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ABSTRACT

Traditionally, visualization is one of the most important and commonly used methods

of generating insight into large scale data. Particularly for spatiotemporal data, the

translation of such data into a visual form allows users to quickly see patterns, explore

summaries and relate domain knowledge about underlying geographical phenomena

that would not be apparent in tabular form. However, several critical challenges

arise when visualizing and exploring these large spatiotemporal datasets. While,

the underlying geographical component of the data lends itself well to univariate vi-

sualization in the form of traditional cartographic representations (e.g., choropleth,

isopleth, dasymetric maps), as the data becomes multivariate, cartographic repre-

sentations become more complex. To simplify the visual representations, analytical

methods such as clustering and feature extraction are often applied as part of the

classification phase. The automatic classification can then be rendered onto a map;

however, one common issue in data classification is that items near a classification

boundary are often mislabeled.

This thesis explores methods to augment the automated spatial classification by

utilizing interactive machine learning as part of the cluster creation step. First, this

thesis explores the design space for spatiotemporal analysis through the development

of a comprehensive data wrangling and exploratory data analysis platform. Second,

this system is augmented with a novel method for evaluating the visual impact of edge

cases for multivariate geographic projections. Finally, system features and function-

ality are demonstrated through a series of case studies, with key features including

similarity analysis, multivariate clustering, and novel visual support for cluster com-

parison.
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Chapter 1

INTRODUCTION

The current instrumentation of smart systems and cyber-enabled infrastructure

is leading to a generation of large-scale, real-time datasets that have the potential to

provide new information and insight into a broad range of spatial dynamics. In the

past, spatial measurements were relegated to single snapshots in time with Decennial

Population Censuses and other governmentally collected statistics providing the basis

for spatial analysis. However, the current influx of data, from Twitter feeds to traffic

patterns to home electric consumption, now provides real-time updates at fine scale

spatial resolutions. Such emerging spatial big data has the potential to provide new

understandings and spur innovation. For example, a 2011 McKinsey Global Institute

report [1] estimated that savings of $600 Billion annually could be achieved by reduc-

ing idling and fuel consumption through smart phone navigation. Such an analysis

could only be done by analyzing localized spatiotemporal traffic patterns. Clearly,

such real-time data can generate unprecedented insights into spatiotemporal inter-

actions and flows [2]. Unfortunately, the scale of the data is a double edged sword.

While it is clear that such information will be able to provide new insights into the

world, the generation of these insights is increasingly difficult.

Traditionally, visualization is one of the most important and commonly used meth-

ods of generating insight into large scale data. Particularly for spatial data, the trans-

lation of such data into a visual form allows users to quickly see patterns, explore

summaries and relate domain knowledge about underlying geographical phenomena

that would not be apparent in tabular form. Visual analytics is the science of an-

alytical reasoning facilitated by interactive visual interfaces [4]. As illustrated in
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Figure 1.1: An illustration for the concept of visual analytics. This is similar to the

concept figure in the work of Keim et al. [3].

Figure 1.1, visual analytics is a multidisciplinary field that consists of data mining,

data management, human computer interaction and perception+cognition [5]. By

utilizing human’s cognitive and perceptual skills, visual analytics combines human

factors into the decision making process and serves as a basis for communications be-

tween users and machines. Since visual analytics augments the analytical reasoning

process upon the form of interactive visualizations (Figure 1.1), visual analytics tools

enable decision makers to actually explore the nature of complex data and generate

insight into large scale data. Due to the importance and complexity of spatiotempo-

ral data, visual analytics approaches have been applied in a variety of spatiotemporal

domain areas including healthcare [6–9], crime [10–12], environmental science [13–16]

and socio-economic analysis [17–19] to study spatiotemporal processes and enable

hypotheses generation .

1.1 Motivation

Several critical challenges arise when visualizing and exploring large spatiotempo-

ral datasets. One of the major challenges is that spatiotemporal attribute data are

2



often organized very differently. They may be archived in a plain tabular format, such

as .csv, or in a specific format, such as a .dbf file or a netCDF file, and all of those

formats do not have a standard regulation on the arrangement among the attributes.

This means that while analysts may know the temporal relationships among vari-

ables, machines may have no idea of the internal data relationship. Thus, designing a

fully automated data generalization procedure becomes unrealistic. In order to apply

visual analytics solutions, analysts have to put lots of effort into data preprocessing or

manually coding scripts for data cleaning. Moreover, the fact that data are organized

differently makes data fusion between different sources very costly. While many cur-

rent geographic information systems (GIS) provide simple functions for integrating

data based on specifying the joint geographical units, few data processing approaches

handle the temporal aspect of spatiotemporal data.

As for visualizing spatiotemporal data, the underlying geographical component

of the data lends itself well to univariate visualization in the form of traditional

cartographic representations (e.g., choropleth, isopleth, dasymetric maps [20]). How-

ever, as the data becomes multivariate, cartographic representations become more

complex. Multivariate color maps [21], textures [22], small multiples [23] and 3D

views [24] have been employed as a means of increasing the amount of information

that can be conveyed when plotting spatial data on a map. However, each of these

methods have their own limitations. Multivariate color maps and textures result in

cognitive overload where much time is spent trying to separate data elements in the

visual channel [25]. Occlusion and clutter remain fundamental challenges for effective

visual data understanding in 3D [26]. Utilizing small multiples can help in side-by-

side comparisons but their scalability is limited by the available screen space and

the cognitive overhead associated with pairwise comparisons [27]. Such problems are

further compounded when a temporal aspect is added to the data. Such data is often

3



explored using animation and controlled playbacks; however, this forces end users to

rely on their memory and do sequential comparisons between animation frames. As

the number of spatial units being explored increases, small areal units can often be

perceptually obscured within the data because size is often a dominating perceptual

cue, thus make the data quickly become intractable. Furthermore, recent work has

shown that map animation can lead to change blindness [28] when visually analyzing

spatiotemporal data. Such challenges call for a transformative view to explore large

spatial data. While intensive efforts have been spent on developing better algorithms

and techniques for data management, querying and analysis of such data, much less

attention has been paid to the design of effective visual analytics solutions.

Another challenge is that many data mining methods, such as clustering, have

been introduced into the spatiotemporal visual analytics pipeline as an exploratory

procedure, yet these methods are usually applied at a level that is agnostic to the

spatial relationships between the data (i.e., the positions of the regions are not used

as features in the clustering method). As such, local geographic variations may be

obscured in a global clustering approach. Furthermore, the quality of the clustering

results needs to be accounted for and explored both locally and globally. Choro-

pleth maps using clustering approaches have been applied in various domain areas

(e.g., GeoDa [21], VIS-STAMP [23]) for exploratory data analysis. Such maps al-

low multivariate clustering results to be interpreted based on the map appearance.

One important aspect of the interpretation is the spatial association [29] related to

Tobler’s first law of geography [30] which states that “everything is related to ev-

erything else, but near things are more related.” For instance, if the neighboring

locations are mostly from the same cluster (in the same color), such an observation

represents a strong spatial association; if the neighboring locations are scattered from

different clusters (in different colors), such an observation represents more random-

4



ness in geographical space. In other words, the map appearance tells a story and the

story could vary as the appearance changes. Knowing the stability of a choropleth

map can be critical for interpreting the clustering result. By modifying the label of

geographical elements, the resultant visualization can appear to have more (or less)

spatial heterogeneity. This can lead to misinterpretation of the data and confuse find-

ings and results [31]. However, due to the complex relationship between multivariate

space and geographical space, there is still a gap between the multivariate clustering

stability and the stability of the map appearance. While much work has been done

on the evaluation of clustering stability and clustering tendency [32–35], little work

addresses the visual stability when mapping the clustering result from a multivariate

space to the fixed geographical space.

This thesis utilizes three different criteria and develops novel metrics to visually

explore cluster labels near the cluster boundaries with a focus on the connection

between the stability of the map appearance and the clustering. Instead of being

confined to the original spatiotemporal domain, this concept extends traditional visual

representations and presents novel views for showing how correlations, clusters and

other various spatial dynamics change over time. In order to validate and explore

more insight for those metrics, this thesis presents a novel visual analytics framework

for spatiotemporal data exploration integrated with a data wrangling process.

1.2 Research Goals and Contributions

While intensive efforts have been spent on developing better algorithms and tech-

niques for data management, querying and analysis of spatiotemporal data, much less

attention has been paid to the design of effective visual analytics solutions. Instead

of being confined to the original spatiotemporal domain, this thesis seeks to both

extend traditional visual representations and develop novel views for showing how
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correlations, clusters and other various spatial dynamics change over time. Underly-

ing these novel views is the need for visual representations in which the manipulation

of the representation is directly tied to the underlying computational analytics. The

primary goals of this thesis include:

1. Enabling quick spatial data wrangling. As discussed in the motivation, being

able to link datasets with varying spatial and spatiotemporal resolutions is

challenging for a typical end user and tools that can address this need are

critical.

2. Enabling improved pattern finding and hypothesis generation. From the visual

analytics perspective, a pattern is the general term for any recognizable regu-

larity in the data [36]. Regular structures that can describe changes in space

and time, in particular, repeating structures, are often called spatiotemporal

patterns [37].

3. Enabling cartographers and analysts to have a better understanding of multi-

variate map classification in geographical space and to create a more precise,

accurate and meaningful map.

Furthermore, this thesis explores the design space for spatiotemporal analysis

through the development of a comprehensive data wrangling and exploratory data

analysis platform. Key contributions include:

1. A design study for system requirements of spatiotemporal analysis tools.

2. An implementation of a visual analytics framework for spatiotemporal data

analysis with key features including a novel similarity query interface as well as

a novel Drag & Drop clustering Difference view for cluster comparison.
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3. A novel mathematical formulation for quantifying the visual impact of the clas-

sification boundary in choropleth maps.

4. A domain characterization for spatiotemporal exploration based on feedback

from economic geographers and political scientists.
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Chapter 2

RELATED WORK

This thesis presents a framework that is designed for the visual exploration of spa-

tiotemporal data and the extraction of locally related spatial structures. There are

several relevant fields to be reviewed including spatiotemporal visualization, time se-

ries similarity, map classification, clustering evaluation and comparison, geographical

variation, clustering with feedback, and direct manipulation.

2.1 Spatiotemporal Visualization

Since the early 1990’s, a number of approaches for dealing with spatiotemporal

data have been proposed by the GISs (Geographic Information Science) commu-

nity [38]. Table 2.1 provides an overview of some of these toolkits including their

key features, their spatiotemporal capability and their respective programming lan-

guages. This table is not meant to be a complete review of all possible toolkits created

since work in this area is quite extensive. Instead, this table is meant to provide an

overview of toolkits that were foundational to the development of this thesis. A

common feature of these toolkits is their one-directional integration with GIS [39].

One-directional integration means data are taken from a geographic information sys-

tem and imported into a separate toolkit for analysis, or results are taken from a

toolkit and placed back into a GIS for display and mapping [38].
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Table 2.1: Overview of Relevant Analytical Toolkits

No. Analytical Toolkit First

Cita-

tion

Related

Cita-

tions

Year First Re-

leased

Updates Example Applica-

tion

1 REGARD (Radical Effec-

tive Graphical Analysis of

Regional Data)

[40] [41] Not Released N/A Irish socioeconomic

data (1991)

2 SPIDER (Spatial Interac-

tive Data Explorer)

[42] N/A Not Released N/A Geochemical analyses

(1991)

3 XGobi [43] [44,

45]

1996 Shifted to GGobi

V2.0

Corn yield measure-

ments (1997)

4 XmdvTool [46] [47] 1994 V8.0 released in

2010

Census data (2007)

5 SaTScan [48] [49,

50]

1997 V9.1.1 released in

2011

Epidemiological data

(1997)

6 SAGE (Spatial Analysis in

a GIS Environment)

[51] [52,

53]

1997 No updates Health data (1997)

7 CDV (Cartographic Data

Visualizer)

[54] [55] Not Released N/A Educational attain-

ment (1998)

8 CrimeStat [56] [57,

58]

1999 V3.3 released in

2010

Crime data (2006)

9 GeoVista Studio [59] [60,

61]

2002 V1.2 released in

2007

Forest habitat (2002)

10 SpDep (Spatial Depen-

dence)

[62] [63,

64]

2002 V0.5-53 released

in 2012

African conflict data

(2003)

11 GeoDa (Geographic Data

Analysis)

[65] [21] 2003 Shifted to Open-

GeoDa V1.2.0

Homicide counts and

rates (2006)

12 Dcluster [66] N/A 2004 V0.2-5 released in

2012

Sudden infant death

syndrome (2003)

13 Improvise [67] [68] 2007 2011 Demographic data

(2007)

14 Arc Mat [69] [70] 2004 V1.0 in 2010 Population growth

data (2004)

15 STARS (Space-Time Anal-

ysis of Regional Systems)

[71] [72] 2004 V0.8.2 released in

2006

Regional income

(2006)

16 VIS-STAMP (Visualiza-

tion System for Space-

Time and Multivariate

Patterns)

[23] N/A 2006 No updates Company data (2006)

17 STAMP (Spatial-

Temporal Analysis of

Moving Polygons)

[73] [74,

75]

2007 No updates Wildfire spread (2007)

18 IVIID (Interactive Visual-

ization tool for Indices of

Industrial Diversity)

[76] N/A Not Released N/A Economy data

No. Vis1

(Y/

N)

S2

(Y/

N)

T3

(Y/

N)

ST4

(Y/

N)

NS5

(Y/

N)

PL6 Data

Type

Key Features Link

1 Y N N N N Pascal Point,

areal

Regional analysis, network analysis, ani-

mation, cross-layer linking and interactive

graphics

http://www.statlab.

uni-heidelberg.de/

projects/workshop/

Regardinfo.html

Continued on next page
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No. Vis1

(Y/

N)

S2

(Y/

N)

T3

(Y/

N)

ST4

(Y/

N)

NS5

(Y/

N)

PL6 Data

Type

Key Features Link

2 Y Y N N N Pascal Point Multi-window, dynamic linking and ability

of layers manipulation

No webpage link

3 Y N N N N C Point Visualization engine, high-dimensional

drawing, handle missing value, manipula-

tion and display of the scatter plot

http://www2.research.

att.com/areas/stat/

xgobi/#xgobi-paper

4 Y N N N Y C/C++ Non-

Geog-

raphic

N-dimensional brushing, four methods for

displaying multivariate data in both flat and

hierarchical approach

http://davis.wpi.edu/

xmdv/index.html

5 N Y Y Y N Java Point,

areal

A flexible user interface for computing scan

statistics for a variety of distributions to de-

tect statistically significant clusters

http://www.satscan.

org/

6 Y Y N N Y C Areal Exploratory data analysis and exploratory

spatial data analysis by utilizing GIS

ftp://ftp.shef.ac.uk/

pub/uni/academic/D-H/

g.old/sage/sagehtm/

sage.htm

7 Y Y N N N Tcl/Tk Areal Interative Cartographic visualization, com-

prises interpreted scripts for extension

http://www.

spatial-modelling.

info/

CDV-Cartographic-Data

8 Y Y N N Y C++ Point Analyze the distribution, identify hot spots,

indicate spatial autocorrelation, monitor the

interaction of events and have specific crime

analysis tools

http://www.icpsr.

umich.edu/CrimeStat/

about.html

9 Y Y N N Y Java Point,

areal

Modular nature, codeless environment, com-

bining computational clustering and sorting

with cartographic and information visualiza-

tion methods

http://www.

geovistastudio.psu.

edu/jsp/index.jsp

10 N Y N N N R Point,

areal

A collection of various spatial analysis func-

tions like regional aggregation, spatial auto-

correlation, spatial regression model etc.

http://cran.r-project.

org/web/packages/

spdep/index.html

11 Y Y N N N C++ Point,

areal

Interactive environment that combines maps

with statistical graphics and methods of de-

scriptive spatial data analysis, such as spa-

tial autocorrelation statistics, spatial regres-

sion

https://geodacenter.

asu.edu/projects/

opengeoda

12 N Y N N N R Areal A set of functions for the detection of spatial

clusters

http://www.uv.es/

geeitema/Virgilio/

Rpackages/DCluster/

index.shtml

13 Y N N N N Java Areal Declarative visual query language, multiple

coordinated views and integrated metavisu-

alization

http://www.cs.ou.edu/

~weaver/improvise/

index.html

14 Y Y N N Y Matlab Areal Basic choropleth mapping and linked ex-

ploratory graphs combined with spatial data

modeling

http://www.

spatial-econometrics.

com

15 Y Y Y Y N Python Areal A number of recently developed methods of

space-time analysis with an array of dynam-

ically linked graphical views

http://

regionalanalysislab.

org/index.php/Main/

STARS

16 Y N Y N Y Java Areal Self-organizing map, combine visualization

with clustering, sorting

http://www.

spatialdatamining.

org/software/visstamp

Continued on next page
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No. Vis1

(Y/

N)

S2

(Y/

N)

T3

(Y/

N)

ST4

(Y/

N)

NS5

(Y/

N)

PL6 Data

Type

Key Features Link

17 Y N N Y N VB.Net Point Analyzing changes in multiple polygon layers

inside ArcGIS, like phenomena that change

spatially through time

http://www.geog.uvic.

ca/spar/stamp/help/

index.html

18 Y N Y N Y C++ Areal All interactive linked views, dynamic ana-

lytic filter, similarity computing and indices

calculation

No webpage link

1Visualization 2Spatial functionality 3Temporal functionality

4Spatial-Temporal functionality 5Non-spatial functionality 6Programming Language

Some efforts have been made to link these packages to a GIS and/or statistical soft-

ware to minimize the required transfer of data, but many of the toolkits in Table 2.1

remain stand alone packages. For example, Symanzik et al. [77] linked Arcview to

the data visualization software XGobi, and they also expanded on this initial work

to link the statistical software XploRe to Arcview and XGobi [44].

