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ABSTRACT  
   

Measurement invariance exists when a scale functions equivalently across people 

and is therefore essential for making meaningful group comparisons. Often, measurement 

invariance is examined with independent and identically distributed data; however, there 

are times when the participants are clustered within units, creating dependency in the 

data. Researchers have taken different approaches to address this dependency when 

studying measurement invariance (e.g., Kim, Kwok, & Yoon, 2012; Ryu, 2014; Kim, 

Yoon, Wen, Luo, & Kwok, 2015), but there are no comparisons of the various 

approaches. The purpose of this master's thesis was to investigate measurement 

invariance in multilevel data when the grouping variable was a level-1 variable using five 

different approaches. Publicly available data from the Early Childhood Longitudinal 

Study-Kindergarten Cohort (ECLS-K) was used as an illustrative example. The construct 

of early behavior, which was made up of four teacher-rated behavior scales, was 

evaluated for measurement invariance in relation to gender. In the specific case of this 

illustrative example, the statistical conclusions of the five approaches were in agreement 

(i.e., the loading of the externalizing item and the intercept of the approaches to learning 

item were not invariant). Simulation work should be done to investigate in which 

situations the conclusions of these approaches diverge. 
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CHAPTER 1 

INTRODUCTION 

To have a valid measure, the items that form the scale should function 

equivalently across different groups of people, such as males and females. If they do not 

function equivalently, then researchers cannot be certain that the same construct is being 

measured in all groups, which makes valid comparisons between the groups impossible. 

For example, the Scholastic Aptitude Test (SAT) should function equivalently for males 

and females. Because the measure is not perfectly reliable, people who have the same 

intelligence level would not necessarily have the same observed score. These differences 

in observed scores for people with the same level of aptitude are assumed to be random. 

If they were not, and males systematically scored higher than females who have the same 

level of aptitude, then the test would be biased in relation to gender. In this scenario, the 

observed scores are influenced by some artifact of the measure. Males and females may 

respond differently to the items, not because they have different levels of aptitude, but 

because of unrelated reasons. The test in this case would violate measurement invariance 

with respect to gender. Measurement invariance, or measurement equivalence, is a 

property that exists when a test (measure, scale, survey, etc.) functions equivalently 

across people. It is important to establish measurement invariance prior to making group 

comparisons to properly interpret the results. If a measure exhibits measurement bias, 

then differences between groups on the construct of interest may be over- or 

underestimated. Continuing with the example, if males had a higher mean on the biased 
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aptitude test than females, it could not be concluded that males were smarter, on average, 

than females because the observed difference was not solely due to aptitude.  

Most measurement invariance methods were developed assuming the participants 

were sampled independently; however, there are times when individuals are grouped in 

higher-level units (clusters) and the dependence of the scores needs to be taken into 

account when examining measurement invariance. The purpose of this master’s thesis 

was to examine whether the same conclusions were reached when investigating 

measurement invariance for groups nested within clustered units for five different 

methods. I begin with a formal overview of measurement invariance testing for 

independently collected data. I then transition to discussing the basics of multilevel 

modeling and how dependency is typically taken into consideration. Next, I discuss how 

methods for testing measurement invariance have been extended to deal with dependent 

data. Finally, I describe an illustrative example and apply the various approaches of 

testing measurement invariance in multilevel data.  

Measurement Invariance 

In psychology, there are certain constructs, such as intelligence and personality, 

which are not measured directly, but measured indirectly by administering a set of items 

that are thought to be related to the construct. These constructs can be represented as 

unmeasured or latent variables that influence the responses on a set of observed variables. 

A measurement model expresses the relationships between the latent variables and the 

observed variables. One type of measurement model is the linear common factor model. 

In this model, there are one or more factors that account for the variance in the observed 
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variables. Once this variance is removed, the observed variables are mutually 

uncorrelated (Millsap, 2011). These relationships are reflected in the following equation  

 𝑦𝑖 = 𝜏 + 𝛬𝜂𝑖 + 𝜀𝑖 (1) 

where 𝑦𝑖 is a vector of j observed variables for person i, 𝜏 is a vector of j intercepts, 𝜂𝑖 is 

a vector of r factor scores for person i, 𝛬 is a 𝑗 × 𝑟 matrix of loadings that relate the factor 

scores to the observed scores, and 𝜀𝑖 is a vector of j residuals for person i. One of the 

assumptions of the linear common factor models is that the common factors and unique 

factors are not correlated. Based on this assumption and Equation 1, the expected 

covariance structure of y is 

 𝛴 = 𝛬𝛹𝛬′ + 𝛩 (2) 

where 𝛴 is a 𝑗 × 𝑗 expected covariance matrix for the observed variables, 𝛹 is an 𝑟 × 𝑟 

matrix of factor variances and covariances, and 𝛩 is a 𝑗 × 𝑗  matrix of unique factor 

variances and covariances. The covariance matrix 𝛩 is typically diagonal, which 

illustrates the idea that measured variables are uncorrelated once the common factor(s) 

has been accounted for.  

Researchers in many fields, such as in cross-national consumer research and 

organizational research, often want to determine if there are differences between groups 

of individuals in the underlying common factor (Steenkamp & Baumgartner, 1998; 

Vandenberg & Lance, 2000). Establishing measurement invariance is essential to making 

meaningful group comparisons in the underlying common factor. As stated earlier, 

measurement invariance is a property where the function of a measure does not differ 

across people. If measurement invariance has been established, then the meaning and 
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metric of the latent variables are equivalent across the groups tested. This is represented 

by the following equation 

 𝑃(𝑦|𝜂, 𝑔) = 𝑃(𝑦|𝜂) (3) 

where y refers to the observed variables, 𝑔 refers to group membership, and 𝜂 refers to 

the latent variables. If true, the equation states that people who have the same ability on a 

construct, 𝜂, have the same probability of obtaining the same observed score regardless 

of group membership. The observed score, 𝑦, is not related to 𝑔, group membership, once 

𝜂, the latent variable, is taken into consideration. When the parameters in the model (e.g., 

factor loadings) are equal across groups, those parameters are said to be invariant across 

group membership. If the model parameters are not the same across groups, then those 

items with non-invariant parameters are biased or exhibit differential item functioning.  

Typically, four levels of measurement invariance are tested to establish factorial 

invariance (Meredith, 1993; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 

2000). The first model tested is the configural invariance model (Millsap, 2011; Horn, 

McArdle, & Mason, 1983). In this model, the common factor model is fit separately in 

each group, such that 

 𝑦𝑖𝑔 = 𝜏𝑔 + 𝛬𝑔𝜂𝑖𝑔 + 𝜀𝑖𝑔 (4) 

 𝛴𝑔 = 𝛬𝑔𝛹𝑔𝛬′𝑔 + 𝛩𝑔 (5) 

where 𝑔 represents group membership. Equations 4 and 5 are equivalent to Equations 1 

and 2, respectively, except group membership is now incorporated into the equations. 

The groups are constrained to have the same factor structure by constraining the groups 

to have the same number of factors (i.e., the dimension of 𝛬 is the same across groups) 
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and the same location of zero loadings in the 𝛬 matrix. To determine if the groups have 

the same factor structure, researchers examine global fit indices, such as the RMSEA and 

CFI. If acceptable, then further models can be tested. If, however, the global fit 

information does not support the viability of the configural invariance model, then testing 

stops and the researchers conclude that the model is not invariant across groups. 

Rejection of this model could mean that the common factor model does not fit in one or 

more of the groups.  

 The next model is the metric invariance model, also known as the weak invariance 

model (Meredith, 1993; Widaman & Reise, 1997). In addition to having the same 

constraints as the configural invariance model, in the metric invariance model, the factor 

loadings are constrained to be equal across groups, such that  

 𝑦𝑖𝑔 = 𝜏𝑔 + 𝛬𝜂𝑖𝑔 + 𝜀𝑖𝑔 (6) 

 𝛴𝑔 = 𝛬𝛹𝑔𝛬′ + 𝛩𝑔 (7) 

where Equations 6 and 7 are identical to Equations 4 and 5, respectively, except the 𝑔 

subscript is removed from the 𝛬 matrix reflecting that the groups have equal factor 

loadings. Once again, the global fit information is assessed to determine if the metric 

invariance model is viable. If acceptable, then a likelihood ratio test can be performed to 

statistically compare the metric and the configural invariance models because the metric 

invariance model is nested within the configural invariance model. If the likelihood ratio 

test is not significant, then there is not a significant loss of fit when the factor loadings are 

constrained to be equal across groups. If the likelihood ratio test is significant, then local 

fit information should be assessed to determine where the model misfits. At times, the 
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lack of invariance may be attributable to one or two factor loadings. In such cases, the 

researcher can evaluate a partially invariant model, where one or more factor loadings are 

free to vary across groups. This, however, can lead to interpretation issues because the 

factor loadings affect the model implied correlations among the measured variables.  

 If the metric invariance model holds, the next model to test is the scalar 

invariance model, also known as the strong invariance model (Meredith, 1993; Widaman 

& Reise, 1997). This model builds on the metric invariance model and factor intercepts 

are constrained to be equal across groups, such that 

 𝑦𝑖𝑔 = 𝜏 + 𝛬𝜂𝑖𝑔 + 𝜀𝑖𝑔 (8) 

 𝛴𝑔 = 𝛬𝛹𝑔𝛬′ + 𝛩𝑔 (9) 

where Equations 8 and 9 are identical to Equations 6 and 7, respectively, except the 𝑔 

subscript is removed from the 𝜏 vector, reflecting that the groups have equal intercepts. 

Similar to before, global fit information is assessed and then a likelihood ratio test is 

performed between the scalar and metric invariance models, where the scalar invariance 

model is nested under the metric invariance model. If the test is not significant, then the 

scalar invariance model is appropriate and any differences among the observed means 

across groups are attributable to the difference in the means on the factor and not to an 

artifact of the measure. Achieving strong invariance indicates that the measure being 

tested is not biased across groups with respect to the observed means. If the test is 

significant, then the researcher can test for partial scalar invariance where one or more of 

the intercepts are freed to vary across groups; however, this could lead to interpretation 
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issues because differences in all observed means would not be strictly due to differences 

in factor means.  

 Most researchers end their investigation with the scalar invariance model, but 

invariance testing should continue with the strict invariance model, where unique 

variances are constrained to be equal across groups (Widaman & Reise, 1997). The strict 

invariance model can be written as 

 𝑦𝑖𝑔 = 𝜏 + 𝛬𝜂𝑖𝑔 + 𝜀𝑖 (10) 

 𝛴𝑔 = 𝛬𝛹𝑔𝛬′ + 𝛩 (11) 

where Equations 10 and 11 are identical to Equations 8 and 9, respectively, except the 𝑔 

subscript is removed from the 𝛩 matrix, reflecting that the groups have equal unique 

variances for each observed variable. Once again, global fit information is assessed and 

then a likelihood ratio test is performed between the scalar and strict invariance models, 

where the strict invariance model is nested within the scalar invariance model. If strict 

invariance holds, then the differences in the means, variances, and covariances of the 

observed variables across groups are entirely due to differences in the common factors 

across groups and the measure is not biased across groups.  

Multilevel Modeling 

One assumption of most statistical models is that the data were collected 

independently of one another - one score is not influenced by another score. Sometimes 

data collection schemes measure participants in naturally occurring clusters, such that the 

scores within a cluster are more related than to scores outside the cluster. Examples of 

such data collection schemes are when data are collected from students who are nested 
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within schools, repeated measures that are nested within participants, and children who 

are nested within families. When independence is violated, the error term decreases 

because scores within a cluster are not as different from one another compared to scores 

across clusters. This leads to the test statistic being inflated and the increase of type I 

error. One way to account for this dependency is to use a multilevel (or hierarchical 

linear) model. 

