1.0 g, 4.2 

mmol), sulfur (0.54 g, 16.8 mmol) and triethyl amine (1.0 mL) in DMF (10 mL). The 

reaction mixture was stirred at 60°C for 16 h, cooled to room temperature, diluted with 

water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic 

extracts were washed with brine three times (each 20 mL), dried over MgSO4, filtered 

and concentrated by rotary evaporator. The residue was separated in a silica gel column 
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by flash chromatography with a gradient of methanol (0-5% in 4 h) in dichloromethane to 

obtain product dBCA (0.3 g, 25%). 1H NMR (500 MHz, DMSO-d6): δ = 12.90 (1H, s, 

NH), 8.13 (1H, s, broad, NH2), 7.70 (1H, s, broad, NH2), 7.56 (1H, d, J = 9.0, ArH), 6.88 

(1H, d, J = 2.0; ArH), 6.79 (1H, m, ArH), ), 0.96 (9H, m, tert-butyl), 0.19 ppm (6H, m, 

SiCH3); HRMS (APCI+): m/z calculated for C14H21N3O2Si+H: 292.1481; measured: 

292.1478. 

 

Synthesis of 2-(adamantan-1-yl)ethyl 4-methylbenzenesulfonate (6.1). 2-(adamantan-

1-yl)ethanol (2.0 g, 11.11 mmol) was added into dichloromethane (25.0 mL) under inert 

atmosphere. Triethyl amine (7.7 mL, 55.55 mol) was added into it and stirred for 30 mins 

at RT. Tosyl chloride  (2.53 g, 13.33 mol) was added portion wise into the solution and 

stirred for 24 h at RT. Upon completion the reaction mixture was washed with saturated 

sodium bicarbonate solution (20 mL×2) and brine (20 mL). The combined organic 

extracts were dried over magnesium sulfate, filtered and concentrated by rotary 

evaporator. The product was purified by silica gel flash column chromatography. Pure 

product 6.1 (3.54 g, 95%) was obtained as a colorless liquid. 1H NMR (500 MHz, 

CDCl3): δ = 7.77 (2H, d, J = 8.0 Hz, ArH), 7.33 (2H, d, J = 8.0 Hz, ArH), 4.08 (2H, t, J = 

7.5, CH2), 2.44 (3H, s, CH3), 1.90 (3H, s, broad, CH of Adamantane), 1.55-1.67 (6H, m, 

CH2 of Adamantane), 1.45 (2H, m, CH2), 1.42 ppm (6H, m, CH2 of Adamantane); 13C 
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NMR (125 MHz, CDCl3): δ = 144.9, 133.6, 130.1, 128.2, 67.6, 42.8, 42.6, 37.1, 32.0, 

28.7, 21.9 ppm. 

 

3-(adamantan-1-yl)propanenitrile (6.2). Compound 6.1 (2.0 g, 5.99 mmol) was added 

in anhydrous DMF (10 mL) under inert atmosphere at RT. Sodium cyanide (0.35 g, 7.18 

mmol) was added into the solution and refluxed at 100 0C for 2h. The reaction mixture 

was cooled at RT and the solvent was evaporated to dryness by rotary evaporator to 

obtain pale yellow crude liquid. Water (25 mL) was added into the crude mixture and 

extracted with ethyl acetate (25 mL×3). The combined organic layers were washed with 

brine (20 mL), dried over magnesium sulfate, filtered and concentrated by rotary 

evaporator. The product was purified by silica gel flash column chromatography. Pure 

product 6.2 (0.87 g, 77%) was obtained as a colorless liquid. 1H NMR (400 MHz, 

CDCl3): δ = 2.25-2.29 (2H, m, CH2), 1.98 (3H, s, broad, CH of Adamantane), 1.60-1.74 

(6H, m, CH2 of Adamantane), 1.50 (2H, m, CH2), 1.47 ppm (6H, m, CH2 of 

Adamantane); 13C NMR (125 MHz, CDCl3): δ = 121.3, 42.0, 39.8, 37.2, 32.4, 28.7, 11.3. 

 

benzyl 3-(1-adamantyl)propanimidothioate hydrochloride (6.3). Hydrogen chloride 

was bubbled into a solution of 6.2 (0.2 g, 1.06 mmol) and benzyl mercaptan (0.2 mL, 
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1.71 mmol) in anhydrous ethyl ether (12 mL) in an ice bath under nitrogen for 2 h. The 

solution was capped and allowed to warm to room temperature, stirred for another 24 h, 

and then stood still for 2 h. The compound 6.3 was crystallized from the reaction 

solution. It was filtered through a Buchner funnel, washed with cold ethyl ether three 

times (each 5 mL), and dried in vacuum at 25°C overnight. It weighed 0.3 g (yield: 81%). 