Other common features of the toolkits in the table are their interactivity via

techniques such as linking and brushing for exploratory spatial data analysis (ESDA).

For example, in GeoVISTA Studio selected counties on a map are also highlighted

in a corresponding parallel coordinate plot (PCP) window [60]. In terms of ESDA,

Crimestat is an example of a program that leverages classic EDA and ESDA tools

for crime analysis. The hotspot functionality, in particular, uses several techniques

including the local Moran’s I [29] and k-means clustering [78, 79] to identify elevated

areas of crime in an exploratory fashion.

A final item of note regarding Table 2.1 is the functionality of the interfaces for

visualization, spatial, temporal, spatio-temporal analysis, and non-spatial analysis

specified in the table as Vis, S, T, ST, and NS respectively. Vis corresponds to

systems that are designed for visualization purposes and provide interactive graphics.

These systems may or may not handle spatial or temporal attributes; however, their

commonality is an interactive graphical display of data (as opposed to text only
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reports). The Cartographic Data Visualizer (CDV) [54] is an example of this kind

of toolkit. The abbreviation S corresponds to systems with an explicitly spatial

component where spatial analysis is defined as techniques that account for spatial

autocorrelation or analyze the underlying processes behind data with a locational

component. This functionality includes variograms, Moran’s I [80], Geary’s C [81],

the Getis and Ord G statistic [82], and the local Moran [29]. T refers to toolkits

capable of analyzing temporal data via techniques such as similarity metrics, control

charts, ARIMA modeling, and time series plots. ST in the table corresponds to

systems that are able to import and analyze data with both spatial and temporal

components. Although this definition does not correspond to true spatio-temporal

analysis, where space and time are analyzed simultaneously, these systems represent

great strides in overcoming the analytical challenges associated with spatio-temporal

data mentioned previously. Of the toolkits highlighted in this table, just three were

designed with original spatio-temporal functionality: STAMP [73], STARS [71], and

SaTScan [48].

STAMP [73] is a toolkit that examines geometric changes for polygons where as-

sociation through space and time is defined as the union between layers in consecutive

time periods. Change is characterized as a series of events: generation, disappearance,

expansion, or contraction and information about these events is stored as a field in a

GIS layer. Global and local change metrics are also computed prior to the creation

of the polygon change layer to characterize changes in polygons through space and

time. STARS [71] is a Python-based toolkit for the spatio-temporal analysis of areal

data and is comprised of two parts, a geocomputational module and a visualization

module, which may be used together or separately. Key features of this toolkit in-

clude the Gini and Theil inequality measures as well as the capability of performing

traditional and spatial Markov analyses.
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Interestingly, both GeoDa and Crimestat were not originally space-time capa-

ble, but have been revised to include this functionality in later releases. Version 1.2

of OpenGeoDa is now capable of analyzing spatio-temporal data via map anima-

tion and comparative static box plots [83]. Users merely need to create variables in

a .dbf for each time period of interest and then convert the table to a space-time

project [83]. More current releases of Crimestat also make spatio-temporal analyses

possible. Space-time tools within Crimestat include the STAC or the Spatial and

Temporal Analysis of Crime routine [84], as well as the Knox and Bartlett [85] and

the Mantel [86] tests for space-time interaction. Finally, the NS column defines capa-

bilities of toolkits that analyze data but may not use the spatial component of data

directly. Functionalities that support this type of analysis include k-means clustering,

principal component analysis, and other data mining algorithms that do not explicitly

look at the geographic space of the data.

Recently in other domains, such as ecotopes, Hargrove and Hoffman [13] explored

clustering geographic regions based on their multivariate attributes using k-means to

create geographic ecotopes. Maciejewski et al. [8] employed a similar approach to

analyze multivariate healthcare trends. Rey et al. [87] developed Crime Analytics

for Space-Time (CAST) program designated for crime analysis but useful for eval-

uating spatiotemporal trends and other variables of concurrent interest. Andrienko

et al. [88] carried out research on creating meaningful and analyst-guided clusters

of large collections of trajectories. They also developed a framework that focused

on identifying geographic trajectories with similarity metrics [89] as well as a stack-

based trajectory wall that utilized the space time cube for visualizing trajectories [90].

Pelekis et al. [91] designed a novel distance function as a similarity measurement for

the analysis of movement data. More recently, Ferreira et al. [92] proposed model
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that supports complex spatiotemporal queries over big spatiotemporal urban data

(New York taxi trips).

There are many more examples of the visual analytics regarding the spatiotempo-

ral data, thus several state of the art reports summarize the spatiotemporal visualiza-

tion from the following different perspectives: forms of data representation [93], types

of change in the data [94], both data and tasks [95, 96], visualization operators [97]

or the process of the visualization [98]. Mack and Maciejewski [99] also summarized

a profile of visualization toolkits regarding the broadband provision data.

2.2 Time Series Similarity

Overall, the goal of spatiotemporal visualization systems is to enable analysts to

answer questions not only about where events and measures are occurring and their

spatial relationships but also when. Since time moves in a linear fashion, geographical

visualization systems often animate graphics to show the movement of trends over

time. While animation provides an obvious way to display spatiotemporal data, it

also introduces cognitive burdens [100] as the user now must retain information of

the last state of the data visualization and compare it to the current state. Given

these cognitive issues that can arise in map animation, this thesis explores the use

of machine learning techniques coupled with interactive visualizations for identifying

regions with temporal similarities.

Previous work in time series exploration has focused on utilizing similarity met-

rics for visualizing and discovering non-trivial patterns in large time series[101–103],

and connecting time-oriented data and information to a coherent interactive visual-

ization [104]. For example, Hochheiser and Shneiderman [105] presented a Timebox

widget for specifying query constraints on time series data sets. Wongsuphasawat et

al. [106] developed a new similarity search interface for temporal query specification,
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and recent work by Alencar et al. [107] applied similarity based metrics and multi-

dimensional scaling for time series exploration. In terms of temporal analysis in the

geographic domain, Malik et al. [15] used Pearson’s correlation coefficient to analyze

temporal similarities in selected geographical regions; however, this technique only

allowed for comparisons between two regions at a time. Hoeber et al. [108] developed

GTdiff which utilized user defined binning and filtering to directly compare changes

over time. Andrienko et al. [89, 109] proposed several methods focusing on the ex-

ploration of spatial distribution of temporal data to find similar local behaviors and

pattern changes. However, their approach may not be able to capture bell shaped

and wave like features. Thus, many methods that can find trends in time series have

been developed such as Dynamic Time Warping (DTW) [110] and Edit Distance with

Real Penalty (ERP) [111].

This thesis aims to improve on such results by enabling complex similarity searches

over both space and time. This framework extends on previous work by allowing the

user to specify locations and trajectories of interest through an interactive brush. It

also supports user-defined temporal trajectory querying, lag and lead exploration, and

interactive visual comparison such that users can explore complex questions. For ex-

ample, “show me regions that have similar trajectories with regards to measurements

A, B, C, and D”. More details are described in Chapter 3.

2.3 Map Classification

Map classification is one of the most important aspects in spatiotemporal geovi-

sualization. The goal of a classification scheme is to group similar observations and

split dissimilar observations to simplify and clarify the message of the map [112]. For

univariate data, the simplest methods include quantile, equal interval, and standard

deviation [113]. More complex methods have been proposed since the early 1960’s.
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For example, Jenks developed natural breaks, which seeks to reduce the variance

within classes and maximize the variance between classes [114]. Scripter presented

nested means [115] that calculates intervals for statistical maps by repeatedly deriving

and using the arithmetic mean to divide a numerical array. Cromley [116] proposed

a minimum boundary error method that maximizes spatial similarity among con-

tiguous units in the same class interval, and Armstrong [117] developed a genetic

binning scheme that creates optimal classifications with respect to multiple criteria

(e.g., number-line relationships, area covered by each class, fragmentation). The most

important part of map classification is how to choose the breaks or class boundaries.

Evans [118] categorized sixteen class-interval systems and suggested that class in-

tervals should be selected according to the overall shape of the data distribution.

Brewer et al. [6] compared seven map classification methods with fifty-six subjects

in a two-part experiment to determine which classifications are most suitable for epi-

demiological rate maps. Sun et al. [119] proposed a heuristic classification approach

that utilizes the class separability concept and other classification criteria. They com-

pared their approach to other classification methods based on element separability;

however, visual changes in the map appearance that could occur due to slight shifts

in classification boundaries have not, to our knowledge, been fully addressed.

Multivariate map classification typically involves various data mining and ma-

chine learning classification methods (e.g., k-means and self-organizing maps). By

assigning a color to each label/ class/ category in the clustering result, a choropleth

map is generated. A well known example of multivariate map classification is de-

mographics classification. Vickers and Rees created the United Kingdom National

Statistics Output Area Classification (OAC) [120] which is an open geodemographic

classification with a hierarchical structure of 7 super-groups, 21 groups and 52 sub-

groups. Scrucca [121] proposed a procedure for identifying spatial clusters by applying
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k-means to a set of variables expressing local spatial autocorrelations. Recently, An-

drienko et al. [122] developed a set of tools for visually analyzing map classification.

Their tools allow users to specify arbitrary class boundaries with direct manipulation

but do not provide support for automatically identifying elements on cluster bound-

aries. Other work from Andrienko et al. [123] showcased a framework based on a

self-organizing map that can be analyzed in both spatial and temporal contexts, and

Streit et al. [124] introduced a model-driven design process for the visual analysis of

heterogeneous data.

This thesis explores how the classification boundaries impact the visual appear-

ance of choropleth maps. Because of the efficiency and simplicity [125], k-means

clustering remains the core algorithm for the computation of geodemographic classi-

fications [126]. Therefore, we use k-means as our default multivariate classification

method; however, our findings can easily be extended to other classification methods.

2.4 Clustering Evaluation and Comparison

Due to the non-intuitive association between multivariate space and geospace,

clustering results (map classification) generated from high dimensional spatial data

can be difficult to interpret and compare, for example, spatially grouping multivariate

clusters together may lead to placing Alaska next to Texas or Great Britain next to

Australia. This section reviews related work on evaluating and comparing cluster-

ing to better address such issues. For many clustering evaluation and comparison

techniques, researchers assume a true cluster structure exists and use an external

criteria of clustering quality, such as the Rand index [127] or NMI (Normalized Mu-

tual Information) [128] to measure the concordance between the true structure and

output of clustering algorithms [129–131]. Jung et al. defined clustering gain which

is based on squared error sum as a measure for cluster optimality [132]. Their mea-
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surements can be utilized to estimate the desired number of clusters for partitional

clustering methods. Meilǎ [133] characterized some criteria for comparing two clus-

tering results directly by treating clusters as elements of a lattice. However, those

works still remain at the arithmetic level (i.e., only numerical indicators have been

provided and no visual information is available for illustration). Hoffman and Har-

grove [134] created a simple multivariate geographic clustering comparison according

to their state space color assignments, yet they do not apply a uniform comparison

method. Recently, Zhou et al. [135] extended parallel sets to provide the mutual

comparison and evaluation of multiple partitions. Their visualization can present

the overall change between clusterings but may not suitable for showing the detailed

changes in geographical applications. Hu et al. [136] described a heuristic to promote

dynamic cluster stability and maximize stability between labels. Their approach for

visualizing multiple relationships ensures mental map preservation but lacks the ca-

pability to show detailed local comparison. Thus, to enable clustering comparison,

this thesis introduces the novel Triple-D (Drag & Drop clustering Difference) View

to interactively display visual results for cluster comparison.

2.5 Geographical Variation

One characteristic of multivariate clustering related with geographical data is that

neighborhood relationships play an important role in the clustering outcomes. This

thesis also focuses on exploring clustering under spatial constraints (e.g., neighbor-

hood relationships), thus this section reviews the concepts and previous work on ge-

ographical variation and localized exploration. Data generating processes associated

with spatial data are often characterized as spatial dependence or spatial heterogene-

ity [137]. Spatial dependency refers to the similarity in attribute values of nearby

spatial units [137] as proposed in Tobler’s first law of geography [30]. In contrast,
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Spatial heterogeneity or nonstationarity refers to variation rather than similarity in

values for a particular measures across all spatial units [138]. Spatial stationarity

is often assumed in statistical analyses, but this is problematic in the presence of

spatial heterogeneity where assumptions of a global trend do not reflect the underly-

ing data generating processes [138]. As such, the diagnosis of local dependence and

heterogeneity is particularly valuable to understanding statistical output.

Due to this persistent issue in spatial data, tools such as the Moran scatter-

plot [139], local indicators of spatial association [29], and geographically weighted

regression (GWR) [140] are critical to diagnosing outliers which might otherwise be

obscured in global and local statistics not designed to diagnose spatial heterogeneity.

The development of the local Moran’s I and GWR in particular were critical to anal-

yses of spatial data because prior local statistics including the G statistic [82] and the

G* statistic [141] are not capable of assessing spatial heterogeneity in the form of local

outliers. Many other geographically weighted (GW) statistics have also been devel-

oped (e.g., GW summary statistics [142], GWPCA [143]). To visually diagnose local

and global spatial dependence, Dykes and Brunsdon [144] introduced geographically

weighted interactive graphics for exploring and hypothesizing the spatial relationships

under different scale-based variations. Turkay et al. [145] have developed methods for

exploring geographically referenced multivariate data over location and scale through

a variety of linked small multiples and summary statistics. Goodwin et al. [146] devel-

oped a suite of novel interactive visualization methods to identify interdependencies

in multivariate data coupled with a series of correlation matrix views. While Goodwin

et al. focus primarily on spatial extents of pairwise correlations, this thesis explores

spatial extents in the multivariate clustering space and enables exploratory analysis

between clustering differences. Research has highlighted that multivariate results,

when mapped, can produce non-sensical results [147] because closeness in multivari-
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ate space is not necessarily the same as closeness in geographic space. Thus, the

capability provided in the framework presented in this thesis enables the examination

of spatial processes in clustering results and moves beyond potentially misleading vi-

sual inspection of maps and global summary statistics that obscure important local

variations in multivariate data.

2.6 Clustering with Feedback & Direct Manipulation

In order to incorporate users’ knowledge, such as pairwise constraints between

class labels, more and more semi-supervised clustering approaches which can let users

“guide” or “adjust” the clustering process have been developed. Unlike traditional

clustering, the semi-supervised approach has a fairly short history [148]. Cohn et

al. [149] presented an approach to incorporate user’s feedback in the form of con-

straints used in future clustering iterations. Jain et al. [150] introduced a Bayesian

feedback mechanism, Huang et al. [151] tackled four types of feedback in text clus-

tering, and Balcan [152] combined a query-based clustering model to allow users to

provide feedback in a natural way. Recently, Choo et al. [153] proposed weakly su-

pervised nonnegative matrix factorization that can lead to semantically meaningful

and accurate clustering results by taking various prior information into account.

Besides those model-side feedback solutions, interactive exploration of the clus-

tering results combined with a visual analytics solution has become a major focus.

Work in this area includes the VISTA system [154] which was developed to help

domain experts validate and refine cluster structures through interactive feedbacks.

VISTA allows users to mark the visual boundaries between clusters and refine the

algorithmic result if applicable. Chen and Liu [155] developed iVIBRATE as an

interactive machine learning tool which allows users to iteratively modify the clus-

tering process with an adaptive labeling subsystem. Andrienko et al. [88] developed

20



methods for analyst-guided clustering of large collections of trajectories by combin-

ing clustering and classification together through an interactive interface. House et

al. [156] developed a new framework that merged Bayesian statistics and visual ana-

lytics together called Bayesian Visual Analytics (BaVA) to foster learning from data

and make cohesive visualizations adjustable. Leman et al. [157] extended BaVA to

be a more general algorithm analogy referred as “Visual to Parametric Interaction”

(V2PI), which can create data displays based on both mechanistic data summaries

and expert judgment. Overall, the idea of V2PI is to enable users to make paramet-

ric changes to models that control visualizations while remaining in the visual data

domain. Endert et al. [158] also explored two possible observation-level interactions

within three statistical methods (e.g., Multidimensional scaling) such that users can

express their reasoning on observations instead of on the model or parameters. Fur-

thermore, Brown et al. [159] presented an interactive spatialization system specifically

regarding the distance function. It allows experts to directly define a distance metric

based on their understanding of similarity. Nevertheless, previous work rarely consid-

ers spatial feedback, such as neighborhood information, for multivariate clustering.

