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ABSTRACT

The identity and origin of dark matter is one of the more elusive mysteries in the fields

of particle physics and cosmology. In the near future, direct dark matter detectors

will offer a chance at observing dark matter non-gravitationally for the first time. In

this thesis, formalisms are developed to analyze direct detection experiments and to

quantify the extent to which properties of the dark matter can be determined. A

range of non-standard assumptions about the dark matter are considered, including

inelastic scattering, isospin violation and momentum dependent scattering. Bayesian

inference is applied to realistic detector configurations to evaluate parameter estima-

tion and model selection ability.

A complete set of simplified models for spin-0, spin-1
2 and spin-1 dark matter

candidates are formulated. The corresponding non-relativistic operators are found,

and are used to derive observational signals for the simplified models. The ability

to discern these simplified models with direct detection experiments is demonstrated.

In the near future direct dark matter detectors will be sensitive to coherent neutrino

scattering, which will limit the discovery potential of these experiments. It was found

that eleven of the fourteen non-relativistic operators considered produce signals dis-

tinct from coherent scattering, and thus the neutrino background does not greatly

affect the discovery potential in these cases.
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Chapter 1

INTRODUCTION

The mystery of dark matter has vexed scientists for decades. While hints of a problem

with missing mass were published as early as the 1930’s, it wasn’t until the 1970’s

that the existence of dark matter was firmly established. In the intervening forty

years abundant evidence for dark matter and its non-baryonic origin has been accu-

mulated. Yet we are still no closer to knowing exactly what the dark matter is made

of. This dissertation studies and extends techniques for extracting properties of the

dark matter from experiments performed on Earth.

The progress of our understanding of the universe has been one of ever-increasing

humility. We inhabit an ordinary planet orbiting around a typical star, which is one

of 200 billion in the Milky Way. Furthermore, the Milky Way is just one in billions of

galaxies in an observable universe that is at least 45 billion light years across. While

Immanuel Kant did correctly predict that galaxies were their own ‘island universes’

(distinct from the Milky Way) in the 18th century, in as late as the 20th century

there was still serious debate whether the Milky Way was the only galaxy in the

universe. Other galaxies were observable, but without powerful telescopes they were

simply not recognized for what they were. It was not until 1929 that Edwin Hubble

was able to calculate the distance to nearby galaxies by observing individual stars

within them. Hubble found that the distances were far too great for the stars to

be part of the Milky Way. Further observations by Hubble found that many galax-

ies were receding from us, with a velocity proportional to their distance from the

Milky Way - a phenomenon now attributed to the expansion of the universe. This

led to the idea that at some point in the distant past all galaxies must have been
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at the same point in space - it appeared as though the universe had a beginning.

This dense and hot beginning is known as the big bang, currently estimated to have

occured 13.8 billion years ago. In 1964, Penzias and Wilson accidentally discovered

the cosmic microwave background radiation (CMBR), the slowly-cooling remnant of

the big bang. Follow-up observations of the CMBR found that its temperature is

2.73K and is almost perfectly isotropic, in conflict with the assumption that distant

regions of the universe are not causally connected. This observation provides strong

motivation for a period of rapid inflation in the very early universe. In the early

1990’s the RELIKT and COBE satellites measured deviations from perfect isotropy

at around one part per 105. Measuring the power spectrum of anisotropies in the

CMBR enabled cosmology to become a precise science. This, however, led to some

confusion, as these and other measurements conflicted with the infered age of the

universe [1]. Then in 1998, groups led by Brain Schmidt and Saul Perlmutter used

supernovae to observe the accelerated expansion of the universe [2, 3], proving the

universe had a non-zero cosmological constant. Together these observations played a

critical role in the formation of the standard cosmological model, ΛCDM (Lambda,

the cosmological constant and CDM for cold dark matter). Currently, the state of

the art measurements from the Planck satellite have determined that the universe is

68.5% dark energy, 26.5% dark matter and 5% baryonic matter [4].

Despite baryonic matter being the smallest component of the universe, it is the

most well understood. The history of our understanding of ordinary matter is long,

and initial attempts to explain how matter behaves were primitive. However, while

describing matter with the four classical elements of antiquity (earth, air, fire and

water) may have been naive, the underlying concept of reductionism has been remark-

ably successful. From there it was a small philosophical jump to atomism, though
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experimental evidence would have to wait a few millenia. After Dalton explained

chemical reactions in terms of atoms in the early 19th century, particle theory started

to take off. Within 100 years, electrons, protons and neutrons were discovered. Fur-

ther scrutiny revealed protons and neutrons were not fundamental, but instead made

of complex states of quarks and gluons. It is unclear where this Russian-doll puzzle

will end, but there is reason to believe that more discoveries await those who probe

more deeply. The ability to probe the microscopic world is driven by access to higher

energy scales. This access is owed to the technological development humanity has

experienced throughout the last century, which has enabled scientists to undertake

ambitious projects such as the Large Hadron Collider (LHC). In 2012 the ATLAS

and CMS experiments at the LHC discovered the Higgs boson, predicted 40 years

ago, completing the Standard Model of particle physics. While the Standard Model

is the most precisely tested theory of nature, it does not explain dark matter or dark

energy and so only describes a meager 5% of the universe.

1.1 Evidence for Dark Matter

The evidence for dark matter is only gravitational in nature, its presence inferred

through indirect observations. The first such observation was made by Fritz Zwicky

in the 1930’s, who observed the Coma cluster of galaxies and found that the galaxies

therein did not appear to obey the virial theorem. Zwicky hypothesized that there

was ‘dunkle materie’ (dark matter) that made up the difference [5]. The precision

of Zwicky’s observations was low, and more robust evidence didn’t come until 1970

when Vera Rubin and Ken Freeman measured rotation curves of galaxies [6, 7]. They

found that gas moved faster at large radii than expected, Freeman remarked that

additional mass, distributed very differently to visible mass, must therefore exist in
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these galaxies. Further rotation curve measurements firmly established the existence

of dark matter within all galaxies. To explain these observations, dark matter must

be distributed in a large halo (many times the size of the disk) around galaxies and

generally account for more than 50% of its total mass.

An alternative (but still gravitational) probe of the dark matter is through gravi-

tational lensing. When a distant galaxy is lensed by an intervening cluster of galaxies,

it is possible to get a measurement of the mass of the cluster. While this method

comes with its own systematic errors, it provides an independent, alternative method

to the virial method pioneered by Zwicky. It is found that around 85% of the mass

of the galaxy clusters is in dark matter [8], this is higher than within galaxies, and is

more representative of the universe as a whole. A striking example of the dominance

of dark matter within clusters is the bullet cluster, shown in Fig. 1.1. The bullet

cluster consists of two colliding galaxy clusters which are in the process of merging.

Presently it can be observed that while much hot gas has collided, the majority of the

mass in these clusters (due to dark matter) passed through the collision unaffected.

This observation provides compelling evidence that the dark matter is non-baryonic

and does not have an appreciable self-interation. Critics of the ‘dissociative merger’

interpretation of the bullet cluster point out that it is a sample size of one, and per-

haps it could be explained by other means. Therefore a group, the Merging Cluster

Collaboration, has begun searching for similar dissociative mergers and have currently

identified seven more examples [9].

On the largest scales currently accessible to observation, the CMBR, the gravita-

tional effects of the dark matter can also be observed. By the epoch of recombination,

the dark matter had long since decoupled and started to collapse into a clumpy dis-
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Figure 1.1: The bullet cluster, with the projected total mass shown in green contours
(lensing data) and the plasma shown in color (x-ray data) [8].

tribution. At this point in the history of the universe the dark matter dominated

the energy density and thus provided a significant gravitational potential background

for the matter and radiation components of the energy density. The gravitational

potential has 2 effects on the observed CMBR: first, it causes a modulation of the

density of the plasma, and secondly, it provides a gravitational well out of which the

photons of the CMBR must climb (known as the Sacks-Wolf effect). The net effect

is that different regions of the universe become transparent at different times. Since

this occurs on an expanding background, it leads to an increased cosmological red

shift for areas with higher dark matter density. Given that the temperature of the

photons decreases linearly with expansion/red-shift, the temperature of the CMBR

changes slightly at different points on the sky. This was most recently illustrated by

the Planck satellite, see Fig. 1.2. These effects dominate on larger angular scales, and

so measuring the first few peaks of the power spectrum prodives a robust determina-

tion of the total dark matter content of the universe. In particular the relative heights

of the first few peaks quantify the baryonic matter to dark matter ratio, which is in

good agreement with results from big-bang nucleosynthesis.
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Figure 1.2: The CMBR sky, as observed by the Planck satellite, credit: ESA.

The above three observations probe the dark matter on three distinct scales, the

galactic, inter-galactic, and cosmic scale. This is not a comprehensive list, but it

highlights that the phenomena of missing, non-baryonic mass is independent of the

scale being observed. Given the above observations, dark matter must be a stable

and neutral particle (or have a very small charge). The only particles with these

properties are the neutrinos. While neutrinos are appropriately elusive particles,

their mass is too small to be the dark matter (current limits on the sum of neutrino

masses are: Σmνi < 0.18 eV [10]). Their low mass means that they are always

relativistic, making them a poor candidate for (cold) dark matter. Therefore, new

candidate particles have been proposed to explain the dark matter, for example,

WIMPs (weakly interacting massive particles), axions, and sterile neutrinos. Each of

these particles extend the Standard Model in different ways, while still reproducing

the observed cosmic distribution of dark matter. This dissertation will focus on

WIMP dark matter.
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1.2 WIMP Dark Matter

A simple and compelling paradigm for the dark matter is that it consists of a

weakly interacting massive particle (WIMP), which was thermally produced in the

early universe. A sufficiently massive WIMP will have decoupled from the primoridal

plasma, leaving behind a relic which we observe to be the dark matter. The abun-

dance, nt, of such a particle can be calculated from the Boltzmann equation in an

expanding universe with Hubble constant H, giving

dn

dt
= 〈σv〉(n2

eq − n2)− 3Hn, (1.1)

where 〈σv〉 is the thermally averaged annihilation cross section. This equation is

commonly written in terms of the entropy-weighted abundance Y = n
s
, and inverse

temperature x = m
T

,
dY

dx
= 1

3H
ds

dx
〈σv〉(Y 2 − Y 2

eq). (1.2)

As the temperature of the universe decreases below the WIMP mass, Yeq goes to zero.

The abundance then sharply decreases as WIMPs continue to annihilate until there

is only one WIMP per comoving volume. To find the relic abundance of WIMPs, the

integration can be approximated, or performed numerically (e.g. Figure 1.3). The

present day relic is then, as a fraction of the critial density,

ΩDMh
2 = ms0Y0h

2

ρcrit0
∼ 2.8× 108Y0

m

GeV . (1.3)

To obtain the observed abundance of dark matter (ΩDMh
2 = 0.11 [4]) with a 50 GeV

WIMP, the required cross section is

〈σv〉 ∼ 2.4× 10−23cm2/s ∼ 0.1c(λ/.1)4(mx/50GeV)2

16π(M/500GeV)4 . (1.4)

Thus the scale of the interaction, M , must be of order the weak scale to reproduce

the observed relic abundance. This coincidence is known as the WIMP miracle.
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Figure 1.3: Numerical solution to Boltzmann equation for a WIMP of mass 50GeV,
showing the decreasing particle abundance when the cross section is increased.

1.2.1 Dark Matter Experiments

To discern the nature of the observed dark matter, experiments must be conducted

to detect it. Experimentalists have three avenues for probing the dark matter:

1. Create dark matter in an accelerator such as the Large Hadron Collider. Col-

liders are ideal for studying particle properties, but one must also confirm that

the particle being created is the same particle responsible for the dark matter

observed in the universe.

2. Detect a signature of dark matter decay or annihilation in the galactic halo. This

method could provide a smoking gun signal, but two problems arise; dark matter

may not annihilate or decay, and discerning a signal from the astrophysical

background is difficult.
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3. Exploit the flux of dark matter through the Earth by detecting nuclear recoils

in a controlled environment. Such experiments are called ‘direct detection’ ex-

periments and are the subject of this dissertation.

Of the three detection methods, the best chance at unambiguously discovering

the particle nature of dark matter lies with direct detection. That said, each method

has its own complementary strengths, and each can provide vital clues about the na-

ture of the dark matter. For example: direct detection and collider searches are not

very sensitive to WIMP-lepton interactions, while indirect detection searches remain

unaffected. Alternatively, asymmetric dark matter models can greatly suppress indi-

rect detection signals, but leave the direct detection and collider searches unaffected.

Where one experiment has a blind spot, another may not; thus, having a thorough

understanding of the complementarity of the various experimental approaches will be

required to solve the dark matter puzzle.

1.2.2 Direct Detection of Dark Matter

In 1985 it was proposed that dark matter in the galactic halo could be detected

by observing its interaction with the nucleus of an atom [11, 12]. There are three

channels through which the nuclear recoils can be observed; phonon/heat produc-

tion, scintillation light, or charges from ionization. Detectors often use two of the

channels to help differentiate signal from background. Given that the local density

and relative velocity of WIMPs is approximately 0.3 GeV/cm3 and O(200km/s), the

flux of WIMPs is ∼ 6 × 106
(

1GeV
m

)
/cm2/s. Thus all material in this region of the

galaxy is subjected to ∼ σ
1pb WIMP-nucleus collisions per kilogram per day. While in

principle any material could be used to search for these nuclear recoils, in practice,
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detector materials are limited to a small set of elements. As of 2016, the state-of-the-

art detectors are made of liquid xenon (the Large Underground Xenon experiment,

LUX [13]) or crystalline germanium (the Cryogenic Dark Matter Search, CDMS [14]).

Xenon detectors typically use charge and light channels while germanium detectors

make use of phonon and charge channels. Other detectors made from silicon, argon,

sodium-iodide and fluorocarbons also exist, but are currently less sensitive.

Given the low signal event rate, the central challenge of direct detection experi-

ments is the reduction of the background event rate, which limits their sensitivity. To

this end, detectors are placed deep underground in naturally low radiation environ-

ments. For example, the Soudan mine in the USA houses the CDMS experiment1,

which is just over 2000mwe2 underground. Given the practical length of an exper-

iment is less than a decade, the limiting factor in sensitivity is the detector size.

Detector technology has matured, and experiments such as Xenon-1t are currently

scaling up their designs to have over a tonne of active mass. These detectors will be

sensitive to a single WIMP interaction in a tonne of detector over the course of 3

months of operation [15]. This level of sensitivity is now approaching the level where

a WIMP interacting with the SM through the higgs boson could now be discovered.

This is an important milestone at the heart of the WIMP miracle.

Beyond discovering a signal of the dark matter in direct detection experiments, it

is desirable to extract the properties of the particle responsible for it, e.g., its mass.

The complexity of these experiments makes it hard to collect information about the
1which will soon be moved to the deeper SNOLAB mine in Canada.
2mwe = meters water equivalent, a unit which expresses the depth of water which provides the

same level of shielding from cosmic rays.

10



nuclear recoils. Generally, only the amount of energy that the WIMP deposits in

the detector is measured. Some detectors can measure directional information, but

this comes at a cost of overall sensitivity, see for example DRIFT [16]. An additional

complication comes from the velocity distribution of the WIMPs in the halo, which

is not well constrained. Given that much of the information about the collision is

unknown (incoming/outgoing WIMP velocity, scattering angle), the inverse problem

of inferring WIMP properties from just the energy deposited is nontrivial. With

the possibility of dark matter being discovered in the coming years, it is important to

construct methods for extracting as much information as possible from any detection.

1.2.3 Outline

This thesis is based around three publications to which the author contributed

significantly, each paper forming one of the following three chapters. Chapter 2 is

based on [17], which contains a review of the standard formalism for analysing direct

detection experiments. The goal of this paper was to explore the impact a ton-scale

detector could have on measuring WIMP properties, under various assumptions of

the underlying WIMP model. It was found that the more assumptions relaxed, the

harder it was to extract WIMP properties. However, the addition of a second detector

with a different target material is able to mitigate this. While the goal of this paper

was to analyse WIMP scattering with minimal assumptions/model dependence, only

spin-independent scattering was considered, which is a significant limitation of the

study.

With the goal of providing a more general model-independent analysis of direct detec-

tion, the space of possible interactions needs to be expanded to include other forms of

scattering beyond spin-independent. Given the recent appearance of nonrelativistic
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effective field theory (NR-EFT) methods for direct detection [18], it was first desirable

to know which operators were actually relevant to dark matter. Chapter 3 (based on

[19]) provides a general analysis of direct detection experiments based on simplified

models of dark matter. It was found that not all EFT operators could be gener-

ated, and thus these EFT’s might be too general, i.e., they contain interactions which

cannot be easily produced by UV-complete models. Additionally, experimental rates

were calculated, and it was found that direct detection experiments can, in principle,

distinguish certain interactions. However, it remains unclear how plausible this would

be, using a realistic detector configuration.

Chapter 4 extends chapter 3 by applying a statistical formalism to quantify how dis-

cernable the simplified models actually are, the goal being to determine how many

events are required to distinguish different interactions (and in turn how large a de-

tector would need to be). As previously found in the literature, it was found that it

is highly crucial to have more than one detector target to achieve distinguishabililty

between interactions. Using two plausible future detector configurations, it was de-

termined that O(1000) events are required for robust model selection.

Neutrino coherent scattering will provide an irreducible background to the next gen-

eration of direct detection experiments. This places a lower limit on the WIMP

interaction strength which can be probed. However, if the WIMP interacts through

non-standard interactions, it might be discernable from the neutrino background.

Chapter 5 is based on [20], which explores the neutrino floor in the context of NR-

EFT. Using the EFT interactions explored in chapters 3 and 4, we find that many

operators will not suffer greatly from the neutrino background.

Finally, chapter 6 concludes and provides an outlook on the field of direct dark matter

detection, with a discussion of future work.
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Chapter 2

SCIENTIFIC REACH OF TON-SCALE DIRECT DARK MATTER DETECTION

2.1 Introduction

Weakly interacting massive particles (WIMPs), among the favored candidates for

dark matter, have thus far not been conclusively detected in experiments sensitive to

WIMP scattering with nuclei. A new generation of larger and more diverse detectors

is under development, which motivates a consideration of the physics reach of these

experiments in order to guide in their design, and also to focus on which uncertain-

ties will be most significant in constraining the conclusions one may derive from any

purported detection [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. As these detectors become

more complex and more expensive, the biggest design effort should reside in ensuring

that astrophysical and particle physics degeneracies that will confuse the interpreta-

tion of any signal observed by the detectors are reduced as much as possible. What is

required is a realistic, comprehensive numerical tool to model the detectors and the

relevant physics, and one which can be easily modified as design parameters develop

and new astrophysical and particle physics constraints evolve. We have recently set

out to complete such a task.