1H NMR (400 MHz, CDCl3): δ = 13.16 (s, br, 1H, NH2), 12.22 (s, br, 1H, NH2), 7.31-

7.39 (m, 5H, ArH), 4.73 (s, 2H, SCH2Ph), 2.87 (m, 2H, CH2CH2CS), 1.95 (s, br, 3H, 

adamantane), 1.49-1.68 ppm (m, 14H, adamantane + CH2CH2CS); 13C NMR (100 MHz, 

CDCl3): δ = 196.0, 132.1, 129.8, 129.4, 129.0, 43.6, 42.1, 38.4, 37.1, 33.1, 32.5, 28.8 

ppm; HRMS (APCI+): m/z calculated for C20H27NS+H: 314.1942; measured: 314.1952. 

 

5-(2-(1-adamantyl)ethyl)-4H-1,2,4-triazole-3-carboxamide (dTCA). A solution of 6.3 

(0.21 g, 0.6 mmol) and oxamic hydrazide (62 mg, 0.6 mmol) in anhydrous pyridine (2 

mL) was refluxed at 100°C for 12 h. The solvent was removed by co-evaporating with 

toluene (1 mL × 2) using rotary evaporator. The yellow residue was separated in a silica 

gel column by flash chromatography with a gradient of methanol (0-5% in 3h) in 

dichloromethane to obtain compound dTCA (0.11 g, 67%). 1H NMR (400 MHz, 

CD3OD): δ = 2.75-2.79 (2H, m, CH2), 1.97 (3H, s, broad, CH of adamantane), 1.67-1.78 

(6H, m, CH2 of adamantane), 1.45 (6H, m, CH2 of adamantane), 1.42 ppm (2H, m, CH2); 

HRMS (APCI+): m/z calculated for C15H22N4O+H: 275.1872; measured: 275.1880.  
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CHAPTER 4 

NONCOVALENT INTERACTION STUDY BY ELECTROSPRAY MASS 

SPECTROMETRY (ESIMS) AND TANDEM MASS SPECTROMETRY (ESIMS/MS) 

4.1. General Introduction 

The ability of complexation in organic solvent has been studied extensively by 

NMR spectroscopy. Recognition tunneling experiment was performed in phosphate 

buffer solution. In order to prove the presence of non-covalent complexes in aqueous 

solution, electrospray ionization mass spectrometry have been employed. Electrospray is 

a soft ionization technique and proved to retain the identity of a non-covalent complex in 

the gas phase after ionization. This technique has been extremely helpful and universally 

applied to detect and identify molecular complexes. Electrospray has been used to study 

weak noncovalent interactions,67 for example hydrogen bonding,95 π stacking,96 small 

molecular interactions,97,98 supramolecular interactions,99,100 and noncovalent 

protein/DNA complexes.101,102 It is a soft ionization method103 and it can preserve non-

covalent complex from its native solution state into the gas phase in the form of single or 

multiple charged ions.104 It has also been used for screening carbohydrate libraries of 

protein interaction,105,106 and quantification of protein ligand complexes.107,108  

 

4.2. Electrospray MS of ICA-Amino acid Solutions  

In our study we measured the non-covalent interactions between ICA reader 

molecule and amino acids to form stoichiometric complexes in aqueous solution. We 

began with recording ESI mass spectra of individual amino acids and ICA in aqueous 

solution and assigned their observed characteristic m/z peaks (Table 4.1). The ESI mass 
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data show that ICA and individual amino acids can exist in both monomer and self-

associated adducts forms including dimers and trimers. Based on the measured pH of 

each solution, we have deduced the major form of the analyte occurring in the solution 

(see Table 4.1) according to its reported pKa. Under our experimental conditions, the 

ICA molecule stayed neutral.40 Sequentially we mixed ICA with seven amino acids 

respectively in 1:1 and 2:1 ratios, and measured their ESI mass spectra. Examples of 

spectra from an ICA-Leu mixture and the corresponding ICA and Leu solutions are 

given in Figure 4.1. By comparing these spectra, we can clearly see two new m/z peaks 

appearing in the spectra of the ICA-Leu mixture, which correspond to their 1:1 and 2:1 

adducts. We confirm the complexes by tandem mass spectrometry (ESIMS/MS, 

Figure 4.1. Example ES-MS spectra of pure compounds and complexes. (a) Leucine, 

(b) ICA, (c) ICA + Leucine at 2:1 ration. (d), (e) & (f) show spectra at higher 

resolution.  
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examples are given in Figure 4.2). It should be noted that an ICA disulfide species 

(ICA’) existed in all of the measured solutions due to oxidation of the thiol during the 

sample handling process although we tried to avoid the oxidation using the argon 

sparging. ICA’ also formed the 1:1 adducts with amino acids. However, the ICA’ 

adducts can readily be distinguished from the ICA adducts by ESIMS/MS. The 

ESIMS/MS data of ICA-amino acid mixture are given in Table 4.2. Only are those 

ESIMS peaks that were confirmed by tandem mass spectrometry listed in the table. 

