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ABSTRACT

Today’s world is seeing a rapid technological advancement in various fields, having

access to faster computers and better sensing devices. With such advancements, the

task of recognizing human activities has been acknowledged as an important prob-

lem, with a wide range of applications such as surveillance, health monitoring and

animation. Traditional approaches to dynamical modeling have included linear and

nonlinear methods with their respective drawbacks. An alternative idea I propose

is the use of descriptors of the shape of the dynamical attractor as a feature rep-

resentation for quantification of nature of dynamics. The framework has two main

advantages over traditional approaches: a) representation of the dynamical system

is derived directly from the observational data, without any inherent assumptions,

and b) the proposed features show stability under different time-series lengths where

traditional dynamical invariants fail.

Approximately 1% of the total world population are stroke survivors, making it

the most common neurological disorder. This increasing demand for rehabilitation

facilities has been seen as a significant healthcare problem worldwide. The laborious

and expensive process of visual monitoring by physical therapists has motivated my

research to invent novel strategies to supplement therapy received in hospital in a

home-setting. In this direction, I propose a general framework for tuning component-

level kinematic features using therapists overall impressions of movement quality,

in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR)

system.

The rapid technological advancements in computing and sensing has resulted in

large amounts of data which requires powerful tools to analyze. In the recent past,

topological data analysis methods have been investigated in various communities, and

the work by Carlsson establishes that persistent homology can be used as a powerful
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topological data analysis approach for effectively analyzing large datasets. I have

explored suitable topological data analysis methods and propose a framework for

human activity analysis utilizing the same for applications such as action recognition.
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1 INTRODUCTION

Computer vision community has been interested in modeling human activity for nu-

merous applications including video surveillance, automatic video annotation and

health monitoring [4]. Understanding the underlying dynamics in human motion

forms the core idea of such systems. Human activity analysis has attracted the at-

tention of many researchers providing extensive literature on the subject. A detailed

review of the approaches in literature for modeling and recognition of human activities

are discussed in [4, 51]. Recent advancements in sensing platforms like motion capture

systems and Kinect have opened doors to several applications including home-based

health monitoring, gaming and entertainment. Take for instance, the task of devel-

oping algorithms for understanding the dynamics in human activities. This problem

is non-trivial due to the complexity of natural human movement, which is a result

of interactions between multiple body joints having high degrees of freedom. In ad-

dition, the task of recognizing human actions is challenging due to several factors

including inter-class similarities between actions (e.g., running and walking), intra-

class variations due to multiple strategies for an action (e.g., dance) and inter-subject

variations.

An ‘action’ is defined as simple motion patterns usually executed by a single person

typically lasting for a short duration of time (around 10 sec) [134]. An activity

is a complex sequence of actions performed by several individuals interacting with

each other. Natural human movements (such as walking, running) are composed of

1



periodic action sequences in the form of repetitions, with some variability [127]. In

our research, we focus our interest towards human activity analysis with two main

applications: (a) action recognition, and (b) movement quality assessment for stroke

rehabilitation.

1.1 Signal Acquisition

Within the framework of our research, we work with various sensing modalities such as

optical motion capture systems, Kinect and RGB cameras. These sensing modalities

are classified as “outside-in” systems which use external sensors to collect data from

sources placed on the human body. Optical motion capture systems use infrared

cameras to track the motion of reflective markers placed on the body. Such systems

are highly accurate and can operate at 100 frames/second or higher. These can track a

large number of markers, but the experimental data has to be captured in a controlled

environment away from reflective noise and without occlusion of markers. Traditional

sensing in the vision community has been using RGB cameras which are cheaper and

operate at lower frequency of 30 frames/second. A recent technology of Kinect uses

depth information along with RGB data to achieve markerless motion capture at 30

frames/sec. Our experimental analysis show results on publicly available datasets

which were collected using these sensing modalities.

1.2 Action Recognition

The aim here is to recognize the type of action performed by a subject in the se-

quence of images using the training examples provided for each class of actions. In

a real world scenario, it would require automatic recognition of action sequences

from continuous untrimmed videos. Traditionally, the vision community works with

2



bend jack jump pjump run

side skip walk wave1 wave2

Figure 1.1: Typical video frames of 10 actions performed by a subject from the
Weizmann dataset [54]. The trajectories corresponding to six body joints namely
head, belly, two hands and two feet were extracted by Ali et al. [5].

the simpler, unrealistic assumption that temporal segmentation of videos is a step

which has been done beforehand, resulting in pre-segmented videos containing in-

dividual action sequences as shown in Figure 6.6. Action recognition has got the

industry interested with applications such as gaming systems using Kinect, security

and surveillance systems, animated movies and gait analysis.

1.3 Movement Quality Assessment

The application of interest here is to develop a computational framework for move-

ment quality assessment to aid physical therapists in providing supervised rehabili-

tation therapy for stroke survivors. Stroke is the most common neurological disor-

der worldwide leaving behind a significant number of survivors every year disabled

with chronic impairments such as problems with vision, difficulty to formulate or

understand speech, or inability to move limbs. Increasing healthcare costs paired

with insufficient coverage by insurance for long-term therapy treatment has often

left impairments untreated. Several validated clinical measures which requires visual

monitoring by a therapist for movement quality assessment have been proposed, and

researchers aim to match these clinical scores using a computational framework. The

3



existing approaches in literature to quantify movement quality use nonlinear dynami-

cal system theory [127, 142, 95], random forests [93], and SVMs [94]. Chen et al. [30]

proposed several kinematic attributes which requires access to reach trajectories from

unimpaired subjects, thereby limiting the generalizability of the framework to differ-

ent reach targets. In our research agenda, we aim to propose a framework which is

general enough to recognize coarse differences in different actions and as well quantify

fine variations (impairments) in a given action.

1.4 Research Objectives

The aim of this research is two-fold:

(a) To propose a novel approach based on nonlinear dynamical analysis and shape

analysis to address the drawbacks of traditional measures used in literature for action

recognition. In this direction, we propose to use dynamical shape features represen-

tative of the shape of the reconstructed phase space as our feature representation in

our framework. We also test the generality of the proposed feature representation to

other tasks such as movement quality assessment and dynamical scene recognition.

(b) To propose a kinematics-based framework to generate movement quality scores

matching therapists’ impressions of movement quality in the context of a home-based

rehabilitation setting.
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2 DYNAMICAL SYSTEMS AND CHAOS

Dynamical systems are mathematical models which are used to simulate a physi-

cal phenomenon whose states evolve over time. Chaos theory studies the behavior

of nonlinear dynamical systems, that are highly sensitive to initial conditions. Any

perturbation to the initial conditions of such systems yields widely diverging dy-

namics. This behavior is known as deterministic chaos. Convincing evidence for

existence of deterministic chaos has been provided from a variety of research experi-

ments [111, 128]. Differential equations have been used to model physical systems to

determine how they behave temporally under different experimental conditions and

try to predict their future states. Modeling a physical system using differential equa-

tions is essentially impossible when the order and degree of the modeled systems are

very high. Nonlinear systems with closed form analytical solutions typically settle in

a steady state or in a periodic motion. In early sixties, a new kind of motion was

observed which was erratic. This type of motion was termed chaos, and the theory

developed to explain such systems as chaos theory.

Many natural systems showing chaotic behavior have been comprehensively stud-

ied [59, 114], the most famous one being the weather. The initial study on chaos

theory was pursued by a meteorologist, Edward Lorenz, while working on weather

prediction models on a computer with a set of differential equations to model the

weather. When he started the same experiment with a different set of initial condi-

tions, he found that rounding-off errors in initial conditions had a large influence on
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the subsequent dynamics of the model equations.

A detailed description of such systems was first described mathematically by

Lorenz in his seminal paper in 1963. He presented a system of 3 coupled differen-

tial equations which demonstrate chaotic behavior. This led him to his now famous

speculation that a butterfly flapping wings in Brazil (which is a small change in the

initial conditions in the atmosphere) might cause a tornado in Texas. This depen-

dence of the evolution of a system on its initial conditions makes chaotic motion a

complex phenomenon. In this sense, it is intuitive to expect that systems in nature

are complex, and the larger the number of systems state variables, the more complex

the system is.

2.1 Properties of Chaotic Systems

1. Determinism: Even though chaotic systems exhibit random behavior, they are

classified as deterministic systems. This is because if the initial conditions are

known precisely, future behavior of the system can be predicted. However,

initial conditions are never known for a real system.

2. Nonlinearity: Nonlinearity is a necessary condition for a system to exhibit chaos.

A perfectly linear system can never exhibit chaos.

3. Sensitivity to initial conditions: This is the most important characteristic of

chaotic systems. Chaotic systems for any two different initial conditions (how-

ever close) always diverge exponentially as they evolve in time. Hence, a small

change in the initial conditions takes the system in a completely different tra-

jectory.

4. Boundedness: If the divergent orbits go to infinity, the system is considered not

to be chaotic as the system is unbounded and cannot produce steady states.
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Figure 2.1: Phase space reconstruction of Lorenz attractor by delay embedding. (a)
shows the 3D view of trajectories of Lorenz attractor with control parameters ρ =
45.92, σ = 16.0 and β = 4.0. We can see that trajectories of Lorenz system settle down
and are confined within the attractor. The one-dimensional time series (observed)
of the Lorenz system is shown in (b). We see that a low-dimensional nonlinear
system can generate such complex and chaotic signal. (c) shows the reconstructed
phase space from observed time series of the Lorenz system using delay embedding
(τ = 11). The above example illustrates that the reconstructed phase space preserves
certain topological properties of the original Lorenz attractor.

2.2 Lorenz Attractor

The Lorenz attractor is the steady state of a nonlinear chaotic system of three coupled

nonlinear ordinary differential equations [133] as given below:

ẋ = σ(y − x), (2.1a)

ẏ = x(ρ− z)− y, (2.1b)

ż = xy − βz, (2.1c)

where x, y, z are the state variables and σ, ρ and β are non-negative and dimensionless

parameters. These equations were defined by Lorenz in 1963 [145] to represent a

simplified model of thermal convection in the lower atmosphere. Lorenz showed that

this relatively simple-looking set of equations could have highly erratic dynamics for

a range of defined control parameters, for which the dynamics are chaotic.

Upon close inspection of the plots shown in Fig. 2.1, the trajectories depicted

therein never intersect each another. For any small perturbation of initial conditions,

the state-space trajectory will never follow the same path. Furthermore, if one were

to plot the trajectories of the solution for one set of initial conditions and then for
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another set of initial conditions (infinitesimally close to the first), the two trajectories

would diverge from one another exponentially. This means that not only does a small

perturbation to initial condition result in a trajectory that will never intersect with

that of the original system but it results in a completely different trajectory.

The dynamics of the Lorenz system in the 3-dimensional state space generated

from these set of equations is illustrated in Fig. 2.1(a). Lorenz attractor also illus-

trates that deterministic nonlinear models of low dimension can produce signal with

complex dynamics. Furthermore, Fig. 2.1 illustrates that it is possible to recreate

an approximate attractor generated by a multidimensional system (such as Lorenz)

using only a one-dimensional observed time series.

2.3 Dynamical Modeling in Computer Vision

Dynamical modeling methods for understanding signals from various sensing plat-

forms have been the cornerstone of many applications in the computer vision com-

munity, such as human activity analysis [4] and dynamical natural scene recognition

[118]. Natural human movements (such as walking, running) are composed of periodic

action sequences in the form of repetitions, with some variability [127]. These inherent

attributes of human movement (periodicity with variability) descriptive of a complex

nonlinear chaotic system has motivated researchers to employ tools from nonlinear

dynamical systems theory to model human movement [5, 64, 127, 95, 37, 38, 57, 81].

Dynamical modeling of spatio-temporal evolution of human activities are traditionally

accomplished by defining a state space and learning a function that maps the current

state to the next state [104, 16]. A recent alternate approach has attempted to derive

a representation for the dynamical system directly from the observation data using

tools from chaos theory [5]. The main idea here is that, by using a top-down approach

of dynamical modeling, one would only approximate the true-dynamics of the system
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with attempts to fit a model to the observational data. Whereas, in the bottom-up

approach [5], the dynamical system parameters such as the number of independent

variables, degrees of freedom and other unknown parameters are estimated from the

data. Such an approach can be seen as a generalized representation without any

strong assumptions, suitable for analyzing a wide range of dynamical phenomenon.

2.3.1 Preliminaries

In this section, we introduce the background necessary to develop an understanding

of nonlinear dynamical system analysis and chaos theory for applications in activity

analysis, activity quality assessment and natural scene analysis.

Dynamical System Analysis

Dynamical systems are governed by a set of functions defining the variations in the

behavior of the system over time. A dynamical system is termed linear or nonlinear

if the function defining the behavior of the system is linear or nonlinear respectively.

Dynamical systems can be represented using state variables defining the state of the

system at a given time t. A dynamical system is termed deterministic if there exists

a unique future state for a given current state and is termed stochastic if the future

state is derived from a probability distribution of possible states. Chaos theory is the

field of study of such deterministic dynamical systems that show high sensitivity to

initial conditions. A chaotic system is a dynamical system with deterministic behavior

showing sensitivity to initial conditions.

The states of a chaotic system are generally considered to be in an n-dimensional

manifold also called phase space. A chaotic system evolves over time in its phase

space according to the system variables governing the dynamics. The path traversed

by the system over time is called a trajectory and the region of the phase space where
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the trajectories settle down as time approaches infinity is denoted as an attractor.

One would intend to have access to all independent variables of the system and

their interactions for a complete understanding of the system. In a real world scenario,

the data recorded is of low-dimension and is insufficient to model the dynamics of

the system. In addition, model-based (parametric) approaches, such as LDS assume

an underlying mapping function f to describe the dynamics of the system. It has

been established that such approaches may not be suitable for modeling the dynamics

of complex systems such as human movements due to the simplifying assumptions

[15]. The theory of chaotic systems allows for determining certain invariants of the

dynamical system function f without making any assumptions about the system.

Phase Space Reconstruction

The phase space is defined as the space with all possible states of a system [145, 3].

In a deterministic dynamical system that can be mathematically modeled, future

states of the system can be determined using present and past state information.

However, for applications such as human activity understanding and dynamical scene

understanding, the system equations are complex. Furthermore, sensing systems in

the real-world do not allow us to observe all variables of the system (e.g., the home-

based setting for stroke rehabilitation with single marker on the wrist). To address

these problems, we have to employ methods for reconstructing the attractor to obtain

a phase space which preserves the important topological properties of the original

dynamical system. This process is required to find the mapping function between

the one-dimensional observed time series and the m-dimensional attractor, with the

assumption that all variables of the system influence one another. The concept of

phase space reconstruction was expounded in the embedding theorem proposed by

Takens, called Takens’ embedding theorem [129] and an example of the procedure is
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shown in Fig. 2.1. For a discrete dynamical system with a multidimensional phase

space, time-delay vectors (or embedding vectors) are obtained by concatenation of

time-delayed samples given by

xi(n) = [xi(n), xi(n+ τ), · · · , xi(n+ (m− 1)τ)]T , (2.2)

where ‘m’ is the embedding dimension and ‘τ ’ is the embedding delay. These param-

eters should be carefully selected in order to facilitate a good phase space reconstruc-

tion. For a sufficiently large ‘m’, the important topological properties of the unknown

multidimensional system are reproduced in the reconstructed phase space [3]. The

embedding method has proven to be useful, particularly for time series generated

from low-dimensional deterministic dynamical systems, by providing a way to apply

theoretical concepts of nonlinear dynamical systems onto observed time series. The

embedding theorem does not suggest methods to estimate the optimal values for ‘m’

and ‘τ ’. We use false nearest neighbors [68] approach to estimate m and the first

zero crossing of the autocorrelation function [122] to estimate τ . Fig. 2.1 shows an

example of phase space reconstruction from a one-dimensional observed time-series

of a Lorenz system.