Multilevel models partition the variance of the outcomes into between- and 

within-level variance. These partitions are non-overlapping and, when summed together, 

equal the total variance of the dependent variable, such that  

 𝜎𝑇
2 = 𝜎𝐵

2 + 𝜎𝑊
2  (12) 

where 𝜎𝑇
2 is the total variance, 𝜎𝐵

2 is the between-cluster variance, and 𝜎𝑊
2  is the within-

cluster variance. The between-level variance, 𝜎𝐵
2, is the variance of the cluster mean 

deviations. The within-level variance, 𝜎𝑊
2 , is the variance of the deviations of the raw 

scores from the cluster means. By modeling the effect of the cluster, the multilevel model 

takes into account the dependence and the Type I error rate is not inflated. 

The intraclass correlation (ICC) is a parameter that calculates the proportion of 

variance at the between-level compared to the total variance, such that  

 𝐼𝐶𝐶 = 𝜎𝐵
2

(𝜎𝐵
2 + 𝜎𝑊

2 )⁄ . (13) 

If researchers are concerned about independence violations, they typically calculate the 

ICC. Some researchers argue that dependency only needs to be addressed if the ICC is 

high, whereas others argue the cluster effect needs to be addressed either by modeling it 

or controlling for it regardless of the value of the ICC (Nezlek, 2008).  
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 If one is interested in a univariate outcome measure, then multilevel modeling is 

appropriate. If, however, one is interested in multivariate data, then multilevel structural 

equation modeling (ML-SEM) is necessary. Expanding Equation 12 for multivariate 

outcomes results in the following covariance matrix  

 𝛴𝑇 = 𝛴𝐵 + 𝛴𝑊 (14) 

where 𝛴𝑇 is the covariance matrix, 𝛴𝐵 is the between-level covariance matrix, and 𝛴𝑊 is 

the within-level covariance matrix. Structural equation models (SEMs) are specified at 

each level of the model in ML-SEM (Mehta & Neale, 2005). Furthermore, a 

measurement model can be fit at each level yielding 

 𝑦𝑖𝑘 = (𝜏𝐵 + 𝛬𝐵𝜂𝐵𝑘 + 𝜀𝐵𝑘) + (𝜏𝑊 + 𝛬𝑊𝜂𝑊𝑖𝑘 + 𝜀𝑊𝑖𝑘) (15) 

 𝛴𝑇 = (𝛬𝐵𝛹𝐵𝛬′𝐵 + 𝛩𝐵) + (𝛬𝑊𝛹𝑊𝛬′𝑊 + 𝛩𝑊) (16) 

where 𝑦𝑖 is a vector of j observed variables for person i in cluster k, 𝜏𝐵 is a vector of j 

intercepts at the between-level, 𝛬𝐵 is a matrix of loadings at the between-level that relate 

the between-level factor scores for cluster k, 𝜂𝐵𝑘, to the observed scores, 𝜀𝐵𝑘 is a vector 

of unique factor scores at the between-level for cluster k, 𝜏𝑊 is a vector of intercepts at 

the within-level, 𝛬𝑊 is a matrix of loadings at the within-level that relate the within-level 

factor scores for person i in cluster k, 𝜂𝑊𝑖𝑘, to the observed scores, 𝜀𝑊𝑖𝑘 is a vector of 

unique factor scores at the within-level for person i in cluster k, 𝛹𝐵 is a matrix of factor 

variances and covariances at the between-level, 𝛩𝐵 is a matrix of unique variances and 

covariances at the between-level, 𝛹𝑊 is a matrix of factor variances and covariances at 

the within-level, and 𝛩𝐵 is a matrix of unique variances and covariances at the within-

level.  
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The between- and within-level models do not need to be equal because there can 

be different factors across the levels, also known as contextual effects. Additionally, the 

latent factors at the between-level may not have the same substantive meaning as the 

latent factors at the within-level (Bovaird & Shaw, 2012).  

Multilevel Measurement Invariance 

Special considerations need to be taken into account when testing for 

measurement invariance in the presence of clustered data. If the cluster structure is not 

controlled for, then the type I error rate inflates (Kim, Kwok, & Yoon, 2012). The groups 

of interest can be at either level-1 or level-2. To clarify, group or grouping variable is 

used to refer to the sets of people compared in measurement invariance testing. The term 

cluster is used for the structure that is creating dependence in the data. An example of a 

grouping variable at level-2 is comparing Chinese students to Italian students who are 

clustered within schools (Wu et al., 2012). The units of interest are students and students 

are clustered within schools, but each school is homogenous with regard to ethnicity (i.e., 

of the schools sampled, each school either contains all Chinese students or all Italian 

students). Beyond controlling for clustering, this scenario does not require analyses 

different from the analyses of factorial invariance without clustering and all four levels of 

factorial invariance (i.e., configural, metric, scalar, and strict) can be tested.  

Grouping variables can also occur at level-1 while the cluster remains at level-2. 

An example of group membership occurring at level-1 in clustered data is comparing 

boys and girls who are clustered within families. Here, gender is the grouping variable 

and family is the cluster. In the Multi-Court effectiveness trial of the New Beginnings 
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Program, researchers designed an intervention to improve parenting for divorced parents. 

One research question they were interested in was if child gender moderated the 

treatment effect of the program on parental warmth, a construct defined by measures such 

as the Child Report of Parenting Behavior Inventory (CRPBI). In order to correctly 

answer that question, measurement invariance analyses were run comparing 559 male 

and female children who were clustered within 353 families. This scenario (i.e., grouping 

membership occurring at level-1) is more complicated because the groups and clusters 

are intertwined. This master’s thesis focused on methods that can be used when the 

grouping variable is at level-1.  

Multilevel factor mixture model for known classes approach. A multilevel 

factor mixture model for known classes can be used to test measurement invariance in a 

two-level model (Kim, Yoon, Wen, Luo, & Kwok, 2015). Factor mixture modeling is 

typically used to identify unobserved groups of participants to explain population 

heterogeneity, but it can also be used for observed classes. This strategy allows for more 

flexibility in the model set-up than a multiple group model by using a different estimation 

approach than a multiple group model. The model for the observed scores is 

 [𝑦𝑖𝑘|𝐶𝑖𝑘 = 𝑐] = [𝜏𝑐 + 𝛬𝐵𝜂𝐵𝑘 + 𝜀𝐵𝑘] + [𝛬𝑊𝑐𝜂𝑊𝑖𝑐𝑘 + 𝜀𝑊𝑖𝑐𝑘] (17) 

where 𝑐 refers to the class for participant i in cluster 𝑘, 𝑦𝑖𝑘 is a vector of observed scores 

for person 𝑖 in cluster 𝑘, 𝜏𝑐 is the vector of intercepts at the between-level for class 𝑐, 𝛬𝐵 

is the loading matrix at the between-level, 𝜂𝐵𝑘 is the vector of factor scores at the 

between level for cluster 𝑘, 𝜀𝐵𝑘 is the vector of residuals at the between-level for cluster 

𝑘, 𝛬𝑊𝑐 is the factor loading matrix at the within-level for class 𝑐, 𝜂𝑊𝑖𝑐𝑘 is the vector of 
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factor scores at the within-level for person 𝑖 in class 𝑐 and cluster 𝑘, and 𝜀𝑊𝑖𝑐𝑘 is the 

vector of residuals at the within-level for person 𝑖 in class 𝑐 and cluster 𝑘. In this 

framework, configural and metric invariance can be tested using the 𝛬𝑊𝑐 matrix. Because 

scores at the within-level are deviation scores from the cluster means (as seen by the lack 

of intercepts in the within-level model), scalar invariance can only be tested in the 

between-level model using the 𝜏𝑐 vector using this approach. Strict invariance can be 

tested using the residual variances in the within-level model.  

Multiple indicator multiple cause approach. Instead of fitting a model 

separately in each group, a grouping variable can be incorporated into the two-level 

model using a multiple indicator multiple cause (MIMIC) model (Kim, Yoon, Wen, Luo, 

& Kwok, 2015; Woods & Grimm, 2011). In MIMIC models, one or more observed 

variables predict one or more latent variables. As Figure 1 illustrates, to test invariance 

using MIMIC models for independently and identically distributed data, a factor structure 

is created where the observed variables load onto the common factor. The grouping 

variable predicts each person’s factor score, which allows the group factor means to 

differ, and the observed score on a selected set of observed variables, which allows the 

groups to have different intercepts for these variables. Additionally, the selected set of 

observed variables is regressed on an interaction term between the latent variable and the 

grouping variable, which allows for group differences in loadings. This is demonstrated 

by the following equations 

 𝜂𝑖 = 𝛤𝜂𝑥𝑖 + 𝜁𝑖 (18) 

 𝑦𝑖 = 𝛬𝜂𝑖 + 𝛽𝑦𝑥𝑖 + 𝜔𝜂𝑦𝜂𝑖𝑥𝑖 + 𝜀𝑖 (19) 
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where 𝜂𝑖 is a vector of person i’s factor scores, 𝛤𝜂 is a matrix of regression coefficients 

that relate the grouping variable, 𝑥𝑖, to the factor scores, 𝜁𝑖 is a vector of residuals, 𝑦𝑖 is a 

vector of person i’s observed scores, 𝛬 is a matrix of loadings that relate the factor scores 

to the observed variables, 𝛽𝑦 is a vector of regression coefficients that relate the grouping 

variable to the observed variables, 𝜔𝜂𝑦 is a vector of regression coefficients that relate the 

interaction term between person i’s factor scores and the grouping variable to the 

observed variables, and 𝜀𝑖 is a vector of residuals for person i. In this model metric 

invariance can be examined by testing each regression coefficient in 𝜔𝜂𝑦 to determine if 

it is significantly different from zero. If there is a significant difference, then the loading 

to that indicator is not invariant. To evaluate scalar invariance, each regression coefficient 

in 𝛽𝑦 is tested to determine if it is significantly different from zero. If there is a 

significant difference, then the groups differ on the intercept of the corresponding 

indicator. Instead of testing each regression coefficient in 𝛽𝑦 individually, a model that 

constrains all of the regression coefficients in 𝛽𝑦 to be zero can be compared to a model 

that that freely estimates those regression coefficients. If the fit of the more constrained 

model is not significantly worse than the fit of the less constrained model, then scalar 

invariance holds. 

To incorporate a multilevel structure, k clusters need to be included in Equation 

19 to form the following equation 

 𝑦𝑖𝑘 = (𝛬𝑊𝜂𝑊𝑖𝑘 + 𝛽𝑦𝑥𝑖𝑘 + 𝜔𝜂𝑦𝜂𝑊𝑖𝑘𝑥𝑖𝑘 + 𝜀𝑊𝑖𝑘) + (𝜏𝑘 + 𝛬𝐵𝜂𝐵𝑘 + 𝜀𝐵𝑘) (20) 

where 𝑦𝑖𝑘 is a vector of observed scores for person i in cluster k, 𝛬𝑊 is a matrix of 

loadings that relate within-level factor scores to the observed scores, 𝜂𝑊𝑖𝑘 is a vector of 
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factor scores for person i in cluster k, 𝛽𝑦 is a vector of regression coefficients that relate 

the grouping variable, 𝑥𝑖𝑘, to the observed variables, 𝜔𝜂𝑦 is a vector of regression 

coefficients that relate the interaction of the within-level latent variables and the grouping 

variable to the observed variables, 𝜀𝑊𝑖𝑘 is a vector of residuals at the within-level, 𝜏𝑘 is a 

vector of intercepts, 𝛬𝐵 is a matrix of loadings that relate between-level factor scores, 

𝜂𝐵𝑘, to the observed scores, and 𝜀𝐵𝑘 is a vector of residuals at the between-level. As with 

Equation 19, this model can test differences in loadings between groups (metric 

invariance) by testing the significance of regression coefficients in 𝜔𝜂𝑦. Additionally, the 

model can test differences in intercepts between groups (scalar invariance) by testing the 

significance of regression coefficients in 𝛽𝑦. As stated before, a model where the 

intercepts are constrained to be equal across groups can be compared to a model where 

the intercepts are not constrained to be equal by fixing the regression coefficients in 𝛽𝑦 to 

zero. The MIMIC approach, however, does not allow for group differences on the unique 

variances and thus cannot test strict invariance. Because the unique variances are 

essentially constrained to be equal across groups for all models, this can distort 

invariance testing of the loadings and intercepts. Additionally, this model does not allow 

for group differences on the factor variance. One potential benefit to testing invariance 

using this model is that additional variables (e.g., socioeconomic status, race/ethnicity) 

can be included in the model that can potentially explain the group differences.  