Further analysis indicates that abundance of 1:1 and 2:1 adducts increases with ICA 

concentrations (data not shown). In addition, we also observed the m/z peaks 

corresponding to 1:3 ICA-amino acid adducts in ESIMS of these mixtures, which need to 

Figure 4.2. Examples of MS-MS spectra. Two peaks are found in 2:1 mixtures of ICA 

with Leucine, circled in (a). MS-MS shows that the peak at 516 Daltons a complex of an 

oxidized ICA (ICA’) in which two ICA molecules are joined by a disulfide linkage (b). 

The peak at 518 Daltons is shown (c) to consist of two non-oxidized ICA molecules with 

one Leucine. 
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be further confirmed. In summary, the ESIMS/MS studies show that ICA can form 1:1 

and 2:1 complexes with amino acids in aqueous solutions. 

 

4.3. Electrospray MS of ICA-Carbohydrate Solutions 

ESI can preserve non-covalent complexes in going from their native solution state 

into the gas phase in the form of single or multiple charged ions.104 Carbohydrates, 

particularly those attached to proteins, play a central role as mediators in most biological 

processes. Examples are protein folding,109 cell adhesion110 and signaling,111 

fertilization112 and embryogenesis,113 pathogen recognition114 and immune responses.115 

Carbohydrate structures are complicated by isomerism. Epimers, anomers and 

regioisomers contribute to structural variability. For example 1.05 × 1012 structures are 

possible to a hexasaccharide,116,117 a complexity that challenges even the most 

sophisticated analytical tools such as NMR and mass spectrometry. NMR is capable of 

determining carbohydrate structures, but it requires milligrams of sample, long data 

acquisition times (hours or even days), and cannot distinguish small amount of coexisting 

isomers.117 Since many carbohydrates share a molecular weight, mass spectrometry is 

unable to identify them without additional chemical steps.118 The problem has recently 

been addressed by combining ion-mobility spectrometry, which used collision cross-

sections to separate isomers, with mass spectrometry (IM-MS),119 but IM-MS is not 

inherently quantitative and cannot resolve some closely related epimers with almost 

identical collision cross-sections. We employed recognition tunneling approach to 

identify isomers of carbohydrate molecules using ICA as trapping reader molecule. The 

formation of complexes between two ICA readers and a carbohydrate molecule has been 



  68 

studied by electrospray ionization mass spectrometry. In our present study we observed 

stoichiometric complexes between ICA and carbohydrates. By means of ESI-MS, we 

first obtained characteristic m/z peaks for each individual carbohydrate and ICA in 

aqueous solution, and then measured the aqueous solutions of ICA mixed with each 

carbohydrate in 2:1 ratio. Data showed that all monosaccharides and ICA existed as self-

associated dimers in solution along with their monomeric form (Table 4.3), ICA formed 

1:1 molecular complex ions with all carbohydrates (Table 4.4), and 2:1 molecular 

complex ions with most of the carbohydrates (Table 4.5). Each molecular ion complex 

was confirmed by tandem mass spectrometry (MS/MS) and reported as MS/MS product 

ion in the respective columns. We purchased those materials from commercial sources 

and confirmed their configurations by NOESY NMR before use (see Figure 4.3). In case 

of the α-anomer, a NOE cross peak between H1 and H2 was observed as expected (Figure 

4.3, a).  For the β-anomer, two NOE cross peaks were observed between H1 and H3 as 

well as between H1 and H5 protons (Figure 4.3, b).120 

Figure 4.3. 1H-1H NOESY NMR spectra of (a) α-MGlu and (b) β-MGlu 
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4.4. Electrospray MS of Universal Readers-DNA Nucleotides Solutions 

Single MS data was measured for the individual universal readers and DNA 

nucleotides in aqueous solution. A 200 µM solution of each reader molecule and a 100 

µM solution of each DNA nucleotide monophosphate has been used for their individual 

MS spectra. Data showed that each reader and nucleotide can exist as self-associated 

dimers along with monomers (Table 4.6 and Table 4.7). An example spectra provided 

below between BCA and AMP showed the formation of 1:1 complex (Figure 4.4, a). 

Tandem mass spectra showed the formation of product ions corresponds to the reader 

and/or nucleotide ion. Tandem mass was taken for both complexes to prove their identity. 