Embedding Dimension

The embedding dimension refers to the number of time-delayed samples concatenated

to form the time-delay vector. The aim here is to estimate an integer embedding di-

mension which can unfold the attractor thereby removing any self-overlaps due to

projection of the attractor onto lower dimensional space. Hence, the embedding di-

mension can be defined as the minimum dimension required to unfold the attractor

completely. The false nearest neighbor approach finds this minimum embedding di-

mension to remove any false nearest neighbors (neighbors due to projection onto
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lower dimension) [3]. Consider a vector in reconstructed phase space in dimension m

given by

x(k) = [x(k), x(k + τ), · · · , x(k + (m− 1)τ)]T , (2.3a)

and a nearest neighbor in the phase space given by

xNN(k) = [xNN(k), xNN(k + τ), · · · , xNN(k + (m− 1)τ)]T . (2.3b)

If the vector xNN(k) is a true neighbor of x(k), then it should be because of the

underlying dynamics. The vector xNN(k) can be a false neighbor of x(k) when di-

mension m is unable to unfold the attractor. Hence, moving to the next dimension

m + 1 may move this false neighbor out of the neighborhood of x(k). This process

of finding false neighbors to every vector xi(k) sequentially removes self-overlaps and

identifies m where the attractor is completely unfolded. The embedding dimension

m suggested by the false nearest neighbor algorithm for exemplar trajectories of hu-

man actions was either 3 or 4. We select a constant embedding dimension m = 3

to reconstruct all relevant phase space. Even with this fixed value of m, we obtain

excellent results as shown in our experiments.

Embedding Delay

Embedding delay refers to the choice of integer time delay used to construct the

time-delay vector. Theoretically, the embedding process allows any value of τ if

one has access to infinitely accurate data ([3], chap. 3). Since this is practically

impossible, we try to find a value τ which makes the components of the vector [x(k),

x(k + τ), x(k + 2τ)]T in the embedding sufficiently independent. A low value of τ

makes adjacent components to be correlated and hence they cannot be considered as

independent variables. On the other hand, a high value of τ may make the adjacent

components uncorrelated (almost independent) and cannot be considered as part of
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Figure 2.2: Estimation of delay time τ as the first zero-crossing of the autocor-
relation function. (b) shows the autocorrelation function of the trajectory data in
(a).

the system that supposedly generated them. The shape of the embedded time series

will critically depend on the choice of τ [122]. A good selection of τ should ensure

that the data are maximally spread in phase space resulting in smooth phase space

reconstruction. We use the first zero-crossing of the autocorrelation function as an

estimate of τ as suggested in [122] for strongly periodic data, which is a suitable

choice for our experiments.

2.4 Classical Dynamical Invariants

Quantifying divergence of closely spaced trajectories and hence system complexity is

a well-studied problem in the field of chaos theory. Correlation dimension [3], largest

Lyapunov exponent [148], and correlation sum [3] are a few examples of invariant

measures proposed in the literature to quantify complexity of nonlinear dynamical

systems. In this section, we study the three commonly used dynamical invariants in

the field of chaos theory and computer vision.

2.4.1 Largest Lyapunov Exponent

The Lyapunov exponent is a measure of average rate of divergence (or convergence) of

initially closely-spaced trajectories over time [3, 145]. A positive Lyapunov exponent

indicates orbital divergence and hence chaos in the system. A negative Lyapunov
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Figure 2.3: Examples of phase space reconstruction of corresponding time series
data of a subject performing Run and Walk action respectively. The embedding pa-
rameters were selected as m = 3 and τ as described in section 2.3.1. This example
illustrates that the shape of the reconstructed phase space can be seen as a discrim-
inative feature for classification of actions. We use shape distributions proposed by
Osada et al. [92] as a representation for shape of phase space. (c) and (f) together
support our hypothesis that shape distribution (D2) can be used for classification of
actions.

exponent indicates orbital convergence and hence a dissipative system.

Chaos theory has found its applications in the analysis of chaotic dynamical

systems. In comparison, largest Lyapunov exponent is a widely used measure of

chaos in various engineering applications, including computer vision and biomechan-

ics to model human movements and quantify chaos in the reconstructed phase space

[37, 5, 95, 127, 132, 118]. It is used to quantify the variability in human movement

[127], which is believed to exhibit a chaotic structure. The inherent assumption

here is that different action classes possess different levels of chaos and quantification

using Lyapunov exponents help in classification of these action classes. While quan-

tification of chaos using the largest Lyapunov exponent have been used to monitor

varying chaos levels (level of complexity of the system) for recognition or prediction
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purposes [62], experimental studies for modeling human activities have not reported

any evidence for different levels of chaos in human activities. Hence, we believe that

a representation for level of chaos may not be a suitable approach to model human

activities. While previous experiments on action modeling using Lyapunov exponents

have reported good results, certain data requirements make it less suitable for action

modeling where the number of data samples are less.

Estimation of Largest Lyapunov Exponent (λ1)

A recent practical method for estimating the largest Lyapunov exponent from a time

series proposed by Rosenstein [109] quantifies chaos by monitoring the rate of di-

vergence of closely spaced trajectories over time. The algorithm claims to be fast,

easy to implement and robust to changes in embedding dimension, size of dataset,

embedding delay and noise level. Rosenstein’s algorithm was developed to address

the limitations of the Wolf’s algorithm [148] and has been shown in [132] that it is

more robust to changes in data length than the Wolf’s algorithm. The algorithmic

flow as proposed by Rosenstein is shown in Figure 2.4.

However, experimental results on Lorenz and Rossler models for different time

series lengths (N ) with fixed embedding dimension and embedding delay shows that

the estimate approaches the true value only after N = 5000 and 2000, respectively.

Furthermore, both Rosenstein and Wolf suggest that the minimum number of data

samples required for accurate estimation of largest Lyapunov exponent is 10m (where

m is the embedding dimension) [132, 55]. Therefore, we believe that the use of largest

Lyapunov exponent may not be a suitable approach in modeling short-duration video

data.
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Figure 2.4: The algorithm for estimation of largest Lyapunov exponent from exper-
imental time series data.
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2.4.2 Correlation Sum

Correlation sum is a chaotic invariant used to quantify density of points in the re-

constructed phase space. For a given point in the reconstructed phase space, draw

a circle of radius ‘r’ around it and count the number of points which fall inside the

circle. Repeat the procedure for all points in the reconstructed phase space. This

process can be mathematically represented as

C(r) =
2

N(N − 1)

N∑
j=1

N∑
i=j+1

Θ(r − d(x(i),x(j))), (2.4)

where:

Θ(a) =


1, if a ≥ 0

0, otherwise

and

d(x(i),x(j)) =
√∑m−1

k=0 (Xi−k −Xj−k)2

Θ is the Heaviside function, C(r) is called the correlation sum which converges to

correlation integral when N →∞. This procedure of estimating correlation sum was

proposed by Grassberger et al. and is called as the Grassberger-Procaccia algorithm.

Correlation sum (C(r)) refers to the probability that two randomly chosen vectors

will be closer than r in the reconstructed phase space.

2.4.3 Correlation Dimension

One would expect the correlation sum C(0) = 0 for a chaotic system, as the points in

reconstructed phase space never repeat in a nonperiodic system embedded without

false nearest neighbors. A plot of logC(r) versus log r should give an approximately

straight line whose slope in the limit of small r and large N is called as the correlation

dimension given by
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D2 = lim
r→0

lim
N→∞

logC(r)

log r
(2.5)

It is important to note here that these invariants of the dynamics (largest Lya-

punov exponent, correlation dimension and correlation sum) have been extracted

directly from the given time series without making specific assumptions about the

system.

2.4.4 Drawbacks of Traditional Chaotic Invariants

The proposed algorithms to estimate chaotic invariants suggest that these invariant

measures require large number of data samples (of the order of 10m− 30m) [132, 109]

for accurate estimation (where m is a parameter used in the estimation procedure

called as the embedding dimension), with typical values of m = 3 and above, corre-

sponding to a minimum of 1000 data samples. In computer vision applications such

as action recognition, the signal acquisition operates at a frequency of 30 frames/sec.

Hence, the observation time of any given action should be at least 33 seconds, which

is impractical. In general, these traditional chaotic invariants suffer from at least one

of these drawbacks: (a) unreliable for small datasets, (b) computationally intensive,

(c) relatively difficult to implement [109]. In recent years, these methods have been

applied to model various visual dynamical phenomenon such as video-based recogni-

tion of human activities [5] as well as recognition of dynamical scenes [118]. However,

when one needs to make inferences from short videos, or for instance when the ac-

tivity of interest lasts only a few seconds, the classical approaches have significant

drawbacks.
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2.5 Applications of Interest

2.5.1 Activity Recognition

Human activity analysis has attracted the attention of many researchers providing

extensive literature on the subject. A detailed review of the approaches in literature

for modeling and recognition of human activities are discussed in [4, 51]. Since our

present work is related to non-parametric approaches for dynamical system analysis

for action modeling, we restrict our discussion to related methods.

Human actions have been modeled using dynamical system theory in computer

vision [5, 16] and biomechanics [37, 95, 127]. Differential equations can be used to

model such a system, which requires access to all independent variables of the system.

This approach would facilitate an understanding of the system behavior and also allow

for the prediction of future states using present and past state information. However,

this is not realizable in practice, as it is extremely hard to determine the independent

variables and the interactions governing the dynamics of human actions.

Dynamical modeling of human actions can be broadly categorized into paramet-

ric and nonparametric methods. Furthermore, human actions have been modeled

with the assumption that the underlying dynamical system is linear [16] or nonlinear

[5, 104]. In parametric modeling approaches, the dynamics of a system is represented

by imposing a model and learning the model parameters from training data. Hid-

den Markov Models (HMMs) [103] and Linear Dynamical Systems (LDSs) [26] are

the most popular parametric modeling approaches employed for action recognition

[154, 146, 139, 33] and gait analysis [65, 77, 16]. Nonlinear parametric modeling

approaches like Switching Linear Dynamical Systems (SLDSs) have been utilized to

model complex activities composed of sequences of short segments modeled by LDS

[20]. While, nonlinear approaches can provide a more accurate model, it is difficult
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to precisely learn the model parameters. In addition, one would only approximate

the true-dynamics of the system with attempts to fit a model to the experimental

data. An alternative nonparametric action modeling approach is based on tools from

chaos theory, with no assumptions on the underlying dynamical system. Traditional

chaotic measures, like the largest Lyapunov exponent, correlation dimension and cor-

relation integral, have been extensively used to model human actions [5, 37, 95, 127].

However, [109] and [132] have shown that these nonlinear dynamical measures need

large amounts of data to produce stable results (10m, where m is the embedding di-

mension). Junejo et al. [64] used a self-similarity matrix, a graphical representation

of distinct recurrent behavior of nonlinear dynamical systems, to learn an action de-

scriptor. In this work, through illustrative examples and experimental validation, we

show that our framework works better than traditional chaotic invariants for action

modeling.

2.5.2 Activity Quality for Stroke Rehabilitation

While recognizing human activities is seen as a challenging task in the computer vision

community, recently researchers from various backgrounds have shown interest in the

development of computational frameworks for quantification of quality of movement,

for possible applications in health monitoring and rehabilitation [30, 127, 132, 142].

Stroke being the most common neurological disorder, leaves millions disabled every

year who are unable to undergo long-term therapy treatment due to insufficient cov-

erage by insurance. Recent directions in rehabilitation research has been towards

development of portable systems for therapy treatment. Traditional quantitative

scales such as the Fugl Meyer Test [50] and the Wolf Motor Function Test (WMFT)

[149], have proven to be effective in evaluating movement quality. However, these

approaches involve visual monitoring which would greatly benefit from the devel-
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opment of an objective computational framework for movement quality assessment.

The aim here is to develop standardized methods to describe the level of impairment

across subjects. We show the utility of the proposed action modeling framework for

quantifying the quality of reaching tasks using a single marker on the wrist, and ob-

tain comparable results to a heavy marker-based setup (14 markers placed on arm,

shoulder and torso [30]).

The focus of existing approaches for movement quality assessment has been to-

wards finding typical patterns in kinematics which differ between healthy and im-

paired subjects. While these approaches are successful in giving an insight into un-

derstanding human movement, they fail to utilize the inherent dynamical nature of

the movement. Rehabilitation therapies are composed of repetitive movements (e.g.,

reach to a target) that are strongly periodic with inherent variability. Traditional

methods have assumed that this variability arises from noise in the system. However,

it is evident that variability is an integral part of repetitive movements due to the

availability of multiple strategies for the movement. Also, it is believed that vari-

ability produced in human movement is a result of nonlinear interactions and have

deterministic origin [127]. Extensive research has been carried out to model this vari-

ability using nonlinear dynamical system theory [37, 95, 127]. In this work, we utilize

the action modeling framework for movement quality assessment using a single wrist

marker.

2.5.3 Natural Scene Classification

Natural scene classification has been an active area of research in computer vision

with applications in automated image and video understanding. Much research has

been focused around scene classification using single still images [47, 153], thereby

neglecting dynamical motion information available in videos. Recently, the problem
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of dynamical modeling of natural scenes was introduced by Shroff et al. [118] who

utilized tools from chaos theory along with GIST [90, 89] to model the spatio-temporal

evolution in natural scenes in an unconstrained setting.

Dynamic texture representation using LDS proposed by Soatto et al. have been

used to recognize and synthesize dynamic textures such as sea-waves, smoke, traffic

[124, 39]. Such low-dimensional models have been used to capture complex natural

phenomena. However, experimental results reported in [118] show that these simple

models might not be effective for dynamic scene classification in an unconstrained

setting. Shroff et al. utilized traditional chaotic invariants to model the dynamics

and have shown that dynamical attributes augmented with spatial attributes (GIST

[89]) can be effectively used for categorization of dynamic scenes [118]. Another recent

approach utilized spatio-temporal oriented energy filters for dynamic natural scene

classification [36]. In this work, we test the generality of the proposed action modeling

framework for dynamic scene classification application.
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3 DYNAMICAL SHAPE FEATURE EXTRACTION

In this chapter, we present a framework which combines the strong theoretical con-

cepts of nonlinear dynamical analysis and ideas in shape theory to effectively represent

the nature of dynamics. From Fig. 2.3, we see that the ‘shape’ of the reconstructed

phase space can be seen as a discriminative feature for classification between Run

and Walk action classes. Hence, our aim will be to extract feature representations

for the shape of the reconstructed phase space. It is important to note here that

the process of phase space reconstruction preserves certain topological properties and

global shape is not a topological invariant, while local shape properties are. However,

our goal here is to suggest a shape-based descriptor (both global and local) which

possess sufficient discriminatory properties and robustness.

We consider the attractor as having its own characteristic shape in the high-

dimensional phase space. Shape analysis of 3D surfaces is a well-studied problem in

the computer vision community. In [92], Osada et al. present a method for finding

a similarity measure between 3D shapes by computing shape distributions of the

3D surface sampled from the shape function by measuring their global geometric

properties. We use the shape distribution of the reconstructed phase space as the

dynamical feature representation in our experiments. While the shape distributions

was originally proposed to measure similarity between 3D shapes, we believe that

shape distributions can be used as feature representations for any n-dimensional phase

space. In addition, it is said that any function can be used to extract the shape
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distribution [92], but we adopt simpler shape functions based on geometric properties

(distance and area) which are listed below:

(a) Global Shape Functions :

• D1: measures the distance between one fixed point and one random point

sampled from the reconstructed phase space. The fixed point is selected as the

centroid of the attractor.

• D2: measures the distance between two random points in the phase space

represented as ||xi − xj||2.

• D3: measures the square root of the area of the triangle formed by three random

points on the attractor.

For example, the D2 shape function can be represented as

D2ij = ||xi − xj||2, (3.1)

where xi and xj are points (embedding vectors) in the reconstructed phase space.