Definition variable approach. A second way to test each loading and intercept 

individually is to use the definition variable approach (Bauer & Hussong, 2009). A 

definition variable is not part of the model, but it can be used to constrain values of 
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parameters in the model (Mehta & Neale, 2005). The constraint allows for group 

comparisons without incorporating the grouping variable into the model. In this 

approach, a multilevel SEM is constructed for the entire sample without including the 

grouping variable. Each parameter of interest (e.g., intercept) is constrained using the 

MODEL CONSTRAINT command in Mplus where the grouping variable, a dummy-

coded variable, is incorporated into each constraint. For instance, a constraint statement 

for an intercept would take on the form  

 𝜏𝑗 = 𝛾𝑗0 + 𝛾𝑗1𝑥𝑖 (21) 

where 𝜏𝑗 is the intercept for indicator j, 𝛾𝑗0 is the intercept when 𝑥𝑖 = 0, 𝛾𝑗1 is the 

difference in the intercept when 𝑥𝑖 = 1, and 𝑥𝑖 is the grouping variable for person i in 

cluster k. If the 𝛾𝑗1 parameter is significantly different from zero, then there is a 

significant difference between the groups on that intercept. All of the loadings, intercepts, 

and unique variances can be tested in this way. Similar to the MIMIC model approach, 

potential confounding variables can be included in this model to control for their effects.  

Design-based approach. Instead of using a two-level model, a design-based 

multilevel confirmatory factor analysis (CFA) can be used to compare groups within 

clustered units (Kim, Kwok, & Yoon, 2012). In this design, TYPE = COMPLEX is used 

in Mplus. Rather than decomposing the model into between and within components, this 

approach specifies a single-level model and uses robust (Huber-White) standard error 

estimators to correct for dependency. The standard errors for the parameter estimates and 

the test statistic of the model are adjusted to account for the dependency of scores. If the 

within- and between-level models are identical, then TYPE = TWOLEVEL and TYPE = 
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COMPLEX should produce similar results (Wu & Kwok, 2012). In this design, all four 

levels of invariance testing – configural, metric, scalar, and strict – can be studied when 

the grouping variable is at level-1. 

Muthén’s maximum likelihood approach. A fifth approach to study 

measurement invariance within a multilevel data structure uses a manual set-up of a 

single-level model to test measurement invariance and Muthén’s maximum likelihood 

(MUML) to estimate the model (Ryu, 2014). To model the dependence within the 

clusters properly, the level-1 and level-2 components need to be decomposed before 

separating the data by groups. The two-level model can be written as  

 𝑦𝑖𝑔𝑘 = [𝜏𝐵 + 𝛬𝐵𝜂𝐵𝑘 + 𝜀𝐵𝑘] + [𝜏𝑊𝑔 + 𝛬𝑊𝑔𝜂𝑊𝑖𝑔𝑘 + 𝜀𝑊𝑖𝑔𝑘] (22) 

where 𝑦𝑖𝑔𝑘 is the observed score vector for person 𝑖 in group 𝑔 and cluster 𝑘, 𝜏𝐵 is the 

between-level intercept, 𝛬𝐵 is the loading matrix at the between-level, 𝜂𝐵𝑘 is the vector 

of factor scores at the between level for cluster 𝑘, 𝜀𝐵𝑘 is the vector of residuals at the 

between-level for person 𝑖 in cluster 𝑘, 𝜏𝑊𝑔 is the within-level intercept for group 𝑔, 𝛬𝑊𝑔 

is the loading matrix at the within-level for group 𝑔, 𝜂𝑊𝑖𝑔𝑘 is the vector of factor scores 

at the within-level for person 𝑖 in group 𝑔 and cluster 𝑘, and 𝜀𝑊𝑖𝑔𝑘 is the vector of 

residuals at the within-level for person 𝑖 in group 𝑔 and cluster 𝑘. The equation above 

incorporates group structure, but otherwise is equivalent to Equation 15, where a group 

structure is not specified. In this specification, individuals in the same cluster, regardless 

of group membership, will have the same between-level model. This is seen by the lack 

of a subscript 𝑔 in the level-2 part of the model. The four levels of invariance – 

configural, metric, scalar, and strict – can be tested in the within-level model.  
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 Because there is no current software program that can estimate the solution 

associated with the fitting function for Equation 22, Ryu (2014) specified a single-level 

CFA with two “groups” (hereafter referred to as Mgroups) for each level of the grouping 

variable. So for measurement invariance analyses that compare two groups, such as males 

and females, there would be a total of four Mgroups. Within a group, one Mgroup defines 

the within-level model and the other Mgroup defines the between-level model. 
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CHAPTER 2 

METHOD 

Illustrative Example 

To illustrate how the five methods work with real data, I analyzed publicly 

available data from the Early Childhood Longitudinal Study-Kindergarten Cohort 

(ECLS-K). The ECLS-K is a longitudinal study of 21,260 students who began 

kindergarten in 1998; however, for these analyses, only 17,809 students (49.28% female) 

were included because listwise deletion was used for participants who had incomplete 

data on any of the variables used in the analysis. To analyze data using the MUML 

approach, there has to be complete data. Listwise deletion was used rather than multiple 

imputation because common imputation routines do not account for clustering and 

current imputation routines for multilevel data are still in development (Enders, Mistler, 

& Keller, in press). Additionally, if any student had missing data on the gender variable, 

they were removed from the analysis. The 17,809 students with complete data were 

clustered in 943 schools. The ECLS-K used a multistage random sampling approach. In 

the first stage, schools were randomly sampled and in the second stage, children were 

randomly selected from those schools using a list of all kindergartners in the school. 

Participating students were representative of the class of entering kindergarten children in 

1998 in the United States (US Department of Education, National Center for Education 

Statistics, 2009). These data were chosen as the analytical example because the children 

were naturally clustered within schools and their gender, which is a level-1 grouping 

variable, was the focus of my illustration regarding measurement invariance. 
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In the fall of kindergarten, the teachers were interviewed about their children’s 

behavior and direct assessments were administered to the students to measure academic 

and non-academic skills. The four measures that are the focus of my investigation were 

the “Internalizing Problem Behavior Scale”, the “Externalizing Problem Behaviors 

Scale”, the “Interpersonal Skills Scale”, and the “Approaches to Learning Scale”. These 

four measures were assessed through rating scales completed by the students’ teachers on 

a 1-4 scale. Internalizing behavior scores were the average of four items assessing 

anxiety, loneliness, low self-esteem, and sadness. Externalizing behavior scores were the 

average of five items that measured behaviors such as fighting, arguing, and impulsivity. 

The interpersonal skills scale score was the average of five items that measured skills 

such as the ability to make friends, expressing feelings, and exhibiting empathy. Finally, 

the approaches to learning scale score was the average of six items that measured 

behaviors that can be disruptive or conducive to learning in the school setting such as 

attentiveness, learning independence, and eagerness to learn. The four measures were 

used as indicators of a single factor that represented early childhood behavior within a 

school context. The internalizing and externalizing behavior scales were negatively 

valenced (i.e., higher scores indicate more problems) whereas the interpersonal skills 

scale and approaches to learning scale were positively valenced. For four of the 

approaches, the scales were analyzed as such; but, for the MUML approach, the 

interpersonal and approaches to learning were recoded to be negatively valenced 

because the model did not converge otherwise. 

Planned Analyses 
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The five approaches discussed above were used to investigate measurement 

invariance of the factor structure for early childhood behavior with respect to gender. To 

fit these models, the Mplus v. 7.3 (Muthén & Muthén, 1998-2012) software was used. 

Mplus is a general latent variable modeling program with various estimation approaches 

that were conducive to this project. For example, the MUML estimation routine is 

available, definition variables can be specified, and latent variable interactions can be 

specified using the XWITH command to evaluate metric invariance (Woods & Grimm, 

2011). The conclusions of the five approaches could not be statistically compared, but 

they were assessed for degree of agreement. As with all statistical analyses, a set of 

assumptions were made to use each approach. If one or more of the assumptions was 

violated for an approach, then that could be an explanation for any divergence of the 

conclusions. Table 1 highlights the assumptions of each approach as related to 

measurement invariance testing. The conclusions also may diverge because not all 

approaches can test all levels of invariance. Additionally, different approaches test scalar 

invariance at difference levels of the model. Table 2 summarizes at which level 

invariance can be tested at for each model.  

Definition variable approach. The Mplus v. 7.3 (Muthén & Muthén, 1998-2012) 

software does not allow for certain constraints when using the analysis TYPE = 

TWOLEVEL. Specifically, a definition variable cannot be incorporated into a two-level 

model. To implement the definition variable approach, I performed a two-step procedure. 

First, two data sets were created. One data set consisted of scores on the items that were 

centered within context (CWC). The total sample size for this data set was 17,809 - the 
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number of individuals. The second data set consisted of cluster means, which were 

calculated by averaging the individual scores within each school. The total sample for 

this data set was 943 - the number of clusters.  

Second, I estimated a multiple group model for two groups where one group 

defined the between-level portion of the model and the other group defined the within-

level portion of the model. There were no constraints across the two groups. The within-

level portion was a single-level analysis using item scores that were CWC. The between-

level portion was essentially an aggregated analysis, or a single-level analysis of the 

cluster means. Chan (1998) refers to this as an additive composition model. One of the 

assumptions of this analysis is that the cluster means were equally reliable (i.e., the 

cluster sizes were equal), which they were not in this case because the schools did not 

have the same number of students sampled. The average cluster size was 18.89 students 

per school with a minimum and maximum cluster size of 1 and 27, respectively. 

Additionally, not all of the students within a school were sampled, so the cluster means 

should ideally be treated as unobserved variables (Ludtke, Marsh, Robitzsch, Trautwein, 

Asparouhov, & Muthén, 2008). Given the limitations of using definition variables in 

multilevel SEMs in Mplus, the cluster means were treated as observed variables, rather 

than as latent variables, so the results may be biased when using the definition variable 

approach.  

MUML approach. To estimate the models using the MUML approach, I used the 

SAS macro and modified the example Mplus syntax file provided by Ryu (2014). The 



 

22 

SAS macro created the input data file and computed the statistics needed in the 

invariance model for MUML estimation. 

Fit evaluation. The invariance models were tested sequentially, taking global fit 

statistics (e.g., RMSEA, SRMR) into account in addition to comparative fit indices (e.g., 

AIC, BIC) and likelihood ratio tests. Because the sample size was large, the likelihood 

ratio tests were overpowered and could not solely be relied upon to determine invariance. 

Likelihood ratio tests were calculated for the MUML, definition variable, and MIMIC 

approaches, whose models were estimated using maximum likelihood. To estimate the 

models for the design-based approach and the multilevel factor mixture model for known 

classes approach, I used robust maximum likelihood (MLR). When models are estimated 

with MLR, the Satorra-Bentler likelihood ratio (SB LR) test is recommended over the 

likelihood ratio test for testing nested models (Satorra & Bentler, 2010).  

Three comparative fit indices - Akaike’s information criterion (AIC), the 

Bayesian information criterion (BIC), and the sample-size adjusted BIC (SABIC) - and 

the log-likelihood were calculated for all models. For three approaches (multilevel factor 

mixture model for known classes, definition variable, and the MIMIC), these log-

likelihood based fit statistics were the only fit statistics available. Because of this, it was 

not possible to assess global fit for a single model using these approaches; however, 

model comparisons were possible. The χ2, RMSEA, CFI, TLI, SRMR, and local fit 

statistics were only able to be calculated for the design-based and MUML approaches.  