Here MS/MS on 569 peak was shown (figure 4.4, b). After bombarding the 1:1 complex 

into their product ions, two product ion peaks were observed in the spectrum. One was 

monosodium form of BCA and disodium form of AMP (base peak).  
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Figure 4.4. (a) A full scan single MS spectra of a solution of 2:1 mixture of BCA and 

AMP was shown. Individual BCA peak was observed at m/z 216.02 for [BCA+Na]+ 

ion. AMP peak was observed at m/z 376.04 for [AMP+2Na-H]+ ion. 1:1 complex was 

observed at m/z 569.06 for [BCA+AMP+2Na-H]+ ion. (b) Tandem MS spectra of 1:1 

complex ion peak showed the product ions at m/z 376.04 and 216.02 for [BCA+Na]+ 

and [AMP+2Na-H]+ ion.  

a. Full scan MS 

spectra 

b. Tandem MS spectra on 569 

peak 
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The formation of 2:1 molecular complex ions between two BCA molecule and an 

AMP molecule were also observed (Table 4.8). A list of all characteristic MS peaks of 

1:1 and 2:1 BCA-Nucleotide complexes and their MS/MS product ions were reported in 

table 4.8. The formation of complexes in aqueous solution were observed for all universal 

reader candidates with all four nucleotides. The observed m/z molecular complex ions 

and their MS/MS product ions of all four nucleotides with ICA, TCA and PCA were 

reported in Table 4.9, Table 4.10 and 4.11 respectively.  

 

4.5. Experimental Details 

ICA (200 μM) and carbohydrate (100 μM each) solutions were respectively 

prepared in water and sparged with argon. Each sample solution was injected into a 

Bruker maXis 4G electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass 

spectrometer at a 3 μL/min infusion rate via syringe pump. Tandem (MS/MS) mass 

spectrometry was used to observe product ion peaks from molecular complex ion peaks 

to confirm the composition of the molecular complex. The ESI source was equipped with 

a microflow nebulizer needle operated in a positive ion mode. The spray needle was held 

at ground and the inlet capillary set to -4500 V. The end plate offset was set to -500 V. 

The nebulizer gas and dry gas (N2) were set to 1.2 Bar and 1.5 L/min, respectively, and 

the dry gas was heated to 220°C. In TOF-only mode the quadrupole ion energy was set to 

4 eV and the collision energy was set to 1 eV. Collision gas (Ar) was set to a flow rate of 

20%. In most cases MS/MS experiments were conducted with a precursor ion isolation 

width of 3 m/z units. However, if other ions were present in this range precursor ion 

isolation width was set to 1 m/z unit. Collision energy was set to 10-20 eV, which was 
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sufficient to fragment noncovalent complexes. Each spectrum was recorded over a time 

period of 0.5 to 1 min. Typically a spectrum acquired for one minute is an accumulation 

of 60 separate recorded mass spectra averaged across 1 min time period. Signal to noise 

ratio greater than three (S/N>3) was used to define the limit of detection. Due to the lack 

of an acid modifier in the infused solutions, most carbohydrates and molecular complexes 

were observed as single or multiply sodium ions [M+nNa-(n-1)H]+ rather than as 

protonated molecular form [M + H]+. Average mass accuracy was within 0.025 Da. The 

parameters were same for mass study between universal readers and DNA nucleoside 

monophosphates. Individual readers were prepared in 200 µM solutions and individual 

analytes were prepared in 100 µM solutions for their individual mass data. For preparing 

mixtures, 200 µM solution of a reader was mixed with a 100 µM of analyte solution 

(DNA, amino acid or carbohydrate) to maintain 2:1 mixing ratio. The instrumental 

parameters were same for DNA study, but they were little different for amino acids. 

Amino acids and ICA were mixed in water (specific resistance: ~18 MΩ-cm; total 

organic carbon: ~ 4 ppb) with a concentration of 100 μM each, sparged with argon. 

Buffers were not used and solution pH’s are listed in the Tables. We checked that the 

omission of buffer slats does not affect the acquisition of RT signals, by obtaining RT 

signals from asparagine in pure water Each mixture was infused at 1 μL/min via syringe 

pump into a Bruker MicrOTOF-Q electrospray ionization quadrupole time-of-flight (ESI-

Q-TOF) mass spectrometer. The ESI source was equipped with a microflow nebulizer 

needle operated in positive ion mode. The spray needle was held at ground and the inlet 

capillary set to -4100 V. The end plate offset was set to -500 V. The nebulizer gas and 

dry gas (N2) were set to 0.4 Bar and 1.2 L/min, respectively, and the dry gas was heated 
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to 180 °C. In TOF-only mode the quadrupole ion energy was set to 8 eV and the collision 

energy was set to 10 eV. Collision gas (Ar) was set to a flow rate of 15%. In most cases 

MS/MS experiments were conducted with a precursor ion isolation width of 3 m/z units. 

However, if other ions were present in this range precursor ion isolation width was set to 

1 m/z unit. Collision energy was set to 10 eV.  

 

NOESY NMR of α-MGlu and β-MGlu.  

