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ABSTRACT 

 The Modern Synthesis embodies a theory of natural selection where selection is to 

be fundamentally understood in terms of measures of fitness and the covariance of 

reproductive success and trait or character variables. Whether made explicit or left 

implicit, the notion that selection requires that some trait variable cause reproductive 

success has been deemphasized in our modern understanding of exactly what selection 

amounts to. The dissertation seeks to advance a theory of natural selection that is 

fundamentally causal. By focusing on the causal nature of natural selection (rather than 

on fitness or statistical formulae), certain conceptual and methodological problems are 

seen in a new, clarifying light and avenues toward new, interesting solutions to those 

problems are illustrated. First, the dissertation offers an update to explicitly causal 

theories of when exactly a trait counts as an adaptation upon fixation in a population and 

draws out theoretical and practical implications for evolutionary biology. Second, I 

examine a case of a novel character that evolves by niche construction and argue that it 

evolves by selection for it and consider implications for understanding adaptations and 

drift. The third contribution of the dissertation is an argument for the importance of 

defining group selection causally and an argument against model pluralism in the levels 

of selection debate. Fourth, the dissertation makes a methodological contribution. I offer 

the first steps toward an explicitly causal methodology for inferring the causes of 

selection—something often required in addition to inferring the causes of reproductive 

success. The concluding chapter summarizes the work and discusses potential paths for 

future work.  
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INTRODUCTION

1. The Classical Fitness-Centric Theory and Its Formalism 

Evolution occurs whenever there is a change in the frequency distribution of a trait or 

character variable within a population. The “forces” that explain evolution include natural 

selection, drift, migration (or gene-flow), and mutation (Sober 1984). Lewontin (1970; cf. 

Lewontin 1985 and Endler 1986) states that the necessary and sufficient conditions for 

evolution by natural selection, in particular, are three-fold: 

1. Different individuals in a population have different morphologies, 

physiologies, or behaviors (phenotypic variation). 

2. Different phenotypes have different rates of survival and reproduction in 

different environments (differential fitness). 

3. There is a correlation between parents and offspring in the contribution of 

each to future generations (fitness is heritable).  

Any entities in the biological hierarchy that possess these three individually necessary 

and jointly sufficient conditions for evolution by natural selection are “units of 

selection” (Lewontin 1970, 1). Brandon (1990) has largely agreed with the above recipe, 

however, for reasons that will become clear below, Brandon claims that the following 

conditions are only necessary for evolution by natural selection: 

1. Variation. There is variation in phenotypic traits among members of a 

population. 
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2. Inheritance. These traits are heritable to some degree, meaning that offspring 

are more like their parents with respect to these traits than they are like the 

population mean. 

3. Differential reproductive success. Different variants leave different numbers 

of offspring in succeeding generations.  

Evolution occurs by natural selection only if a population exhibits heritable variation in 

fitness. Natural selection just amounts to differences in fitness within a population. The 

evolution of a trait frequency distribution within the population by natural selection 

depends on whether these differences are heritable across generations.   1

 Before turning to what exactly fitness amounts to, it is instructive first to turn to 

extant formalizations of evolution by natural selection. One typical way to see this is 

through a derivation of Price’s (1970) equation. The equation is very general and can be 

derived in a way that shows the link between heritable variation in fitness and evolution 

by natural selection. My discussion here follows closely Okasha’s (2006).  

 Consider a parental population containing !  “units of selection.” All 

parental entities vary with respect to some trait or character variable ! . Let !  denote the 

value of the trait variable of the !  parent. Suppose we want to know how the actual 

average of the trait variable changes over generational time. That is, suppose we are 

interested in the evolution of !  in the population with respect to its average ! . To track 

1,2,...,i,...,n

Z zi

ith

Z Z

 Given this setup, one might guess that the focus of the dissertation is on evolution by 1

natural selection rather than other interesting topics such as the generation or the sources 
of variation upon which selection acts. This is true. A more complete study of the 
evolutionary process is well beyond the scope of this dissertation.
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evolution by natural selection in this population we need to account for heritability and 

fitness. For now, let us focus on fitness and take it to be realized reproductive success or 

realized number of surviving offspring ! . Let !  denote the value of reproductive success 

for the !  parent. Assume that reproduction is asexual and generations are discrete. Let 

the average reproductive success in the parental population be denoted by ! , and let the 

relative reproductive success of the !  parent be denoted by ! . 

 Now consider an offspring population. It consists of all the offspring of units from 

the parental population and none of the parents because generations are discrete. Let !  

denote the average of the trait variable in the offspring population. Evolution requires that 

! . To calculate ! , note that the offspring population is really made up of !  

subpopulations, some of which might be empty. Offspring subpopulation !  contains all 

the !  offspring of the !  parent. Let !  denote the average of the trait values of the 

offspring of the !  parent. Then ! . 

 The quantity the traditional Pricean framework is most interested in is 

! . Given this, we can now derive one version of the Price equation. Start with 

the following fact: 

 !       (1.1) 

Multiplying !  by both sides, we get: 

R ri

ith

R

ith ′ri =
ri
R

ZO

Z ≠ ZO ZO n

i

ri ith Zi

ith ZO = 1
n

′ri Zii∑

ΔZ = ZO − Z

ΔZ = 1
n

′ri Zii∑ − 1
n

zii∑

R
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 !       (1.2) 

Let ! , for the !  parent. Then ! . With substitution, then: 

 !     (1.3) 

Because the first term is a covariance and the second term is an expectation: 

 !      (1.4) 

Dividing both sides by ! : 

 !       (1.5) 

Now note that a trait variable’s (narrow) heritability !  is defined as the simple regression 

coefficient of !  regressed on ! . So, let ! . The regression model is: 

 !        (1.6) 

where the last term on the right hand side of the equation is the deviation from the linear 

regression line. By substitution and some covariance algebra: 

 !   (1.7) 

RΔZ = 1
n

ri Zii∑ − 1
n

Rzii∑

ΔZi = Zi − zi ith zi = Zi − ΔZi

RΔZ = 1
n

ri Zii∑ − 1
n

R(Zi − ΔZi )i∑

= 1
n

ri Zi −
1
n

RZi +
1
n

RΔZii∑i∑i∑

= 1
n

Zi (ri − R)i∑ + 1
n

RΔZii∑

RΔZ = COV(ri ,Zi )+ E(RΔZi )

R

ΔZ = COV( ′ri ,Zi )+ E(ΔZi )

h

Zi zi h = COV(Zi , zi )
VAR(zi )

Zi = ZO + hzi + εZi

ΔZ = COV( ′ri ,ZO )+COV( ′ri ,hzi )+COV( ′ri ,εZi )+ E(Δzi )

= hCOV( ′ri , zi )+ E(Δzi )
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assuming, of course, that ! . The covariance term here is often called the 

selection differential. Note that ! , where !  is the 

simple regression coefficient from regressing !  on ! . Finally, assume that the second 

term in equation (1.7)—the average transmission bias—is zero such that, one the whole, 

each parent transmits her trait value perfectly. Then the Price equation can be written as: 

 !        (1.8) 

The term on the right hand side of the Price equation represents the change in the average 

of the trait variable of interest due to heritable variation with associated differences in 

realized reproductive success. That is, the term represents the change in the average of 

the trait variable that is due to natural selection !  and the heritability !  of the 

trait variable. Hence, the Price equation represents the formal characterization of the 

classical fitness-centric theory of natural selection and evolution by natural selection—

what is required is a statistical association between a parental trait variable and fitness or 

reproductive success.  

 Though the concept of heritability is of interest and central to various debates (see 

Lewontin 1974; Pigliucci and Kaplan 2006), this dissertation focuses on natural selection. 

To better understand the fitness-centric theory of natural selection, we must examine the 

concept of fitness more carefully, as doing so is essential to understanding the traditional 

views of evolutionary biology since the Modern Synthesis. In this section, I assumed 

fitness was identical to realized reproductive success. Yet many have found this 

COV( ′ri ,εZi ) = 0

COV( ′ri , zi ) = VAR(zi )b b = COV( ′ri , zi )
VAR(zi )

′ri zi

ΔZ = hVAR(zi )b

VAR(zi )b h
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unpalatable and for good reasons. I turn now to the discussion of the “received” 

propensity view of fitness. 

2. The Propensity Theory of Fitness 

According to the propensity theory of fitness (Brandon 1990; Mills and Beatty 1979), 

fitness is a disposition or propensity of an organism or type to survive and reproduce in 

some particular environment. That is, fitness is the level of reproductive success an 

organism or type would tend to produce, given an environment and some state of the 

population’s composition or configuration with respect to other organisms or types. This 

propensity is typically modeled mathematically as the expected number of surviving 

offspring of an unit of selection or type of unit of selection. This is sharply contrasted 

with how I defined fitness in the previous section. The expectation over reproductive 

success is meant to explain the realized frequency distribution over reproductive success, 

which of course might deviate from what is expected. Fitness is therefore not to be 

identified with realized reproductive success. The work that the propensity theory of 

fitness is supposed to do, then, is to explain evolution by natural selection rather than 

evolution by chance or drift.  

 To see this, consider the following. In their paper, Mills and Beatty (1979) claim 

that two physically identical organisms in the same environment and population ought to 

be given identical fitness values. Yet, if one of these twins is suddenly struck by 

lightening before it mates and we define fitness in terms of realized reproductive success, 

the two organisms seem to have different fitness values after all. The surviving twin 

might go on to reproduce successfully whereas the dead twin ends up with exactly zero 
!6



offspring. The lightening strike case is supposed to represent a kind of chance event. Two 

identical organisms are expected to have the same realized reproductive success, but by 

chance they do not. 

 Alternatively, think of a case where organism 1 has a higher propensity to survive 

and reproduce than organism 2 in some specified environment and population. If 1 is 

struck by lightening and 2 goes on to successfully reproduce, then this should intuitively 

be a result of drift and not selection for organisms of the type 2. The fact that 1 is fitter 

than 2 entails (on the propensity theory) that 1 probably will have higher reproductive 

success than 2. This is just the principle of natural selection, according to Brandon 

(1990). However, the evolutionary outcome involving a lightening strike went exactly 

against all expectations. Hence, in order to make sense of the distinction between 

evolution by selection and evolution by drift, the propensity theory is required.  

 Given this, it is easy to see why Lewontin’s (1970) recipe for evolution by natural 

selection is not sufficient for producing evolutionary change by natural selection. 

Differential reproductive success might be the result of drift, not selection. Brandon, like 

other propensity theorists, attempts to distinguish between chancy outcomes and 

outcomes that are the result of selection by proposing that the relationship between 

fitness and a type in an environment-population combination is supervenient. Fitness qua 

propensity supervenes on types in their environment-population in the sense that there 

can be no change in fitness without a change in the relationships between the type’s traits 

or characters and the environment-population. If reproductive success, or more precisely, 

the ordinal relation of realized reproductive successes among types, is not a result of the 
!7



supervening property of fitness, we do not have evolution by selection but evolution by 

drift.   

 It is useful, then, to make an explicit update to the formalism introduced above 

(cf. Okasha 2006). Suppose that within an environment and given some population 

composition or configuration, the ! parent might produce 0 to !  offspring. Then 

suppose that the parent’s trait or character value along with the environment and 

population composition induce a probability distribution over the !  possibilities, and 

let !  be the expectation of this probability distribution. The fitness of the !  parent is 

then: 

 !        (1.9) 

Divide this by !  to get relative fitness ! . Substituting into a version of the 

Price equation, assuming types (individuated by their trait value) breed true, gives us a 

new Price equation: 

 !        (1.10) 

3. Issues with the Classical Fitness-Centric Theory of Natural Selection 

Insofar as one thinks the distinction between evolution by natural selection and evolution 

by drift is important, the distinction made above in light of the propensity theory of 

fitness is helpful. Yet, the classical fitness-centric theory of selection still seems to face 

some challenges on this score even with the help of the propensity theory. I will first 

ith m

m +1

wi ith

wi = riPr(ri | zi )r=0

r=m∑

W = 1
n

wii∑ ′wi

ΔZ = COV( ′wi , zi )
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discuss this issue before turning to a second sort of issue with the classical fitness-centric 

theory of natural selection.  

 The central case in the literature is Beatty’s (1984) moth example. According to 

the propensity theory, there is some probability distribution over the number of surviving 

offspring a parent with some trait value in a certain environment-population complex is 

disposed to produce. Let !  be a binary environmental variable, measured on parent 

moths, with one value for dark trees and another value for light trees. The probabilities 

over these values is 0.60 and 0.40, respectively. Stipulate that moths come in two shades, 

dark and light, and the trait variable !  measuring coloration is probabilistically 

independent of tree color .  In other words, a dark moth has a chance of 0.60 to be 2

found on a dark tree and a chance of 0.40 to be found on a light tree and, similarly, for a 

light moth. If a dark moth lands on a dark tree, suppose it will probably leave more 

offspring than if it lands on a light tree and conversely for a light moth because of certain 

facts about predation on the moth population. Beatty says “in this environment, we would 

say that the dark-colored moths are fitter, since the forest provides more camouflage for 

them than for the light moths” (1984, 194). However, suppose that the frequency with 

which moths land on trees of different shades diverges from probabilistic expectation, 

and, as a consequence, the realized average number of surviving offspring of light moths 

is greater than the realized average number of surviving offspring of dark moths. Here is 

E

Z

E

 This is in fact a standard assumption made in the philosophical literature. It rules out 2

interesting causal structures like phenotypic plasticity, habitat selection, and niche 
construction. The assumption will be relaxed in later chapters.

!9



the question: Is “the change in frequency…a matter of natural selection, or a matter of 

random drift?” (Beatty 1984, 195). Beatty says a bit of both. In particular, he says it is 

difficult to discern the distinction between unexpected results of selection qua differential 

fitness and the results of drift qua chancy distribution into environments.  

 A related case comes from Brandon (1990), but his verdict is different. Let !  and 

!  be defined as above. Suppose that dark moths are always fitter than light moths, for 

whatever reason, that both types are more fit on dark trees, but light types in dark 

environments are fitter than dark types in light environments. One should expect again 

that a higher proportion of the dark moths would be the result in the next generation. 

However, assume that before selection the frequency distribution of individuals in 

environments is such that light moths are disproportionately found on dark trees and dark 

moths are disproportionately found on light trees so that light moths out-reproduce dark 

moths. Then the realized average number of offspring of light moths is greater than the 

realized average number of offspring of dark moths. For Brandon, if one relativizes their 

fitness measures to locations characterized by dark trees or relativizes their fitness 

measures to locations characterized by light trees, then clearly we have selection for the 

dark type. However, if one averages fitnesses over both locations, light moths, it was 

said, outcompete dark moths. In this case, says Brandon, we have evolution by drift 

rather than evolution by selection. The light moths, by chance, simply were more lucky in 

experiencing more favorable environments than the dark moths.  

 Given only this bit of information, it is difficult to tell who is correct and why, 

especially because the examples differ ever so slightly. What is agreed upon in the 

Z

E
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literature is that the propensity theory of fitness requires some kind of theory of how to 

individuate a common environment-population complex. Propensity theorists must do so 

such that differences in fitness can be measured with respect to that common environment 

and, consequently, differences in fitness can be seen to explain evolution rather than 

haphazard distributions into multiple environments (see Shanahan 1989). Brandon (1990) 

famously fills this lacuna in the theory most explicitly.  

 Return to Brandon’s example. Start by distributing the population uniformly at 

random over some spatiotemporal volume and divide the volume into chunks such that 

we can measure the fitnesses of types reliably. The ordinal relation among fitnesses 

defines the relevant environment—Brandon’s (1990) “selective neighborhood”—as far as 

the theory of evolution by natural selection is concerned. Given this, it is easy to see that 

in Brandon’s own example, there is one selective neighborhood as the dark type is fitter 

in all spatiotemporal chunks. However, in the example, what happens is that types are 

distributed into spatiotemporal locations in a biased way such that light moths enjoy 

higher realized reproductive success. Consequently, with respect to our selective 

neighborhood, what is expected to occur does not occur. Thus, Brandon says, “this is not 

natural selection” (1990, 46) but the result of drift qua the biased distribution of types 

into environments.  

 Brandon’s theory of selective neighborhoods diagnoses Beatty’s moth example 

similarly. In that case, recall, that if we were to distribute moths uniformly at random 

across the spatiotemporal location, light moths would be fitter in some spatiotemporal 

locations and dark moths would be fitter in other spatiotemporal locations. Hence, we 
!11



have two selective neighborhoods in Brandon’s sense. Because Beatty calculates the 

fitnesses by averaging over distinct selective neighborhoods, this amounts to an analysis 

of the population’s evolution in terms of drift rather than selection. Again, the light moth 

merely gets lucky in being more represented in its favorable environment than the dark 

moth in its more favorable environment. Though Brandon’s responses to these cases have 

been very influential, the score is by no means settled (Gildenhuys 2009; Millstein 2002; 

Pfeifer 2005) and the implications of this sort of view have been greatly under-

appreciated and vastly under-explored (but see Glymour 2011). 

 Yet another issue with the classical fitness-centric theory of selection has to do 

with the fact that the theory backgrounds the causal nature of natural selection. Often 

only implicit in the classical theory is the idea that natural selection requires that some 

trait or character variable causes reproductive success. However, because this causal 

dimension of natural selection has been deemphasized in favor of theories of fitness and 

statistical formulae, conceptual and methodological problems and theses arise that simply 

are non-issues or mistaken given clear causal reasoning. Much of the dissertation 

amounts to revealing these holes in the traditional framework, but to give a flavor of the 

issue consider the case of pure soft selection and the heated debate that surrounds it.  

 Assume all groups have the same number of members ! . Soft selection occurs 

only if there is frequency (or density) dependent selection within groups and 

groups’ (relative) fitnesses ! , for all parents !  in group !  and for all 

groups ! , vary little. Under experimental settings, pure soft selection occurs when 

N

′Wk =
1
N

′wjkj∑ j k

k
!12



! . Note, however, that because there is frequency dependent selection within 

groups, the reproductive success of organisms depends on at least some aspects of the 

group to which they belong. That is, individual relative reproductive success !  not only 

depends on ! , for all parents !  in group ! , but also on contextual trait variable 

! , for all parents !  in group !  and for all groups ! .  

1.1. Pure Soft Selection.  
  
 Okasha (2004) describes the case as follows. There are 50 organisms divided into 

5 groups of size 10. The trait variable measures whether an organism is tall !  or 

short !  and each type reproduces with perfect fidelity. The initial average value of 

the trait variable is 0.50. The composition of the groups and fitnesses between and within 

groups is described in table 1.1. The population average fitness is 2; each group doubles 

in size. Let us look at group 1 more closely as an example. The fitness of tall individuals 

VAR( ′Wk ) = 0

′rjk

z jk j k

djk = Zk j k k

Z = 0

Z = 1

!13

Make-up 
of Group 
Before 

Selection

Group 
Trait

Make-up 
of Group 

After 
Selection

Relative 
Individual 
Fitness of 

Talls

Relative 
Individual 
Fitness of 

Shorts

Relative 
Group 
Fitness

Group 1 9 talls 
1 shorts

0.10 20 talls 
0 shorts

1.11 0 1

Group 2 8 talls 
2 shorts

0.20 20 talls 
0 shorts

1.25 0 1

Group 3 5 talls 
5 shorts

0.50 15 talls 
5 shorts

1.50 0.50 1

Group 4 2 talls 
8 shorts

0.80 10 talls 
10 shorts

2.50 0.625 1

Group 5 1 talls 
9 shorts

0.90 6 talls 
14 shorts

3.00 0.78 1



is 20/9, and their relative fitness is thus 1.11. Because short individuals’ fitness is 0 the 

relative group fitness is ! . By contrast, in group 5 the fitness of tall 

individuals is 6/1, and, hence, their relative fitness is 3. The fitness of short individuals is 

14/9, and their relative fitness is consequently 0.78. Given this, the relative group fitness 

is again ! . 

 Though each group has the same relative fitness, tall organisms get a bigger slice 

of the pie. There is a contextual effect on an organisms’s relative reproductive success. As 

groups consist of more and more short organisms, all organisms have higher relative 

fitness. In groups 1 and 2, for example, short organisms have 0 relative fitness and talls 

have 1.11 and 1.25 relative fitness. Short organisms in group 5 have 0.78 relative fitness 

and tall organisms in group 5 have a relative fitness value of 3.  

 What we want to know is the change in the average value of our trait variable in 

the entire population due to selection. Ignoring demographic structure, we get: 

 !       (1.11) 

So, !  is predicted (barring drift) to go from 0.50 to 0.29 by individual selection. Using 

the law of total covariance, we can derive the group selection version of the Price (1972) 

equation and apply it to our population: 

 !    (1.12) 

The first term on the far right hand side is the covariance between group averages. It is an 

estimate of the evolutionary response of !  to group selection. The second term on the far 

1.11⋅0.90 + 0 ⋅0.10 = 1

3⋅0.10 + 0.78 ⋅0.90 = 1

ΔZ = COV( ′wi , zi ) = −0.21

Z

ΔZ = COV( ′wi , zi ) = COV( ′Wk ,Zk )+ Ek (COVj ( ′wjk , z jk ))
= 0 − 0.21= −0.21

Z
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right hand side is the expectation of the within group covariance between individual traits 

and fitness. It is an estimate of the evolutionary response of !  to within group or, simply, 

individual selection. The result in equation (1.12) is expected. The last column in table 1 

shows that there is no variation in relative fitness between groups. Both equations 

represent individual selection decreasing the average of the trait variable by the same 

amount. Yet a third statistical method called “contextual analysis” (Heisler and Damuth 

1987) can be used. Contextual analysis diagnoses group selection if and only if the partial 

regression of individual fitness on a contextual variable (or a variable measuring the 

demographic conditions one experiences) is nonzero. Here we begin by regressing 

individual fitness on !  and contextual variable ! , with values defined as above. So, 

start with the following regression: 

 !       (1.13) 

In equation (1.13) contextual analysis has identified an aspect of group selection, for 

individual reproductive success depends on the demographic conditions one finds oneself 

in—i.e., the partial regression coefficient !  that results from regressing fitness on 

demographic contexts, holding trait type fixed, is nonzero. Consequently, contextual 

analysis decomposes the evolutionary response to selection differently: 

 !      (1.14) 

Z

Z D

′wi = 1+α1zi +α 2di + ε ′ri

= 1−1.4zi +1.4di

α 2

ΔZ = COV(di , zi )α 2 +VAR(zi )α1

= 0.1⋅1.4 − 0.25 ⋅1.4 = −0.21
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Thus we have a third predictively adequate decomposition which differs from the 

previous two in that it does whereas they do not diagnose the presence of group selection. 

 The most widespread reaction to this kind of situating in recent years has been to 

claim that it makes no difference which model one uses in predicting evolutionary 

outcomes. Indeed, as it is apparent from our three decompositions of the response to 

selection, whether the statistical method implies group selection (equation 1.14) or not 

(equation 1.12) or fails to represent demographic structure at all (equation 1.11), the 

predicted evolutionary outcome remains—tall types increase in frequency by 0.21. 