Partial invariance. Partial invariance was examined in different ways depending 

on the approach used to study measurement invariance. Partial invariance for the design-
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based approach and MUML approach was determined by looking at local fit statistics, 

such as the modification indices.  

In the case of partial invariance for the mixture modeling approach, multiple 

models were fit where each item parameter (e.g., loading, intercept, or unique variance) 

was freed individually to determine which item parameter should be freed to vary across 

groups. Whichever model had the lowest AIC, BIC, SABIC, and SB LR test was chosen 

as the partial invariance model.  

Even though local fit indices were not available for the MIMIC and definition 

variable approaches, there was a way to identify which item should be freed on a local 

level. If a more constrained invariance model (e.g., scalar invariance model) had poor fit 

compared to a less constrained invariance model (e.g., metric invariance model), the 

results from the less constrained invariance model were reexamined to determine the 

parameter or parameters that were dependent on the grouping variable. Because of the 

set-up of the two approaches, there were statistical tests that compared the groups on the 

parameters of interest.  

In the case of the configural invariance model using the MIMIC approach, there 

were three regression coefficients that captured the relationship between the product of 

the latent variable and grouping variable with the three items that were not the reference 

variable (see Figure 1). In the metric invariance model, these three regression coefficients 

were fixed to zero. If the metric invariance model had significantly worse fit than the 

configural invariance model, then the item that was associated with the regression 

coefficient with the highest t-value from the three t-tests was chosen to vary across 
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groups in the partial metric invariance model. For example, if the t-test that tested if the 

regression coefficient from the interaction to the interpersonal item was significantly 

different from zero had the highest absolute t-value compared to the other two t-tests, 

then that relationship was added back into the metric invariance model.  

In the configural invariance model using the definition variable approach, 

constraint statements were incorporated into the model that constrained the parameters 

(e.g., loadings and intercepts) to be dependent on the definition variable - the grouping 

variable (see Equation 20). Three of the constraint statements constrained the loadings for 

the three non-reference variables to be dependent on the grouping variable. Each of these 

statements contains a parameter, 𝛾𝑗1, that tests if the group difference on the loading is 

significantly different from zero. To estimate the metric invariance model, these three 

constraint statements were removed from the analysis, effectively forcing boys and girls 

to have the same loading. If the metric invariance model had significantly worse fit than 

the configural invariance model, then the results from the configural invariance analysis 

were reexamined. The item associated with the highest absolute t- value, which tested the 

𝛾𝑗1 parameter, had its loading constraint statement added back into the metric invariance 

model, creating a partial metric invariance model.  

If a partial invariance model was more appropriate than a full invariance model, 

then any further parameters associated with the biased item or items were not constrained 

to be equal across groups in further models. For instance, if the loading for the 

externalizing item was freed to vary in a partial metric model, then the intercept and the 
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unique variance for the externalizing item were not be constrained to be equal across 

groups when testing for scalar invariance and strict invariance. 

Identification. To be consistent across models, I used similar identification 

constraints for all approaches. For all models, the same reference variable was chosen to 

have a loading equal to one in both groups at the within-level and at the between-level if 

one existed and to have an invariant intercept. The rest of the identification constraints 

are provided for each approach. 

Multilevel factor mixture model for known classes. In addition to the above 

constraints, the mean of the within-level factor was fixed to zero for boys and freed to 

vary for girls. The mean of the between-level factor was fixed to zero for both genders. 

The within-level factor variances were not constrained to be equal across gender. The 

between-level model and between-level factor distribution (mean and variance) were 

constrained to be equal across groups. The between-level unique variances were not 

estimated. The syntax for the configural model and the final model for the multilevel 

mixture model approach is provided in Appendix C.  

MIMIC. Similar to the mixture model, the mean of the between-level factor was 

fixed to zero for both genders and the mean of the within-level factor for boys was fixed 

to zero and freed to vary for girls. It was impossible to separately estimate the variances 

for boys and girls on either the within-level factor or the between-level factor. 

Additionally, the unique variances at the between-level were not specified, which 

matches the analyses from Kim, Yoon, Wen, Luo, & Kwok (2015). The syntax for the 
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configural model and the final model for the MIMIC approach is provided in Appendix 

D.  

Definition variable. The mean of the within-level factor was fixed to zero for 

boys and freely estimated for girls. The variance of the within-level factor was free to 

vary across groups. The between-level model and the between-level factor distribution 

were estimated for the whole group, not within each gender. The syntax for the configural 

model and the final model for the definition variable approach is provided in Appendix E.  

Design-based. The factor mean was fixed to zero for boys and freely estimated 

for girls. The factor variances were freely estimated for both genders. The syntax for the 

configural model and the final model for the design-based approach is provided in 

Appendix F. 

MUML. The mean of the between-level factor was constrained to be zero for both 

genders. The mean of the within-level factor was fixed to zero for boys and freely 

estimated for girls. The school-level model was constrained to be equal across the 

genders. The student-level model was constrained to be equal across the two Mgroups 

within a gender. The syntax for the configural model and the final model for the MUML 

approach is provided in Appendix G. 
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CHAPTER 3 

RESULTS 

Intraclass Correlations 

 To determine the relative magnitude of the between-level variance to the total 

variance and examine whether a multilevel structure was necessary to validly model the 

data, the ICCs were calculated for each item using an unconditional model. The ICC for 

the internalizing item was .11, indicating that approximately 11% of the variance in the 

internalizing item was at level-2. The ICCs for the externalizing item, approaches to 

learning item, and interpersonal item were .07, .12, and .15, respectively. Because these 

ICCs were not negligible, the clustering of observations within schools needed to be 

taken into consideration.  

Reference Indicator 

To identify these models, one item had to be chosen to be invariant (in the loading 

and intercept) across the groups (in addition to other constraints). If a biased item was 

chosen to be invariant, it could distort invariance testing for the other items (Cheung & 

Rensvold, 1999). To determine which item should be invariant, I tested four MIMIC 

models where all items except the reference variable were regressed on the grouping 

variable and on the interaction between the grouping variable and the latent variable (see 

Figure 1). All four models were equal to each other except the reference variable was 

different for each model (e.g., the externalizing item was the reference variable for one 

model and the approaches to learning item was the reference variable for another model). 

For each model, three regression coefficients, ω, captured the relationship between the 
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interaction and three of the items and another three regression coefficients, β, captured 

the relationship between the grouping variable and the same three items. The β and ω for 

the fourth item were fixed to zero to designate it as the reference variable. If ω was not 

significantly different from zero, then the product term was not significantly related to the 

item response. In other words, there was not a significant difference between the groups 

on the factor loading for that item. For the three models where the internalizing item was 

not the reference variable, the regression coefficient, ω, associated with the internalizing 

item was not significant (see Table 3). This indicated that regardless of the reference 

variable, the internalizing item had an invariant loading. Because none of the other three 

items had this distinction, the internalizing item was chosen to be the reference variable 

for all models. Thus, the loading of the internalizing item was fixed to one, which caused 

the factor to be negatively valenced with higher factor scores were indicative of worse 

early school behavior. 

Multilevel Factor Mixture Model for Known Classes Approach 

 Table 4 lists the fit statistics for all models tested using this approach. The 

configural invariance model converged, but because global fit statistics (e.g., RSMEA, 

CFI) were not available, it was difficult to determine if the fit of this model was good; 

however, comparative fit indices were provided, AIC = 130,310, BIC = 130,567, SABIC 

= 130,462. The metric invariance model converged and had greater information criteria 

(AIC, BIC, and SABIC) than the configural model in addition to a significant SB LR test, 

scaled χ2 (3) = 85.57, p < .001, suggesting that the metric invariance model fit worse than 

the configural invariance model. To investigate further, three partial metric invariance 
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models were tested where the factor loading for each of the non-reference variables was 

freed to vary across groups. The partial metric invariance model that freed the 

externalizing item had the lowest AIC, BIC, SABIC, and scaled χ2 of the three models so 

that model was chosen to be the partial metric invariance model. Comparing this model 

to the configural model, it had a lower BIC and non-significant SB LR test, scaled χ2 (2) 

= 3.16, p = .207, indicating that the partial metric invariance model fit better than the 

configural invariance model. Because of this, I chose the partial metric invariance model 

over the metric invariance model with the loading for externalizing behavior separately 

estimated for boys and girls. To test for partial scalar invariance, the intercepts of the 

interpersonal skills and approaches to learning indicators were fixed to be equal across 

groups. (The intercept for internalizing was already fixed to invariance for identification 

purposes and the parameters associated with the externalizing indicator were not 

constrained to be equal across groups in subsequent models.) The partial scalar 

invariance model had a higher AIC, BIC, and SABIC compared to the partial metric 

invariance model in addition to a significant SB LR test, scaled χ2 (2) = 130.26, p < .001. 

Two revised partial scalar invariance models were analyzed to determine which intercept 

or intercepts to free. The model that freed the intercept for the approaches to learning 

item fit better than the model that freed to intercept for the interpersonal item. The 

former model had a significant SB LR test, scaled χ2 (1) = 57.56, p < .001, but because 

the test was overpowered due to the large sample size, this model was accepted and no 

further intercepts were freed to vary across groups. Finally, the partial strict invariance 

model was equal to the revised partial scalar invariance model except the unique 
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variances for the interpersonal and internalizing items were constrained to be equal 

across groups. This model had a non-significant SB LR test, scaled χ2 (2) = 3.46 p = .178, 

and lower BIC and SABIC values compared to the partial scalar invariance model, 

indicating a better fit. In sum, a partial strict invariance model was the final model where 

the loading, intercept, and unique variance of the externalizing item and the intercept and 

unique variance of the approaches to learning item were freed to vary across the genders. 

 In the final model, the standard deviation of the latent factor for males and 

females were 0.21 and 0.20, respectively. Females had a mean on the latent variable at 

the within level that was 0.09 units, or 0.42 standard deviations, lower than males, 

indicating females had better early school behavior because the factor was negatively 

valenced. The mean difference was 0.42 standard deviations, a small to medium effect 

size according to Cohen (1988). The loading for the externalizing item for females was 

1.68 and 2.14 for males, denoting that the relationship between the externalizing item and 

the factor was stronger for boys than for girls. The standard errors for these loadings were 

0.055 for females and 0.062 for males. The intercept for the approaches to learning item 

for boys was 2.85 and 2.91 for girls. For a boy and a girl who had the same latent factor 

score, the boy was more likely to be rated in the lower categories of the approaches to 

learning item, indicating worse early school behavior. Table 5 provides the estimates for 

all other parameters in the measurement model.  

Multiple Indicator Multiple Cause Approach 

Table 6 contains the fit statistics for all the models analyzed using the multiple 

indicator multiple cause approach. Because unique variances cannot vary across groups 
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in MIMIC models, I refer to the model where the loadings and intercepts are freed to vary 

across groups as the configural* model. Similarly, I will use the terms metric* and 

scalar* to refer to the model where the loadings are constrained to be equal across groups 

and to the model where the loadings and intercepts are constrained to be equal across 

groups, respectively.  

In the configural* model, all items except the reference variable were regressed 

on the grouping variable and on the interaction between the grouping variable and the 

latent variable. The global fit of the model could not be determined because global fit 

statistics were not able to be calculated; however, comparative fit indices were provided, 

AIC = 107,321, BIC = 107,500, SABIC = 107,427. The metric* model, where the 

interaction between the latent variable and the grouping variable was eliminated from the 

model, restricting the genders to have equal loadings, fit significantly worse than the 

configural* model, χ2 (3) = 195.70, p < .001. Additionally, the AIC, BIC, and SABIC 

were higher for the metric* model than the configural* model. To determine which 

loading(s) should be freed to vary across groups for the partial metric invariance* model, 

I looked at the results from the configural* model and examined the t-statistic for the 

three regression coefficients between the three non-reference items and the interaction. 

The item with the largest (positive or negative) t-statistic was the item that had the 

biggest loading difference between the two genders. The regression coefficient for the 

externalizing item had the highest t-statistic (-14.387) so that path was added back to the 

model. The partial metric* model fit significantly worse than the configural* model, χ2 
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(2) = 18.65, p < .001, but had a lower BIC so was chosen as final metric invariance 

model.  