300 mM stock solutions of β-MGlu and α-MGlu were prepared in DMSO-d6 at 

room temperature under inert atmosphere. A volume of 0.75 mL solution from each stock 

solution was used for an individual NMR experiment. 1H, COSY and NOESY were 

recorded in a Varian 500 MHz NMR at 25°C at the Arizona State University NMR 

facility lab. The NOE mixing time was set to 400 ms and a total number of scans were set 

to 16. Each spectrum was recorded for 3 h at 25°C. Data was plotted in VnmrJ 4.0 and 

exported to adobe illustrator and finally exported to word document.  
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Table 4.1. Structure information and MS data of Individual Amino Acids and ICA 
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Table 4.2. Characteristic ESIMS of ICA-amino acids 1:1 & 2:1 mixtures and their 

MS/MS products* 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.  
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Table 4.3. MS data of individual Carbohydrates and ICA 

1. The relative Intensity (%) value of observed ions are given in parentheses next to each 

complex ion. The most intense peak in single state MS spectra are defined as 100. 
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Table 4.4. Characteristic MS Peaks of 1:1 ICA-Carbohydrate complexes and their MS/MS 

products 
(M denotes the corresponding carbohydrate molecule) 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.  
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Table 4.6. MS data of individual Universal Reader candidates 

Analyte (M) 
Calculated Monoisotopic 

Mass 
1Observed m/z 

BCA 

(C8H7N3OS) 
193.0310 

194.04, [M+H]+, (0.8) 

216.02, [M+Na]+, (100) 

238.00, [M+2Na-H]+, (4) 

409.05, [2M+Na]+, (14) 

431.03, [2M+2Na-H]+, (1.5) 

453.01, [2M+3Na-2H]+, (0.4) 

ICA 

(C6H9N3OS) 
171.0466 

172.05, [M+H]+, (21) 

194.04, [M+Na]+, (100) 

216.02, [M+2Na-H]+, (0.4) 

343.10, [2M+H]+, (1.5) 

365.08, [2M+Na]+, (37) 

387.06, [2M+2Na-H]+, (0.2) 

(M denotes the corresponding carbohydrate 

molecule) 

Table 4.5. Characteristic MS Peaks of 2:1 ICA-Carbohydrate complexes and their MS/MS 

products 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.  
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TCA 

(C5H8N4OS) 
172.0419 

173.05, [M+H]+, (2) 

195.03, [M+Na]+, (99) 

217.01, [M+2Na-H]+, (0.8) 

345.09, [2M+H]+, (0.5) 

367.07, [2M+Na]+, (100) 

389.05, [2M+2Na-H]+, (1) 

PCA 

(C7H10N2OS) 
170.0514 

171.06, [M+H]+, (10) 

193.04, [M+Na]+, (22) 

341.11, [2M+H]+, (1.2) 

363.09, [2M+Na]+, (20) 

 

Table 4.7. MS data of individual DNA nucleotide monophosphates 

Analyte (M) Calculated Monoisotopic Mass 1Observed m/z 

AMP 

(C10H14N5O6P) 
331.0682 

332.07, [M+H]+, (32) 

354.06, [M+Na]+, (23) 

376.04, [M+2Na-H]+, (100) 

398.02, [M+3Na-2H]+, (6) 

707.10, [2M+2Na-H]+, (2) 

729.09, [2M+3Na-2H]+, (20) 

GMP 

(C10H14N5O7P) 
347.0631 

370.05, [M+Na]+, (4) 

392.03, [M+2Na-H]+, (100) 

414.01, [M+3Na-2H]+, (53) 

761.08, [2M+3Na-2H]+, (1.3) 

CMP 

(C9H14N3O7P) 
307.0569 

308.06, [M+H]+, (2) 

330.04, [M+Na]+, (49) 

352.03, [M+2Na-H]+, (100) 

374.01, [M+3Na-2H]+, (3) 

637.10, [2M+Na]+, (1) 

659.08, [2M+2Na-H]+, (4) 

681.06, [2M+3Na-2H]+, (10) 

TMP 

(C10H13N2Na2O8P) 
366.0205 

367.03, [M+H]+, (100) 

389.01, [M+Na]+, (68) 

410.99, [M+2Na-H]+, (4) 

733.04, [2M+H]+, (4) 

755.03, [2M+Na]+, (1) 

777.00, [2M+2Na-H]+, (0.4) 

798.99, [2M+3Na-2H]+, (0.4) 

1. The relative Intensity (%) value of observed ions are given in parentheses next to 

each complex ion. The most intense peak in single state MS spectra are defined as 100. 



  79 

 

 

Table 4.8. Characteristic MS Peaks of 1:1 & 2:1 BCA-Nucleotide complexes and their 

MS/MS products 

Analyte Observed m/z MS/MS Product Ion 

 Complex Mass, Complex ion, (Intensity, S/N) Mass, Complex ion, (Intensity) 

BCA + AMP 

1:1 

569.07, [BCA+AMP+2Na-H]+,  (3.9, 292) 216.02, [BCA+Na]+, (2) 

376.04, [AMP+2Na-H]+, (100) 

591.05, [BCA+AMP+3Na-2H]+, (1.2, 84) 216.02, [BCA+Na]+, (9) 

398.02, [AMP+3Na-2H]+, (100)  

2:1 

740.07, [2BCA+AMP+Na]+, (0.6, 34) 216.02, [BCA+Na]+, (10) 