The DARWIN (DARk matter search WIth Noble liquids) project involves a pro-

posed multi-ton detector, based on noble-liquid time projection chamber technology

that has been demonstrated with xenon [31] and argon targets [32]. These are comple-

mentary targets, since they are well separated in atomic mass, leading to peak sensi-

tivities at different dark matter masses. (For an in-depth description of the DARWIN

detector see [33, 34, 35]). While the effect of complementarity has been studied for
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a number of target combinations [22, 23, 24, 25, 27, 28], DARWIN is currently the

furthest developed proposal for a direct detection experiment with multiple targets.

In this paper we report on the results obtained from the development of a numerical

tool that allows a rapid exploration of proposed signals using the most up to date par-

ticle physics constraints, astrophysical constraints, and background data, including

possible isospin violation, inelastic interactions (in the WIMP sector), different dark

matter phase space estimates, and solar neutrino and other detector backgrounds.

We explore degeneracies between different sources of confusion, and point out which

areas of experimental and theoretical investigation are likely to be most fruitful if one

wants to best exploit co-located detectors containing different noble liquids.

We find that for WIMP masses less than around 200 GeV, the use of two targets

can reduce mass and cross section degeneracies and enhance discrimination in the

mass-cross section plane, relative to increasing the exposure of either individual target,

in agreement with [22].

2.2 Particle Physics and Astrophysics Inputs

2.2.1 General Formalism

The primary quantity of interest in direct detection experiments is the differential

event rate. In our initial analysis we will focus on WIMPs with spin-independent

interactions, in part for simplicity and in part to connect with most of the previous

detector development literature, which has focused on this scenario. In a future work

we will extend this analysis to include the impact of possible spin dependence (see

for example [36, 37, 38, 39, 40]) upon the physics reach of DARWIN and similar

detectors.
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With respect to the recoil energy ER, the differential rate per nuclei per unit time

is
dR

dER
= ρχ
mχmN

∫
|v|>vmin

|v|f(v) dσ
dER

d3v, (2.1)

where ρχ is the local dark matter density, and mχ, mN are the WIMP and nucleus

masses, respectively. The integral averages over the velocity distribution of WIMPs,

f(v), weighted by the differential cross section dσ
dER

. Kinematically the minimum

velocity, vmin, that can contribute to a recoil of energy ER is [25]

vmin = 1√
2ERmN

(
ERmN

µχN
+ δ

)
, (2.2)

where µχN is the WIMP-nucleus reduced mass and δ is an inelastic scattering pa-

rameter (δ = 0 recovers the elastic case). (We note that inelastic scattering is not a

property of most WIMP models, but this possibility has been raised [41], and thus

we include it here for completeness.) While we are interested in the energy spectrum

of the recoils, the full rate can be obtained by integrating this over the range of recoil

energies that the detector is sensitive to. The standard approach is to write the cross

section in terms of the WIMP-nucleon cross section at zero momentum transfer, σ0,

and the nuclear form factor, F 2(ER),

dσ

dER
= mN

2v2µ2
χN

σ0F
2(ER). (2.3)

The WIMP-nucleon cross section can be written in terms of contributions from neu-

tron and proton scattering, σ0 = 4µ2
χN

π
[Zfp + (A − Z)fn]2, where A and Z are the

atomic mass and number of the detector material, σχn = 4µ2
χn

π
f 2
n and σχp = 4µ2

χp

π
f 2
p .

Setting the proton and neutron masses to be equal, an appropriate approximation at

the level of accuracy of relevance here, allows one to write σχn =
(
fn
fp

)2
σχp, such that

the factor fn
fp

neatly incorporates isospin violating interactions. Eq. 2.1 then becomes

dR

dER
= σχp

2mχµ2
χp

(
Z + fn

fp
(A− Z)

)2

F 2(ER)G(vmin), (2.4)
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where we have defined

G(vmin) = ρχ

∫
|v|>vmin

f(v)
|v|

d3v. (2.5)

Using this formalism, the astrophysical and particle physics/nuclear physics inputs

are each contained in separate terms, allowing us to examine each in turn.

2.2.2 Particle and Nuclear Physics Parameters

Isospin and Inelasticity

We have assumed here a simple spin-independent scattering amplitude which means

that at low energy the scattering cross section on a nucleus is a simple constant times

some product of nuclear charges squared. While this simplifies the analysis greatly

there nevertheless remain two important unknowns related to the specific particle

physics parameters of the WIMP sector. The first involves the WIMP couplings to

different quarks, which at low energies gets translated into possible isospin violations

in the WIMP scattering cross section. The second involves the (at present, less

generic) scenario of excitations in the WIMP sector, which would produce possible

inelasticity in the WIMP cross section, parameterized by the quantity δ mentioned

earlier. When the isospin factor is not unity or the inelastic parameter is non-zero,

the spectrum is modified, as shown in Fig. 2.1. The isospin factor only affects the

magnitude of the recoil rate, while the inelastic parameter severely modifies the shape

of the recoil spectrum, as can be seen from Eq. 2.4. The result is that experiments

sensitive to the shape of the recoil spectrum are able to determine the value of the

inelastic parameter but not the isospin factor, which therefore suffers a degeneracy

with the cross section.
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Figure 2.1: The differential event rate per femtobarn of cross section for vari-
ous values of the isospin violating factor (left) and the inelastic parameter (right),
for a WIMP with mχ = 100 GeV in a Xenon target, compared to a benchmark
WIMP model with the same mass (solid line). A Maxwell-Boltzmann phase-space
distribution and the Helm form factor have been assumed (see later sections).
Left: From top to bottom, fn/fp = {1.5, 1, 0.5,−1}. Right: From top to bottom,
δ = {0, 25, 50, 75, 100} keV.

Form Factors

The nuclear form factor encodes the energy dependence of the WIMP-proton cross

section, allowing us to derive limits on the cross section at zero momentum transfer.

In the lowest order Born approximation, the form factor is the Fourier transform of

the nuclear mass distribution. Approximating the nuclei as spherically symmetric we

have

F (q) =
∫ ∞

0
ρ(r)sin(qr)

qr
4πr2dr, (2.6)

where q is the momentum transfer. The mass distribution of nuclei is not well known,

and instead it is generally assumed that the nuclei’s mass distribution is approxi-

mately the same as its charge-distribution. The most commonly used fits to the charge

distribution are the two and the three parameter Fermi distributions (2PF/3PF),

ρ2PF(r) = 1
1 + exp( r−c

z
) , (2.7)

ρ3PF(r) =
1 + w r2

c2

1 + exp( r−c
z

) , (2.8)
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where the normalization is obtained by requiring F (q = 0) = 1. Unfortunately these

distributions do not have analytic Fourier transforms. Instead it is common to use

the analytic Helm form factor, obtained by convolving a constant, spherical charge

distribution with a ‘fuzzy’ skin. The Helm form factor is given by [42]

F (q) = 3sin(qrn)− qrncos(qrn)
(qrn)3 exp

[
−(qs)2

2

]
, (2.9)

where the skin thickness s ≈ 0.9 fm and we use [43]

r2
n =

(
(1.23A1/3 − 0.6)2 + 7

3π
2(0.52)2 − 5

(
s

fm

)2
)

fm2. (2.10)

Using the parameters given in Table 2.1, the 2PF and 3PF form factors for argon

and xenon are compared with the Helm form factor in Fig. 2.2. Given the agreement

of the form factors over the relevant WIMP search region of both detectors, we can

choose to use the Helm form factor with minimal loss of precision. Furthermore, it

has been shown that small deformations from the assumption of spherical symmetry

of the nucleus do not cause any substantial changes to the form factor at low energies

[44, 45].

Table 2.1: Parameters for the charge distributions of argon and xenon
2PF 3PF

40Ar [46] c = 3.53 fm c = 3.73± 0.05 fm

z = 0.542 fm z = 0.62± 0.01 fm

w = −0.19± 0.04 fm
132Xe [47, 48] c = 3.646 fm c = 5.487 fm

z = 0.523 fm z = 0.557 fm

w = 0.219 fm
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Figure 2.2: The Helm (red, dashed), 2PF (blue, fine dashed) and 3PF (green, solid)
form factors for left: argon-40 right: xenon-132 over the energy range relevant to
WIMP scattering. The vertical lines show the WIMP search region for each detector.

2.2.3 Astrophysical Parameters: Dark Matter Phase Space Considerations

The velocity distribution of the WIMPs in the galactic halo is a large source

of uncertainty in the calculation of the differential event rate [49, 50, 51, 52, 53].

Fortunately, while significant uncertainties still remain, there has been significant

progress coming from both observational and numerical studies of dark matter in our

galaxy.

In considering the impact of the WIMP velocity distribution in the halo on the

differential recoil spectrum, we must first transform into the rest frame of the Earth

to find the local DM velocity v,

v = v ′ − ve = v ′ − (v0 + v� + v⊕), (2.11)

where v ′ is the DM velocity in the Galactic rest frame, and the Earth’s velocity ve

is made up of the galactic rotational velocity, v0, the Sun’s peculiar velocity, v�, and

the Earth’s orbital velocity about the sun, v⊕. The small annual modulation due

to v⊕ is not considered in this work, and the Sun’s peculiar velocity is taken to be

v� = (10.0, 5.23, 7.17) km/s [54], where the direction of the three elements of the

vector are radially inwards towards the center of the galaxy, in the direction of v0,
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and upwards from the plane of the galaxy respectively. The choice of v0 is discussed

at the end of this subsection.

The standard halo model assumes a singular isothermal sphere of WIMPs, corre-

sponding to a Maxwell-Boltzmann (MB) distribution of velocities,

fMB(v ′) = 1
v3

0π
3/2 exp

[
−v ′.v ′

v2
0

]
. (2.12)

While the singular isothermal sphere is not a good fit to the galactic density profile,

the MB velocity distribution actually leads to somewhat conservative predictions [55].

The advantage of using the MB distribution is that it has an analytical solution to

the integral in Eq. 2.5. After converting the integral into an integral of the MB

distribution over the speed v ≡ |v| and the angle between v and ve, θ, one finds

∫ f(v)
|v| d

3v =
∫ vmax
vmin

∫ 1
−1 2πvf(v, cos θ)d cos θdv =

1
2ve

(
erf(ve−vmin

v0
) + erf(ve+vmin

v0
)− erf(ve−vmax

v0
)− erf(ve+vmax

v0
)
)
, (2.13)

where vesc is the galactic escape velocity at the Earth’s position. Formally we should

truncate the distribution at vesc in the galactic frame before integrating, but setting

vmax = vesc + ve, the above formula is accurate to a few parts per million.

More realistic velocity distributions can be obtained if one assumes a spherically

symmetric spatial distribution and isotropic velocity dispersion of WIMPs in the

galactic halo. Specifically, we consider the Hernquist [56], Navarro, Frenk and White

(NFW) [57], Burkert [58] and Einasto [59, 60] profiles. The NFW profile became

the canonical profile for some time, and we include it for direct comparison with the

literature. The Einasto profile is similar to the NFW at large radii, but avoids the

large central cusp at the Galactic center. The Burkert profile is believed to provide

a good description of the DM density profile in dwarf galaxies, and the Hernquist

profile has the advantage of an analytic formula for the DM phase-space distribution,

as we shall describe shortly.
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In the case of a spherically symmetric velocity dispersion, the velocity distribu-

tion can be determined from the gravitational potential according to Eddington’s

formula [61],

Fh(E) = 1√
8π2

(∫ E
0

d2ρχ(r)
dΨ2

dΨ√
E −Ψ

+ 1√
E

(
dρχ(r)
dΨ

)
Ψ=0

)
. (2.14)

Here the relative potential Ψ(r) and the relative energy E are defined as

Ψ(r) = −Φ(r) and (2.15)

E = −E = Ψ(r)− Ek, (2.16)

where Φ is the gravitational potential, and E and Ek are the total and kinetic

energy respectively. The gravitational potential Φ can be found from Poisson’s equa-

tion using any of the density profiles we consider. While Φ is the total gravitational

potential, we neglect the effect of baryons, as their effect on the evolution of the DM

density is unsettled; See e.g. Kuhlen et al. (2013) [62] and references therein. We

plan to investigate this effect in a future work. Seeking to determine the local dark

matter density, Catena and Ullio [51] used a Bayesian approach to constrain the 7

(8 for Einasto) parameters needed to model the Milky Way. These parameters are:

our distance from the center of the galaxy; two dark matter halo parameters (the

virial mass and a dimensionless virial scale, plus a halo profile shape parameter for

Einasto); three baryonic parameters; and a parameter to encode the anisotropy of

halo stars (see Ref. [51] for definitions). The analytic phase-space distribution for

the Hernquist profile can be obtained using Eq. 2.14 in combination with the density

profile and potential,

ρH(r) = MMWa

2πr(r + a)3 , (2.17)
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a =
√
GN MMWR0 −R0v0

v0
, (2.18)

Φ = −GN MMW

r + a
, (2.19)

where R0 is the distance from the Sun to the center of the Galaxy and MMW is the

mass of the Milky Way, giving [56]

f(q) = (8q4 − 8q2 − 3) q
√

1− q2 (1− 2q2) + 3 sin−1(q)
(1− q2)5/2 , (2.20)

q =
√

aε

GN MMW
, (2.21)

ε = GN MMW

a+R0
− 1

2 (v ′.v ′) . (2.22)

We adopt a value of v0/R0 = 29.45 km/s/kpc [63]. MMW is determined from ρχ

and v0 following the technique in Hernquist (1990) [56]. Finally, while the effect

of microhalos on direct detection experiments has been shown to be minimal [64],

N-body simulations of galactic halos do show a departure on small scales from the

standard smooth isothermal model. Thus, we also consider here the results of the Via

Lactea numerical simulation [49], for comparison with the analytic model estimates.

For an illustrative comparison of how uncertainties in these distributions affect

the WIMP scattering rate, each of the distributions is integrated by Eq. 2.5 and

the results are shown in Fig. 2.3 and Fig. 2.4. The MB, Herquist and Via Lactea

distributions use the standard astrophysical assumptions of v0 = 220 ± 20 km s−1,

vesc = 544+64
−46 km/s1 and ρχ = 0.3±0.1 GeV/cm2 [65]. Note that there is considerable

variation in the favoured values of v0 and ρχ (see [66, 67, 65]). The large uncertainties

we adopt cover most of the proposed range of these parameters. Also note that other

halo models are designed to more accurately model the details of the data and thus

have a smaller range of quoted uncertainties in the phase space distribution.
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Figure 2.3: Numerical results of Eq. 2.5 for, from left: MB, Hernquist and Via
Lactea profiles. The black dashed curve shows the mean value, while the green and
yellow regions show one- and two-sigma errors. Note the errors here are larger than
in Fig. 2.4 since only v0, ρχ and vesc (and for Hernquist, R0, distance to center of the
galaxy) are used to constrain these models.
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Figure 2.4: Numerical results of Eq. 2.5 for each of the velocity distributions from
[51]. From left: NFW, Burkert and Einasto profiles. The black dashed curve shows
the mean value, while the yellow and green regions show one- and two-sigma errors.

2.2.4 Backgrounds

Ultimately, it is the background rate that sets the lower limit of observable signal

rates, so that significant attention must be paid to both shielding the detector from

unwanted radioactive backgrounds, and also to devising methods to distinguish be-

tween possible signal and background events, in particular to distinguish candidate

WIMP events which involve single scatter nuclear recoils from multiple scatter nuclear

events and electronic recoils.

The XENON100 detector was able to achieve a pre-discrimination background

rate of 5.3× 10−3 dru (events/kg/day/keVn.r.) [31]. For the future xenon component

of the DARWIN detector and argon DarkSide-50 detector, the pre-discrimination

electronic background goal is 10−6 dru (not including the solar neutrino background)
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and O(1) dru respectively. In both cases the background is assumed to be constant

in energy, and the radioactive nuclear recoil background is subdominant.

Liquid scintillators discriminate nuclear and electronic recoils via prompt vs. de-

layed signal cuts and/or pulse shape analysis. While the electronic recoil background

in argon detectors is currently much larger, electronic recoils in argon can be dis-

criminated at a rate of 1 part in 107 [32], compared with 2.5 parts in 103 for xenon.

To provide a coincident detection and maximize complementarity, the argon detector

must be as sensitive as the xenon detector, requiring a factor of 100 reduction in

the argon background, which could be achieved through the use of low radioactivity

argon [68].

Beyond intrinsic detector backgrounds, there is one ultimate background that is

irremovable, and puts a lower limit on the scattering cross section sensitivity of WIMP

dark matter detection experiments of the type considered here. This is the solar neu-

trino background, which comes in at a level of σ = 10−48cm2. In particular, elastic

scattering of solar pp-neutrinos from electrons provides a flat background which can-

not be feasibly screened. While electronic recoils can be discriminated and rejected,

at some level, below that level the remaining spectrum (see Fig. 2.5) is irreducible.

This corresponds to a rate of 1.8×10−4 events/tonne/day in the xenon WIMP search

region [35]. To obtain a rate for argon detectors one must scale the xenon spectrum

by ZArAXe
ZXeAAr

= 1.096. Due to the considerations described in the previous paragraph,

however, this will be a sub-dominant component of the background in argon.
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Figure 2.5: The differential event rate in a xenon detector for a 100GeV WIMP with
σχp = 3× 10−46 cm2 using standard astrophysical assumptions (black solid) and the
irreducible (after 99.75% rejection) neutrino backgrounds (blue dashed) [35]

2.3 Projected Sensitivity

2.3.1 Projected Experimental Upper Limits

To estimate the sensitivity of future experiments we construct 90% exclusion limits

using the profile likelihood method on a representative ‘Asimov’ dataset [69, 70]. This

method utilizes the test statistic,

qσ =


−2log(λ(σ)) σ ≥ σ̂

0 σ < σ̂

where λ is the profile likelihood ratio,

λ(σ) = L(σ, ˆ̂
θ)

L(σ̂, θ̂)
. (2.23)

Here θ represents all of the uncertain parameters that enter the likelihood, σ̂ and θ̂

denote that the likelihood has been maximized with respect to those parameters and
ˆ̂
θ denotes the likelihood has been maximized for the given σ. The likelihood function

is a product of the probabilities of having observed Ai events, given the expected Ei

events, for a given energy bin,

L(σ, θ) =
N∏
i=1

P (Ei(σ, θ), Ai). (2.24)
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Table 2.2: These detector parameters are motivated by current experiments and
expected performance of future detectors [32, 71, 72]. The backgrounds are assumed
to be constant in energy.

Xenon Argon

Nuclear recoil acceptance 40% 50% at 35keV, 100% >60 keV

Total background (post-discrim.) 6× 10−9 dru 2.3× 10−9 dru

WIMP search region 6.6-43 keV 20-150 keV

The expected number of events Ei is the sum of both the expected DM recoil events

and the background events in that energy bin. We define the WIMP search regions

to be 6.6-43 keV for xenon and 20-150 keV for argon; the regions are split up into

bins of width 5 keV (in lieu of smearing). The detector parameters are summarized

in Table 2.2.