A set of these distances for randomly chosen embedding vector pairs are computed.

From this set, we construct a histogram by counting the number of samples which

fall into each of B=50 fixed sized bins to obtain the attractor’s shape distribution.

These shape functions encode global geometric properties of the phase space, lack-

ing information about local shape and dynamical evolution in the phase space. While

previous investigation shows that global geometric shape function (D2) performs suf-

ficiently better than the traditional nonlinear dynamical measures (largest Lyapunov

exponent, correlation dimension and correlation integral) [142], we hypothesize that

a shape function which encodes local geometry and dynamical evolution information

of phase space should improve the performance. In this direction, we propose new
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shape functions defined as,

(b) Local Shape Functions :

• DT1: It is similar to D2, with an additional constraint that the time separa-

tion between two random points in reconstructed phase space is ≤ δ, thereby

encoding only the local shape information.

• DT2: encodes dynamical evolution of the phase space by exponential weighting

given by

DT2ij = e−γ|ti−tj | ∗ ||xi − xj||2, (3.2)

where ti and tj are the time indexes of the randomly selected pair of embedding

vectors in the reconstructed phase space. ‘δ’ and ‘γ’ are empirically determined

parameters such that δ, γ ≥ 0.

Local vs Global: The main idea behind proposing these local shape functions

is that, a global shape function would consider data samples from independent rep-

etitions (well separated in time) of a movement. Also, repetitive human movements

(such as running and walking) result in trajectories which wraps around itself in re-

constructed phase space, creating an artifact of having closely spaced trajectories in

phase space. We believe that such an approach would not provide a robust feature

representation, and we suggest the use of local shape functions instead which only

considers data samples close in time.

Metric on Shape Distributions: Several metrics exist in literature to calcu-

late the distance between histograms including chi-squared statistic (χ2 distance),

Bhattacharyya distance [13], Riemannian analysis [126] and Earth Mover’s Distance

(EMD) [112]. In our experiments, we provide results using Euclidean distance and

chi-squared distance metrics for comparison due to their simplicity.
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3.0.4 Test on Models

The framework was tested on the Lorenz and Rossler models to determine whether the

shape feature can be effectively used to classify differences in shape of reconstructed

phase space of nonlinear dynamical systems. We compare the performance of the pro-

posed framework with that of largest Lyapunov exponent. The effect of time-series

length on estimation of largest Lyapunov exponent was revealed by Rosenstein et al.

[109], by evaluating the performance of the algorithm they proposed for estimation

of λ1 for various time-series lengths. The simulation results on Lorenz and Rossler

models are shown in TABLE 3.1. Their findings indicate that the estimation error

increases with reduction in time-series length (N). Fig. 3.1 depicts the variations

in reconstructed phase space for different time-series length with defined embedding

parameters. It is evident from these plots that the shape of the reconstructed phase

space remain sufficiently similar and can be used as a discriminative feature for clas-

sification purposes. Also, from Fig. 3.2, the shape distribution (using D2 shape

function) was found to be stable for different time-series lengths. This striking ability

of our feature representations to be robust to changes in data length will be useful in

applications related to human activity analysis, where the signal observation time is

small/variable.

3.1 Experiments and Results

The proposed framework for representation of dynamics was evaluated on the follow-

ing video-based inference tasks:

(1) Action recognition on a motion capture dataset [5].

(2) Action recognition on the MSR Action3D dataset released by Microsoft Research

[76].
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Table 3.1: Experimental results on Lorenz and Rossler models for given embedding
parameters (mL = 3, τL = 11, mR = 3, τR = 8) and different time-series lengths. The
true value of λ1 for Lorenz and Rossler models are 1.50 and 0.09 respectively [148].

System N Calculated λ1 % error

Lorenz

1000 1.751 16.7

2000 1.345 -10.3

3000 1.372 -8.5

4000 1.392 -7.2

5000 1.523 1.5

Rossler

400 0.0351 -61.0

800 0.0655 -27.2

1200 0.0918 2.0

1600 0.0984 9.3

2000 0.0879 -2.3

−50
0

50 −50
0

50
−50

0

50

x(t+τ)x(t)

x(
t+

2τ
)

−50
0

50 −50
0

50
−50

0

50

x(t+τ)x(t)

x(
t+

2τ
)

−50
0

50 −50
0

50
−50

0

50

x(t+τ)x(t)

x(
t+

2τ
)

−50
0

50 −50
0

50
−50

0

50

x(t+τ)x(t)

x(
t+

2τ
)

−50
0

50 −50
0

50
−50

0

50

x(t+τ)x(t)

x(
t+

2τ
)

Reconstructed phase space of Lorenz system for different time-series lengths

−20 0 20
−20020

−20

0

20

x(t)x(t+τ)

x(
t+

2τ
)

−20 0 20
−20020

−20

0

20

x(t)x(t+τ)

x(
t+

2τ
)

−20 0 20
−20020

−20

0

20

x(t)x(t+τ)

x(
t+

2τ
)

−20 0 20
−20020

−20

0

20

x(t)x(t+τ)

x(
t+

2τ
)

−20 0 20
−20020

−20

0

20

x(t)x(t+τ)

x(
t+

2τ
)

Reconstructed phase space of Rossler system for different time-series lengths

−50
0

50

−50
0

50
−50

0

50

x(t)x(t+τ)

x(
t+

2τ
)

−50
0

50

−50
0

50
−50

0

50

x(t)x(t+τ)

x(
t+

2τ
)

−50
0

50

−50
0

50
−50

0

50

x(t)x(t+τ)

x(
t+

2τ
)

−50
0

50

−50
0

50
−50

0

50

x(t)x(t+τ)

x(
t+

2τ
)

−50
0

50

−50
0

50
−50

0

50

x(t)x(t+τ)

x(
t+

2τ
)

Reconstructed phase space of Run action for different time-series lengths

Figure 3.1: Illustration of the effect of time-series lengths on reconstructed phase
space for nonlinear dynamical models like Lorenz and Rossler systems, and right-foot
trajectory of a subject performing Run action. These examples clearly indicate that
the shape of the reconstructed phase space does not change with time-series length,
motivating feature extraction representative of the shape of the reconstructed phase
space (as reported in Fig. 3.2).
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(b) Shape distribution (D2) of re-

constructed phase space from right-

foot trajectory of a subject perform-

ing Run action for different time-

series length.

Figure 3.2: Illustration of stability of the dynamical shape distribution (D2) ex-
tracted from reconstructed phase space for different time-series length. (a) shows the
stability of D2 distribution on Lorenz and Rossler systems while studies have re-
ported significant error in estimation of largest Lyapunov exponent on these models
(refer TABLE 3.1). (b) depicts the stability of D2 distribution for trajectory data
collected from right-foot of a subject performing Run action.

(3) Action quality estimation on stroke rehabilitation datasets collected in hospital

and home based environments [9, 30].

(4) Dynamic scene classification on the Maryland “in-the-wild” natural scene dataset

[118] and the Yupenn “stabilized” scene dataset [36].

Baseline: The main contribution of our work is to propose a better way to encode

dynamics compared to traditional chaotic invariants. To evaluate the effectiveness of

our framework, we provide comparative results in each experiment with a feature vec-

tor 1 using traditional chaotic invariants obtained by concatenating largest Lyapunov

exponent, correlation dimension and correlation integral (for 8 values of radius) re-

sulting in a 10-dimensional feature vector denoted as Chaos . For a fair comparison,

1Code available at
http://www.physik3.gwdg.de/tstool/HTML/index.html
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Figure 3.3: Illustration of the phase space reconstruction and dynamical shape
feature extraction (D2 shape feature) using four examples of Run, Walk and Dance
action classes each from the motion capture dataset [5]. As an example, phase space
reconstruction of X-rotation time-series from right leg of subjects performing these
actions is shown. Embedding parameters, m was selected to be 3 and τ was calculated
by method explained in section 2.3.1. It is evident from these examples that the
‘shape’ of phase space is a representative feature for an action class and can be
captured using shape distributions.

the embedding procedure is fixed as mentioned in earlier sections.

3.1.1 Motion Capture Dataset

In the first experiment, we evaluate the performance of the proposed framework using

3-dimensional motion capture sequences of body joints of subjects performing actions

released by FutureLight, R&D division of Santa Monica Studios [5]. The dataset is

a collection of five actions: dance, jump, run, sit and walk with 31, 14, 30, 35 and

48 instances respectively. The classification problem on this dataset is shown to be

challenging due to the presence of significant intra-class variations [5]. The data is

in the form of trajectories of 3D rotation angles from 18 body joints. We use all

body joints except the hip joint, to remove any effects of translational movement

of the body. The 3D time-series from these 17 body joints were divided into scalar
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time-series resulting in a 51-dimensional vector representation for each action. Phase

space reconstruction and dynamical shape feature extraction was performed. The

results of the leave-one-out cross-validation approach using a nearest neighbor clas-

sifier (using Euclidean and χ2 distance metrics) are tabulated in TABLE 3.2. The

best classification performance we achieved was a mean accuracy of 99.37% using

DT2 dynamical shape feature, in comparison with 89.7% reported by Ali et al. in

[5] using traditional chaotic invariants. In addition, we see that the classification

performance of each dynamical shape feature is significantly better than the results

achieved by using traditional chaotic invariants (Chaos with m = 3 & m = 5). The

proposed action modeling framework achieves near-perfect classification accuracy on

the motion capture dataset even in the presence of significant intra-class variations

indicating its stability. This is also evident from the examples shown in Fig. 3.3,

where minor variations in the reconstructed phase space (in the form of intra-class

variations) has not produced any significant effect on the dynamical shape feature

indicating the stability of the proposed framework. From these results, we see that

the dynamical shape features with temporal evolution information (DT1 and DT2)

performs better than the shape features D1, D2 and D3, hence substantiating our

hypothesis that shape functions with dynamical evolution information should only

improve the recognition performance.

3.1.2 Kinect Dataset

The framework was also evaluated on a more comprehensive dataset released by Mi-

crosoft Research called MSR Action3D dataset [76] having 20 action classes: high arm

wave, horizontal arm wave, hammer, hand catch, forward punch, high throw, draw x,

draw tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side

kick, jogging, tennis swing, tennis serve, golf swing, pick up & throw with 10 subjects
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Table 3.2: Classification rates for the various proposed dynamical shape features of
phase space on the motion capture dataset. For comparison, we use Euclidean dis-
tance and chi-squared distance metrics as a measure of distance between probability
distributions. We see that DT2 achieves highest classification rate of 99.37%. The
confusion table of the same is reported in TABLE 3.3.

Dynamical Shape Feature
Distance Measure

L2 χ2

Chaos (m = 3) 80.38 83.54

Chaos (m = 5) 82.28 85.54

Ali et al. 89.70 -

D1 (m = 3) 94.30 98.10

D2 (m = 3) 96.84 96.84

D3 (m = 3) 97.47 97.47

DT1 (m = 3) 97.47 98.73

DT2 (m = 3) 96.84 99.37

Table 3.3: Confusion table for motion capture dataset using DT2 as the dynamical
shape feature achieving mean classification rate of 99.37% when compared to 89.7%
reported by Ali et al. in [5].

Action Dance Jump Run Sit Walk

Dance 30 1 0 0 0

Jump 0 14 0 0 0

Run 0 0 30 0 0

Sit 0 0 0 35 0

Walk 0 0 0 0 48
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(a) D1 (b) D2 (c) D3 (d) DT1 (e) DT2

(f) D1 (g) D2 (h) D3 (i) DT1 (j) DT2

Figure 3.4: Example actions from action class Tennis serve (a) and Two hand wave
(b) from the MSR Action3D dataset. Skeleton data of 20 joints provided in the
dataset will be used in our action recognition experiment. Shape distributions from
reconstructed phase space using the hand trajectory from five instances each of tennis
serve and two hand wave actions is shown here to illustrate the insensitivity of the
framework to inter-class similarities.
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performing each action thrice (see Fig. 3.4 for example actions). The action classes

in this dataset were selected to ensure the use of arms, legs and torso by subjects to

simulate interaction with gaming consoles. High similarity between classes (e.g., for-

ward punch and hammer, high throw and pickup & throw) makes this a challenging

dataset. The 20 action classes were further divided into 3 Action Sets: AS1, AS2 and

AS3 in [76] to account for the large amount of computation involved in classification

of these actions. The action sets 1 and 2 were intended to group actions with simi-

lar movement and action set 3 to group complex movements. The dataset provides

3D joint positions on which phase space reconstruction and extraction of shape dis-

tribution were carried out individually on every dimension (x, y & z). These shape

distributions were concatenated to form our feature vector representative of any given

action. The classification results on the cross-subject test setting using a linear SVM

are tabulated in TABLE 3.4 and as seen, the proposed framework performs better

than the traditional chaotic invariants. Examples shown in Fig. 3.4 further support

our hypothesis that shape distributions can be used as discriminative feature of re-

constructed phase space representative of actions. In order to illustrate the proposed

framework’s stability to intra-class variations and insensitivity to inter-class similar-

ities, we compare the dynamical shape features of hand trajectory for five instances

of tennis serve and two hand wave action classes. Evident from these examples is

that even actions using similar hand movements are represented by dynamical shape

features with enough differences to successfully recognize these actions. Furthermore,

from results in TABLE 3.4, we see that the dynamical shape feature DT2 has the

highest overall classification accuracy, indicating that the shape distribution based on

temporal evolution of phase space is better than traditional global shape representa-

tions. We have also provided classification results using a nearest neighbor classifier

in TABLE 3.5 for a comprehensive comparison of the proposed shape distributions.
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Table 3.4: Classification results for cross-subject test setting where 50% subjects
were used for training and the remaining 50% subjects for testing in proposed method
using linear SVM.

Shape Distribution (m = 3) Chaos

Set D1 D2 D3 DT1 DT2 m = 3 m = 5

AS1 88.35 89.32 87.13 88.57 90.48 72.28 74.56

AS2 69.72 72.65 71.43 73.21 74.11 51.85 52.40

AS3 90.74 96.40 98.20 98.25 99.09 76.36 78.86

Avg. 82.94 86.12 85.59 86.68 87.89 66.83 68.61

Table 3.5: Classification results for cross-subject test setting where 50% subjects
were used for training and the remaining 50% subjects for testing in proposed method
using nearest-neighbor classifier.

Shape Distribution (m = 3) Chaos

Set D1 D2 D3 DT1 DT2 m = 3 m = 5

AS1 67.00 74.62 75.73 75.05 78.43 52.30 55.67

AS2 59.63 67.66 65.77 64.47 68.21 42.53 49.23

AS3 87.83 89.96 89.66 88.11 91.13 53.45 60.59

Avg. 71.49 77.41 77.05 75.87 79.25 49.43 55.16
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Figure 3.5: Proposed framework for movement quality assessment and action recog-
nition by extraction of dynamical shape feature from reconstructed phase space. (a)
shows the time-series of x-location of wrist marker; its respective reconstructed phase
space is shown in (b). These two exemplar trajectories are collected from the stroke
rehabilitation dataset [30] and belong to unimpaired and impaired subjects respec-
tively. The corresponding dynamical shape feature represented by shape distribution
is shown in (c). Similarity measure (e.g., Euclidean distance) can be used to classify
these trajectories.
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3.1.3 Activity Quality for Stroke Rehabilitation

Our aim in this experiment is two-fold: a) to classify movements of unimpaired (neuro-

logically normal) and impaired (stroke survivors) subjects, b) to quantitatively assess

the quality of movement performed by the impaired subjects during repetitive task

therapy. Fig. 3.5 illustrates the differences in shape of reconstructed phase space

between unimpaired and impaired subjects using trajectories from the wrist marker

(reflective marker placed on the subject’s wrist). The experimental data was collected

using a heavy marker-based system (14 markers on the right hand, arm and torso)

in a hospital setting. Seven unimpaired and 15 impaired subjects perform multiple

repetitions of reach and grasp movements, both on-table and elevated (the subject

must move against gravity to reach the target). Each subject would perform 4 sets

of reach and grasp movements to different target locations, with each set having 10

repetitions. To account for a small number of training examples, we adopt leave-one-

reach-out cross validation scheme where one set of reach movement was used as testing

example and rest as training examples. The stroke survivors were also evaluated by

the Wolf Motor Function Test (WMFT) [149] on the day of recording, which evalu-

ates the subject’s functional ability on a scale of 1 − 5 (with 5 being least impaired

and 1 being most impaired) based on predefined functional tasks. Since our focus

is on development of quantitative measures of movement quality for a home-based

rehabilitation system that would use a single marker on the wrist, we only use the

data corresponding to the single marker on the wrist from the heavy marker-based

hospital system.