The next model tested was the partial scalar* invariance model. The intercepts of 

the approaches to learning and interpersonal indicators were constrained to be equal 

across groups. This model had significantly worse fit than the partial metric* model, χ2 

(2) = 148.13, p < .001. To determine which intercept to free, I referred back to the results 

from the partial metric* model which tested for group differences on the intercepts of the 

non-reference items. Excluding the externalizing item (because it has a different loading 

between groups), the approaches to learning item had the highest t-statistic (12.14), 

indicating that girls had a significantly greater intercept than boys (because boys were 

coded 0 and girls were coded 1 in the data set). Even though the fit for this revised partial 

scalar* model was significantly worse than the partial metric* model, χ2 (1) = 77.74, p < 

.001, this model was chosen as the final invariance model. 

 The residual variance of the within-level factor for the final model was 0.05. The 

coefficient for the regression of the latent variable on gender was significant, γ = -0.09, p 

< .001, indicating that girls had better early childhood behavior in a school context than 

boys. In terms of effect size, boys had a factor mean 0.41 standard deviations greater than 

the factor mean for girls. As seen in Table 7, boys and girls differed significantly on the 

loading for the externalizing item, 𝜔 = -0.52, p < .001, and on the intercept for the 

approaches to learning item, 𝛽 = 0.06, p < .001. A one-point increase on the latent factor 

was associated with a 2.08 increase on the teacher ratings on the externalizing scale for 

boys, but only a 1.56 increase for girls. To understand the effect of non-invariance in the 
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intercepts for the approaches to learning item, I divided the gender difference in the 

intercepts by the gender difference in the observed means. The difference in the 

intercepts between the genders on the approaches to learning scale was 0.06 and the 

difference in observed means was 0.27. Roughly 22% of the observed mean difference 

can be explained by the gender difference in intercepts. 

Definition Variable Approach 

Table 8 lists the fit statistics for all models tested using the definition variable 

approach. The global fit of the configural invariance model could not be determined 

because global statistics were not able to be calculated, but comparative fit indices were 

provided, AIC = 96,478, BIC = 96,760, SABIC = 96,646. To create the metric invariance 

model, the three constraint statements that allowed the genders to differ on the loadings 

were removed from the model. The metric invariance model had higher comparative fit 

indices and significantly worse fit compared to the configural invariance model, χ2 (3) = 

100.30, p < .001. To determine which loading or loadings were causing the misfit, I 

examined the three t-tests from the configural model that individually tested if the group 

difference on the three loadings was significantly different from zero. The t-test for the 

externalizing item was the only one of the three t-tests that was significant, t = -5.08, p < 

.001. A constraint statement was added back to the metric invariance model to allow for 

group differences on the loading for the externalizing item. Partial metric invariance held, 

χ2 (2) = 4.18, p = .124. Additionally, the BIC and SABIC were lower for the partial 

metric invariance model than for the configural invariance model. The partial scalar 

invariance model, which constrained the intercepts of the interpersonal and approaches 
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to learning indicators to be equal across groups, fit significantly worse than the partial 

metric invariance model, χ2 (2) = 135.13, p < .001. To determine which intercept or 

intercepts were causing the misfit, I examined the two t-tests from the partial metric 

invariance model that individually tested if the group difference on the intercepts for the 

approaches to learning and interpersonal indicators was significantly different from 

zero. The t-statistic for the approaches to learning item, t = 10.95, p < .001, was larger 

than the t- statistic for the interpersonal item, t = 7.94, p < .001, so a constraint statement 

was added to the partial scalar invariance model that constrained the intercept of the 

approaches to learning item to be dependent on the grouping variable, effectively 

creating a revised partial scalar invariance model. The revised partial scalar invariance 

model fit significantly worse than the partial metric invariance model, χ2 (1) = 60.00, p < 

.001, but because the test was overpowered due to the high sample size, this model was 

accepted. Strict invariance held, χ2 (2) = 5.09, p = .078. Additionally, the strict invariance 

model had lower BIC and SABIC values than the revised partial scalar invariance model.  

As shown in Table 9, girls had a loading on the externalizing item that was 0.43 

units lower than boys, indicating that the relationship between the factor and that item 

was stronger for boys. Additionally, girls had an intercept on the approaches to learning 

item that was 0.06 units higher than the intercept for boys. So for a boy and a girl who 

had the same factor score, the girl, on average, would have a higher rating on the 

approaches to learning item than the boy. The pooled within-level factor standard 

deviation was 0.19. Boys were constrained to have a within-level factor mean of zero and 
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the group difference on the within-level factor mean was -0.08, indicating that girls were 

0.41 standard deviations lower on the factor than boys.  

Design-Based Approach 

Table 10 contains the global fit indices for every model tested using the design-

based approach. The configural invariance model had good fit, RMSEA = .035, CFI = 

.997. The metric invariance model also had good fit, RMSEA = .043, CFI = .991; 

however, the SB LR test was significant, scaled χ2 (3) = 83.44, p < .001, suggesting that 

the metric invariance model fit significantly worse than the configural invariance model. 

To investigate further, I tested a partial metric invariance model where the loading for the 

externalizing variable was freed to vary across groups. This loading was chosen because 

it had the highest modification index (MI = 64.25). The global fit of the model was good 

(RMSEA = .030, CFI = .996) and the SB LR test was non-significant, scaled χ2 (2) = 

2.39, p = .303. Additionally, the AIC, BIC, and SABIC were lower for this model than 

they were for the configural model. Because of these results, I moved forward with the 

partial metric invariance model and tested a partial scalar invariance model where all of 

the intercepts except the intercept for the externalizing item were constrained to be equal 

across groups. The global fit of this model was good (RMSEA = .043, CFI = .989), but 

the SB LR test was significant, scaled χ2 (2) = 104.76, p < .001. To test which intercept or 

intercepts to free, I examined the modification indices. The intercept for the approaches 

to learning item was associated with a higher modification index (MI = 41.68) than the 

intercept for the interpersonal item (MI = 11.62). (For identification purposes, the 

intercept for the internalizing item was constrained to be invariant.) So the intercept for 
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the approaches to learning item was freed to vary across groups in addition to the 

loading and intercept for the externalizing item in the revised partial scalar invariance 

model. This model also had a significant χ2-difference test, χ2 (1) = 49.59, p < .001; 

however, because the sample size was so large, trivial differences can yield a significant 

result (Tucker & Lewis, 1973). Finally, a partial strict invariance model was tested (only 

the unique variances for the internalizing and interpersonal items were constrained to be 

equal across groups) and strict invariance held, RMSEA = .037, CFI = .989, scaled χ2 (2) 

= 3.15, p = .207. In conclusion, the final invariance model using the design-based 

approach was a partial strict invariance model where the factor loading, intercept, and 

unique variance of the externalizing item and the intercept and unique variance of the 

approaches to learning item were freed to vary across the genders. 

According to the final model, females had a factor variance of 0.05 and males had 

a factor variance of 0.045. Additionally, females had a mean on the latent variable that 

was 0.08 units (or 0.39 standard deviations) lower than males, consistent with the other 

approaches. As seen in Table 11, the loading for the externalizing item was 1.99 for 

males and 1.58 for females. The intercept for the approaches to learning item was 2.85 

for males and 2.91 for females, a difference of 0.06. The difference in observed means on 

this item was 0.27, meaning that roughly a quarter of the difference in observed means on 

this item was due to the difference in the intercept between the genders. (The remaining 

difference is due to the gender differences on the latent factor.) 

Muthén’s Maximum Likelihood Approach 
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Table 12 contains the fit statistics for all models analyzed using the MUML 

approach. In order to get the model to converge, the interpersonal and approaches to 

learning items were recoded to be similarly valenced to the internalizing and 

externalizing items. The fit of the configural model was acceptable, RMSEA = .058, CFI 

= .987, SRMR = .027. Additionally, fit of the metric model was good, RMSEA = .061, 

CFI = .983, SRMR = .035, but the χ2-difference test was significant, χ2 (3) = 85.49, p < 

.001. The modification indices indicated that freeing the loading for the externalizing 

item would lead to better fit. This partial metric invariance model had good fit, RMSEA 

= .056, CFI = .987, SRMR = .027, and the fit was not significantly different from the fit 

of the configural invariance model, χ2 (2) = 3.26, p = .196. Partial scalar invariance did 

not hold, χ2 (2) = 109.18, p < .001, so revised partial scalar invariance models were 

considered. The intercept for the approaches to learning item was freed to vary across 

groups because it had the highest modification index (MI = 61.68). The fit of this revised 

partial scalar invariance model was significantly different from the fit of the partial 

metric invariance model, χ2 (1) = 49.62, p < .001, but was accepted due to the test being 

overpowered. Strict invariance held, χ2 (2) = 4.66, p = .097. The final invariance model 

using the MUML approach was a partial strict invariance model where the loading, 

intercept, and unique variance of the externalizing item and the intercept and unique 

variance of the approaches to learning item were freed to vary across boys and girls. 

Using the results from the partial strict invariance model, the factor variance for 

girls was 0.04 and for boys was 0.04. The pooled standard deviation for these two 

variances was 0.20. Girls had a factor mean 0.08 units or 0.39 standard deviations lower 
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than boys. As Table 13 illustrates, boys had a larger within-level factor loading for the 

externalizing item (λ = 2.23) than girls (λ = 1.82). Additionally, boys had a higher 

intercept on the approaches to learning item (τ = 0.12) than girls (τ = 0.07), indicating 

that for a boy and girl who had the same factor score, the girl was more likely to have 

been rated with a higher score than the boy on that item.  

Summary 

The conclusions of the five approaches converged; the loading for the 

externalizing indicator and the intercept for the approaches to learning indicator were not 

invariant across gender. Determining invariance was difficult due to the large sample size 

and limited fit information. While the specific fit statistics were different across 

approaches, the same overall pattern emerged. For instance, the scaled χ2 for testing the 

metric invariance model using the multilevel mixture factor model for known classes was 

78.01 with three degrees of freedom and was 109.79 with two degrees of freedom for 

testing the partial scalar invariance model. If I rejected the first model, then I would have 

to reject the second model given that the scaled χ2 was larger and there were fewer 

degrees of freedom. There was a similar pattern for the design-based approach where the 

scaled χ2 for testing the metric invariance model was 83.44 with three degrees of freedom 

and was 104.76 with two degrees of freedom for testing the partial scalar invariance 

model. 

 The values of the parameters were similar across approaches. For instance, in the 

partial strict invariance model using the design-based approach the loadings for the 

internalizing, approaches to learning, and interpersonal indicators were 1.00, -2.45, and 



 

39 

-2.48, respectively. Boys had a loading of 1.99 on the externalizing scale and girls had a 

loading of 1.58. In the partial strict invariance model using the definition variable 

approach, the loadings for the internalizing, approaches to learning, and interpersonal 

indicators were 1.00, -2.43, and -2.51, respectively. Boys had a loading of 2.15 on the 

externalizing scale and girls had a calculated loading of 1.72. Even when different 

parameterizations were used, similar results emerged. A within-level intercept and a 

between-level intercept were estimated in the models that used the MUML approach 

whereas one overall intercept was estimated using the multilevel factor mixture model for 

known classes (refer to Equation 22 and Equation 17, respectively). In the partial strict 

invariance model using the MUML approach, the within-level intercept for the 

internalizing scale was τ = 0.038 and the between-level intercept was τ = 1.544. The sum 

of these two intercepts (1.582) is roughly equal to the intercept estimated in the partial 

strict invariance model using the multilevel mixture approach (τ = 1.584). So while there 

were different parameterizations, overall, the approaches converged on similar parameter 

estimates. 