Typically, the XENON collaboration expose their detector for the length of time

expected to produce single background event [31]. With this in mind, the solar

neutrino background limits exposure to around 10 tonne-years in xenon. The limits

obtained for several exposures of xenon and argon compared to the final XENON100

limits are shown in Fig. 2.6 (left). Note that to achieve comparable sensitivity, a larger

fiducial volume of argon is necessary compared with xenon. Unless the neutrino

background can be unambiguously subtracted or otherwise discriminated (e.g. via

the use of directional information as described in [73]), these limits approximately

represent the floor to the sensitivity of the current xenon liquid scintillator design.

Fig. 2.6 (center and right) shows the effect of the uncertainty of the phase-space

density on a 10 tonne-years xenon exposure. The NFW, Einasto and Burkert profiles

enforce more stringent limits because they favor a local WIMP density of ρχ = 0.4

GeV cm−3 [51]. Thus the standard MB assumptions are conservative in comparison

to these more realistic profiles.
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Figure 2.6: Left: comparison of exclusion limits for a 10 (blue, dotted) and 20 (blue,
dot-dot-dashed) tonne-years xenon exposure, 20 (green, dashed) and 30 (green, dot-
dashed) tonne-years argon exposure, and the current best limits set by XENON100
(red, solid) [31] (standard astrophysical assumptions). Center: the effect of astrophys-
ical uncertainties on a 10 tonne-years xenon exposure with neutrino-only backgrounds
for different WIMP halo profiles compared to MB with standard assumptions (black
dashed): MB (yellow), Herquist (green), Via Lactea II (purple) and right: Einasto
(yellow), NFW (red), Burkert (green) and MB with ρχ = 0.4 GeV cm−3 (dotted).

2.3.2 Signal Simulation and Parameter Reconstruction

After specifing a WIMP model:

• WIMP mass mχ,

• proton cross section σχp,

• isospin violating factor fn
fp

, and

• inelastic parameter δ,

we generate an Asimov dataset of recoil events according to the differential event

rate Eq. 2.4. The simulated events are binned as defined in the previous section and

the MultiNest sampler [74] is used to reconstruct the WIMP model parameters (or

a subset therein). MultiNest returns the full posterior probability distribution via

Bayes theorem,

P(θ,D|I) = L(D|θ, I)π(θ, I)
ε(D, I) , (2.25)

where the likelihood function is as previously defined in Eq. 2.24, and π and ε are the

prior probabilities and Bayesian evidence respectively. The types of priors used are
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given in Table 2.3. We then marginalize the posterior probability over all parameters

except WIMP mass and proton cross section. Except where otherwise noted, the

inelastic and isospin violating parameters were fixed to δ = 0 keV and fn
fp

= 1 and not

allowed to vary in the reconstruction.

Table 2.3: The chosen priors for the WIMP sampling parameters and the standard
astrophysical parameters, motivated by [75, 76, 77], errors denote 1-sigma intervals.

Parameter Range Prior

mχ 1− 2000 GeV log

σχp 10−48 − 10−42 cm2 log
fn
fp

-4− 4 linear

δ 0− 100 keV linear

v0 220± 20 km/s Gaussian

vesc 544± 40 km/s Gaussian

ρχ 0.3± 0.1 GeV/cm2 Gaussian

To test the complementarity of a xenon and argon detector, WIMP events with

σχp = 3×10−46 cm2 and masses of 20, 100 and 500 GeV were simulated for xenon and

xenon plus argon detector configurations. The resulting detector reconstructions are

shown in Fig. 2.7 (left). The Helm form factor and MB distribution were used (with

uncertainties marginalized). The results show, with the detectors working together,

that complementarity does provide a small improvement across the whole mass range,

but most significantly at 100GeV (approximately the crossover between the different

detector sensitivities). It is interesting to contrast this with the improvement gained

by increasing the exposure of the xenon detector alone, either through increasing

the exposure time or fiducial volume also shown in Fig. 2.7 left. This allows us to

compare the increase in sensitivity due to the complementarity between the targets

versus the improvement due to the increased exposure. We can see that by using the
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Figure 2.7: One- and two-sigma credible regions of the marginal posterior prob-
abilities for simulations of WIMPs with left: σχp = 3 × 10−46 cm2, and masses
20GeV, 100GeV and 500GeV, for exposures of 10 tonne-years xenon (green), 20 tonne-
years xenon (red) and 10 tonne-years xenon plus 20 tonne-years argon (blue). Right:
σχp = 3 × 10−46 cm2 (green), σχp = 3 × 10−47 cm2 (red) and σχp = 3 × 10−48 cm2

(blue) for an exposure of 10 tonne-years xenon plus 20 tonne-years argon. The ‘+’
indicates the simulated model.

two detectors there is an improvement in the 2σ error in the reconstructed mass, but

at 1σ the improvement is very minor. Note that where degeneracies exist (e.g. the

mχ = 500 GeV reconstruction in Fig. 2.7) or statistics are low (e.g. the σχp = 3×10−48

cm2 reconstruction of Fig. 2.7 right) the apparent cutoff of the credible regions at the

edges of the graphs are artifacts of our mass and cross section priors (M ≤ 2 TeV,

σ ≥ 10−48 cm2).

In the case of isospin violating interactions, we still simulate a WIMP with fn
fp

= 1,

but now allow the value to vary during the reconstruction, assuming that fn
fp

has

not been experimentally determined in advance. Due to the degeneracy between

isospin violation and a change in the cross section, allowing fn
fp

to vary effectively

increases the uncertainty in inferred cross section (see Fig. 2.8 left). The addition

of a second detector has the potential to break this degeneracy; however, in practice
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the astrophysical uncertainties make this impossible. The inclusion of the argon

detector greatly improves mass reconstruction, but has a limited effect on reducing

the uncertainty in the inferred cross section (see Fig. 2.8 left and right). Also, we

once again see that there is not much improvement in reconstruction when using

two different detector targets compared with doubling the size of the xenon detector.

However, it is possible that with the addition of more detectors of different target

material, one can at least infer the sign of fn
fp

[25].

Figure 2.8: One- and two-sigma credible regions of the marginal posterior proba-
bilities for simulations of WIMPs with σχp = 3 × 10−46 cm2, mχ = 100 GeV, fn

fp
= 1

and δ = 0 keV. In both figures the isospin violating parameter fn
fp

is allowed to
vary during reconstruction. The dotted and dot-dashed curves show the degeneracy
between σχp and fn

fp
for argon and xenon respectively. Shown are exposures of 10

tonne-years xenon (green), 20 tonne-years xenon (red) and 10 tonne-years xenon plus
20 tonne-years argon (blue). (Left): Reconstruction in the σχp − fn

fp
plane. (Right):

Reconstruction in the σχp−mχ plane (note that the spikes are due to sampling error
in the reconstruction).

Although a less generic physical possibility, the addition of a non-zero inelastic

scattering probability greatly increases the uncertainty in the reconstruction, since

the event rate is decreased in this scenario. The event rate is diminished to such an
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extent that for δ = 100 keV, there are no inelastic events visible for a 100GeV WIMP

with σχp = 3 × 10−46 cm2. Events are observable for δ = 50 keV, and here the com-

plementarity of the two detectors provides a small improvement in the reconstruction

(see Fig. 2.9 left), compared with doubling the xenon exposure. Fixing δ = 0 during

simulation while allowing it to vary during reconstruction gives a modest increase

in the uncertainty in the reconstruction compared to assuming a specific value of δ,

shown in Fig. 2.9 right. The second detector plays a stronger role in the reconstruc-

tion of the value of δ, providing a substantially stronger constraint on δ than obtained

by doubling the size of the Xenon component, shown in Fig. 2.10.

Combining these two effects, if we assume neither fn/fp = 1 nor δ = 0 keV

in the reconstruction, then the WIMP properties can only weekly be constrained.

Fig. 2.11 left shows that similarly to the individual cases, fn/fp and δ are only weekly

constrained with individual detectors, while there is a strong improvement in the

reconstruction of δ once data from the two detectors are combined. Interestingly,

large values of δ seem to prefer positive values of fn/fp. Fig. 2.11 right shows that

little information can be obtained about the WIMP mass or cross section under

these relaxed assumptions. In particular, the reconstruction of the cross section is

substantially worse than under the standard assumptions of Fig. 2.7 left.

2.4 Conclusions

Given the current understanding of possible WIMP candidates for dark matter,

the greatest difficulty in extracting dark matter properties in direct detection experi-

ments arises from astrophysical uncertainties–in particular the underlying phase space

distribution in our halo. The existence of two different detector targets, each with

similar overall sensitivity but different sorts of systematic uncertainties, will certainly

aid in differentiating any claimed signal from possible background, but the question
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Figure 2.9: One- and two-sigma credible regions of the marginal posterior prob-
abilities for simulations of WIMPs with the same values of mχ, σχp and fn

fp
as in

Fig. 2.8. In both figures the inelastic scattering parameter δ is allowed to vary during
reconstruction. Shown are exposures of 10 tonne-years xenon (green), 20 tonne-years
xenon (red) and 10 tonne-years xenon plus 20 tonne-years argon (blue). (Left): δ = 0
keV during simulation, allowed to vary during reconstruction. (Right): δ = 50 keV
during simulation, allowed to vary during reconstruction.

arises as to what extent degeneracies in mass and cross section reconstruction can be

further reduced in the event of separate signals in the two detectors.

The DM direct-detection simulation and reconstruction program we have devel-

oped addresses this question, in addition to exploring the dominant sources of un-

certainty in the expected signal, with some surprising results. In particular, the

complementarity between xenon and argon targets only modestly improves the abil-

ity to remove the degeneracies affecting mass and cross section determinations, and

for dark matter particles in excess of around 200 GeV the allowed range in mass-

cross section space begins to blow up. While a number of particle physics parameters

produce sub-dominant uncertainties in reconstructing dark matter parameters from

an observed signal, the possibility of isospin violation in particular can dramatically

increase the uncertainty in derived parameters. Additional (or a different combina-
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Figure 2.10: One- and two-sigma credible regions of the marginal posterior proba-
bilities for simulations of WIMPs with the same parameters as in Fig. 2.8. In both
figures the inelastic scattering parameter is fixed to δ = 0 keV during simulation and
allowed to vary during reconstruction. Shown are exposures of 10 tonne-years xenon
(green), 20 tonne-years xenon (red) and 10 tonne-years xenon plus 20 tonne-years
argon (blue). (Left): Reconstruction in the σχp − δ plane. (Right): Reconstruction
in the δ −mχ plane.

tion of) detector targets would be needed to try to disentangle the effects of isospin

violation from a reduction in cross section. Improved constraints in halo parameters

would assist greatly in reconstruction efforts as well.

While possible spin-dependent effects in WIMP scattering will further complicate

the reconstruction effort, they will also provide another handle on distinguishing

signals from background and exploiting the complementarity of different target nuclei.

Future improvements in our program will determine to what extent the two competing

effects will alter the ability to determine WIMP properties based on signals in direct

detection experiments.

33



Figure 2.11: One- and two-sigma credible regions of the marginal posterior proba-
bilities for simulations of WIMPs with the same parameters as in Fig. 2.8. In both
figures, both fn

fp
and δ are fixed to the values in Fig. 2.8 during simulation and al-

lowed to vary during reconstruction. Shown are exposures of 10 tonne-years xenon
(green), 20 tonne-years xenon (red) and 10 tonne-years xenon plus 20 tonne-years
argon (blue). (Left): Reconstruction in the fn

fp
− δ plane. (right): Reconstruction in

the σχp −mχ plane.
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Chapter 3

A GENERAL ANALYSIS OF DARK MATTER DIRECT DETECTORS

We derive a complete set of non-relativistic operators, their coefficients, and nuclear

matrix elements relevant for direct detection rates and recoil spectra for scattering on

various target nuclei. We begin with a general set of simplified dark matter models

for spin-0, spin-1
2 , and spin-1 dark matter candidates, composed of Lorentz invariant

and renormalizable Lagrangians. This allows us to explore what high energy physics

constraints might be obtainable from direct detection experiments, what degeneracies

exist, which operators are ubiquitous and which are unlikely or sub-dominant. We

find that there are operators which are common to all spins as well operators which

are unique to spin-1
2 and spin-1. In addition we demonstrate how recoil energy spectra

can distinguish fundamental microphysics if multiple target nuclei are used. Our work

provides a complete roadmap for taking generic fundamental dark matter theories

and calculating rates in direct detection experiments. This provides a useful guide

for experimentalists designing experiments and theorists developing new dark matter

models.

3.1 Introduction

The existence of non-baryonic dark matter has been inferred from measurements

including galactic rotation curves [78], large scale structure surveys [79, 80, 81], X-

ray observations [82], gravitational lensing [83, 84], and cosmic microwave background

anisotropy measurements [85], spanning cosmological eras from the present day to the

remote past. This widespread and robust data has led to cold dark matter models

with a cosmological constant, labeled ΛCDM becoming entrenched as the standard

cosmological model.
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Nevertheless, this impressive array of observations has only been sensitive to the

gravitational influence of dark matter and constrained its relic abundance, leaving

its particle nature as one of the most important open questions in physics. The

search for dark matter includes indirect astrophysical searches ([86, 87, 88, 89, 90]),

collider production efforts (for some examples of dark matter searches at the LHC, see

[91, 92, 93, 94, 95]) which will examine new territory soon with LHC run 2 which will

commence this year, and attempts to observe dark matter interactions with Standard

Model (SM) particles via dark matter-nucleus scattering processes in direct detection

experiments, to which we now turn.

The search for dark matter via direct detection goes back at least three decades [12,

11] and has been particularly vigorous over the last decade or so with experiments such

as LUX [96], Xenon100 [31], CDMS II (Ge) [97], CDMS I (Si) [98], DAMA/LIBRA

[99], COGENT [100], and CRESST [101] pushing ever deeper into weakly interacting

dark matter mass and scattering cross-section parameter space, but has thus far

failed to yield a convincing signal. In the near future detectors such as Super CDMS

[102] (which has recently released its first results on low mass dark matter searches

[14, 103]), XENON1T [72], and DARWIN [35] are expected to push the limits of

direct detection orders of magnitude below the current levels.

In order to connect observations to microphysical models one needs a general

framework within which to interpret the observations of direct detection experiments.

For quite some time the prevailing method of analyzing dark matter-nucleus interac-

tions has been to assume that dark matter is a weakly interacting massive particle

(WIMP), and then to categorize the interactions as elastic and isospin conserving and

either spin-independent or spin-dependent [12]. For some well studied models of dark

matter, such as the weakly interacting Majorana neutralino found in supersymmetry

models, this assumption is reasonable.
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With an absence of observed dark matter signals, there has of late been a surge in

interest in exploring more general types of interactions between dark matter and

nuclei. Generalizations include inelastic and momentum dependent interactions,

which may arise due to additional structure in the dark sector including excited

dark matter states, or dark gauge bosons giving rise to electric and magnetic form

factors [41, 104, 105, 106, 107, 108, 109, 110].

The formalism of choice for many of these investigations is relativistic effective

field theory, which provides a model independent framework to analyse dark matter-

SM interactions [111, 112, 113]. It has been shown that these effective theories break

down when applied to high-momentum transfer experiments, such as the LHC [114].

Therefore analyses moved beyond this framework and have moved to what are labeled

as ‘simplified models’ instead [115, 116, 117]. Simplified models are field theories

which extend the SM by a single dark matter particle and a single mediator particle

which allows the WIMP to communicate with quarks and/or leptons. The newly

added dark matter content is assumed to be a singlet under the SM gauge groups

(we will consider some cases where the particles mediating the interaction have SM

charge). In this context it is then possible to calculate collider amplitudes valid at

the high energies of interest in such experiments. Given this simple dark sector, one

can write down an exhaustive list of every combination of WIMP and mediator spins,

and all possible tree level interactions. These simplified models have now gained

popularity for analyzing indirect detection signals [118, 119], allowing connections to

be made with the growing body of literature which make use of them.

Another step towards placing dark matter-nucleus interactions on a general footing

has been accomplished recently by utilizing a non-relativistic effective field theory

(EFT) approach [120, 18, 121, 122]. Since the interactions in direct detection scenarios

are assumed to take place due to an incoming dark matter particle with a typical
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velocity O(100km/s), the recoil momenta in such an interaction will be O(. 100keV).

The particle masses involved, including the nucleons of roughly GeV scale, the dark

matter particles, which typically range from the GeV region to several orders of

magnitude above, and mediators that can also be quite heavy compared to the typical

interaction momenta, produce a situation where an EFT treatment is quite natural.

In order to circumvent as much model dependence as possible, one can construct

general interactions which obey Galilean invariance, T -symmetry, and Hermiticity.

These operators will take the standard effective four-particle interaction form, rem-

iniscent of Fermi’s original model of weak interactions. The non-relativistic interac-

tions can be shown to be functions of only four parameters including the nucleon spin

SN , the dark matter spin Sχ, the momentum transfer, ~q, and a kinematic variable

~v⊥ which is a function of the relative incoming (~vχ,in − ~vN,in) and outgoing velocities

~vχ,out − ~vN,out

~v⊥ = 1
2 (~vχ,in − ~vN,in + ~vχ,out − ~vN,out) = ~vχ,in − ~vN,in + ~q

2µN
(3.1)

which obeys ~v⊥ · ~q = 0. It was demonstrated in [18] that there exist fifteen such

non-relativistic interactions which arise from twenty possible bi-linear combinations

of dark matter and nucleons.

The formalism developed in [18] is unique in being the only analysis to comprehen-

sively develop the nuclear physics of direct detection experiments. From this general

framework it is now apparent that there are interactions beyond the standard spin

independent/dependent type. The origins of these ‘new’ interactions are not neces-

sarily exotic and it has been shown, in the context of relativistic EFT, how many of

them can be generated [123].

What has been lacking to date however, is a completely general and comprehensive

treatment that connects high energy microphysics with low-energy effective nuclear
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matrix elements in a model independent way. It is possible, for example, that the

various interactions listed in [18] can give rise to degeneracies where different funda-

mental dark matter Lagrangians, describing dark matter and interaction mediators

of various spins, can produce the same interaction types. This will obviously pose

problems for attempts to discern the properties of dark matter when interpreting the

results of experimental data. Furthermore, dark matter may not be spin-1
2 , which cre-

ates a need for extending the parametric framework from the four descriptors listed

above. In particular, as we shall show, this allows the existence of new non-relativistic

operators to appear in the low energy effective theory.

Motivated by the above we present here a general relativistic analysis covering

a broad spectrum of particle and interaction types, starting from the microphysics,

which will enable one to link experiment with fundamental theory while incorporating

the new nuclear responses described in [18].