Hence, all three decompositions of the evolutionary response are mathematically 

equivalent—it is easy enough to express the evolutionary outcomes in either of the model 

types and one can use either for predictive purposes. It is in this sense that Kerr and 

Godfrey-Smith (2002) advocate a kind of pluralism about controversies concerning the 

levels of selection. Though, there may be a fact of the matter concerning whether group 

selection is occurring or not, either model type can be used for predictive purposes. A 

corollary of this view is that representing the causal structure of a population undergoing 

selection does not matter for predictive purposes. That is, for example, if all one is 

interested in is predicting evolutionary dynamics, one need not worry about representing 

the fact that demographic conditions cause individual reproductive success. All that is 

needed is some statistical decomposition of the evolutionary response to selection. Yet, as 

I will argue later, this model pluralism only holds given certain kinds of populations with 

certain causal structures over reproductive success and offspring dispersal. Hence, any 

pluralism about the predictive adequacy of statistical decompositions fundamentally rests 
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on whether certain features of populations are realized or not. Given this, it is unclear 

why this thesis about the equivalence of some statistical formulae is interesting.  

4. The Goal of this Dissertation and Some Preliminaries 

The goal of this dissertation is to advance a theory of natural selection that is 

fundamentally causal. By focusing on the causal nature of natural selection (rather than 

on fitness or statistical formulae), certain conceptual and methodological problems are 

seen in a new, clarifying light and avenues toward new, interesting solutions to those 

problems are illustrated.  

 Given this refocusing on what is fundamental in our theory of evolution by 

natural selection, Chapter 2 sets out to update explicitly causal theories of when exactly a 

trait counts as an adaptation upon fixation and consider implications. I do so, chiefly, by 

assuming the interventionist notion of causation, which, to my understanding, is the only 

notion of causation that is scientifically interesting as it comes with various inference 

procedures (Pearl 2000; Spirtes et al. 2000; Woodward 2003). A brief introduction will be 

useful for what follows throughout the rest of the dissertation (for those familiar with this 

literature, feel free to skip the next three paragraphs).  

 A directed graph consists of a pair ! , where !  is a set of vertices and !  is 

a set of directed edges or arrows. An edge is an ordered pair of vertices !  

represented by ! . Given a directed graph, if there is a directed edge from !  to ! , 

then we say that !  and !  are adjacent, that !  is the parent of ! , and that !  is a child 

of ! . A directed path in the graph is a set of sequences of distinct vertices 

< S,A > S A

< A,B >

A→ B A B

A B A B B

A
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!  such that for all !  between 0 and ! , !  is a parent of ! . On a 

directed path from !  to ! , !  is an ancestor of !  and !  is a descendant of ! . A path 

simpliciter on the graph is a sequence of distinct vertices such that for all !  between 0 

and ! , !  and !  are adjacent. Finally, a directed acyclic graph is a directed graph 

where no two distinct vertices are ancestors of each other; else, it is a directed cyclic 

graph.  

 Given these conventions, a causal semantics is easily applied to directed acyclic 

graphs. Vertices are variables and each edge represents a direct causal relationship 

between pairs of variables. A causal relationship is taken to be an asymmetric relationship 

between variables characterizing units in a population of units. There is a direct causal 

relationship between variables !  and !  relative to some set of variables on a graph if 

and only if there exists at least one intervention such that changing the value of ! , while 

holding all other variables in !  constant, would result in a change in the probability 

distribution over ! . There is a directed edge from !  into !  if and only if the former is a 

direct cause of the latter, relative to the set of variables on the graph. 

 Furthermore, directed acyclic graphs also have a straightforward probabilistic 

semantics and one can translate freely back and forth between causation and probabilities 

given some assumptions. This will be most useful for Chapter 5, but I will introduce the 

basics here now. The directed graph represents joint and conditional probability 

distributions over the set of variables. These functions contain information on a set of 

conditional independence claims. From such claims, assuming the causal Markov 

<V1,V2,...,Vi ,...,Vn > i n Vi Vi+1

A B A B B A

i

n Vi Vi+1

A B

A

S \ B

B A B
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condition (CMC), one can infer causal relationships between variables. The CMC states 

that every variable is independent of its non-descendants conditional on its parents. The 

CMC links the probability functions with the directed graph representing causal 

relationships. On can go the other direction too, given the causal faithfulness condition 

(CFC). The probability function over the set of variables is faithful to the directed graph 

just in case the conditional independences implied by the probability function over the set 

of variables are those entailed by the CMC. Given these two assumptions, we can give 

Pearl’s (2000) d-separation theorem. Two arbitrary variables !  and !  are 

probabilistically dependent conditional on a proper subset !  of the set of variables if and 

only if there is some path on the graph between the two arbitrary variables such that no 

mediator— ! —or common cause— ! —in the path is in the 

conditioning set, and every common effect or collider— ! —on the path either 

is in the conditioning set or has some descendant which is in the conditioning set.  

 In Chapter 3, I examine a case of a novel character that evolves by (a particular 

kind of) niche construction and argue for interpreting this as selection for the novel 

character when causally understood. This interpretation implies the need to 

reconceptualize drift and adaptations. In Chapter 4 I analyze a population undergoing 

multilevel selection (on one explicitly causal view implied by some working biologists) 

with local frequency-dependent selection and local offspring dispersal to show that 

common non-causal theories of group selection force us to make bad decisions about how 

to represent the system, and, moreover, those representations make bad predictions. 

Consequently, I challenge objections against the causal understanding of group selection 

A B

C

A→C→ B A←C→ B

A→C← B
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and argue against model pluralism in the levels of selection debate (on the assumption 

that the causal theory is correct). One of the implications of Chapters 2-4 is that modeling 

the causes of reproductive success is necessary for understanding evolution by natural 

selection. In cases of interactive causation among the causes of reproductive success, we 

must also model the causes of selection. Chapter 5 takes some of the first steps in 

providing a causal methodology for inferring the causes of selection. Chapter 6 concludes 

by summarizing my findings and pointing toward possible avenues for future work.  

 Before getting to the dissertation itself, however, it is useful to briefly take a look 

at where the causal theory of natural selection comes from. Sober (1984) distinguishes 

between the “source laws” and “consequence laws” of evolutionary theory. The former 

describe the causes of evolution or the causes of the “forces” that enact evolution. The 

latter describe the evolutionary consequences of selection, drift, migration (or gene flow), 

and mutation, once they have been established in a population by their respective causes. 

Sober writes, 

 Whereas it is mainly ecology that tries to provide source laws for natural   

 selection, the consequence laws concerning natural selection are preeminently  

 part of the province of [evolutionary] genetics. It doesn’t matter to the equations  

 in [evolutionary] genetics why a given population is characterized by a set of  

 selection coefficients [or fitness parameters], mutation and migration rates, and so 

 on. These values may just as well have dropped out of the sky (Sober 1984, 59). 

The implication of this view is that the study of the causes of evolution and the study of 

the consequences of heritable differential fitness or of the covariance between fitnesses 
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and traits can get along quite independent of one another (cf. Mayr 1961). The 

consequences of differential fitness do not depend on the details of the causes of 

reproductive success by which fitness differences arise. Indeed, it is precisely because 

fitness supervenes on biological facts cum causal details that we can abstract over various 

disparate populations and see how the force of selection acts similarly across them. For 

example, an abstract, fitness-based analysis of all populations with heterozygote 

superiority will help explain the maintenance of two alleles in the population even though 

the underlying mechanisms may differ across such populations (Sober 1984).    

 However, Sober (1984) also discusses major issues with this interpretation of 

evolutionary theory, for which he is in large part responsible. Sober distinguishes 

between selection for and selection of or what is sometimes discussed as the distinction 

between selection and sorting. Evolution by sorting of types requires that some trait or 

character variable cause reproductive success. By contrast, evolution by selection for 

types requires that the trait or character variable that individuates the types causes 

reproductive success. This distinction, to my mind, is central for all causal theorists of 

natural selection. 

 Suppose that some bacteria are resistant to tetracycline and some are not. 

Moreover, suppose that the ones that are so resistant are blue whereas the others are red, 

and color does not cause reproductive success. In a tetracycline filled environment, 

resistant bacteria are selected for but we might also say that there is mere sorting of blue 

bacteria. In some sense, blue bacteria are selected. However, it is only because there is 

some trait variable that causes reproductive success and perfectly correlated with 
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coloration. By contrast, there is selection for resistance precisely because the variable 

which measures degrees of resistance causes reproductive success.  

 Causal theorists and many evolutionary biologists want to know the causal 

structure over reproductive success in order to know which variables take values that are 

selected for and which variables simply come along for the ride. Virtually every 

evolutionary biologist, I submit, is interested in something like the resistance variable 

rather than something like the coloration variable in this case. Yet this is left implicit 

theoretically and in practice. The classical fitness-centric theory of natural selection 

backgrounds the causal natural of selection. Associative measures such as covariance are 

bad an telling the difference between selection and mere sorting. The implications of 

making such distinctions with clear causal reasoning are far reaching, as this dissertation 

can attest. 

!22



SOME ADAPTATIONS WERE NOT POSITIVE CAUSAL FACTORS

1. Introduction  3

Selection can relate traits to environments in broadly two ways. On the one hand, a trait 

can evolve as an adaptation to the total undifferentiated environment. On the other hand, 

a trait can also evolve as an adaptation to particular environmental conditions. The case 

of Endler’s (1983) guppies adapting to predation conditions seems to be such an example. 

The two are not mutually exclusive. Presumably, an adaptation to particular 

environmental conditions must also be an adaptation to the rest of the environment, if it is 

to fix by natural selection for it. Yet the converse need not be true. An adaptation to the 

entire environment need not be an adaptation to anything in particular; it might simply be 

advantageous to its bearers no matter the environment. Adaptations driven by pure r-

selection (Lennox and Wilson 1994) seem to be relevant examples. I will call those traits 

that are also adaptations to particular environmental conditions adaptations to, and I will 

use adaptations simpliciter to denote traits that are at least adaptations to the total 

environment and possibly, in addition, adaptations to particular environmental conditions.  

 In this chapter, I offer an account of adaptations simpliciter that accommodates all 

cases of adaptations to, sensu Glymour (2011). Assuming adaptations to particular 

environmental conditions are a proper subset of adaptations simpliciter, I argue that the 

traditional account of adaptations handed down from Sober (1984) (but see also Brandon 

1990)—that the trait must have been advantageous in some contexts and disadvantageous 

 A version of this chapter is to appear in Philosophy of Science (Anderson in press).3
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to none—is too stringent.  I argue for a novel theory of adaptation in its place, and then I 4

consider the implications of my position.   

 Before beginning, some terminology needs to be emphasized. First, I reiterate that 

I assume the conception of causation from the causal modeling framework (Pearl 2000; 

Spirtes et al. 2000; Woodward 2003). This will aid in understanding the relationship 

between the position of Sober and Glymour. A trait or character variable !   and at least 

one environmental variable !  cause a reproductive success variable !  if and only if 

there is some set of background conditions of which !  ( ! ) is an element and in 

which changing !  ( ! ) from !  ( ! ) to !  ( ! ) would change the 

probability distribution over ! . This can be expressed graphically as: ! . The 

strength of these causal relationships can be, for our purposes, characterized in terms of 

the difference a hypothetical intervention on the exogenous causes makes to the expected 

reproductive success—or fitness—of organisms.  

 Second, in what follows it will be essential to distinguish between distinct 

environments. There are, in the literature, two ways of doing this. One can, as is 

commonly done, distinguish environments by the fitnesses of types in them (cf. Brandon 

1990; but also Sober 1984). This strategy conflates locations in which different causes 

operate to produce the same expectations for reproductive success. The presence or 

absence of interactions between such environmental causes of success and phenotypic 

Z

X R

X = x Z = z

Z X Z = ′z X = ′x Z = z X = x

R Z→ R← X

 Though perhaps not as obvious initially, the case can be equally made for Brandon 4

(1990). In essence, given his concept of ‘selective neighborhood,’ Brandon’s framework 
diagnoses a trait as an adaptation only if Sober’s does. Here I just focus on Sober’s 
framework.

!24



causes of success will play a crucial role in the arguments to come. Hence, I instead adopt 

the alternative strategy (cf. Glymour 2011) and individuate environments in terms of the 

values taken by variables measuring environmental causes of reproductive success.   5

2. Sober on Adaptations 

For Neo-Darwinists, selection and luck—drift in its sundry forms—are distinct sources of 

evolution. Adaptations are to be explained by appeals to selection for traits rather than 

drift. Sober seeks to define ‘adaptation’ so as to preserve the intuition that adaptations are 

driven to fixation by selection alone. So, he rules out averaging across certain 

environments that types happen to find themselves in by insisting that adaptations be 

positive causal factors for reproductive success. That is, adaptations must have increased 

fitness for some bearers and decreased it for none in the environments actually occupied 

by the species in which the adaptations arose. He defines an adaptation as follows: 

 Trait !  is an adaptation in population !  if and only if !  became prevalent in !   

 because there was evolution by natural selection for !  (cf. Sober 1984, 208). 

Sober holds that there is selection for !  if and only if individuals vary with respect to 

whether they have !  and having !  is a positive causal factor for the reproductive 

success of individuals in the population (1984, 280). Finally, according to Sober, a trait is 

z p z p

z

Z = z

Z = z Z = z

 Such variables take values that range over physically possible realizations of the 5

represented environmental conditions. Because species’ range might extend to locations 
that are population sinks, it is thus important that a niche be represented as a proper 
subset of the possible range of variable values (cf. Hutchinson 1957). Nonetheless, 
nothing in this chapter hinges on this, and I assume changes in variable values that 
generate an expected reproductive success of one for at least some types. 
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a positive causal factor for an outcome if and only if the trait increases the probability of 

the outcome for some individuals, and decreases it for none (1984, 294). 

 Sober employs a conception of causation on which properties are the causal relata 

rather than variables. Interpreting Sober’s views on adaptation in the causal modeling 

framework used here, we have the following instead. Let !  be a set of environmental 

variables each of which causes reproductive success !  but none of which have a causal 

connection to trait variable !  nor to each other. These are the “causally relevant 

background conditions” (cf. Sober 1984, 289-291). Then, Sober’s view requires that: 

 Fixed trait !  is an adaptation only if, for all ! , !  causes !  such that 

 (S1) for some environmental condition !  and all alternative traits ! , the  

  fitness of organisms with !  in !  is higher than that of organisms  

  with any alternative !  and 

 (S2) for no environmental condition !  is there some alternative !  such  

  that the fitness of organisms with !  in !  is less than that of  

  organisms with ! . 

Constraints (S1-S2) imply that the adaptation was a positive causal factor for 

reproductive success. !  is not an adaptation if, for some ! , the expected 

reproductive success of organisms with !  was ever lower than that of organisms with 

any alternative !  across the values of ! . In such an instance, !  will have fixed 

X

R

Z

Z = z X ∈X Z R

X = x Z = ′z

Z = z X = x

Z = ′z

X = x Z = ′z

Z = z X = x

Z = ′z

Z = z X ∈X

Z = z

Z = ′z X Z = z
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not as the result of selection but as the result of the chancy biased distribution of types 

into environments in favor of .  6

 Sober’s account of adaptation has been widely accepted, in part because it is 

explicitly causal, and in part because of the way in which it uses the requirement that 

traits be positive causal factors to avoid counterintuitive results that would otherwise 

follow from so called illicit averaging. In other words, it makes sense of ‘common 

environments’ in which fitness comparisons are to be conducted (see also Brandon’s 1990 

formulation of adaptation). Virtually everyone agrees that selection requires a common 

environment in which to act and the conditions encoded in (S1-S2) make good on that 

idea.  Consider an example. Suppose we have a population of spotted guppies with two 7

different color types, one muted type with 5 bright spots ( ! ) and a gaudy type that 

has 15 bright spots ( ! ). Assume !  has heritability 1 and there is no transmission 

bias. Suppose the number of offspring !  is caused by the number of spots !  an 

individual has, the number of predators !  in the individual’s surrounding, and the 

temperature !  in degrees Celsius within the individual’s surrounding, according 

to the equation: 

Z = z

S = 5

S = 15 S

F S

P = 0,1,2

T = 10,20

 To forestall any confusion, I should note that I have just given the bare causal essentials 6

of Sober’s theory in (S1-S2). Of course, more is needed to fully represent the definition 
of adaptation that Sober defends. For example, the heritability of the trait variable matters 
here as well. However, given that I mean only to focus on what Sober requires of 
adaptations as it pertains to selection, I merely focus on these necessary conditions rather 
than all necessary and sufficient conditions.

 That said, serious criticisms have been made, in part on the grounds that illicit averaging 7

is not so illicit (cf. Sterelny and Kitcher 1988). 
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 !       (2.1) 

Importantly, assume there is no causal connection between any of the causes of number 

of offspring so that they are all exogenous, and, further, note that, whereas spot coloration 

makes a contribution to the number of offspring that depends on the value of predation, 

there is no context-dependency between spot coloration and temperature or, for that 

matter, between predation and temperature. Finally, suppose that parents are replaced by 

offspring at random from the offspring pool with a probability that is independent of type 

so that the population size is constant and reproductive success !  (number of surviving 

offspring) is a function of number of offspring ! , making !  a component of fitness. 

 Suppose that the initial population was an even mix of the two types. Assume that 

!  for all guppies and mostly no predators ( ! ) characterizes the initial 

environment. Suppose that in !  environments, the gaudy individuals stand out from 

their muted peers and attract more mates such that hypothetically changing from a 5 spot 

type to a 15 spot type would increase fitness. By contrast, under the condition of ! , 

the muted individuals blend in to their background better than their gaudy cousins and 

have a greater chance of surviving to reproductive age such that changing from a 15 spot 

type to a 5 spot type would increase fitness. Because !  is biased toward 0 for all guppies 

in the initial conditions, the gaudy type probably outcompetes the muted type.  This can 

be seen from the “absolute type expected # of offspring” column calculated as the 

E(F | S,P,T ) = 20 + S − SP +T

R

F F

T = 10 P = 0

P = 0

P = 2

P
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arithmetic mean of !  given specific frequencies of 0.90, 0.05, and 0.05 for ! , 

, and , respectively, as in table 2.1.  8

2.1. Type Expected # of Offspring for Predator Poor Environment with Temperature 
Set to 10 Degrees Celsius for all Guppies. Individual Expected # of Offspring is 
Given by Equation (2.1). 

 The 15 spot type is expected to have the higher fitness and, so, absent drift, it is 

expected to evolve. Suppose, however, that the distribution of the environmental variable 

!  changes after some number of generations (say 5). Subsequent to this, !  is distributed 

over !  such that 5 spot types are disproportionately in !  contexts and 15 spot types 

are disproportionately in !  contexts. If the bias is sufficiently large, then when 

absolute type fitnesses are calculated by averaging over the realized environmental 

F P = 0

P = 1 P = 2

Number of 
Predators

Individual 
Expected # 
of Offspring

Frequency of 
Predation

Absolute 
Type 

Expected # 
of Offspring

Relative 
Type 

Expected # 
of Offspring

Muted 5 
Spot Type

0 35 0.90

34.25 0.801 30 0.05

2 25 0.05

Gaudy 15 
Spot Type

0 45 0.90

42.75 11 30 0.05

2 15 0.05

P P

S P = 0

P = 2

 Properly speaking, we need to treat the within-generation fitness component as a 8

function of the absolute arithmetic fitness component, within-generation variance in the 
fitness component, and population size, as in Gillespie (1974). So calculated, the fitness 
components for the two types in a population composed initially of 50 of each type are 
34.19 and 42.23 for the muted and gaudy types, respectively. Employing the simpler and 
more familiar formulation changes neither the qualitative result nor the underlying 
intuitions. So, I employ arithmetic means for ease of exposition. 
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conditions, the muted 5 spot type clearly will have the advantage and will evolve if the 

environment does not revert. This can be estimated from table 2.2, assuming other fitness 

components do not cancel out what is expected to occur given expected number of 

offspring.  Assume the 5 spot type does in fact fix in the new environment. Given that a 9

trait evolved that had the higher fitness overall, we might regard the fixed type as an 

adaptation (cf. Millstein 2002). However, this cannot be quite right. 

2.2. Type Expected # of offspring for an Environment with a Biased Predator 
Distribution and Temperature Set to 10 Degrees Celsius for all Guppies.  

 The envisaged fixation of the 5 spot type depends on two things: The trait 

variable’s causal influence on the number of offspring under each level of predation, and 

the chancy or accidental distribution of environments, qua number of predators, over 

types. Intuitively, the frequency of the 5 spot type does not increase because there was 

unequivocal selection for muted types. Rather there was evolution toward the muted 

Number of 
Predators

Individual 
Expected # 
of Offspring

Frequency of 
Predation

Absolute 
Type 

Expected # 
of Offspring

Relative 
Type 

Expected # 
of Offspring

Muted 5 
Spot Type

0 35 0.89

34.15 11 30 0.05

2 25 0.06

Gaudy 15 
Spot Type

0 45 0.35

26.25 0.771 30 0.05

2 15 0.60

 The Gillespie fitness components for the two types in the population are now 34.08 and 9

24.25 for the muted and gaudy types, respectively.
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types because of the chance draw of environments for the types. The 5 spot type merely 

got lucky for many generations.  

 Sober’s theory delivers the intuitively correct result exactly because he requires 

adaptations to have been positive causal factors for reproductive success. In the case of 

our toy example, the constraint (S2) is not met with respect to the environments the 

evolving population occupied before fixation. There were some members of the evolving 

population that experienced conditions under which being muted was disadvantageous. 

So, it is not the case that the 5 spot type is an adaptation upon fixation. It evolves merely 

because of the chancy distribution of types into environments in favor of the muted type.  

3. Glymour on Adaptations To Particular Environmental Conditions 

Sober’s theory is naturally read as an account of adaptation simpliciter. Certainly when a 

trait was a positive causal factor for reproductive success, the trait is an adaptation no 

matter the environment. On the other hand, Glymour’s view is one that (at least 

sometimes) diagnoses traits as adaptations to specific environmental features. Biologists 

are sometimes intent on showing how traits are adaptations to particular environmental 

variables. For example, as I mentioned before, Endler’s (1983) research on guppies is 

paradigmatic in this respect. Other famed cases include Darwin’s finches (Gibbs and 

Grant 1987; Price et al. 1984) and Kettlewell’s (1973) moths. Recent studies on high-

crowned teeth in ungulates in grassland environments are revealing as well (Heywood 

2010). These studies make no sense unless they are responsive to concerns for adaptation 

to. The two conceptions of adaptations are not strictly incompatible. Yet adaptations to 

are importantly different from adaptations simpliciter, and sometimes Sober and 
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Glymour’s theories deliver conflicting diagnoses on whether a trait is an adaptation or 

not.  

 To see this, let us start with what Glymour takes to be necessary for the concept of 

‘adaptation to’: 

 If we are to identify one rather than another set of features of the environment as  

 features to which a species is adapting, those features must explain why the  

 differences in fitness among phenotypes is one way rather than another, even  

 when those features are homogeneously distributed over types in the population.  

 This is only possible if the environmental features are an interactive cause of  

 reproductive success (cf. Glymour 2011, 464). 

Glymour holds that features !  are homogeneously distributed over traits !  if and only 

if, for all values of !  and all pairs of values !  and ! , 

!  (cf. 2011, 465). Moreover, though Glymour 

does not explicitly say so, what he means by ‘interactive causation’ is a special kind of 

interaction or context-dependency. If !  is the supposed adaptation arising from 

interactive causation, then the difference in fitness made by changing from !  to 

!  in some context !  is positive whereas the difference made by the same 

hypothetical intervention in some some alternative context !  is not positive. 