One of the divergences of conclusions across approaches was the different 

estimates of the between-level loadings, especially for the interpersonal and approaches 

to learning indicators. The design-based approach does not estimate the between-level 

loadings. The multilevel mixture model and definition variable approaches had similar 

estimates. The between-level loading estimates for the interpersonal and approaches to 

learning indicators using the MUML approach were different because those two 

indicators were reverse coded in order to estimate the model. The between-level loading 
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estimates using the MIMIC approach were different than the other approaches; they were 

positive and greater in value. This is probably because the between-level unique 

variances were not estimated in this approach, which affected the between-level model. 
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CHAPTER 4 

DISCUSSION 

Measurement invariance testing is essential for making valid group comparisons 

on scale scores. Typically in measurement invariance testing, the measurement model is 

estimated separately for each group, where parameters can be constrained to be equal 

across the groups to test for different levels of invariance. However, if the data have a 

hierarchical structure and the grouping variable is at level-1 (e.g., comparing boys and 

girls who are clustered within schools), then the dependence of the scores needs to be 

taken into consideration. The goal of this master’s thesis was to compare five different 

approaches to testing measurement invariance in multilevel data structures when the 

grouping variable was at level-1.  

The five approaches I used to study measurement invariance test for invariance in 

different ways. I, therefore, focused on the substantive conclusions garnered from each 

approach. The statistical conclusions of these approaches (e.g., whether a metric 

invariance model fit better than a scalar invariance model and if there was a significant 

difference in a loading) were compared to assess their degree of agreement.  

The substantive conclusions of all five approaches were the same – the factor 

loading of the externalizing item and the intercept of the approaches to learning item 

were not invariant across genders. The sample size for my illustrative example was large, 

making likelihood ratio tests overpowered. This resulted in having no clear cut-off 

criteria for determining when invariance held. Having no clear criteria, I followed a 

consistent approach to model comparison and determined that each approach, while 
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providing different information, yielded the same conclusions regarding the level of 

measurement invariance.  

One of the difficulties of comparing the five different approaches was that the 

type of information provided by each approach differed. To be consistent across 

approaches, I relied on the comparative fit indices (i.e., AIC, BIC, SABIC) and the 

likelihood ratio tests for models estimated using maximum likelihood and the 

comparative fit indices and the Satorra-Bentler likelihood ratio tests for models estimated 

using robust maximum likelihood. Even though global fit statistics were calculated for 

the design-based and MUML approaches, I did not rely on this information in order to be 

consistent across approaches. This information, however, can help in the decision-making 

process of measurement invariance testing. Chen (2007) developed a set of criteria based 

on change in global fit statistics that could be used; however, the set of criteria were 

developed for single-level data and sample sizes less than or equal to 1,000. It would be 

important to validate his results for testing measurement invariance in multilevel data 

before relying on them for measurement invariance testing in hierarchical data structures. 

In addition to fit information, the approaches differed in how they estimated parameters. 

The multilevel mixture model for known classes, design-based, and MUML approaches 

estimate a model separately for each group and constrain parameters to be equal - the 

standard way of conducting measurement invariance analyses. In contrast, the MIMIC 

and definition variable approaches estimate one model for the sample and specific 

parameters are predicted (to allow differences) or not predicted (to constrain the 

parameter to be equal across groups) by a grouping variable.  
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Limitations 

One of the limitations of my thesis was that my analyses were data driven. I did 

not have substantive theory about which indicator may be biased across gender and may 

have capitalized on chance when determining which loading, intercept, or unique 

variance to free across groups. If researchers do not have substantive theory to guide 

decisions, they can use cross-validation. One method to cross-validate the model is to 

split the data set into a calibration sample and a validation sample (Bentler, 1980). Rather 

than running measurement invariance tests on the full sample, researchers can run tests 

on just the calibration sample and make modifications (e.g., free a parameter to vary 

across groups) to improve model fit. The final model with empirical modifications is then 

tested using the validation sample. If the model has good fit in the validation sample, then 

the modifications were appropriate and the model is generalizable.  

The generalizability of the results of my master’s thesis is limited because the 

analyses were based on one illustrative example. For this illustrative example, the 

conclusions of the five approaches were the same; however, this does not necessarily 

mean that the conclusions will be the same in all situations. If the factor model becomes 

more complex (e.g., more items, more factors), then the conclusions of the approaches 

may diverge. For instance, as Table 1 explicates, one of the assumptions of the design-

based approach is that the within-level model is equal to the between-level model. Wu 

and Kwok (2012) found that when the within-level model was complex or the between-

level model was more complex than the within-level model, the factor loading estimates 

were biased. In my illustrative example where I had one factor and four indicators, the 
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assumption of the equivalency of the within-level and between-level models was likely to 

hold. But if the number of items of a scale increases (e.g., 20 items), then the possibility 

for complexity at both levels of the model increases. In this scenario, the within-level and 

between-level models may not be equal and the estimates of the design-based approach 

may be biased and diverge from the estimates of the other approaches.  

Another situation where the conclusions of the approaches may diverge is when 

the factor distributions differ substantially between the groups. In the MIMIC approach, 

the factor variance is estimated for the whole sample and the groups are not able to differ 

on that variance. It may not always be substantively appropriate to assume that the factor 

variances across groups should be equal. For instance, boys tend to have a higher 

variability than girls on tests of math and reading (Machin & Pekkarinen, 2008). If there 

is a group difference in the factor variance and that group difference is not modeled, then 

the tests of invariance can be distorted. 

Additionally, the conclusions of the approaches may diverge when the unique 

variances differ substantially across groups. In the MIMIC approach, a group difference 

on the unique variances is not able to be incorporated into the model. If the groups do 

differ on the unique variances, this can distort invariance testing of the loadings and the 

intercepts. In this scenario, I would expect the conclusions of the MIMIC approach to 

differ from the conclusions of the other four approaches. 

Future Directions 

Simulation work should be conducted that investigates situations in which the 

conclusions of the approaches diverge (e.g., the within-level and between-level models 
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are not equal, the factor variance is substantially different between two groups), how 

sensitive the analyses are to violations of those assumptions, the sample size 

requirements for each approach, and the power differences of the approaches.  

To accurately and precisely estimate the fit and the parameters of these models, an 

adequate sample size is needed. There are many factors that influence the minimum 

sample size required such as the level of communality of the variables and how equal the 

sample sizes are across groups (MacCallum, Widaman, Zhang, & Hong, 1999). 

Simulation studies found that sample sizes as low as 100 participants per group can have 

enough power to detect measurement invariance in independent data (Meade & Bauer, 

2007). To test measurement invariance in clustered data, an adequate sample size is also 

needed at level-2. The accuracy of MUML approximation depends on the sample size 

within clusters and the sample size at level-2 (Yuan & Hayashi, 2005). A previous 

simulation study investigated multilevel measurement invariance for a sample size of 

1600 with 200 clusters (Ryu, 2015). Kim et al. (2015) investigated sample sizes between 

600 and 3200 participants with the number of clusters varying between 60, 100, or 160 

clusters. They found that smaller sample sizes did not have enough power to detect 

noninvariance. They recommended a sample size of at least 2,000 participants using a 

balanced design. Future research should expand on these results and determine the 

minimum sample size required to detect invariance for all approaches. This may guide 

which approach should be chosen when investigating measurement invariance in 

multilevel data. 
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In this illustrative example, the sample sizes of the two groups were roughly equal 

in magnitude. There are situations where the sample sizes are unequal such as 

investigating measurement equivalence across ethnicity. If there is an imbalance in 

sample sizes between the groups, then power to detect factor mean differences is lower 

compared to situations where the sample size is balanced (Kaplan & George, 1995). For 

independent data, the MIMIC approach has more power to detect group differences than 

a two-group item response theory (IRT) model (Woods, 2009). It is reasonable to assume 

that the definition variable and MIMIC approaches may have more power to detect 

noninvariance in multilevel data than the other approaches because a model is not 

estimated separately in each group. Future research is needed to confirm this assumption.  

Conclusions 

While the conclusions of the five approaches converged in this study, there are 

benefits and limitations to each approach. I would not recommend using the MIMIC 

approach for invariance testing because a group difference on the factor variance is not 

able to be modeled and because the unique variances are not able to differ between 

groups. This can distort invariance testing of the other parameters (i.e., loadings and 

intercepts). Additionally, incorporating the between-level unique variances into the 

model leads to estimation and convergence issues. But without incorporating them, the 

between-level model is distorted. One weakness of the definition variable approach is 

that it ignores the original data structure. Rather than using the uncentered values of the 

indicators to estimate a two-level model, the within-level and between-level models are 

estimated separately using the deviations from the cluster means and the cluster means of 
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the indicators, respectively. Measurement invariance is tested in the within-level model. 

Because of this set-up, uncertainty in the cluster means is not able to be taken into 

account because the cluster means, as well as the deviations from the cluster means, are 

treated as observed variables in the model. This can cause the model to be incorrectly 

estimated. The MUML approach is a good approach if there are no missing data. 

Otherwise, this approach requires listwise deletion, which can distort the results if the 

data are not missing completely at random. If the factor structure is not complex (e.g., 

small number of items), the design-based approach is a good approach to use and has the 

least computational demand. Overall, I would recommend that researchers use the 

multilevel mixture model for known classes approach to test for measurement invariance 

in multilevel data structures. This approach appears to have the least assumptions that can 

distort invariance testing though further research needs to be done to support this. 
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Table 1 

Assumptions of each approach as related to measurement invariance 

Approach Assumptions/Constraints 
ML Mixture Between-level matrices are equal across groups; intercept 

estimated at the between-level 
MIMIC Factor variances are equal across groups; within-level unique 

variances are equal across groups; between-level unique 
variances are not estimated; between-level matrices are equal 
across groups; intercept estimated at the between-level, but the 
group difference estimated at the within-level 

Definition Variable Cluster means are equally reliable; intercept estimated at the 
between-level and at the within-level 

Design-based Between-level and within-level matrices are equal; intercept 
estimated at the within-level 

MUML Between-level matrices are equal across groups; listwise 
deletion; intercept estimated at the between-level and at the 
within-level 
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Table 2 

Levels of invariance that can be tested by each approach 

Approach Configural Metric Scalar Strict 
ML Mixture x1 x1 x2 x1 

MIMIC x1 x1 x3  
Definition 
Variable x1 x1 x1 x1 

Design-based x4 x4 x4 x4 
MUML x1 x1 x1 x1 

Notes: x indicates that the level of invariance can be tested using that approach, 1The 
level of invariance is tested at level-1, 2The level of invariance is tested at level-2, 3The 
intercepts are estimated at level-2, but invariance is calculated at level-1, 4There is only 
one level of invariance 
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Table 3 

Testing MIMIC models to identify the reference variable 

Reference Variable Item tested Test statistic1 p-value 
Internalizing Externalizing -14.387 <.001 

 
Interpersonal 1.902 .057 

  Approaches to Learning 4.257 <.001 
Externalizing Internalizing 1.124 .261 

 
Interpersonal -3.404 .001 

  Approaches to Learning 0.073 .942 
Interpersonal Internalizing 0.538 .591 

 
Externalizing 14.913 <.001 

  Approaches to Learning -3.853 <.001 
Approaches to Learning Internalizing 0.140 .889 

 
Externalizing 14.048 <.001 

  Interpersonal -0.026 .980 
Note: 1This is the test statistic for the regression coefficient that captures the relationship 
between the item tested and the interaction of the grouping variable and the latent 
variable, ω 
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Table 4 
 
Fit statistics for multilevel factor mixture model for known classes approach 
 
Model AIC BIC SABIC 
Configural 130,310 130,567 130,462 
Metric 130,413 130,646 130,551 
Partial Metric1 130,310 130,551 130,453 
Partial Metric2 130,377 130,618 130,520 
Partial Metric3 130,411 130,652 130,553 
Partial Scalar4 130,443 130,669 130,577 
Partial Scalar5 130,370 130,604 130,508 
Partial Scalar6 130,423 130,657 130,562 
Partial Strict7 130,372 130,590 130,501 
Notes: 1Externalizing loading freed to vary across groups, 2Interpersonal loading freed 
to vary across groups, 3Approaches to Learning loading freed to vary across groups, 
4Externalizing loading and intercept freed to vary across groups, 5Approaches to 
Learning intercept freed to vary across groups in addition to the Externalizing loading 
and intercept, 6Interpersonal intercept freed to vary across groups in addition to the 
Externalizing loading and intercept, 7Externalizing loading, intercept, and unique 
variance and Approaches to Learning intercept and unique variance freed to vary 
across groups 
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Table 6 
 