In this work we build upon the NR-EFT description by examining simplified mod-

els which incorporate the most general renormalizable Lagrangians for scalar, spinor,

and vector dark matter interacting with nucleons via scalar, spinor, and vector me-

diators, consistent with Lorentz invariance and hermiticity while imposing stability

of the dark matter candidates. We integrate out the heavy mediator and obtain ef-

fective relativistic interaction Lagrangians. Next, we take the non-relativistic limit

of these Lagrangians, and identify them with the NR operators from [18], which are

reproduced below, in Table 1. Using these, we identify which electroweak nuclear

responses are excited by a given fundamental interaction model and determine the

relative importance of various models within the context of direct detection experi-

ments consisting of xenon and germanium targets by exploring the relative magnitude

of coefficients of these operators, and also their energy dependence.
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The paper is organized as follows; in section 3.2 the EFT formalism of [18] is

summarized, in section 3.3 we build the generalized relativistic Lagrangians and in

section 3.4 we outline the signatures and distinguishability of these models in the con-

text of direct detection experiments, providing a framework for both experimentalists

and theorists to base their future analyses.

3.2 Effective Field Theory of Direct Detection

Conventionally, coherent WIMP-nucleus scattering has been considered to come

from two types of interactions; spin-independent (SI) and spin-dependent (SD). SI

interactions couple to the charge/mass of the nucleus while SD couples to the spin.

The nuclear cross section is generally written in terms of the nucleon cross section at

zero momentum transfer, σ0, and a form factor, F (q), to take into account the loss

of coherence over the finite size of the nucleus,

dσ

dEr
= M

2πµχMv2

(
σSI0 F 2

SI(q) + σSD0 F 2
SD(q)

)
. (3.2)

where M is the mass of the target nucleus and µχM is the WIMP-nucleus reduced

mass. This picture has recently been shown to be incomplete, as it is also possible

for the WIMP to couple to the nucleus through additional nuclear responses [18].

Working in the language of a non-relativistic (NR) effective field theory Fitzpatrick

et al. identified 15 operators to characterize the ways in which a WIMP can couple

to the various nuclear responses. These operators are constructed from combinations

of non-relativistic vectors which respect Galilean invariance, T symmetry and which

are Hermitian. We list them in table 5.1. The Hermitian vectors are:

i
~q

mN

, ~v⊥ = ~v + ~q

2µN
, ~Sχ, ~SN , (3.3)

where ~q = ~p′ − ~p = ~k − ~k′ is the momentum transfer, ~v is the velocity of WIMP with

respect to the nucleus of the detector, µN is the reduced mass of the system and ~Sχ
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and ~SN are the WIMP and nuclear spins respectively. Throughout the paper, we

denote by ~p and ~p′ the incoming and outgoing WIMP momenta and by ~k and ~k′ the

incoming and outgoing nuclear momenta respectively. Energy-momentum conserva-

tion implies the orthogonality condition ~q · ~v⊥ = 0. Here we will briefly outline the

procedure employed in [18] in going from the NR operators to the final differential

WIMP-nucleus cross section.

Table 3.1: List of NR effective operators described in [18]
O1 1χ1N

O2 (~v⊥)2

O3 i~SN · ( ~q
mN
× ~v⊥)

O4 ~Sχ · ~SN

O5 i~Sχ · ( ~q
mN
× ~v⊥)

O6 ( ~q
mN
· ~SN)( ~q

mN
· ~Sχ)

O7 ~SN · ~v⊥

O8 ~Sχ · ~v⊥

O9 i~Sχ · (~SN × ~q
mN

)

O10 i ~q
mN
· ~SN

O11 i ~q
mN
· ~Sχ

O12 ~Sχ · (~SN × ~v⊥)

O13 i(~Sχ · ~v⊥)( ~q
mN
· ~SN)

O14 i(~SN · ~v⊥)( ~q
mN
· ~Sχ)

O15 −(~Sχ · ~q
mN

)
(
(~SN × ~v⊥) · ~q

mN

)

In general one can write down the non-relativistic interaction Lagrangian as

LNR =
∑
α=n,p

15∑
i=1

cαi Oαi , (3.4)
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where the coefficients cαi are given by the microphysics of the interaction and in

general one could allow for isospin violation by having different couplings to neutron

and proton inside the nucleus. This can be rewritten in 2-component isospin space as

LNR =
∑
τ=0,1

15∑
i=1

cτiOitτ (3.5)

where t0 and t1 are the identity matrix and the Pauli matrix σ3 respectively. The

nucleus is composed of nucleons, and these can individually interact with the WIMP.

This is incorporated by considering the operator O(j) as an interaction between a

single nucleon, j, and the WIMP, and then summing over the nucleons.
∑
τ=0,1

15∑
i=1

cτiOitτ →
∑
τ=0,1

15∑
i=1

cτi

A∑
j=1
Oi(j)tτ (j) (3.6)

where A is the atomic mass number given by the total number of neutrons and

protons. One can do the same reduction with ~v⊥,

~v⊥ → {~vχ − ~vN(i), i = 1, ..., A}

≡ ~v⊥T − {~̇vN(i), i = 1, ..., A− 1} (3.7)

where ~vχ and ~vN(i) are the symmetrized combination of incoming and outgoing ve-

locities for the WIMP and nucleons respectively. ~v⊥T (here T stands for target, i.e.,

the nuclear center-of-mass) is defined as

~v⊥T = ~vχ −
1

2A

A∑
i=1

[~vN,in(i) + ~vN,out(i)] (3.8)

This allows for a decomposition of the nucleon velocities into internal velocities ~̇vN(i)

that act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve

as a WIMP scatters off the detector. As an example, the dot product between ~v⊥N

and ~SN can be rewritten as

~v⊥ · ~SN →
A∑
i=1

1
2 [~vχ,in + ~vχ,out − ~vN,in(i)− ~vN,out(i)] · ~SN(i) (3.9)

= ~v⊥T ·
A∑
i=1

~SN(i)−
{

A∑
i=1

1
2 [~vN,in(i) + ~vN,out(i)] · ~SN(i)

}
int

(3.10)
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The second term in the curly brackets is internal to the nucleus and acts as an oper-

ator on the ‘in’ and ‘out’ nucleon states. ~vN,in can be replaced by ~pN,in/M acting on

the incoming state, which can in turn be replaced by i←−∇/M , and similarly ~pN,out/M

by −i−→∇/M on the outgoing nuclear state. Finally, since the nucleus is non-zero in

size and individual nucleons locally interact with the WIMP, nuclear operators built

from Oi are accompanied by an additional spatial operator e−i~q·~x(i) where x(i) is the

location of the ith nucleon inside the nucleus.

Starting from Eqn. 3.6 and using the substitution rules for ~v⊥ and including a

factor of e−i~q·~xi , the interaction Lagrangian can be written as a sum of five distinct

terms (nuclear electroweak operators) that only act on internal nucleon states. Their

coefficients, on the other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus

interaction can then be written as

∑
τ=0,1

{
lτ0S + lAτ0 T +~lτ5 · ~P +~lτM ·Q+~lτE · ~R

}
tτ (i) (3.11)

where

S =
A∑
i=1

e−i~q·~xi

T =
A∑
i=1

1
2M

[
−1
i

←−
∇ i · ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i) · 1

i

−→
∇ i

]

~P =
A∑
i=1

~σ(i)e−i~q·~xi

~Q =
A∑
i=1

1
2M

[
−1
i

←−
∇ ie

−i~q·~xi + e−i~q·~xi
1
i

−→
∇ i

]

~R =
A∑
i=1

1
2M

[←−
∇ i × ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i)×−→∇ i

]
(3.12)
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and

lτ0 = cτ1 + icτ5
~Sχ ·

(
~q

mN

× ~v⊥T

)
+ cτ8(~Sχ · ~v⊥T ) + icτ11

~q · ~Sχ
mN

lAτ0 = −1
2

[
cτ7 + icτ14

(
~Sχ ·

~q

mN

)]

~l5 = 1
2

cτ3i
(
~q × ~v⊥T

)
mN

+ cτ4
~Sχ + cτ6

(~q · ~Sχ)~q
m2
N

+ cτ7~v
⊥
T + icτ9

(~q × ~Sχ)
mN

+ icτ10
~q

mN


cτ12(~v⊥T × ~Sχ) + icτ13

(Sχ · ~v⊥T )~q
mN

+ icτ14

(
~Sχ ·

~q

mN

)
~v⊥T + cτ15

(~q · ~Sχ)(~q × ~v⊥T )
m2
N


~lM = cτ5

(
i
~q

mN

× ~Sχ

)
− ~Sχc

τ
8

~lE = 1
2

cτ3 ~q

mN

+ icτ12
~Sχ − cτ13

(~q × ~Sχ)
mN

− icτ15
(~q · ~Sχ)~q
m2
N

 (3.13)

The WIMP-nucleus amplitude, M, can then be succinctly written as

M =
∑
τ=0,1
〈jχ,Mχ; jN ,MN |

{
lτ0S + lAτ0 T +~lτ5 · ~P +~lτM ·Q+~lτE · ~R

}
tτ (i)|jχ,Mχ; jN ,MN〉.

(3.14)

By using spherical decomposition, the internal nuclear operators S, T, P,Q and R can

be further rewritten in terms of standard nuclear electroweak responses as follows:

M =
∑
τ=0,1
〈jχ,Mχf ; jN ,MNf |

(∑
J=0

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ − ilAτ0

q

mN

Ω̃J0;τ (q)
]

(3.15)

+
∑
J=1

√
2π(2J + 1)(−i)J

∑
λ±1

(−1)λ
{
lτ5λ[λΣJ−λ;τ (q) + iΣ′

J−λ;τ (q)]

−i q

mN

lτMλ[λ∆J−λ;τ (q)]− i
q

mN

lτEλ[λΦ̃J−λ;τ (q) + iΦ̃′

J−λ;τ (q)]
}

+
∞∑
J=0

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′

J0;τ (q) + q

mN

lτM0∆̃′′

J0;τ (q) + q

mN

lτE0Φ̃′′

J0;τ (q)
])
|jχ,Mχi; jN ,MNi〉

Where there is an implicit sum over the nucleons,

OJM ;τ (q) ≡
A∑
i=1
OJM(q~xi)tτ (i), (3.16)

44



and the various electroweak responses are defined as

MJM(q~x) ≡ jJ(qx)YJM(Ωx)

~MM
JL ≡ jJ(qx)~YJLM(Ωx)

∆JM ≡ ~MM
JJ(qxi) ·

1
q
~∇i

Σ′

JM ≡ −i
{

1
q
~∇i × ~MM

JJ(q~xi)
}
· ~σ(i)

Σ′′

JM ≡
{

1
q
~∇iMJM(q~xi)

}
· ~σ(i)

Φ̃′

JM ≡
[

1
q
~∇i × ~MM

JJ(q~xi)
]
·
[
~σ(i)× 1

q
~∇i

]
+ 1

2
~MM
JJ(q~xi) · ~σ(i)

Φ′′

JM ≡ i

[
1
q
~∇iMJM(q~xi)

]
·
[
~σ(i)× 1

q
~∇i

]
ΣJM ≡ ~MM

JJ(q~xi) · ~σ(i)

Ω̃JM ≡ ΩJM(q~xi) + 1
2Σ′′

JM(q~xi)

Φ̃JM ≡ ΦJM(qxi)−
1
2Σ′

JM(qxi)

∆̃′′

JM ≡ ∆′′

JM(qxi)−
1
2MJM(qxi) (3.17)

where YJM and ~YJLM are spherical harmonics and vector spherical harmonics respec-

tively. We are only considering elastic transitions, and assuming parity and CP as

symmetries of the nuclear ground state. This eliminates some of the responses, and

only M,Φ′′
,Σ′

,∆,Σ′′
, Φ̃′ survive. To calculate cross-sections, one needs to square the

amplitude, average over initial spins and sum over final spins. The matrix element

squared for the nuclear portion of the amplitude has been made available by Fitz-

patrick et al. [18], and codes have been supplied to calculate the full amplitude and

rate [121].

As we shall describe, in the following analysis we discovered that two additional
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NR operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡
i~q

mN

· S · ~v⊥,

O18 ≡
i~q

mN

· S · ~SN , (3.18)

where S is the symmetric combination of polarization vectors. Appendix A contains

the details required to include these new operators in the above formalism.

3.3 Simplified Models for Direct Detection

From a model building perspective, one would like to know how relevant the

novel nuclear responses are in interpreting direct detection data. Previous work [123]

demonstrated that using only the SI/SD form factors (even with additional momen-

tum dependence taken into account) can lead one to infer wildly incorrect values of

the WIMP mass and cross sections.

Here we go further by starting with simplified models at the Lagrangian level,

where ‘simplified model’ means a single WIMP with a single mediator coupling it to

the quark sector. This is useful for two reasons; it allows us to better explore which NR

operators arise from a broad set of UV complete theories, and also make connection

with the growing body of literature which use simplified models for indirect detection

and collider searches.

When it comes to interpreting signals, knowing comprehensively how different

interactions with different nuclei arise from different UV complete models will allow

us to identify degeneracies between competing models. Further, it can also help

optimize target selection for maximum discrimination of the UV model parameter

space.

In building these simplified models we remain agnostic about the WIMP’s spin,
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and consider dark matter spins of 0, 1
2 and 1. We do however only consider renor-

malizable interactions between quarks and WIMPs. To ensure a stable WIMP, we

assume that the WIMP is either charged under some internal gauge group or a dis-

crete symmetry group (for example Z2). However, we assume that this gauge charge

is not shared by quarks. We will couple the WIMP to the quarks via a heavy mediator

in two distinct ways: charged and uncharged mediators, each with all possible spins

consistent with angular momentum conservation. The mediator mass is chosen to be

the heaviest scale in the problem (and certainly much greater than the momentum

exchange which characterizes the scattering process) so that we can integrate it out

(see appendix B for details). This leads to relativistic effective WIMP-nucleon in-

teractions, whose NR limit can then be examined. In the uncharged mediator case

we will consider mediators that are neutral under all SM and WIMP gauge charges,

while in the charged case, the mediator must have both WIMP and SM gauge charges.

Given the above as a guide, our Lagrangian construction is then constrained only by

gauge invariance, Lorentz invariance, renormalizability and hermiticity.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure

stability, and S† is its Hermitian conjugate. To have renormalizable interactions, the

neutral mediator can only be a scalar or a vector. We denote the scalar mediator by

φ and the vector mediator by Gµ with field strength tensor Gµν . Unless otherwise

noted, all of the following coupling constants are real and dimensionless.

The most general renormailzable Lagrangian for scalar mediation consistent with
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the above assumptions is given by

LSφq = ∂µS
†∂µS −m2

SS
†S − λS

2 (S†S)2

+1
2∂µφ∂

µφ− 1
2m

2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄D/ q −mq q̄q

−g1mSS
†Sφ− g2

2 S
†Sφ2 − h1q̄qφ− ih2q̄γ

5qφ, (3.19)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian

for vector mediation (up to gauge fixing terms) is

LSGq = ∂µS
†∂µS −m2

SS
†S − λS

2 (S†S)2

−1
4GµνG

µν + 1
2m

2
GGµG

µ − λG
4 (GµG

µ)2

+iq̄ /Dq −mq q̄q

−g3

2 S
†SGµG

µ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (3.20)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case,

mediation will only occur via scalar or vector mediators. The most general renormal-

izable interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are
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given below,

Lχφq = iχ̄ /Dχ−mχχ̄χ

+1
2∂µφ∂

µφ− 1
2m

2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄D/ q −mq q̄q

−λ1φχ̄χ− iλ2φχ̄γ
5χ− h1φq̄q − ih2φq̄γ

5q, (3.21)

LχGq = iχ̄ /Dχ−mχχ̄χ

−1
4GµνG

µν + 1
2m

2
GGµG

µ

+iq̄D/ q −mq q̄q

−λ3χ̄γ
µχGµ − λ4χ̄γ

µγ5χGµ

−h3q̄γµqG
µ − h4q̄γµγ

5qGµ. (3.22)

3. Spin-1 Dark Matter

If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector

can occur via a heavy scalar or a vector particle. For the case of vector mediation,

there are many possible interactions because the Lorentz indices on the vectors af-

ford a more diverse set of terms. The general interaction Lagrangian for the scalar

mediation case is

LXφq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

+1
2(∂µφ)2 − 1

2m
2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄ /Dq −mq q̄q

−b1mXφX
†
µX

µ − b2

2 φ
2X†µX

µ − h1φq̄q − ih2φq̄γ
5q. (3.23)
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For the case of vector mediation, there are many possible interactions because the

Lorentz indices on the vectors afford a more diverse set of terms. The Lagrangian is

given by

LXGq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

−1
4GµνG

µν + 1
2m

2
GG

2
µ −

λG
4 (GµG

µ)2 (3.24)

+iq̄ /Dq −mq q̄q

−b3

2 G
2
µ(X†νXν)− b4

2 (GµGν)(X†µXν)−
[
ib5X

†
ν∂µX

νGµ

+b6X
†
µ∂

µXνG
ν + b7εµνρσ(X†µ∂νXρ)Gσ + h.c.

]
−h3Gµq̄γ

µq − h4Gµq̄γ
µγ5q (3.25)

where, for the Lagrangian to be Hermitian, b6 and b7 are complex (this implies a new

source of CP violation, which will not be considered further here).

3.3.1 Charged-Mediator Lagrangians

Here we consider the simplest case of mediators that are charged under both

the DM internal symmetry group and SM gauge groups. This is motivated by the

absence of spin-1
2 mediators (s-channel processes) in the previous section. Such a

mediator, if neutral, is forbidden by simultaneous requirements of gauge invariance

and renormalizability. Dark Matter models with mediators endowed with charges

from both DM and SM side have been considered in the literature before [124, 125].

The case of a spin-1
2 mediator carrying SU(3)c is also motivated by studies of heavy

quark models. This allows unique interactions as we show below. In particular

they necessitate a direct interaction between quarks and WIMPs at the level of the

Lagrangian.

1. Scalar Dark Matter
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Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz

invariant interactions. This is easy to see since both the scalars (or scalar and vector)

and the quark are required in the (gauge invariant) interaction, but there is no way to

contract the spinor indices consistently if the mediating particle is a scalar or vector.

Therefore, the only possibility is that of a spin-1/2 mediator, Q, which acts like a

heavy quark. The general renormalizable action is given by

LSQq = ∂µS
†∂µS −m2

SS
†S − λS(S†S)2

+iQ̄ /DQ−mQQ̄Q

+iq̄ /Dq −mq q̄q

−(y1SQ̄q + y2SQ̄γ
5q + h.c.), (3.26)

where y1 and y2 are again complex.

2. Spin-1
2 Dark Matter

For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange

can lead to novel interactions. The charged scalar is denoted by Φ and the charged

vector by Vµ

LχΦq = iχ̄ /Dχ−mχχ̄χ

+(∂µΦ†)(∂µΦ)−m2
ΦΦ†Φ− λΦ

2 (Φ†Φ)2

+iq̄ /Dq −mq q̄q

−(l1Φ†χ̄q + l2Φ†χ̄γ5q + h.c.), (3.27)
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LχV q = iχ̄ /Dχ−mχχ̄χ

−1
2V
†
µνVµν +m2

V V
†
µV

µ

+iq̄ /Dq −mq q̄q

−(d1χ̄γ
µqV †µ + d2χ̄γ

µγ5qV †µ + h.c.), (3.28)

where l1, l2, d1 and d2 are complex.