354.05, [AMP+Na]+, (12) 

376.04, [AMP+2Na-H]+, (100) 

762.06, [2BCA+AMP+2Na-H]+, (0.3, 13) 216.02, [BCA+Na]+, (6) 

376.04, [AMP+2Na-H]+, (100) 

784.07, [2BCA+AMP+3Na-2H]+, (0.4, 17) 216.02, [BCA+Na]+, (8) 

376.03, [AMP+2Na-H]+, (12) 

398.02, [AMP+3Na-2H]+, (100) 

1:2 
944.09, [BCA+2AMP+4Na-3H]+, (0.3, 11) 376.04, [AMP+2Na-H]+, (99) 

398.02, [AMP+3Na-2H]+, (100) 

BCA + GMP 

1:1 

585.06, [BCA+GMP+2Na-H]+, (0.6, 17) 216.02, [BCA+Na]+, (9) 

392.03, [GMP+2Na-H]+, (100) 

607.04, [BCA+GMP+3Na-2H]+, (0.6, 15) 216.02, [BCA+Na]+, (7) 

414.01, [GMP+3Na-2H]+, (100) 

2:1 

778.10, [2BCA+GMP+2Na-H]+, (0.1, 1) 392.03, [GMP+2Na-H]+, (100) 

800.09, [2BCA+GMP+3Na-2H]+, (0.1, 1) 414.01, [GMP+3Na-2H]+, (100) 

BCA + CMP 

1:1 

545.05, [BCA+CMP+2Na-H]+, (1.2, 21) 352.02, [CMP+2Na-H]+, (100) 

567.03, [BCA+CMP+3Na-2H]+, (0.7, 12) 216.02, [BCA+Na]+, (6) 

352.02, [CMP+2Na-H]+, (21) 

374.01, [CMP+3Na-2H]+, (100) 

2:1 

716.18, [2BCA+CMP+Na]+, (0.1, 1) 330.05, [CMP+Na]+, (15) 

352.02, [CMP+2Na-H]+, (100) 

374.01, [CMP+3Na-2H]+, (31) 

738.14, [2BCA+CMP+2Na-H]+, (0.1, 1) 352.02, [CMP+2Na-H]+, (100) 

760.01, [2BCA+CMP+3Na-2H]+, (0.4, 4)  352.02, [CMP+2Na-H]+, (100) 

374.00, [CMP+3Na-2H]+, (68) 

BCA + TMP 1:1 
560.05, [BCA+TMP+H]+, (0.5, 5) 367.02, [TMP+H]+, (100) 

582.03, [BCA+TMP+Na]+, (0.7, 7) 216.02, [BCA+Na]+, (16) 

1. The relative Intensity (%) value of observed ions are given in parentheses next to each 

complex ion. The most intense peak in single state MS spectra are defined as 100. 
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367.02, [TMP+H]+, (13) 

389.01, [TMP+Na]+, (100) 

604.01, [BCA+TMP+2Na-H]+, (0.6, 6) 216.02, [BCA+Na]+, (27) 

367.02, [TMP+H]+, (21) 

389.01, [TMP+Na]+, (21) 

410.99, [TMP+2Na-H]+, (100) 

626.07, [BCA+TMP+3Na-2H]+, (0.2, 2) 389.00, [TMP+Na]+, (100) 

410.99, [TMP+2Na-H]+, (20) 

2:1 
775.14, [2BCA+TMP+Na]+, (0.2, 1) 216.02, [BCA+Na]+, (69) 

389.00, [TMP+Na]+, (100) 

 

Table 4.9. Characteristic MS Peaks of 1:1 & 2:1 ICA-Nucleotide complexes and their 

MS/MS products 

Analyte Observed m/z MS/MS Product Ion 

 Complex Mass, Complex ion, (Intensity, S/N) Mass, Complex ion, (Intensity) 

ICA + AMP 

1:1 

525.10, [ICA+AMP+Na]+,  (0.2, 105) 354.06, [AMP+Na]+, (100) 

547.08, [ICA+AMP+2Na-H]+,  (2, 1145) 376.04, [AMP+2Na-H]+, (100) 

569.06, [ICA+AMP+3Na-2H]+,  (0.2, 98) 398.02, [AMP+3Na-2H]+, (100) 

2:1 

718.13, [2ICA+AMP+2Na-H]+, (0.3, 149) 376.04, [AMP+2Na-H]+, (100) 

740.11, [2ICA+AMP+3Na-2H]+, (0.3, 192) 194.04, [ICA+Na]+, (10) 

398.02, [AMP+3Na-2H]+, (100) 

1:2 
900.13, [ICA+2AMP+3Na-2H]+, (0.2, 96) 376.04, [AMP+2Na-H]+, (100) 

922.11, [ICA+2AMP+4Na-3H]+, (0.3, 162) 398.02, [AMP+3Na-2H]+, (100) 