The focus of traditional methods for quantitative assessment of movement quality

has been towards kinematics. Hence, in TABLE 3.6, we compare our results with an

approach which uses kinematic analysis on the same dataset [30]. We also compare
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Table 3.6: Comparison of classification rates for different methods using leave-one-
reach-out cross-validation and nearest neighbor classifier on the stroke rehabilitation
dataset.

Method Classification Rate (%)

KIM [30] 85.2

Chaos (m = 3) 81.82

Chaos (m = 5) 83.43

D1 (m = 3) 84.32

D2 (m = 3) 88.60

D3 (m = 3) 86.04

DT1 (m = 3) 87.65

DT2 (m = 3) 92.05

our results with the performance of traditional chaotic invariants. It is evident from

these results that our framework performs better than the two promising quantitative

measures for movement analysis in the field of stroke rehabilitation.

We also propose a framework for movement quality assessment (shown in Fig.

3.6) for stroke rehabilitation. Using the WMFT scores of impaired subjects, we

learn a regression function using SVM to compute a movement quality score from

dynamical shape feature (using D2 shape distribution). The regressor was trained

using leave-one-reach-out cross-validation technique. The outputs of the regressor

were averaged per subject to get the Movement Quality Score (MQS). Fig. 3.7 shows

a comparison between the actual WMFT score and the quality assessment score

by the proposed method (MQS). The Pearson correlation coefficient between the

MQS and the Function Activity Score (FAS) of the WMFT was found to be 0.8527.

When we repeat the same experiment with kinematic attributes on a single wrist

marker, the correlation coefficient was found to be 0.6481. In comparison, kinematic
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Figure 3.6: Block diagram representation for learning a regressor for movement qual-
ity assessment using Functional Activity Score (FAS) from the Wolf Motor Function
Test (WMFT).
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Figure 3.7: Comparison between impairment level (with 5 being least impaired
and 1 being most impaired) given by actual WMFT score and MQS for 15 impaired
subjects. The Pearson correlation coefficient was found to be 0.8527 with a two-tail
P-value of 5.35× 10−5, proving its statistical significance.

analysis of data from all 14 markers gave a correlation coefficient of 0.9041. This

experiment clearly shows that the proposed framework achieves comparable results

obtained by the heavy marker-based system even when using a single wrist marker,

which is facilitated by the phase space reconstruction and robust feature extraction

from phase space using shape distribution.

The WMFT scores are based on several functional tasks (e.g., folding a towel,

picking up a pencil) and not on evaluation of the actual movements during repetitive
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therapy treatment (reach and grasp movements). In the above experiment, we utilize

these WMFT scores as an approximate high-level quantitative measure for movement

quality of impaired subjects performing reach and grasp movements, as both WMFT

evaluation and 3D marker data on the wrist were obtained on the same day.

To address this conflict in collection of ground truth (movement quality labels)

and trajectory data, we have collected a dataset from eight stroke survivors perform-

ing reach and grasp movement tasks and have developed a rating scale for movement

quality in collaboration with physical therapists. Within this scale, physical thera-

pists would provide us an overall rating on a scale of 1 − 5 based on the therapist’s

impression of the participant’s performance. A score of 1 denotes that the participant

could not complete the task (most impaired) and a 5 denotes that the participant

performed the task with the same quality of performance as the therapist if he/she

were to perform it (least impaired or unimpaired). We have collected both 3D posi-

tion of the wrist and physical therapist ratings in order to make comparisons among

the kinematics, our proposed measure, and the therapist ratings, across the same

reach action. Utilizing the expert knowledge of the therapist ratings for these rated

actions will also help us better contextualize the data to better shape our framework

as a therapy tool. Using the same framework for regression as earlier, we see from

TABLE 3.7 that the proposed framework (using DT2) performs better than the tra-

ditional methods for movement quality assessment in terms of correlation coefficient

and mean squared error. It should be noted that the proposed framework does not

require data collected from unimpaired subjects for generating MQS, while kinematic

methods like KIM [30] does, making the framework more suitable to model complex

tasks during therapy treatment.

38



Table 3.7: Comparison of performance of the proposed dynamical shape features
with the performance of traditional methods used for movement quality analysis.

Method Correlation Coefficient MSE

KIM [30] 0.4918 0.0066

Chaos (m = 3) 0.4717 0.0101

Chaos (m = 5) 0.5089 0.0100

D1 (m = 3) 0.3877 0.1190

D2 (m = 3) 0.5029 0.0078

D3 (m = 3) 0.4935 0.0061

DT1 (m = 3) 0.4582 0.0100

DT2 (m = 3) 0.5510 0.0057

3.1.4 Dynamic Scene Recognition

Natural dynamic scene recognition has been gaining interest in recent years [118, 36].

In an attempt to test the generality of the proposed framework to dynamical modeling

for applications in video analysis, we evaluate its performance on dynamical scene

classification. In this experiment, we use the Maryland “in-the-wild” dataset [118]

which is a collection of 13 classes with 10 examples per class and a larger Yupenn

stabilized dynamic dataset [36] which is a collection of 14 classes with 30 examples

per class. The former has videos collected from video hosting websites with no control

over recording process leading to a dataset with large variations in illumination, view

and scale [118]. The latter dataset was recently released to emphasize only the scene-

specific temporal information rather than camera-induced ones. In addition, the

scene classes in the datasets were selected to illustrate potential failure of static scene

representations leading to confusion between classes (e.g., chaotic traffic and smooth

traffic).
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Recent research on dynamical modeling of scenes have shown that temporal (mo-

tion) information can provide better classification performance than traditional fea-

ture representations (e.g., GIST [89]) on static scenes [118, 36]. The GIST feature is

based on the hypothesis that humans recognize scenes by holistic understanding of

a scene [89, 14], thereby providing a global spatial representation of a scene. Shroff

et al. employed traditional chaotic invariants to model the dynamics in the time-

series of the 960-dimensional GIST descriptor extracted from each video and will

be treated as our baseline. Similarly, we compare the performance of our proposed

shape distribution features estimated on the 960-dimensional GIST descriptor to fur-

ther support our hypothesis that proposed shape-based features can perform better

than traditional chaotic invariants in video-based inference tasks.

The average classification accuracy for all the proposed dynamical shape features

in comparison with traditional chaotic invariants using a nearest neighbor classifier

are tabulated in TABLE 3.8 and 3.9. It is evident from these results that the pro-

posed dynamical shape features (D2 and DT2) perform better than the traditional

chaotic invariants used in literature for dynamical scene classification. Evidently it

is possible to improve classification performance further by fusion of dynamical and

spatial features as in [118], but here we restrict ourselves to comparison with core

dynamical approaches.

3.2 Conclusion and Future Work

In this work, we have proposed a shape theoretic dynamical analysis framework for

applications in action and gesture recognition, movement quality assessment for stroke

rehabilitation and dynamical scene classification. We address the drawbacks of tradi-

2Here “our” refers to our implementation of traditional chaotic invariants using the

OpenTSTOOL package.
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Figure 3.8: Dynamic scene “in-the-wild” dataset consisting of 13 scene classes with
10 examples per class [118]. Sample video frames from scene classes (left-to-right,
top-to-bottom) avalanche, boiling water, chaotic traffic, forest fire, fountain, iceberg
collapse, landslide, smooth traffic, tornado, volcanic eruption, waterfall, waves and
whirlpool are shown here. This dataset has large intra-class variations with significant
changes in illumination and scale.

Table 3.8: Comparison of classification rates for various approaches on the Maryland
“in-the-wild” dataset (with m = 3).

Class Chaos [118] Chaos (our) 2 D1 D2 D3 DT1 DT2

avalanche 30 40 0 0 20 10 0

b. water 30 40 30 40 20 30 30

c. traffic 50 30 80 100 50 60 90

f. fire 30 20 10 30 30 30 30

fountain 20 0 40 30 30 30 40

i. collapse 10 0 10 0 0 10 0

landslide 10 50 0 10 20 10 20

s. traffic 20 20 20 30 30 40 30

tornado 60 10 40 70 60 50 60

v. eruption 70 0 60 70 60 40 70

waterfall 30 20 10 40 20 20 30

waves 80 40 70 80 80 90 80

whirlpool 30 20 40 50 30 70 50

Avg. (%) 36 22.31 31.54 42.31 34.62 37.69 40.77

41



Table 3.9: Comparison of classification rates for various approaches on the Yupenn
“stabilized” dynamic dataset (with m = 3).

Class Chaos [118] Chaos (our)2 D1 D2 D3 DT1 DT2

beach 27 17 77 80 77 83 77

c. street 17 70 3 87 90 100 93

elevator 40 17 7 37 10 23 17

f. fire 50 10 40 50 57 40 50

fountain 7 10 0 27 17 47 0

highway 17 17 77 47 53 33 60

l. storm 37 97 97 97 93 97 100

ocean 43 30 60 70 80 87 77

railway 3 17 60 57 23 40 60

r. river 3 87 60 90 83 87 77

sky 33 23 30 47 43 50 57

snowing 10 77 73 80 90 90 93

waterfall 10 17 50 37 30 37 37

w. farm 17 03 30 13 20 10 33

Avg. (%) 22.43 35.14 48.64 58.50 54.71 58.85 59.35

tional measures from chaos theory for modeling the dynamics by proposing a frame-

work combining the concepts of nonlinear time-series analysis and shape theory to

extract robust and discriminative features from the reconstructed phase space. Our

experiments on nonlinear dynamical models and joint trajectory data from motion

capture support our hypothesis that the shape of the reconstructed phase space can

be used as feature representation for the above discussed applications. Furthermore,

the wide range of experimental analysis on publicly available datasets for recognition

of actions, gestures and scenes validate our claims. The framework was also tested

on movement analysis on a finer scale, where we were interested in quantifying the

movement quality (level of impairment) for applications in stroke rehabilitation. Our

experiments using a single marker indicate that with combination of dynamical fea-

tures and machine learning tools, we are able to achieve comparable performance

levels to a heavy marker-based system in movement quality assessment.

In this work, we perform phase space reconstruction on every dimension indepen-

dently (univariate phase space reconstruction). Our future directions will be towards
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employing techniques for multi-variate phase space reconstruction [23]. It has been

shown in [12] that multi-variate phase space reconstruction method provides better

modeling than univariate phase space reconstruction, and hence lower error in pre-

dictions for human motion. We would also like to explore the use of approximate

entropy [99], a dynamical measure quantifying regularity in a time-series. The sug-

gested number of data samples required for computation of approximate entropy is

between 50 and 5000 [99], which makes it more a suitable feature representation for

applications in video-based inferences.

43



4 KINEMATIC ANALYSIS FOR STROKE REHABILITA-

TION

Stroke is the most common neurological disorder worldwide [79] leaving behind a

significant number of survivors every year disabled with chronic impairments such

as problems with vision, difficulty to formulate or understand speech, or inability to

move limbs. Even with persistent efforts to lower blood pressure and reduce smoking,

the incidence of stroke remain high due to the ageing population, with nearly three-

quarters of stroke related events experienced by people over the age of 65 [53, 107].

This increasing demand for rehabilitation facilities has been seen as a significant

healthcare problem worldwide [91, 84]. In addition, studies indicate that the in-

creasing healthcare costs paired with insufficient coverage by insurance for long-term

therapy treatment has often left impairments untreated [6]. Hence, it is important

to have well-thought-out strategies to manage these stroke survivors by providing

low-cost long-term rehabilitation therapy for their recovery.

Traditional rehabilitation therapy is usually composed of repetitive movement

tasks such as reaching and grasping an object. A participant performs these movement

tasks in a hospital under the supervision of a physical therapist, who visually monitors

the quality of movement over time to provide personalized rehabilitation therapy. This

laborious and expensive process has motivated researchers to invent novel strategies

to accelerate hospital discharge without compromising on clinical outcomes.

Challenges in Developing Component-level Kinematic Features: Thera-
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pists are trained to assess the overall performance of a task, which can also be achieved

through existing validated clinical measures such as the Wolf Motor Function Test

(WMFT) [149] and the Fugl-Meyer Assessment (FMA) [49]. Such clinical measures

do not provide enough information about the component-level impairments, which

will be useful in providing focused rehabilitation. The motivation of our research

was to develop a computational framework for component-level tuning of kinematic

features such as trajectory error, speed profile deviation, jerkiness, and segmentation

using the composite (overall) therapist impressions of movement quality to drive the

feedback module in the HAMRR system.

One recurring problem in the stroke rehabilitation community is the general lack

of consensus among physical therapists in defining an ontology of component level

labels for movement quality, thereby leading to lack of training datasets to develop

algorithms for movement quality assessment. In addition, therapists only provide

composite assessments indicative of quality of overall movement without any infor-

mation about components such as deviation in speed profile, leading to a challeng-

ing problem to train the component-level kinematic features, which are required to

provide personalized rehabilitation and facilitate active learning without therapist

supervision. An illustration of the above concept is shown in Fig. 4.1, where the

aim is to induce active learning by providing auditory and visual feedback implying

the impairments in low-level components such as trajectory inaccuracy, tremor, and

segmentation [10]. In Fig. 4.1, (a) and (c) represent the visual feedback seen during

an efficient reach (reach trajectory without any impairments) marked by a straight

path of rocks or a complete boat, while (b) represents a reach with trajectory error

on the right marked by curved path of rocks (in red), and (d) represents a reach with

segmentation error marked by a broken boat.

Towards Home-based Rehabilitation Systems: Clinical intervention alone
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Figure 4.1: Exemplar visual feedback summaries based on low-level kinematic anal-
ysis. (a) represents an efficient reach, (b) represents trajectory error to the right. (c)
is a representation of an efficient and consistent task completion and (d) represents
segmented movement.

is not completely effective for restoring daily activity functionality in a stroke survivor

[72, 130, 34, 40]. A comprehensive study involving 1277 stroke survivors has reported

that an early hospital discharge and home-based rehabilitation strategy resulted in

reduced length of stay by 13 days, and overall mean costs being 15% lower compared

to standard care, without any significant effect on mortality or clinical outcomes

[7]. A similar long-term study has reported significant reduction in hospital stay

without any change in health outcomes in stroke survivors who experienced home-

based rehabilitation compared to traditional rehabilitation care [8].