This thesis focuses on the identification of class elements near boundaries and enable

direct manipulation for relabeling class elements. While our focus is more on the

resulting changes in the visual output (i.e., the choropleth map), the identification

of elements that impact the visual output can be used as measures of importance to

direct analysts’ attention to elements that require further inspection.
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Chapter 3

DOMAIN CHARACTERIZATION AND DESIGN CHOICES

One of the major contributions of this thesis is exploring domain needs for spatiotem-

poral analysis and then providing case studies to see how these needs can generalize

to a variety of domains. The two critical domains that were explored using the de-

veloped framework were spatial econometrics and political geography. One major

component identified in these domains is analytical brushing. In both cases, the

data characteristics primarily focused on identifying regions with similar trends over

multiple variables over space and time. In the case of economic geography, I have

interviewed a single domain expert who was interested in finding regions of growth or

decline in various sectors and exploring regional similarity in both spatially proximal

and spatially non-proximal regions. In the case of political science, I have interviewed

two domain experts who were interested in exploring armed conflicts and their rela-

tionship to underlying infrastructure.

The characterization of the needs from domain experts can be summarized as:

1. In general, experts would like to filter out specific areal units based on user-

defined criteria as a first cut for generating descriptive statistics and general

theory building. The primary focus is on discovering areas that have simi-

lar/dissimilar trends in terms of multivariable x, y and z.

2. Experts would like to know if particular regions have commonalities/discontinuities

at a specific point in time that they believe is theoretically meaningful, espe-

cially for comparative politics.
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3. As political violence and economic development have strong spatial contagion

aspects to temporal lags and spatial lags, experts want to see how the lag of

temporal trends affects other trends across geospace (i.e., the diffusion speed of

temporal correlation in geospace).

4. Experts also wish to find the top N most similar regions based on a set of

criteria. For example, show me the top five most similar regions to A in terms

of variable x, y and z.

This domain feedback helped inform an iterative design process for framework de-

velopment and user needs were directly incorporated into various framework features.

Such collaborative work enables the building of tools that can be directly useful for

domain experts while providing a platform for basic research exploration. Here are

several key design choices based on the domain needs.

• Choice of queries over animation. The first domain need is to identify similar

trends for different variables. When tracking a limited number of temporal

trends, users have to focusing on select areal units in the data [160] and mentally

combine information across views or animation in order to determine trends

and patterns (e.g., GeoDa). Based on interviews with our domain experts,

they noted frustration in trying to track and compare multiple regions on the

map when data was animated. As such, our analytical brushing framework was

designed to enable them to define search criteria with respect to multivariate

spatiotemporal trends. Similarity queries are bound to the mouse tip in order

to enable focus+context exploration and improve visual clarity. In this manner,

users can refine their queries based on a variety of operations (greater than, less

than, AND, OR, XOR). This method can maintain the trace of the filtering

operations to enable quick transitions between subsets and supersets.
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• Choice of user-defined similarity threshold over clustering. Upon exploration

with the analytical brushes, our domain experts indicated a need for more

“fuzziness” in the similarity criteria, as well as uncertainty as to why certain

areas were seen as similar. Such concerns about the black-box nature of many

machine learning algorithms underscored the need for a way to insert the human

into the similarity guidance loop. This suggests the need for a visual compar-

ison of similarity results so that users can quickly understand what is meant

by “80% similar” and whether their intuition about similarity is being met by

the algorithmic criteria. This led to the implementation and use of the small

multiples trend graph. In this manner, analysts can empirically inspect the

similarity distribution and define their own similarity threshold. In this way,

our framework can support the second domain need of finding similar/dissimilar

trends.

• Choice of distance map and small multiples. While our experts indicated that

the small multiples graph helped in understanding what was meant by simi-

larity, they also indicated that they would like to better tie this back to the

geographical exploration. As such, the distance map was developed to repre-

sent the temporal similarity distance to all other geographical areas from the

brushed unit. In this way, users can determine the spatial compactness of a

region with regards to a temporal distance function. While the distance map

focuses on the overall spatial distribution, the small multiples focus on spatial

distribution of local regions with more detail on the temporal representation.

In this way, experts can explore the spatial distribution of similarity in our

framework.
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Chapter 4

VISUAL ANALYTICS FRAMEWORK FOR SPATIOTEMPORAL CLUSTERING

Figure 4.1: An overview of the framework interface. This framework provides an in-

teractive scatterplot, histogram, tabular, quantile plot, dendrogram and geographical

viewing widgets.

Figure 4.1 illustrates our visual analytics framework. This framework provides in-

teractive scatterplot, histogram, tabular, quantile plot, dendrogram and geographical

viewing widgets. Linked brushing [161, 162], dynamic graph tick-marks [163], Color

Brewer color schemes [164] and various focus+context highlighting methods [165] are

integrated into the framework. All widgets are dock-able and resize-able to allow for

customized analysis. To enhance the multivariate data analysis process, our frame-
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work also supports various clustering methods (e.g., hierarchical clustering, k-means

Clustering) along with several types of distance metrics (e.g., Euclidean, Manhattan).

In this chapter, I will introduce the main features of the framework.

4.1 Data Wrangling

Data wrangling is the process of restructuring raw data into a proper format such

that the data will be palatable to certain tools. From the research report of Kandel

et al. [166], data wrangling is the most tedious part for data scientists during their

data analytic process and wrangling is responsible for up to 80% of the development

time and cost. Therefore, Kandel et al. have developed Wrangler, an interactive

system for creating data transformations [167]. Their system leverages semantic data

types to aid validation and combines direct manipulation of visualized data with

automatic inference of relevant transformations. However, their tool is not specified

for spatiotemporal data. Spatiotemporal data not only have high dimensionality but

also contain complex relationships between space and time. This thesis implements

an open wizard as an effective method for the wrangling process of spatiotemporal

data including components for temporal configuration and spatial aggregation.

4.1.1 Temporal Configuration

Usually raw spatiotemporal data does not explicitly indicate temporal information

in their data structure. For example, data records often are in the form of a plain

.csv file with some of the attributes’ names bound to a timestamp (highlighted text

in Figure 4.2, those numbers stand for year). Human beings can often distinguish

such temporal information, yet machines must be programmed to understand such

internal variable relationships, e.g., the granularity of time (are those numbers years,
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Figure 4.2: An example of a raw spatiotemporal data table in .csv format. Here the

red rectangle highlights the temporal variables that can be manually distinguished.

The last two digits in the variable name are the last two digits for the year.

months or days?), the position of temporal variables (which of those variables contain

temporal information?) and the order of temporal variables.

Figure 4.3: An illustration of the data cube. After the data wrangling procedure, data

in plain format can be organized into a data cube and then stored in the framework.

In order to apply temporal operations, such as de-trending and similarity compar-

ison, users need to be able to distinguish temporal variables from ordinary variables

in a dataset and programmatically define such information. This thesis implements
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a data wrangling procedure to transform tabular data into a uniform data cube for

the internal framework data structure (Figure 4.3).

Figure 4.4: An illustration of the attributes group tree. Here V 1t1 stands for the first

timestamp of the temporal variable 1, so on and so forth.

One of the main steps is configuring the temporal relationship via the attributes

group tree (Figure 4.4). In the tree view, the original attributes are listed in the

same level. By selecting and grouping the homogeneous attributes, the grouped

attributes will be formed together as a new temporal variable for future use. The

temporal sequence is determined by the order of positions in the temporal variable.

For example, in Figure 4.5(1), a user loaded a .shp file and its corresponding .dbf file

into the system. Even though the .dbf file contains temporal data which are explicitly

noted in the attributes names (Figure 4.5(2)), the system would not recognize the

correct temporal structure without human intervention. This framework allows users

to inspect the data attributes and group them into temporal variables. To facilitate

the wrangling process, this thesis adds a regular expression field where users only

need to specify the common names for the temporal variables and the framework
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Figure 4.5: An example of the data wrangling process for configuring temporal vari-

ables. Here it shows the detailed procedure from left to right. The left figure indicates

a page which allows for file selections of different formats. The middle figure shows

a page that loads in all the plain text attributes and allows for grouping operations.

The right figure shows an example of the result page after the grouping operations.

will group variables based on that expression automatically. Other related temporal

properties (e.g., the start time, the time step interval) can be edited through the

configuration part at the top of the open wizard as in Figure 4.5(3).

4.1.2 Spatial Aggregation

Raw spatiotemporal data may not come from a single file. It could be collected in

multiple files of different format. Thus, this framework integrates spatial aggregation

into the data wrangling procedure for combining data from different sources. The

spatial aggregation process in this framework allows users to aggregate on different

levels of spatial objects and generate user-defined variables on the fly. There are

actually two types of spatial aggregation in this framework:

1. Aggregation based on coordinates: This type of aggregation requires the incom-

ing data to have geo-coordinate attributes. Usually this is good for point type
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Figure 4.6: An illustration of two spatial aggregation types in the data wrangling

process. The left figure shows the aggregation based on coordinates. The right figure

shows the aggregation based on geocodes.

data such as incidents or crime events. Users only need to specify the corre-

sponding data attributes that represent geo-coordinates before the aggregation

process as shown in Figure 4.6(1).

2. Aggregation based on geocodes: This type of aggregation requires the incoming

data to have consistent identification fields for the base data which could be

synthetic ID numbers or geocoded names (e.g. state names, country names).

This type of aggregation is usually suitable for areal type data. Users only have

to specify the corresponding location variables before the aggregation process

as in Figure 4.6(2).
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Both types of aggregation allow users to define the operations for each of the

attributes in the incoming data. There are six pre-defined aggregation operators

(highlighted by a green rectangle in Figure 4.6(1)): count, average, minimum, maxi-

mum, sum, and standard derivation. When an aggregation operator has been checked,

the corresponding variable will be derived using that operator. For example, when

aggregating a crime events data file to the United States, the crime data contains 5

variables: case number, longitude, latitude, crime type and deaths. By choosing the

count as the aggregation operator for the case number, users can know how many

crime events happened in certain states. By choosing the average as the aggregation

operator for the deaths, users will learn about the average death in a certain state.

Often times, users would like to perform higher levels of aggregation that can be

customized by certain data attributes, such as types of crime. This framework allows

users to specify the aggregation key in the process (highlighted with red rectangle in

Figure 4.6(1)). The aggregation key will be automatically scanned and stored in a

hash table and only the entries with the same key will be aggregated. In the previous

example, users would also like to know the average deaths by each crime type. Then

they can check the aggregation key for the crime type attribute and select “Avg”

as the aggregate operator to derive the average deaths by each crime type for each

county. Eventually, the newly derived variables from the aggregation process will be

renamed in the format of V N AK AO and combined with the original data. Here

V N is the placeholder for the aggregated variable names, AK is the placeholder for

the aggregation key if any, and AO is the placeholder for the aggregation operator.

Moreover, this framework provides the capability of matching regular expression in

the aggregation key field. This means instead of the whole attribute value/text, only

the captured value/text by the regular expression will be stored in the hash table and

used as an aggregation key.
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4.2 Exploratory Data Analysis

By combining various visual representations and analysis tools, users can begin

generating insight into how or why something is occurring and begin observing emer-

gent patterns. Traditional EDA (Exploratory Data Analysis) [168, 169] techniques

include line charts, box plots, histograms, and scatterplots. However, these techniques

not only need additional modifications to adapt to the spatiotemporal context, they

also face the same problems of cognitive overload when data becomes large. This

framework extends those methods in different aspects to improve the visual efficiency.

Figure 4.7: Demonstration of the effects for transformation. The top figure shows the

histogram, scatterplot and choropleth map for the raw data without any transforma-

tion. The bottom figure displays the same widgets for the raw data after transforma-

tion.
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4.2.1 Transformation and Normalization

One major problem during exploratory data analysis is that the data distribution

is often skewed. Kasik et al. [170] stated that in order to allow users to obtain in-

sight from visual representations, a wide range of algorithmic approaches are needed

to transform the raw data into increasingly concise representations. For example,

Figure 4.7(1) shows the histogram, scatter plot and choropleth map of the original

data which are seriously skewed. In contrast, Figure 4.7(2) shows a different story

with the same visualization techniques for the same data but uses a power transfor-

mation. In Figure 4.7(2), the choropleth map reveals a much more dynamic spatial

distribution. Furthermore, normalization is required by many data mining techniques

for improving the performance and effectiveness [171]. In order to enhance the visual

efficiency and data mining performance, this framework provides global data trans-

formation and normalization on the fly. Whenever a transformation or normalization

is changed all the linked widgets are updated as well.

4.2.2 Focus+Context Choropleth

The choropleth map is a powerful technique to visualize how a measurement varies

across a geographic area. However, when the number of spatial units becomes large,

users may have difficulties when trying to identify regions of interest. As such, com-

bining focus+context techniques with choropleth maps is necessary. The idea of

focus+context is to allow users to have both overview and detail information si-

multaneously [172]. By preserving the global view at reduced detail (context) and

maintaining the selected regions in greater detail (focus), focus+context helps users

better understand how the points of interest relates to the entire data structure. This

framework implements two focus+context techniques which are the floating thumb-
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Figure 4.8: An example of the focus+context choropleth map. The thumbnail plots

are displayed for the selected regions as the focus, while other regions get blurred out

for preserving the context.

nail and the blur highlighting, for improved visual efficiency. When users mouse over

a spatial unit, the unit’s floating thumbnail will pop up and display linked important

properties of the spatial unit chosen by users, such as temporal trend lines. The float-

ing thumbnail is semi-transparent and can be enabled or disabled as well as fixed at

certain positions. Figure 4.8 shows three floating thumbnails that are fixed on their

three selected counties respectively. This allows users to quickly inspect the temporal

trends of interest or perform analytical brushing. Blurring is also an effective way

of highlighting [165], and this framework combines blurring with border coloring to

enable users to quickly identify points of interest.

4.2.3 Histogram

A histogram is a graphical representation of the data distribution. This framework

extends the histogram by adding a temporal threshold which allows users to interac-
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Figure 4.9: Illustration of various exploratory data analysis widgets. The top row

shows the histograms with temporal threshold at different positions. The bottom

figures show other EDA widgets including the box plot and scatterplot.

tively search for changes within a temporal variable by manipulating the vertical line

in the histogram view illustrated in Figure 4.9 (a). If the user wishes to determine if

an area has an upward, downward or oscillating trajectory, the user can interactively

adjust the position of the vertical line. Based on the position of the line, spatial areas

are then assigned to three classes. The first class (colored green and labeled with the

+ sign) indicates that at some point in time the area’s statistical measure will cross

from below the threshold set to above the threshold, indicating a positive trajectory.

The second class (colored purple and labeled with the - sign) indicates that at some

point in time the area’s statistical measure will cross from above the threshold to

below the threshold, indicating a negative trajectory. The third class (colored or-

ange and labeled with the +/- sign) indicates that an area’s statistical measure will

oscillate around this value, crossing this threshold multiple times. By adjusting the
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threshold value, the user can search for spatial clusters or disparate related areas.

All spatial units that cross this threshold are outlined with the corresponding colors,

and all other spatial units are blurred out in a focus+context manner. This method

is useful for getting an overview of temporal trends with categories if users have a

specific threshold or critical value such as the poverty line. The system allows those

three classes to be enabled or disabled at any time to reduce the clutter in the visual

representation.

4.2.4 Box Plot

The box plot is a convenient way of graphically depicting groups of numerical

data through their quartiles. However, quartiles are usually not able to show the

distribution of the data in as much detail as quantiles. Thus this framework extends

the box plot to be an interactive quantile plot. This allows users to set up the proper

quantile number and inspect any of those quantiles in their favor (Figure 4.9 (b)).

By double clicking in the corresponding quantile, all the spatial units in that quantile

will be highlighted on the map. This widget applies to multiple variables by lining

them up horizontally, and allows users to compare the distribution of the attributes

from the same temporal variable.

4.2.5 Scatterplot

Scatterplots are usually designed for bivariate data. In this framework, the scat-

terplot is enhanced with two modes: one is the bivariate mode while the other is the

projection mode that utilizes Principle Component Analysis (PCA [173]). PCA also

provides helpful information when users try to identify border points in clustering.