3. Vector DM

Here again we only have the case of a spin-1
2 mediated interaction between vector

DM and quarks (again scalar and vector charged mediators aren’t possible because

they don’t lead to Lorentz invariant and renormalizable interactions). The general

Lagrangian is given by

LXQq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

+iQ̄ /DQ−mQQ̄Q

+iq̄ /Dq −mq q̄q

−(y3XµQ̄γ
µq + y4XµQ̄γ

µγ5q + h.c.), (3.29)

where y3 and y4 are complex.

3.4 Non-relativistic Reduction of Simplified Models

After integrating out the heavy mediator we replace quark operators with nucleon

operators (see appendix C), take the non-relativistic limit (see appendix B), and

match onto the operators given in table 5.1. The results of this calculation are

presented in terms of the ci coefficients from [121], described in section 3.2, facilitating

a straightforward computation of amplitudes and rates. The ci’s are given for each of
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the WIMP spins in tables 3.2, 3.3 and 3.4. With this general framework in place we

can now easily find the leading order NR operators for each distinct WIMP-nucleus

interaction. One can imagine a series of minimal scenarios in which a combination of

two Lagrangian couplings that give rise to a direct detection signal is non-zero with

all others set to zero, and then proceeding in this manner for the entire set. Each of

these scenarios is listed with its leading operators in table 3.5 and with all operators

generated in table 3.6.

Table 3.2: Non-zero ci coefficients for a spin−0 WIMP
Uncharged Mediator Charged Mediator

c1
hN1 g1
m2
φ

y†
1y1−y†

2y2
mQmS

fNT

c10
−ihN2 g1
m2
φ

+ 2ig4hN4
m2
G

mN
mS

i
y†
2y1−y†

1y2
mQmS

∆̃N

Table 3.3: ci coefficients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN1 λ1
m2
φ
− hN3 λ3

m2
G

(
l†2l2−l

†
1l1

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V

)
fNT +

(
− l†2l2+l†1l1

4m2
Φ

+ d†
2d2+d†

1d1
8m2

V

)
NN

c4
4hN4 λ4
m2
G

l†2l2−l
†
1l1

m2
Φ

δN −
(
l†1l1+l†2l2
m2

Φ
+ d†

2d2−d†
1d1

2m2
V

)
∆N

c6
hN2 λ2mN
m2
φ
mχ

( l
†
1l1−l

†
2l2

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V
)mN
mχ

∆̃N

c7
2hN4 λ3
m2
G

( l
†
1l2−l

†
2l1

2m2
Φ

+ d†
1d2+d†

2d1
4m2

V
)∆N

c8 −2hN3 λ4
m2
G

( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)NN

c9 −2hN4 λ3mN
mχm2

G
− 2hN3 λ4

m2
G

( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)NN − ( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)mN
mχ

∆N

c10
hN2 λ1
m2
φ

i( l
†
1l2−l

†
2l1

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)∆̃N − i l

†
1l2−l

†
2l1

m2
Φ

δN

c11 −hN1 λ2mN
m2
φ
mχ

i( l
†
2l1−l

†
1l2

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)mN
mχ
fNT + i

l†1l2−l
†
2l1

m2
Φ

mN
mχ
δN

c12 0 l†2l1−l
†
1l2

m2
Φ

δN

As described earlier, we find that it is important to consider operators beyond

those incorporated into the standard spin-independent and spin-dependent formal-
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Table 3.4: ci coefficients for a spin-1 WIMP
Uncharged Mediator Charged Mediator

c1
b1hN1
m2
φ

y†
3y3−y†

4y4
mQmX

fNT

c4
4Im(b7)hN4

m2
G

+ i q
2

m2
X

Re(b7)hN4
m2
G
− q2

mXmN

Re(b6)hN3
m2
G

2y
†
3y3−y†

4y4
mQmX

δN

c5
Re(b6)hN3

m2
G

mN
mX

0

c6
Re(b6)hN3

m2
G

mN
mX
− iRe(b7)hN4

m2
G

m2
N

m2
X

0

c8
2Im(b7)hN3

m2
G

0

c9 −2Re(b6)hN4
m2
G

mN
mX

+ 2Im(b7)hN3
m2
G

0

c10
b1hN2
m2
φ
− 3b5hN4

m2
G

mN
mX

i
y†
4y3−y†

3y4
mQmX

∆̃N

c11
Re(b7)hN3

m2
G

mN
mX

i
y†
4y3−y†

3y4
mQmX

δN

c12 0 2iy
†
3y4−y†

4y3
mQmX

δN

c14 −2Re(b7)hN4
m2
G

mN
mX

0

c17 −4Im(b6)hN3
m2
G

mN
mX

0

c18
4Im(b6)hN4

m2
G

mN
mX

−2iy
†
4y3−y†

3y4
mQmX

δN

ism, i.e. simple models exist in which one would infer an incorrect rate in current

experiments by not including these effects. Also importantly, not all of the NR oper-

ators are actually generated at leading order; for example, the operators O2, O3, O13

and O15 are missing at leading order. Note that we only consider renormalizable La-

grangians, higher order non-renormalizable operators, which are presumably further

suppressed, could be used to generate anapole interactions [123].

While spin independent interactions are a generic feature of direct couplings to

quarks in our charged mediator cases, it is sometimes possbile to suppress them. In

the scalar (and vector) WIMP with charged mediator cases, it is possible to suppress

the spin independent interaction by ensuring that |y1| = |y2|(|y3| = |y4|) while keep-
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ing their relative phases non-zero (or π). While these non-minimal scenarios require

some fine tuning we include it for completeness and label them y1, y2 and y3, y4.

Aside from scalar WIMPs, each particular spin produces some non-relativistic op-

erators that are unique to that spin. Also, importantly, the operators O1 and O10 are

generic to all spins. In five cases relativistic operators generate unique non-relativistic

operators at leading order. Therefore distinguishing WIMP scenarios in these cases

reduces to experimentally discerning between these operators (see also [126]). Given

the likely low statistics of any detection in upcoming direct detection experiments,

sub-leading operators are not likely to contribute enough to provide any further dis-

criminating power.

3.5 Observables

The principle observable in direct detection experiments is the differential event

rate. Since the incoming WIMPs originate in the galactic halo, one must average

over the WIMP velocity distribution, f(v), which we assume for the purposes of this

paper to be Maxwell-Boltzmann,

dR

dER
= NT

ρχM

2πmχ

∫
vmin

f(v)
v

Ptotdv (3.30)

where we use the value ρχ = 0.3GeV/cm3 for the local dark matter density, NT is the

number of nuclei in the target and Ptot can be calculated from the amplitude M in

Eq. 3.14

Ptot = 1
2jχ + 1

1
2jN + 1

∑
spins

|M|2. (3.31)

Thoughout this work we use the mathematica package supplied in [121] to calculate

rates. To determine the leading order operator which arises from a given relativistic
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Figure 3.1: The relative strength of event rates of the non-relativistic operators
from table 5.1

scenario we first plot the relative rate in xenon-131 for each of the NR operators

with the same coefficient and normalized the rate to that of O1, see Fig. 3.5. Since

the operators are zero, first and second order in momentum transfer, q, the relative

strengths of the operators span 16 orders of magnitude. This is an important point

to keep in mind when finding the leading operator, as sometimes a higher order term

from the non-relativistic reduction can dominate. For example in the bRe
7 h4 scenario,

expanding to higher order one finds q2O4 still dominates over the O6 and O14 which

contain powers of q within the operators.

Since the Lagrangians we have considered are not tied to specific complete and

consistent particle physics models, the mediator masses are not fixed in advance and

thus specific event rates are not predicted in advance. Clearly one requires a rate

that is low enough to evade the current experimental constraints. For example, a 50

GeV WIMP producing 10 events per tonne per year is sufficiently low to evade the

bounds from LUX [96].. For demonstration purposes we set the couplings to 0.1 in the

various Lagrangians and find a mediator mass that will produce 10 events/t/y in the

signal region for xenon (5−45keV). The calculated masses are given in table 3.5. It is

perhaps telling that the mediator masses span 6 orders of magnitude, from just a few

GeV up to a PeV. While it is unlikely that a full model of thermal relic dark matter
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could be built around all of these Lagrangians, it is nevertheless a useful metric to es-

timate the relative strength of the different nuclear responses to each of the operators.

In Figs. 3.2, 3.3, 3.4 and 3.5 we have plotted rates for two common targets.

For simplicity and again for demonstration purposes, we only plot the rates for a

single isotope of both germanium and xenon. The choice of isotopes, 73Ge and 131Xe,

was made to ensure sensitivity to spin-dependent responses. As can be seen in the

figures, many operators produce rates with similar recoil energy dependence in the

same target, but different nuclei can have very different responses to the various

operators [18]. Thus a complementary choice of nuclear targets can provide important

discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and

germanium in Fig. 3.5 and 3.6. We choose to only present ratios for the uncharged

mediator cases of spinor and vector WIMPs since the other cases produce trival re-

sults (all operators being spin independent). To estimate the effect astrophysical

uncertainties will have on discriminating between operators, we plot the rate for a

range of astrophysical parameters from v0 = 200m/s, and vesc = 500m/s (lower) to

v0 = 240m/s and vesc = 600m/s (upper). The uncertainty in the dark matter density

does not appear since we are considering the ratio of rates. Given the vastly differ-

ent energy dependence of the ratio of rates of each scenario the astrophysical errors

do not completely inhibit their identification. Furthermore, operators O9 and O14,

produced in scenarios h4b
Re
7 and h4b

Re
6 respectively, remain indistingushable when con-

sidering the ratio of rates. While it appears that in principle almost every operator

is discernible, in practice isotopically impure targets and low statistics will further

complicate the situation and provide limits on practical discrimination.
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Figure 3.2: Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium
(dashed) with uncharged (left) and charged mediators (right), assuming mediator
mass of 1TeV and O(1) coupling constants.
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Figure 3.3: Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium

(dashed) with uncharged (left) and charged mediators (right), assuming mediator
mass of 1TeV and O(1) coupling constants.

3.6 Conclusion

The analysis we have given here builds on previous analyses to provide, in gen-

erality, a roadmap to use event rates in direct dark matter detectors to constrain

fundamental dark matter models. We have outlined the steps needed to go from

fundamental Lagrangians, first to relativistic operators, then reduce these to non-

relativistic operators, and finally produce nuclear matrix elements. In the process

several significant facts have been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix el-

ements in direct detection will arise from simple UV complete dark matter

models.
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mass of 1TeV and O(1) coupling constants.
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Figure 3.5: Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium
(dashed) with uncharged mediators and imaginary couplings, assuming mediator mass
of 1TeV and O(1) coupling constants. Also shown is the ratio of rates in xenon and
germanium (right).

• Aside from scalar WIMPs each particular spin produces some non-relativistic

operators that are unique to that spin.

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all

WIMP spins we have explored.
• In 5 scenarios relativistic operators generate unique non-relativistic operators

at leading order.

• Two new non-relativistic operators not previously considered arise at low ener-

gies if spin-1 WIMP dark matter is allowed for.

• While the different operators that can contribute to event rates in detectors

using specific elements or isotopes cannot be distinguished on the basis of their

impact on the differential event rates in these detectors, they can produce rad-
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2 WIMP with uncharged
mediator (left) and a 50GeV spin-1 WIMP with uncharged mediator (right), the
shaded regions show the upper and lower bounds due to the astrophysical parameters

ically different energy dependence for scattering off different nuclear targets.

Thus, a complementary use of different target materials will be necessary to reli-

ably distinguish between different particle physics model possibilities for WIMP

dark matter.

While current detectors have only yielded upper limits, with new generations of

larger detectors with greater energy resolution and lower thresholds coming online,

the search for WIMP dark matter has never been so vibrant and promising. The tools

we have provided here should help experimenters to probe the most useful parameter

space, to interpret any non-zero signals in terms of constraints on fundamental models,

and should allow theorists who build fundamental models to frame predictions in an

accurate and simple way so that they might be directly compared with experiment.
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Table 3.5: Leading order operators which can arise from the relativistic Lagrangians
considered in this work, the column ‘L terms’ gives the non-zero couplings for that
scenario. Each row represents a possible leading order direct detection signal. A ‘*’
indicates that the mediator is charged. The ’Eqv. Mm’ column gives the mediator
mass required for each scenario to produce ∼10 events t−1yr−1keV −1 in xenon, with
couplings set to 0.1.

WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 13 TeV

0 0 h2, g1 O10 14 GeV

0 1 h4, g4 O10 8 GeV

0 1
2

∗
y1 O1 3.2 PeV

0 1
2

∗
y2 O1 3.2 PeV

0 1
2

∗
y1, y2 O10 41 GeV

1
2 0 h1, λ1 O1 12.7 TeV
1
2 0 h2, λ1 O10 293 GeV
1
2 0 h1, λ2 O11 14 GeV
1
2 0 h2, λ2 O6 1.9 GeV
1
2 1 h3, λ3 O1 6.3 TeV
1
2 1 h4, λ3 O9 6.4 GeV
1
2 1 h3, λ4 O8 180 GeV
1
2 1 h4, λ4 O4 135 GeV
1
2 0* l1 O1 7.1 TeV
1
2 0* l2 O1 5.5 TeV
1
2 1* d1 O1 5.9 TeV
1
2 1* d2 O1 6.7 TeV

1 0 h1, b1 O1 13 TeV

1 0 h2, b1 O10 10 GeV

1 1 h4, b5 O10 5.1 GeV

1 1 h3, b
Re
6 (bIm

6 ) O5(O17) 5.5 GeV(23 GeV)

1 1 h4, b
Re
6 (bIm

6 ) O9(O18) 3 GeV(4.6 GeV)

1 1 h3, b
Re
7 (bIm

7 ) O11(O8) 186 GeV(228 GeV)

1 1 h4, b
Re
7 (bIm

7 ) O4(O4) 78 MeV (172 GeV)

1 1
2

∗
y3 O1 3.2 PeV

1 1
2

∗
y4 O1 3.2 PeV

1 1
2

∗
y3, y4 O11 120 TeV
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Table 3.6: List of scenarios with leading operators colored by which are distinguish-
able via the ratio dRXe

dE
/dRGe

dE
, * indicates the imaginary part of that coupling.

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) 3

(h2, g1) 3

(h4, g4) 3

Sp
in

-0
W

IM
P

(y1) 3 3

(y2) 3 3

(y1, y2) 3

(h1, λ1) 3

(h2, λ1) 3

(h1, λ2) 3

(h2, λ2) 3

(h3, λ3) 3

(h4, λ3) 3 3

(h3, λ4) 3 3

Sp
in

-1 2
W

IM
P

(h4, λ4) 3

(l1) 3 3 3

(l2) 3 3 3

(d1) 3 3 3

(d2) 3 3 3

(h1, b1) 3

(h2, b1) 3

(h4, b5) 3

(h3, b6) 3 3 3 3*

(h4, b6) 3 3*

Sp
in

-1
W

IM
P

(h3, b7)
3* 3*

3

(h4, b7)
3*

3 3 3

(y3) 3 3 3 3 3 3

(y4) 3 3 3 3 3 3

(y3, y4) 3 3 3 3
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Chapter 4

SIMPLIFIED MODEL RECONSTRUCTIONS

4.1 Introduction

In the previous chapter it was established that direct detection experiments have

some discriminating power in determining the NR-EFT operator responsible for the

scattering. In this chapter we will quantify how well various experimental setups

can distinguish operators under realistic circumstances. Similar works have been per-

formed in [127, 126], the analysis here will improve upon them in a few ways. In

[126] the primary concern was placed upon parameter estimation, and the parameter

space considered included the full complement of NR operators. Whereas here the

emphasis will be upon model selection and will be restricted to a subset of relevant

operators found in the previous chapter. In [127], the models considered were some-

what arbitrary and only cover a subset of well motivated NR operators, and then

carries out a Bayesian model selection analysis. However, applying Bayesian meth-

ods in this case weakens their interpretation in terms of probabilities because they

do not have a complete parameter space. Instead they are able to show with what

frequency they obtain the correct model, making this a hybrid frequentist-Bayesian

approach. In this chapter only the operators generated from the simplified models

considered in the previous chapter will be considered. As a proof of concept, only the

spin-1
2 WIMP model will be treated and the remainder left to future work. Model

selection will be carried out using the Bayes factor as laid out in the proceding section.
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4.2 Statistical Framework

Bayesian statistics provides a method for model selection with a clear probablistic

interpretation. This is in contrast to frequentist based tests which have a purely

frequency based interpretation. For example in a discovery test, which attempts to

reject the null hypothesis in favor of the signal hypothesis. With this method one

can claim to reject the null hypothesis at 5σ, meaning that fewer than 1 in a million

such experiments would produce a statistical fluctuation great enough to mimic the

observation. When performing model selection with Bayesian statistics the figure of

merit considered is called the Bayes factor. Introduced by Jeffreys in 1935, the Bayes

factor, K, is constructed from the model evidence (the denominator of Bayes theorem

Eq. 2.25),

K = ε(D,M1)
ε(D,M2) . (4.1)

Since Bayes theorem gives a normalized probability distribution, it is possible to

determine the evidence via an integral over the model parameter space, θ1,

ε(D,M1) =
∫
L(D|θ1,M1)π(θ1,M1)dθ1. (4.2)

The likelihood function will take the same binned poisson form as given in Eq. 2.24

and log priors will be assumed. Jeffreys considered a K > 10 to be in strong favor of

M1 and K > 100 as decisive evidence for M1 [128]. These thresholds will be used to

quantify the ability for direct detection experiments to discern models in the following

simulations.

An alternative method for model selection can be obtained through marginaliza-

tion. If one has a complete set of competing models, M = {M1,M2, ...}, then they

form a larger parameter space of discrete hypotheses, Θ = {θ1, θ2, ...}. Marginalizing
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over the sub-parameter space of a model will give the total posterior probability of

that model:

P (M1|D) =
∫
θ1

L(D|Θ,M)π(Θ,M)
ε(D,M) dΘ. (4.3)

This method is more computationally intensive and thus will be explored in a future

work.

4.3 The Models

In this analysis we identify a model, Mi, as a WIMP scattering via a single NR

operator Oi. The parameters of each model are the WIMP mass and operator coef-

ficient: θi = {mχ, ci}. Starting with the spin-1
2 case, the full model parameter space

and priors are given in table 4.1. In addition, the astrophysical uncertainties can be

marginalized over to better account for our ignorance of their true values.