Interactive neurorehabilitation systems which computationally evaluate and de-

liver feedback based on a subject’s movement performance have been utilized to

provide home-based rehabilitation care. With advances in 3D motion capture and

wearable sensor technology, researchers from various backgrounds have developed ob-

jective measures for movement quality assessment during and following rehabilitation

[30, 142, 127, 156, 28]. Virtual and mixed reality environments have been employed

in novel stroke rehabilitation strategies [113, 82, 73, 74]. In this direction, Adaptive
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Figure 4.2: The Home-based Adaptive Mixed Reality Rehabilitation (HAMRR)
system designed for stroke survivors. The system uses four OptiTrack cameras to
track the wrist movements as well as a computer and speakers to provide audio and
visual feedback during therapy treatment. The table is designed to accommodate
custom touch and grasp objects for training reaches in different orientations. In the
inset, we see the placement of a wrist marker on a participant performing reaching
tasks to a cone. The system design is discussed in detail in [10].
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Mixed Reality Rehabilitation (AMRR) system which integrates rehabilitation and

motor learning theories with motion capture, activity analysis, and multimedia feed-

back [31, 29], has been shown as an effective rehabilitation system in helping improve

the kinematic and functional performance of a stroke survivor’s upper extremity in a

hospital setting. Examples of visual feedback for active learning using the home sys-

tem are shown in Fig. 4.1. In addition, accommodating heavy marker-based systems

in a home-based setting is unrealistic, as inaccurate placement of markers can nega-

tively affect the movement quality assessment framework and place a heavy burden

on the stroke survivor and/or caregiver. In recent years, the focus of rehabilitation re-

search has been towards devising multi-modal interventions and accompanying tools

to assist home-based therapy [121, 10, 31], thereby supplementing traditional therapy

received in the hospital. A solution to this was proposed in [10], where a single re-

flective marker was placed on the participant’s wrist to track the movement (see Fig.

4.2). A recent study has shown that a single marker-based system (marker on the

wrist) can achieve comparable performance levels of movement quality assessment to

a heavy marker-based system [142].

In this work, our aim is to use the composite labels provided by therapists’ impres-

sions to learn the underlying movement components. We propose several kinematic

features and learn the associated thresholds and weights using composite labels for

reach data. This research facilitates better understanding of the underlying com-

ponents defining movement quality and also the generation of a ‘cumulative score’

for movement quality, which can aid physical therapists in visual monitoring during

supervised rehabilitation therapy.

Contributions: Our aim is to decompose the movement quality score (given by

therapists) into its constituent kinematic components. We assume a linear relation

between kinematic features and composite movement quality score. This work has
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two main contributions: 1) propose component-level kinematic features for movement

quality assessment of wrist movement, 2) propose a generic framework for tuning

the thresholds and weights associated with each of these kinematic features using

movement quality labels provided by therapists.

4.1 Related Work

Quantifying movement quality is useful for physical therapists to provide improved

and personalized rehabilitation therapy. Several quantitative scales for movement

quality assessment have been proposed, including the FMA [49] and the WMFT

[149]. For example, the WMFT has been used to quantify the upper extremity mo-

tor ability through timed and functional tasks [83]. However, these methods rely

on visual monitoring of movements by experienced and trained physical therapists.

Hence, these methods can be subjective, as a therapist will apply their individual

training and impressions when evaluating a participant’s movement quality. Devel-

oping an objective computational framework for movement quality assessment will

be beneficial, thereby minimizing the influence of a therapist.

The focus of existing approaches for movement quality assessment has been to-

wards finding typical patterns in kinematic attributes which differ between healthy

and impaired participants. Kinematic Impairment Measure (KIM) proposed by Chen

et al. [30] employs 33 kinematic attributes derived from a heavy-marker based sys-

tem in a hospital setting to quantitatively evaluate the movement quality. This study

showed that the weighted average of individual kinematic attributes was strongly cor-

related with the WMFT scores. Similar work using kinematics to model the smooth-

ness of the movement have also been explored [48, 61]. In a similar study, it was

shown that features derived from wearable sensor data can be used to estimate the

FMA score [35].
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Rehabilitation robotics has gained a lot of attention in quantification of motor

functionality due to its ability to offer objective and repeatable therapy treatment

[11, 137, 44, 32, 106, 105, 71]. Linear regression model-based kinematic scales were

developed using the MIT-Manus robot to achieve highly a repeatable and high res-

olution framework for quantification of motor performance [18]. Another robotics-

based rehabilitation technique proposed four measures showing correlation with clin-

ical measures such as FMA, MAL, Action Research Arm Test, and Jebsen-Taylor

Hand Function Test [27]. A recent work using movement time, trajectory length,

directness, smoothness, and mean and maximum velocity claims that such kinematic

features can be effectively used to assess upper limb motor recovery and is linked to

FMA score [138].

Nonlinear dynamical analysis methods have been employed to model the vari-

ability in repetitive movements, which are an integral part of rehabilitation therapy

[95, 127]. To address the drawbacks of traditional nonlinear dynamical measures, a

shape theory based dynamical analysis framework for movement quality assessment

was proposed [142]. This study also demonstrated that the information contained in

a single marker on the wrist is sufficient to achieve comparable performance levels to

a heavy marker-based system in movement quality assessment.

4.2 System Design

The HAMRR system has four Natural Point Opti-Track cameras facing down on

a table to track a single reflective marker placed on the participant’s wrist (wrist

marker). The selection of the wrist marker was motivated by previous investigations

indicating that the wrist trajectory is the most informative joint about the reach

trajectory [142, 30, 73, 102, 151]. The system also tracks torso movement using four

reflective markers attached to a badge worn on the left side of the participant’s chest.
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Effective upper extremity rehabilitation requires monitoring of such aspects of the

body movement to evaluate the extent participant’s compensation while performing

a task. In this study, we focus solely on the data collected from the wrist marker.

The table houses a contact switch rest position pad and can accommodate a target

location of the cone object based on the participant’s reaching ability. While we only

consider reaching tasks for the cone object located on the left of a participant, the

system was designed to accommodate custom touch and grasp objects for training

reaches in different orientations. The system is shown in Fig. 4.2 and detailed infor-

mation of the system design can be found in [10]. The main objective of this design

was to be able to install the system in a participant’s home for long term therapy

treatment, which prohibits the use of a heavy marker-based system.

4.3 Data Collection

Therapists undergo training to assess both the overall performance of a task and

monitor some individual coarse aspects of movement for a set of reaches. While vali-

dated clinical measures exist for assessing overall task performance, no such measures

currently relate these to performance of component-level kinematic attributes for an

individual reach. Therefore, in this study we have collected therapist ratings for

quality of wrist trajectory for each reach in an attempt to build a computationally

generated component-level assessment that correlates with therapist impressions.

The dataset consists of reaching tasks performed by a total of ten participants

(refer to Table 5.2 for demographics) to an on-table cone left of the participant’s rest

position. Each participant performs five reaches in each of four sessions. An iPad

application was developed to assist therapists in administering the system experience

questionnaire, recording videos of reaching tasks, and providing movement quality

labels. These videos were later segmented to contain individual reaches, which were
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randomized across participants and provided to two physical therapists (each ther-

apist would rate a reach movement which was not repeated by the other therapist)

to rate each reach in terms of overall performance of the task. Overall reaching per-

formance was rated on a scale from 1-5 based on the therapist’s impression of the

participant’s performance, where a 1 denotes that the participant could not complete

the task and a 5 denotes that the participant performed the task with the same qual-

ity of performance as the therapist if he/she were to perform it. This rating scale

was adapted from the WMFT Functional Assessment Score [149] by rehabilitation

experts who collectively created a rubric for the purposes of this study.

4.3.1 Trajectory Error

Trajectory error is a measure of spatial deviation of the wrist trajectory from the

reference trajectory. For every point in the reach trajectory, horizontal error (Ehor)

and vertical error (Evert) were defined as

Ehor(i) = x(i)− xref (i), i = 0, . . . , Ns − 1 (4.1a)

Evert(i) = y(i)− yref (i), i = 0, . . . , Ns − 1 (4.1b)

where Ns is the number of points in the reach trajectory. A thresholded error function

was calculated as

Êhor(i) =


Ehor(i) if Ehor(i) > T1

0 otherwise.

(4.1c)

Similarly,

Êvert(i) =


Evert(i) if Evert(i) > T1

0 otherwise.

(4.1d)

Confidence values for the movement being curved were estimated as
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Ccurved
x =

∑
<i>

|Êhor(i)|∑
<i>

|Ehor(i)|
(4.1e)

Ccurved
y =

∑
<i>

|Êvert(i)|∑
<i>

|Evert(i)|
(4.1f)

The final confidence of curved movement was a combination of the above two

confidences,

Ccurved
T1

=


λ1 if λ1 > 2λ2

min(1.5λ1, 1) otherwise

(4.1g)

where λ1 = 1−max(Ccurved
x , Ccurved

y ),

λ2 = 1−min(Ccurved
x , Ccurved

y ).

4.3.2 Speed Profile Deviation

It is a measure of deviation of the speed profile from the reference speed profile

(speed profiles collected from 10 unimpaired participants to generate a reference).

For a given reach trajectory, a point-to-point comparison of speeds with the reference

speed profile was calculated. The speed vector for the reference and test data are

denoted as vref (i) and v(i) respectively and was calculated as the first derivative of

the position vector. The thresholded speed vector for fastness feature was calculated

as

v̂f (i) =


v(i) if v(i)− vref (i) > T2

0 otherwise

(4.2a)

The confidence score for movement being too-fast was computed as Cfast given

by
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Cfast
T2

= 1−

∑
<i>

v̂f (i)∑
<i>

v(i)
(4.2b)

Similarly, the thresholded speed vector for slowness feature is given by

v̂s(i) =


v(i) if v(i)− vref (i) < T3

0 otherwise

(4.2c)

The confidence score for movement being too-slow was calculated as Cslow given

by

Cslow
T3

= 1−

∑
<i>

v̂s(i)∑
<i>

v(i)
(4.2d)

4.3.3 Jerkiness

The jerkiness (or smoothness) feature is a measure of variations in the velocity pro-

file. An ‘efficient ’ reach movement should have a smooth velocity profile with an

accelerating pattern followed by a decelerating pattern without any jerks. Jerkiness

of a movement was calculated using the method described in [30] (similar to [48]) and

is given by

J =

∫ teom

tsom

√(
d3x

dt3

)2

+

(
d3y

dt3

)2

+

(
d3z

dt3

)2

dt (4.3a)

where x,y and z are 3-D coordinates of the position of participant’s wrist. tsom is

the time index corresponding to the start of the movement and teom is the time index

of the end of the movement. The thresholded jerkiness function was calculated as

Ĵ(i) =


J(i) if J(i) > T4

0 otherwise

(4.3b)
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The confidence score for movement being jerky was calculated as

Cjerk
T4

= 1−

∑
<i>

Ĵ(i)∑
<i>

J(i)
(4.3c)

4.3.4 Segmentation

A movement is termed as ‘segmented ’ if the elbow does not open in synchrony with

the shoulder moving forward. Instead, the forward movement of the shoulder and

the opening of the elbow happens in sequence, resulting in a disjointed movement (or

presence of submovements). Rohrer et al. [108] have shown how paretic movement can

be represented by submovements using MIT-MANUS and InMotion2 robots, which

allows motion within a horizontal plane. An accurate analysis of this phenomenon

(presence of submovements) requires tracking of both shoulder and elbow in addition

to the wrist. In the proposed home-based rehabilitation system, this was not possible

with the one marker sensing solution, and we wanted to learn if such movements can

be described computationally using only the wrist marker.

After consultation with domain experts, it was found that segmented movements

give rise to notches (sudden change in direction) in the wrist trajectory. These notches

can be quite subtle and often occur towards the end of the movement. We quantify

segmented movements by calculating the following:

1. The number of times the movement changes its turning direction

2. The magnitude of direction change

3. The ratio of the magnitude of direction change

We project the 3D trajectory onto the X-Z and Y-Z planes to detect the direction

changes (notches). In the projection onto the X-Z plane, we first compute displace-

ment vectors from the spatial locations. The direction change was quantified as the
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signed angle (αxz(i)) between successive displacement vectors. The sign of the angle

is positive if the displacement is clockwise from the previous displacement vector and

negative if it is counter-clockwise. Using this, the number of significant changes in

turning direction of the movement is calculated (NC), and the corresponding confi-

dence is calculated as

Cseg1,xz =


1− e−(a·NC)b if NC > Nref

0 otherwise

(4.4a)

The magnitude of direction change is computed as S =
∑

<i> |αxz(i)|, and the

corresponding confidence score was given by

Cseg2,xz = 1− e−(a·λS)b (4.4b)

λS =


1− S/refxz if S < refxz

0 otherwise

(4.4c)

The ratio of magnitude of direction change is defined as γ = |
∑
αxz(i)|∑
|αxz(i)| , and the

corresponding confidence score was computed as

Cseg3,xz =


1 if γ < γref

1.47 ∗ (1− γ) otherwise

(4.4d)

The final confidence for segmentation of the projected movement on X−Z plane

is computed as

Cxz = Cseg1,xz · Cseg2,xz · Cseg3,xz (4.4e)

Similarly, we can compute Cyz in the Y-Z plane. Let β1 = 1−max(Cxz, Cyz), β2 =
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1−min(Cxz, Cyz). The final confidence of segmented movement is given by

Cseg
T5

=


β1 if β1/β2 > T5

min(1.5β1, 1) otherwise

(4.4f)

The thresholds T1, . . . , T5 were difficult to define and hence optimal values for these

thresholds was estimated using movement quality label provided by therapist. Thresh-

olds such as Nref , refxz, γref were determined from the data collected from unimpaired

participants. The constants a and b were selected through empirical observation. The

confidence scores range from 0 to 1, with 0 indicating maximum impairment and 1

indicating movement being similar to an unimpaired participant’s reach.

4.3.5 Estimation of Optimal Weights and Thresholds

A physical therapist rating the quality of reach trajectory will pay careful attention

to many kinematic attributes, including speed, trajectory and jerkiness. We believe

that a linear combination model of the non-linear kinematic features will be corre-

lated with the therapist rating. In this work, we propose a linear model of kinematic

features for movement quality assessment by posing an optimization problem to de-

termine the thresholds and weights associated with each kinematic feature in the

linear combination model. Hence, the equation for the linear model for movement

quality assessment for the wrist trajectory can be written as

{
w1C

curved
T1

+ w2C
fast
T2

+ w3C
slow
T3

+ w4C
jerk
T4

+

w5C
seg
T5

}
≈ Rw

j (4.5)

where, w1, . . . , w5 are weights for each of the confidence scores of kinematic at-

tributes curvedness, fastness, slowness, jerkiness and segmentation, respectively. Rw
j

57



Start 

Stop 

Curvedness 

Time 

V
el

o
ci

ty
 

Time 

V
el

o
ci

ty
 

Too-fast 

Too-slow 

Start 

Stop 

Jerkiness 

W
1 

W
2 

W
3 

W
4 

Cumulative 

Score 

W
4

Start 

Stop 

Segmentation W
5 

Unimpaired Reach Impaired Reach 

Start

StaStarrtt

Straight Line 

Components Linear Model 

Figure 4.3: The proposed linear model of kinematic features extracted from the
wrist marker. The weights (W1, W2, . . . , W5) and a unique threshold associated with
each kinematic feature (T1, T2, . . . , T5) were estimated by minimizing the L1 norm
between cumulative score and therapist rating (Rw

j ).

is the therapist rating for quality of wrist trajectory. The thresholds T1, . . . , T5 bound

a region called ‘zero-zone’ where the attribute value is termed ‘efficient ’ (indicating a

reach movement without any impairments). For example, eq. (4.2a) has a threshold

T2 which represents a ‘zone’ of ideal speed profiles. Eq. 4.5 is pictorially depicted

in Fig. 4.3. The aim here is to minimize the error between cumulative score and

therapist rating in L1 sense to estimate thresholds and weights associated with each

kinematic feature. The cost function can be written as
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Figure 4.4: Comparison between the predicted cumulative score and therapist rating
for movement quality. Each of 10 participants performed 20 reach and grasp to cone
tasks except subjects S7, S8, and S10. The demographics and FMA score for each
subject is tabulated in Table 5.2. A correlation of 0.6 exists between the predicted
cumulative score and therapist rating for movement quality.

P1 : {w1, . . . , w5, T1, . . . , T5}opt =

arg min
w1,...,w5,T1,...,T5

∑
<j>

|
5∑
i=1

wiC
i
(Ti)
−Rw

j |

subject to wi ≥ 0,

0 ≤ Ti ≤ 10.