ICA + GMP 

1:1 
563.08, [ICA+GMP+2Na-H]+, (1.2, 512) 392.03, [GMP+2Na-H]+, (100) 

585.06, [ICA+GMP+3Na-2H]+, (1.3, 536) 414.01, [GMP+3Na-2H]+, (100) 

2:1 

734.11, [2ICA+GMP+2Na-H]+, (0.04, 15) 392.03, [GMP+2Na-H]+, (100) 

756.10, [2ICA+GMP+3Na-2H]+, (0.2, 94) 194.04, [ICA+Na]+, (100) 

414.01, [GMP+3Na-2H]+, (60) 

ICA + CMP 

1:1 

479.15, [ICA+CMP+H]+, (0.1, 21) 308.10, [CMP+H]+, (100) 

501.09, [ICA+CMP+Na]+, (0.1, 31) 194.03, [ICA+Na]+, (6) 

330.04, [CMP+Na]+, (100) 

523.07, [ICA+CMP+2Na-H]+, (2.2, 917) 352.03, [CMP+2Na-H]+, (100) 

545.05, [ICA+CMP+3Na-2H]+,  (0.6, 223) 374.01, [CMP+3Na-2H]+, (100) 

2:1 
694.11, [2ICA+CMP+2Na-H]+, (0.2, 56) 352.03, [CMP+2Na-H]+, (100) 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.  
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716.10, [2ICA+CMP+3Na-2H]+, (0.1, 43) 194.04, [ICA+Na]+, (31) 

374.01, [CMP+3Na-2H]+, (100) 

ICA + TMP 

1:1 

538.07, [ICA+TMP+H]+, (0.9, 531) 367.03, [TMP+H]+, (100) 

560.05, [ICA+TMP+Na]+, (1, 522)  389.01, [TMP+Na]+, (100) 

582.04, [ICA+TMP+2Na-H]+, (0.1, 28) 410.99, [TMP+2Na-H]+, (100) 

2:1 
731.10, [2ICA+TMP+Na]+, (0.6, 278) 194.04, [ICA+Na]+, (26) 

389.01, [TMP+Na]+, (100) 

 

Table 4.10. Characteristic MS Peaks of 1:1 & 2:1 TCA-Nucleotide complexes and their 

MS/MS products 

Analyte Observed m/z MS/MS Product Ion 

 Complex Mass, Complex ion, (Intensity, S/N) Mass, Complex ion, (Intensity) 

TCA+AMP 

1:1 

526.10, [TCA+AMP+Na]+, (0.3, 120) 354.06, [AMP+Na]+, (100) 

548.08, [TCA+AMP+2Na-H]+, (1.1, 367) 376.04, [AMP+2Na-H]+, (100) 

570.06, [TCA+AMP+3Na-2H]+, (0.1, 44) 398.02, [AMP+3Na-2H]+, (100) 

2:1 

720.12, [2TCA+AMP+2Na-H]+, (0.6, 220) 376.04, [AMP+2Na-H]+, (100) 

742.10, [2TCA+AMP+3Na-2H]+, (0.2, 74) 195.03, [TCA+Na]+, (5) 

398.02, [AMP+3Na-2H]+, (100) 

1:2 
901.13, [TCA+2AMP+3Na-2H]+, (0.1, 60) 195.03, [TCA+Na]+, (20) 

376.04, [AMP+2Na-H]+, (63) 

TCA+GMP 

1:1 

564.07, [TCA+GMP+2Na-H]+, (0.2, 80) 195.03, [TCA+Na]+, (6) 

217.01, [TCA+2Na-H]+, (17) 

392.03, [GMP+2Na-H]+, (100) 

586.06, [TCA+GMP+3Na-2H]+, (0.4, 147) 195.03, [TCA+Na]+, (4) 

414.02, [GMP+3Na-2H]+, (100) 

2:1 

736.12, [2TCA+GMP+2Na-H]+, (0.2, 70) 392.03, [GMP+2Na-H]+, (100) 

758.10, [2TCA+GMP+3Na-2H]+, (0.4, 139) 414.02, [GMP+3Na-2H]+, (100) 

TCA+CMP 1:1 

502.09, [TCA+CMP+Na]+, (0.1, 47) 195.03, [TCA+Na]+, (13) 

330.05, [CMP+Na]+, (100) 

524.07, [TCA+CMP+2Na-H]+, (0.9, 291) 195.03, [TCA+Na]+, (10) 

352.03, [CMP+2Na-H]+, (100) 

546.05, [TCA+CMP+3Na-2H]+, (0.4, 141) 195.03, [TCA+Na]+, (6) 

374.01, [CMP+3Na-2H]+, (100) 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.  
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2:1 

696.11, [2TCA+CMP+2Na-H]+, (0.6, 170) 352.03, [CMP+2Na-H]+, (100) 

718.09, [2TCA+CMP+3Na-2H]+, (0.4, 123) 195.03, [TCA+Na]+, (9) 