 Glymour’s view can be rendered in analogous fashion to Sober’s. Again, let !  be 

a set of environmental variables each of which causes reproductive success !  but none 

X Z

X Z = z Z = ′z

Freq(X = x | Z = z) = Freq(X = x | Z = ′z )

Z = z

Z = ′z

Z = z X = x

X = ′x

X

R
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of which have a causal connection to trait variable !  nor to each other. Then, Glymour’s 

view requires that: 

 Fixed trait !  is an adaptation to environmental features !  only if, for  

 some ! , !  and !  interact to cause !  such that 

 (G1) for some environmental condition !  and all alternative traits ! , the 

  fitness of organisms with !  in !  is higher than that of organisms  

  with any alternative !  and 

 (G2) for some other environmental condition !  there is some alternative  

  !  such that the fitness of organisms with !  in !  is not  

  greater than that of organisms with ! . 

Constraints (G1-G2) imply that the relevant environmental conditions interacted with a 

trait variable in just the right way to cause reproductive success. Return to our guppy 

example once more to see how this works. 

 Suppose that predation and temperature are homogeneously distributed over types 

as in the initial environment (table 2.1). Homogeneity-preserving interventions on 

temperature can change the rate at which the population evolves but cannot change the 

fact that the gaudy !  type probably fixes in the population. Increasing temperature 

from 10 to 20 degrees Celsius merely increases everyone’s component of fitness by 10 

offspring, but does not change the ordinal relation among expected number of offspring. 

Thus, no actual distribution of temperature can be used to explain the evolution of the 

gaudy type as an adaptation. If the actual distribution of temperature is homogeneous and 

Z

Z = z X ∈X

X ∈X Z X R

X = x Z = ′z

Z = z X = x

Z = ′z

X = ′x

Z = ′z Z = z X = ′x

Z = ′z

S = 15
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contrasting alternatives are too, then the same !  value is expected to evolve in either 

case. If the actual distribution is not homogeneous, then the evolution of the trait variable 

is a matter of drift—the chancy assignment of one rather than another type to favorable 

environments—rather than a matter of the superiority of one type over the other in a 

common environment (cf. Glymour 2011, 466). 

2.3. Type Expected # of Offspring for Predator High Environment with 
Temperature Set to 10 Degrees Celsius for all Guppies.  

 Yet according to Glymour, predation is different. Changes in the distribution of 

predation can change the direction of selection even when the new distribution is 

homogeneous; that is, both the initial and new distribution of types to environments are 

such that the frequency with which 5 spot guppies find themselves in low predator 

environments remains equal to the frequency with which 15 spot guppies find themselves 

in low predation environments and so on for all values of predation. So, suppose that 

when predation changes, it turns out that many members of the lineage experience two 

predators while a few members experience one or zero predators yet !  continues to be 

S

Number of 
Predators

Individual 
Expected # 
of Offspring

Frequency of 
Predation

Absolute 
Type 

Expected # 
of Offspring

Relative 
Type 

Expected # 
of Offspring

Muted 5 
Spot Type

0 35 0.05

25.75 11 30 0.05

2 25 0.90

Gaudy 15 
Spot Type

0 45 0.05

17.25 0.671 30 0.05

2 15 0.90

P
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homogeneously distributed over types. Given this and the assumption that the 

environment does not change again, when absolute type expected number of offspring is 

calculated for each type by averaging over the realized environmental conditions, the 

muted 5 spot type clearly has the advantage. Assuming ! for all guppies, this can be 

gleaned from table 2.3.  In contrast to the situation described in table 2.1, the 5 spot type 10

now has the higher fitness (again assuming no other fitness component cancels this 

advantage out), and it is expected to evolve in the homogeneous environment. This 

change has nothing to do with temperature, which increases the number of offspring of all 

guppies by 10 (per unit change), and everything to do with the new, yet homogeneous, 

distribution of predation. 

 Precisely because predation interacts with spot number in a special way, a change 

in it can influence the direction of selection, and hence the evolution of the 5 spot type is 

explained in part by the homogeneously distributed predation variable (cf. Glymour 2011, 

466). This is because, had it been different—as in the actually realized initial 

environment—the ordinal relation among type fitnesses would have been different. 

Hence, by Glymour’s reasoning, the muted type is an adaptation to the number of 

predators in our new environment (table 2.3).  

 Note, however, that on Sober’s account the muted type is not an adaptation at all, 

because in the present case, as in the original case, condition (S2) is violated. There were 

some members of the evolving population that experienced conditions under which 

T = 10

 Again, for those interested, the Gillespie fitness components for the two types in the 10

new environment are 25.69 and 16.74 for the muted and gaudy types, respectively.
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having the muted trait was disadvantageous. This can be seen again in table 3 above. 

Hence, the fixed trait was not a positive causal factor for reproductive success in the 

environments actually occupied by the species in which the adaptation arose. Therefore, 

Glymour’s theory and the positive causal factor theory of Sober conflict (at least) in this 

case.  

 To be clear, the theories do not conflict in other similar cases. If (G2) is satisfied 

because, but only because, there are some members that occupy environments !  in 

which organisms with !  and organisms with some alternative !  are equally fit, 

while all others occupy environments !  in which organisms with !  are fitter 

than organisms with any alternative ! , Sober’s account will yield the result that 

!  is an adaptation upon fixation and Glymour’s account will yield the compatible 

result that it is also an adaptation to environmental conditions ! . But, as I have argued, 

whenever there is any member of the population inhabiting an environment (say, ! ) 

in which !  is actually fitter than ! , Glymour’s account can correctly render 

!  an adaptation to environmental conditions !  whereas Sober’s account will 

always, incompatibly, yield the conclusion that the !  is not an adaptation at all. 

4. A New Theory of Adaptations 

The predation variable in the case of the guppies interacts with the spot variable to cause 

reproductive success by controlling the way in which the spot variable influences 

reproductive success. Under some conditions, gaudy guppies are selected for whereas 

under other conditions muted guppies are selected for. Endler (1983) managed to 

X = ′x

Z = z Z = ′z

X = x Z = z

Z = ′z

Z = z

X

X = ′x

Z = ′z Z = z

Z = z X

Z = z
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experimentally induce a change in the direction of evolution by changing environmental 

variables. Nature, however, is often not as exacting as experimental set-ups. It is easy to 

conceive of the muted type with less bright spots going to fixation in an environment 

characterized by a range of predation even though it was inferior to gaudy types earlier in 

the lineage in environments characterized by no predation. In such circumstances, 

Glymour’s view and the view of Sober imply inconsistent diagnoses of the trait upon its 

fixation in the population. Glymour’s view implies that the fixed trait is an adaptation to 

the predation variable. Sober’s view implies that the fixed trait is not an adaptation and so 

a fortiori not an adaptation to the predation variable. This is because Sober is committed 

to the view that adaptations were positive causal factors for reproductive success. 

 The correct response to this conflict, I propose, is to accept both adaptations 

simpliciter and the more restricted adaptations to. However, we can be pluralists in this 

sense only if we give up on the idea that adaptations necessarily were positive causal 

factors for reproductive success and, in particular, give up on constraint (S2). Though 

there seem to be adaptations that are not adaptations to anything in particular, it is a 

reasonable assumption that all adaptations to must also be adaptations simpliciter. Given 

this assumption, Sober cannot be right to require that adaptations were positive causal 

factors for reproductive success. For if we follow him in requiring this, we end up 

denying that certain adaptations to are adaptations simpliciter, as for example in our toy 

case with strictly homogeneous environments. So, contrary to Sober, in this case, the 
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muted type—which is an adaptation to the number of predators—must also be an 

adaptation simpliciter.  11

 As far as adaptations to particular environmental conditions go, then, let us stick 

with Glymour’s constraints codified in (G1-G2) for now. For adaptations simpliciter, we 

must drop (S2). So, for the sake of transparency: 

 Fixed trait !  is (at least) an adaptation to the whole environment !  only if,  

 for all ! , !  causes !  such that for some environmental condition !   

 and any alternative trait ! , the fitness of organisms with !  in !  is  

 higher than that of organisms with any alternative ! . 

This simply means that there was some environmental condition such that changing the 

trait variable from the alternative trait to the supposed adaptation under such conditions 

would have increased fitness. On the theory of adaptation on offer here, all adaptations to 

are also adaptations simpliciter as desired.  

5. Implications 

Given the centrality in biology of the idea that adaptations are sometimes adaptations to 

particular environmental conditions, I think we have little choice but to reject the 

requirement that adaptations exert a uniform positive influence on reproductive success. 

If we insist on it, we will not only have to give up on the idea that coloration is an 

adaptive response to predation, that hypsodonty is an adaptive response to some feature 

Z = z X

X ∈X Z R X = x

Z = ′z Z = z X = x

Z = ′z

 Note that, as I have argued, we do not have the option to drop Glymour’s (G2) instead. 11

For in so doing, we would not be able to make sense of either guppy type (upon its 
fixation) as an adaptation, let alone an adaptation to predation levels. 
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of grasslands, and that bill depth is an adaptive response to seed frequency. We will also 

have to give up on the idea that changes in environmental conditions drive evolutionary 

responses by means of selection within a lineage. If the homogeneously distributed 

frequencies over distinct environments changes and that change drives the evolution of a 

once rare and disfavored type, this is because the environmental variable and the trait 

variable interactively cause reproductive success. It will then follow that the evolved trait 

had a negative influence on reproductive success overall prior to the change and a 

positive influence overall after the change. Such traits do not have a uniform positive 

influence on reproductive success, and a fortiori cannot be adaptations unless we 

relinquish the requirement.  

 Doing so has both theoretical and practical implications. Here I examine just two. 

Individuating environments by vectors of values for environmental causes of 

reproductive success is essential for any account of adaptation to. It is essential for 

various other tasks too—e.g., accounting for phenotypic plasticity and local 

coadaptations—as Glymour (2011) has argued. More importantly for us, this move offers 

machinery for explaining where and why the evolution of a population is evolving by 

drift and where and why the population is evolving by selection. We have evolution by 

drift when we have a heterogeneous distribution of environmental causes, but on any 

homogeneous distribution of the environmental variables the ordinal relation between 

fitnesses would be reversed. It is just such cases that Sober’s requirement that causes 

exert a uniformly positive influence is meant to exclude. Alas, the requirement goes too 

far, excluding also cases in which relevant environment conditions are homogeneously 
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distributed over types, but interact with the type variables to cause reproductive success 

(the paradigm case of adaptation to for Glymour). Still, given that environmental 

conditions are essentially never strictly homogeneously distributed over types, further 

elaborations of the theories articulated herein will be required. But the proper 

elaborations must tread carefully: As one weakens the assumption of homogeneous 

distributions, one invites illicit averaging—i.e., treating cases of drift driven evolution, in 

the form of the disproportionate representation of a less fit type in a more favorable 

environment, as cases of selection driven adaptation. A full discussion would take us well 

beyond the scope of this chapter (in fact, we will return to the issue in the next one), but it 

is sufficient here to note that any account of adaptation will need to confront this issue in 

one way or another, and the present account has the virtue of pressing the point directly. 

 The framework developed here for understanding the relation between 

adaptations and drift also has substantive implications concerning biological practice as 

well. Given the framework, it is only by modeling the causal influence of environmental 

variables explicitly that one can distinguish between traits driven to fixation by selection 

rather than by drift. The point is related to a point already made by Glymour (2011). 

Glymour notes that evolutionary biologists sometimes do not explicitly model 

environmental conditions. Instead they condition on the environment as a whole. For 

example, population genetics models employ a fitness parameter for each type. The 

parameter can be seen as an estimate of the disposition for the type to survive and 

reproduce in the environment taken wholly. Hence, these parameters can also be seen as 

an estimate of overall habitat quality from the type’s point of view. Sometimes such 
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models can be used to diagnose when drift goes against what one would expect from 

selection (cf. Brandon 1990). However, such models cannot do so reliably on the view of 

the relationship between adaptations and drift given here. 

 Suppose we collect data on an individual trait or character variable and individual 

reproductive success for various spatiotemporal locations without measuring any 

environmental conditions in those locations. For each location we estimate fitnesses and 

assess their ordinal relations across the locations. It might be that the ordinal relation 

among fitnesses is distinct across some locations. We can account for this in two ways, 

assuming none of the environmental conditions are causally connected with the focal trait 

variable. Either there are some homogeneously distributed environmental conditions that 

interact to cause reproductive success, or there are some heterogeneously distributed 

environmental conditions that cause reproductive success. In the latter case, the ordinal 

relation among fitnesses might differ between locations without interactive causation. For 

example, there might be some locations with high predation for all and homogeneous 

temperatures fluctuations in which muted types are favored, but other locations with high 

predation for all but also with gaudy types being sufficiently disproportionately in 

warmer temperatures such that gaudy types are fitter. To distinguish between the two 

cases, we would actually have to explicitly model the causal influence of the 

environmental variables rather than merely condition on various spatiotemporal locations.  

Hence, the verdict that a trait is an adaptation upon fixation requires explicitly 

representing the causal influence of environmental variables. 
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6. Summary 

Sober requires of adaptations that they were positive causal factors for reproductive 

success. Glymour’s work, however, entails that fixed traits are adaptations to specific 

environmental features only given a special sort of interactive causation. In some cases 

these positions provide inconsistent diagnoses. I argued that, given one such conflict, we 

ought to give up on the idea that adaptations must have been positive causal factors for 

reproductive success. On grounds that all adaptations to specific environmental features 

are adaptations simpliciter, Sober cannot be right to require this of adaptations. I provide 

a rectification of the two theories, and use it to highlight two implications for 

evolutionary biology. Theoretically, the concepts of adaptation and drift are inseparable, 

insofar as an account of adaptations will need to rely on a prior decision about which 

distributions into environments do and which do not constitute a form of drift. Also, in 

practice, various attempts to measure fitness, predict the consequences of differential 

fitness, and identify adaptations will turn out to require quantitative measures of the 

environmental causes of reproductive success.  
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NOVELTIES EVOLVED BY NICHE CONSTRUCTION

1. Introduction 

In this chapter, I am concerned to elucidate a conceptual conflict between some 

traditional conceptions of selection and drift, on the one hand, and the evolution of 

novelties by niche construction, on the other hand. Novelties are a particular kind of 

adaptation where the character was non-homologous upon its arrival in the population 

and selected for as against ancestral characters. Characters and novelties here are to be 

understood in the sense of Wagner (2014). Even though fins can vary within species and 

even though fins between species might differ functionally, fins constitute a unique 

character or homolog due to their identical “core” genetic basis—Wagner’s “character 

identity networks” (cf. Wagner 2014). Given this, it is only when a change occurs in these 

character identity networks that we have a non-homologous character (e.g., forelimbs) 

that might spread through the population and fix as a novelty by selection for it (Wagner 

2014).  

 Many proponents of the Extended Synthesis argue that niche construction is a 

powerful driver of the evolution of novelties (Laland et al. 2015; Laubichler and Renn 

2015; Müller and Newman 2005; Sterelny 2009). If types causally influence the contexts 

they find themselves in, then we have niche construction.  Suppose also that types cause 12

reproductive success and contexts themselves cause reproductive success. When selection 

 The sense of niche construction used here is very broad, encompassing everything from 12

preferential habitat choice to standard examples like beaver dams and spider webs. The 
example used in this chapter simply involves a kind of neighborhood selection coupled 
with the fact that individuals can disperse offspring only to nearest neighboring locations.
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favors the evolution of novelties in those circumstances, the causal connection between 

types and their contexts will generate a heterogeneous distribution of types into the 

environment.  

 However, on the traditional picture, selection requires a common environment 

within which to operate and therefore drift in the form of the heterogeneous distribution 

of types into environments is a distinct process from the selection for characters within 

environments (Brandon 1990; Sober 1984). Consequently, in order to make sense of the 

evolution of novelties by niche construction as the evolution of novelties by selection for 

them, I argue that we must not define selection so that selection on a population requires 

that members of that population inhabit a common environment. I argue for this claim in 

two steps. First, I examine a population existing on a landscape where half of the 

inhabitants engage in niche construction and half do not in order to illuminate the 

conceptual conflict between traditional concepts of selection and drift, on the one hand, 

and concepts of novelties and niche construction, on the other hand. By applying those 

traditional concepts to the half of the population engaged in niche construction, no sense 

can be made of novelties evolved by niche construction as the evolution by selection for 

those novelties. Second, I illustrate a distinction between causal structures over 

reproductive success where characters are selected for and causal structures over 

reproductive success where characters are mere by-products of selection on something 

else. With that distinction, the conclusion that we must not define selection in terms of a 

common environment almost immediately follows.  
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2. The Population 

Consider an asexual population with an ancestral type 0 and a non-homologous type 1. 

The population begins and remains at carrying capacity, with initially fewer numbers of 

type 1 individuals. The population exists on a landscape with a clear division that “cuts” 

the population in half—side !  and side ! —and each individual lives on a unique site or 

patch within their side of the landscape. On both sides generations are overlapping. 

Individuals are randomly and asynchronously chosen from the population and replaced. 

Specifically, each replacement cycle involves the following sequence. A unit is chosen 

and removed from the population. Then each unit within the dispersal distance of the 

newly vacated site reproduces with perfect heritability and without transmission bias, 

according to a function described below. From the pool of all offspring produced by units 

within the dispersal range, one is chosen at random to become the new occupant of the 

site, and the remaining offspring die. This sequence is repeated and sampling of the sites 

for updating the type of unit on them is done with replacement. Importantly, while all 

units reproduce offspring according to the function to be given shortly, dispersal distance 

varies between the two sides: on side ! , the offspring can disperse only the von 

Neumann neighborhood of the parent whereas on side ! , offspring can disperse over the 

whole of the side. There is some inter-mixing where the sides meet. If, for example, an 

individual on side !  disperses to side ! , that individual can do so only if the vacant site 

is in its von Neumann neighborhoods. If, however, an individual on side !  disperses to 

side ! , then that individual’s offspring can go to the vacant site on side ! , wherever that 

site might be on side ! —that is, whether or not it is a von Neumann neighbor of the  

a b

a

b

b a

a

b b

b
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3.1. (A) Selection: The Causal Structure for Determining Number of Offspring. (B) 
Dispersal: The Causal Structure for Determining the Type at the Focal Site. 

individual on side !  at a site where the two sides meet. I will say that dispersal on the !  

side is local whereas dispersal on the !  side is global. In the next two paragraphs I 

describe the difference between the sides in more detail. 

 On side !  the vacant location has four von Neumann neighbors—type denoted by 

! . Each of these types in turn has four von Neumann neighbors including the 

former occupant, numbered 1-4 clockwise starting with the former occupant. That is, type 

denoted by !  for !  so that, for example, !  is the type of the first 

neighbor of the second neighbor of the focal vacant spot or, otherwise put, the type of the 

former occupant of the focal vacant spot. Each von Neumann neighbor then generates a 

number of offspring; the replacement unit is drawn at random from the pool of all such 

offspring. The number of offspring !  for neighbor !  of a newly vacated site is 

a a

b

a

N1 − N4

Nij {i, j} = {1− 4} N21

Fi i

!46



determined by a contribution from the vacated site itself, and another contribution from 

each of the other von Neumann neighbors, each of which are determined by the type of 

the unit at (or, in the case of the newly vacated site, formerly at) the site, and a final 

contribution determined by the type of the unit !  itself. This can be represented in 

structural equation form as: 

 !    (3.1) 

where !  is a constant and there is no error. This is represented graphically in figure 3.1A. 

Here we will explore the case in which ! , ! , and ! . 

The fact that in the model the next occupant is chosen as a single survivor—the new 

occupant—at random from a pool formed by pooling the offspring of all the von 

Neumann neighbors entails both that !  causes !  after selection (i.e., during dispersal) 

and that there is only one (new) occupant. The probability that !  becomes a non-

homologous type 1 individual is given by: 

 !        (3.2) 

The probability that !  becomes an ancestral type 0 individual is given by 

! . The causal dependency of the new type on number of offspring is 

represented graphically in figure 3.1B.  

 On side ! , by contrast, let !  denote the type at the formerly occupied location 

and suppose the (former) occupant is a neighbor with every other individual on side !  

i

Fi = c +α1Ni1 +α 2Ni2 +α 3Ni3 +α 4Ni4 +α 5Ni

c

c = 72 α1 =α 2 =α 3 =α 4 = 67 α 5 = −12

Fi ′Ni1

Ni1

Pr( ′Ni1 = 1| Fi ) =
FiNii∑
Fii∑

Ni1

1− Pr( ′Ni1 = 1)

b L

b
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plus some individuals on side ! , where the sides meet. Each of these neighbors of the 

focal vacant spot, however, only has four von Neumann neighbors which might or might 

not include the vacant location. So suppose there are 200 individuals on this side of the 

population, and suppose the population is on a torus so that there are two divisions where 

the population sides meet and so that there are an additional 40 neighbors from side !  of 

the focal vacant spot. As before, the number of offspring !  for neighbor !  (for 

! ) is caused by each !  (for ! ) and its own type ! , where !  

might or might not be identical to !  depending on the individual’s placement across the 

landscape. But after the number of offspring for all neighbors !  is 

determined, the next occupant is chosen as a single survivor—the new occupant—at 

random from a pool formed by pooling the offspring of all these neighbors. So, the 

number of offspring contributed by the !  neighbor is still determined by equation (3.1) 

with the causal graph depicted in figure 3.1A. However, dispersal of offspring to the 

vacant site is no longer local, like selection, but global. Each individual gets to disperse 

offspring to the vacant site so that figure 3.1B should be changed to depict every !  (for 

! ) causing !  rather than merely !  (for ! ) causing ! .  

3. A Novelty Evolved By Niche Construction 

That is our population. Given the causal parameter settings, both types on either side have 

a much higher expected number of offspring given more non-homologous type 1 

neighbors, but being a non-homologous type 1 (rather than an ancestral type 0) comes 

with a cost of 12 offspring. Given this, what should we predict? Our traditional intuitions 

a

a

Fi i

i = 1,2,...,239 Nij j = 1− 4 Ni Ni1

L

i = 1,2,...,239

ith

Fi

i = 1,2,...,239 L Fi i = 1− 4 ′Ni1
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about evolution by natural selection (and drift) have been constructed with the causal 

structure on side !  in mind. On the traditional view, the fitness of organisms is a 

disposition or propensity to survive and reproduce in a specified environment. Properties 

of organisms generate environmentally specific dispositions to survive and reproduce so 

that the ordinal relation of fitnesses is stable given some set of considered types (Brandon 

1990). Diagnosing a character as an adaptation requires doing so with respect to 

previously extant variation within a unique common environment. Only with respect to a 

common environment can comparing differences in fitness give us an idea of how the 

characters themselves (rather than something else) lead to differential fitness. To test this, 

ideally, we should plant individuals at sites in such a way to ensure that character type is 

independent of neighboring types. For otherwise, if the influence of characters on 

reproductive success depends (in some way) on surrounding neighboring types, then 

there is no way of teasing apart the difference organismal characters make to reproductive 

success and the difference environmental contexts make to reproductive success; and 

presumably, it is the former rather than the latter that drives evolution by natural 

selection.  

 In other words, like any good experimental setup, types should be scattered at 

random over patches at each generation. Otherwise, drift as the heterogeneous or biased 

distribution of types into environments can interrupt the selection for advantageous 

characters within a common environment. This setup is essentially what we have on 

isolated side !  of the population. Suppose we remove side !  from side !  to study !  in 

isolation. We can now think in terms of an evolutionary game context where 

b

b b a b
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!  is the payoff of a type 1 playing against a single type 

1, !  is the payoff of a type 0 playing against a single type 1, 

!  is the payoff of a type 0 playing against a single type 0, and 

!  is the payoff of a type 1 playing against a single type 0. A 

change in the frequency of the non-homologous type 1, then, can be approximated by: 

 !  (3.3) 

where !  is the frequency of the non-homologous type 1. Equation (3.3) is a version of 

the replicator equation. Given that this payoff structure amounts to a n-player Prisoner’s 

dilemma and type 0 is the defector, replicator equation (3.3) predicts that the non-

homologous type will not become prevalent (i.e., ! ). The non-homologous type, 

consequently, cannot become a novelty and can only become prevalent (if at all) via drift. 