(4.6)

This cost-function is difficult to optimize, and is non-convex. In order to solve

this optimization problem, we use the active-set method [87], because of its reduced

complexity of the search, as the algorithm uses a subset of inequalities while searching

the solution. We use the implementation of the active-set method available in Matlab.
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Figure 4.5: Comparison of cumulative score and therapist rating before and after
optimization procedure. A linear regression plot between cumulative score and ther-
apist rating indicates that correlation coefficient increases from 0.13 to 0.6 with a
significant p-value and increased slope.
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(c) Too-Slow
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Figure 4.6: Linear regression plots for various low-level kinematic features used in
our linear model for movement quality assessment with estimated thresholds. (a)
Curvedness, (c) Too-slow and (d) Jerkiness show positive and significant correlation
with therapist rating. (b) Too-fast shows a negative and significant correlation. (e)
Segmentation shows a weak correlation with therapist rating.

4.4 Experimental Results

The aim of our experiments is two-fold: a) generate a cumulative score indicative of

the overall quality of the reach movement, and b) detect the anomalies in the low-level

kinematics to provide accurate feedback.

Due to the lack of low-level kinematic labels, we have collected a dataset of reach

movements simulating impairments in individual low-level kinematics. These move-

ments were performed by unimpaired participants with hands-on experience with
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stroke survivors. A database of 62 reach movements were collected and a classifica-

tion experiment using nearest neighbor classifier with 10-fold crossvalidation scheme

shows that the anomalies in speed, curvedness and jerkiness were easy to detect with

100% classification accuracy. The classification results for segmentation was 98.38%,

as accurate analysis of segmentation requires tracking of elbow and shoulder joints,

which was not possible due to the design constraints. Similar analysis on torso leaning

and twisting movements gave 100% classification accuracy.

In order to measure the efficacy of the proposed optimization procedure, we look at

the output (cumulative score) generated by the forward-model in eq. 5. The results of

our analysis using the linear combination of kinematic features for movement quality

assessment of the wrist trajectory are shown in Fig. 4.4. The information about

participants who experienced our system is tabulated in Table 5.2. Each participant

performed 20 repetitions of reach and grasp to a cone target, except participants

S7, S8, and S10 who performed 5, 5, and 15 repetitions, respectively. Fig. 4.4 shows

the comparison between the movement quality scores provided by a trained physical

therapist against the cumulative score predicted by our proposed framework. If the

feature thresholds and combination weights were tuned, we expect the cumulative

predicted scores to be correlated with the therapist ratings. The Pearson correlation

coefficient between the cumulative scores and the therapist ratings was found to be

0.6 with a significant p-value (p < 0.001). The results of our analysis using the

linear combination of kinematic features for quality assessment of wrist trajectory

before and after optimization is shown in Fig. 4.5. We see that before optimization,

the predicted movement quality scores of all classes (therapist ratings from 1 to 5)

are overlapping (Fig. 4.5a). The use of optimized weights and thresholds resulted

in an increased correlation between cumulative predicted score and therapist rating

from 0.13 to 0.6. The contribution of each of the low-level kinematic features with
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optimized threshold towards movement quality assessment is shown in Fig 4.6. A

linear regression analysis between each kinematic feature and therapist rating shows

that curvedness, too-slow and jerkiness show a significant positive correlation, while

too-fast and segmentation respectively show negative and weak correlation. The weak

correlation between segmentation and therapist rating could be due to the fact that

the segmentation feature needs data from elbow and shoulder joints, which is not

available in our single marker-based system. The obtained values for thresholds and

weights after solving the optimization problem P1 are listed in Table 4.1. Kinematic

features curvedness and too-fast have the highest weight of 2.5 in our linear model,

with jerkiness and segmentation having lowest weight. It is evident from these results

that the estimation of weights and thresholds of linear model using the proposed

framework provides a novel methodology to combine low-level kinematic features to

generate a cumulative score for movement quality of wrist trajectories. Furthermore,

the cumulative score aligns with the ratings given by a therapist, which makes it a

suitable tool to assist physical therapists in assessing the movement quality during

supervised rehabilitation, leading to better evaluation and adaptation of therapy. The

estimation of thresholds for low-level kinematic features facilitates better evaluation

of components of movement (e.g., curvature, segmentation), thereby improving the

efficacy of audio and visual feedback in our home-based rehabilitation system.

4.5 Conclusion and Future Work

In this work, we have introduced the problem of developing a computational frame-

work for movement quality assessment suitable for home-based rehabilitation sys-

tems using kinematic analysis. We have proposed and evaluated a linear model of

component-level kinematic features for movement quality assessment of the wrist. We

propose a framework to learn these component-level kinematic features indicating im-
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Parameter Optimized Value

T1 0.13m

T2 0.2m/s

T3 0.1m/s

T4 2.5m/s3

T5 0.99

w1 2.5

w2 2.5

w3 1.8

w4 0.05

w5 0.05

Table 4.1: The optimized values for thresholds and weights in the proposed linear
model for movement quality assessment.

pairments in underlying movement components using composite therapist impressions

of movement quality. Our results indicate that the proposed framework can be used

to provide improved and efficient audio and visual feedback indicative of the impair-

ments in component-level kinematics of a participant’s reach. Further, this framework

can be used to generate a cumulative score indicative of overall reach quality, which

can be used to aid therapists during supervised rehabilitation. It should be noted that

kinematic analysis of movement has an inherent requirement of “reference” trajectory

data, which is difficult to define for complex movements (e.g., lift and transport an

object) due to variability. Since we are interested in analyzing such complex move-

ments of stroke survivors, our future directions will be focused towards developing

suitable quantitative frameworks for modeling such complex movements.

Monitoring body movement during upper extremity tasks is necessary to deter-

mine the extent to which the stroke survivor is using body compensation. Prelim-
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inary work using the data collected from the marker plate worn by the participant

(not presented here due to scope) is promising for applying similar methods to as-

pects of movement beyond wrist trajectory performance. However, the consistent

marker placement on the torso requires assistance from a caregiver, and we believe

markerless solutions for monitoring the torso movements, such as using the Kinect,

could provide a robust alternative. This points to several interesting directions of

future work. From a sensor fusion perspective, one can explore the utility of multiple

Kinect sensors and study the effects on obtaining high fidelity tracking results. Such

efforts are already underway, with early commercial systems that are limited to a few

gestures [2]. Accuracies of such multi-Kinect systems and its efficacy for rehabilita-

tion systems are still unknown. We are currently working on pilot experiments with

Kinect and mono-vision systems.

For the computer vision and machine learning communities, this application area

opens up several interesting questions related to the design of robust features for move-

ment quality analysis. Significant research in computer vision has been focused on

activity and gesture recognition and not much on measures for ‘quality ’ of the move-

ment. While this problem is traditionally addressed in the bio-mechanics community,

the tools developed there are based on precise clinical measurements of biomechanics.

These tools have limited applicability in home-based deployments, where data is of

significantly lower quality. Thus, one needs to rely on larger datasets and advanced

feature selection and machine learning tools to design movement quality measures.

This can form the basis of several interesting research questions in the future.
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5 DECISION SUPPORT FOR STROKE REHABILITATION

Researchers have been motivated to develop frameworks for quantification of move-

ment quality [30, 142, 127, 156, 28] given its potential impact on disseminating interac-

tive rehabilitation training to unsupervised contexts such as the home. Several auto-

mated approaches exist in literature to quantify movement quality based on complex

models including nonlinear dynamical system theory [127, 142, 95], random forests

[93], and SVMs [94]. While these approaches provide a computational framework for

movement quality assessment showing high correlation with the clinical assessment

scores, it would be beneficial to have an interpretable framework which can be used

as a decision support tool by physical therapists during rehabilitation treatment.

To assess the level of functional ability of a stroke survivor, therapists can employ

validated rating rubrics such as the Wolf Motor Function Test [149], to systematically

assign a movement quality assessment score after observing a participant perform a

predefined set of functional tasks. Such a rubric imposes a hierarchical set of rules for

a therapist to consider, in order to help evaluate a participant’s performance. Given

this method of translating visual observation of movement to a quantitative score,

we were motivated to investigate if a computational framework based on kinematic

features can also be structured in a hierarchical form that can be easily understood

by a therapist. We believe that such a framework would be useful in providing

recommendations to physical therapists especially in the context of telerehabilitation,

where a therapist reviews large amounts of movement performance data produced by
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a participant performing rehabilitation exercises without supervision (e.g., in the

home). Large scale movement quality evaluation would greatly benefit from such

systems by providing recommendations to therapists and also allowing them to check

the reason for recommended movement quality score using describable attributes

indicative of the impairments.

We propose a hierarchical model using decision trees to simulate the results of

the rating rubric created by rehabilitation experts to rate reach to grasp tasks across

stroke survivors of various deficit. This is a step towards development of generalized

models for knowledge representation of movement quality assessment of reach and

grasp action based on previous work [73, 75, 43]. Within this experimental framework,

we assume a simplified kinematic representation of reach and grasp action which

focuses on a few specific elements of reach movement suitable for real-time monitoring

and quantification of movement quality. The elements of the reaching movement

chosen in our experiments include hand trajectory error in the horizontal and vertical

planes, peak speed, jerkiness [30], velocity bellness [30] and torso rotation along XYZ

axes. The main goal of this work is to learn a model that can simulate the resultant

ratings of therapists using a rating rubric for movement quality assessment based on

low-level kinematics indicative of the participant’s impairment which can be used as a

decision support system to aid the therapist during supervised rehabilitation therapy.

5.1 Methods for Collecting Kinematics and Therapist Rat-

ings

5.1.1 Collection of Kinematics

The HAMRR system was designed to provide rehabilitation therapy to stroke sur-

vivors in a home-setting with reduced supervision by a physical therapist. This system
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was used as an apparatus to collect kinematics when participants perform movement

tasks without any assistance of feedback. The HAMRR system has four Natural

Point Opti-Track cameras facing down on a table to track a single reflective marker

placed on the participant’s wrist (wrist marker) and four markers on the corners of a

rectangular rigid plate placed on the participant’s left side of chest (Fig. 4.2 inset).

The selection of the wrist marker was motivated by previous investigations indicat-

ing that the wrist trajectory as the most informative joint with respect to analyzing

reach trajectory performance [142, 30]. In addition, we believe that it is important

to monitor the torso compensatory strategies for efficient movement analysis.

The selection of the plate was motivated by efforts to capture body compensa-

tion. To compensate for the lack of extension during a reach, many stroke survivors

use excessive shoulder movement (elevation and/or protraction) and excessive torso

movement (flexion and/or rotation). Therefore, a system for rehabilitation training

should monitor movement of the body to determine the extent to which a partic-

ipant is utilizing pre-stroke movement strategies to advance his/her hand towards

the target. The HAMRR system was designed for home-based use, and the sensing

apparatus worn by the participant must be simple and easy to wear. Therefore, we

are only using a single plate worn on the chest of the participant, which captures

coarse torso movement as opposed to both shoulder and torso movement separately.

The system is shown in Fig. 4.2 and detailed information of the system design can

be found in [10].

5.1.2 Therapist Rating Protocol

Stroke rehabilitation experts have standardized means for systematically rating over-

all functional performance of a defined set of tasks (relevant to activities of daily

living) included within the WMFT protocol. However, within the stroke rehabili-
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tation community there lacks a consensus among physical therapists in defining an

ontology of component-level labels for movement quality (i.e., methods for rating the

movement components that contribute to completion of a functional task), thereby

leading to lack of training datasets to develop algorithms for movement quality assess-

ment. In other words, while kinematics can capture the component-level aspects of

movement (trajectory, compensation) which are important for evaluating movement

quality, there is not yet a corresponding rating system in the stroke rehabilitation

community for these components. Therefore, our team has collaborated with reha-

bilitation experts to introduce a new rubric for physical therapists to rate movement

quality for specific tasks trained by the HAMRR system. Movement quality is as-

sessed in terms of trajectory, compensation, manipulation, transport of an object, and

release. However, we limit our focus on trajectory and compensation in the context of

reaching to grasp a stationary cone, as these movement components have established

corresponding methods for quantifying performance using kinematics derived from

3D positions of reflective markers described in the section 5.1.1. The rating rubric

used by therapists to rate trajectory and compensation is provided in Table 5.1. One

should note that this rubric was designed given the constraints of the therapist view-

ing a single camera video of the participant while performing a task from the right

side (as shown in Fig. 5.1).

5.1.3 Data Collection

The dataset used in our experiments consists of reaching tasks performed by a total

of eight participants (refer Table 5.2 for demographics) to a cone on-table located

at the participant’s midline. Each participant performed five reaches in each of four

sessions (one session per week). These reaches were performed without any feedback

from the system or therapist unless the participant was unclear on how to perform
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Table 5.1: The Rating Rubric for Movement Quality Assessment Provided to Ther-
apists

Score Trajectory Compensation

1 Does not ever reach the target

Demonstrates compensatory shoulder

movement with compensatory torso

movement in more than one plane

2

Demonstrates profound deviation

from a direct path during the

reaching phase, which may be

affected by but is not limited to one

or more of the following secondary

factors: Synergy, Ataxia and

Spasticity

Demonstrates compensatory shoulder

movement with trunk compensatory

movement mainly in one plane

3

Demonstrates slight deviation

(relative to how the rater would

perform the task) from a direct path

during the reaching phase

Demonstrates noticeable

compensatory shoulder or trunk

movement

4

The trajectory appears to be similar

to that of the rater if he/she were

performing the task

The shoulder and trunk are

positioned in a manner similar to the

rater if he/she were performing the

task
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Figure 5.1: A sample of video data provided to therapists to evaluate movement
quality of stroke survivors interacting with the HAMRR system.

the task. During the task, each participant was seated at the HAMRR system and

his/her movement was captured by the Opti-Track system. A custom designed iPad

application was also concurrently used to capture video footage of a participant per-

forming these tasks. These videos were randomized across participants and sessions

before they were provided to therapists for evaluation. Therapists could only view

one video at a time and were allowed to watch the videos as many times as they

needed to form a decision on the ratings. However, therapists were not allowed to see

or change responses to previous videos once they were submitted.

Trajectory performance was rated on a scale from 1− 4 based on the therapist’s

impression of the participant’s performance, where a 1 denotes that the participant

could not complete the task and a 4 denotes that the participant performed the task

with the same quality of performance as the therapist if he/she were to perform it.

Compensation was rated on a scale from 1−4 based on the participant’s excessive use

of the shoulder and/or torso and if compensation was used in single or multiple planes

of movement. A 1 denotes that the participant used both excessive shoulder and torso

movement in multiple planes of movement, while a 4 denotes that the shoulder and

trunk are positioned in a manner similar to the therapist if he/she was performing

the task.
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Table 5.2: The Demographics of Stroke Survivors Who Participated in Our Study

Name Age Gender Time since stroke (in months) # of strokes

1 63 Male 14 1

2 69 Male 44 1

3 65 Male 31 1

4 47 Male 26 1

5 56 Male 28 1

6 49 Male 18 1

7 64 Female 6 1

8 27 Male 12 1

5.2 Definitions of Kinematic Features

The following kinematic features were extracted to quantify the impairments of a

participant while performing a reach to grasp a cone task.