374.01, [CMP+3Na-2H]+, (100) 

1:2 
853.11, [TCA+2AMP+3Na-2H]+, (0.1, 43) 195.03, [TCA+Na]+, (41) 

352.03, [CMP+2Na-H]+, (100) 

TCA+TMP 

1:1 

539.07, [TCA+TMP+H]+, (0.3, 117) 195.03, [TCA+Na]+, (100) 

367.03, [TMP+H]+, (61) 

561.05, [TCA+TMP+Na]+, (0.4, 171) 195.03, [TCA+Na]+, (11) 

217.01, [TCA+2Na-H]+, (78) 

389.01, [TMP+Na]+, (100) 

2:1 
733.09, [2TCA+TMP+Na]+, (0.5, 185) 195.03, [TCA+Na]+, (12) 

389.01, [TMP+Na]+, (100) 

1:2 
905.13, [TCA+2AMP+H]+, (0.2, 97) 195.03, [TCA+Na]+, (23) 

389.01, [TMP+Na]+, (100) 

 

Table 4.11. Characteristic MS Peaks of 1:1 & 2:1 PCA-Nucleotide complexes and their 

MS/MS products 

Analyte Observed m/z MS/MS Product Ion 

 Complex Mass, Complex ion, (Intensity, S/N) Mass, Complex ion, (Intensity) 

PCA + AMP 

1:1 
524.11, [PCA+AMP+Na]+,  (0.7, 290) 354.06, [AMP+Na]+, (100) 

546.09, [PCA+AMP+2Na-H]+, (2.4, 1033) 376.04, [AMP+2Na-H]+, (100) 

2:1 

716.14, [2PCA+AMP+2Na-H]+, (1.6, 482) 376.04, [AMP+2Na-H]+, (100) 

738.12, [2PCA+AMP+3Na-2H]+, (0.3, 83) 193.04, [PCA+Na]+, (4) 

398.02, [AMP+3Na-2H]+, (100) 

PCA + GMP 

1:1 
562.08, [PCA+GMP+2Na-H]+, (1.4, 473) 392.03, [GMP+2Na-H]+, (100) 

584.07, [PCA+GMP+3Na-2H]+, (0.5, 171) 414.02, [GMP+3Na-2H]+, (100) 

2:1 

732.14, [2PCA+GMP+2Na-H]+, (0.2, 58) 193.04, [PCA+Na]+, (9) 

392.03, [GMP+2Na-H]+, (100) 

754.12, [2PCA+GMP+3Na-2H]+, (0.2, 59) 193.04, [PCA+Na]+, (9) 

414.02, [GMP+3Na-2H]+, (100) 

PCA + CMP  1:1 

500.10, [PCA+CMP+Na]+, (0.5, 200) 193.04, [PCA+Na]+, (1) 

330.05, [CMP+Na]+, (100) 

522.08, [PCA+CMP+2Na-H]+, (2.3, 865) 193.04, [PCA+Na]+, (1) 

352.03, [CMP+2Na-H]+, (100) 

544.06, [PCA+CMP+3Na-2H]+, (0.4, 143) 374.01, [CMP+3Na-2H]+, (100) 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.   
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2:1 

692.13, [2PCA+CMP+2Na-H]+, (0.7, 199) 193.04, [PCA+Na]+, (6) 

352.03, [CMP+2Na-H]+, (100) 

714.11, [2PCA+CMP+3Na-2H]+, (0.3, 74) 193.04, [PCA+Na]+, (11) 

374.01, [CMP+3Na-2H]+, (100) 

1:2 

851.12, [PCA+2CMP+3Na-2H]+, (0.1, 30) 193.04, [PCA+Na]+, (100) 

352.03, [CMP+2Na-H]+, (86) 

873.10, [PCA+2CMP+4Na-3H]+, (0.1, 33) 193.04, [PCA+Na]+, (100) 

352.03, [CMP+2Na-H]+, (77) 

PCA + TMP 

1:1 

559.06, [PCA+TMP+Na]+, (0.9, 356) 193.04, [PCA+Na]+, (2) 

389.01, [TMP+Na]+, (100) 

581.04, [PCA+TMP+2Na-H]+, (0.1, 20) 193.04, [PCA+Na]+, 11) 

410.99, [TMP+2Na-H]+, (100) 

2:1 

707.13, [2PCA+TMP+H]+, (0.3, 105) 367.03, [TMP+H]+, (100) 

729.11, [2PCA+TMP+Na]+, (0.6, 185) 193.04, [PCA+Na]+, (11) 

389.01, [TMP+Na]+, (100) 

 

 

 

 

 

 

 

 

 

 

 

 

The Relative Intensity (I%) and Signal to Noise Ratio (S/N) values are given in 

parentheses next to each complex ion in observed m/z column. I% values are reported in 

parentheses next to each complex ion in MS/MS product ion column. The most intense 

peak is considered as 100.  
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