The type 1 would have to get lucky in being on average surrounded by more type 1s than 

the ancestral type.  

 However, things are different on side ! , again, taken in isolation. To get a sense 

of this, let us initially think of this side of the population as existing on the one 

dimensional integer lattice ! . Suppose that initially there exists a finite interval of (say 

6) non-homologous type 1 individuals, that the relevant neighbors are the individuals 

directly to the left and right of an individual, and there are infinitely many type 0 

individuals. Then there are two interfaces between clusters of types. If the ancestral type 

next to the left interface is chosen for mortality first, then the novel type next to the left 

interface produces !  and the ancestral 

Fi (1,1) = 0.25c +α1 + 0.25α 5 = 82

Fi (0,1) = 0.25c +α1 = 85

Fi (0,0) = 0.25c = 18

Fi (1,0) = 0.25c + 0.25α 5 = 15

ΔB = B(1− B)(Fi (1,1)− Fi (0,1))B − (Fi (0,0)− Fi (0,1))(1− B))

B

B̂ = 0

a

Z

0.5c +α1Ni1 +α 2Ni2 + 0.5α 5Ni = 0.5c +α 2 + 0.5α 5
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type next to the deceased ancestral type produces ! . 

So, !  (for ! ) changes to 1 with probability: 

 !     (3.5) 

where parameters !  and !  are divided by 2 because there are 2 nearest neighbors now 

rather than 4. Alternatively, if the leftmost non-homologous type is chosen for mortality 

first, then this !  changes to 0 with probability: 

 !    (3.6) 

The dynamics only depends on the magnitude of these probabilities. If the former is 

greater than the latter, then the interface between the types advances stochastically to the 

left such that all sites to the left of the interval become occupied by the non-homologous 

type 1 and, by symmetry, the non-homologous type fixes as a novelty. Given the causal 

parameter settings, this is in fact what we should predict. A type 0 occupies the space 

occupied by the leftmost type 1 with only probability ! , if that type 1 is chosen 

first, whereas a non-homologous type 1 occupies the space occupied by the ancestral type 

0 nearest to the left interface with probability ! , if that type 0 is chosen first. Hence, 

the non-homologous type evolves into a novelty eventually (cf. Evilsizor and Lanchier 

2015; Ohtsuki et al. 2006).  

 This result that the non-homologous type fixes as a novelty can be extended to 

other initial starting scenarios. Suppose that initially some finite amount of non-

0.5c +α1Ni1 +α 2Ni2 + 0.5α 5Ni = 0.5c

Ni1 i = 1,2

Pr( ′Ni1 = 1) =
0.5c +α 2 + 0.5α 5

(0.5c +α 2 + 0.5α 5 )+ (0.5c)

c α 5

Ni1

Pr( ′Ni1 = 0) =
0.5c +α1

(0.5c +α1)+ (0.5c +α1 +α 2 + 0.5α 5 )

≈ 0.385

≈ 0.73
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homologous type 1 individuals sprout up at random across the integer lattice. In this case, 

there are multiple interfaces that behave like the one just examined except when both 

neighbors of a focal vacant space are of the same type. In such exceptions, the probability 

that !  changes type is equal to 1. Hence, these interfaces tend to disappear. This leaves 

only three special scenarios to consider where types are in clusters of size ! . I will 

consider them in turn. 

 First, there is the scenario where the interface is between three (or more) non-

homologous type 1s in a row and two ancestral type 0s so that we have something like 

the following picture: 

!  

where !  can be of either type and !  is the considered interface on !  between 

clusters of types. In this case, the space of the non-homologous type 1 next to the 

considered interface only has probability !  of changing to the ancestral type 0 if 

chosen for mortality first whereas the space of the ancestral type 0 next to the considered 

interface has probability !  of changing to the non-homologous type 1 if chosen for 

mortality first. The non-homologous type 1 stochastically wins. Second, there is the 

scenario where the interface is: 

!  

In this case, the site of the non-homologous type 1 only has probability !  of 

changing if chosen first whereas the space of the ancestral type 0 has probability !  

of changing if chosen first. The non-homologous type stochastically prevails again. 

Ni1

≥ 2

...− ?− ?− ?−1− 0 − 0 × 1−1−1− ?− ?− ?− ...

? × 0.50 +Z

≈ 0.385

≈ 0.485

...− ?− ?− ?− 0 − 0 − 0 × 1−1− 0 − ?− ?− ?− ...

≈ 0.515

≈ 0.73
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Finally, there is the third scenario where the interface is such that the ancestral type 0 is 

predicted to prevail: 

!  

Here, the site of the non-homologous type 1 has probability !  of changing if 

chosen first whereas the site of the ancestral type 0 only has probability !  of 

changing if chosen first. So the question is: What is the frequencies of these three kinds 

of interfaces? As Ohtsuki et al. (2006; see also Evilsizor and Lanchier 2015) have shown, 

the non-homologous type 1 is surrounded on average by one more non-homologous type 

1 individual than is the ancestral type 0. Hence, under a general set of initial conditions 

the non-homologous type goes to fixation as a novelty eventually because the third 

scenario does not occur as often as the first two special scenarios combined.  

 To explore the dynamics of our original population with inter-mixing between the 

two sides in two dimensional space, I conducted simulations of the population existing on 

a torus. An ensemble of 100 populations was simulated with an average of 0.90 of 400 

sites being initially occupied by the ancestral type and the rest being initially and 

randomly occupied by the non-homologous type. For each population, the simulations 

ran for 800,000 generations unless fixation occurred. As predicted by the arguments 

given for the one dimensional integer lattice case, the non-homologous type goes to  

...− ?− ?− ?−1− 0 − 0 × 1−1− 0 − ?− ?− ?− ...

≈ 0.515

≈ 0.485
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3.2. (A) Initial Configuration of Population 24, (B) Population 24 at Beginning of 
Generation 4,751, (C) Population 24 at the Beginning of Generation 12,908, and (D) 
Population 24 at Beginning of Generation 17,376. Type 1 is on Red Patches. Type 0 
is on Blue Patches. The Unit on the Green Patch in (C) Changed from Type 1 to 
Type 0 in the Previous Generation. 
 
fixation as a novelty on side ! . However, once the novelty establishes itself on side ! , 

the entire population actually ends up going to fixation for the novel type as well because 

there is inter-mixing between the sides. Figure 3.2C shows the population just at the mark 

a a
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where it surpasses the overall frequency of the ancestral type because it creates a giant 

cluster of like neighbors on the left.   

 Irrespective of the overall frequencies of types, individuals of the non-

homologous type 1 end up with more non-homologous type 1s in their neighborhood than 

do ancestral type 0s. This is because character type (indirectly) causes neighboring type. 

Consequently, non-homologous types evolve by (a kind of) niche construction quite 

reliably contrary to what is predicted by the replicator equation (3.4). Our intuitions have 

been trained by thinking of populations like side !  of our population in isolation where 

the non-homologous type 1 is not predicted to fix by selection. We will, then, have to 

rethink our intuitions to avoid interpreting the novelty evolved by niche construction in 

our population as evolution by drift. 

4. Making Causal Sense of Novelties Evolved By Niche Construction 

Recall that the standard intuitions about selection are that it requires a common 

environment and that the heterogeneous or biased distribution of types into distinct 

environments is a form of drift. Further recall that, given this, the ideal experiment to sort 

cases of selection and cases of drift was to scatter types randomly over the landscape at 

each generation—severing any neighborhood effect on the influence character type has 

on reproductive success—so that we can arrive at estimates of type fitnesses in 

homogeneous environments. To save the intuition that the non-homologous character 

evolved by selection for it and continue holding the idea that selection requires a common 

environment, we might try another experiment instead. Let us scatter types randomly 

initially over the landscape, repeating for multiple populations, and estimate fitnesses at 

b
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each generation and spatial range by averaging over these multiple populations. The 

resulting fitness estimations, in effect, average over possible initial configurations and 

trajectories of configurations of types across the landscape. The fitnesses are what you 

might expect given our analysis in the previous section—the non-homologous type is 

favored. Yet, the fitnesses are properties of the ensemble of the possible populations 

rather than of the populations themselves (cf. Pence and Ramsey 2013). The generation 

and spatial range specific ensemble fitnesses need not correspond to the generation and 

spatial range specific particular population fitnesses. This is problematic insofar as one 

thinks models containing fitness parameters ought to represent this or that population’s 

evolution rather than this or that type of population’s evolution. Ensemble fitnesses allow 

us to reliably predict the arrival of the novel type but at the cost of not representing why.  

 Not everyone will find this troubling; some might believe it is the correct way to 

think about fitnesses and evolutionary models. Indeed, at least part of Sober (1984) can 

be read as supporting the view that fitness is usefully severed from messy causal 

biological facts and that in estimating fitnesses we should avoid conditioning on causes 

and effects of traits or characters when estimating the relationship between those 

characters and reproductive success. On this instantiation of the tradition, we are to think 

of evolutionary theory as a theory of forces. Natural selection is one such force, pushing 

the population through a state-space defined by type frequencies at a rate and direction in 

proportion to fitness parameters. Drift is another such force. Yet, this theory is not a 

theory of causes, representing environmental, phenotypic, and developmental causes of 

reproductive success. Hence, our population can be thought of in terms of selection for 
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the novel type at the, some would say, happy expense that our fitness parameters are 

divorced from the actual biological and causal details of our population. 

 To avoid severing the causal connection between character types and 

neighborhoods that make the sides of our population distinct, we might try a third 

experiment instead. We might scatter types in the exact configuration they were actually 

found in within each generation, repeat this multiple times, and estimate fitnesses by 

averaging over these repetitions of a generation. But here, says Brandon (cf. 1990, 

60-63), we do not have selection for the novel type but rather selection for a certain kind 

of neighborhood—viz., one characterized by an abundance of the non-homologous type 

1. This way we have selection for a certain kind of neighborhood and character type is 

just a by-product of this selection process.  

 In some sense, character type has nothing to do with the success of individuals 

with the non-homologous character. Rather the non-homologous character increases in 

frequency because they more commonly experience the non-homologous type 1 

neighborhood. There is selection within a common environment, but it is in favor of a 

non-homologous type 1 neighborhood that non-homologous type 1 individuals produce 

rather than in favor of the non-homologous type 1 character itself. On this instantiation of 

the traditional framework, no sense can be made of the idea that the novelty arises 

because it was selected for in our population. It free-rides on the benefit bequeathed by 

the non-homologous type 1 neighborhood.  

 I do not want to claim here that what the above traditional frameworks imply 

about our population is necessarily incorrect. Yet, I suspect that many will find the above 
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interpretations lacking. Doubtless many will not think of it as a case of evolution by drift 

nor as a case of selection acting on an ensemble of populations. Indeed, advocates of the 

Extended Synthesis will be troubled by the call to average over possible initial 

configurations and trajectories of configurations of types as doing so fails to represent 

how niche construction can be a powerful driver in the evolution of novelties. In addition, 

I think the the intuitions that the novelty arises as a by-product are mistaken because they 

conflate distinct kinds of causal structures over reproductive success (or its components). 

I elaborate on how this idea for the causal distinction made below allows one to make 

sense of the evolution of novelties by niche construction as evolution by selection for 

them.  

 The heterogeneous distribution of types to environments can arise by chance, but 

it can also arise, as we have seen, because of a probabilistic association between types 

and their contexts. In order to save the idea that selection requires a common 

environment, underlying Brandon’s (1990) reasoning about such cases seems to be the 

following considerations. Suppose there is a positive probabilistic association between 

two causes of reproductive success (or its components). One of the causes, ! , 

negatively causes !  whereas the other cause, ! , positively causes !  so that type 1 in a 

neighborhood with mostly type 1s has a higher expected number of offspring than does a 

type 0 in a neighborhood with mostly type 0s. The next two-step procedure picks out 

which of the variables evolves by selection and which evolves as a by-product of 

selection. First, begin with one of the variables, say, ! , and ask which type is favored 
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given its direct influence on number of offspring—ignoring the indirect association 

between the considered variable and the number of offspring. In this case, type 0 is 

favored. Then take into account the indirect association and ask which type is favored. In 

this case, the type 1 is now favored because, though type 1 decreases its own expected 

number of offspring by 3, for every type 1 in its neighborhood, it gets an additional 67 

expected offspring. Second, begin with the other variable, !  and ask which type is 

favored given its direct influence. In this case, type 1 is favored. Then take into account 

the indirect association and ask which type is favored. In this case, type 1 is still favored. 

Because the ordinal relation among the expected number of offspring changes in the first 

step of the procedure and does not change in the second step of the procedure, there is a 

selection process on !  for type 1. Type 1 evolves with respect to !  only because that 

is a by-product of selection on ! .  

 Whether or not the reconstruction of Brandon’s argument here can be attributed to 

him, the conclusion is mistaken because the probabilistic association between individual 

type !  and neighboring type !  can arise in two ways, ignoring common cause cases. 

(i) !  (for ! ) could directly cause !  (or ! ) during dispersal, or either (ii-a) !  

could directly cause !  (for ! ) during selection or (ii-b) could indirectly cause 

!  through !  as in side !  of our population. Case (i) is discussed extensively in 

Glymour (2011) as a representation of developmental or phenotypic plasticity. The new 

type at the formerly vacant site is (positively) caused by the types of its four von 
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Neumann neighbors. Cases (ii-a, ii-b) involve niche construction. In (ii-a) before 

selection, types construct their von Neumann neighborhood directly whereas in (ii-b), 

types construct their neighborhood piecemeal and indirectly through dispersal.  

 Given the causal distinction between (i) and (ii-a, ii-b), the non-homologous type 

1 is not a free-rider on selection for neighborhood type. For that to be true, we would 

need to replace the causal structure (ii-b) in side !  of our population by causal structure 

(i). For example, we could change dispersal from local to global and allow developmental 

plasticity to influence !  upon the formerly vacant site’s occupancy. Then in a subsequent 

round of local selection that individual’s type is represented by ! . Because of 

developmental plasticity, there is a positive association, we have supposed, between !  

and !  (for ! ) . Given this and our causal parameters, non-homologous type 1 

should become prevalent because of the large positive association between !  and ! , 

not as the result of the causal influence of !  on !  but, as a result of the positive 

influence of !  (for ! ) on both !  (during dispersal) and !  (during selection). 

Yet, this is not what we have. Rather we have !  causing !  through !  in which case 

during subsequent rounds of local selection, types cluster together. Given this, the non-

homologous type 1 becomes prevalent as we have seen. This is because (during dispersal) 

!  has a positive causal influence on ! . So, in a subsequent round of local selection 

that new individual’s type is represented by !  (for ! ), and (during selection) 

that neighbor’s type has a positive causal influence on ! . Hence, non-homologous type 1 
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evolves by selection for it and not as a by-product of selection for neighborhoods 

abundant in type 1s. 

5. Implications 

A number of implications arise if the argument above is correct. Obviously the intuition 

that a unique common environment is required for selection to drive adaptations or 

novelties to fixation is mistaken. Given that novelties arising by niche construction are 

selected for when types are heterogeneously distributed into contexts, there is no sense in 

which the adaptation or novelty evolves within a unique common environment. Less 

obviously, our concept of drift as the biased or heterogeneous distribution of types into 

contexts is mistaken. To suggest a way in which our concept of drift can be 

reconceptualized, I rely on a framework constructed by Glymour (2011). 

 Glymour (2011) argues for the importance of explicitly representing the causes of 

reproductive success in diagnosing when a character or trait is an adaptation to specific 

conditions and for accounting for phenotypic plasticity and local coadaptation. This 

strategy is understood as having two essential features: 

 First, the resulting models employ variables that quantitatively characterize the… 

 features that causally influence survival and reproductive success. Second, the  

 causal influence of these variables is explicitly represented (Glymour 2011, 454). 

Glymour (2011, 460-461) distinguishes between two ways of thinking about the causes of 

reproductive success—narrowly and widely. Causes of reproductive success are modeled 

in the narrow sense when represented as a frequency distribution over the values for the 

variables causing reproductive success. Causes of reproductive success are modeled in 
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the wide sense when represented as a probability distribution over the values for the 

variables causing reproductive success. With this framework, we can now initially answer 

the question of what evolution by drift consists in. 

 Drift is often described with analogies to coin flips. The frequency of heads in a 

run of independent flips cannot be deduced from the probability of heads. Sampling error 

creeps in given a finite number of flips; the frequency of heads deviates from the 

probability, and this is drift in the most general sense (see, e.g., Pfeifer 2005; Sober 

1984). We can also say, I think quite reasonably, that sample error or drift matters when 

what is expected to occur conditional on the probabilities does not occur. For the sake of 

some concreteness, let us think in terms of our running example. Assume that character 

type causes neighboring types if and only if a hypothetical change in an individual’s 

character type would change the probability distribution over the values for the 

neighboring types of that individual (as in niche construction). Further, assume that 

whether there is a causal connection between character type and neighboring types or not, 

this can be represented in terms of the conditional probability distribution ! . 

This is our wide conception of the causes of (components of) reproductive success, 

relative to our case. The causal connections between character types and number of 

offspring, and neighboring types and number of offspring can also be represented so that 

individual conditional expected number of offspring can be estimated. Finally, for our 

particular case, let the narrow conception of the causes of (components of) reproductive 

success be ! . With these somewhat concrete ideas in mind, I say the 
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following more generally about drift. We have evolution by drift when the causes of 

reproductive success—narrowly conceived—deviate from the wide conception of the 

causes of reproductive success to such an extent that what is expected to evolve given the 

causes of reproductive success under the narrow conception is not what is expected to 

evolve given the causes of reproductive success on the wide conception. 

 Given this conception of drift and the conception of novelties evolved by niche 

construction argued for in the last section, a final implication of my argument is that we 

can diagnose when a character goes to fixation by drift or by selection for it only if we 

explicitly model the causes of reproductive success as well as the causal connections 

among those causes of reproductive success in both the wide and narrow sense. The 

evolution of a character or trait cannot be understood as the result of drift or selection 

unless causes of reproductive success are modeled both as frequencies of values for 

variables that cause reproductive success and as probabilities of values for variables that 

cause reproductive success. This is quite interesting because it is often supposed that 

whether drift or selection dominates in the evolution of a population can be read off from 

the product of a selection coefficient (a function of fitness parameters) and effective 

population size. Many will admit of course that analysis of this product is but a rule of 

thumb, and I do not doubt that most of the time it is a useful one at that. However, if the 

arguments above are correct, the rule of thumb’s reliability fundamentally rests on how 

the narrowly modeled causes of reproductive success relate to and deviate from the 

causes of reproductive success modeled on the wide conception.  
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6. Summary 

Many proponents of the Extended Synthesis argue that niche construction is a powerful 

driver of the evolution of novelties. Yet the results of their work have been under-

appreciated in part, I suspect, because the traditional frameworks of the Modern 

Synthesis have trouble making sense of characters selected for in heterogeneous 

environments. I argued that the evolution of novelties by niche construction could be 

construed as the selection for the novelties by giving up the notion that selection requires 

a common environment. If we choose to go this route, then implications concerning our 

conception of drift and the practice of sorting episodes of evolution by selection and 

episodes of evolution by drift almost immediately follow. 
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CAUSATION, GROUP SELECTION, AND PLURALISM

1. Introduction 

Damuth and Heisler (1988) take group selection to occur if and only if individual 

reproductive success varies and group membership causally influences individual 

reproductive success. Differently put, Goodnight et al. (1992) state that multilevel 

selection occurs if and only if variation in the fitness of individuals is due to both the 

properties of individuals and the properties of groups of which they are members (see 

also Sober 1984). Heisler and Damuth (1987) endorse a way to estimate the strength of 

group selection that involves the following two steps. First, define a demographic 

variable !  as some moment of the distribution of an individual trait or character 

variable !  over a collection of individual to which individual !  is mapped. Second, 

regress reproductive success on !  controlling for ! . If the partial regression coefficient 

on !  is statistically significantly different from zero, we can infer that there is group 

selection. This two step strategy is common place in evolutionary biology studies of 

group selection. Group selection is determined by the relevance of demographic variables 

to the reproductive success of individuals rather than by the need to attribute fitnesses to 

groups. This is the causal theory of group selection, and it is in stark contrast to the 

traditional non-causal notion in which what is required for selection at any level of 

biological hierarchy is variation in fitness at that level of biological hierarchy.    

 Recently, Godfrey-Smith (2008) has argued against the causal theory of group 

selection. In this chapter I defend the causal theory of group selection against Godfrey-
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Smith’s challenges. The order of discussion is as follows. In section two, I define the 

causal theory of group selection more carefully and give an example of a population 

undergoing (a kind of) group selection. In section 3, I characterize Godfrey-Smith’s 

argument against the causal theory of group selection. His conclusion prohibits modeling 

the causal influence of the kind of demographic variables in our example population. The 

premise on which his argument relies and on which the ban on modeling certain variables 

is a consequence is the following: Because group selection requires variation in group 

fitness, we do not have group selection unless groups form non-arbitrary equivalence 

classes. In section 4, I argue that failure to model the causal influence that demographic 

variables have on individual reproductive success in our example results in predictive 

error. Given this, we have two options. First, we might make no claim about which theory 

of group selection is correct but reject Godfrey-Smith’s criterion of non-arbitrary 

equivalence classes. Second, we might reject Godfrey-Smith’s criterion and with it the 

claim on which it rests, namely, that group selection requires variation in group fitness. I 

take the first route here, as I have no argument that the non-causal theory of group 

selection is false. Yet I do explore the implications (for the thesis of model pluralism) of 

rejecting the non-causal theory of group selection (i.e., of assuming that the causal theory 

of group selection is correct) in section 5.  

2. Causal Theory of Group Selection 

Here I first characterize a version of the causal theory of group selection. The following 

ideas might not exactly capture what Damuth and Heisler (1988) and Goodnight et al. 

(1992) had in mind, but part of the motivation of this chapter is to see how far their novel 
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conceptions of group selection can be pushed and remain fruitful. In particular, I wish to 

expand their ideas so that demographic variables might include neighborhood variables 

that measure the type !  of a, say, von Neumann neighbor !  of an individual ! . Let us 

say the following in general about group selection: 

 Group selection occurs if and only if there exists some value for a variable  

 measuring demographic conditions so that 

 (GS1) Groups or neighborhoods vary with respect to those demographic   

  conditions and 

 (GS2) Groups or neighborhoods with one kind of condition !  are selected for  

  because the demographic variable causes reproductive success of   

  individual units !  and there is some set of background conditions and  

  some alternative demographic condition !  so that, under those   

  background conditions, changing one’s demographic conditions from 

  the alternative  !  to !  would increase one’s fitness.  

 Given the definition of group selection on offer here, let us now examine a 

generative model that exhibits group selection on variable !  with values !  taking the 

place of !  in the definition. Suppose we have an asexual population with two types—

type 0 and type 1. The population exists on a landscape and each individual lives on a 

unique site or patch of the landscape. Generations are overlapping. Individuals are 

randomly and asynchronously chosen from the population and updated. Specifically, each  
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4.1. (A) Selection: The Causal Structure for Determining Number of Offspring. (B) 
Dispersal: The Causal Structure for Determining the Type at the Focal Site. 

generation involves the following. A unit is chosen and removed. Then each unit within 

the dispersal distance of the newly vacated site reproduces with perfect heritability and 

without transmission bias, according to a function described below. From the pool of all 

offspring produced by units within the dispersal range, one is chosen at random to 

become the new occupant of the site, and the remaining offspring die. This is repeated 

with sites being chosen for updating the unit residing on it with replacement. Importantly, 

the offspring can disperse only to the von Neumann neighborhood of the parents.  