Kinematic Features from Wrist Trajectory

Trajectory Error Trajectory error is a measure of spatial deviation of the wrist

trajectory from the reference trajectory. The three-dimensional positions of the wrist

marker p(t) = [x(t),y(t), z(t)], t = 0, . . . , τ were recorded from the start of the

movement to the target grasp state. The coordinate system was rotated such that

p(0) was the origin, X− Z plane was the horizontal plane and the straight line con-

necting p(0) and p(τ) lies along the new Z-axis. This in effect re-parameterizes (after

normalization) the trajectory [x(t),y(t), z(t)], t = 0, . . . , τ to [x′(z),y′(z)], z =

0, . . . , 1. This re-parameterization works without introducing significant ambiguity

in our experiments due to the strong directionality of the reach action. The Z-

axis was further quantized into N = 50 bins, thereby transforming the trajectory
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to [x′(n),y′(n)], n = 0, . . . , N − 1. We now have a vectorial representation of the

trajectory suitable for real-time comparisons. For every point in the reach trajectory,

horizontal error (Ehor) and vertical error (Evert) were defined as

Ehor(i) = x(i)− xref (i), i = 0, . . . , N − 1 (5.1a)

Evert(i) = y(i)− yref (i), i = 0, . . . , N − 1 (5.1b)

The horizontal trajectory error (Êhor) and vertical trajectory error (Êver) were defined

as (units in mm)

Êhor = max
0<i<N−1

(Ehor) (5.1c)

Êver = max
0<i<N−1

(Ever) (5.1d)

Jerkiness The jerkiness (or smoothness) feature is a measure of variations in the

velocity profile. An ‘efficient ’ reach movement should have a smooth velocity profile

with an accelerating followed by a decelerating pattern without any jerks. Jerkiness

(in m/s3) of a movement was computed using the definition given in [30] as

J =

∫ teom

tsom

√(
d3x

dt3

)2

+

(
d3y

dt3

)2

+

(
d3z

dt3

)2

dt (5.2)

where x,y and z are 3-D coordinates of the participant’s wrist trajectory. tsom is

the time index corresponding to start of the movement and teom is the time index of

end of the movement.

Velocity Bellness Ideally, the velocity profile of a reaching task should be a bell

curve. Typically, stroke survivors throw their arm towards the target and then make

fine adjustments to grasp the object. These adjustments show up as additional phases
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in the speed profile. It is believed that these occur during the deceleration phase and

we use normalized area to evaluate velocity bellness (BNA) given by

BNA =

∫ teom
t1st

v(t)dt∫ teom
tvmax

v(t)dt
(5.3)

where v(t) is the instantaneous velocity, tvmax is the time index corresponding to

maximum velocity, t1st is the end of the first phase.

Peak Speed An efficient reach movement is typically accomplished by a hand ve-

locity between 0.4m/s and 0.6m/s. We use peak speed (in m/s) as a measure of

deviation from this ideal range defined as the maximum velocity of each trial given

by

Vmax = max
tsom<t<teom

[v(t)] (5.4)

Our results indicate that the kinematic components we chose (hand trajectory er-

ror in the horizontal and vertical planes, peak speed, jerkiness, velocity bellness and

torso rotation along XYZ axes) combined with a decision tree model are capable of

simulating the results of an imposed hierarchical structure used by trained therapists.

The selected low-level kinematic attributes are representative of the impairments in

reach and grasp action and can collectively be used to generate a movement ‘com-

ponent score’ showing high correlation with the therapist rating. These results also

indicate that the proposed framework can be used as an assistive tool to therapists

during supervised rehabilitation to reduce the time spent on movement quality as-

sessment.

To more specifically qualify our findings: the rehabilitation experts were able to

create an imposed hierarchy based on expert knowledge (presented in Table 5.1).

Given this hierarchy developed by expert knowledge and its careful implementations
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by highly trained therapists, we are able to replicate the results of their ratings

through a decision tree approach. Our initial results support that these decision

trees can help with semi-automated ratings when the therapist is absent, and assist

therapists to provide ratings faster when they log-in remotely to fine tune a home-

based training system for a participant. Since we achieved favorable results using

this decision tree approach given a particular imposed hierarchy, when the hierarchy

needs to be switched for different types of training, we propose that similar trees

can be estimated based on different hierarchies across tasks, stages of therapy, and

participants. Thus, our process is dependent on clear declarations of hierarchies by

therapists and their consistent implementation.

Defining an ontology of component-level labels for movement quality assessment is

seen as a difficult problem in the stroke rehabilitation community. While the current

research was directed towards learning a simple decision tree model for knowledge

representation of given physical therapists, our future goal is to extract a generalized

knowledge representation for movement quality assessment using evaluations from

multiple therapists. Similar problems have been discussed in the machine learning

community [56]. We are currently collecting evaluation ratings from multiple ther-

apists as different knowledge representations for movement quality assessment and

will be used to estimate a generalized knowledge model using existing approaches for

matching of knowledge structures.

5.3 Conclusion and Future Work

In this work, we present a computational framework capable of simulating the component-

level movement quality assessment rubric with imposed hierarchical structure on

physical therapists. This automatic assessment of movement quality framework can

provide suggestions to physical therapists during supervised rehabilitation reducing
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Figure 5.2: The decision tree model for movement quality assessment of wrist tra-
jectory. The low-level kinematic features used were horizontal trajectory error (Êhor),

vertical trajectory error (Êver), peak speed (Vmax), velocity bellness (BNA) and jerk-
iness (J). The scores highlighted in blue are the decision tree outputs for wrist
trajectory analysis.
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Figure 5.3: Comparison between impairment level (with 4 being least impaired
and 1 being most impaired) given by component-level score for wrist trajectory and
decision tree predictions. The Pearson correlation coefficient was found to be 0.8049.
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the time spent on evaluating the quality of movements, thereby reducing the cost of

long-term rehabilitation treatment.

Our results indicate that the kinematic components we chose (hand trajectory er-

ror in the horizontal and vertical planes, peak speed, jerkiness, velocity bellness and

torso rotation along XYZ axes) combined with a decision tree model are capable of

simulating the results of an imposed hierarchical structure used by trained therapists.

The selected low-level kinematic attributes are representative of the impairments in

reach and grasp action and can collectively be used to generate a movement ‘com-

ponent score’ showing high correlation with the therapist rating. These results also

indicate that the proposed framework can be used as an assistive tool to therapists

during supervised rehabilitation to reduce the time spent on movement quality as-

sessment.

To more specifically qualify our findings: the rehabilitation experts were able to

create an imposed hierarchy based on expert knowledge (presented in Table 5.1).

Given this hierarchy developed by expert knowledge and its careful implementations

by highly trained therapists, we are able to replicate the results of their ratings

through a decision tree approach. Our initial results support that these decision

trees can help with semi-automated ratings when the therapist is absent, and assist

therapists to provide ratings faster when they log-in remotely to fine tune a home-

based training system for a participant. Since we achieved favorable results using

this decision tree approach given a particular imposed hierarchy, when the hierarchy

needs to be switched for different types of training, we propose that similar trees

can be estimated based on different hierarchies across tasks, stages of therapy, and

participants. Thus, our process is dependent on clear declarations of hierarchies by

therapists and their consistent implementation.

Defining an ontology of component-level labels for movement quality assessment is
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seen as a difficult problem in the stroke rehabilitation community. While the current

research was directed towards learning a simple decision tree model for knowledge

representation of given physical therapists, our future goal is to extract a generalized

knowledge representation for movement quality assessment using evaluations from

multiple therapists. Similar problems have been discussed in the machine learning

community [56]. We are currently collecting evaluation ratings from multiple ther-

apists as different knowledge representations for movement quality assessment and

will be used to estimate a generalized knowledge model using existing approaches for

matching of knowledge structures.
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6 DYNAMICAL REGULARITY FOR MOTION ANALY-

SIS: APPLICATIONS TO ACTION SEGMENTATION,

RECOGNITION AND QUALITY ASSESSMENT

Human motion recognition from untrimmed videos is a challenging problem in the

vision community [60, 125]. In a real world scenario, these applications require au-

tomatic recognition of action sequences from continuous untrimmed videos. Tradi-

tionally, the vision community works with the simpler, unrealistic assumption that

temporal segmentation of videos is a step which has been done beforehand, resulting

in pre-segmented videos containing individual action sequences. In literature, most

of the proposed frameworks for action recognition assume that each clip contains

just one action sequence. Temporal segmentation of human motion from untrimmed

videos into its constituent action sequences is a challenging problem due to large vari-

ations in temporal scale of actions and extremely large number of possible movement

combinations. In this work, we focus our interest towards developing a framework to

simultaneously achieve both temporal segmentation of untrimmed videos and action

classification.

The computer vision community has been interested in modeling human activities

for many applications including video surveillance, automatic video annotation and

health monitoring [4]. Modeling the underlying dynamics in an activity forms the

core idea in many systems. An activity can be seen as a resultant of coordinated

movement of body joints and their respective interdependencies to achieve a goal-
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directed task. This idea is further supported by Johansson’s demonstrations that

visual perception of the entire human body motion can be represented by a few bright

spots which holistically describe the motion of important joints [63]. Traditional

dynamical modeling approaches usually operate on the level of individual joints of

the human body, lacking any information about the interdependencies between joints

[5]. Only recently, researchers have started exploring relationships between body

joints, using rotations and translations in 3D space [140], which lacks dynamical

information. In this paper, we propose a novel approach for dynamical modeling by

extending conventional ideas to quantify the interdependencies between body joints.

Towards this end, we propose a new approach – approximate entropy-based feature

representation to model the dynamics in human movement by quantifying dynamical

regularity.

Our use of the term regularity represents the frequency of repetition of typical

patterns in the data. The main principle in our work is that different actions cor-

respond to different levels of regularity, and quantification of regularity can be used

for human activity analysis. For instance, walking is inherently periodic and hence

corresponds to a higher level of regularity when compared to dancing, which is more

towards randomness due to multiple movement strategies. From the system com-

plexity perspective, walking can be represented by simple dynamical systems, while

more complex systems with a large number of variables may be required to represent

dancing. Quantifying regularity and system complexity is a well-studied problem in

the field of signal processing. Correlation dimension [3] and largest Lyapunov expo-

nent [147] are examples of invariant measures proposed in the literature to quantify

complexity of dynamical systems. It was found that robust estimation of these invari-

ant measures requires large number of data samples (of the order of 10d), where d is

related to the dimension of the dynamical system’s state space used in the estimation
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WALKING JUMPING RUNNING

(a) Temporal segmentation of actions using motion capture data.

(b) Quality assessment of diving actions using videos.

Figure 6.1: A visual representation of our applications of interest in this work. In (a),
our aim is to achieve temporal segmentation of actions from continuous untrimmed
motion capture data in an unsupervised manner. In (b), we use a supervised learning
framework to assess the quality of diving actions from videos.

procedure, with typical values of 3 and above. Later, a probabilistic measure called

approximate entropy was proposed to overcome the drawbacks of the above tradi-

tional measures for quantification of system complexity [99]. Approximate entropy

assigns lower values for ordered time series and higher values for time series towards

randomness. In this paper, we utilize the algorithmic framework of [99] for estimat-

ing approximate entropy from time series data and extend it to model the dynamics

in human activities for applications such as temporal segmentation and fine-grained

quality assessment of actions.

Much work in the domain of action recognition over the past few decades is carried

out using RGB videos [4], which are sensitive to factors like background clutter and

80



illumination changes. In addition, it is difficult to capture complex articulated human

motion using monocular video sensors. Recent advances in sensing platforms, such as

the Kinect, provide access to 3D locations of body joints in real time [117], thereby

providing a better representation of human body motion in 3D space compared to

monocular video sensors. One can also get access to 3D locations of body joints using

large and expensive motion capture systems which require the participant to wear

reflective markers on his/her body. Kinect offers a cheaper and more user-friendly

joint tracking solution compared to other motion capture systems. This motivates

us to design a framework for automatic segmentation and action classification using

trajectories of body joints derived from Kinect sensors.

One popular approach for temporal segmentation of human motion is to detect

the presence of an action sequence (or event) by evaluating a classifier function over a

sliding window [42, 67, 86, 119]. Approaches for change point detection of time series

data such as in [58] temporally monitors the test statistic for change-point analysis

in a sliding window. Based on this idea, in our framework, we monitor a measure

for regularity of human motion patterns in a sliding window over time for automatic

segmentation and classification of actions. The term regularity represents the fre-

quency of repetition of typical patterns in the data. The main principle in our work

is that different actions correspond to different levels of regularity, and quantifica-

tion of regularity of human actions can be used for simultaneous segmentation and

action classification. For instance, walking action is inherently periodic and hence

corresponds to a higher level of regularity when compared to dancing action, which

is more towards randomness due to multiple available movement strategies. From

the system complexity perspective, walking action can be represented by simple dy-

namical systems, while more complex systems with large number of variables may be

required to represent dance action.
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Quantifying regularity and system complexity is a well-studied problem in the

field of statistics and signal processing. Correlation dimension [3], largest Lyapunov

exponent [147], and Kolmogorov-Sinai entropy [70] are a few examples of invariant

measures proposed in the literature to quantify complexity of dynamical systems. It

was found that robust estimation of these invariant measures requires large number

of data samples (of the order of 30d), where d is a parameter used in the estimation

procedure with typical values of 3 and above. A more recent work by Pincus proposed

a measure called approximate entropy to overcome the drawbacks of the above tradi-

tional measures for quantification of system complexity [99]. Approximate entropy is

a probabilistic measure which assigns lower values for ordered time series and higher

values for time series towards randomness. In this paper, we utilize the algorithmic

contributions by Pincus for estimating approximate entropy to quantify regularity in

time series of human actions.

Researchers in the vision community have shown growing interest towards fine-

grained analysis of human activities by developing frameworks for quantification of

movement quality [30, 142]. Stroke being the most common neurological disorder,

has motivated us to develop a computational framework to assist physical therapists

during supervised rehabilitation therapy, and potential unsupervised contexts such

as the home. We use the approximate entropy based feature representation and show

its utility to quantify impairment in a stroke survivor’s movement trajectory.

6.1 Related Work

Most of the contributions in the domain of human activity analysis are carried out

on pre-segmented action sequences. Tremendous amount of research has been con-

ducted on action recognition using RGB videos [4, 51]. The advent of Kinect sensors

has brought recent interest in skeletal-based action recognition. Existing skeletal-
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based approaches for action recognition can be categorized as joint-based approaches

and body part-based approaches. The relevant works in the literature on these two

approaches have been explained well in [140]. Since our current work is on dynam-

ical modeling of trajectories of human actions, we restrict our discussion to related

methods focused on applications of interest.

Segmentation and Action Classification: In the literature, many approaches

have been proposed for temporal segmentation of human actions based on hidden

Markov models (HMMs). Bregler et al. [20] utilized HMMs to model complex human

gestures as successive phases of simple movements. Brand et al. [19] applied coupled

HMMs demonstrating superiority to conventional HMMs towards classifying two-

handed human motion. Spriggs et al. [125] used HMMs for temporal segmentation of

activities in a kitchen environment using wearable camera and inertial measurement

units. Sminchisescu et al. [123] introduced conditional models as complimentary tools

based on conditional random fields and maximum entropy Markov models. Hoai et

al. [60] proposed a framework based on multi-class SVMs for joint temporal segmen-

tation and action classification. Zhou et al. [158] proposed aligned cluster analysis

for temporal segmentation by extending standard kernel k -means clustering combined

with dynamic time warping for temporal invariance. Niebles et al. [86] utilized prob-

abilistic Latent Semantic Analysis and Latent Dirichlet Allocation for unsupervised

learning of human actions.

Some of the early approaches for temporal segmentation of actions include learn-

ing representations for motion primitives using the theory of linear dynamical systems

[78, 135, 136], thereby segmenting the human motion into its constituent action se-

quences. Oh et al. [88] utilized switching linear dynamical system to learn and infer

motion patterns. Such parametric approaches may approximate the true dynamics
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of human actions and fit experimental data to the model. Ali et al. in [5] claims

through validated experiments that by constraining the dynamical system to be of a

particular type (linear or nonlinear), one would only approximate the true dynamics

of human motion. They proposed a novel feature representation based on the tools

from chaos theory namely largest Lyapunov exponent, correlation integral and corre-

lation dimension to characterize nonlinear dynamics of human actions in trajectory

data extracted from videos and motion capture systems. While it is typical for hu-

man actions to last for 10 sec or less corresponding to 300 samples (at 30 frames

per second), it is not advisable to use such feature representations as in [5], as the

suggested number of data points required for robust estimation is large (of the order

of 30d, where d is the dimension of embedded phase space) [110]. This is evident from

the findings of Wu et al. [150] who showed that the estimation of largest Lyapunov

exponent in [5] produced negative values, which is incorrect for chaotic systems. It

has been shown that approximate entropy can quantify system complexity with as low

as 50 data samples [99], which makes it a suitable feature representation for modeling

human actions.