For instance, Figure 4.10 shows a k-means clustering of 4 variables. From the PCA

scatterplot, users can quickly tell where the point is and which border the point it is
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lying on. The border points are highlighted simultaneously in the map with a black

outline and in the PCA plot with a rectangular shape.

Figure 4.10: A close look at the scatterplot in PCA projection mode. Placer County

gets selected in the choropleth map, the scatterplot, and the adjustable scope lens.

In addition to the PCA scatterplot, this framework also uses an adjustable scope

lens (Figure 4.9 (c)) for tackling the clutter problem when spatial units dramatically

increase. The lens consists of a configuration part and an application part. Both parts

can be freely panned and scaled in the setting mode (Figure 4.9 (d)). By setting the

ratio between the zoom area and the lens area, users can create a detailed view of

the scatterplot in any zoom level without modifying the original plot resolution.

4.2.6 Level of Detail

Spatial resolution is one important characteristic of spatiotemporal data. To en-

able users to flexibly explore spatiotemporal data under different spatial resolutions,

the idea of LOD (level of detail) has been integrated into the EDA process. This

feature is similar to spatial aggregation in the data wrangling procedure. However,

instead of only generating new variables for the base spatial units, this process will

also generate a new spatial layer. After that, all the operations and analytic methods
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Figure 4.11: An example of explorations at different levels of details. The left figure

shows the choropleth map for county level. The middle figure shows the map for

metropolitan level. The right figure shows the thumbnail matrix for all the counties

in the selected metropolitan area. Notice the difference between the temporal trend

in the thumbnail of (1) and (2).

will be applied on the new layer. Users can switch between the new layer and the

old spatial layer. LOD is very useful when users have high resolution spatiotemporal

data but want to analyze the data or compare to other data at lower resolutions to

gain an overview of the statistics. For example, the original data in Figure 4.11(1)

are US counties. After applying the LOD, users can explore metropolitan areas which

are made up of several counties as shown in Figure 4.11(2). Figure 4.11(3) displays

a thumbnail matrix for all the counties in the highlighted metropolitan area of Fig-

ure 4.11(2).

4.3 Temporal Similarity

As the number of geographic units in the dataset increases, various problems

emerge that hinder the traditional visual analysis of data. In choropleth maps, small

areal units can often be perceptually obscured due to the color of neighboring regions.

This problem is further exacerbated when exploring spatiotemporal data. The most

common way to explore such data is by creating animated maps; however, animation
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also introduces cognitive burdens [100] as the user must retain information from the

last state of the data visualization and compare it to the current state. Recent

work has also illustrated that map animation can lead to change blindness [28] when

visually analyzing the data, and other work demonstrates that users are only able to

track a limited number of temporal trends, focusing only on select areal units in the

data [160]. Furthermore, the choice of class intervals becomes increasingly challenging

when creating the animation of choropleth maps as it can potentially emphasize

relatively small fluctuations due to temporally global choices in class selection [174].

In order to reduce these types of cognitive burden, many systems allow for either

looped playback animation, or user controlled exploration through an interactive time

slider. However, such exploration places the burden of discovery on the analyst.

This thesis proposes the use of brushing techniques that link multivariate and time

series similarity metrics as a means of augmenting the traditional geographical visual

analysis process. Here, a similarity query is tied directly to a brush tooltip so that

users can interactively define the query and then explore similarity metrics via mouse

over. In this way, users are able to direct their focus to locations that are known to

have similar multivariate properties or similar temporal trajectories. Furthermore,

to extend this to multivariate trends, this framework also uses logical operations in

order to dynamically restrict comparisons across spatial units of the data. Thus,

users are able to interactively answer traditional questions (such as, “show me the

locations that have high/low values”) through brushing and highlighting, as well as

analytically query the data to answer more complex questions (such as, “show me the

regions that have a temporal trend similar to region A” or “show me the areas that

are similar in terms of multivariable x, y and z”). Such linked brushing is directly

aligned with Keim’s visual analytics mantra [3], “Analyze first, show the important,

zoom, filter and analyze further, details on demand.”
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4.3.1 Temporal Trend Matching

Part of this thesis focuses on time series similarity as the primary means of

searching for similar (or dissimilar) trends between different spatial regions. For

a given region and a given temporal variable, a time series p can be denoted as

(p1, p2, p3, . . . , pn). For any other region in the dataset, there exists another time

series q denoted as (q1, q2, q3, . . . , qn). To identify asynchronous changes or patterns

over time, settings for lag adjustment as well as pattern length are provided. The lag

is a shifting operator between two time series, and a user may refine the beginning

and end of the time range under analysis. Then, when the lag l is positive, q will

shift backwards such that p is represented by {p1+l, p2+l, . . . , pn} and q is represented

by {q1, q2, . . . , qn−l, }; when the lag l is negative, the time series shifts forwards so the

distance will only consider {p1, p2, . . . , pn+l} from p and {q1−l, q2−l, . . . , qn} from q.

In order to determine if other regions follow a similar temporal pattern as the region

of interest, this framework utilizes time series similarity metrics from the data mining

community [175].

Figure 4.12: An example of time series similarity computed with Euclidean Distance.

One can tell that the trajectory still have dissimilarity, but the range of temporal

values are similar.
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To facilitate such exploration, the system incorporates a variety of distance metrics

with which the user can compute the time series similarity. The need for these

different similarity functions is that each metric can provide the user with unique

insight into their data. The chosen metrics include Euclidean Distance, which allows

analysts to search for matches between temporal signatures and is defined as:

distEuc (p,q) =

√√√√ n∑
i=1

(qi − pi)2. (4.1)

The Euclidean distance metric can provide details on pattern matches with respect

to magnitude but will fail to capture signals with a similar trend but a different

magnitude. As shown in Figure 4.12, users employ the Euclidean distance metric

to find counties that are similar to Maricopa county with respect to the volume of

transportation over time. Here the user can tell that San Diego county meets the

criteria and is highlighted. However, given that the range and magnitude of the time

series may vary while the underlying pattern remains the same, this framework also

incorporates two other metrics that are less sensitive to magnitude differences within

the data. The first is the Sequential Normalized Euclidean Distance which locally

normalizes each individual time series for comparison:

distSNE (p,q) =

√√√√ n∑
i=1

(
qi − µq
σq

− pi − µp
σp

)2

. (4.2)

Here µ and σ represent the mean and the standard derivation of the time series

respectively. The second is the Mahalanobis Distance which globally normalizes the

time series according to the distribution of all time series in the data set:

distMah (p,q) =

√
(p− q)T Σ−1 (p− q). (4.3)

Here Σ is the covariance matrix of the the time series group.
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Figure 4.13: An example of time series similarity computed with Sequential Normal-

ized Euclidean distance. Here one can tell the range of temporal values are quite

different, but the trajectory shape of the temporal trends is similar.

Sequential Normalized Euclidean distance is useful for finding similar temporal

trajectory patterns, regardless of the signal magnitude. As shown in Figure 4.13,

while the magnitude of the time series of transportation between Washington county

and Maricopa county is quite different, they have very similar temporal trends, thus

the similarity criteria using Sequential Normalized Euclidean distance highlighted

Washington county. Mahalanobis distance takes the distribution into account making

it more suitable for non-uniformly distributed data.

As previously mentioned, in order to calculate a temporal similarity, a reference

time series p is needed to provide the basis for comparison. Hochheiser and Shneider-

man’s Timebox work [105] presented a Timebox widget that can be used to directly

specify query constraints on time series data. Inspired by this work, and for the

purpose of customizing the similarity parameters in an understandable manner, a
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Figure 4.14: The temporal trend definition widget allows users to interactively cus-

tomize temporal attributes including the temporal value, time series length, lead and

lag. Top part of the figure shows the configuration of the temporal trend defini-

tion widget and bottom part of the figure shows the filtered result using temporal

similarity search based on the defined temporal trends.

temporal trend definition widget within the similarity widget has been developed to

enable users with a flexible search for any trend of interest. As shown in Figure 4.14,

the top part of the figure shows a temporal trend and temporal setting for Cook

county and a tooltip was shown when mouse move near a time line point. The bot-

tom map highlights the similar spatial units based on the setting in the temporal

trend definition widget. The temporal attributes of the time series are customizable,

and users can freely edit the time series value by moving the points vertically or

changing the minimum and maximum value in the context menu. Indicator lines and

value tooltips are provided for auxiliary information on the temporal trend data. The

43



system also allows users to search for trends by selecting or mousing over a spatial

unit under the filtering (brushing) mode, the temporal trend corresponding to the

brushed unit will be loaded into the temporal trend definition widget, allowing the

user to, for example, look for regions that have similar trajectories to the New York

metro area. In this mode, when a user hovers over an area, all other areas that match

the similarity criteria will then be highlighted. The top blue bar in this widget in-

dicates the time window for the current temporal variable while the bottom green

bar indicates the time window to be compared to. These two bars always begin at

the same length. However, when they are dragged or resized, the resulting position

will define a temporal shift, thus enabling the analyst to search for lagging or leading

temporal trends and identify asynchronous patterns over time.

4.3.2 Logic Tree

While the similarity metrics described above enable exploration between single

variables, many space-time processes are a complex combination of multiple variable

that require the definition of multiple trends. For example, a user may wish to see

where variable A has an increasing trend while variable B has a decreasing trend.

In order to support such an analysis given the large number of variables and spatial

locations, this framework incorporates the use of a logic widget.

In this manner, the user can refine their queries based on a variety of operations

(greater than, less than, AND, OR, XOR). Figure 4.15 shows the logic tree that a

user has constructed to search for regions that have a complex set of similarities. The

logic tree allows users to dynamically specify a series of filter rules (for example, show

me all other regions that have similar temporal trends in their utilities index with

respect to my selected region at a similarity value greater than .5 AND show me all

other regions that have dissimilar temporal trends in the manufacturing index at a
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Figure 4.15: The similarity logic tree widget. For simplicity, all similarity measure-

ments used here are the sequential normalized Euclidean metric. Los Angeles county,

Cook county and King county are defined as regions a, b,c respectively

similarity value less than .2), where each rule consists of a similarity measurement

and a relationship. There is no theoretical limitation on the number of rules that can

be combined. However, the result would quickly escalate to null when stacking AND

operators.

As an example, let St(i) denote the similarity measurements from region i with

respect to temporal variable t. In the context of understanding and comparing the

industry profiles of different regions, a user could explore which areas’ manufacturing

similarity scores are larger than 0.65 and the arts & entertainment similarity scores is

larger than 0.8 but the accommodation similarity is less than 0.5 when compared to
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region a. The analyst may also want to determine which areas’ wholesale similarity

is larger than 0.7 compared to region b but the retail similarity is not less than 0.8

when compared to region c. Such a query would result in the following tree and its

corresponding layout in the logic widget as shown in Figure 4.15. Each branch of the

logic tree can be interactively visualized through choropleth map highlighting so that

users can quickly explore a variety of combinations. Each tree is directly associated

with a single areal unit in the map, and is stored in memory so that if users were to

select a different region of interest and then return, their previously created logic tree

would still be associated with that region until the user chooses to delete it. In this

manner, this framework provides an alternative to the traditional means of searching

for similar spatial trends by animating a choropleth map or utilizing linked views. In

this scheme, users may now query the data through interactive widgets to directly

search for comparable trends. From there, they can animate the map which has now

applied the previously mentioned focus+context blurring to the choropleth maps so

that attention can directly be focused on the filtered areas which are known to have

similar temporal trends.

4.3.3 Temporal Trend Multiples

To provide overview + detail views for the temporal similarity brushing results,

a novel temporal trend multiples vies for displaying and ordering time series of all

brushed spatial units has been developed. The temporal trend multiples are ordered

in a row-wise manner where the most similar time series is positioned in the left top

corner (Figure 4.16). This matrix layout is similar to the work by Turkay et al. [145].

Moreover, this view is enhanced such that the background of the multiples is shaded

by the geographical distance to the user selected geographical region. By matching
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Figure 4.16: Temporal trend multiples. (Left) The red lines show the exact arrange-

ment of the multiples based on the similarity to the temporal trend of user’s interest.

In this case the ordering is row-wise meaning that similarity decreases row by row.

The ordering is denoted by the red arrows. The background color of a plot encodes the

spatial proximity. In this example, the user explores Health Care trends in Laramie

County using a similarity threshold of 92%.

whether the colors of multiples have a certain trend, users can assess the association

between spatial closeness and temporal similarity.

4.3.4 Comparison to Previous Work

It is critical to note that the concept of linking analytical methods to brushing

has been explored for multivariate data. Bernard et al. [176] addressed the problem

of interactive search in time series and multivariate data with a visual catalog of

time series data and content-based visual query specification. Hao et al. [177] also

introduced the Intelligent Visual Analytics Query that allows interactively selecting

focus and identifying the relationships to other portions of the data set. However,

this framework has several advantages:

1. Previous systems do not provide a geographical context. When projecting the

temporal similarity to the geographical space, highlighting and exploration be-
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comes problematic as users must compare not only the temporal trend, but also

the spatial extents.

2. Previous systems lack the capability of restricting temporal comparisons to

specific local areas based on the geographical properties, such as only the first

order neighbors.

3. This framework visualizes the details of the similarity criteria via the distance

map. This is critical for improving an understanding of how temporally similar

regions are distributed in geographical space.

4. Previous systems do not integrate the lag and lead concepts into the similarity

search which is important for developing hypotheses on causal drivers. While

techniques such as dynamic time warping [110] are able to provide a metric

of similarity between time series that are not necessarily aligned, our domain

experts indicated the desire to define and explore lags and leads as a means for

hypothesis generation.

5. While other systems perform data reduction methods for clustering of time series

patterns, methods such as principal component analysis or multi-dimensional

scaling are often difficult for users to understand. As such, this framework opts

for allowing the user to specifically define their search criteria. The trade-off is

a more complex input where, in the case of data reduction, the result may be a

more complex output.

4.4 Multivariate Similarity

While identifying similar temporal patterns is a critical analytical task, the goal

of this thesis is also to enable users with the capability of exploring multivariate
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similarity in geographic space. Recent work in the visual analytics community has

focused on multivariate analysis and distance function definitions for similarity anal-

ysis [159, 178, 179], yet little work has been presented on exploring these multivariate

projections in geographic space or providing users with insight into the actual distance

in the multivariate space. The developed framework utilizes two methods for explor-

ing multivariate similarity. One is the multidimensional distance map, the other is

multivariate clustering.

4.4.1 Multidimensional Distance Map

Often times, analysts may wish to know how similar regions are with respect to a

set of multiple measures (e.g., are these regions similar in terms of crime, health, and

economic characteristics?). However, in geographical space, the locations of spatial

units are predefined and a rearrangement of those units would lead to difficulties in

analysis. The multivariate distance map in this framework provides analysts with a

means of defining the multivariate distance in the geographical projection space. The

multivariate similarity brushing ties the user defined similarity metric (e.g., Euclidean

distance) to the mouse pointer. As the pointer touches a geographical area, the map

is recolored to represent the distance from all other geographical areas to the selected

unit (Figure 4.17).

In this way, users can maintain a relative idea of the actual distance in the multi-

variate space such that they can determine the compactness of a region with regards

to a multivariate distance function. The benefit of visualizing the multivariate dis-

tance function (in conjunction with directly visualizing the projected clusters) is that

by directly mapping the distance function to a choropleth map, users can now also

ascertain the relative “closeness” of geographic areas within the multivariate space.
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Figure 4.17: Here the user is exploring the effects of applying the multivariate similar-

ity tooltip. In the leftmost screen, the user defines the multivariate distance function

selecting Information based services, Educational Services and Professional Service

metrics. The user explores which regions of the country are similar to Santa Clara

County (Silicon Valley) in 2007 (a known knowledge economy). Regions in dark green

are most similar (closest in the multivariate Euclidean measure). Here one can quickly

see the knowledge economies of the East and West coast as well as localized pockets

across the country which may be of interest for future exploration.

4.4.2 Multivariate Clustering

There exists many clustering methods [180], and the use of different algorithms

could lead to very different clustering results (Figure 4.18(b)(c)). This visual analyt-

ics framework supports various clustering methods (hierarchical clustering, k-means

Clustering) along with several types of distance metrics (e.g., Euclidean, Manhat-

tan). By assigning each cluster a unique color and projecting it onto the map, the

framework is able to create a clustering choropleth map, Figure 4.18(b)(c).
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Figure 4.18: Here is an example that illustrates a dendrogram and the multivariate

clustering results using hierarchical clustering and k-means clustering. The circled

units are the differences between the two clustering results. However, it is hard to

find all of those differences by manually inspecting the two clustering results. The

variables selected for clustering are the amount of Retail, Wholesale, Transportation

and Entertainment. Using the statistic view, one can tell that there exists correlation

between those variables.