 More precisely, the vacant location has four von Neumann neighbors—types 

denoted by ! . Each of these types in turn has four von Neumann neighbors 

including the former occupant, numbered 1-4 clockwise starting from the former 

occupant. That is, type denoted by !  for !  so that, for example, !  is the 

N1 − N4

Nij {i, j} = {1− 4} N13
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type of the third neighbor of the first neighbor of the focal vacant spot. Each von 

Neumann neighbor then generates a number of offspring and the type at the focal vacant 

spot is updated by drawing at random from the pool of all the offspring created by the 

von Neumann neighbors characterized by ! . The number of offspring !  for neighbor !  

of a newly vacated site is determined by the following:  

 !    (4.1) 

a constant ! , a separable contribution from the former type of the vacated site ! , 

another separable contribution from each of the other von Neumann neighbor types ! , 

a final separable contribution from the type of the unit !  itself ! , and a non-separable 

contribution from the type of the unit !  itself and each of its von Neumann neighbors 

! . This is represented graphically in figure 4.1A. We will simplify the equation by 

assuming !  and ! . Note that we are using number of 

offspring !  rather then number of surviving offspring or reproductive success. However, 

as the new individual is chosen at random from the pool of offspring generated by all of 

the von Neumann neighbors of the vacated site, I contend that !  for a generation is a 

reasonable proxy for reproductive success and therefore fitness. The higher the number of 

offspring, the better the reproductive success. In addition, the fact that in the model the 

next occupant is chosen by pooling the offspring of all the von Neumann neighbors 

entails both that !  causes !  after selection (i.e., during dispersal) and that there is only 
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one (new) occupant. In particular, the probability that !  becomes a type 1 individual is 

determined by: 

 !        (4.2) 

The probability that !  becomes a type 0 individual is given by ! . The 

causal dependency of the new type on number of offspring is represented graphically in 

figure 4.1B. Given equation (4.1) and figure 4.1A, the causal theory of group selection 

regards this population as experiencing both individual level and group level selection. 

There are neighborhood effects on individual reproductive success through their effect on 

the number of offspring. The part of the organisms’s life-cycle involving offspring 

dispersal ensures the possibility that the population evolves by both individual selection 

and group selection.  

3. Godfrey-Smith’s Argument 

Godfrey-Smith (2008) argues, however, that it is not always true that group selection 

occurs if demographic variables influence the reproductive success of individuals. 

Indeed, his argument explicitly prohibits modeling the causal influence of the kind of 

demographic variable !  is in our sample population introduced in the previous section. 

He arrives at this conclusion by arguing for the following criterion: Group selection 

occurs only if collectives of individuals can be partitioned into non-arbitrary equivalence 

classes. This premise, in turn, is defended by a widespread view that group selection 

requires (co)variance in the fitnesses of groups. If Godfrey-Smith is correct, then the 
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causal theory of group selection cannot be correct. In particular, it would be a mistake to 

model the causal influence of demographic variables like !  on individual reproductive 

success and call this group selection. 

 Demographic structure in the group selection literature is typically represented as 

consisting in (at least approximately) non-overlapping chunks or collectives of units 

wherein frequency-dependent selection occurs and between which the chunks themselves 

might be thought to compete (see also Okasha 2006; Sober and Wilson 1998; Wilson 

1975). This assumption of non-overlapping chunks entails a fact of the matter concerning 

the contribution each individual makes to group level reproductive success—i.e., average 

individual reproductive success for the group. Indeed, such demographic structures are 

implicitly assumed by any Pricean covariance analysis of evolutionary change (Price 

1970, 1972). Yet, our population fails on this score. I might be a part of your 

neighborhood, but my neighbors include individuals not in your neighborhood and so on. 

Therefore, in our case, I belong to more than one chunk and, as there is overlapping 

membership, it is not at all straightforward how my reproductive success should count 

toward the reproductive successes of the different neighborhoods to which I belong. 

Given this, nothing exists above the individual to which one can assign fitnesses such that 

those higher level entities can be understood as competing in the same sense the 

individuals comprising them do. 

 Godfrey-Smith (2008) argues in the following manner. He argues that multilevel 

selection requires that higher-level chunks or collectives of units consist in non-arbitrary 
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or biologically salient equivalence classes. He describes a typical instance of intrademic 

group selection. Individuals live in social groups that dissolve and reform each 

generation. That is, “groups form, selection occurs, and then the groups dissolve, creating 

a single ‘pool’ of new individuals from which a new generation of groups is 

formed” (2008, 27). Importantly, for Godfrey-Smith, when groups form, each individual 

is a member of one and only one group. Hence, there is a fact of the matter concerning 

what contribution each individual makes to the reproductive success of the group. 

Because of this, an equivalence relation—e.g., for all !  individual !  influences the 

reproductive success of individual ! —collects individuals into equivalence classes (2008, 

29-31). Consequently, groups can be assigned fitnesses and properly be seen in 

competition with one another, insofar as they really are. 

 Following this, Godfrey-Smith presents a case where a population is “arrayed on 

a two-dimensional lattice” (2008, 31). In this case, we cannot treat each individual’s 

reproductive success “as a contribution to the output of a single collective entity that 

competes with others in a higher-level selection process” (2008, 33). A population 

structure with the overlapping chunks one gets from a lattice just “is not a kind that yields 

nonarbitrary higher-level units that can reasonably be said to compete, and that can be 

plausible bearers of fitness” (2008, 34). This is because there is no possible non-arbitrary 

equivalence relation that collects individuals into equivalence classes. From this, 

Godfrey-Smith concludes that there is “more than one level of selection” only if 

equivalence classes can be “recognized (at least approximately) in the population 
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structure” (2008, 36). In other words, we do not have selection occurring at multiple 

levels unless there exists a non-arbitrary partitioning of individuals into equivalence 

classes. Because there is no such partitioning for our population introduced in the last 

section, there is no genuine multilevel selection. Therefore, according to Godfrey-Smith, 

cases like ours admit only of lower-level representations—representations on which 

fitness (or its components) are attributed to individuals—even though demographic 

variables cause individual reproductive success (or its components).  

 Variables like !  in our generating model above violate Godfrey-Smith’s 

criterion, and this idea, together with the idea that group selection requires (co)variance 

in group fitness, consequently, imposes constraints on legitimate representational models 

of underlying generative truths. To see this, note that for Godfrey-Smith, if we are to 

represent demographic conditions in our models, the variables representing those 

conditions must be so that for all !   

 (PGS1) if individual !  influences the reproductive success (or components  

  thereof) of individual ! , then individual !  influences the reproductive  

  success of individual !  and    

 (PGS2) if individual !  influences the reproductive success of individual !  and  

  individual !  influences the reproductive success of individual ! , then  

  individual !  influences the reproductive success of individual ! .  
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The second conditional is violated in our case. Why should we care? When variables like 

our !  are used anyway by representational models of selection, it is possible to 

diagnose higher-level selection even when groups do not compete with one another. That 

is, we can divide our population into non-overlapping neighborhoods and assign them 

fitnesses (cf. Glymour and French unpublished). Yet Godfrey-Smith explicitly calls any 

such divisions arbitrary and discounts such models as violations of his criterion and 

hence views such models as failing to meet the requirement of group selection that 

group’s (co)vary in their fitnesses. Consequently, we must not use variables like !  for 

fear of countenancing group selection when there is no genuine competition among 

groups. If Godfrey-Smith is correct, the causal theory of group selection must be rejected 

and we must model our population without recourse to variables like our ! . However, if 

there is good reason to reject Godfrey-Smith’s criterion, then the causal theory of group 

selection goes unharmed by Godfrey-Smiths’ argument. 

4. For the Causal Theory of Group Selection 

4.1. Predictions Ignoring Local Demographic Conditions 

It is commonly thought to be important to use multilevel models of selection to represent 

a population when individuals exhibit both within and between group (co)variance in 

reproductive success. Though, as many have noted (Kerr and Godfrey-Smith 2002; 

Okasha 2006; Sober and Wilson 1998), it is possible to model multilevel selection with a 

purely individual-level model, it is typically taken as a mistake to do so. This is because 

failing to represent the correct causal structure fails to meet certain predictive or 

Nij

Nij

Nij
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explanatory aims. In these cases the causal structure is misrepresented because the only 

causal claims implicit in individual-level-only evolutionary models is that type causally 

influences reproductive success. When local demographic conditions also cause 

individual reproductive success, these models are mistaken. If the failure to represent the 

causal influence of local demographic conditions leads to predictive or explanatory error, 

then we must represent such casual influences. In fact, in our population, failure to 

represent the causal influence of !  on individual reproductive success (or components 

thereof) does lead to predictive error. 

 To see this, let us give our population a Pricean individual-level-only covariance 

representation (Price 1970). We can do this by averaging over or marginalizing out 

particular neighbor effects. In particular, we will do this with respect to the specific 

neighborhood of the (former) type of the vacant spot as well as the neighborhood of the 

types competing for the vacant spot. Consequently, let !  stand for 

the frequency of type 1 in the entire population and let !  be the 

frequency of type 0 in the entire population. I will say that a type 1 competing against a 

single type 1 gets !  number of offspring and this number 

will be multiplied by the frequency of type 1s in the entire population, thereby averaging 

over the particular neighborhood of an individual occupies. Similarly, say that a type 1 

against a single type 0 gets !  number of offspring, a type 0 against 

a single type 1 gets !  number of offspring, and a type 0 against a single 

Nij

B(Ni = 1) = B(Nij = 1)

B(Ni = 0) = B(Nij = 0)

Fi (1,1) = 0.25c +α1 + 0.25α 5 +α 6

Fi (1,0) = 0.25c + 0.25α 5

Fi (0,1) = 0.25c +α1
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type 0 gets !  number of offspring. The parameters !  and !  are divided 

by four (the values of the parameters below are chosen so that this makes sense) to get 

the number of offspring from one round of selection (one generation) with one opponent. 

Also because !  and ! , we just represent one of those 

parameters just in case one is up against a type 1 in one’s neighborhood. Then a version 

of the Price equation for our system is the following: 

 !   (4.3) 

where 

 !      (4.4) 

is the mean number of offspring produced by the population in a generation after a space 

has become vacant. The evolutionary equilibria given by equation (4.3) are equivalent to 

those given by the replicator equation (Page and Nowak 2002). Here is one version of the 

replicator equation: 

 ! (4.5) 

Fi (0,0) = 0.25c c α 5

α1 =α 2 =α 3 =α 4 α 6 =α 7 =α 8 =α 9

FΔNi = COV(Fi ,Ni )

= Ni B(Ni ) Fi (Ni ,Nij )B(Nij )− F( )nij∈Nij
∑( )ni∈Ni

∑
= B(1) Fi (1,1)B(1)+ Fi (1,0)B(0)− F( )

F = B(1) Fi (1,1)B(1)+ Fi (1,0)B(0)( )
+B(0) Fi (1,0)B(1)+ Fi (0,0)B(0)( )

ΔB = B(1)B(0) Fi (1,1)B(1)+ Fi (1,0)B(0)− Fi (0,1)B(1)− Fi (0,0)B(0)( )
= B(1)B(0) (Fi (1,1)− Fi (0,1))B(1)− (Fi (0,0)− Fi (1,0))B(0)( )
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Setting replicator equation (4.5) to zero and solving for the frequency of type 1 gives one 

non-trivial equilibrium point that might differ from 0 and 1: 

 !     (4.6) 

This occurs if and only if ! . Because this parameter (and similarly ! ) is nonzero, 

type and neighboring types interact to cause the number of offspring. Here we will 

explore four different causal parameter setting with interactive causation. 

 First, we have ! , ! , ! , and 

! , and, second, we have the same except 

! . In these two cases, we have symmetric and asymmetric 

altruistic competition, respectively. No matter what type you are, being surrounded by the 

opposite type confers a greater benefit for the number of offspring you produce (cf. 

Lanchier 2015; Sober and Wilson 1998). The second case is asymmetric altruistic 

competition, however, because the advantage produced from changing your type to the 

opposite type of your neighbor is not the same across type changes. In this second 

scenario, I will say that, though both types are altruistic in the relevant sense, type 1 is 

less altruistic than type 0.  

 For any “altruistic” causal influence over (the components of) reproductive 

success, each type has a positive probability of surviving and, so, they are said to 

“coexist” (Nowak 2006). Depending on the particular strengths of the causal influence of 

!  and !  on ! , there is a stable equilibrium point given by equation (4.6) between 0 

B̂ = (Fi (0,0)− Fi (1,0))
(Fi (0,0)− Fi (1,0))+ (Fi (1,1)− Fi (0,1))

α 6 ≠ 0 α 7−9

c = 104 α1 =α 2 =α 3 =α 4 = 25 α 5 = 100

α 6 =α 7 =α 8 =α 9 = −50

α 6 =α 7 =α 8 =α 9 = −35

Ni Nij Fi
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and 1. In symmetric altruistic competition we have a stable equilibrium at 0.50. In 

asymmetric altruistic competition we have a stable equilibrium point at 

! , with the frequency of type 1 being higher because it is 

the least altruistic. 

 In the third case, we have ! , ! , ! , and 

! , and, in the fourth, we have the same except now 

! . In cases three and four, we have what I will call symmetric and 

asymmetric selfish competition, respectively. No matter what type you are, being 

surrounded by the same type confers a greater benefit for the number of offspring you 

produce (cf. Lanchier 2015). The fourth case is asymmetric selfish competition, however, 

because the advantage produced from changing your type to the same type of your 

neighbor is not the same across type changes. In the fourth scenario, I will say that, 

though both types are selfish in the relevant sense, type 1 is more selfish than type 0. 

 For any “selfish” causal influence over reproductive success, the system is 

“bistable” (Nowak 2006). Depending on the particular strengths of causal influences of 

!  and !  on !  as well as the initial frequencies of types, there is an unstable 

equilibrium point given by equation (4.6) between 0 and 1. In the case of symmetric 

selfish competition the unstable equilibrium point is at 0.50. In the case of asymmetric 

selfish competition, there is an unstable equilibrium point at 

B̂ = 26 − 51
(26 − 51)+ (41− 51)

≈ 0.71

c = 304 α1 =α 2 =α 3 =α 4 = −25 α 5 = −100

α 6 =α 7 =α 8 =α 9 = 50

α 6 =α 7 =α 8 =α 9 = 65

Ni Nij Fi
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! . This means, that if type 1 is ever under half of the 

population or under 0.38 of the population, respectively, type 0 is predicted to evolve. 

 Except for the case of asymmetric altruistic competition, these predictions are in 

error of our generating model. In our generating model with selfish competition, types 

cluster into two “camps” until one type goes extinct, and types need not coexist under 

altruistic competition (see also Lanchier 2015; Neuhasuer and Pacala 1999). To get a 

sense of this, first examine the population on the one dimensional integer lattice ! , so 

that types now have 2 rather than 4 neighbors—i.e., some of the parameters will be 

divided by 2. In the next sub-section, we will examine the original generating model in 

two dimensions, having properly trained our intuitions.  

4.2. Revisiting The Generating Model in One Dimension 

Suppose that all spaces to the left of site 0, including site 0, are of type 1 and the rest are 

of type 0. Then there is one interface (say, marked by “ ! ”) at 0.50 on !  between 

clusters of types. Suppose we are dealing with either asymmetric altruistic competition or 

asymmetric selfish competition. If the rightmost type 1 is chosen for mortality first, then 

the type 1 next to the dead type 1 produces !  and the type 

0 next to the interface produces ! . So, !  (for ! ) changes to 0 with 

probability: 

 !  (4.7) 

B̂ = 76 − 51
(76 − 51)+ (91− 41)

≈ 0.38

Z

× 0.50 +Z

0.5c +α1 +α 2 + 0.5α 5 +α 6 +α 7

0.5c +α1 Ni1 i = 1,2

Pr( ′Ni1 = 0) =
0.5c +α1

(0.5c +α1)+ (0.5c +α1 +α 2 + 0.5α 5 +α 6 +α 7 )
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where parameters !  and !  are divided by 2 because there are 2 nearest neighbors now 

rather than 4. Alternatively, if the leftmost type 0 is chosen for mortality first, then this 

!  changes to 1 with probability: 

 !    (4.8) 

The dynamics depend only on the magnitude of these probabilities. If equation (4.7) is 

less (greater) than equation (4.8), then the interface between the types advances 

stochastically to the right (left) so that type 1 (type 0) goes to fixation eventually. 

Whether we have asymmetric altruistic competition or asymmetric selfish competition, 

then, the type that is the least altruistic or most selfish (in the relevant senses above) wins.  

 With this in mind, let us now look at scenarios of asymmetric altruistic 

competition or asymmetric selfish competition where types are initially homogeneously 

distributed across the integer lattice. In either competition type, there are multiple 

interfaces that behave like the one just examined (the least altruistic or most selfish type 

expands, creating ever larger clusters) except in two cases. First, when both neighbors of 

the vacant space are opposite in type of the now deceased individual, the probability that 

the new type is not the same as the type of the now deceased individual is equal to one. 

Hence, these interfaces tend to disappear. This leaves just one final interesting case. 

Assume the interface is between three (or more) type 0s in a row and two type 1s so that 

we have something like the following picture: 

!  

c α 5

Ni1

Pr( ′Ni1 = 1) =
0.5c +α 2 + 0.5α 5 +α 7

(0.5c +α 2 + 0.5α 5 +α 7 )+ (0.5c)

...− ?− ?− ?− 0 −1−1× 0 − 0 − 0 − ?− ?− ?− ...
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where !  can be of either type and !  is the considered interface on !  between 

clusters of types. In our asymmetric cases, type 1 is either the least altruistic or most 

selfish whether it is engaged with type 0 in altruistic or selfish competition. Because of 

this, if the type 1 is chosen for mortality at the considered interface, type 1 is predicted to 

win, and, hence, there tends to be no evolution of the interface. If the type 0 is chosen for 

mortality at the considered interface, then the type 1 next to the interface produces 

,  and the type 0 next to the dead type 0 produces .  So 13 14

either type 0 stochastically wins in the case of asymmetric selfish competition and, hence, 

nothing happens to the interface, or type 1 stochastically wins in the case of asymmetric 

altruistic competition and, hence, the interface jumps once to the right. But even in 

asymmetric selfish competition, it is slightly more likely that type 1 unexpectedly wins 

the site if the type 0 dies first (i.e., ! ) than it is that type 0 unexpectedly 

wins the site if the type 1 dies first (i.e., ! ). Given this and the fact that 

for all other possible interfaces the least altruistic or most selfish type stochastically 

prevails, types cluster and the most altruistic or least selfish type eventually goes to 

extinction on ! , whether we have asymmetric altruistic competition or asymmetric 

selfish competition.  

? × 0.5 +Z

0.5c +α 2 + 0.5α 5 +α 7 0.5c

142
142 +152

≈ 0.48

127
127 +142

≈ 0.47

Z

 This equals 93 for asymmetric altruistic competition and equals 142 for asymmetric 13

selfish competition.

 This equals 53 for asymmetry altruistic competition and equals 152 for asymmetric 14

selfish competition.
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 Now let us examine what happens in the cases of symmetric altruistic competition 

and symmetric selfish competition; i.e., where types are equally altruistic and equally 

selfish. Assume that the types start out in equal frequencies and that, initially, types are 

homogeneously distributed. Let the set of interfaces be defined as points !  on !  

between two different types. These interfaces behave like a system of annihilating 

symmetric random walks. Each interface jumps one unit to the left or one unit to the right 

with (overall) equal probability because the individuals next to each other become 

identical in type. Moreover, because the probabilities favor the annihilation of two 

interfaces next to each other instead of one of those interfaces becoming closer to an 

interface greater than one unit away on ! , this process also promotes clustering of 

types. Because types start out in equal frequencies, in the short run both types find 

themselves in large clusters surrounded by their own type. Importantly, to stress again, 

this is true of either symmetric altruistic competition or symmetric selfish competition.  

 Given that symmetric random walks are recurrent in one-dimensional space, the 

interfaces go extinct eventually and one type fixes (though, this takes longer in the case 

of symmetric altruistic competition). To see this, assume for ease that all spaces to the left 

of site 0, including 0, are occupied by an individual of type 1 and the rest are occupied by 

an individual of type 0. Further, assume that—without loss of generality—the single 

interface at 0.50 first jumps to the right. The event that it never returns to 0.50 is the event 

that it reaches 2.50 before 0.50 starting from 1.50, then 4.50 before 0.50 starting from 

2.50, then 8.50 before 0.50 starting from 4.50, and so on. By symmetry and the fact that 

types start out in equal frequencies, all jumps have probability one half. Hence, the event 

× 0.50 +Z

0.50 +Z
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that it never returns to 0.50 has probability zero. Given this recurrent property of 

symmetric random walks and the fact that our types start in equal frequencies, 

homogeneously distributed, then points along !  are visited by the interfaces 

infinitely often and the interfaces eventually annihilate each other and one type goes to 

fixation. It follows from this that if one of the types starts out with greater frequency than 

the other, then with probability proportional to this frequency, that type will go to 

fixation.  

 To summarize the analysis up until this point, in one-dimensional space, either the 

least altruistic or most selfish type creates clusters of increasing size until it goes to 

fixation or—in the event that the types are equally altruistic and equally selfish—the set 

of interfaces between types behaves like a system of annihilating symmetric random 

walks. In the latter case, because each point on !  is visited infinitely often, the set 

of interfaces goes extinct eventually meaning that one type goes to fixation with 

probability proportional to its initial frequency. Importantly, in the case where the 

population lives on the integer lattice, there are no non-trivial equilibria in which both 

types are present, whether we have altruistic or selfish competition. The only equilibria 

for a type are frequencies 0 and 1. 

4.3. The Original Generating Model in Two Dimensions 

In order to explore the two dimensional case, I conducted simulations. I modeled the 

population on a !  torus, allowed the model to run until 800,000 generations (unless 

fixation occurred before), and (unless otherwise stated) initiated the model so that types 

began in equal frequencies, homogeneously distributed. For visualization, a space with a  

0.50 +Z

0.50 +Z

20 × 20
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4.2. (A) Population 10 at Generation 20,000. (B) Population 10 at Generation 70,000. 
 
type 1 was shaded blue and a site with a type 0 was shaded red. Individuals are white 

arrowhead looking creatures in the figures. 

 I simulated the symmetric altruistic case 100 times to get an ensemble of such 

populations. Of the 100 populations zero of them were characterized by a type going to 

fixation at the end of the 800,000 generations, suggesting either coexistence or clustering. 

Figures 4.2A-B show population 10 at generation 20,000 and 70,000, respectively. For all 

populations and all generations, the world looks roughly the same as in these figures 

4.2A-B. In the pictures, note that there are no large blue or red clusters but rather roughly 

equal numbers of blue and red. Coexistence (rather than clustering) seems to be occurring 

in the population. This conclusion is easier to see by juxtaposing this case with the case 

of symmetric selfish competition, which clearly exhibits clustering.  
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4.3. (A) The Top-Left Picture Depicts Population 10 at Generation 5,000. (B) The 
Top-Right Picture Depicts Population 10 at Generation 30,000. (C) The Bottom-Left 
Picture Depicts Population 25 at Generation 5,000. (D) The Bottom-Right Picture 
Depicts Population 25 at Generation 85,000. 