4.4 Model Comparison

Each model was simulated to produce 20, 200 and 2000 events in both a xenon

and germanium detector. For this analysis a WIMP mass of 50GeV was used for every

model. The exposure was abitrarily scaled to achieve the desired number of events

within the energy ranges 0.1-40keV and 1-40keV for germanium and xenon respec-

tively. Both detectors were assumed to be background free and no detector resolution

effects were included. To sample the posterior probability distribution and calculate

the model evidence, the MultiNest program will be used [74]. For each simulation

scaled Bayes factors, 2ln(Kij), are calculated for each model vs. the simulated model,

the results for 20, 200 and 2000 events are given in tables 4.2, 4.3 and 4.4 respectively.

Using the criteria of 2ln(Kij) < −4 as decisive evidence in favor of model i, these
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Table 4.1: Parameter space for spin-1
2 WIMP

Parameter Range Prior

mχ 1− 103 GeV log

c1 10−10 − 104 GeV−2 log

c4 10−10 − 104 GeV−2 log

c5 10−10 − 104 GeV−2 log

c6 10−10 − 104 GeV−2 log

c8 10−10 − 104 GeV−2 log

c9 10−10 − 104 GeV−2 log

c10 10−10 − 104 GeV−2 log

c11 10−10 − 104 GeV−2 log

ρχ 0.3± 0.1GeV/cm3 gaussian

v0 220± 20km/s gaussian

vesc 544± 40km/s gaussian

results indicate that after even 20 events some models are strongly disfavored. At

200 events it can be seen that some degeneracy still exists. It is not until 2000 events

have been recorded that all models can be diserned from each other (except when

simulating O8, which can still be confused with O1).
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Table 4.2: Bayes factors for 20 events
Sim Ki,1 Ki,4 Ki,5 Ki,6 Ki,8 Ki,9 Ki,10 Ki,11

M1 0 0.0298 -8.21 -29. -0.285 -7.17 -9.54 -8.35

M4 -0.515 0 -9.81 -32.8 -0.797 -8.55 -10.7 -10.1

M5 -17.5 -19.9 0 -9.37 -15.0 -3.28 -4.0 0.0803

M6 -70.4 -72.4 -19.6 0 -66.3 -45.2 -7.53 -20.6

M8 0.301 0.0341 -7.85 -27.4 0 -6.42 -9.65 -8.18

M9 -7.59 -9.84 -2.83 -14.7 -6.19 0 -7.59 -3.04

M10 -29.4 -30.9 -3.35 -5.43 -26.9 -14.2 0 -2.91

M11 -16.2 -18.5 -0.196 -8.65 -14.1 -3.25 -3.68 0

Table 4.3: Bayes factors for 200 events
Sim Ki,1 Ki,4 Ki,5 Ki,6 Ki,8 Ki,9 Ki,10 Ki,11

M1 0 -2.12 -72.1 -241. -1.32 -73. -80.8 -77.4

M4 -3.51 0 -95.5 -281. -4.44 -95.5 -99.5 -102.

M5 -172. -195. 0 -49.2 -150. -29.6 -25.9 0.68

M6 -702. -720. -194. 0 -665. -454. -72.5 -205.

M8 0.686 -1.3 -68.4 -230. 0 -67.2 -80.9 -74.3

M9 -78.1 -101. -11.5 -80. -65.6 0 -46.7 -16.5

M10 -289. -305. -31.3 -22.3 -267. -139. 0 -26.2

M11 -160. -184. -1.55 -40.4 -141. -29.6 -18.6 0

Table 4.4: Bayes factors for 2000 events
Sim Ki,1 Ki,4 Ki,5 Ki,6 Ki,8 Ki,9 Ki,10 Ki,11

M1 0 -27.7 -742. -2,130 -4.26 -765. -800. -800.

M4 -29.2 0 -977. -1.99×105 -31. -991. -998. -1050

M5 -1.99×105 -1.99×105 0 -371. -1510 -301. -186. -4.04

M6 -6820 -1.99×105 -1900 0 -6640 -4510 -705. -2040

M8 -2.29 -28.7 -714. -1.99×105 0 -724. -799. -773.

M9 -748. -963. -71. -588. -665. 0 -333. -99.4

M10 -910. -2940 -225. -170. -2670 -1380 0 -237.

M11 -1520 -483. -6.36 -220. -1420 -298. -302. 0
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Chapter 5

EFFECTIVE FIELD THEORY TREATMEANT OF THE NEUTRINO FLOOR

5.1 Introduction

For over two decades, direct dark matter detection experiments have made great

progress in searching for dark matter in the form of Weakly Interacting Massive

Particles (WIMPs). The most stringent bounds now constrain the spin-independent

and spin dependent WIMP-nucleon direct detection cross sections to be less than

∼ 10−46 cm2 [13] and ∼ 10−39 cm2 [129] respectively. Larger scale detectors in

development are expected to further improve the cross section bounds by 2-3 orders

of magnitude [130, 131]. From a theoretical perspective, experiments are now probing

dark matter that interacts with nucleons through tree-level Higgs exchange.

A theoretical interpretation of the experimental limits depends on a detailed mod-

eling of the WIMP-nucleus interaction. The WIMP-nucleus interaction is tradition-

ally approximated by multiplying the cross section at zero-momentum transfer, i.e.

the point nucleus model, by the form factor, which represents the extended structure

of the nucleus and encodes the momentum dependence of the interaction [12, 132].

The WIMP-nucleon interaction is approximated as a sum of a spin-independent (SI)

and spin-dependent (SD) cross section. The SI interaction is coherent on the nu-

cleus, leading to an enhanced sensitivity, so that current experimental limits on the

SI interaction are much stronger than on the SD interaction.

In a series of recent papers, this standard theoretical formalism has been gener-

alized within a non-relativistic effective field theory (EFT) model for the nucleus, in

which the WIMP interacts with a nucleon via a larger sample of operators [18, 121].
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Additional nuclear responses were identified that augment the standard SI and SD

responses. Though these operators induce nuclear recoil energy spectra that differ

from the traditional SI/SD models [120], the upper limits on the WIMP-nucleon cross

section are not strongly affected, except for experiments with relatively high recoil

energy thresholds, greater than tens of keV [123]. The non-relativistic EFT formal-

ism also provides unique signatures in direct detection experiments with directional

sensitivity [133, 134].

Larger volume, next generation direct dark matter searches that detect WIMPs

only via the energy deposition from the WIMP to the nucleus will be affected by

a background from neutrinos produced in the Sun, atmosphere, and diffuse super-

novae [135, 136, 30]. Neutrinos from these sources will interact primarily with nuclei

through the coherent scattering process, which is induced by neutrinos with energies

of tens of MeV. Considering the nuclear recoil energy spectrum alone, within the tra-

ditional SI/SD formalism Solar neutrinos mimic a WIMP with mass ∼ 6 GeV, while

atmospheric neutrinos mimic a WIMP with mass ∼ 100 GeV [30, 137].

Identifying and reducing the neutrino backgrounds presents a significant challenge

for direct detection experiments, in particular those which strive to reach the ton scale

and beyond. Several recent studies have discussed methods to distinguish WIMPs

from neutrinos in next generation detectors. Ruppin et al. discussed the prospects for

exploiting the complementarity between detectors that use different nuclear targets to

detect energy deposition, considering both SI and SD interactions [137]. Davis [138]

considered the difference between time variation of the WIMP signal, due to the

well-known annual modulation [139] from the rotation of the Earth around the Sun,

and the Solar neutrino signal, which is due to the small but non-zero eccentricity of

the Earth’s orbit around the Sun. These time variations generate a phase difference

between the Solar neutrino and the WIMP signal. Grothaus [140] and O’Hare et
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al. [141] discussed the prospects for exploiting the difference in the direction of the

nuclear recoil energy induced by the WIMPs and Solar neutrinos. For these timing

and directional-based techniques, an exposure on the scale of 100 tonne years is

required to distinguish the Solar neutrino background from a WIMP signal.

In this paper, we calculate the expected WIMP signal in future detectors using

the non-relativistic EFT formalism of [18], and compare to the predictions of the

astrophysical neutrino backgrounds. For each of the operators that describe the

WIMP coupling to the nucleons within EFT, and for a wide range of WIMP masses,

we compare the nuclear recoil energy spectrum to the neutrino backgrounds. Using

the nuclear recoil energy spectrum, we categorize the operators that both can and

cannot be distinguished from the neutrino backgrounds. We find that the majority

of the operators can in fact be distinguished from the neutrino backgrounds over the

entire WIMP mass range. For the few operators that cannot be distinguished, we

identify the specific WIMP mass that best matches the neutrino background, and

highlight the scatter in this best matching mass between the operators. Our results

imply, for detectors with good nuclear recoil energy resolution, that signals are more

easily distinguished from the neutrino background in some cases of non-standard

WIMP scattering (not SI/SD scattering).

This paper is organized as follows. In Section 5.2 we briefly review both the

physics of non-relativistic EFT and of neutrino coherent scattering. In Section 5.3

we calculate the nuclear recoil spectra for EFT operators, and identify the operators

that induce nuclear recoils that mimic the neutrino backgrounds. In Section 5.4 we

calculate the discovery limit for each operator in light of the neutrino background,

and show that many of the operators can in fact be distinguished from the neutrino

background over a wide range of masses. In Section 5.5, we present our summary and

conclusions.
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5.2 WIMP and Neutrino Scattering with Nuclei

In this section we review the WIMP-nucleus and the neutrino-nucleus scattering

formalism that is required for our analysis. For WIMP-nucleus scattering, we describe

the necessary ingredients of non-relativistic EFT, while for neutrino-nucleus scattering

we describe the cross section that is predicted in the Standard Model.

5.2.1 Non-relativistic EFT WIMP-nucleus Scattering

Dark matter-nucleus scattering is expected to occur due to the presence of a dark

matter distribution in our galaxy, with the interaction rate being sensitive to both

the local dark matter density (for reviews of observations and theoretical models of

the local density see for example [142, 143]) and the velocity distribution of the dark

matter, as well as the nuclear properties of the target material. The precise form of the

velocity distribution is unknown, but can be modeled using N-body simulations [144,

145]. The speed of the dark matter is predicted to be in the O(few 100km/s) region,

with an upper limit corresponding to the galactic escape velocity (the RAVE survey

gave a value of 533+54
−41 km/s at 90% confidence [146]). Standard momentum exchanged

in such collisions is in the MeV range, which lends direct detection interactions to

a non-relativistic effective field theory treatment for mediator particles with masses

above this value, which is the case for a large variety of dark matter models.

Traditionally WIMP-nucleus scattering has been formulated as an incident dark

matter particle scattering off a nucleus through either SI or SD interactions. However,

as theoretical investigations into the particle nature of dark matter have broadened in

scope to include a more general set of interactions, including a variety of velocity and

momentum dependence, it has been recognized that the SI/SD interaction categoriza-

tion insufficiently captures the range of the possible relevant interaction properties.
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Importantly, not including the full array of interactions and nuclear responses could

lead to a misinterpretation of any future direct detection observations if carried out

within the conventional framework [147].

Following standard semi-leptonic electroweak treatments of the nuclear physics

involved in the WIMP-nucleus scattering, it has been shown [18, 121] that the SI

and SD interactions are only a portion of a larger set of nuclear responses which

must be considered for a proper consideration of direct detection studies. In addition

to responses giving rise to SI (the vector charge nuclear operator) and SD interac-

tions (which is a sum of two responses: the axial and longitudinal spin-dependent

responses), there are also nuclear responses sensitive to orbital angular momentum

and spin-orbit coupling. Different WIMP-nucleus scattering models will correspond

to different nuclear responses, which often include a sum of responses contributing,

and can also lead to interference terms between the responses [18, 148, 149]. A study

of a variety of spin-1/2 dark matter UV complete models whose responses are de-

scribed by these non-standard responses was given in [123], and a general survey

of simplified models of spin-0, spin-1/2, and spin-1 dark matter models was carried

out in [19]. There exist additional nuclear responses beyond these five, but are typi-

cally not considered due to P and CP properties of the nuclear ground state and an

assumption of CP conservation of the interaction.

Within this general EFT framework, the WIMP-nucleus interaction is written as

a sum over the individual WIMP-nucleon interactions [18], whose Lagrangian is of

the form

L =
∑
τ=0,1

15∑
i=1

cτiOitτ (5.1)

where t0 is the identity matrix, thus giving the isoscalar interaction, and t1 is the third

Pauli matrix giving the isovector interaction. It can be seen in general treatments
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that interference effects can arise not only between operators giving rise to different

nuclear responses but also between the same operators characterized by different cτi

and cτ
′
i [148, 149]. The coefficients cτi can be related to the familiar neutron and

proton couplings by

cni = c0
i − c1

i

2 ; cpi = c0
i + c1

i

2 (5.2)

The nucleon-level interactions arise from WIMP-quark interactions (either at the

Lagrangian level including mediator particles, which are subsequently integrated out,

or by directly writing down bi-linear terms suppressed by some high mass scale) where

quarks are then embedded into the nucleons through standard techniques [150, 151,

152, 153], and all operators are treated non-relativistically.

We consider the operators in Table 5.1, with the exception of O2 which can-

not be generated at leading order from Lorentz invariant relativistic operators [121].

There are two additional operators which need to be included if the WIMP under

consideration has spin-1 [19], but for this work we are assuming a spin-1/2 dark

matter particle. Assuming Galilean invariance (for a treatment which includes oper-

ators which are constrained by Lorentz invariance rather than Galilean invariance see

Ref. [152]), time-reversal symmetry, and Hermiticity, these operators only depend on

four quantities: the exchanged momentum, ~q, in the dimension-less, Hermitian form

i~q/mN , the velocity ~v⊥ = ~v + ~q/2µN , where ~v is the WIMP velocity in the target

nucleon rest frame and µN is the WIMP-nucleon reduced mass, the WIMP spin Sχ,

and the nuclear spin SN .

Although we retain the remaining 14 operators, it should be kept in mind that

not all of these non-relativistic operators arise at leading order from simple UV mod-

els [19], and therefore may not be relevant when a complete Lagrangian picture of

dark matter is formulated. Additionally the recoil response of the operators can vary
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by many orders of magnitude on a given target material, and operator responses can

vary greatly between various detector materials, which demonstrates the premium

placed on target complementarity [18, 137, 17, 127].

Table 5.1: List of NR effective operators described in [121]
O1 1χ1N

O2 (~v⊥)2

O3 i~SN · ( ~q
mN
× ~v⊥)

O4 ~Sχ · ~SN

O5 i~Sχ · ( ~q
mN
× ~v⊥)

O6 ( ~q
mN
· ~SN)( ~q

mN
· ~Sχ)

O7 ~SN · ~v⊥

O8 ~Sχ · ~v⊥

O9 i~Sχ · (~SN × ~q
mN

)

O10 i ~q
mN
· ~SN

O11 i ~q
mN
· ~Sχ

O12 ~Sχ · (~SN × ~v⊥)

O13 i(~Sχ · ~v⊥)( ~q
mN
· ~SN)

O14 i(~SN · ~v⊥)( ~q
mN
· ~Sχ)

O15 −(~Sχ · ~q
mN

)
(
(~SN × ~v⊥) · ~q

mN

)

5.2.2 Neutrino-nucleus Scattering

The theoretical prediction for neutrino interaction with the nucleus is much more

simple than the WIMP interaction described above. Neutrino-nucleus coherent scat-

tering is a straightforward prediction of the Standard Model, and has been theoreti-
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cally studied for many years [154, 11]. The coherent cross section is

dσ
dEr

(Er, Eν) = G2
F

4π Q
2
WmN

(
1− mNEr

2E2
ν

)
F 2(Er) , (5.3)

where QW = N − (1 − 4 sin2 θW )Z is the weak nuclear hypercharge of a nucleus

with N neutrons and Z protons, GF is the Fermi coupling constant, θW is the weak

mixing angle and mN is the target nucleus mass. There are few percent corrections to

Equation 5.3 for non isoscalar nuclei (N 6= Z) arising from axial couplings [155]. In

addition there is an angular dependence in the recoil direction of the nucleus which

we do not consider in this paper.

5.3 Matching the WIMP and Neutrino Recoil Spectra

In this section we analyze the nuclear recoil spectrum that is induced by WIMPs

within the non-relativistic EFT of [18], and by neutrinos through coherent scattering.

We identify operators which admit recoil spectra that are degenerate with the neutrino

backgrounds, and for these operators we find the corresponding WIMP masses that

provide the “best-fit” which is defined below. We classify operators into groups based

on their induced recoil spectra, and compare to the neutrino-induced spectra.

5.3.1 Best Fit Rates

We begin by matching the nuclear recoil spectra from the various WIMP-nucleon

operators described above to the predicted Solar and atmospheric neutrino-induced

recoil energy spectrum. For the Solar neutrinos, we consider the 8B component. The

predicted recoil energy spectra in dark matter detectors due to these neutrinos are

taken from Refs. [136, 30]. To find the “best-fit” WIMP masses for a given operator

we maximize the Poisson likelihood,

LPoisson =
b∏
i=1

νnii e
νi

ni!
(5.4)
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where b is the number of nuclear recoil energy bins, ni is the expected number of

WIMP events and νi is the expected number of neutrino events in the bin. We

consider several detector targets, which are indicated in Table 5.2 along with the

corresponding nuclear energy recoil range. The recoil range is split into a low and high

region, where the solar and non-solar neutrino backgrounds respectively dominate.

For our likelihood analysis we choose an exposure such that we obtain 200 neutrino

events for each target [30], binned into 16 energy bins.

Table 5.2: List of detector targets considered in this work
low region (keV) high region (keV)

xenon 0.003 - 3 4.0 - 100

germanium 0.0053 - 7 7.9 - 120

silicon 0.014 - 18 20 - 300

flourine 0.033 - 25 28 - 500

Figure 5.1 shows a sample of the best fitting WIMP-induced recoil energy spectra

when comparing to the predicted 8B spectrum, and Figure 5.2 shows a sample when

comparing to the predicted atmospheric-induced recoil spectrum. In both figures we

have used one operator representative from each group where the groups are defined

in Table 5.3. As is shown for several operators, in particular O1, we find a good

match to both the 8B Solar and atmospheric spectra. This is quantified by the ∆χ2

indicated in Figure 5.1 and 5.2, which is calculated as the negative log likelihood in

Equation 5.4. Note that O1 (O4) from group 1 is the SI (SD) response used in the

standard analyses, and our result agrees with previous results [30, 137].

On the other hand, the nuclear recoil spectra from many WIMP-nucleon operators

are clearly distinct from the 8B and atmospheric-induced neutrino spectra, even when

taken at the best-fit WIMP masses. For example, as is indicated in Figures 5.1 and 5.2,
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the O6 (belongs to group 3) and O10 (belongs to group 2) best fit WIMP mass gives a

poor ∆χ2 relative to the neutrino backgrounds. This indicates that for essentially all

WIMP masses and cross sections, O6 and O10 can be distinguished from the neutrino

backgrounds. We return to this point below when we discuss the evolution of the

discovery limit.
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Figure 5.1: Sample maximum likelihood fits to the 8B Solar neutrino-induced nuclear
recoil event rate spectrum in Xenon (left) and Germanium (right). Three different
operators are shown, one operator from each of the groupings in Table 5.3.
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Figure 5.2: Sample maximum likelihood fits to the atmospheric neutrino-induced
nuclear recoil event rate spectrum in xenon (left) and germanium (right). The same
operators are used here as in Figure 5.1.