This visual analytics framework can be used to assess and manipulate multidi-

mensional spatial clustering, here the k-means clustering algorithm is used in the

following sections as an example. The k-means clustering algorithm has been picked

because it has remained the core algorithm for the computation of geodemographic

classifications due to its efficiency and simplicity [125, 181]. One well known ex-

ample is the UK National Statistics Output Area Classification (OAC) which is an

open geodemographic classification with a hierarchical structure of 7 supergroups, 21

groups and 52 subgroups [120]. This type of multivariate clustering has served as

the basis for various geovisualization techniques. For example, Slingsby et al. [182]

developed rectangular hierarchical cartograms for mapping socio-economic data of

OAC, and also proposed a set of interactive visualization techniques to explore pop-
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ulation profiles of areas and how uncertainty in OAC varies geographically and by

OAC category [183]. As for k-means, the result is sensitive to initial centroids, i.e.,

different initiations would make a big difference in the outcome. However, there is

no single best approach for selecting the best clustering algorithm, just as no clus-

tering algorithm offers any theoretical proof of its certainty [184]. Thus, achieving

a reasonable clustering result has always been a dilemma. To overcome such issues,

this framework provides a ranked list based on Davies-Bouldin index (DBI) [185] to

allow users to pick a good base clustering result for future exploration. The DBI is

an internal evaluation scheme that can assess the quality of clustering. It is defined

as:

DB =
1

n

n∑
i=1

max
i 6=j

(
Si + Sj
Mi,j

) (4.4)

where n is the number of clusters, Si is the measure of scatter within the ith cluster,

and Mi,j is the measure of separation between the ith cluster and jth cluster. From

the definition, the smaller the DBI, the better the clustering solution. In this frame-

work, every k-means clustering will run multiple times for the same cluster number k

with different initial centroids. Some of the runs will initialize centroids by sampling

from the original data points, others will initialize the centroids from the result of

other clustering algorithms (e.g., hierarchical clustering) as it can help achieve better

clustering results. At the end of the process, the framework will sort and display the

top ten models with the lowest DBI generated from all the runs (Figure 4.19).

4.5 Interactive Clustering

Due to the often non-intuitive connection between multivariate space and geospace,

it is a challenge to simultaneously explore the clustering result in both multivariate

space and geographical space. As noted in the related work, clustering with feed-

back is one of the most important aspects for multivariate data analysis in geospace.
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Figure 4.19: An application of the DBI value in the framework after running the same

clustering algorithm multiple times. When users select a certain DBI value from the

drop-down list, corresponding clustering result is displayed in the map widget.

Thus, the framework provides interactive clustering that can adapt to the spatial

constraints (e.g., users can identify potential spatial units that may need to be re-

categorized into other clusters and manipulate the clustering results). Dynamic filters

with three criteria are also provided to help users assess the clustering results. The

first criterion is the silhouette coefficient [186]. The silhouette coefficient refers to a

method of interpreting clusters which allows users to know how well each object lies

within its cluster. This coefficient is used as a criteria for discovering the border point

in multidimensional space and defined as:

S(i) =
b(i)− a(i)

max{a(i), b(i)}
, (4.5)

where a(i) is the average dissimilarity of object i with all other objects within the same

cluster, and b(i) is the lowest average dissimilarity of object i to any other clusters

where object i is not a member. From the above formula it is clear that−1 ≤ S(i) ≤ 1.

When S(i) is close to 1, it means the datum is appropriately clustered. When S(i)

is close to -1, it means object i would be more appropriate labeled if it was clustered

in one of its neighboring clusters. When S(i) is close to zero, it means that the
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datum is on the border of two natural clusters. Therefore, this framework leverages

this coefficient as a means of assessing the boundary elements between clusters. The

objects with values less than or equal to zero are usually our points of interest.

Users may also be interested in the relativeness of cluster labels within a neigh-

boring area. The Gini index-like [187] purity indicator is the second criterion for

geographic multivariate clustering inspection. The purity indicator is defined as:

P (i) = (
nCi

N(i)
)2 −

∑
Ci 6=Cj

(
nCj

N(i)
)2, (4.6)

where nCi
is the number of units that belong to the same cluster of i (Ci) in i’s

neighborhood, nCj
is the number of units that are different from i’s cluster in i’s

neighborhood, N(i) is the total count of units of i’s neighbors, and P (i) also lies in

the range: −1 ≤ P (i) ≤ 1. When P (i) is close to 1, it means that unit i is almost

surrounded by the neighbors within the same cluster. When P (i) is close to -1, it

means that unit i is almost surrounded by the neighbors from another cluster. When

P (i) is near zero, it means its neighbors are randomly scattered in different clusters.

Thus, the higher the purity value a unit has, the stronger the spatial association is

around that unit.

Based on the silhouette and the purity criterion, the local point of interest is the

third criterion developed as a combination of both. The local point of interest is

defined as:

LPOI(i) =
nCi

N(i)
∗ a(i)

a(i) + LCi

−
∑
Ci 6=Cj

nCj

N(i)
∗ a(i)

a(i) + LCj

(4.7)

where LCi
is the average dissimilarity of object i with all other objects within its

same cluster in i’s neighborhood, and LCj
is the average dissimilarity of object i with

objects that are in other clusters in i’s neighborhood. The range of LPOI(i) is -1

to 1 as well. Values near 1 indicate the unit is stable as it is surrounded by similar
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units all in its same cluster. When the value is closer to -1, the unit is surrounded

by similar units but all from another cluster, indicating this unit may be a candidate

for relabeling.

All three indices can be displayed in the thumbnail plot when users hover the

mouse over a certain spatial unit. By setting the upper and lower bound of a certain

criteria, the corresponding units filtered out will be highlighted in dark color contours

for the user to inspect.

The framework implements two modifications for flexible direct manipulation.

One method is result manipulation, which means the modification will only affect on

the label index of the user selected units. The other method is model manipulation

which will affect the weights in the clustering process and eventually the labels of

other data points. Each element in the dataset will have an associated weight which

can be modified through user interaction. Suppose there are n units u1, u2, . . . , un

and their weights are formed as w1, w2, . . . , wn, such that initially each spatial unit ui

will have the same instance weight wi = 1 influencing the placement of the centroids.

After the initial clustering, analysts may assign unit ui to specific cluster Cj, then ui’s

weight will be modified to be either based on the cluster size sj such that wi = 1+
√
sj

or a predefined constant value such as wi = 1+const. Thus, during each iteration, ui’s

proximity to Cj’s centroid cj will be computed by multiplying that weight wi, so it is

more likely to be assigned to cluster Cj. When calculating the cluster centroid, ui will

only contribute its weight to that cluster. The new centroid of Cj will be cj = Σk∈Jwkuk
Σk∈Jwk

where J is the set of unit indices which have been assigned to Cj. Eventually, this

result in cluster Cj’s centroid cj moves towards ui and this unit will likely belong to

that cluster (Figure 4.20). Based on the definition of direct manipulation [188, 189],

the modified result will be synchronized with all the visual widgets simultaneously.
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Figure 4.20: An example of user-guided k-means: The left figure shows a projection

of the k-means clustering (where k=6) of counties based on their measured indices of

wholesale trade, retail trade, entertainment and accommodation. These clusters are

projected onto a choropleth map and the analyst sees that Cook County belongs to

the orange cluster and New York County belongs to the blue cluster. Based on their

domain knowledge of the data, the analyst knows that Cook county and New York

County should actually belong to the same cluster, thus the analyst interactively

reassigns New York County to the orange cluster. The resultant weights matrix

is updated and k-means clustering is recomputed using the user selected weights.

The resultant clustering not only modifies Cook and New York Counties, but it also

causes other counties to be reassigned to different clusters, such as Harris County

being reassigned to the orange cluster. The scatterplot view is also shown (projecting

into the retail trade vs. wholesale trade space) along with each map to illustrate the

2D clustering of the data in the multidimensional space.
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Chapter 5

CLUSTERING EXPLORATION

This thesis links users to a variety of clustering quality measurements to enable them

to develop an understanding of global and local multivariate clustering for geograph-

ical visualization. It supports the visual exploration of geographical projections of

both k-means and hierarchical clustering. To address important differences in lo-

cal trends related to either spatial dependence or spatial heterogeneity, this thesis

characterizes space into the following four categories:

• Discrete spatial extent - Particular types of data may be reported in such a

way that they are bounded by a fixed spatial extent. Previous research tends

to apply multivariate clustering to the entire spatial extent, which can conceal

local variations. This framework enables geographical selections at a constant

spatial extent and allows users to apply multivariate clustering to the selected

spatial extent. The interaction and visual encoding enables users to identify

local patterns between places in order to understand the impact of the spatial

heterogeneity on the multivariate clustering procedure.

• Discrete geographical features - Different geographical features are not always

spatially continuous. Thus, this framework allows users to distinguish geograph-

ical features (e.g., urban vs. rural) and then apply multivariate clustering to

the geographical features of interest.

• User-defined (continuous) spatial extent - While many geographic studies exam-

ine phenomenon where the spatial extent is fixed, many other questions require
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an analyst to modify the spatial extent by zooming in to a particular set of

spatial units or zooming out to a particular extent, and then performing a clus-

ter analysis. In this context, the arrangement and the neighborhood structure

of the data are variable. This framework allows users to adjust spatial scales

around a fixed location to understand the impact of the spatial dependence on

the multivariate clustering procedure.

• Continuous geographic resolution - Another issue to consider when evaluating

multivariate clustering results in geographic space is the impact on the results

of varying the resolution of the data. This variation in the resolution of the

spatial units of interest is otherwise known as the problem of modifiable areal

units [190]. It is known that using larger areal units (i.e. states as opposed to

counties) reduces the variance in the data [191]. This framework allows users to

aggregate multivariate attributes at different spatial resolutions (e.g., county,

state) to understand the impact of the spatial dependence on the multivariate

clustering procedure.

5.1 Group Selection

To enable the exploration of the spatial impact on multivariate clustering, this

framework extends the traditional selection operation through the concept of group

operations. Three types of selection are fully implemented in the framework:

• Rubber band selection in geographic space;

• Selections from multivariate space utilizing histogram, scatterplot, categorical

view, etc;

• Automated geographical selections such as selecting based on a boundary layer

or using a neighborhood.
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These three selection methods enable users to define any desired areas. The group

level operations include updating all the exploratory data analysis widgets (e.g, his-

togram, scatterplot), applying local clustering, and aggregating local clustering statis-

tics.

5.2 Visual Exploration Widgets

In addition to the PCA scatterplot introduced in Section 4.2.5, this framework

provides several other visual analytics methods for clustering exploration including

the dendrogram, statistic table, PCP (Parallel Coordinate Plots) area profiler, and

rose plot.

Dendrogram: For each hierarchical clustering, an interactive dendrogram (Figure 4.18(a))

is generated. This allows users to freely navigate and select any branch for high-

lighting units on the map.

Statistic Table: All the clustering results will derive a statistic table view that

illustrates the range of each variable for each cluster. From the statistic view

analysts can identify interesting properties of the clusters (Figure 4.18).

PCP Area Profiler: While PCA is good for visualizing the multivariate distance,

it lacks consistency in appearance as the data change. Oftentimes, it is not

enough to determine the cluster label just by using the PCA scatter plot when

the border point is at the intersection area of more than two clusters. Hence a

PCP area profiler has been implemented to visualize the multivariate relations

of different area profiles in a simple click. There is one customizable area profile

where users can select the units of interest and three predefined area profiles:

the local neighboring area which only considers the units within the first order

contiguity of the selected unit; the intra-cluster area which only considers the
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Figure 5.1: An example of the PCP area profiler and Rose plot. Here users explored

the PCP area profiler with three different profiles. The Rose plot in the bottom-right

shows the clustering result of five clusters, which allows users to learn about the

characteristic of each cluster.

units in the same cluster as the selected unit, and; the global area which con-

siders all the units. By switching among those area profiles, users can explore

how the datum is distributed in the multidimensional space (Figure 5.1(A-C)).

When a user mouses over the unit, the corresponding unit lines in the PCP will

be rendered in red for easy identification.

Rose Plot: While PCPs provide a detailed view of the data values, they are often

very cluttered. This framework employs a modified version of the traditional

rose plot (Figure 5.1(D)) akin to Schreck et al. [192]. Each variable axis has five
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points which indicate the lower bound, three quartiles, and the upper bound of

each variable respectively. While Gestalt principles note that humans are good

at shape comparison, drawbacks of the rose plot include shape changes due to

axis ordering and the often unintuitive scaling that must be done per axis.

5.3 Clustering Comparison

Figure 5.2: The coherent clustering color mapping with both maps having five clus-

ters. By maintaining label consistency for generalized clustering comparison, users

can quickly tell that the clustering results are similar while at the same time noting

that there exists differences in the northern part of the US (the red circle). However,

it is still difficult for users to figure out exactly how many differences there are.

Even though many clustering comparison methods have been developed, designing

an effective comparison operation and showing the results is still a challenge. Hu et

al. [136] proposed the coherent clustering color mapping that attempts to keep clus-

ter labels of spatial units consistent between different clustering results. They assign

the same label (color) to the clusters with the maximum number of correspondences

to facilitate the comparison of clusters. To enhance the coherence and generalized

cluster comparison between the multiple runs k-means clustering results, the frame-

work implements a coherent clustering color mapping algorithm similar to the work

from Hu et al. [136]. The coherent clustering color mapping attempts to keep cluster
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labels of spatial units consistent between different clustering results. For example, if

for clustering C1 there exists two clusters C1
1 with spatial units {a, b, c} and C1

2 with

spatial unit {d}. While for clustering C2 there exists two clusters C2
1 with spatial

units {c, d} and C2
2 with units {a, b}. Then the process is try to minimize the number

of spatial units that will be relabeled between them. Thus, in this example, one can

say that C1
2 is changing to C2

1 and C1
1 is changing to C2

2 . In order to determine this

minimal label change, the Kuhn-Munkres (KM) algorithm [193] is implemented. The

KM algorithm treats the clusters between different time steps as a weighted bipar-

tite graph and solves it as an optimal assignment problem. Assume the clusters in

one clustering are set X such that X = {x1, x2, . . . , xn}, and the clusters in another

clustering are set Y such that Y = {y1, y2, . . . , yn}, where both time steps have an

equal number of clusters. Then the weight is defined using a cost function (closeness

measurement):

c(xi, yj) = |xi|+ |yj| − 2 ∗ |xi ∩ yj| (5.1)

and the objective function is equivalent to finding a permutation π of 1, 2, . . . , n such

that Σn
i=1c(xi, yπ(i)) is minimum.

By executing the KM algorithm to solve this objective function for every two ad-

jacent clustering results in the rank list, the same label (color) can be assigned to the

clusters with the maximum number of correspondences and eventually facilitate the

intuitive comparison of the spatial clusters. However, this method has several draw-

backs: first, it lacks a detail comparison capability (in Figure 5.2, users can not tell

the exact difference between two clustering results when the amount of spatial units

or the number of clusters is large); second, it can only compare clustering with the

exact same cluster numbers and units, and; third, it is not genuinely coherent because

the process does not have the transitive property. To overcome these limitations, a

novel visual analytics tool called the Triple-D View (Drag and Drop clustering Dif-
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ference View) was developed to simplify the process of clustering comparison in this

framework. By dragging and dropping between two clustering results, the view not

only can visualize the difference between clustering results regardless of the cluster

number and coloring scheme but can also generate a numerical index to help users

assess the clustering similarity.

Each cluster is essentially a set, thus comparing the difference between clusterings

is equivalent to exploring the changes among those sets. According to observations,

the changes have been generalized into a combination of the splitting step and the

merging step. To keep the idea simple, consider the example in Figure 5.3. Here,

we have a clustering result Ω of 3 clusters A,B,C for 15 objects on the left, and

another clustering result Ω′ of 4 clusters A′, B′, C ′, D′ for those same 15 objects on

the right. In the splitting step, we subdivide Ω into small clusters. For instance, for

cluster A, objects 1, 3 are formed into the same cluster in Ω′, objects 4, 6, 7, 9 are

formed into the same cluster in Ω′, and object 14 is merged into another cluster in

Ω′. Thus we will have three sub-clusters in Ω′′ for cluster A. In the merging step,

we just need to check each cluster in Ω′ to find out which small sub-clusters in Ω′′

it contains. The intermediate clusters are actually the mutual information between

these two clustering results. This process is demonstrated in Figure 5.3.

By dragging one clustering result and dropping it onto another clustering result

in the Triple-D view, the Triple-D view will map the changes (i.e., the intermediate

sub-clusters) under the two clusterings being compared (Figure 5.4). The layout of

our difference view is an inverted pyramid which is similar to the GTdiff method [108];

however, GTdiff only provides comparison for temporal bins as a difference of values

between time steps. Here, this layout is utilized to represent the difference between

different clustering results. To represent the changes, three criteria for the proportion

are defined: less than 50 percent, larger than 50 percent, and equals to 100 percent.
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Figure 5.3: Comparing two clustering results for the same group of 15 objects. In

the top figure, the left part is a clustering result Ω with three clusters, and the right

part is a clustering result Ω′ with four clusters. The bottom figure is the illustration

of the comparison process. The value on the arrow indicates the proportion of the

sub-cluster in that step.