 I simulated the symmetric selfish case 100 times to get an ensemble of such 

populations. Of the 100, roughly half of them were characterized by type 1 going to 

fixation before the end of 800,000 generations, and roughly half of them were 

characterized by type 0 going to fixation. Here we have clustering (with eventual  
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4.4. (A) The Left Picture Depicts Population 70 at Generation 5,000. (B) The Right 
Picture Depicts Population 70 at Generation 25,000. 

fixation) rather than coexistence. Whichever type clusters more first wins. Figures 4.3A-

D show population 10 at generation 5,000 and 30,000 and population 25 at generation 

5,000 and 85,000, respectively. Unlike the previous figures, one type is clearly dominated 

here. Hence, in symmetric selfish competition, we still seem to have clustering with 

eventual fixation of one of the types, but, in symmetric altruistic competition, we now 

seem to have good reason for thinking coexistence is possible.  

 However, let us examine what occurs during asymmetric altruistic competition. 

Recall that under this casual parameter setting, type 1 is the least altruistic of the two 

altruistic types. Out of 100 populations of this type, in 100 of them, type 1 went to 

fixation before 800,000 generations were up. Figures 4.4A-B show population 70 at 

generations 5,000 and 25,000, respectively. This population is exactly like the others. The  
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4.5. (A) The Left Picture Depicts Population 90 at Generation 30,000. (B) The Right 
Picture Depicts Population 90 at Generation 45,000. 

less altruistic type takes over the population quite quickly and eventually goes to fixation 

well within the 800,000 generation time limit.  

 Finally, we come to our case of asymmetric selfish competition. I simulated 100 

such populations with the more selfish type 1 starting out at an initial frequency of 0.15. 

Of the 100 populations, type 1 fixed in roughly 65 of them by the end of the 800,000 

generations. Figures 4.5A-B show population 90 at generation 30,000 and 45,000, 

respectively. Despite starting at such a low initial frequency, type 1 quite reliably forms 

larger and larger clusters until it fixes because it is the most selfish type. Hence, we get 

stochastic dominance of the most selfish type 1 in our asymmetric selfish competition 

case. Therefore, it is only in our case of symmetric altruism that we get the predictions 

right about our generating model when ignoring local demographic conditions. 
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 There are, of course, other ways to model demographic conditions without 

modeling their causal influence on reproductive success. For example, Godfrey-Smith 

(2008) suggests that we might use contextualized fitness parameters where the relevant 

contexts are how many neighbors of a type you have in your locale. But this is also 

problematic as it fails to represent whether it is neighboring types or something else 

correlated with neighboring types that has an influence on individual reproductive 

success. With contextualized fitnesses, then, we might get the correct predictions of 

natural equilibria, but our predictions about what would happen under interventions of 

the system will be less generally reliable than if we were to represent the causal influence 

of demographic conditions. Given this and what I have shown in this section, then, I think 

we ought to reject Godfrey-Smith’s criterion that groups must form non-arbitrary 

equivalence classes and with it his imposition against neighborhood variables like ! . 

The causal theory of group selection survives at least this attack from Godfrey-Smith.  

5. Against Model Pluralism 

To be clear, I do not take myself to have offered an argument in favor of the causal theory 

of group selection over the non-causal traditional one. Rather I have defended the casual 

theory of group selection from Godfrey-Smith’s attack. In particular, I have argued 

against his particular criterion that groups must form non-arbitrary equivalence classes by 

showing that the consequence of holding this view about groups (in addition to the view 

that group selection requires variation in group fitness), leads one to make bad 

recommendations about how to model certain kinds of populations where demographic 

Nij
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conditions cause individual reproductive success. Consequently, even if group selection 

does require (co)variance in group fitness, this need not arise from, what Godfrey-Smith 

calls, non-arbitrary equivalence classes. The causal theory of group selection, then, would 

just be seen as giving the necessary and sufficient conditions to generate the 

epiphenomenal (co)variance in group fitness that is typically used to diagnose group 

selection.  

 However, suppose that in addition to the falsity of the non-arbitrary non-

equivalence class criterion, the premise underlying it—namely, that group selection 

requires variation in group fitness—is also false. Indeed, we might take the argument 

against Godfrey-Smith’s criterion to further imply that group (co)variance in fitness is 

unnecessary for group selection. But even without an argument to that effect, if the causal 

theory of group selection is true, there is an interesting implication of it conjoined with 

my argument above that is worth exploring. That is, given what I have argued in the 

previous section and assuming the truth of the causal theory of group selection, we must 

reject model pluralism about the levels of selection (Wilson 2003). 

 Model pluralism is broadly the thesis that for any representational multilevel 

model there is a representational individual level model that makes equivalent predictions 

about a generative model with genuine multilevel selection and, hence, there is no fact 

about the generative model that is relevant for making predictions (say, about equilibria) 

that is represented by a multilevel model and not an individual level model. The idea, 

then, is that one can make predictions using either or both representational models of a 

class of generative models with genuine multilevel selection. Though there have been 
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some challenges to the thesis of model pluralism (Brandon and Nijhout 2006; but see 

Weinberger 2011), it remains the received view. Certain renditions of it can be found in 

Kerr and Godfrey-Smith (2002), Okasha (2004, 2006), and Sober and Wilson (1998, 

2002).  

 For example, Sober and Wilson (1998, 2002) hold a thesis of predictive 

equivalence and model pluralism about, on the one hand, representational models that 

contain group fitnesses and, on the other hand, representational models that average over 

or marginalize out demographic conditions or neighbor effects. Sober and Wilson defend 

the idea that both can be explanatory, depending on the causal details of the generative 

scenario; yet, both can always be used interchangeably, no mater what the causal details, 

for (non-counterfactual) prediction.  

 Acceptance of such model equivalences and the ensuing model pluralism is not 

surprising. This is not only because many philosophers and biologists still think in terms 

of categorizing selection phenomena on the basis of statistical formulae, but it is also 

because most have implicitly assumed that the generative model approximately 

corresponds to intrademic group selection (Wilson 1975). Here individuals have a life 

cycle comprised of both selection or competition among intragenerational group 

members and dispersal of offspring. Selection is dependent on local frequencies of types 

within trait-groups (Wilson 1975, 143). Yet, the movement occurring during the dispersal 

stage is global. That is, types experience a period of global mixing so that, though types 

are spatially restricted during selection, the dispersal stage lets types transcend former 

spatial borders. Now, given the assumptions that groups are large and that group 
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assortment occurs at random, with whom an individual engages in the next round of 

selection depends only on the overall frequencies of types. Hence, from the point of view 

of evolutionary equilibria the population might as well have been demographically 

unstructured. The predictive equivalence thesis, on which model pluralism relies, is not 

surprising given the assumption that we are dealing with a deme. 

 However, as I have shown, the predictive equivalences are not universal and, 

hence, model pluralism fails. The evolutionary outcomes described in section 4 by the 

replicator equation differ from those predicted by a model that fully represents the causal 

influence of demographic conditions. The results suggest that an individual level model 

that leaves out neighbor effects by averaging over them will make incorrect predictions, 

whereas a multilevel model that explicitly represents how changing values of neighboring 

types influences reproductive success (or its components), will make better predictions. 

In particular, the individual-level-only model will predict bistability in cases of selfish 

competition and coexistence in cases of altruistic competition. Yet, there would seem to 

be a multilevel model that represents our system but never predicts bistability and will 

make predictions of coexistence only for some altruistic competitions. Hence, model 

pluralism at least about equilibria predictions must be false.  

 One might object, however, that the equivalence and pluralism claims of other 

authors have been left untouched. For example, Kerr and Godfrey-Smith (2002) defend 

the view that representational models assigning fitnesses to both groups and individuals 

and representational models assigning contextualized fitness to individuals predict 

identical evolutionary outcomes for a very general set of generative multilevel scenarios. 
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Moreover, they hold that switching back and forth between these representational models 

can be useful for theorizing and making predictions but that there is no feature of either 

model that is not fully translatable into the other and vice-versa. Hence, my argument 

above does not touch this rendition of model pluralism. 

 Recall, however, that the thesis of model pluralism is that for any representational 

multilevel model there is a corresponding individual level one that makes equivalent 

predictions about a generative model with multilevel selection, and, hence, we can use 

either as we please for predictive purposes. Given this, the problem with the objection is 

that Kerr and Godfrey-Smith’s thesis fails to count as an argument toward model 

pluralism. For, assuming the causal theory of group selection, what Kerr and Godfrey-

Smith defend is, rather, a thesis that says two distinct representations of multilevel 

selection—one where groups are assigned fitnesses and one where the influence of 

demographic conditions on individual reproductive success are represented—make 

equivalent predictions about a generative model with multilevel selection, and, hence, we 

can view the generative model in either way. But this is not model pluralism about the 

levels of selection, or, at least, not an interesting kind of model pluralism (see also Sober 

and Wilson 2002). Indeed, Okasha implicitly voices this concern with Kerr and Godfrey-

Smith’s paper when he says their representational models are both multilevel in that they 

embody “the idea that the overall change depends on selection at two levels” (Okasha 

2006, 136). Hence, the objection is not sustained subsequent to replacing the statistical 

criterion for group selection with the explicitly causal one.  
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6. Summary 

In this chapter I defended the causal theory of group selection against Godfrey-Smith’s 

attacks and considered implications of my argument together with the causal theory of 

group selection. Godfrey-Smith’s argument prohibits the use of a certain kind of variable 

in our representations of selection. I showed that he arrives at this claim via a criterion of 

non-arbitrary equivalence classes in models of selection. This criterion is motivated in 

large part by a traditional, non-causal conception of group selection. I argued against 

Godfrey-Smith’s criterion by showing that it together with the view that group selection 

requires (co)variance in group fitness, might very well lead us to make bad 

representations of populations and bad predictions about equilibria and predictions about 

what happens under interventions. To avoid making these errors, I argued that we ought 

to reject Godfrey-Smith’s criterion and his consequent ban on a certain kind of 

neighborhood variable. Even if group selection requires (co)variance in group fitness, it 

cannot follow from this that groups must form non-arbitrary equivalence classes. For if 

that is true, the implication is just the problematic prohibition on the modeling of those 

neighborhood variables. I then considered implications of my argument against Godfrey-

Smith’s objection to the causal theory of group selection. In particular, model pluralism 

about the levels of selection ends up looking false if we assume the causal theory of 

group selection is true. 
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A CAUSAL METHODOLOGY FOR EVOLUTIONARY BIOLOGY

1. Introduction 

An important yet understudied aspect of selection is the causal relationships between 

phenotypic selection and the environment. We can think of this in one of two ways. First, 

the phenotypic trait variable and the environmental variable interact to cause reproductive 

success and we want to understand this interaction. Second, the parameter that codifies 

the strength of selection on a phenotypic trait variable—which is simultaneously the 

causal strength of the phenotypic variable on reproductive success—becomes a variable 

that can be caused by environmental variables and we want to know which ones. The 

discovery of these environmental causes of natural selection (Wade and Kalisz 1990) is 

rarely attempted (MacColl 2011). This is because of the great difficulty in gathering 

enough data to estimate the causal influence of environmental variables on selection in 

the wild as well as the fact that evolutionary biologists simply lack a causal methodology 

for making such inferences. Here I provide some of the first steps toward such a method. 

  Most estimates of phenotypic selection rely on methods such as the Price (1970) 

covariance approach and the Lande and Arnold (1983) regression approach. The methods 

yield estimates of selection differentials and selection gradients, respectively. (These are 

examined more closely in the following sections.) These parameters are typically used to 

identify whether selection is occurring in nature. Yet, sometimes they are also used to 

identify whether selection is fluctuating in spacetime and what might be causing selection 

to vary. When used in such a way, measurements of traits and reproductive success are 

available for different times or places. The most common procedure for identifying 
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whether selection is changing as a function of the environment has been to estimate 

selection differentials or gradients separately for each space and time (Siepielski et al. 

2009; Siepielski et al. 2013). 

 This is problematic as it is possible to get different estimates of selection because 

of reasons that have nothing to do with how the causes of reproductive success interact to 

cause reproductive success: namely, drift (see, e.g., Chapter 2). Without actually 

measuring environmental variables and inferring their causal influence on selection we 

cannot in general tell the difference between when selection is fluctuating between times 

or places because of variation in the causes of selection and when drift qua the 

unexpected distribution of types into environments is simply making it appear as if 

selection is fluctuating. In general, verdicts on whether a trait evolves by selection or drift 

requires explicitly modeling the causes of reproductive success (see, e.g., Chapters 2-4), 

and this, in turn, will sometimes include modeling how selection on traits changes as a 

function of such causes of reproductive success. Hence, it is necessary to spend some 

time carefully constructing a causal methodology for evolutionary biology. 

 As I will argue in section 3 of this chapter, extending the Price and Lande-Arnold 

approaches to infer causes of phenotypic selection is inadvisable. Extending the Pricean 

approach would have to involve the intention to represent the strength of causation that a 

phenotypic variable has on reproductive success as an unconditional covariance or 

correlation between those two variables. However, because correlation is a symmetric 

dependence relation and causation is not, this extension cannot even get off the ground. 

We might instead extend the Lande-Arnold partial regression approach and take the 
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conditional covariance or correlation between a phenotypic variable and reproductive 

success, conditioning on all the other measured causes. However, this will not do because 

of the problem of unmeasured common causes. In some worrisome cases, regression-

based extensions to infer the causes of selection will identify some variable as a direct 

cause of selection when in fact the identified variable has no influence on selection. That 

is, the Lande-Arnold approach yields false positives regarding which variables are direct 

causes of selection whenever there are unmeasured common causes. Hence, while both of 

these approaches might be useful for other aims as long as certain assumptions are met, 

they will not be generally helpful for inferring the causes of natural selection. In section 4 

and 5 of this chapter, then, I introduce an instrumental variable (sometimes called ‘the 

natural experiment’) approach to avoid this problem of false positives. For the 

instrumental variable approach to work, as I first step, I make a few simplifying 

assumptions. I discuss these in greater detail in section 2 of this chapter, but some 

informal treatment might be helpful here. 

 The main assumptions I make are three-fold: (i) the causal relationship(s) between 

variables are linear with each variable being approximately normally distributed so that 

they can be standardized with mean zero and unit variance; (ii) Pearl’s d-separation 

theorem (see also Chapter 1); and (iii) the interaction of environments and phenotypes on 

reproductive success can be represented by letting the parameter representing selection 

on the phenotypic variable become a variable caused by the environmental variable. I 

assume (i) is clear enough, though it is for sure a simplification of biological reality and 

might involve conceptual problems. I clarify (iii) in the next section but I do not argue for 
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it. Again, it is an assumption used as a first-step toward a solution to the problem of 

inferring causes of natural selection. Finally I merely state (ii) in Chapter 1 and in the 

next section, so the rest of the introduction here will be dedicated to giving some 

intuitions about Pearl’s d-separation theorem.  

 Most accept the dictum that correlation between two variables does not imply 

causation. In fact, this is not quite correct. Correlation and some other assumptions can 

actually tell us quite a bit about causation and knowledge of causation can tell us all we 

could ever want to know about correlations among variables. The way we get there is 

through Pearl’s (2000) d-separation theorem (see Chapter 1 and the next section of this 

chapter). Suppose, variables !  and !  directly cause !  and !  directly causes variables 

!  and ! , relative to these variables. Pearl’s theorem implies that variables !  and !  are 

unassociated if we take into account information provided by no other variables in the 

set, but associated if we condition on any of their direct or indirect causes. This just 

means that information on ! , for example, and information on !  (or ! ) gives us an 

idea of the value of !  (or ! ), but that !  (or ! ) by itself does not provide information 

about the value of !  (or ! ) because they are exogenous (uncaused), relative to the set of 

variables. Moreover, the theorem implies that variables !  and !  are associated if we 

take into account information provided by no other variables because !  indirectly causes 

!  through ! , but not associated if we take into account information on ! . That is, !  

“screens-off” the two other variables because it mediates the causal influence between 

them. Finally variables !  and !  are associated without taking into account any other 

variable’s information (because they are commonly caused by ! ), but unassociated if we 
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take into account the information provided by their common cause ! . With Pearl’s d-

separation theorem, we can also go the other way, from (conditional) association or 

(conditional) correlation to causal structure. For example, if we found an association 

between !  and ! , conditional on !  but no association between them when provided 

with no other information on any other variables, we could infer that !  and !  have at 

least one common effect. If we found an unconditional association between !  and !  

and found no association between them, conditional on ! , we could infer that either 

!  (assuming there are no unmeasured common 

causes between !  and !  and !  and ! ). Moreover, we could make the same inference 

if we found an unconditional association between !  and !  and found no association 

between them, conditional on ! . All of these inferences and more are licensed by Pearl’s 

d-separation theorem. If we add more assumptions, we can make stronger inferences 

from correlation to causal structure and back. Some of these additional assumptions will 

be added a long the way. 

2. Some Formal Preliminaries 

The purpose of having a causal methodology for evolutionary biology is inferring the 

causal structure over a set of variables ! , one of which, I will suppose, is reproductive 

success (or aspects thereof) ! . For simplicity, I will assume that !  does not cause any 

variables, relative to the set of variables in ! . The other variables under consideration 

will include at least one phenotypic variable !  and at least one environmental/contextual 

C
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variable ! . When I do not specify whether the variable measured on individuals is 

phenotypic, environmental, or otherwise, I denote it as ! . 

 As a reminder, according to the causal modeling framework (Pearl 2000; Spirtes 

et al. 2000; Woodward 2003) assumed here, causation has three ingredients. Here is the 

first: 

 (C1) Causation is an asymmetric dependence relation between variables. 

The relata of causal relations are variables, not values of variables, not properties, not 

objects, and not events. Bill depth, for example, might or might not cause reproductive 

success, but I will not say a particular bill depth size causes a particular (expected or 

realized) value of reproductive success. Here are the next two ingredients of causation: 

 A variable !  is a direct cause of variable !  relative to a set of measured   

 variables !  if and only if 

 (C2) there is a set of possible probability distributions over !  generated by a  

  function of direct causes of ! , say these are ! , such that 

 (C3) manipulating ! , while holding all other variables !  constant, would  

  change the probability distribution of ! . 

That is, we have a direct causal effect when and only when there exists some !  and !  and 

some set of (background) conditions—i.e., some set of values for ! —such that 

changing !  from value !  to value !  while holding all other variables except 

!  constant would generate a change in the probability distribution of ! . Direct causal 

relations can be represented in graphs as directed paths of length one (i.e., directed edges) 
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from the causal variable to the effect variable: ! . They can also be represented as 

structural equations: 

 !      (5.1) 

Equation (5.1) represents the fact that the conditional expected value of reproductive 

success is given as a function of its measured direct causes (e.g., ! ) and its !  

unmeasured direct causes ! . 

 Part of the causal structure consists in causal parameters (cf. Didelez et al. 2010; 

Heckman 2000). Causal parameters codify the strength of direct causation of one variable 

on another or how one variable’s expectation (for example) would change given a 

hypothetical change in the other variable. We can denote this specific causal parameter as 

! . Causal parameters, consequently, can also represent 

selection. For example, the causal parameter given just now could represent the strength 

of direct selection on ! . Causal parameters and, hence, parameters representing 

selection fluctuate if and only if a variable interacts with ! to cause ! . I say that 

 A variable interacts with !  to cause !  if and only if for any pairs !    

 and !  values of !  and some pair of background conditions differing only in the  

 value of the other direct cause of ! , !  under one background condition is not  

 equal to !  under the other background condition. 

X→ R

R = f (V) = f (X,U1,U2,...,Un )
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Direct selection can fluctuate in three ways: !  can change from zero (nonzero) to 

nonzero (zero) (cf. Gibbs and Grant 1987; Price et al. 1984), !  can change sign or 

direction from negative (positive) to positive (negative) (Endler 1983), or !  can 

change in magnitude (Aspi et al. 2003; Kingsolver et al. 2001; Hereford et al. 2004).  

 In what follows, I will need to represent fluctuating selection graphically as well 

as with structural equations. As a first step, I assume that every causal dependency is 

linear and that every variable is approximately normally distributed and standardized 

with zero mean and unit variance. Linearity requires that the true model is (at least 

approximately) linear with normally distributed error term ! , with !  representing 

the expected value of a random draw from a function of normally distributed, 

standardized unmeasured variables, ! . So, I am assuming that equation (5.1) above 

can be approximated by: 

 !         (5.2) 

where ! . The causal graph can be represented as !  with the causal 

parameter. I also assume Pearl’s (2000) d-separation theorem (see Chapter 1). Pearl’s d-

separation can be stated as follows: Two arbitrary variables !  and !  are 

probabilistically dependent conditional on !  if and only if there is some path on a  

ΔW
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5.1. An Example of Fluctuating Selection on a Phenotypic Variable. Each Variable’s 
Mean is also Represented in the Picture and Standardized to Zero. 

directed graph between !  and !  such that no mediator— ! —or common 

cause— ! —in the path is in ! , and every common effect or collider— 

! —on the path either is in !  or has some effect variable which is in ! . 

Finally, I note that in the causal modeling literature there is no agreed upon manner in 

which to represent interactive causation. My final assumption is that it can be 

represented, taking Wade and Kalisz (1990) quite literally, as a variable’s causal influence 

on a linear causal parameter.  

Xk Xl Xk →C→ Xl

Xk ←C→ Xl C

Xk →C← Xl C C
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 To see this last assumption explicitly, let us examine an example briefly. Suppose 

that measured, standardized variables !  and !  interact to cause ! . Then I represent this 

structurally as: 

 !        (5.3) 

 !         (5.4) 

The conditional expected total effect of !  on !  is !  and the conditional 

expected total effect of !  on !  is ! . Graphically, this can be represented as in 

figure 5.1. In the figure, the reader can trace all of the directed paths from !  to !  to get 

the conditional expected total effect of !  on ! , and all of the directed paths from !  to 

!  to get the conditional expected total effect of !  to !  (cf. Wright 1934). Note that 

selection !  has a causal influence on !  codified by ! . This is because holding 

everything fixed (including ! ) and hypothetically changing selection would change 

the conditional expectation of reproductive success. Hence, that selection has a causal 

influence is a result of our definition of causation coupled with the assumptions made 

above.  

3. Against Extensions of Selection Differentials and Regression Coefficients 

There are many approaches to estimating what I have defined as a causal parameters 

representing the strength of selection (Endler 1986; Lande and Arnold 1983; Mitchell-

Olds and Shaw 1987; Price 1970; Robertson 1966; Schluter 1988). I only examine two 

popular ones here: Selection differentials and selection gradients. Selection differentials 
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(Price 1970) quantify selection by the change in the mean of a phenotypic variable due to 

selection. This evolutionary response to selection is sometimes given as: 

 !        (5.5) 

assuming perfect heritability and no transmission bias. The covariance is the selection 

differential. Unfortunately, the problem with the selection differential is that it simply 

does not qualify as a causal parameter as defined here. 

 Unconditional covariances or their standardized cousins—unconditional 

correlations ! —quantify a symmetric relationship between variables. Yet, causation 

is an asymmetric dependency. In general the unconditional correlation coefficient of two 

variables will not be equivalent to the asymmetric causal parameter defined here. This is 

because of the problem of common causes. Obviously one could condition on common 

causes insofar as they are measured to get the conditional correlation between two 

variables, but now we are in the realm of selection gradients and regression-based 

approaches for estimating dependencies between variables. Selection gradients are 

consequently closer to what we want. Given this, I will call our causal parameter !  a 

selection gradient. Nevertheless, there are problems with getting at the causes of 

reproductive success and selection gradients using the common un-supplemented 

regression-based approach. 