Fit statistics for the models using the MIMIC approach 
 
Model AIC BIC SABIC 
Configural 107,321 107,500 107,427 
Metric 107,511 107,667 107,603 
Partial Metric1 107,336 107,499 107,433 
Partial Scalar2 107,480 107,628 107,568 
Partial Scalar3 107,469 107,625 107,561 
Partial Scalar4 107,412 107,567 107,504 
Notes: 1Externalizing loading freed to vary across groups, 2Externalizing loading and 
intercept freed to vary across groups, 3Interpersonal intercept freed to vary across 
groups in addition to the Externalizing loading and intercept, 4Approaches to Learning 
intercept freed to vary across groups in addition to the Externalizing loading and 
intercept 
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Table 7 
 
Parameter estimates for the partial scalar invariance model using the MIMIC approach 

 

Loadings Intercepts Unique 
Variances 

Item λw ωw λb τb βw θw 
Internalizing 1 0 1 1.590 0 0.220 
Externalizing 2.077 -0.520 1.020 1.765 -0.116 0.217 
Interpersonal -2.255 0 8.523 2.861 0 0.082 
Approaches to Learning -2.187 0 5.723 2.848 0.064 0.169 
Note: Parameters with no decimal places were fixed to that number 
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Table 8 
 
Fit statistics for the models using the definition variable approach 

Model AIC BIC SABIC 
Configural 96,478 96,760 96,646 
Metric 96,573 96,831 96,726 
Partial Metric1 96,478 96,745 96,637 
Partial Scalar2 96,610 96,860 96,759 
Partial Scalar3 96,536 96,795 96,690 
Partial Strict4 96,537 96,781 96,682 
Notes: 1Externalizing item loading freed to vary across groups, 
2Externalizing item loading and intercept freed to vary across 
groups, 3Externalizing item loading and intercept and Approaches 
to Learning intercept freed to vary across groups, 4Externalizing 
item loading, intercept, and unique variance and Approaches to 
Learning intercept and unique variance freed to vary across 
groups 
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Table 11 

Parameter estimates for the partial strict invariance model using the design-based 

approach 

 
Loadings Intercepts Unique Variances 

Item Males Females Males Females Males Females 
Internalizing 1 1 1.586 1.586 0.226 0.226 
Externalizing 1.994 1.578 1.765 1.638 0.278 0.205 
Interpersonal -2.481 -2.481 2.859 2.859 0.101 0.101 
Approaches to 
Learning 

-2.453 -2.453 2.847 2.907 0.160 0.150 
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APPENDIX B  

FIGURES 
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Figure 1. Path diagram for the configural invariance MIMIC model with item Y4 

designated as the reference variable. 
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APPENDIX C  

MPLUS 7.3 INPUT FILES FOR CONFIGURAL INVARIANCE AND PARTIAL 

STRICT INVARIANCE MODELS – MULTILEVEL MIXTURE MODEL FOR 

KNOWN CLASSES APPROACH  
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TITLE: Configural Invariance Model 
 
DATA:  
FILE = eclsk_listwise_deletion.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern; 
CLUSTER = s1_id; 
CLASSES = class (2); 
KNOWNCLASS = class (cfemale=0 cfemale=1); 
! 0 = Male, 1 = Female; 
 
ANALYSIS: 
TYPE = TWOLEVEL MIXTURE; 
ESTIMATOR = MLR; 
PROCESSORS = 5; 
INTEGRATION = MONTECARLO; 
 
MODEL: 
%WITHIN% 
    %OVERALL% 
    fw1 BY t1learn* t1interp t1extern t1intern@1; 
 
    %class#1% 
    fw1 BY t1learn*-1 t1interp*-1 t1extern*1 t1intern@1; 
    t1learn t1interp t1extern t1intern; 
    [fw1@0]; 
    fw1; 
 
    %class#2% 
    fw1 BY t1learn*-1 t1interp*-1 t1extern*1 t1intern@1; 
    t1learn t1interp t1extern t1intern; 
    [fw1]; 
    fw1; 
 
%BETWEEN% 
    %OVERALL% 
    fb1 BY t1learn*-1 t1interp*-1 t1extern*5 t1intern@1; 
    [fb1@0]; 
    fb1;  
    t1learn t1interp t1extern t1intern; 
 
    %class#1% 
    [t1intern] (i1); 
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    [t1learn t1interp t1extern]; 
 
    %class#2% 
    [t1intern] (i1); 
    [t1learn t1interp t1extern];  
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TITLE: Partial Strict Invariance Model  
 
DATA:  
FILE = eclsk_listwise_deletion.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern; 
CLUSTER = s1_id; 
CLASSES = class (2); 
KNOWNCLASS = class (cfemale=0 cfemale=1); 
! 0 = Male, 1 = Female; 
 
ANALYSIS: 
TYPE = TWOLEVEL MIXTURE; 
ESTIMATOR = MLR; 
PROCESSORS = 5; 
INTEGRATION = MONTECARLO; 
 
MODEL: 
%WITHIN% 
    %OVERALL% 
    fw1 BY t1learn* t1interp t1extern t1intern@1; 
 
    %class#1% 
    fw1 BY t1learn*-1 t1interp*-1 t1intern@1 (l1-l3); 
    fw1 BY t1extern*1; 
    t1intern t1interp (r1-r2); 
    t1learn t1extern; 
    [fw1@0]; 
    fw1; 
 
    %class#2% 
    fw1 BY t1learn*-1 t1interp*-1 t1intern@1 (l1-l3); 
    fw1 BY t1extern*1; 
    t1intern t1interp (r1-r2); 
    t1learn t1extern; 
    [fw1]; 
    fw1; 
 
%BETWEEN% 
    %OVERALL% 
    fb1 BY t1learn*-1 t1interp*-1 t1extern*5 t1intern@1; 
    [fb1@0];  
    fb1;  
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    t1learn t1interp t1extern t1intern; 
 
    %class#1% 
    [t1intern t1interp] (i1-i2); 
    [t1extern t1learn]; 
 
    %class#2% 
    [t1intern t1interp] (i1-i2); 

    [t1extern t1learn];  
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APPENDIX D  

MPLUS 7.3 INPUT FILES FOR CONFIGURAL INVARIANCE AND PARTIAL 

SCALAR INVARIANCE MODELS – MIMIC APPROACH  
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DATA:  
FILE IS eclsk_listwise_deletion.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern cfemale; 
MISSING = .; 
WITHIN = cfemale; !(0=Male 1=Female); 
CLUSTER = s1_id; 
 
 
ANALYSIS:  
TYPE = TWOLEVEL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION; 
PROCESSORS = 5; 
 
MODEL: 
%WITHIN% 
    FW1 BY t1learn*-1 t1interp*-1 t1extern*2 t1intern@1; 
 
    Inter | FW1 XWITH cfemale; ! creating an interaction 
 
    t1learn ON Inter; !testing invariance of loading 
    t1interp ON Inter; 
    t1extern ON Inter; 
 
    t1learn ON cfemale; !testing invariance of intercept 
    t1interp ON cfemale; 
    t1extern ON cfemale; 
 
    t1learn t1interp t1extern t1intern; 
 
    [FW1@0]; ! fix within factor mean (for boys) to 0 
    FW1 ON cfemale; ! group difference in a within-level factor 
 
%BETWEEN% 
    FB1 BY t1learn* t1interp t1extern t1intern@1; 
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DATA:  
FILE IS eclsk_listwise_deletion.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern cfemale; 
MISSING = .; 
WITHIN = cfemale; !(0=Male 1=Female); 
CLUSTER = s1_id; 
 
 
ANALYSIS:  
TYPE = TWOLEVEL RANDOM; 
ESTIMATOR = ML; 
ALGORITHM = INTEGRATION; 
PROCESSORS = 5; 
 
MODEL: 
%WITHIN% 
    FW1 BY t1learn*-1 t1interp*-1 t1extern*2 t1intern@1; 
 
    Inter | FW1 XWITH cfemale;  
 
    !t1learn ON Inter;  
    !t1interp ON Inter; 
    t1extern ON Inter; 
 
    t1learn ON cfemale;  
    !t1interp ON cfemale; 
    t1extern ON cfemale; 
 
    t1learn t1interp t1extern t1intern; 
 
    [FW1@0];  
    FW1 ON cfemale; 
 
%BETWEEN% 

    FB1 BY t1learn* t1interp t1extern t1intern@1; 75   
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APPENDIX E  

MPLUS 7.3 INPUT FILES FOR CONFIGURAL INVARIANCE AND PARTIAL 

STRICT INVARIANCE MODELS – DEFINITION VARIABLE APPROACH  
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DATA:  
FILE (within) = Deviations.txt; 
FILE (between) = Clustermeans.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern; 
CONSTRAINT = cfemale; 
 
ANALYSIS:  
TYPE = MEANSTRUCTURE; 
ESTIMATOR = ML; 
ITERATIONS = 1000000; 
PROCESSORS = 5; 
 
MODEL:  
BF BY t1learn* t1interp t1extern t1intern@1; 
WF BY t1learn* t1interp t1extern t1intern@1; 
 
MODEL within: 
WF BY t1learn* t1interp t1extern t1intern@1 (l1 l2 l3 l4); 
[WF] (alpha); !alpha 
WF (var); 
 
BF BY t1learn@0 t1interp@0 t1extern@0 t1intern@0; 
[BF@0]; 
BF@0; 
WF WITH BF@0; 
 
[t1learn t1interp t1extern t1intern] (tau1 tau2 tau3 tau4); 
 
t1learn t1interp t1extern t1intern (epsilon1 epsilon2 epsilon3 epsilon4); 
 
 
MODEL between: 
BF BY t1learn*-1 t1interp*-1 t1extern*2 t1intern@1; 
[BF@0]; 
BF; 
 
WF BY t1learn@0 t1interp@0 t1extern@0 t1intern@0; 
[WF@0]; 
WF@0; 
WF WITH BF@0; 
 
t1learn t1interp t1extern t1intern; 
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MODEL CONSTRAINT: 
NEW(gammal10*-2.5 gammal11*.04 gammal20*-2.5 gammal21*.04 gammal30*1 
gammal31*.04 
    gammai10*2.8 gammai11*.28 gammai20*2.8 gammai21*.29 gammai30*1.8 
gammai31*-.27 
    gammae10*.14 gammae11*0 gammae20*.07 gammae21*.01 gammae30*.24 
gammae31*-.07 
    gammae40*.2 gammae41*-.01 gammam*.035 varm*.05 gammav*.01); 
 
l1 = gammal10 + gammal11*cfemale; 
l2 = gammal20 + gammal21*cfemale; 
l3 = gammal30 + gammal31*cfemale; 
 
tau1 = gammai10 + gammai11*cfemale; 
tau2 = gammai20 + gammai21*cfemale; 
tau3 = gammai30 + gammai31*cfemale; 
 
epsilon1 = gammae10 + gammae11*cfemale; 
epsilon2 = gammae20 + gammae21*cfemale; 
epsilon3 = gammae30 + gammae31*cfemale; 
epsilon4 = gammae40 + gammae41*cfemale; 
 
alpha = 0 + gammam*cfemale; 
var = varm + gammav*cfemale; 
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DATA:  
FILE (within) = Deviations.txt; 
FILE (between) = Clustermeans.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern; 
CONSTRAINT = cfemale; 
 
ANALYSIS:  
TYPE = MEANSTRUCTURE; 
ESTIMATOR = ML; 
ITERATIONS = 1000000; 
PROCESSORS = 5; 
 