The proportion in the splitting step refers to the ratio between the size of the sub-

cluster and the size of its original cluster where the sub-cluster splits from, in the

merging step it refers to the ratio between the size of the sub-cluster and the size of
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Figure 5.4: An example of the Triple-D View (Drag and Drop clustering Difference

View). The top three maps are three different clustering results using k-means but

with different initial centroids respectively. The bottom two maps are the comparison

results of the first two and last two respectively. When users click on a certain unit

in the comparison result, indicator lines will be drawn on top of them to mark the

corresponding units from the two compared clustering results.

its successive cluster which the sub-cluster merged into. As there are three criteria

for both steps, there will be 9 variables that can be used to represent the changes.

An example of the visual coding is shown in Figure 5.4.

The Triple-D view not only visualizes the difference between clustering results

regardless of the cluster number and coloring scheme, but it also generates a numerical

proximity metric that obeys all the metric properties (positivity, symmetry, triangle
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inequality, indiscernibility) to help users assess the clustering similarity. In contrast,

the Rand Index is not suitable for unlabeled clustering comparison as it requires a

ground truth, and NMI (Normalized Mutual Information)/Variation of Information

can not handle the situation when mutual information is 0, and the similarity measure

introduced by Torres et al. [194] does not provide diversity/entropy information for

the comparison which make the result less meaningful. So the split-merge metric in

the framework is defined as:

SM(Ω,Ω′′) = −
∑
i

∑
j

|Ci ∩ C
′
j|

N
log
|Ci ∩ C

′
j|2

|Ci||C
′
j|
, (5.2)

where Ω and Ω′′ are the two clustering results been compared. Ci is the ith cluster

in Ω, C
′
j is the jth cluster in Ω′′, and N is the total number of units. Larger metric

values represent more dissimilarity between clusterings.
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Chapter 6

VISUAL APPEARANCE OF SPATIAL ASSOCIATION

The analysis and understanding of spatial patterns is essential to all subfields of ge-

ography [195], and the visual representation of spatial patterns represented is greatly

affected by the choice of classification boundaries. The current methods introduced

in this framework have focused on the identification and exploration of class members

who fall near a classification boundary. In this section, the focus is on quantifying

the visual impact that changing the label of an element will have. As such, there are

three types of spatial association patterns that can be identified:

• Clustered: Map elements with the same label are contiguous in geographic space,

as indicated by positive measures of spatial autocorrelation in Moran’s I.

• Dispersed: Map elements with different labels (but with a repeated pattern) are

contiguous in geographic space, as indicated by negative spatial autocorrelation

in Moran’s I, an example of such a pattern would be a checkerboard.

• Random: Map element labels are randomly distributed on the map, as is in-

dicated by a Moran’s I near zero, i.e., the distribution of regions with similar

properties is unspecified/random in geographic space.

Each type of pattern is associated with a description of the visual appearance of the

map, and these spatial association patterns are typically defined and tested using

spatial autocorrelation. Spatial autocorrelation is often used with p-value, z-score,

and resampling methods (e.g., Monte Carlo sampling [196], randomization tests [29])

to indicate the significance level of the tendency of spatial clustering in a map. Given

67



that visual appearances are directly related to measures of spatial autocorrelation,

our goal is to adapt an indicator of spatial association to quantify the visual change

that may occur in a choropleth map as an element’s class label is altered.

Many indicators for spatial association exist (e.g., join count statistics [197],

Geary’s C [81], Moran’s I [198], Getis-Ord General G [82]). However, these statistics

are all special cases of cross-product statistics [199, 200]. Moran’s I [198] is perhaps

the most well-known and widely used measure of spatial autocorrelation. Moran’s I

is defined as:

I =
N

ΣiΣjwij

ΣiΣjwij(xi − X̄)(xj − X̄)

Σi(xi − X̄)2
, (6.1)

where N is the number of spatial units indexed by i and j, x is the variable of interest,

X̄ is the mean of x, and wij is an element of a matrix of spatial weights.

Unfortunately, Moran’s I is designed for continuous variables. Since the visual

appearance of the map relates solely to the final class labels, we need a metric that

can be applied to categorical data values. As such, we modify the Moran’s I measure

to provide a metric of spatial autocorrelation based on the class labels. To do this,

we need to redefine the variables in Equation (6.1). xi is now defined as a vector

(c1, c2, . . . , cn), where n is the number of clusters and cn is a binary value, 0 or 1, such

that if element i belongs to cluster 1, then c1 = 1 otherwise, c1 = 0. Then X̄ will

be the average of all vectors xi, and a modified global Moran’s I can be calculated to

evaluate the spatial association of cluster labels. Note that in this paper, we utilize

the Queen contiguity for defining the spatial weights matrix. And wi,j = 1 for all

Queen contiguous neighbors in our implementation. While the choice of the spatial

weights matrix will impact the calculation, the application is generalizable to any

spatial weights choice.

68



Figure 6.1: Four spatial cases and the effects of changing a single unit.

6.1 Categorizing the Effects of Relabeling

Once a measure for the spatial association of the class labels is defined, the next

step is to determine the cases in which altering a label will impact the visual spatial

association. We identify four potential spatial arrangements for elements on a choro-

pleth map, Figure 6.1. Based on these arrangements, we then define the value change

in our modified Moran’s I that would result in a change of the classification label.

Case 1 The spatial unit under analysis, i, is spatially contiguous only to units with

different class labels. The position of i in the classification space is such that it

lies near the class boundary of one or more spatially contiguous units. In this

case, if i was relabeled, the spatial association will increase. This is illustrated

in Figure 6.1 (Case 1). Here, unit i is the red square and has a class label of

2. This element lies near the boundary of class 2 and class 3. If the label of i

were to change from 2 to 3, an increase in visual clustering could be observed

and the spatial association value would increase.

Case 2 The spatial unit under analysis, i, is spatially contiguous only to units with

different class labels. The position of i in the classification space is such that it

does not lie near the class boundary of any spatially contiguous units. In this
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case, if i was relabeled, there would be no change in the spatial association.

This is illustrated in Figure 6.1 (Case 2). Here, unit i is the red square and

has a class label of 3. None of its neighbors share the same class label, thus

i does not add to any visual cluster. i lies on the boundary of class 3 and

class 4; however, changing i’s label to 4 does not result in i visually combining

with other spatially contiguous regions, thus there is no change in the spatial

association metric.

Case 3 The spatial unit under analysis, i, is spatially contiguous to some (or all)

units which share the same class label. The position of i in the classification

space is such that it does not lie near the class boundary of any other spatially

contiguous units. In this case, if i was relabeled, the spatial association will

decrease. This is illustrated in Figure 6.1 (Case 3). Here, unit i is the red

square and has a class label of 2. Several of its neighbors share the same class

label, thus forming a small region that will visually appear to be clustered.

While i does lie near the boundary of class 2 and class 4, there are no spatially

contiguous elements labeled class 4. As such, if i were to be relabeled, the size

of the region containing elements with a class label of 2 would decrease, and no

other region in this scenario would add i to their spatial grouping. As such, the

visual clustering would decrease, resulting in a lower spatial association value.

Case 4 The spatial unit under analysis, i, has a label which lies near a classification

boundary and is spatially contiguous to some units which share the same class

label. The position of i in the classification space is such that it does lie near

the class boundary of other spatially contiguous units. In this case, if i were

to be relabeled, the change in spatial association could be positive, negative,

or neutral depending on the number of contiguous units (and their contiguous
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units) that have the same label as i. This is illustrated in Figure 6.1 (Case 4).

Here, unit i is the red square and has a class label of 2. Several of its neighbors

share the same class label, thus forming a small region that will visually appear

to be clustered. However, i lies on the boundary of class 2 and class 4 and

is spatially contiguous to other regions with a class label of 4. If i were to

be relabeled, the size of the region containing elements with a class label of

2 would decrease; however, the size of the region containing elements with a

class label of 4 would increase. As such, the modified Moran’s I would need

to be recalculated for the entire map to determine the net change in spatial

association.

While Cases 1-3 are straightforward to identify, Case 4 is perhaps the more com-

mon case in choropleth map design. Thus, for a unit i in Case 4, we define the number

of regions that belong to the same cluster as i in its surrounding area as pi. The num-

ber of regions that belong to a cluster that i can change to in its surrounding area

as qi. The effect on the spatial association after i is changed is based on the number

of surrounding units that i can change to and is proportional to qi − pi. Figure 6.1

only considers the effect of a single changeable unit, we extend this to more complex

situations (Figure 6.2(A)) in which several contiguous regions could change, resulting

in a cascade of visual clustering patterns.

Theorem 1 If the potential changeable regions are not adjacent, then their effects

on the spatial association are separate/independent.

By inspection, one can observe that if spatial units that are identified as having class

labels near boundaries are non-adjacent, then the effect of modifying their class labels

will be independent. This can be observed in Equation (6.1) where units that are not
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Figure 6.2: An example of adjacent changeable regions. Dashed lines represent the

contiguity and solid lines represent the co-effect. Non-negative node weight indicates

that class k is reachable by i. From the initial states to the terminal states, three

co-effect connections have been established.

adjacent will have an entry in the spatial weights matrix wij = 0 making the resulting

calculations independent from one another.

Once independence is established, we can identify all spatial units that fall into

Cases 1-4. Then, we can consider the situation where several changeable regions are

adjacent, meaning that a change of label in one region will affect the visual clustering

(i.e., the value of p and q) of another changeable region. In this case, we have:

Theorem 2 The effect of the change (EOC) only depends on the initial states and

the terminal states of the changeable regions.

Thus, the measurement of spatial association remains the same as long as the final

states of those changeable regions stay the same. We generalize the effect of the
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changes as:

EOCξ =
∑
i∈ξ

(q′i − p′i)︸ ︷︷ ︸
A

+
1

2

∑
i∈ξ

∑
j∈ξ,j 6=i

wij(it&jt − is&js)︸ ︷︷ ︸
B

, (6.2a)

it&jt =


1 if it = jt

0 if it 6= jt

(6.2b)

where ξ is the set of changeable units, q′i, p
′
i are similar to qi, pi but exclude the

other changeable units. wi,j is the spatial weight between spatial units i and j. it

and jt are the terminal states (class labels) of regions i and j respectively, and is

and js are the starting labels of regions i and j respectively. Here the effect of the

changes can be broken into the total separated effect caused by all of the changeable

regions (Equation (6.2a) A) and the total co-effect among those changeable regions

(Equation (6.2a) B). Note that the co-effect is divided by 2 because i and j are

symmetric and would double the effect.

Here we can maximize EOC in Equation (6.2a) to determine the set of class labels

that will create the largest visual clustering in the map. This problem can be solved

by maximizing the modified Moran’s I in the terminal label state of a unit. Here, we

note that this may not be a desirable effect as this could introduce spurious patterns

into the map; however, elements near classification boundaries need to be inspect and

the EOC can be used as a metric for defining which elements could have the largest

potential change on the visual output. First, it is assumed that there exists a group

of contiguous spatial units which lie near classification boundaries (Figure 6.2(A)).

Each unit can be altered to a certain class with a known weight. The weight is set to

be the number of neighboring units that share the same class label. In practice, for

the class that a unit i cannot change to, the weight is set to −
∑

j∈ξ,j 6=iwi,j (see the

red circle in Figure 6.2(C)). By setting the weight to −
∑

j∈ξ,j 6=iwi,j, we neutralize
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the possible co-effects and guarantee that a unit cannot change into an unreachable

label. If the two adjacent units have the same class label, an edge will be established

with a given weight. For simplicity, the weight of the edge is unified to 1 when the

spatial weight wi,j is 1. Finally, this can be formulated as a maximization problem

where the nodes need to be labeled such that the overall weight of the nodes and

edges is maximized. This can be further defined as an integer linear programming

(ILP) problem. Given a graph G = (V,E) with n nodes and each node has m choices

of class labels, we introduce binary variables xik(i = 1, . . . , n, and k = 1, . . . ,m) to

indicate whether node i has been labeled as class k. The weights cik ∈ R are given

for each xik, and variables ye, e ∈ E indicate whether edge e is valid based on if its

two nodes have been labeled in the same class (Figure 6.2(D)). The resulting ILP can

be formulated as:

max
n∑
i=1

m∑
k=1

cikxik +
∑
e∈E

ye (6.3a)

s.t.
m∑
k=1

xik = 1 i = 1, . . . , n (6.3b)

2ye − xik − xjk ≤ 0 e = (i, j) ∈ E, k = 1, . . . ,m (6.3c)

xik + xjk − ye ≤ 1 e = (i, j) ∈ E, k = 1, . . . ,m (6.3d)

0 ≤ xik, ye ≤ 1 (6.3e)

xik, ye ∈ Z . (6.3f)

Here Equation (6.3c) constrains two nodes of a valid edge to be in the same class

and Equation (6.3d) constrains an invalid edge to not have two nodes in the same

class. By solving this ILP we can identify the terminal states which maximize the

Moran’s I, the same formulation can also be used to minimize the Moran’s I. The

problem of finding the maximum possible value is similar to the Maximum Edge-

Weighted Clique Problem (MEWCP) [201] which is a known NP-Hard problem [202].
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Therefore, the problem of calculating the maximum EOC is also an NP-Hard problem

(i.e., there is no general solution that can find the optimized value in polynomial

time). Efficient algorithms for the MEWCP, such as heuristics approximation, may

be modified and applied to solve this ILP. However, in practice, we find the number

of adjacent nodes and the number of class choices are relatively small (traditional

choropleth map design rules of thumb limit the number of classes to be less than

9). Thus, we implement a brute force solution to compute all possible values in

our framework. During this computation, our framework stores the configuration

of the class labels that would maximize or minimize the current spatial association.

Figure 6.3 shows a multi-dimensional classification of demographic data in the United

States and we highlight county boundaries based on their correspondence to the cases

of Figure 6.1 for illustrative purpose.

Figure 6.3: A k-means classification of US census variables illustrates boundary ele-

ments and their corresponding cases from Figure 6.1. Here the Red outline represents

Case 1, the Black outline represents Case 2, the Green outline represents Case 3, and

the Blue outline represents Case 4.
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6.2 Summarizing the Visual Impact

While our proposed metric for quantifying the impact of visual change takes into

account class labels, perceptual studies have also shown that the size of the map units

is a primary driver behind the patterns that users observe. As noted by Haklay [203],

a thematic map created using spatial units that vary in shape and size leads the user

into thinking that the larger areas are more significant because they have a bigger

visual impact than the smaller areas. Seonggook [204] proposed the concept of gross

change detection and verified that different spatial distributions between two adjacent

choropleth maps may lead users to under- or over-estimate the gross change in the

map, which implied that the spatial distribution of change should be considered. As

such, the size of the region should be considered when quantifying the visual impact

of the label changes. Goldsberry and Battersby [28] introduced the magnitude of

change (MOC) to quantify the graphical change between choropleth map pairs for

animated choropleth maps. MOC is applicable to both object-oriented and pixel-

based measures, and we extend our EOC measure to consider the size of the map

element with a final metric for quantifying the impact of boundary effects on the

visual spatial association in choropleth maps. The metric is a simple multiplication

to derive the visual impact of changes (VIOC) and is defined as:

V IOCξ =
∑
i∈ξ

(
siEOCi

S
) , (6.4)

where si is the area size of the ith region (in pixels) and S is the overall area size of the

map (in pixels). This accounts for the proportional physical change of the choropleth

map under different resolutions.

Once these metrics are defined, we can now identify units on the map that could

potentially be modified to change the visual appearance of spatial association. While

there are methods for specifically identifying statistically significant spatial associa-
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tions on a map, the majority of choropleth maps are presented with no underlying

analysis of spatial association. Instead, they are presented in the wild and left solely

for visual interpretation. By being able to quantify potentially spurious elements on

a map, new designs could be considered where the elements could be blurred, high-

lighted or relabeled to another separate class in order to try and insure that patterns

being seen are what was intended by the map designer (of course we recognize that

the intent of the designer could have been to mislead). Thus, our method can be

summarized into the following steps:

1. Choose a classification method and label the dataset of interest

2. Calculate the silhouette value for all elements in the dataset

3. For all elements whose silhouette value is within a user defined range τ calculate

the EOC/ VIOC

4. Render the classified choropleth map and visually highlight all units with a

VIOC value within a user defined range γ

After the map is rendered, the designer can inspect the marked units, create a map

that will minimize or maximize the EOC/ VIOC, manually change units near classi-

fication boundaries to obtain the desired rendering effect, or embed the EOC/ VIOC

measures as uncertainty information in the map design.
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Chapter 7

CASE STUDIES

Clustering analysis in geospace requires lots of domain knowledge about the data to

generate valid case studies. For instance, demographics classification is a process that

not only involves geographic information but also needs other information, such as

economic and social background, to label the results. To evaluate the proposed frame-

work, case studies using several datasets including conflict in Africa, crime statistical

data, economic development, and demographics data are explored.