The WIMP masses that provide the best fit to the 8B recoil spectrum for the

operators O1, O6, O10 are shown in Figure 5.3. As discussed above we assume an

exposure to produce 200 neutrino events for each target. Each point in Figure 5.3
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represents either the proton or neutron coupling as defined in Equation 5.2. In Fig-

ure 5.3 we have scaled the coupling by a factor mv = 246 GeV, so that the resulting

quantity cım2
v is dimensionless (the cı’s as defined in Ref. [121] have dimensions of in-

verse mass-squared). Also shown are the corresponding WIMP-nucleon cross sections

calculated as σi = c2iµ
2

m4
v

. For Si, Ge, and Xe, the excess spin in the nucleus is carried

by the neutron, so that for a fixed number of neutrino events the neutron coupling

corresponds to a lower cross section. For flourine the excess spin is carried by the

proton, so in this case for a fixed number of neutrino events the proton coupling

corresponds to a lower cross section. Note here that the O1 operator corresponds to

the standard SI interaction and is in agreement with previous studies [30, 137].
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Figure 5.3: Best fit WIMP mass to the 8B Solar neutrino induced nuclear recoil
spectrum for Xe, Ge, Si, and F targets. For each target and each operator, we show the
best fitting WIMP mass for neutron and proton couplings, defined as in Equation 5.2.
The quantity on the vertical axis of the left-hand side in each figure is dimensionless,
since the cı’s as defined in Ref. [121] have dimensions of inverse mass-squared. An
exposure is assumed to produce 200 neutrino events for each target.

5.3.2 Grouping of Operators

Although we consider 15 operators, each of which coupling to protons and neu-

trons, the nuclear recoil energy spectra that is induced by many of these operators are

similar. This is evident from their best fitting WIMP masses shown Figure 5.3 and in

Figure D.1 in Appendix A, which shows the best fitting masses for the operators that

are not shown in Figure 5.3. These figures motivate a grouping of operators based

on their best fit WIMP mass, which are shown in Table 5.3. Operators O1, 4, 7, 8,
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O5, 9, 10, 11, 12, 14 and O3, 6, 13, 15 form group 1, 2 and 3 respectively (this is a similar

grouping to that found in [133], although O13 is in our third group along with O15,

rather than in a fourth). For the entries in this table we have assumed a Xe target,

though we have checked that these results do not strongly depend on the nature of the

target. We again emphasize that for many operators, the χ2 is large when comparing

the neutrino-induced spectra to the WIMP spectra, so that even these “worst case”

scenarios should be easily distinguishable from the neutrino backgrounds, provided

an experiment can obtain a robust measurement of the recoil energy spectrum.
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Table 5.3: List of NR effective operators categorized by the best fit mass to 8B
Solar neutrinos in Xenon (the other targets follow suit). The third column gives the
exposure to reach saturation due to the neutrino background, as defined in Section 5.4.

Operator Mass (GeV) Exp. (t.y)

O1 6 2.9

O4 6 3.5

G
ro

up
1

O7 6.2 4.3

O8 6.3 3.6

q2 and q2v2
T

O5 4.8 0.43

O9 4.6 0.34

O10 4.6 0.36

G
ro

up
2

O11 4.6 0.40

O12 4.6 0.44

O14 4.8 0.43

q2v2
T , q4 and q4v2

T

O3 4.2 0.27

O6 4.2 0.29

G
ro

up
3

O13 4.2 0.27

O15 4.1 0.21
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5.4 Discovery Bounds

With the nuclear recoil spectrum in non-relativistic EFT understood, we now move

on to determine the bounds on the discovery of WIMPs in the presence of the neutrino

background. We determine the exposure at which each operator is maximally affected

by the neutrino background. As above we distinguish between those operators that

are most and least affected by the neutrino background.

5.4.1 Formalism

The statistical formalism that we employ follows that of Ref. [30]. Here we review

the relevant aspects for our analysis. The discovery potential of an experiment is

defined as the smallest WIMP-nucleon cross section which produces a 3σ fluctuation

above the background 90% of the time. To calculate this limit we use the following

test statistic for the null hypothesis and try to reject it,

q0 =


−2logL(σ=0,θ̂)

L(σ̂, ˆ̂θ)
σ ≥ σ̂

0 σ < σ̂

(5.5)

where σ is the WIMP-nucleon cross section, θ represents the nuisance parameters

(neutrino fluxes), and the hatted parameters are maximized. By Wilks’ theorem,

under background only experiments, q0 is chi-square distributed and the equivalent

gaussian significance is simply √q0 [70]. To include the uncertainty of the neutrino

flux normalization the likelihood function is modified to include a gaussian term [30]:

L = LPoisson
∏
j

e
− 1

2 (1−Nj)2
(
φj
σj

)2

(5.6)

where Nj is the flux normalization and φj and σj are the fluxes and their uncertainties

given in Table 5.4. The Poisson likelihood LPoisson is defined as in Equation 5.4.

We calculate the evolution of the discovery potential for all operators using a Xe

based experiment, in the low and high recoil energy regions as defined above. The
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Table 5.4: Neutrino flux components and their respective uncertainties in the flux
normalizations. For the Solar components we utilize the high metallicity Solar model
as outlined in Ref. [156].

component ν flux (cm−2s−1)

PP 5.98(1± 0.006)× 1010

7Be 5.00(1± 0.07)× 109

8B 5.58(1± 0.14)× 106

pep 1.44(1± 0.012)× 108

DSNB 85.5± 42.7

Atmospheric 10.5± 2.1

WIMP mass considered for each operator was taken from Table 5.1 as this is the

worst case scenario where the WIMP spectrum most closely resembles the neutrino

background. Note that while in the low region the best fit WIMP mass is very similar

for the neutron and proton scattering rates, this is not the case in the high region.

Thus in the low region the discovery potential curves remain parallel, but this is not

necessarily the case for the high region. The discovery evolution for three of the

operators from three groups is shown in Figure 5.4 and the remaining operators can

be found in the Appendix. For operators which are sufficiently neutrino like (group

1), the evolution exhibits saturation when the systematic uncertainty in the neutrino

flux becomes relevant. Note that this saturation is achieved at a smaller cross section

than in previous studies [137], because the analysis in this paper separates proton and

neutron couplings, thereby reducing the coherence factor and providing a less strin-

gent limit. This saturation is then broken when the exposure becomes large enough

that small differences in the WIMP and neutrino-induced recoil spectra become dis-

tinguishable [137].
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For the other operators with recoil spectra that are sufficiently different than the

neutrino-induced recoil spectra (group 2 and 3), no significant saturation is observed.

For these cases a weak inflection point defines the exposure at which the satura-

tion is a maximum. The corresponding saturations are listed for each operator in

Table 5.3. From this table we see that operators in the same category reach the

inflection point at very similar exposures. The operators that reach the inflection

point at the lowest exposures are those that are most easily distinguishable from the

neutrino backgrounds. These operators then return quickly to a 1/
√
MT evolution

as the exposure is increased.
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Figure 5.4: Discovery evolution of O1 (left), O6 (middle), O10 (right) operators, for
the low region (top) and high region (bottom). The blue and yellow curves show the
limits for proton and neutron scattering respectively
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5.4.2 Discovery Limits and Exclusion Regions

We now move on to find the 3σ discovery limit across the entire WIMP mass

range. We calculate the discovery limits for all operators using a single exposure

which saturates O1 ∼ 104( ∼ 103) neutrino events in the low (high) region. The

motivation for this choice is primarily a simplification of the analysis, noting that

the discovery evolution of group 2 and 3 operators do not experience saturation as

strongly as group 1 operators. The exposures for the different targets are given in

Table 5.5.
Table 5.5: List of exposures used to calculate the neutrino floor

Target exposurelow (t.y) exposurehigh (kt.y)

xenon 1.76 58

germanium 3.26 87

silicon 10.4 206

flourine 16.3 278

In addition to the discovery limits we also determine the 90% exclusion regions

from the most recent LUX results [13]. To calculate exclusion limits we use the profile

likelihood method with test statistic,

qσ =


−2logL(σ,θ̂)

L(σ̂, ˆ̂θ)
σ ≥ σ̂

0 σ < σ̂

where we now use a likelihood which includes gaussian terms for the astrophysical

errors: ρχ = 0.3 ± 0.1GeV/cm3, v0 = 220 ± 20km/s and vesc = 544 ± 40km/s.

Under repeated background-only experiments qσ is half-chi-square distributed and

the significance is √qσ.

For each of the operators, we calculate 90% confidence limits for the inner 18cm

fiducial volume (117kg) over the 95 day LUX run, which resulted in a 30.5 kg day

84



exposure. For simplicity we will assume that the background prediction is uniform

throughout the fiducial volume. While this is actually likely not the case, it is a

conservative estimate given the background is lower within the inner fiducial volume.

After the 99.6% electronic recoil discrimination efficiency, 1.9 events were expected

in the nuclear recoil region, and 2 were actually observed. The energy dependent

detector efficiency was taken from LUXcalc [157], which takes into account detector

resolution and threshold effects. While this efficiency curve is based on the 2013

LUX analysis, we have reduced the threshold to 1.1keV in line with the more recent

analysis. The results we obtained are in good agreement with the official exclusion

curves, as illustrated in Fig. 5.5. A summary of the experimental specifications are

given in Table 5.6.

Table 5.6: Experimental specifications used to generate exclusion curves
Name Target Exp. (kg.y) ROI efficiency background observed

LUX Xe 30.5 1.1-41 keV 0.5 1.9 2
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Figure 5.5: Comparison of our exclusion limits (solid) with the official LUX result
(dashed)
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Figure 5.6 shows the discovery limits and exclusion curves for O1 (top), O6 (mid-

dle), O10. The corresponding discovery limits and exclusion curves for the remaining

operators are shown in the Appendix. For several operators, for example O6 coupling

to neutrons, we find that the calculated limits (grey shaded regions) are overlapping

with the discovery limits curves for low mass where the discovery limit is dominated

by Solar neutrinos. This does not imply a contradiction, as the exclusion curves,

which only apply to xenon targets, do not overlap the xenon discovery limits. The

proximity of the exclusion curves to the discovery limits (which have vastly larger ex-

posures) is a reflection of the different statistical procedures used to generate the two

sets of curves. In particular, the calculated discovery limits are a more statistically

demanding criteria than an exclusion limit at 90% confidence, so for a given WIMP

mass and cross section a larger exposure would be required to claim a 3σ fluctuation.

In future larger scale detectors for which the neutrino signal will be non-negligible,

it will be necessary to include neutrinos into the statistical model that determines

exclusion regions.

5.5 Discussion and Conclusion

In order to continue to improve bounds on the WIMP-nucleon cross section, fu-

ture larger scale detectors must become effective at distinguishing a WIMP interac-

tion from a neutrino interaction. In this paper we considered this issue within the

well-motivated EFT framework. Within this framework, the standard SI and SD in-

teractions represent only a portion of a larger set of nuclear responses which must be

considered in direct dark matter detection. We specifically focus on the set of EFT

operators that respect Galilean invariance, time-reversal symmetry, and Hermiticity.

We have shown that for 10 of the 14 operators, the energy spectrum induced by

WIMPs is distinct from that induced by neutrinos. For these operators, we show that
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Figure 5.6: Discovery limits for O1 (top), O6 (middle), O10 (bottom), for protons
(left) and neutrons (right). The shaded region shows the 90% confidence limits for a
30.5 kg day exposure at LUX.

a clean statistical separation between WIMPs and neutrinos will be possible. For only

4 of the 14 WIMP-nucleon operators that we consider do we find that the WIMP and

neutrino spectrum can be highly degenerate. For these 4 operators (which belong to

group 1) we specifically calculate the “worst-case scenario” WIMP mass which most

closely matches the neutrino spectra. Our results show that an experiment with good

spectral energy resolution and exposure near the ton scale should have little trouble
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distinguishing certain WIMP interactions from neutrino-induced nuclear recoil events.

The group 2 and 3 operators would require an exposure of about 0.5 tonne years to

be distinguished from the neutrino background for a low mass WIMP (as can be

surmised from the linear region of Figure 5.4 beyond the saturation region/inflection

point). The group 1 operators can be distinguished from the neutrino backgrounds

for a sufficiently large exposure, ∼ 103 tonne years.

Relative to previous results that considered energy deposition, our theoretical

framework is more complete and encompasses a wider range of possible nuclear re-

sponses. In its most general form, the WIMP nucleon cross section is a superposition

of all of the operators that we have discussed, with the observable being a superposi-

tion of the corresponding nuclear recoil spectrum for each operator. The limiting case

that we have studied here in which a single operator dominates the cross section will

provide guidance and intuition for future more detailed studies that consider more

complicated superpositions of operators. In order to extract information about the

particle properties of dark matter from a detection of events, the challenge that future

detectors will face not only lies in reducing the neutrino backgrounds, but also in un-

derstanding the degeneracies that are incurred when attempting to map the detected

energy spectrum onto a particular superposition of operators [127].
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Chapter 6

CONCLUSION

It has been four decades since dark matter halos were discovered, three decades since

direct detection was proposed and two decades since the first experiment was demon-

strated. Now, with the maturation of detector technology, recent years have seen

renewed interest in the phenomenology of direct detection experiments. Studies have

found that long held assumptions greatly affect the interpretation of the data. This

dissertation has evaluated key assumptions that must not be taken for granted if one

is to obtain a robust interpretation of putative signals. In particular, the dark matter

halo parameters, inelastic scattering and isospin violation, each affect the ability to

correctly estimate WIMP parameters. Additionally, the underlying assumption of

SI/SD scattering rather than non-standard operator scattering can lead to a radical

misinterpretation of results. Thus additional operators that cannot be ruled out by

other means must be considered. With a much larger parameter space than originally

assumed, parameter estimation becomes more difficult. It has been demonstrated that

the best method for improving parameter estimation in this case is making use of de-

tector complementarity. Thus it is important that future detectors are made from a

variety of target materials. Fortunately, Xenon1t (xenon), SuperCDMS (germanium

and silicon) and DarkSide (argon) are all poised to operate large scale detectors in

the coming years.

In chapter 4 it was demonstrated that at least 2000 (background free) events are

required to distinguish between operators. Dark matter has yet to be discovered and

the neutrino floor lies around three orders of magnitude below current experimental

sensitivity. Thus it is unlikely that 2000 WIMP events can be observed without back-
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ground neutrino events. This will be problematic if dark matter does not interact

through one of the operators which can be distinguished clearly from coherent scat-

tering.

To be able to confidently discriminate models based on direct detection data, further

work needs to be carried out. To fully address the question of discernability, one

needs to start from a UV model of dark matter, integrate out the mediator and run

the resulting theory down to the electroweak breaking scale. From there, one can

match Wilson coefficients with the Standard Model and run the coefficients down to

the nuclear scale. The running of coefficients down from the UV scale may induce

operator mixing, a very important effect to include when it comes to discerning the

UV physics. Given that the relative strength of operators differs by many orders of

magnitude, it is possible that some of the more unique operators could be completely

washed out by even a small mixing with spin independent operators. This would

introduce huge degeneracies and spell disaster for the goals of trying to discern UV

physics with direct detection experiments. Thus it is vital to the interpretation of

direct detection data to understand and apply these effects, and only then can WIMP

models be evaluated correctly.

90



REFERENCES

[1] Lawrence M. Krauss and Michael S. Turner. The Cosmological constant is back.
Gen. Rel. Grav., 27:1137–1144, 1995.

[2] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M.
Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut,
M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spy-
romilio, C. Stubbs, N. B. Suntzeff, and J. Tonry. Observational Evidence from
Supernovae for an Accelerating Universe and a Cosmological Constant. The
Astrophysical Journal, 116:1009–1038, September 1998.

[3] S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift
supernovae. Astrophys. J., 517:565–586, 1999.

[4] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. 2015.

[5] F. Zwicky. On the masses of nebulae and of clusters of nebulae. Astrophys. J.,
86:217, 1937.

[6] K. C. Freeman. On the Disks of Spiral and so Galaxies. ApJ, 160:811, June
1970.

[7] V. C. Rubin and W. K. Ford, Jr. Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions. ApJ, 159:379, February 1970.

[8] Douglas Clowe, Marusa Bradac, Anthony H. Gonzalez, Maxim Markevitch,
Scott W. Randall, Christine Jones, and Dennis Zaritsky. A direct empirical
proof of the existence of dark matter. Astrophys. J., 648:L109–L113, 2006.

[9] see http://www.mergingclustercollaboration.org/merging-clusters.html.

[10] Signe Riemer-Sorensen, David Parkinson, and Tamara M. Davis. Combining
Planck data with large scale structure information gives a strong neutrino mass
constraint. Phys. Rev., D89:103505, 2014.

[11] Blas Cabrera, Lawrence M. Krauss, and Frank Wilczek. Bolometric Detection
of Neutrinos. Phys. Rev. Lett., 55:25, 1985.

[12] Mark W. Goodman and Edward Witten. Detectability of Certain Dark Matter
Candidates. Phys. Rev., D31:3059, 1985.

[13] D. S. Akerib et al. Improved WIMP scattering limits from the LUX experiment.
2015.

[14] R. Agnese et al. Search for Low-Mass Weakly Interacting Massive Particles
with SuperCDMS. Phys. Rev. Lett., 112(24):241302, 2014.

[15] E. Aprile et al. Lowering the radioactivity of the photomultiplier tubes for the
XENON1T dark matter experiment. Eur. Phys. J., C75(11):546, 2015.

91



[16] J. B. R. Battat et al. First background-free limit from a directional dark matter
experiment: results from a fully fiducialised DRIFT detector. Phys. Dark Univ.,
9-10:1–7, 2014.

[17] Jayden L. Newstead, Thomas D. Jacques, Lawrence M. Krauss, James B. Dent,
and Francesc Ferrer. Scientific reach of multiton-scale dark matter direct de-
tection experiments. Phys. Rev., D88(7):076011, 2013.

[18] A. Liam Fitzpatrick, Wick Haxton, Emanuel Katz, Nicholas Lubbers, and Yim-
ing Xu. The Effective Field Theory of Dark Matter Direct Detection. JCAP,
1302:004, 2013.

[19] James B. Dent, Lawrence M. Krauss, Jayden L. Newstead, and Subir Sabhar-
wal. General analysis of direct dark matter detection: From microphysics to
observational signatures. Phys. Rev., D92(6):063515, 2015.

[20] James B. Dent, Bhaskar Dutta, Jayden L. Newstead, and Louis E. Strigari. No
ν floors: Effective field theory treatment of the neutrino background in direct
dark matter detection experiments. Phys. Rev. (accepted), 2016.

[21] Yashar Akrami, Christopher Savage, Pat Scott, Jan Conrad, and Joakim Ed-
sjo. How well will ton-scale dark matter direct detection experiments constrain
minimal supersymmetry? JCAP, 1104:012, 2011.