 Selection gradients are often modeled as standardized partial regression 

coefficients (Lande and Arnold 1983), defined as: 

 !       (5.6) 

RΔZ = COV(R,Z )

CORR

α

ψ = CORR(R,X |S \ {R,X})
VAR(X |S \ {R,X})
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In a certain sense, partial regression coefficients do not fall prey to the kind of worry 

noted about selection differentials. As long as one conditions on common causes, one can 

sometimes reliably infer direct causal dependencies between variables. Yet there is one 

crucial problem with estimating selection gradients with mere regression. This is the 

problem of unmeasured common causes.  

 Though textbooks and journal articles in the social sciences and epidemiology 

(Angrist and Pischke 2009; Antonakis et al. 2010; Cameron and Trivedi 2009; Didelez et 

al. 2010; Sheehan et al. 2008) spend a great deal of time worrying about just this 

problem, relatively little space is spent worrying about the problem of unmeasured 

common causes in textbooks (Burnham and Anderson 2002; Quinn and Keough 2002; 

Sokal and Rohlf 2011) and journal articles in evolutionary biology (but see Shipley 2000 

and Walker 2014 for welcome exceptions). If we are careful to distinguish between 

holding variables constant or fixed and statistically conditioning on or controlling for 

measured variables, then the problem is clear. 

 Recall our model in figure 5.1 and equations (5.3) and (5.4). If we really could 

hold all of the unmeasured direct causes of reproductive success and the selection 

gradient !  constant, however many there are, we should expect to recover the true 

values of the causal parameters. Yet, for example, in regressing !  on ! , we statistically 

condition or control for only one measured variable ! . The conditioning for both 

equations can be written in the following manner: 

α1

R Z

E
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5.2. Worrisome Causal Structure. 

 !     (5.7) 

 !       (5.8) 

The conditional expectation of both endogenous variables is given as a linear function of 

its direct causes. However, such conditioning does not, of course, guarantee that the set of 

unmeasured direct causes, !  and ! , of either endogenous variable is constant. The 

relationship generated by regression only guarantees that the set of measured variables is 

controlled. Unless we condition on all of the direct causes or it is the case that the 

E(R | Z,E) =α1Z +α 2E + E(εR | Z,E)

E(α1 | E) =α 3E + E(εα1 | E)

UR Uα1
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measured variables are not caused by any variables in the sets of unmeasured direct 

causes, it is not the case that regression will determine or identify the causal parameters 

reliably. Hence, extensions of regression-based procedures for inferring causes of 

selection gradients will not in general be reliable.  

 To see this, suppose the true causal model is represented in figure 5.2 and given 

by the following structural equations: 

 !       (5.9) 

 !        (5.10) 

 !         (5.11) 

where ! . By “true” here I just mean that measuring at least !  is necessary to 

recover the correct causal parameters with respect to the evolution of ! . For example, in 

equation (5.10), conditioning on !  is necessary to determine the causal influence !  

of !  on the selection gradient !  of interest. This is so because !  only if 

!  is conditioned on and this, in turn, is because ! . Suppose that we have 

data on !  but no data on ! . Note that !  is neither a cause of reproductive success or 

the selection gradient of interest. However, suppose we hypothesize that it is such a case. 

First, regress !  on !  for ranges of values for !  so that we end up with a vector of data 

on the selection gradient of interest, given this hypothesized cause of selection. Second, 

estimate the following: 

 !        (5.12) 
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Note that ! . Substituting the true causal model into the definition of the 

partial regression coefficient (equation (5.6)), we get: 

 !     (5.13) 

By equation (5.11): 

 !         (5.14) 

Hence, our estimate of the causal influence of !  on the selection gradient is biased. It 

should be zero, but it is nonzero. We need a reliable way of determining the causes of 

selection. Standard selection differentials and partial regression coefficients will not 

deliver the goods in general. In the next sections, I introduce a method involving 

instrumental variables.  

4. An Instrumental Variable Alternative 

Recall, once more, the simple case of interactive causation in figure 5.1 and in equations 

(5.3) and (5.4). An unbiased estimate of selection requires that !  and an 

unbiased estimate of !  requires that ! . If there are any unmeasured 

common causes, we have little reason to accept the estimates. Suppose, though, that we 

have two variables !  and !  that satisfy the following constraints: 

 (I1) Relevance: !  causes !  and !  causes ! , relative to the set of   

  measured variables !  and 

ε̂α1 = εα1 +α 3E

α̂ 5 =
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5.3. Hypothetical Knowledge Graph. 

 (I2) Exclusion: There are no unmeasured common causes between !  or   

  !  and any of the measured variables  ! , no measured variable in  

  !  causes either of the instrumental variables, and neither of the  

  instrumental variables cause any of the other measured variables in  

  ! . 

The exclusion constraint (I2) implies that the instrumental variables are associated with 

reproductive success or the selection gradient on !  (if at all) only through the variables 

IZ

IE S∪{α1}

S∪{α1}

S∪{α1}

Z
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they are meant to be instruments of. The relevance constraint (I1) implies that the 

instrumental variables are probabilistically dependent on the variables they are meant to 

be instruments of. I have characterized the constraints in explicit causal terms because the 

typical way of describing them in terms of probabilistic association is not sufficient for 

the work I want them to do here. 

 Assume we have accepted the causal knowledge that the two new variables are 

good instruments of the variables they are meant to instrument. Suppose we hypothesize 

that !  is a cause of the selection gradient of interest. Other than this, we do not know the 

causal relations among the measured variables. Let us represent our current state of 

knowledge as in figure 5.3. Direct edges represent causal knowledge. No edge means we 

either assume or know there is no causal connection. An edge with circles on the ends 

represents the fact that we do not know whether there is an edge or, if there is an edge, 

what kind of causal connection exists. Call this last sort of edge, an “undetermined 

knowledge edge.” 

 With the instrumental variables we can estimate the causal parameters between 

the variables in figure 5.3, overcoming the worry of unmeasured common causes. To see 

this, start with ! . From figure 5.3, !  might be a direct cause of !  or an indirect cause 

of !  through ! . Let us see if we can rule out the indirect relation first. The total causal 

effect of !  on !  is ! . Solving for !  and  

E

Z Z R

R E

IZ E ΔE(E | IZ )
ΔIZ

= ΔE(Z | IZ )
ΔIZ

ΔE(E | Z )
ΔZ

ΔE(E | Z )
ΔZ
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5.4. Updated Knowledge Graph. 

given our assumption of linearity and the definition of a partial regression coefficient, we 

have: 

 !     (5.15) 

which is, of course, just the standard instrumental variable estimator. Suppose that the 

numerator in equation (5.15) is 0. Given our assumptions about the instrumental  

ΔE(E | Z )
ΔZ

=

ΔE(E | IZ )
ΔIZ

ΔE(Z | IZ )
ΔIZ

= CORR(E, IZ )
CORR(Z, IZ )
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5.5. Updated Knowledge Graph. 

variables, this rules out the case where !  is a cause of ! , though it does not rule out the 

case that there is a common cause between them or that !  is a cause of ! . At this point, 

then, we do not know much more than what is represented in figure 5.3. Yet, now that we 

have ruled out the possibility that !  is a mediator on the path from !  to ! , relative to 

the set of measured variables, we can now estimate the strength of direct selection with: 

 !        (5.16) 

Z E

E Z

E Z R

α1 =
CORR(R, IZ )
CORR(Z, IZ )
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5.6. Updated Knowledge Graph. 

Importantly, we can do this for different ranges of values of our hypothesized cause of the 

selection gradient to get a vector !  of estimates of the selection gradient. Suppose that at 

least some of these estimates are nonzero. Then we can now update our causal knowledge 

to figure 5.4. In this figure, we have replaced two undetermined knowledge edges with 

directed edges. This is to represent that we know those direct causal influences exist. 

However, it is not meant to represent that we know there are no other causal connections

—such as those that result from unmeasured common causes. 

 Next, we will want to estimate: 

Α
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 !        (5.17) 

Suppose that this is nonzero. So, we can replace the undetermined knowledge edge with a 

directed edge from the environmental cause to the selection gradient on the trait variable, 

as in figure 5.5. We will also want to know the direct effect of the environmental cause on 

reproductive success. To get this, we must first estimate ! . Suppose that this 

is zero. Given this, condition on !  and estimate: 

 !       (5.18) 

If we do not so condition here, then we include in our estimate of the parameter, the 

product of ! . Given this, we have recovered all of the causal parameters of interest 

(see figure 5.6). 

5. A Procedure for Inferring Causes of Selection 

To systematize the above example, let us introduce some useful terminology (cf. 

Eberhardt 2009). Define a partial ordering !  over variables !  and !  as follows: 

 Given a set of instrumental variables !  and a set of measured variables that might  

 or might not include fluctuating selection gradients and of which each pair might  

 have at least one unmeasured common cause, !  if and only if 

 (PO1) !  and 

α 3 =
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Z = 0
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CORR(R, IE | Z = 0)
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α 3Z

≻ Xk Xl
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Xk ≻ Xl

CORR(IXk ,Xl ) ≠ 0
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 (PO2) There is no !  and !  such that !  and    

  ! . 

Let a partial order graph POG be defined as follows: 

 Given !  and a set of measured variables that might or might not include selection  

 gradients, a POG is a graph where !  if and only if ! . 

Given these two definitions, Pearl's d-separation, linearity, and the assumptions about 

instrumental variables, we can reliably determine the causes of selection. Here I present 

some pseudo-code: 

1. Construct a knowledge graph over the measured variables and instrumental 

variables. Separate measured variables into subsets !  that you are interested 

in the evolution of and variables !  that you hypothesize interact with the 

variables in the former set to cause reproductive success. At minimum, each 

instrumental variable should have a direct edge into the variable it is an 

instrument of and should not be causally connected to any other variable.  

2. Begin by sorting partial orderings involving variables in !  and reproductive 

success, locally regressing !  on these variables for different ranges of values 

of variables in !  when considering the direct causal effect of any !  on 

reproductive success, where !  and any !  are hypothesized to interact to 

cause reproductive success. 

Xm IXm CORR(IXk ,Xm ) ≠ 0

CORR(IXm ,Xl ) ≠ 0
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Xk → Xl Xk ≻ Xl

Z

E

Z

R

E Z
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3. For each variable in !  within the constructed partial orderings, determine the 

causal effect !  of the instrument on the trait variable it is meant to 

instrument. 

4. For each variable in !  where ! , determine the direct causal effect of !  

on !  for different ranges of values of variables in !  and generate values for 

direct selection !  variables for these !  variables. Assign !  to the edges 

! . 

5. Determine the direct causal effect of each variable in !  on each variable that 

is not reproductive success. 

6. Next sort partial orderings involving variables in !  and reproductive success, 

conditioning on ! , for all !  where selection is either known to fluctuate 

(as determined in step 4) or might fluctuate (as determined in step 2), when 

considering the direct causal effect of any !  on reproductive success. 

7. For each variable in !  determine the causal effect of the instrument on the 

environmental variable the instrument is meant to be an instrument of. 

8. Determine the direct causal effect of each variable in !  on each variable not 

in ! .  

9. For each variable in !  where ! , determine the direct causal effect of 

!  on !  for different ranges of values of variables in !  and generate values 

of direct selection !  variables for these !  variables. Assign !  to the edges 
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! . If it is the case that !  and selection on !  does 

fluctuate or might fluctuate, then perform this step for ! , setting ! . 

10. Determine the direct effect of variables in !  on variables in ! , generated 

from step 4 and step 9. 

11. Orient additional direct edges and return the updated knowledge graph. 

 To see this better, I will apply this pseudo-code to a relatively complex example 

before showing why it works generally. The example involves a phenotypic variable !  

that directly causes another ! , that directly causes an environmental variable ! , and 

that directly causes reproductive success ! . The variable !  interacts with !  to cause 

! . Another environmental variable !  causes ! , and a final environmental variable !  

has no directed causal connection with any of the measured variables. Below is the 

unknown structural equations among the variables with error terms left implicit:  

 !       (5.19) 

 !         (5.20) 

 !        (5.21) 

 !         (5.22) 

 We have a set of instrumental variables for each phenotypic and environmental 

variable and, in particular, we are interested in the causes of selection gradients !  and 

! . We hypothesize that at least one of the environmental variables interacts with the  

α → R Zk ≻ ...≻ Zl ≻ ...≻ R Zl

Zk Zl = 0

E Α

Z2

Z1 E1

R Z1 E1

R E2 E1 E3

R =α1Z1 +α 4Z2 +α 7E1

Z1 =α 2Z2

E1 =α 3Z2 +α 6E2

α1 =α 5E1

α1

α 4
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5.7. Initial Knowledge Graph with Undetermined Knowledge Edges Left Implicit to 
Avoid Clutter. 

phenotypic variables to cause reproductive success. However, we stipulate for ease that 

neither of the phenotypic variables are direct causes of selection gradients.  

 Step 1 is to construct an initial knowledge graph as in figure 5.7. Step 2 is to sort a 

partial ordering involving variables ! , ! , and ! . To do this we must perform the 

following set of standardized regressions: 

!  

Next, for some interesting set of combinations of ranges of values for each of the 

environmental variables, perform the following standardized regressions: 

Z1 Z2 R

Z1 = γ 2IZ2 and E1 = γ 3IZ2 and E2 =η1IZ2 and E3 =η2IZ2
Z2 =η3IZ1 and E1 =η4IZ1 and E2 =η5IZ1 and E3 =η6IZ1
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5.8. Updated Knowledge graph. 

!  

Suppose we find that for all ! , ! , for all ! , ! , and at least for some 

combinations of ranges of values for each of the environmental variables, ! . 

Then we can generate the following partial orders: !  and ! . Step 3 is to 

determine the direct causal effects of the phenotypic instruments on the phenotypic 

variables. Following this, we quickly move to step 4. Because !  we can determine 

the direct causal effect of !  on !  for different ranges of values of variables in !  and 

generate values of selection gradient ! , for different values of !  as previously 

R = γ 1IZ1 and R = γ 4IZ2

γ \ {γ 1,γ 4} γ ≠ 0 η η = 0

γ 1,γ 4 ≠ 0

Z2 ≻ E1 Z2 ≻ Z1 ≻ R

Z1 ≻ R

Z1 R E

α1 =
γ 1
β IZ1Z1

γ 1
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determined in step 2. We can now also assign !  to the !  edge. Step 5 is to 

determine the direct causal effects of ! . The direct effect of !  on !  is ! . 

The direct effect of !  on on !  is ! . For concreteness, we now have the 

updated graph in figure 5.8. Now we move to step 6: Sort the partial orderings involving 

the environmental variables plus reproductive success. To do this we must perform the 

following set of standardized regressions: 

!  

Suppose we find that for all !  and for all ! . From this and the above, we 

can now construct the following partial orders: !  and ! . Step 

7 is to determine the direct causal effects of the environmental variable instruments on 

their respective environmental variables. After this, step 8 involves determining the direct 

effects of the environmental variables without determining whether they are causes of 

selection. The direct effect of !  on !  is ! . The direct effect of !  on !  is 

! . Next is step 9. Because ! , we can determine the direct  

Z α1 → R

Z2 Z2 Z1 α 2 =
γ 2
β IZ2Z2

Z2 E1 α 3 =
γ 3

β IZ2Z2

E1 = γ 6IE2 and R = γ 8IE2 , for Z1,Z2 = 0 and Z2 =η7IE2 and Z1 =η8IE2 and E3 =η9IE2
R = γ 7IE1 , for Z1,Z2 = 0 and Z2 =η10IE1 and Z1 =η11IE1 and E2 =η12IE1 and E3 =η13IE1
Z2 =η14IE3 and Z1 =η15IE3 and E1 =η16IE3 and E2 =η17IE3 and R =η18IE3 , for Z1,Z2 = 0

γ ,γ ≠ 0 η,η = 0

Z2 ≻ {Z1,E1} ≻ R E2 ≻ E1 ≻ R

E1 R α 7 =
γ 7
β IE1E1

E2 E1

α 6 =
γ 6

β IE2E2

Z2 ≻ ...≻ Z1 ≻ ...≻ R
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5.9. Updated Knowledge graph. 

causal effect of !  on !  now. Perform the following standardized regression for 

different ranges of values of the environmental variables and for ! : 

!  

Suppose we find that at least for some combination of values for the environmental 

variables the casual parameter is nonzero. Then we can generate ! , for 

different values of ! . We can also now assign !  to the edge ! . Step 10 is to  

Z2 R

Z1 = 0

R = γ 4IZ2 , for Z1 = 0

α 4 =
γ 4
β IZ2Z2

−α 3α 7

γ 4 Z2 α 4 → R
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5.10. Returned Knowledge Graph with Causal Parameters. 

determine which environmental variables cause selection on our phenotypic variables. To 

do this, we must perform the following set of standardized regressions: 

!  

Suppose we find that !  and find that for all ! . From this we can construct 

the following partial orders: !  and !  and ! . 

We also already know that both !  and !  have direct effects on reproductive success. 

α1 = γ 5IE1 and α 4 =η19IE1
α1 = γ 9IE2 and α 4 =η20IE2
α1 =η21IE3 and α 4 =η22IE3

γ 5,γ 9 ≠ 0 η,η = 0

Z2 ≻ Z1 ≻ R Z2 ≻ E1 ≻α1 ≻ R E2 ≻ E1 ≻α1 ≻ R

Z2 E1
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Hence, we can determine the direct effect of !  on ! , ! . Variable !  is a 

direct cause of selection. We now have the updated knowledge graph in figure 5.9. The 

knowledge graph in figure 5.9 contains some variables that have only indirect causal 

effects on other variables. Step 11 of the pseudo-code involves testing whether these 

variables have direct causal effects on those variables. We have the following directed 

paths of length greater than one: 

!  

We stipulated at the outset for ease that !  has no direct causal influence on selection 

gradients. So, we can ignore the first directed path. Next we need to consider whether !  

has a direct causal influence on !  or ! . Suppose that from the last batch of 

standardized regressions ! . Then no direct edge from !  to the selection 

gradient on !  is added. Variable !  is not a direct cause of selection but an indirect 

cause of selection. We can do the same with respect to its causal influence on 

reproductive success as well. Suppose that from step 6, ! . Then no direct 

edge from this environmental variable to reproductive success is added. The causal 

structure among the observed variables has been established. The output is figure 5.10.  

 To see why this works generally, consider the possibility of false positives (cf. 

E1 α1 α 5 =
γ 5
β IE1E1

E1

Z2 → E1 →α1 and E2 → E1 → R and E2 → E1 →α1 and E2 → E1 →α1 → R

Z2

E2

α1 R

γ 9
β IE2E2

=α 6α 5 E2

Z1 E2

γ 8
β IE2E2

=α 6α 7
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Eberhardt 2009 on interventions). Suppose that we infer a nonzero causal parameter even 

though it is the case that the causal parameter is zero. There are two possible reasons for 

this. 

 First, we might have inferred the nonzero causal parameter on the edge between 

two variables !  and !  because the variables satisfied the definition of a partial 

ordering over them. Yet, this is impossible because !  if and only if ! . If 

there is a directed path from !  to !  mediated by ! , then by Pearl’s d-separation, !  

and !  are unconditionally associated. If they are unconditionally associated, then by 

Pearl’s d-separation, they are causally connected (in some way). From the assumptions 

about instrumental variables, we know that it must be the case that !  and we also 

know that there is no causal connection between !  and !  that does not “go through” 

! . Hence, if there is a causal connection, it must be such that there is a directed path 

from !  to !  mediated by ! . So, we know by Pearl’s d-separation and our 

assumptions about instrumental variables that !  if and only if there is a 

directed path from the instrumental variable to !  mediated by ! . In addition, there 

cannot be any other measured variable !  that mediates between !  and ! . For, if this 

were the case, then we would have found that !  and !  were unconditionally 

associated and that !  and !  were unconditionally associated. Yet, we explicitly took 

this into account in the definition of a partial ordering over variables with constraint 

Xk Xl

Xk → Xl Xk ≻ Xl

IX k
Xl Xk IXk

Xl

IXk → Xk

IXk Xl

Xk

IXk Xl Xk

CORR(IXk ,Xl ) ≠ 0

Xl Xk

Xm Xk Xl

IXk Xm

IXm Xm
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(PO2). Thus, it is impossible to get a nonzero causal parameter when it in fact is zero in 

this case.  

 There is a second reason why we might have gotten a false positive. We might 

have inferred the nonzero causal parameter on the edge between !  and !  because 

either we shut off the interactive effect !  (with another variable ! ) has on !  by 

regressing !  on !  and found a nonzero regression estimate or because the 

unconditional association between !  and !  is not fully accounted for by their known 

indirect causal relationship(s). If only the former is the case and there is no indirect causal 

relationship besides the interactive one, then there is no new special problems (from what 

was discussed in the previous paragraph) as the interactive causal relationship has been 

shut off. If the latter or the former and the latter is the case, however, note that there must 

be at least one indirect path between !  and !  that is not “shut off.” Assume, that 

something like the following causal graph is true: 

!  

It turns out that for all paths in a POG, all direct causal parameters can be determined. To 

see this, assume it is the case that all direct causal parameters can be determined for paths 

of length ! . Now consider paths of length !  between !  and !  . We know all of the 

direct causal parameters along the path from applying the definition of a partial ordering 

over variables in the path. Thus, we know there is at least one directed path from !  and 

!  and we know the indirect causal effect of !  on ! . If we let the number of such 

Xk Xl

Xk Xm Xl

Xl Xk , for Xm = 0

Xk Xl

Xk Xl

Xk → ...→ Xm → ...→ Xl

r r +1 Xk Xl

Xk

Xl Xk Xl
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directed paths be !  and let !  be the causal parameter !  on path ! , then this known 

causal effect is given by !  (Wright 1934). Yet, we do not know whether there 

is a direct causal effect between !  and ! . Happily, we can find this given what we 

know and our assumptions. We know the direct causal effect !  of the instrumental 

variable on ! . We know the total causal effect !  of the instrument of !  on ! . So, 

by linearity, the total causal effect of !  on !  is ! . So, given that we know the 

indirect causal effect and the total causal effect: !  if and only if 

!  in addition to their indirect causal relationship or !  if and 

only if the two variables are merely indirectly linked. Then the causal parameter on that 

edge is determined by !  because of our linearity assumption (Wright 

1934). Hence, by mathematical induction over the lengths of paths between two 

variables, for all paths in a POG, all direct causal parameters can be determined (even 

when they are zero). Therefore, false positives are impossible here as well. 

p α ij j i

α ijj

r+1∏i
p∑

Xk Xl

β IXk Xk

Xk γ IXk Xl
Xk Xl

Xk Xl

γ IXk Xl

β IXk Xk

γ IXk Xl

β IXk Xk

≠ α ijj

r+1∏i
p∑

Xk → Xl

γ IXk Xl

β IXk Xk

= α ijj

r+1∏i
p∑

γ IXk Xl

β IXk Xk

− α ijj

r+1∏i
p∑
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6. Summary and Possible Extensions 

It is necessary for evolutionary biologists to develop a causally explicit methodology. In 

order to tell whether a trait has evolved by selection or drift, we must explicitly model the 

causes of reproductive success. Sometimes this also means explicitly modeling how 

selection on traits changes as a function of environmental variables. The main reason for 

needing to do this is because without doing so one cannot distinguish between, on the one 

hand, when selection is fluctuating and, on the other hand, when drift merely makes it 

look as though selection is fluctuating. When evolutionary biologists have been interested 

in fluctuating selection, they have sometimes failed to take steps to avoid such conflation. 