7.1 Conflicts in West Africa

Figure 7.1: Aggregation of conflicts in West Africa. Left part is the conflict events in

the whole Africa. Middle part is the Open Wizard with all the wrangling configura-

tions. Right part shows the choropleth map after aggregating the conflict events to

the grid cells.
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The first case study focuses on conflicts in West Africa. The base dataset is a .shp

file of 828 grid cells of 0.5 X 0.5 degrees derived from PRIOGRID [205]. This dataset

only contains 3 variables which are the grid cell ID, country name, and administrative

area name. The conflict data comes from another .csv file that has 8 attributes

(country code, country name, conflict ID, event date, conflict type, longitude, latitude,

and fatalities). To combine these two datasets, the users applied our data wrangling

procedure by loading both files into the open wizard and checking “count” as the

aggregation operator for the event ID (Figure 7.1). After the aggregation procedure,

users could directly visualize the number of conflicts in each grid cell of West Africa

in the choropleth map.

Figure 7.2: An example of using regular expression with aggregation key. The process

from A to D demonstrates how users can achieve temporal variable from the spatial

aggregation.

In this example, there are 10 conflict types distinguished by categorical numbers,

so users could also compute the statistics of conflicts based on the conflict type.

Users checked the aggregation key option for the conflict type and aggregated the

data again. The framework automatically detected the types of conflict events and

generated counts for each of the conflict types. Furthermore, users were interested
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in investigating the yearly temporal aspect of the conflicts. To their knowledge,

the event date is in a format of “MM/DD/YYYY”. Thus, by entering the regular

expression “(\\d{4})” in the text field of aggregation key under the event date

attribute (Figure 7.2(A)), the conflicts will be aggregated in a yearly manner. After

the aggregation, the temporal configuration page of the Open Wizard has been used

to group variables temporally (Figure 7.2(C)). In this way, users can directly visualize

the time series of conflicts on the map (Figure 7.2(D)). Feedback from users showed

that the wrangling process in this framework greatly reduces the time and energy

cost of data preprocessing. Without such wrangling process, typically it could take

several days to code scripts and generate the same results.

7.2 Crime Estimates in the United States

In this example, crime data from the U.S. Department of Justice are used. This is

an annual dataset that contains 19 numerical variables for 49 states of the mainland

US spanning from 1990 to 2012. Here, users are interested in exploring property

crime rates. They begin by exploring various crime thresholds in the dataset using

the interactive histogram widget, Figure 8. By dragging the threshold from the lowest

property crime rate to the highest property crime rate they can observe overall trends

in the US. In Figure 7.3(1), a few states with a decreasing trend at this level have

been filtered out by setting the threshold value low. This indicates that these states

have some of the lowest property crime rates in the country. As the user moves the

slider Figure 7.3(1-3), they begin seeing patterns of decreasing trends and oscillations;

however, no increasing trend (highlighted by green) is evident. This indicates that

there is no consistent rise in property crime rates for any of the study regions; the

majority of states have crime rates that either decrease over time or oscillate above

and below the threshold crime rate for. The users note that they think of this as

80



Figure 7.3: Using the threshold widget as an overview mechanism for exploratory

data analysis. By changing the threshold, users can explore the relationship between

crime levels and state wide trends.

a way of looking at levels of support or resistance for criminal activities and would

make use of this information by linking it to other policy datasets for future analysis.
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Figure 7.4: Users explore temporal similarity through a value based filter. (1-3) show

the brushing result of less than 20% similarity in three different states respectively

which all highlight West Virginia. (4) shows the brushing result of less than 20%

similarity in West Virginia which highlighted all other states.

Next, the users wanted to explore regional trends using similarity brushing. As

they know most states have a decreasing trend in property crime rates, thus they

would like to see if there are any outliers. They select a Sequential Normalized

Distance metric with a similarity threshold less than 20% to highlight states that

are least similar to one another. When brushing various states, West Virginia was

highlighted in the result, Figure 7.4(1-3). Then, the users brushed West Virginia and

saw that all other states were highlighted (Figure 7.4(4)) indicating that property

crime rate in West Virginia is very different from other states. To further investigate

the relative similarity between West Virginia and other states, the users choose the

rank option with the threshold of larger than 80% which is the top 9 most similar

trends out of 49 trends. The result (Figure 7.5(a)) highlights 9 states on the map

that are supposed to be relatively similar to West Virginia in terms of property crime
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rate trends. However, by accessing the temporal trend multiples (Figure 7.5(b)), the

users can tell how relative these similarities are. This result highlights the value of

our visualization tools in revealing deceptively similar trends in similarity metrics.

Figure 7.5: Users explore temporal similarity for West Virginia through a rank based

filter. (a) 9 states that have relatively similar trends with West Virginia (b) Temporal

trend multiples help users visually inspect how similar West Virginia’s temporal trend

is to other highlighted states’ trends.

7.3 Indices of Industrial Diversity

In this study, data were obtained from the U.S. Census Bureau’s County Business

Patterns (http://www.census.gov/econ/cbp/) database, which contains detailed

industrial information about establishments for all U.S. counties dating back to 1986.

The variables of industrial diversity are measured by the number of establishments,

which are subdivided by two digit North American Industrial Classification System

(NAICS [206]) industry. There are 17 two-digit NAICS industries, 11 years from 1998

to 2009 for each of those industries in this study and 3,106 counties in the continental

United States for which data are available. The data file is provided in .dbf table

format corresponding to the shapefile of counties in US. This time series of 1998-2009

cover the most recent economic crisis, in which the U.S. entered a severe recession
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following the bursting of the housing bubble in mid-2007. To analyze spatio-temporal

trends in specific industries hit hard by the recession, the user identifies several major

metropolitan areas that have a high concentration of establishments in three indus-

tries: Construction (N23) and Real Estate (N53), and Entertainment (N71). Each of

these industries is anticipated to have been hit hard by the recession because Con-

struction and Real Estate are directly related to the housing industry while Enter-

tainment is likely to have been impacted as people cut back on non-essential expenses

due to job losses. To facilitate this, the user first examines the multivariate similarity

between Construction, Real Estate and Entertainment (Figure 7.6(a)). According to

their expert knowledge, the user brushes over Maricopa County (i.e., the Phoenix

metropolitan) in Arizona, that was known to be one of the hardest hit regions of the

country during the crisis [207]. The result returned the major metropolitan areas

that are most similar to Maricopa County including Los Angeles, Seattle, Houston,

New York, etc.

After this process, the user wanted to know whether these major metropolitan

areas have similar temporal behaviors with respect to these three variables (Con-

struction, Real Estate, and Entertainment) as well. To do this, the user set up

three tooltip temporal filters corresponding to Construction, Real Estate and Enter-

tainment respectively using Sequential Normalized Euclidean distance metric with a

threshold of 80%. Figure 7.6(c, d, e) shows the counties with temporal trends similar

to each of the three underlying variables. The user quickly notes the major metropoli-

tan areas (e.g., Las Vegas, Chicago, Boston, and New York) across the country with

similar trends across each of these three variables. However, the Houston metropoli-

tan area, of which Harris County is a part, does not exhibit a similar trend. This

matches previous research indicating that the housing crisis was less severe in Texas
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Figure 7.6: Exploration of the indices of industrial diversity dataset using analytical

brushing. In part (a), the users applied multivariate distance mapping to find the

similar units in multivariate space with respect to Maricopa County. In part (c, d,

e), the users would like to find the temporal similarity using analytical brushing.

They employed a Sequential Normalized Euclidean distance metric with a threshold

of 80% similarity with respect to Maricopa County, AZ. From left to right: Similarity

with Construction (N23), Similarity with Real Estate (N53), and Similarity with

Entertainment (N71). After exploring about the similarity for each criteria, they

explored the result of an AND operation using the previous three brushes, results of

which are shown in (b).

than in other parts of the country [208]. As such, Harris County largely avoided the

great recession due to its state’s liberal and market oriented land use policies [208].

The user was also interested in learning about whether there are counties that

have an upward trend rather than just a delayed or less severe crash in Construction.

The user started with the time series from Harris County. In order to focus just on
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Figure 7.7: User defined trend exploration. The map at the bottom shows the result of

similarity brushing for the user defined trend after applying a Sequential Normalized

Distance with threshold larger than 80%.

the period of the recession, they adjusted the length of analysis to cover only the

last six years (Figure 7.7). The user applied the temporal similarity brushing again

but used a higher similarity setting of 90%. The results showed several counties

that are not metropolitan areas having an ascending trend after the housing bubble
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burst. Furthermore, the user investigated one of them: Richland County. Due to the

high-wage employment growth in Richland from oilfield development, the population

growth rate has surpassed the regional average in every year since 2005 [209].

Feedback from the domain expert on this paired analysis gave positive feedback.

The expert noted that such analyses would be difficult to do in other systems, par-

ticularly, the multivariate combination to explore similarity over space with respect

to multiple variables. While in the univariate case, a parallel coordinate view could

provide a temporal trend analysis of a single variable, finding similar trends across

multivariate data would be extremely difficult. Furthermore, within this problem

domain, there are over 3000 counties in the United States, there are 19 temporal

measures of industrial composition per county, and each of these measures is used to

compute a location quotient for each county as well as a series of index values de-

scribing the county’s overall specialization. Thus, given the large number of counties

and time series, it is intractable to replay every temporal animation of every single

variable to look for changes over time. Key features the expert used was the tempo-

ral threshold widget for defining thresholds of interest, and the temporal definition

widget where the expert could draw various trend lines and then combine them in

the logic widget.

7.4 Impact of Geographical Variations on clustering

In the following case studies, we used a demographics data set containing quick

facts about counties in the continental United States from the US Census Bureau (http:

//quickfacts.census.gov/qfd/download_data.html). There are 3106 counties in

this dataset and 52 demographic variables. The counties are distinguished by their

FIPS (Federal Information Processing Standards) number, and the variables by their
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mnemonic identifier. Note that variable choices here are chosen to clearly highlight

observable patterns in the data and demonstrate our framework features.

7.4.1 Discrete Spatial Extent

Figure 7.8: An example of exploration between clusterings in different geographical

locations. The top and bottom row are results based on surroundings of King County

and Harris County respectively. (A) Selections with the circle selection tool. (B)

Local clustering results and its clustering statistics. (C) Rose plots for the local

clusters, the variables from the top in a clock-wise manner are: percentage of other

languages, percentage of education level above high school, mean time to work, and

per capita income.

POP815213 (Language other than English spoken percentage), EDU635213 (Edu-

cation level above high school), LFE305213 (Mean travel time to work), and INC910213

(Per capita income) are the variables of interest in this case study. Here we explore
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the surroundings of King County (Seattle) and the surroundings of Harris County

(Houston) to determine if they share any common patterns in clustering. We first

choose the surrounding counties within the same radius from both counties using

the circle selection tool (Figure 7.8(A)) and then apply hierarchical clustering us-

ing Ward’s method [210] and Euclidean distance (Figure 7.8(B)). The relatively high

value of the average Silhouette coefficient from King County’s clustering indicates the

goodness of its clustering is slightly better than Harris County’s clustering under the

same clustering method. From the rose plots (Figure 7.8(C)), we also notice that the

characteristics of each cluster in King County’s clustering are more distinguishable.

As King County belongs to the orange cluster, we identify that it possesses more

well-educated people, higher income, and requires more time travel to work when

compared with the other clusters from the rose plots (Figure 7.8(C) Top). The dif-

ference of cluster characteristics is small from King County westward, but is large

eastward as these counties have significant less travel time to work and more non-

English language speakers. Harris County is similar to the situation in King County;

however, the difference of cluster characteristics does not shows the similar west-east

pattern. We can tell the non-English spoken percentage drops significantly towards

the north but remains towards the south, which makes sense as Mexico boarders

Harris County in the south.

Interestingly, the other two values of Shannon diversity and average purity from

Harris County’s clustering suggest that the clusters in Harris County’s clustering

are more spatially associated and the clusters in King County’s clustering are more

scattered. The spatial distribution of the clustering results in Figure 7.8(B) display

the corresponding patterns. Though these two counties are both near the ocean, close

to the country border, and contain major metropolitan areas, the different styles in
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population composition, education level and traffic level of its surroundings counties

appear to contribute to different spatial patterns.

7.4.2 Discrete Geographical Features

Figure 7.9: An example of partial clustering for units of different geographical feature.

The left map shows the units with all positive population change and the right map

shows the units with all negative population change in 2014.

We noticed that variable PST120214 representing the percent change of popula-

tion in 2014 has both negative and positive values, so we explore clustering on units

with positive values and negative values respectively. We first use the scatterplot (or

categorical view) to select units with only positive values and then apply hierarchi-

cal clustering using Ward’s method and Euclidean distance. The number of clusters

chosen is 6 and the variables clustered on are SEX255213 (Percent of female in 2013),
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POP645213 (Percent of foreign born persons in 2013), EDU635213 (Percent of per-

sons with high school graduate or higher), INC910213 (Per capita money income in

2013), and PVY020213 (Percent of persons below poverty level). Then we repeat

the same process for the units with only negative percent change of population. Fig-

ure 7.9 demonstrates both the clustering results for units with positive and negative

population change.

After investigating the rose plot for each clustering result, we find a similar match-

ing pattern based on the clusters’ characteristics. As shown in Figure 7.9, a matching

of A ⇔ e/c, B ⇔ d, C ⇔ a, D ⇔ b, E ⇔ f can be easily identified from the

rose plot of each cluster. This means that spatial units with positive and negative

population changes do share some similar patterns with those 5 variables. We also

notice that only the F cluster does not have a matching cluster in the other clustering

result. Cluster F has the highest distribution in education level, income level and

foreign born persons level. Also, judging from the map, we can tell that the units

from cluster F are all major metropolitan areas such as Los Angeles, New York City,

etc. We hypothesize that areas with high income levels, education levels and foreign

born population will have positive population change, in other words, areas with neg-

ative population change usually do not have high income, education and foreign born

persons level.

7.4.3 Continuous Spatial Extent

Next, we explore the scale change effects in clustering. The clustering features 6

clusters with Ward’s method and Euclidean distance. It is based on the variables of

age (percents of person under 5, under 18, and above 65 respectively), house living

(percent of living in same house more than 1 year), and education (percent of person

have bachelor’s degree or higher). We first choose Cook County (the Chicago metro
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Figure 7.10: An example of scale effect on clustering around Cook County. (A) The

Triple-D view of the clustering comparison regarding the scale change (B) The change

of scales demonstrated in 4 colors (C) PCP area profiler for scale 1 and 2 (D) PCP

area profiler for scale 1 and 3 (D) PCP area profiler for scale 1 and 4.

area). We select the start scale and end scale as shown in the Figure 7.10(A-1) and

(A-4) respectively. Then the framework automatically interpolates the steps between

those two scales (Figure 7.10 (A-2)(A-3)). After clustering on each of the scales

and applying the comparison in the Triple-D view, we find out that the comparison

metrics which stands for dissimilarity are slowly increasing as the scale changes (Scores

circled in red in Figure 7.10(A)). Thus we label the change of scales in different colors

(Figure 7.10(B)) and visualize the difference between them with PCP area profiler

(Figure 7.10(C)(D)(E)). As shown in the PCP area profiler, Cook County and its

neighboring counties have a higher measurement in the % of population under 18 and

in the education variable (Darker Green lines as scale 1 in Figure 7.10(C)). When

the scale expands outward to the next contiguous set of neighbors, the outer counties

have higher percent of elderly and the education level goes down (Yellow lines as
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scale 1 in Figure 7.10(C)). As the characteristics of these two area profilers are quite

distinguishable, it means that the scale change from A-1 to A-2 (B-2) may have

less effects on the clustering of A-1. That also explains the indiscrimination of the

comparison between the scale A-1 and A-2’s clustering results. When the spatial

extent increases, more units that are similar to the units in scale A-1 have been

induced (Overlapping purple lines in Figure 7.10(D)), and that interferes with the

clustering results. Note that clustering results here are further confounded due to

variables being dependent proportions of the population.

7.4.4 Continuous Geographical Resolution

Figure 7.11: An example of clustering results under different geographical resolutions.

(A) Clustering result, corresponding rose plot and PCA scatterplot in county level,

(B) Clustering result, corresponding rose plot and PCA scatterplot under state level.

Both use the same hierarchical clustering with 6 clusters.

As shown in Figure 7.11, we applied the hierarchical clustering of 6 clusters on

the county level and state level respectively across the mainland US. The clustering

uses the Education level (EDU685213), Veterans (VET605213), Mean travel time to
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work (LFE305213), and Private nonfarm employment (BZA110213). We can tell that

county level rose plots (Figure 7.11(a)) have more variance for each of the clusters.