MODEL:  
BF BY t1learn* t1interp t1extern t1intern@1; 
WF BY t1learn* t1interp t1extern t1intern@1; 
 
MODEL within: 
WF BY t1learn* t1interp t1extern t1intern@1 (l1 l2 l3 l4); 
[WF] (alpha); !alpha 
WF (var); 
 
BF BY t1learn@0 t1interp@0 t1extern@0 t1intern@0; 
[BF@0]; 
BF@0; 
WF WITH BF@0; 
 
[t1learn t1interp t1extern t1intern] (tau1 tau2 tau3 tau4); 
 
t1learn t1interp t1extern t1intern (epsilon1 epsilon2 epsilon3 epsilon4); 
 
 
MODEL between: 
BF BY t1learn*-1 t1interp*-1 t1extern*2 t1intern@1; 
[BF@0]; 
BF; 
 
WF BY t1learn@0 t1interp@0 t1extern@0 t1intern@0; 
[WF@0]; 
WF@0; 
WF WITH BF@0; 
 
![t1learn t1interp t1extern t1intern] (tau1 tau2 tau3 tau4); 
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t1learn t1interp t1extern t1intern; 
 
 
MODEL CONSTRAINT: 
NEW(gammal30*1 gammal31*.04 
    gammai10*2.8 gammai11*.28 gammai30*1.8 gammai31*-.27 
    gammae10*.14 gammae11*0 gammae30*.24 gammae31*-.07 
    gammam*.035 varm*.05 gammav*.01); 
 
l3 = gammal30 + gammal31*cfemale; 
tau1 = gammai10 + gammai11*cfemale; 
tau3 = gammai30 + gammai31*cfemale; 
epsilon1 = gammae10 + gammae11*cfemale; 
epsilon3 = gammae30 + gammae31*cfemale; 
 
alpha = 0 + gammam*cfemale; 
var = varm + gammav*cfemale;  
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APPENDIX F  

MPLUS 7.3 INPUT FILES FOR CONFIGURAL INVARIANCE AND PARTIAL 

STRICT INVARIANCE MODELS – DESIGN-BASED APPROACH  
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DATA:  
FILE IS eclsk_listwise_deletion.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern; 
GROUPING = cfemale (0=Male 1=Female); 
CLUSTER = s1_id; 
 
ANALYSIS:  
TYPE = COMPLEX; 
ESTIMATOR = MLR; 
 
MODEL:     
F1 BY t1learn* t1interp t1extern t1intern@1; 
 
MODEL Male: 
F1 BY t1learn*-1 t1interp*-1 t1extern*2 t1intern@1; 
[F1@0]; 
F1; 
 
[t1intern] (i1); 
[t1learn t1interp t1extern]; 
 
t1learn t1interp t1extern t1intern; 
 
MODEL Female: 
F1 BY t1learn* t1interp t1extern t1intern@1; 
[F1]; 
F1; 
 
[t1intern] (i1); 
[t1learn t1interp t1extern]; 
 
t1learn t1interp t1extern t1intern; 
 
OUTPUT:  
MODINDICES; 
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DATA:  
FILE IS eclsk_listwise_deletion.txt; 
 
VARIABLE: 
NAMES = s1_id cfemale t1learn t1interp t1intern t1extern; 
USEVARIABLES = t1learn t1interp t1extern t1intern; 
GROUPING = cfemale (0=Male 1=Female); 
CLUSTER = s1_id; 
 
ANALYSIS:  
TYPE = COMPLEX; 
ESTIMATOR = MLR; 
 
MODEL:     
F1 BY t1learn* t1interp t1extern t1intern@1; 
 
MODEL Male: 
F1 BY t1learn*-1 t1interp*-1 t1intern@1 (l1-l3); 
F1 BY t1extern*2; 
[F1@0]; 
F1 (var1); 
 
[t1intern] (i1); 
[t1interp] (i3); 
[t1learn t1extern]; 
 
t1interp t1intern (r1-r2); 
t1extern t1learn; 
 
MODEL Female: 
F1 BY t1learn*-1 t1interp*-1 t1intern@1 (l1-l3); 
F1 BY t1extern*2; 
[F1] (mean); 
F1 (var2); 
 
[t1intern] (i1); 
[t1interp] (i3); 
[t1learn t1extern]; 
 
t1interp t1intern (r1-r2); 
t1extern t1learn; 
 
OUTPUT:  
MODINDICES;  
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APPENDIX G  

MPLUS 7.3 INPUT FILES FOR CONFIGURAL INVARIANCE AND PARTIAL 

STRICT INVARIANCE MODELS – MUML APPROACH  
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TITLE: Configural Invariance Model 
 
DATA:  
FILE = mumlinput.dat; 
TYPE = means fullcov; 
NGROUPS = 4; 
NOBSERVATIONS = 478.304 8554.696 464.696 8312.304; 
 
VARIABLE: 
NAMES = intern extern interp learn; 
USEVARIABLES = intern extern interp learn; 
 
MODEL: 
intern_b BY intern@4.34768; 
extern_b BY extern@4.34768; 
learn_b BY learn@4.34768; 
interp_b BY interp@4.34768; 
 
intern_w BY intern@1; 
extern_w BY extern@1; 
interp_w BY interp@1; 
learn_w BY learn@1; 
 
[intern@0 extern@0 interp@0 learn@0]; 
intern@0 extern@0 interp@0 learn@0; 
 
bw BY intern_b@1 extern_b interp_b learn_b; 
wi BY intern_w@1 extern_w interp_w learn_w; 
 
bw WITH wi@0; 
 
MODEL g1: 
bw BY intern_b@1  
      extern_b (1) 
      interp_b (2) 
      learn_b (3); 
[bw@0]; bw (4); 
[intern_b] (5); [extern_b] (6); [interp_b] (7); [learn_b] (8); 
intern_b (9); extern_b (10); interp_b (11); learn_b (12);  
 
wi BY intern_w@1 
      extern_w (13) 
      interp_w (14) 
      learn_w (15); 
[wi@0]; wi (16); 
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[intern_w] (17); [extern_w] (18); [interp_w] (19); [learn_w] (20);  
intern_w (21); extern_w (22); interp_w (23); learn_w (24); 
 
MODEL g2: 
intern_b BY intern@0; 
extern_b BY extern@0; 
interp_b BY interp@0; 
learn_b BY learn@0; 
 
bw BY intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
[bw@0]; bw@0; 
[intern_b@0 extern_b@0 interp_b@0 learn_b@0]; 
intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
 
wi BY intern_w@1 
      extern_w (13) 
      interp_w (14) 
      learn_w (15); 
[wi@0]; wi (16); 
[intern_w] (17); [extern_w] (18); [interp_w] (19); [learn_w] (20);  
intern_w (21); extern_w (22); interp_w (23); learn_w (24); 
 
 
MODEL g3: 
intern_b BY intern@4.34783; 
extern_b BY extern@4.34783; 
learn_b BY learn@4.34783; 
interp_b BY interp@4.34783; 
 
bw BY intern_b@1  
      extern_b (1) 
      interp_b (2) 
      learn_b (3); 
[bw@0]; bw (4); 
[intern_b] (5); [extern_b] (6); [interp_b] (7); [learn_b] (8); 
intern_b (9); extern_b (10); interp_b (11); learn_b (12); 
 
wi BY intern_w@1 
      extern_w (25) 
      interp_w (26) 
      learn_w (27); 
[wi] (28); wi (29); 
[intern_w] (17); [extern_w] (30); [interp_w] (31); [learn_w] (32);  
intern_w (33); extern_w (34); interp_w (35); learn_w (36); 
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MODEL g4: 
intern_b BY intern@0; 
extern_b BY extern@0; 
interp_b BY interp@0; 
learn_b BY learn@0; 
 
bw BY intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
[bw@0]; bw@0; 
[intern_b@0 extern_b@0 interp_b@0 learn_b@0]; 
intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
 
wi BY intern_w@1 
      extern_w (25) 
      interp_w (26) 
      learn_w (27); 
[wi] (28); wi (29); 
[intern_w] (17); [extern_w] (30); [interp_w] (31); [learn_w] (32);  
intern_w (33); extern_w (34); interp_w (35); learn_w (36); 
 
OUTPUT:  
SAMPSTAT RESIDUAL MOD; 
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TITLE: Partial Strict Invariance Model  
 
DATA:  
FILE = mumlinput.dat; 
TYPE = means fullcov; 
NGROUPS = 4; 
NOBSERVATIONS = 478.304 8554.696 464.696 8312.304; 
 
VARIABLE: 
NAMES = intern extern interp learn; 
USEVARIABLES = intern extern interp learn; 
 
MODEL: 
intern_b BY intern@4.34768; 
extern_b BY extern@4.34768; 
learn_b BY learn@4.34768; 
interp_b BY interp@4.34768; 
 
intern_w BY intern@1; 
extern_w BY extern@1; 
interp_w BY interp@1; 
learn_w BY learn@1; 
 
[intern@0 extern@0 interp@0 learn@0]; 
intern@0 extern@0 interp@0 learn@0; 
 
bw BY intern_b@1 extern_b interp_b learn_b; 
wi BY intern_w@1 extern_w interp_w learn_w; 
 
bw WITH wi@0; 
 
MODEL g1: 
bw BY intern_b@1  
      extern_b (1) 
      interp_b (2) 
      learn_b (3); 
[bw@0]; bw (4); 
[intern_b] (5); [extern_b] (6); [interp_b] (7); [learn_b] (8); 
intern_b (9); extern_b (10); interp_b (11); learn_b (12);  
 
wi BY intern_w@1 
      extern_w (13) 
      interp_w (14) 
      learn_w (15); 
[wi@0]; wi (16); 
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[intern_w] (17); [extern_w] (18); [interp_w] (19); [learn_w] (20);  
intern_w (21); extern_w (22); interp_w (23); learn_w (24); 
 
MODEL g2: 
intern_b BY intern@0; 
extern_b BY extern@0; 
interp_b BY interp@0; 
learn_b BY learn@0; 
 
bw BY intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
[bw@0]; bw@0; 
[intern_b@0 extern_b@0 interp_b@0 learn_b@0]; 
intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
 
wi BY intern_w@1 
      extern_w (13) 
      interp_w (14) 
      learn_w (15); 
[wi@0]; wi (16); 
[intern_w] (17); [extern_w] (18); [interp_w] (19); [learn_w] (20);  
intern_w (21); extern_w (22); interp_w (23); learn_w (24); 
 
 
MODEL g3: 
intern_b BY intern@4.34783; 
extern_b BY extern@4.34783; 
learn_b BY learn@4.34783; 
interp_b BY interp@4.34783; 
 
bw BY intern_b@1  
      extern_b (1) 
      interp_b (2) 
      learn_b (3); 
[bw@0]; bw (4); 
[intern_b] (5); [extern_b] (6); [interp_b] (7); [learn_b] (8); 
intern_b (9); extern_b (10); interp_b (11); learn_b (12); 
 
wi BY intern_w@1 
      extern_w (25) 
      interp_w (14) 
      learn_w (15); 
[wi] (28); wi (29); 
[intern_w] (17); [extern_w] (30); [interp_w] (19); [learn_w] (32);  
intern_w (21); extern_w (34); interp_w (23); learn_w (36); 
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MODEL g4: 
intern_b BY intern@0; 
extern_b BY extern@0; 
interp_b BY interp@0; 
learn_b BY learn@0; 
 
bw BY intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
[bw@0]; bw@0; 
[intern_b@0 extern_b@0 interp_b@0 learn_b@0]; 
intern_b@0 extern_b@0 interp_b@0 learn_b@0; 
 
wi BY intern_w@1 
      extern_w (25) 
      interp_w (14) 
      learn_w (15); 
[wi] (28); wi (29); 
[intern_w] (17); [extern_w] (30); [interp_w] (19); [learn_w] (32);  
intern_w (21); extern_w (34); interp_w (23); learn_w (36); 
 
OUTPUT:  
SAMPSTAT RESIDUAL MOD; 
 