[22] Miguel Pato, Laura Baudis, Gianfranco Bertone, Roberto Ruiz de Austri,
Louis E. Strigari, et al. Complementarity of Dark Matter Direct Detection
Targets. Phys.Rev., D83:083505, 2011.

[23] Chung-Lin Shan. Estimating the Spin-Independent WIMP-Nucleon Coupling
from Direct Dark Matter Detection Data. 2011.

[24] Chung-Lin Shan. Determining Ratios of WIMP-Nucleon Cross Sections from
Direct Dark Matter Detection Data. JCAP, 1107:005, 2011.

[25] Miguel Pato. What can(not) be measured with ton-scale dark matter direct
detection experiments. JCAP, 1110:035, 2011.

[26] Charlotte Strege, Roberto Trotta, Gianfranco Bertone, Annika H.G. Peter, and
Pat Scott. Fundamental statistical limitations of future dark matter direct
detection experiments. Phys.Rev., D86:023507, 2012.

[27] Laura Baudis. Direct dark matter detection: the next decade. Phys.Dark Univ.,
1:94–108, 2012.

[28] D.G. Cerdeño, C. Cuesta, M. Fornasa, E. Garćıa, C. Ginestra, et al. Com-
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VECTOR DARK MATTER EFT
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If the WIMP has spin 1, we find two extra operators that haven’t been considered
previously. Specifically, the operators depend on the symmetric combination of polar-
ization vectors, Sij = 1

2

(
ε†iεj + ε†jεi

)
. This necessitates a modification to the WIMP

response functions by first modifying the ` coefficients given in Eq. 3.13. Based on
our non-relativistic reduction for vector dark matter, the Lagrangian for vector dark
matter and the nucleus, interacting via an uncharged scalar or vector mediator can
be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11

+c14O14 + c17O17 + c18O18

(A.1)

where we’ve defined O17 ≡ i~q
mN
· S ·~v⊥ and O18 ≡ i~q

mN
· S · ~SN and the ci’s are given in

table 3.4. To decompose these new operators we replace ~v⊥ with the target velocity
and the internucleon velocities and sum over nucleons. O17 can then be put into the
form

O17 →
i~q

mN

.S.
[
~v⊥T e

−i~q.~xi −
A∑
i=1

1
2M

(
−1
i

←−
∇ ie

−i~q·~xi + e−i~q·~xi
1
i

−→
∇ i

)
int

]
. (A.2)

O18 can be expanded as

O18 →
1
2
i~q

mN

· S · ~σ (A.3)

Together, all the terms of Lvector give rise to the following ` factors from Eq. 3.13,

`τ0 = cτ1 + i
(

~q
mN
× ~v⊥T

)
· ~Sχcτ5 + (~v⊥T · ~Sχ)cτ8 + i

(
~q
mN
· ~Sχ

)
cτ11 + i

(
~q
mN
· S · ~vT⊥

)
cτ17

lAτ0 = −i
(

~q

2mN

· ~Sχ
)
cτ14

~lτE = 0 (A.4)

~lτM = i

(
~q

mN

× ~Sχ

)
cτ5 − ~Sχc

τ
8 − i

(
~q

mN

· S
)
cτ17

~lτ5 = 1
2
~Sχc

τ
4 + i

(
~q
mN
× ~Sχ

)
cτ9 + 1

2

(
i ~q
mN

)
cτ10 + 1

2~v
⊥
T

(
~q

2mN ·
~Sχ
)
cτ14 + 1

2

(
i ~q
mN
· S
)
cτ18

Based on the `’s above, the coefficients of the various nuclear responses are found
by squaring the amplitude and then summing over spins. To simplify calculations,
we choose a convenient basis for polarization vectors, εsi = δsi . Recall that the spin
can then be written as the anti-symmetric combination iSk = εijkε

†
iεj. The WIMP
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responses unique to the vector case are then given by:

Rττ ′

M = cτ1c
τ ′

1 + 2
3

(
~q2

m2
N

v⊥2
T cτ5c

τ ′

5 + v⊥2
T cτ8c

τ ′

8 + q2

m2
N

cτ11c
τ ′

11 + q2v⊥2
T

4m2
N

cτ17c
τ ′

17

)
Rττ ′

Φ′′ = 0
Rττ ′

Φ′′M = 0
Rττ ′

Φ̃′ = 0

Rττ ′

Σ′′ = 1
6c

τ
4c
τ ′

4 + q2

4m2
N

cτ10c
τ ′

10 + q2

12m2
N

cτ18c
τ ′

18

Rττ ′

Σ′ = 1
6c

τ
4c
τ ′

4 + q2

6m2
N

cτ9c
τ ′

9 + q2v⊥2
T

2m2
N

cτ14c
τ ′

14 + q2

24m2
N

cτ18c
τ ′

18

Rττ ′

∆ = 2
3

(
~q2

m2
N

cτ5c
τ ′

5 + cτ8c
τ ′

8

)
+ q2

6m2
N

cτ17c
τ ′

17

Rττ ′

∆Σ′ = 2
3
(
cτ5c

τ ′

4 − cτ8cτ
′

9

)
. (A.5)
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We find effective relativistic interaction Lagrangians by integrating out heavy
mediators. We only keep the leading order interactions (suppressed by m or m2). To
the right of each operator is their non-relativistic reduction expressed in terms of the
operators in table 5.1 with the coefficient derived from the Lagrangian parameters
along with the relevant nucleon form factor. As multiple operators can have the
same non-relativistic limit, it is important to include the nucleon form factor at the
relativistic level. If this is not performed, erroneous cancellations can occur.

For free spinors we use the Bjorken and Drell normalization and γ matrix conven-
tions. In the non-relativistic limit we make the following replacements:

S → 1S√
mS

Xµ →
εsµ√
mX

χ →
√
E +mχ

2mχ

(
ξ

~σ·~p
E+mχ ξ

)
(B.1)

where s = 1, 2, 3 are the different polarization states of the vector. ξ = (1 0)T is
the left handed Weyl spinor. The following Fierz transformation and gamma matrix
identites were useful in the charged mediator cases, (a sign difference was found in
the final identity when compared with [150]):

(q̄χ)(χ̄q) = − 1
4 [q̄qχ̄χ+q̄γµqχ̄γµχ+ 1

2 q̄σ
µνqχ̄σµνχ−q̄γµγ5qχ̄γµγ5χ+q̄γ5qχ̄γ5χ]

(q̄γ5χ)(χ̄γ5q) = − 1
4 [q̄qχ̄χ+q̄γ5qχ̄γ5χ−q̄γµqχ̄γµχ+q̄γµγ5qχ̄γµγ5χ+ 1

2 q̄σ
µνqχ̄σµνχ]

(q̄χ)(χ̄γ5q) = − 1
4 [q̄qχ̄γ5χ+q̄γ5qχ̄χ−q̄γµqχ̄γµγ5χ+q̄γµγ5qχ̄γµχ+iεµναβ q̄σµνqχ̄σαβχ]

(q̄γµχ)(χ̄γµq) = −[q̄qχ̄χ−q̄γ5qχ̄γ5χ− 1
2 q̄γ

µqχ̄γµχ− 1
2 q̄γ

µγ5qχ̄γµγ5χ]
(q̄γµγ5χ)(χ̄γµγ5q) = −[−q̄qχ̄χ+q̄γ5qχ̄γ5χ− 1

2 q̄γ
µqχ̄γµχ− 1

2 q̄γ
µγ5qχ̄γµγ5χ]

(q̄γµχ)(χ̄γµγ5q) = −[q̄qχ̄γ5χ−q̄γ5qχ̄χ+ 1
2 q̄γ

µqχ̄γµγ5χ+ 1
2 q̄γ

µγ5qχ̄γµχ] (B.2)

σµνγ5 = i

2ε
µνρσσρσ (B.3)

All of the following operators are collected in terms of the coefficients of the NR
operators, ci, in tables 3.2,3.3 and 3.4.
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Table B.1: Non-relativistic reduction of operators for a spin-0 WIMP
Scalar Mediator
(S†S)(q̄q) −→

(
hN1 g1
m2
φ

)
O1

(S†S)(q̄γ5q) −→
(
hN2 g1
m2
φ

)
O10

Vector Mediator
i(S†∂µS − ∂µS†S)(q̄γµq) −→ 0
i(S†∂µS − ∂µS†S)(q̄γµγ5q) −→

(
2ig4hN4
m2
G

mN
mS

)
O10

Charged Spinor Mediator
(S†S)(q̄q) −→ y†

1y1−y†
2y2

mQmS
fNT O1

(S†S)(q̄γ5q) −→ i
y†
2y1−y†

1y2
mQmS

∆̃NO10

Table B.2: Operators for a spin-1
2 WIMP via a neutral mediator

Scalar Mediator
χ̄χq̄q −→

(
hN1 λ1
m2
φ

)
O1

χ̄χq̄γ5q −→
(
hN2 λ1
m2
φ

)
O10

χ̄γ5χq̄q −→
(
−hN1 λ2mN

m2
φ
mχ

)
O11

χ̄γ5χq̄γ5q −→
(
hN2 λ2mN
m2
φ
mχ

)
O6

Vector Mediator
χ̄γµχq̄γµq −→

(
−hN3 λ3

m2
G

)
O1

χ̄γµχq̄γµγ
5q −→

(
−2hN4 λ3

m2
G

) (
−O7 + mN

mχ
O9
)

χ̄γµγ5χq̄γµq −→
(
−2hN3 λ4

m2
G

)
(O8 +O9)

χ̄γµγ5χq̄γµγ
5q −→

(
4hN4 λ4
m2
G

)
O4
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Table B.3: Non-relativistic reduction of operators for a spin-1
2 WIMP via a charged

mediator (after using Fierz identities)
Charged Scalar Mediator
χ̄χq̄q −→ l†2l2−l

†
1l1

4m2
Φ
fNTqO1

χ̄χq̄γ5q −→ i
l†1l2−l

†
2l1

4m2
Φ

∆q̃NO10

χ̄γ5χq̄q −→ i
l†2l1−l

†
1l2

4m2
Φ

mN
mχ
fNTqO11

χ̄γ5χq̄γ5q −→ l†1l1−l
†
2l2

4m2
Φ

mN
mχ

∆q̃NO6

χ̄γµχq̄γµq −→ − l†1l1+l†2l2
4m2

Φ
NN
q O1

χ̄γµγ5χq̄γµq −→ l†1l2+l†2l1
2m2

Φ
NN
q (O8 +O9)

χ̄γµχq̄γµγ
5q −→ l†1l2+l†2l1

2m2
Φ

∆N
q (O7 − mN

mχ
O9)

χ̄γµγ5χq̄γµγ
5q −→ − l†1l1+l†2l2

m2
Φ

∆N
q O4

χ̄σµνχq̄σµνq −→ l†2l2−l
†
1l1

m2
Φ

δNq O4

εµναβχ̄σ
µνχq̄σαβq −→ l†2l1−l

†
1l2

m2
Φ

δNq (iO10 − imNmχO11 + 4O12)
Charged Vector Mediator
χ̄χq̄q −→ d†

2d2−d†
1d1

4m2
V

fNTqO1

χ̄χq̄γ5q −→ i
d†

2d1−d†
1d2

4m2
V

∆q̃NO10

χ̄γ5χq̄q −→ i
d†

2d1−d†
1d2

4m2
V

mN
mχ
fNTqO11

χ̄γ5χq̄γ5q −→ d†
2d2−d†

1d1
4m2

V

mN
mχ

∆q̃NO6

χ̄γµχq̄γµq −→ d†
2d2+d†

1d1
8m2

V
NN
q O1

χ̄γµγ5χq̄γµq −→ −d†
2d1+d†

1d2
4m2

V
NN
q (O8 +O9)

χ̄γµχq̄γµγ
5q −→ d†

2d1+d†
1d2

4m2
V

∆N
q (O7 − mN

mχ
O9)

χ̄γµγ5χq̄γµγ
5q −→ −d†

2d2+d†
1d1

2m2
V

∆N
q O4

108



Table B.4: Non-relativistic reduction of operators for a spin-1 WIMP
Scalar Mediator
X†µX

µq̄q −→
(
b1hN1
m2
φ

)
O1

X†µX
µq̄γ5q −→

(
b1hN2
m2
φ

)
O10

Vector Mediator
(X†ν∂µXν − ∂µX†νXν)(q̄γµq) −→ 0
(X†ν∂µXν − ∂µX†νXν)(q̄γµγ5q) −→

(
−3b5hN4
m2
G

mN
mX

)
O10

∂ν(Xν†Xµ +X†µX
ν)(q̄γµq) −→

(
Re(b6)hN3

m2
G

mN
mX

)
(O5 +O6 − q2

m2
N
O4)

∂ν(Xν†Xµ +X†µX
ν)(q̄γµγ5q) −→

(
−2Re(b6)hN4

m2
G

mN
mX

)
O9

∂ν(Xν†Xµ −X†µXν)(q̄γµq) −→
(
−4Im(b6)hN3

m2
G

mN
mX

)
O17

∂ν(Xν†Xµ −X†µXν)(q̄γµγ5q) −→
(

4Im(b6)hN4
m2
G

mN
mX

)
O18

εµνρσ
(
Xν†∂ρXσ +Xν∂ρXσ†

)
(q̄γµq) −→

(
Re(b7)hN3

m2
G

mN
mX

)
O11

εµνρσ
(
Xν†∂ρXσ +Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
Re(b7)hN4

m2
G

mN
mX

)
(i q2

mXmN
O4

−imNmXO6 − 2O14)

εµνρσ
(
Xν†∂ρXσ −Xν∂ρXσ†

)
(q̄γµq) −→

(
2Im(b7)hN3

m2
G

)
(O8 +O9)

εµνρσ
(
Xν†∂ρXσ −Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
4Im(b7)hN4

m2
G

)
O4

Charged Spinor Mediator
(X†µXν)(q̄γµγνq) −→

(
y†
3y3−y†

4y4
mQmX

)(
fNTqO1 + 2δNq O4

)
(X†µXν)(q̄γµγνγ5q) −→

(
y†
4y3−y†

3y4
mQmX

)
(i∆N

q̃ O10 + iδNq O11

−2iδNq O12 − 2iδNq O18)
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QUARKS TO NUCLEONS
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To go from the fundamental interactions of WIMPs with quarks to scattering from
point-like nucleons, one must evaluate the quark (parton) bilinears in the nucleons.
For a full discussion see the appendix of [150] and [158]. We write the nucleon
couplings in terms of the quark couplings times a form factor (in the limit of zero
momentum transfer): The scalar bilinear for light quarks can be evaluated from

〈No|mq q̄q |Ni〉 −→ fNTqN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃NN̄γ5N
〈No| q̄γµq |Ni〉 −→ NN

q N̄γ
µN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γ

µγ5N

〈No| q̄σµνq |Ni〉 −→ δNq N̄σ
µνN

〈N |mq q̄q |N〉 = mNf
N
Tq (C.1)

while for the heavy quarks

〈N |mq q̄q |N〉 = 2
27mNF

N
TG = 2

27mN

1−
∑

q=u,d,s
fNTq

 . (C.2)

Summing over all the quarks one finds

hN1 =
∑

q=u,d,s
hq1
mN

mq

fNTq + 2
27f

N
TG

∑
q=c,b,t

hq1
mN

mq

(C.3)

The psuedo-scalar bilinear was recently revisited in [158]:

hN2 =
∑

q=u,d,s
hq2∆q̃N −∆G̃N

∑
q=c,b,t

hq2
mq

(C.4)

The vector bilinear essentially gives the number operator:

hN3 =
{

2hu3 + hd3 N = p
hu3 + 2hd3 N = u

(C.5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note
that sometimes this coupling has a GF factored out to make it dimensionless)

hN4 =
∑

q=u,d,s
hq4∆N

q (C.6)

Throughout this paper the following values are used (it should be noted that there
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are large uncertainties in these values) [150, 158]:

fnTu = 0.014 fpTu = 0.02
fnTd = 0.036 fpTd = 0.026
fnTs = 0.118 fpTs = 0.118
∆n
u = −0.427 ∆p

u = 0.842
∆n
d = 0.842 ∆p

d = −0.427
∆n
s = −0.085 ∆p

s = −0.085
∆ũn = −108.03 ∆ũp = 110.55
∆d̃n = 108.60 ∆d̃p = −107.17
∆s̃n = −0.57 ∆s̃p = −3.37

∆G̃n = 35.7MeV ∆G̃p = 395.2MeV
(C.7)

Assuming a universal coupling of the mediators to all quarks, the nucleon level cou-
plings are can be written as,

hN1 = fNT h1

hN2 = ∆̃Nh2

hN3 = NNh3

hN4 = ∆Nh4

(C.8)

where we have defined,

fnT = 11.93 fpT = 12.31
∆̃n = −0.07 ∆̃p = −0.28
N n = 3 N p = 3
∆n = 0.33 ∆p = 0.33
δn = 0.564 δp = 0.564

. (C.9)

This introduces a small amount of isospin violation, and it is known that relaxing the
assumption of universal couplings to quarks can lead to interesting isospin violating
effects [158, 159].
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APPENDIX D

NEUTRINO FLOOR ANALYSIS FOR ALL OPERATORS
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In this appendix, we show best fitting masses and discovery limits for the oper-
ators that were not shown in the main text. These figures motivate the operator
groupings that were presented above. Figure D.1 show the best fit masses to the 8B
neutrino rate for the four targets. Figure D.2 shows the discovery evolution for the
low mass and high mass WIMP region for operators O3 −O9, and Figure D.2 shows
the discovery evolution for the low mass and high mass WIMP region for operators
O11 − O15. Figure D.6 shows the discovery limits for group 2 operators interacting
with protons, and Figure D.7 shows the discovery limits for group 2 operators in-
teracting with neutrons. Finally, Figure D.8 shows the discovery limits for group
2 operators interacting with protons, and Figure D.9 shows the discovery limits for
group 2 operators interacting with neutrons.
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Figure D.1: Best fits of each operator to the 8B Solar neutrino rate for the four
targets
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Figure D.2: Discovery evolution for the low mass region (first and third rows) and
high mass region (second and fourth rows) for operators 3-9. The blue and yellow
curves show the limits for proton and neutron scattering, respectively
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Figure D.3: Discovery evolution for the low mass region (first and third rows) and
high mass region (second and fourth rows) for operators 11-15. The blue and yellow
curves show the limits for proton and neutron scattering, respectively
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Figure D.4: Discovery limits for group 1 operators interacting with protons
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Figure D.5: Discovery limits for group 1 operators interacting with neutrons
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Figure D.6: Discovery limits for group 2 operators interacting with protons
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Figure D.7: Discovery limits for group 2 operators interacting with neutrons
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Figure D.8: Discovery limits for group 3 operators interacting with protons
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Figure D.9: Discovery limits for group 3 operators interacting with neutrons.
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