Rather than explicitly model the causal influence of environmental variables, selection 

differentials and selection gradients are estimated separately for locations in spacetime. In 

this chapter, I have argued that extending the use of selection differentials or mere 

regression-based selection gradients to contexts where we have data on specific 

environmental variables that might cause selection to fluctuate is not advisable. Instead, 

evolutionary biologists need an explicitly causal methodology to discover the causes of 

reproductive success and natural selection. I have offered the first steps toward that end 

within an instrumental variable framework. 

 There are many ways in which the causal methods here can be extended. One 

extension would be to construct a method for discovering instrumental variables for 

future research. To do this, we need one more definition: 
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 A tier ordering (Spirtes et al. 2000) is an ordering of mutually exclusive and  

 exhaustive sets of measured variables in a causal graph such that tier one contains  

 all of the exogenous variables and, for all tiers ! , !  is in tier !  if and only if 

 (T1) there is a !  in tier !  such that !  on the graph and 

 (T2) there is no !  in tier !  such that !  is a direct or indirect cause of ! . 

Given this definition, after we have returned some graph like that found in the last 

section, we can discover unmeasured common causes (cf. Eberhardt 2009), and with the 

discovery of unmeasured common causes, one can, in turn, identify whether some 

variable in !  in the present study might be used as instrumental variables in an analogous 

future study. For example: 

1. Given the output from the pseudo-code in the last section and a set of 

hypotheses of which pairs of variables have unmeasured common causes, let 

!  be a tier ordering over the measured variables 

(including, selection gradients) with !  tiers. For all pairs of variables 

!  (beginning with ! ), test the unconditional association between 

the considered pair. 

2. Compare the known association with the just-tested unconditional association 

in step 1. If they are equal, then there is no unmeasured common cause 

between the considered pair. If they are unequal, then there is at least one 

unmeasured common cause for the unaccounted unconditional association. 

3. Next, for tier !  (beginning with ! ), 

t >1 Xt t

Xt−1 t −1 Xt−1 → Xt

Xu u ≥ t Xu Xt

S

T = T1 ≻ T2 ≻ ...≻ Tt ≻ ...≻ Tw

w

Xk ,Xl ∈Tt T1

u > t Tt+1
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A. For all pairs of variables !  such that !  and ! , test the 

unconditional association between the considered pair. 

B. Compare the known association with the just-tested unconditional 

association in step 3A. If they are equal, then there is no unmeasured 

common cause between the considered pair. If they are unequal, then there 

is at least one unmeasured common cause for the unaccounted 

unconditional association. 

C. Return to step 3A with tiers !  and !  until and including tier ! .  

4. Return to step 1 with tier !  until and including tier ! . 

After running this, we might discover there is no unmeasured common cause between 

any of the variables in the previous section and variable ! . Given what we have 

discovered at this point, then, we have the basis for arguing for the use of a variable like 

!  in an analogous variable set for a variable like !  in future research. 

 Another possible extension takes us to group selection contexts (see e.g., Chapter 

4). In the group selection literature, contextual analysis is essentially the same as the 

Lande and Arnold (1983) regression-based approach to selection gradients. It is arguable 

that an instrumental variable approach to this area of research is superior. For example, 

regression-based approaches cannot make important distinctions between indirect causal 

influence and causal connections merely occurring from common causes whereas an 

instrumental variable approach can. Still, extending the instrumental variable approach on 

offer here to group selection contexts is not so straightforward. This is because of the 

Xt ,Xu Xt ∈Tt Xu ∈Tu

t u +1 u = w

t +1 t = w

E2

E2 E1
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problem of tautologous connections. In particular, simply supplementing regression with 

instruments in contexts of group selection is unwise because individual level variables 

and variables measuring something about the types one’s group or neighboring peers are 

will often be mathematically related and, so, not necessarily genuinely causally related. 

This is because, in those methods, every unit who is a focal individual is also a group or 

neighborhood member in the data set, so mathematical relations abound. In order to infer 

non-tautologous causal relationships when demographic conditions cause reproductive 

success (see e.g., Chapter 4), we will need to supplement the instrumental variable 

approach.  
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CONCLUSION

1. Summing Up 

Most of evolutionary genetics since the Modern Synthesis has emphasized the concept of 

fitness and statistical formulae when cashing out natural selection, either conceptually or 

mathematically. Consequently, there has been an unfortunate deemphasis on clear causal 

reasoning and, in particular, the fact that at bottom natural selection requires that some 

trait variable causes reproductive success. As with any foregrounding and backgrounding 

in science this has come with advantageous and costs. I have focused on the costs in this 

dissertation, and I hope that doing so—with aid of the interventionist framework of 

causation—has shed light on old conceptual problems and provided new solutions to 

those traditional problems. I have attempted to make headway on a number of conceptual 

problems: The dissertation provided a new theory of adaptations and illuminated the 

implications of such an account (Chapter 2); it provided new conceptions of selection and 

drift by examining a case of a novelty evolved by (a particular form of) niche 

construction (Chapter 3); and it argued for the importance of sorting selection phenomena 

causally when diagnosing the levels of selection (on one view of multilevel selection) and 

argued against model pluralism (Chapter 4). I also took some initial steps toward 

constructing an explicit causal methodology for inferring the causes of natural selection 

(Chapter 5). The dissertation has advanced a theory of natural selection that is 

fundamentally causal in nature. In addition, it has opened up further avenues of research, 

which one could pursue in the future.   
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2. Future Directions 

In the last section of the previous chapter, I discussed some possible extensions of my 

methodological work. Here I focus on how one might extend my more theoretical and 

conceptual work. First, one could explore whether the direction of causality between 

traits and environments matters to evolutionary outcomes. It might be thought that 

whether traits cause environments or the converse or both matters little as far as 

evolutionary outcomes are concerned. If there is some probabilistic association between 

traits and environments, then this can be incorporated into statistical models and 

evolutionary trajectories can be predicted. I doubt that this is true generally. In order to 

study this issue one might intend to study phenotypic plasticity (Pigliucci 2001) and 

include it into some of the generative models discussed in the dissertation. I predict that 

this kind of study will also lead to conceptual clarification regarding how to interpret 

cases with causal connections among the causes of reproductive success. In particular, it 

should shed light on particular cases of evolution by natural selection such as those 

related to cancer where both niche construction and phenotypic plasticity seem to be at 

play at multiple levels of biological organization (Lean and Plutynski 2016).  

 Second, one might want to explore coevolution on two fronts: the coevolution of 

spatially related species on small and large geographical scales (Thompson 2005) and the 

coevolution of populations and their demographic structure in order to make headway on 

problems having to do with evolutionary transitions (Maynard Smith and Szathmáry 

1995; Michod 2000). Much of the former work is inherently spatial, but the current tools 

do not adequately reflect this and much of the latter work seems ripe for conceptual 
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clarification and clear causal reasoning. The coevolutionary process can be modeled in 

the following way. Say that a single population of types or two populations of species 

initially exists on the !  integer lattice and assume that there is an infinite connected 

subgraph represented by the vertex set ! . Whether an individual of some type or species 

invades this subgraph depends on whether one of the subgraph’s vertices is in her set of 

!  nearest neighboring spaces. The dynamics of the sites outside of the subgraph, then, 

are locally determined. However, within the subgraph—because all sites within it are 

connected—the dynamics are globally determined (e.g., by the replicator equation). 

Finally, suppose that depending on whether there are more or less of some type within 

! , the subgraph shrinks (if the type is harmed by being in the subgraph) or expands (if 

the type benefits from being in the subgraph). Given this set-up, one can either examine 

how two species coevolve over a landscape where dispersal ranges change or examine 

the evolutionary transitions among types and demographic structures together. Moreover, 

one can also examine these coevolutionary processes on separate time scales, with types 

or species evolving according to one scale and landscape or demographic structure 

evolving according to another. 

 Third, the coevolutionary processes described above can also be examined with 

the addition of niche construction or phenotypic plasticity. Some analogous previous 

work by Brown (1990)—extending the work of Rosenzweig (1987)—found that in a two 

type environment, there are three scenarios possible given a population consisting of two 

specialists and one generalist phenotypes: (1) the two specialists coexist; (2) the 

generalist evolves to fixation; and (3) one of the specialists and the generalist coexist. The 

Zd

V

2d

V

!133



first case occurs when there is a cost to being a generalist, or alternatively, when there is 

no cost to being a specialist. The second case occurs when there is no cost to being a 

generalist, or alternatively, when there is a cost to being a specialist. The final case occurs 

when there is an asymmetric interactive causal influence of the environmental variable on 

reproductive success or there is an asymmetry in the frequency of different environments. 

In my envisioned future work, the two environments would correspond to the two types 

of demographic structure. Given this, it is interesting to consider whether scenarios (1-3) 

occur given different causal influences of type and demographic structure, where the 

landscape or demographic structure does not also evolve, and consider what happens with 

a dynamic evolving landscape or demographic structure.   

 Fourth and finally, further research might turn to issues on cultural evolution, its 

foundations and analysis. In particular, I am interested in studying variants of Lewis’s 

(1969) signaling games. Suppose a population of early hominids lives in an environment 

with some number !  of objects, and suppose there is some repertoire of some number !  

of signals. Then, agents can be characterized by a !  probability matrix producing a 

word given the sight of an object and a !  matrix producing the idea of an object 

given a word. When two random individuals attempt communication, the speaker sees an 

object and produces a signal for the hearer, the hearer hears the signal and produces an 

idea related to an object, both get at least one chance in each role, and a payoff (i.e., 

fitness) is rewarded to the individuals in proportion to the success of their 

communication. The language game continues again in future generations after parents 

die with offspring learning the language of their parent before parental death. What 

n m

n ×m

m × n
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happens at the end of this game is that a single (perhaps sub-optimal) language evolves in 

the population. Though—to my knowledge—there has not been any rigorous analysis on 

the trajectory to this state given different sorts of “learning periods” of offspring, 

populations sizes, and demographic structures. Indeed, on demographic structure, what I 

have just described corresponds to a completely connected population. Yet, many social 

structures in humans are not, of course, like this. Extending the work in this dissertation 

to this aspect of cultural evolution is likely to be both enormously interesting and 

philosophically rich.  

!135



REFERENCES

Anderson, Wes (in press). Some adaptations were not positive causal factors for 
reproductive success. To appear in Philosophy of Science.  

Angrist, Joshua D. and Jorn-Steffen Pischke (2009). Mostly Harmless Econometrics. 
Princeton, NJ: Princeton University Press. 

Antonakis, John, Samuel Bendahan, Philippe Jacquart, and Rafael Lalive (2010). On 
making causal claims: A review and recommendations. The Leadership Quarterly 21: 
1086-1120.  

Aspi, Jouni, Anne Jäkäläniemi, Juha Tuomi, and Pirkko Siikamäki (2003). Multi-level 
phenotypic selection on morphological characters in a metapopulation of Silene Tatarica. 
Evolution 57: 509-517. 

Beatty, John. (1984). Chance and natural selection. Philosophy of Science 51: 183-211. 

Brandon, Robert. (1990). Adaptation and Environment. Princeton, NJ: Princeton 
University Press. 

Brandon, Robert and H. Frederik Nijhout (2006). The empirical nonequivalence of genic 
and genotypic models of selection: A (decisive) refutation of genic selectionism and 
pluralistic genic selectionism. Philosophy of Science 73: 277-297. 

Brown, Joel S. Habitat selection as an evolutionary game. Evolution 44: 732-746. 

Burnham, Kenneth P. and David R. Anderson (2002). Model Selection and Multimodel 
Inference: A Practical Information-Theoretical Approach. Dordrecht: Springer.  

Cameron, A. Colin and Pravin K. Trivedi (2009). Microeconometrics: Methods and 
Applications. Cambridge: Cambridge University Press.  

Damuth, John and I. Lorraine Heisler (1988). Alternative formulations of multilevel 
selection. Biology and Philosophy 3: 407-430. 

Didelez, Vanessa, Sha Meng and Nuala A. Sheehan (2010). Assumptions of IV methods 
for observation epidemiology. Statistical Science 25: 22-40. 

Eberhardt, Frederick (2009). Causation and Intervention. PhD dissertation, Carnegie 
Mellon University. 

!136



Endler, John (1983). Natural selection on color patterns in Poecilia reticulata. Evolution 
34: 76-91. 

Endler, John. (1986). Natural Selection in the Wild. Princeton, NJ: Princeton University 
Press. 

Evilsizor, Stephen and Nicolas Lanchier (2015). Evolutionary games on the lattice: 
Death-brith updating process. arXiv preprint arXiv: 1506.07233. 

Gibbs, H. Lisle, and Peter R. Grant (1987). Oscillating selection on Darwin’s finches. 
Nature 327: 511-513. 

Gildenhuys, Peter. (2009). An explication of the causal dimension of drift. British Journal 
for the Philosophy of Science 60: 521-555.  

Gillespie, John H. (1974). Natural selection for within-generation variance in offspring 
number. Genetics 76: 601-606. 

Glymour, Bruce. (2011). Modeling environments: Interactive causation and adaptations 
to environmental conditions. Philosophy of Science 78: 448-471. 

Glymour, Bruce and Christopher French (unpublished). Causation, group selection, and 
equivalence. 

Godfrey-Smith, Peter (2008). Varieties of population structure and the levels of selection. 
The British Journal for the Philosophy of Science 59: 25-50. 

Goodnight, Charles J., James M. Schwartz, and Lori Stevens (1992). Contextual analysis 
of models of group selection, soft selection, hard selection, and the evolution of altruism. 
American Naturalist 140: 743-761. 

Heckman, James L. (2000). Causal parameters and policy analysis in economics: A 
twentieth century retrospective. The Quarterly Journal of Economics 115: 45-97. 

Heisler, I. Lorraine and John Damuth (1987). A method for analyzing selection in 
hierarchically structured populations. American Naturalist 130: 582-602. 

Hereford, Joe, Thomas F. Hansen, and David Houle (2004). Comparing strengths of 
directional selection: How strong is strong? Evolution 58: 2133-2143. 

Heywood, James (2010). Explaining patterns in modern ruminant diversity: Contingency 
or constraint? Biological Journal of the Linnean Society 99: 657-672. 

!137



Hutchinson, G. Evelyn (1957). Concluding remarks. Cold Spring Harbor Symposia on 
Quantitative Biology 22: 415-427. 

Kerr, Benjamin and Peter Godfrey-Smith (2002). Individualist and multi-level 
perspectives on selection in structured populations. Biology and Philosophy 17: 477-517. 

Kettlewell, Bernard (1973). The Evolution of Melanism. Oxford: Claredon Press.  

Kingsolver, Joel G., Hopi E. Hoekstra, Jon M. Hoekstra, David Berrigan, Sacha N. 
Vigniere, C.E. Hill, Anhthu Hoang, P. Gilbert, and Peter Beerli (2001). The strength of 
phenotypic selection in natural populations. The American Naturalist 157: 245-261.   

Laland, Kevin N., Tobias Uller, Marcus W. Feldman, Kim Sterelny, Gerd B. Müller, 
Armin Moczek, Eva Jablonka, and John Odling-Smee (2015). The extended evolutionary 
synthesis: Its structure, assumptions, and predictions. Proceedings of the Royal Society B 
282: DOI: 10. 1098/rspb.2015.1019 

Lanchier, Nicolas (2015). Evolutionary games on the lattice: Payoffs affecting birth and 
death rates. Annual Applied Probability 25: 1108-1154. 

Lande, Russell and Steven J. Arnold (1983). The measurement of selection on correlated 
characters. Evolution 37: 1210-1226.  

Laubichler, Manfred and Jürgen Renn (2015). Extended evolution: A conceptual 
framework for integrating regulatory networks and niche construction. Journal of 
Experimental Zoology Part B: Molecular and Developmental Evolution 324: 565-577. 

Lean, Christopher and Anya Plutynski (2016). The evolution of failure: Explaining 
cancer as an evolutionary process. Biology and Philosophy 31: 39-57. 

Lennox, James and Bradley Wilson (1994). Natural selection and the struggle for 
existence. Studies in History and Philosophy of Science 25: 65-80. 

Lewis, David (1969). Convention: A Philosophical Study. Harvard University Press. 

Lewontin, Richard. (1970). The units of selection. Annual Review of Ecology and 
Systematics 1: 1-18. 

Lewontin, Richard. (1974). The analysis of variance and the analysis of causes. American 
Journal of Human Genetics 26: 400-411.  

!138



Lewontin, Richard. (1985). Adaptation. In R. Levins and R. Lewontin, The Dialectical 
Biologist. Cambridge, MA: Harvard University Press, 65-84. 

MacColl, Andrew D.C. (2011). The ecological causes of evolution. Trends in Ecology & 
Evolution 26: 514-522.  

Maynard Smith, John and Eors Szathmáry (1995). The Major Transitions in Evolution. 
Oxford University Press. 

Mayr, Ernst (1961). Cause and effect in biology. Science 134: 1501-1506. 

Michod, Richard E. (2000). Darwinian Dynamics: Evolutionary Transitions in Fitness 
and Individuality. Princeton, NJ: Princeton University Press. 

Mills, Susan. and John Beatty (1979). The propensity interpretation of fitness. Philosophy 
of Science 46: 263-286. 

Millstein, Roberta. (2002). Are random drift and natural selection conceptually distinct? 
Biology and Philosophy 17: 33-53. 

Mitchell-Olds, Thomas and Ruth G. Shaw (1987). Regression analysis of natural 
selection: Statistical inference and biological interpretation. Evolution 41: 1149-1161. 

Müller, Gerd B.  and Stuart A. Newman (2005). The innovation triad: An EvoDevo 
agenda. Journal of Experimental Zoology Part B: Molecular and Developmental 
Evolution 304: 487-503.  

Neuhauser, Claudia and Stephen W. Pacala (1999). An explicitly spatial version of the 
Lotka-Volterra model with interspecific competition. The Annals of Applied Probability 
9: 1226-1259. 

Nowak, Martin A. (2006). Evolutionary Dynamics. Cambridge, MA: Harvard University 
Press. 

Ohtsuki, Hirashi, Christoph Hauert, Erez Lieberman, and Martin A. Nowak (2006). A 
simple rule for the evolution of cooperation on graphs and social networks. Nature 441: 
502-505. 

Okasha, Samir. (2004). Multi-level selection, covariance, and contextual analysis. British 
Journal for the Philosophy of Science 55: 481-504. 

!139



Okasha, Samir. (2006). Evolution and the Levels of Selection. Oxford: Oxford University 
Press. 

Page, Karen M. and Martin A. Nowak (2002). Unifying evolutionary dynamics. Journal 
of Theoretical Biology 219: 93-98. 

Pearl, Judea. (2000). Causality. Cambridge: Cambridge University Press. 

Pence, Charles and Grant Ramsey (2013). A new foundation for the propensity 
interpretation of fitness. The British Journal for the Philosophy of Science 64: 851-881. 

Pfeifer, Jessica (2005). Why selection and drift might be distinct. Philosophy of Science 
72: 1135-1145. 

Pigliucci, Massimo (2001). Phenotypic Plasticity. Oxford University Press. 

Pigliucci, Massimo. and Jonathan Kaplan (2006). Making Sense of Evolution: The 
Conceptual Foundations of Evolutionary Biology. Chicago, IL: University of Chicago 
Press. 

Price, George. (1970). Selection and covariance. Nature 227: 520-521. 

Price, George. (1972). Extension of covariance selection mathematics. Annals of Human 
Genetics 35: 485-490. 

Price, Trevor D., Peter R. Grant, H. Lisle Gibbs, and P.T. Boag (1984). Recurrent patterns 
of natural selection in a population of Darwin’s finches. Nature 309: 787-789. 

Quinn, Gerry P. and Michael J. Keough (2002). Experimental Design and Data Analysis 
for Biologists. Cambridge: Cambridge University Press. 

Rice, Sean H. (2004). Evolutionary Theory. Sunderland, MA: Sinauer.  

Robertson, Alan (1966). A mathematical model of the culling process in dairy cattle. 
Animal Production 8: 95-108.  

Rosenzweig, Michael L. (1987). Habitat selection as a source of biological diversity. 
Evolutionary Ecology 1: 315-330.  

Schluter, Dolph (1988). Estimating the form of natural selection on a quantitative trait. 
Evolution 42: 849-861.  

!140



Shanahan, Timothy (1989). Beatty on chance and natural selection. Philosophy of Science 
56: 484-489.  

Sheehan, Nuala A., Vanessa Didelez, Paul R. Burton, and Martin D. Tobin (2008). 
Mendelian randomization and causal inference in observation epidemiology. PLoS Med 
5: e177.  

Shipley, Bill (2000). Cause and Correlation in Biology. Cambridge: Cambridge 
University Press.  

Siepielski, Adam M., Joseph D. DiBattista, and Stephanie M. Carlson (2009). It’s about 
time: The temporal dynamics of phenotypic selection in the wild. Ecology Letters 12: 
1261-1276.  

Siepielski, Adam M., Kiyoko M. Gotanda, Michael B. Morrissey, Sarah E. Diamond, 
Joseph D. DiBattista, and Stephanie M. Carlson (2013). The spatial patterns of directional 
phenotypic selection. Ecology Letters 16: 1382-1392.  

Sober, Elliott. (1984). The Nature of Selection. Chicago, IL: University of Chicago Press. 

Sober, Elliott and David S. Wilson (1998). Unto Others: The Evolution and Psychology 
of Unselfish Behavior. Cambridge, MA: Harvard University Press.  

Sober, Elliott and David, S. Wilson (2002). Perspectives and parameterizations: 
Commentary on Benjamin Kerr and Peter Godfrey-Smith’s “Individualist and multi-level 
perspectives on selection in structured populations.” Biology and Philosophy 17: 
529-537. 

Sokal, Robert R. and F. James Rohlf (2012). Biometry. New York, NY: W.H. Freeman & 
Company. 

Spirtes, Peter., Clark. Glymour, and Richard. Schienes (2000). Causation, Prediction, and 
Search. Cambridge, MA: MIT Press. 

Sterelny, Kim (2009). Novelty, plasticity, and niche construction: The influence of 
phenotypic variation on evolution. In Anouk Barberousse, Michel Morange, and Thomas 
Pradeu (eds.), Mapping the Future of Biology. Springer Netherlands, 93-110. 

Sterelny, Kim and Philip Kitcher (1988). The return of the gene. The Journal of 
Philosophy 85: 339-361.  

!141



Thompson, John N. (2005). The Geographic Mosaic of Coevolution. Chicago: University 
of Chicago Press.  

Wade, Michael J. (1985). Soft selection, hard selection, kin selection, and group 
selection. American Naturalist 125: 61-73. 

Wade, Michael J. and Susan Kalisz (1990). The causes of natural selection. Evolution 44: 
1947-1955.  

Wagner, Günter P. (2014). Homology, Genes, and Evolutionary Innovation. Princeton 
University Press. 

Walker, Jeffrey A. (2014). The effect of unmeasured confounders on the ability to 
estimate a true performance or selection gradient (and other partial regression 
coefficients). Evolution 68: 2128-2136.  

Weinberger, Naftali (2011). Is there an empirical disagreement between genic and 
genotypic selection models? A response to Brandon and Nijhout. Philosophy of Science 
78: 225-237. 

Wilson, David S. (1975). A theory of group selection. Proceedings of the National 
Academy of Sciences, USA 72: 143-146. 

Wilson, Robert A. (2003). Pluralism, entwinement and the levels of selection. Philosophy 
of Science 70: 531-552. 

Woodward, James. (2003). Making Things Happen. Oxford: Oxford University Press. 

Wright, Sewall (1934). The method of path coefficients. Annals of Mathematical 
Statistics 5: 161-215. 

!142