The PCA scatterplot also shows more overlap at the county level, but clear separation

in the state level. From the statistics of the two clustering results, the average Silhou-

ette coefficient of clusters under state level is higher than under county level which

indicates higher intra-cluster similarity at the state level aggregation. These observa-

tions in cooperation with the work of Sun [211] demonstrate that spatial aggregation

can improve data quality.

7.5 Visual Impact of Changes in Classification Boundaries

In this section, we demonstrate by example that our proposed metrics are able

to identify map elements whose labels lie near classification boundaries and that

changing these elements’ classification label will impact the perceived visual spatial

association.

7.5.1 Applying EOC for Visual Clustering

The first dataset used here is the Chicago crime data of 2014. There are 77 regions

and 26 types of crime variables in this dataset. For classification, k-means clustering

has been applied with k = 5 for three variables “Liquor Violation”, “Sex Offense”

and “Robbery”. The resulting classification and the PCA scatterplot are shown in

Figure 7.12.1. All spatial units are outlined to provide a geographic overview for

discussion. Next, we identify spatial units that may be near the cluster boundary by

setting the silhouette value to the range of -.2 to .2. Units in this range that will

have an impact on the EOC are outlined on the map and in the PCA scatterplot

(Figure 7.12.3). Figure 7.12.2 shows the results of minimizing the EOC to reduce
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Figure 7.12: Minimizing and maximizing the EOC of elements near the classification

boundary using criminal incident reports in Chicago, IL. 1 - The initial k-means

classification. 2 - Minimizing the EOC, thus creating more visual heterogeneity,

highlighted elements are those near the classification boundary. 3 - The initial k-

means classification with only the changeable elements highlighted (provided for quick

comparison purposes only and is the same as 1). 4 - Maximizing the EOC, thus

creating more visual spatial clustering.

the spatial clustering that is visually observed, and Figure 7.12.4 shows the results of

maximizing the EOC to increase the spatial clustering that is visually observed.

To further summarize, our modified Moran’s I in Figure 7.12.3 (the initial k-means

clustering) is .14836. By shifting the cluster labels as in Figure 7.12.2, Moran’s I can

be reduced to .08185 and more dispersion in the regions is seen. For example, the large

purple region in the middle is dispersed as the unit on the Purple/Blue boundary shifts

to Blue. Such an effect may be desirable in map design as this may help eliminate
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the potential for users to identify spurious patterns if the result of the visualization is

designed to be as disperse as warranted by the data. Note the shift of the convex hulls

in the scatterplot as well when the units are re-labeled. In Figure 7.12.3, we see the

Purple-Blue border now overlaps as does the Red-Teal. Similarly, in Figure 7.12.4,

Moran’s I can be increased to .20510 and we see larger red regions form in the North

and South. The Red-Teal border now overlaps in the scatterplot as well.

The most interesting boundary in the PCA projection is the Teal-Red boundary.

In the Teal group, measures of the three crimes are all quite low; however, in the

Red group, the data is clustered around mid-level rates. Rates are normalized by the

total count of crimes, and in the Red group, liquor violations and sex offense have

normalized values ranging from .19 to .43 and .21 to .47 respectively. In the Teal

group these rates are 0 to .19 and 0 to .047 respectively with robbery rates in both

groups being less than .21. Thus, if one were to provide a label to the Teal cluster,

it could reasonably called the “low risk group” and red could be a “mid-to-high risk

group”. What we see in Figure 7.12 is that there are regions in the North and South

of Chicago with a Teal unit surrounded by Red. When we maximize the EOC, the

Red clusters become visually larger indicating more areas in the “mid-to-high risk

group.” Given that the units that were changed are near the classification border,

the change from Teal to Red could be warranted, and the designer’s goal could be to

show that crime is a problem in Chicago and larger visual clusters could help sell that

point. Again, the goal of this thesis is not on the ethical implication of such design

choices, but the focus is on the fact that elements near classification borders may need

to be identified to capture a holistic picture of the multivariate classification scheme.

To further demonstrate the impact of minimizing or maximizing the EOC we

explore demographics data for counties in the Western United States. The data

is obtained from the US Census Bureau (http://quickfacts.census.gov/qfd/
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download_data.html). We perform k-means clustering with k = 6 on three vari-

ables, PVY020213 - percent of population below poverty, LFE305213 - mean travel

time to work, and EDU685213 - percent of population with education higher than a

bachelor’s degree. Results of the clustering are shown in Figure 7.13. Figure 7.13.1

highlights all the units that can impact the EOC calculation and Figure 7.13.3 is the

same figure, just no highlighting in order to demonstrate how the visual clustering

might be observed. Figure 7.13.2 is the result of minimizing the EOC. When the

EOC are minimized (resulting in less visual spatial clustering), changes can be iden-

tified in the middle of Washington (the yellow region that was previously there has

been dispersed), the middle of Colorado, and the South-West corner of New Mexico

(among others). Figure 7.13.4 is the result of maximizing the EOC. Here, more visual

clustering can be observed particularly in Oregon where a large segment of the state

is shifted to the same cluster label.

Figure 7.13: Minimizing and maximizing the EOC of elements near the classification

boundary using US census data from the western United States. 1 - The initial k-

means classification. 2- Minimizing the EOC, thus creating more visual heterogeneity.

3 - The initial k-means classification (provided for quick comparison purposes only

and is the same as 1). 4 - Maximizing the EOC, thus creating more visual spatial

clustering.
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7.5.2 Combining EOC and VIOC

Figure 7.14: Maximizing the EOC based on the VIOC near the classification boundary

using US indices of industrial diversity from the western United States. 1 - The PCA

scatterplot for the initial k-means classification. 2 - A choropleth map of the k-means

classification, highlighted elements are those near the classification boundary. 3 -

The VIOC measure of elements near the classification boundary. Darker elements

will have a larger visual impact if their label changes. 4 - Maximizing the EOC of

all units near the classification boundary. 5 - Maximizing the EOC of all units with

VIOC in between .46 and 1.

In Figure 7.12 and Figure 7.13, what becomes obvious is that the size of the

spatial units plays a large role in the visual output. This is completely expected

as documented in the related work [203]. Thus, while Figure 7.12 and Figure 7.13

focus on highlighting all units that can change with the EOC measure, the proposed

VIOC measure can provide information about which units can be changed and, if

changed, will have the largest visual impact. In this example, we explore measures

of industrial diversity in the Western United States. These measures represent the

relative concentration of industries for a given spatial unit of interest at a particular

point in time. Figure 7.14 shows the result of applying k-means clustering (k = 6)

to the indices of healthcare (N62), finance and insurance (N52), and professional and

science services (N54). We use a silhouette value range of -.25 to .05 and Figure 7.14.1
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and Figure 7.14.2 show the result of the classification with the units with labels on

a classification boundary highlighted. Note that while other units may be initially

highlighted with the silhouette coefficient, by using the EOC case criteria we reduce

the highlights to only those units that will have a visual impact on the map. Note that

there are approximately 30 counties highlighted on the map and we want to explore

which units will have the most visual impact. We use a sequential color scheme

to shade the highlighted units based on their VIOC measurement, which is directly

proportional to the percent of the screen space that the spatial unit occupies. The

result is shown in Figure 7.14.3. As expected, the larger the county, the darker the

highlighting. The reason we show this is that by simply applying silhouette filtering

and EOC metrics to highlight the boundary regions, many units will be selected. If

we only want to focus on the most visually salient units, the units could be further

filtered based on their VIOC values. In Figure 7.14.5, we set a VIOC range from

.46 to 1 leaving only 7 of the initial 30 counties highlighted. We then modify the

labels to maximize EOC. Filtering by VIOC can be thought of as another tool for the

map designers toolbox in which they can consider modifications to class labels and

boundaries.

7.5.3 Relabeling versus Boundary Modification

Throughout the previous examples, we have primarily discussed the impact of

relabeling element that are on classification boundaries; however, simply relabeling

an element may not be the most appropriate means of adjusting the classification.

In multivariate schemes, such as k-means, recent work has focused on incorporating

user feedback into the classification model [154]. Thus, if a user changes a label, the

classification model will update the weights and reassign the classification boundaries.

Recent work on this topic was discussed in section 2.6, and this concept is extended
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to incorporate a modifications for flexible direct manipulation. To apply a model ma-

nipulation scheme, first, we identify elements to relabel using the silhouette range τ .

We can then maximize (or minimize) the EOC which forces the relabeling of elements.

This relabeling will automatically update the weights of the k-means clustering, and

a new classification based on the updated weights will be generated. This result is

shown in Figure 7.15. Here, we revisit the data and classification scheme applied in

Figure 7.12 (the Chicago crime data).

Figure 7.15: The effects of model manipulation on choropleth map classification. 1 -

A k-means classification of criminal incident reports in Chicago, IL. 2 - Maximizing

the EOC through result manipulation (i.e., changing the unit label does not effect

the k-means weight). 3 - Maximizing the EOC through model manipulation (i.e.,

changing the unit label updates the k-means weights). 4 - The difference between

result manipulation and model manipulation. Note that units that were not originally

highlighted as being near the classification boundary are now reclassified due to the

updated weights used in k-means.

Figure 7.15.1 and Figure 7.15.2 are the same k-means and maximized EOC re-

sults from Figure 7.12.1 and Figure 7.12.4 respectively. What is interesting is that

by changing the k-means weights, the classification boundaries shift and units that
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were not marked as boundary candidates are now subsumed by a new class. In Fig-

ure 7.15.3, the same units that were relabeled in Figure 7.15.2 are relabeled in Fig-

ure 7.15.3. This causes the weights in the k-means clustering to update, and then

a new k-means classification is performed, resulting in the map classification of Fig-

ure 7.15.3. If we take a difference between Figure 7.15.2 and Figure 7.15.3, we can see

what other units were shifted as a result of updating the weights of the k-means clas-

sification (Figure 7.15.4), and we notice that an even larger amount of visual spatial

clustering can be seen in Figure 7.15.3 than in Figure 7.15.2.
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Chapter 8

CONCLUSION AND FUTURE WORK

The case studies provided in this thesis demonstrate the utility of the wrangling pro-

cess and the analytical brushing in enabling researchers to quickly form hypotheses

and explore spatial and temporal trends within their data in novel ways. The wran-

gling procedure greatly supports the exploration process by reducing the time and

energy cost required for data preprocessing. For temporal exploration, instead of re-

lying on black box methods such as self-organizing maps [23], this framework allows

users to create and shape their own logic functions to define spatiotemporal regions

of interest and project these regions onto the map. This framework does not pro-

vide a direct comparison of tasks between animation, small multiples and analytical

brushing due to the fact that the analytical brushing directly lends itself to answer-

ing questions such as Which regions have similar trajectories over time? By utilizing

analytical brushing solutions, the cognitive burden of mentally integrating small mul-

tiples or animation can be reduced. In this way, this framework helps to tighten

the visual analytics pipeline by providing brushes where the analytic algorithms are

directly linked to the brush tip. Other solutions, such as animation and linked views,

require the user to visually explore the data as part of the analytical process whereas

our analytical brushing method allows for point-and-click analysis and then utilizes

visual exploration for refinement. In this way, the framework completes the visual

analytics pipeline of “analyze first”, “show the important”, “zoom and filter”, “an-

alyze further”, “details on demand” [3]. Furthermore, the combination of similarity

metrics with a linked visualization tool provides users with a means of directly assess-

ing the similarity results. By enabling users to design their own temporal similarity
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functions, this framework allows them to utilize their domain knowledge and inject

information into the system that may otherwise be difficult to capture. As was seen

in the case studies, similarity does not imply equality, nor does it imply future trends.

In some temporal plots, the graphs may be relatively similar; however, trajectories

may be trending slightly downwards towards the end of the time series of some simi-

lar regions and trending slightly upwards in other similar regions. Without a linked

visualization, the only resulting metric for analysis would be the similarity score. By

directly linking both the analytical component and visual component together, this

framework is able to provide users with a combined tool that is stronger than its

individual components.

Moreover, this thesis presents an interactive geovisual analytics framework which

allows users to explore the impact of geographical variations across locations and

scales for multivariate data clustering. The space has been categorized into four

aspects: discrete spatial extent, discrete geographical features, continuous spatial ex-

tent, and continuous geographical resolution in order to characterize the impact of

spatial dependence and heterogeneity. A variety of visualization and interaction tech-

niques (e.g., PCA scatterplot, PCP area profiler, Rose plot) have been implemented to

facilitate clustering exploration over geographical variations with statistical measures

(e.g., Silhouette coefficient) to evaluate cluster quality. This framework also provides

methods for comparing within (k-means vs. k-means) and between (hierarchical vs.

k-means) cluster results, and demonstrate potential ways of interacting with data to

explore cluster results.

Last but not least, another major contribution of this thesis is an additional metric

that can be assessed during map design. A critical step in designing choropleth maps

is the choice of classification method. How a map is classified directly impacts the

resultant visual output and can lead to misinformation about the underlying data. In
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order to assess the visual impact of such choices, this thesis has developed a metric for

quantifying the visual impact of adjusting classification boundaries in a choropleth

map. Based on this metric a scheme is presented for maximizing or minimizing the

amount of visual clustering present in the map and demonstrated the results using

several datasets. What is critical to note is that the goal of choosing classification

boundaries is to achieve a reasonable split in the data, and this is often left up to the

designer. By providing designers with new ways to assess the visual impact of small

classification changes, the designer can further refine and assess their map message.

There are many extensions for this thesis that are worth further development.

First of all, the current framework has many Exploration Data Analysis features to

enable analysts to quickly identify the points of interest. However, there are a va-

riety of potential extensions. For example, one can envision a palette of modifiable

analytical brushes which experts could use to paint their data, extract interesting

features, and form hypotheses. The framework could also be extended to have fu-

ture brushes that could highlight spatiotemporal cluster stability, or other advanced

metrics. Moreover, while this framework enables the exploration and comparison of

clustering methods over different scales, there is still a need to enable quick identifi-

cation of similar and dissimilar regions. Currently, the comparative analysis between

clusters is done in a purely visual manner, and while humans are capable of iden-

tifying patterns, the integration of further analytical methods to help highlight and

identify statistically significant similarities and differences between clusters is crit-

ical. Furthermore, this exploration focused primarily on the spatial extent of the

data; however, extensions to the spatiotemporal domain are critical in analyzing how

underlying physical properties may develop in the data. It may also be possible to

automatically explore the impact of scale simply by defining levels of aggregation and

present a summary comparison to end users to suggest appropriate scales of anal-
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ysis for the data. Future work should explore a combination of automation with

human-in-the-loop exploration and recommendations.

Figure 8.1: An example of a temporal tree map for 5 clusters over 12 years. The left

part is an overview of all 5 clusters and the right part is a selected view for the yellow

cluster.

To better analyze the spatiotemporal clusters, a cluster tree map that visualizes

the temporal change of clusters in space could be designed. After the temporal

coherent clustering process, the tree map may divide the geographic space into four

quadrants. For each quadrant, the ratio of each cluster size over the number of

spatial units in that quadrant can be calculated and represented by the area of its

corresponding tree map branch. The spatial distribution for each cluster can be

aggregated and represented as the aspect ratio of its corresponding tree map branch

(Figure 8.1). For instance, if the members of a certain cluster in the third quadrant

are distributed more in the south direction than the west direction, that tree map

branch should also be extending in the south direction. In this way, users can easily

identify the consistency of clusters over time.

As for quantifying the visual impact of classification boundaries, future research

could explore the sensitivity of such an application across various clustering schemes.

Research into what pattern changes result in an increased perception of visual clus-
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tering should also be undertaken. Currently, we rely solely on the fact that colors

are changing and regions are becoming larger. Past research [203] has shown that

the larger a patch of color becomes in a choropleth map, the more likely that it will

be identified as a cluster. However, there may be particular patches that could be

changed that may have a greater impact on the perception. Of course, the size of the

spatial unit matters a great deal, but what if changing the classification of a spatial

unit fills in a donut hole? Is this perceived as resulting in more spatial clustering than

if we change a spatial unit’s classification such that it just adds to the edge of the

donut? What if a spatial unit acts as a bridge? For example, if there are two spatial

groupings with the same label separated by a narrow band of other labels, how is the

spatial clustering perceived if one unit is changed to create a bridge? Understanding

the impact of these patterns would allow us to computationally identify them and use

these types of patterns to create a more perceptually rigorous VIOC metric. Future

work can focus on the use of such metrics for highlighting uncertainty within the map,

as well as exploring boundary elements with respect to statistical measures of spatial

clustering. Specifically, if a region is found to be a statistically significantly spatially

cluster, should boundary elements contiguous to this region be adjusted to highlight

the significance?
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