Quality Assessment: The application of interest here is to develop a computa-

tional framework for movement quality assessment to aid physical therapists in pro-

viding supervised rehabilitation therapy for stroke survivors. Several validated clin-

ical measures which requires visual monitoring by a therapist for movement quality

assessment have been proposed [52, 149], and researchers aim to match these clini-

cal scores using a computational framework. The existing approaches in literature

to quantify movement quality use nonlinear dynamical system theory [127, 142, 95],

random forests [93], and SVMs [94]. Chen et al. [30] proposed several kinematic at-

tributes which requires access to reach trajectories from unimpaired subjects, thereby

84



limiting the generalizability of the framework to different reach targets. We evaluate

the performance of approximate entropy-based feature representation for movement

quality assessment on a dataset collected from stroke survivors.

Even though researchers have been working towards automatic recognition of hu-

man actions for decades, the task of automatically quantifying the quality of a given

action has remained unexplored until recently. Such automated frameworks for qual-

ity assessment of actions will find real-world applications in sports and healthcare.

Hamed et al. [101] used a regression model to predict the scores given by human ex-

pert judges on diving actions using spatio-temporal pose features. A similar approach

using a regression model learned from shape-based dynamical features to quantify the

quality of movement has been proposed for stroke rehabilitation [142]. In [96], au-

thors quantified team performance in a multi-player basketball activity context using

Bayesian networks. In this paper, we utilize the approximate entropy-based feature to

quantify the quality of diving actions and show that using a dynamical measure per-

forms better than the previously used frequency domain representation using discrete

cosine transform (DCT).

Contributions: We propose a feature representation for modeling human motion

by quantification of regularity using approximate entropy measure. The proposed

feature representation encodes both the dynamics of individual joints and the cross-

coupling information between joints by respectively using an univariate and bivariate

form of approximate entropy. We show the its utility for simultaneous segmentation

and action classification, and movement quality assessment.
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6.2 Approximate Entropy (ApEn)

Approximate entropy is a statistical tool proposed by Pincus [99, 100] for quantifi-

cation of regularity of time series data and system complexity. It is a probabilistic

measure based on the log-likelihood of repetitions of patterns of length m being close

within a defined tolerance window that will exhibit similar characteristics as patterns

of length (m + 1) [98, 99]. It assigns a non-negative number to time series data,

with lower values for predictable (ordered) signals and higher values for signals with

increased irregularity (or randomness). Ideally, a pure sine wave should have a zero

value of approximate entropy. It has an advantage over Shannon’s entropy [116] in

that it takes into account the temporal order, which makes it more suitable to rep-

resent the dynamical evolution of time series data. The development of approximate

entropy was motivated to address the drawbacks of traditional measures to quantify

system complexity, thereby having a measure to successfully handle noise and address

the limitations of data length requirements and other model constraints [100].

It is defined using three parameters: embedding dimension (m), radius (r), and

time delay (τ). Here, m represents the length of pattern (also called as embedding

vector) in the data which is checked for repeatability, τ is selected so that the com-

ponents of the embedding vector are sufficiently independent, and r is used for the

estimation of local probabilities. Given N data samples {x1, x2, x3, . . . , xN}, we can

define embedding vector x(i) as,

x(i) = [xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ]
T ; for 1 ≤ i ≤ N − (m− 1)τ. (6.1a)

The frequency of repeatable patterns of the embedding vector within a tolerance r is

given by Cm
i (r) as
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Cm
i (r) =

1

N − (m− 1)τ

∑
<j>

Θ(r − d(x(i),x(j))). (6.1b)

where:

Θ(a) =


1, if a ≥ 0

0, otherwise.

d(x(i),x(j)) = max
k=1,2,..,m

(|x(i+ (k − 1)τ)− x(j + (k − 1)τ)|).

Approximate Entropy is given by

ApEn(m, r, τ) = Φm(r)− Φm+1(r). (6.1c)

where:

Φm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln Cm
i (r). (6.1d)

In the above equations, Cm
i (r) represents the frequency of repeatable patterns (lo-

cal probabilities) in the embedding vector x(i), Θ(a) is the Heaviside step function,

and Φm(r) represents the conditional frequency estimates. Evident from the above

algorithm, the estimation procedure requires parameters m, τ , and r to be speci-

fied. In an ideal case, where one has access to an infinite amount of data of infinite

accuracy, any set of parameters which can result in smooth embedding would give

similar results ([3], chap. 3). With real world data, the choice of these parameters

should ensure smooth embedding with components of the embedding vectors being

sufficiently independent.

Multivariate Approximate Entropy: Motion capture sensing allows us to ob-

serve 3-dimensional time series data per body joint. A trivial solution to model the

dynamics would be to consider each dimension of a body joint independently to cre-

ate the embedding vector (eq. 6.1a) as in [5, 142]. Recent theoretical and empirical
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findings have demonstrated that multivariate embedding of time series data by simple

concatenation of individual univariate embedding vectors achieves good state space

reconstruction as evaluated by the shape and dynamics distortion measures [144]. In

this work, we propose to use the multivariate embedding procedure as described by

Cao et al. [23] per body joint and estimate the approximate entropy feature repre-

sentation.

Natural human movement involves multiple body joints interacting with each

other to together accomplish a particular action task. Hence, it would be beneficial

to utilize the cross-coupling information between these joint trajectories. Research

carried out by Kavanagh et al. [66] using cross approximate entropy to model trunk

motion during walking supports our hypothesis that adding information about cross-

coupling offers better feature representation to model human motion and will be

validated by our experiments.

Cross Approximate Entropy (XApEn): Cross approximate entropy is defined

as the amount of asynchrony between two time series data [98, 97]. Let u = [u1, u2, . . . , uN ]T

and v = [v1, v2, . . . , vN ]T denote two time series data of length N . The embedding

vectors for given parameters m, τ, and r are defined as

x1(i) = [ui, ui+τ , . . . , ui+(m−1)τ ]
T ; x2(i) = [vi, vi+τ , . . . , vi+(m−1)τ ]

T . (6.2a)

The frequency of repeatable patterns within the embedding vectors x1(i) and x2(i)

for a tolerance r is given by Cm
i (r)(v||u) as

Cm
i (r)(v||u) =

1

N − (m− 1)τ

∑
<j>

Θ(r − d(x1(i),x2(j))). (6.2b)

The cross approximate entropy is then given by

XApEn(m, r, τ) = Φm(r)(v||u)− Φm+1(r)(v||u). (6.2c)
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where:

Φm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln Cm
i (r)(v||u). (6.2d)

We estimate the XApEn feature across all pairs of body joints (after performing

multivariate embedding using data available from each body joint). It is evident from

the above equations that XApEn is an asymmetric measure. We note here that our

initial analysis on exemplar human action data did not show a significant difference

in the values of XApEn for forward and backward directions. Hence, we use only one

of these values in our feature representation. We then concatenate ApEn and XApEn

values to form our final approximate entropy-based feature vector to model actions

denoted by ApEnFT .

Framework: For any given time series data, we calculate univariate approximate

entropy on every individual dimension and bivariate cross approximate entropy across

pair of dimensions over a sliding window as shown in Fig. 6.2. Here, the feature value

estimated from the samples in the sliding window is assigned to the sample at the

center of the window. This window is moved by one frame and the process is repeated

till the end of action data.

In our supervised training protocol, we use the frame-level features to train Partial

Least Squares (PLS) regressor. With a set of binary PLS regressors with thresholded

outputs, a majority voting scheme is used to determine the action class to be assigned

to a particular frame.

6.2.1 Choice of Parameters

Data Length (N): The suggested value for N was typically between 50 and 5000.

This constraint was imposed by Pincus in [100] to ensure a homogeneous segment

of data under certain experimental conditions, and this range for N was not an
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Figure 6.2: A picture showing sliding window run over a given time series x(i) to
estimate the approximate entropy based features per frame.

algorithmic limitation. Our choice of N depends on the dataset used, and typically

ranges between 30 and 50.

Embedding Dimension (m): Through theoretical analysis and extensive exper-

imental validation, it has been shown that both m = 1 and m = 2 can distinguish

data on the basis of regularity [100]. In our application, we use a fixed value of m = 2.

Delay Time (τ): The purpose of delay time τ is to ensure that the components

in the embedding vectors are sufficiently independent. A low value of delay time

will make adjacent components in the embedding vector to be correlated and hence

cannot be considered as independent. On the other hand, a high value of delay

time will make adjacent components to become uncorrelated (almost independent).

Suggested methods in the literature to estimate an optimum delay time has been

first minimum of the lagged auto-mutual information, and the time lag when the

autocorrelation drops to 1/e of its initial value or the first zero of the autocorrelation

function [3]. In our experiments, we use the lag when autocorrelation function drops

below zero (refer Fig. 6.3). This estimate for delay time is suggested for use with

strongly periodic data, which is a suitable choice to work with human actions.
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Figure 6.3: Estimation of delay time τ as the first zero-crossing of the autocor-
relation function. (b) shows the autocorrelation function of the trajectory data in
(a).

Radius (r): The value of r could range anywhere between 0.1 to 0.25 times the

standard deviation of the data . A good choice of r should ensure that the conditional

frequencies defined in Eq. 6.1c are reasonably estimated. Smaller values of r results

in poor conditional frequency estimates, while large values of r cannot capture enough

information of the system.

6.3 Experimental Evaluation

In this section, we evaluate the performance of our feature representation on (1)

synthetic data generated from coupled Rossler oscillators, (2) action datasets from

Kinect sensor, and (3) stroke rehabilitation dataset.

6.3.1 Coupled Rossler Model

In order to demonstrate the utility of the proposed feature representation for quan-

tifying regularity and cross-coupling in time series data, we use two coupled Rossler

oscillators given by the equations shown below. The main motive behind this exper-

iment is to provide an analogy to human actions as coupled systems with changing

coupling strengths to accomplish a particular type of action.
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ẋ1 = −w1y1 − z1

ẏ1 = w1x1 + αy1

ż1 = β + z1(x1 − γ)

(6.3a)

ẋ2 = −w2y2 − z2 + e(x1 − x2)

ẏ2 = w2x2 + αy2

ż2 = β + z2(x2 − γ)

(6.3b)

Here, the Rossler system in Eq. 6.3a drives the Rossler system in Eq. 6.3b. ‘e’ is

the coupling strength between the two Rossler oscillators. As the coupling strength is

increased, the two oscillators become synchronized. For this configuration of Rossler

oscillators, the parameters were chosen as α = 0.2, β = 0.2, γ = 5.7, w1 = 1, and w2 =

0.2. We choose three values of coupling strength, e = 0.1, 0.3, and 1.0 to demonstrate

the sensitivity of cross approximate entropy measure to coupling strength. For each

value of e, we generate 20 data segments from the coupled Rossler system, with each

segment having 2000 samples. Fig. 6.4 shows exemplar time series of x1(t) and

x2(t) for different coupling strengths. From Fig. 6.4a, we see that as e approaches

1.0, x2(t) becomes more synchronized with x1(t). In a coupled Rossler system where

one oscillator drives the other, the dynamics of the receiver oscillator depends on

the coupling strength and becomes more synchronized with the driver as coupling

strength increases. From Fig. 6.4b, we see the changes in distribution of ApEn values

for different e, showing that univariate ApEn can capture the change in dynamics (or

regularity). Similarly, Fig. 6.4c shows the changes in distribution of XApEn values for

different e, indicating that as the two oscillators become more synchronized, the cross

approximate entropy value decreases, thereby capturing the amount of asynchrony

between two time series data.
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Figure 6.4: Illustration of utility of approximate entropy feature representation for
quantifying regularity and cross-coupling on coupled Rossler model. (a) shows exem-
plar time series data synthesized from the coupled Rossler model for three different
coupling strength e = 0.1, 0.3, 1.0. (b) and (c) respectively show the distribution of
ApEn values of x2(t) and the distribution of XApEn values of x1(t) and x2(t) for 20
trials each for different values of e.

The dynamics in human motion can be considered as analogous to the dynamics

of such coupled systems in that different coupling strength between body joints corre-

sponds to different actions. For instance, actions two-hand wave and one-hand wave

(as shown in Fig. 6.5) can be considered as cases with different coupling strengths

between the two hand joints. Fig. 6.5 also illustrates that the proposed approximate

entropy-based features can successfully differentiate the individual action sequences.

This experimental analysis support our idea of using approximate entropy measures

for quantifying regularity and cross-coupling in dynamics of human motion.

6.3.2 Segmentation and Action Classification

We evaluate the performance of using approximate entropy based feature for joint

segmentation and recognition on publicly available action databases: Weizmann [54],

MSR Action 3D [76], UTKinect-Action [152], and Florence3D-Action [115].

Evaluation Criterion: In our experiments, we follow the evaluation criterion in-

troduced by Hoai et al. [60], where we calculate the overall frame-level accuracy as

the ratio of the number of agreements (a match between the predicted label by our
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Figure 6.5: Approximate entropy features estimated on left and right hand trajec-
tories of a subject performing horizontal arm wave, two-hand wave, and draw circle
actions (in order) as shown in (a) and (b). The vertical lines in (a) and (b) denotes
temporal action segments. (c) and (d) shows the univariate ApEn values estimated
over a sliding window of 30 samples with parameters m = 2 and r = 0.2*std(x). The
XApEn between left and right hand trajectories is shown in (e), where m = 2, and
r = 0.2.

framework and the ground truth label) to the total number of frames. It should

be noted that the evaluation criterion used in our framework is different from the

traditional recognition accuracy, and hence our numbers cannot be compared with

recognition accuracies on pre-segmented action data.

Weizmann Dataset

The Weizmann dataset [17] is a collection of 90 videos with 10 actions performed by

9 participants. The action classes are: bend, jack, jump, jump on two legs (pjump),

run, gallop sideways (side), skip, walk, one handed wave (wave1), and two handed

wave (wave2) (see Fig. 6.6). Since we are interested in the automatic segmentation-

recognition problem, we have created long video sequences by concatenating the ac-
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bend jack jump pjump run

side skip walk wave1 wave2

Figure 6.6: Typical video frames of 10 actions performed by subject-1 from the
Weizmann dataset [54]. The trajectories corresponding to six body joints namely
head, belly, two hands and two feet were extracted by Ali et al. [5], which will be
used as input to our framework.

bend jack jump pjump run side skip walk wave1 wave2

bend .975 .017 0.002 0 0.002 0 0.002 0 0.003 0

jack .019 .981 0 0 0 0 0 0 0 0

jump 0 .088 .779 .119 0 .013 0 0 0 0

pjump 0 0 .017 .983 0 0 0 0 0 0

run 0 0 .025 .179 .592 .063 .14 0 0 0

side 0 0 0 0 .014 .938 .039 .009 0 0

skip 0 0 0 0 .002 .144 .667 .187 0 0

walk 0 0 0 0 0 0 .054 .858 .088 0

wave1 0 0 .025 0 .016 0 0 .049 .889 .021

wave2 0 0 0 0 0 0 0 0 .039 .961

Table 6.1: Confusion table for Weizmann dataset for frame-level segmentation and
action classification achieving a mean accuracy of 88.18%.

tion sequences performed by every participant to get 9 videos each containing 10

action sequences. The joint locations of two hands, two feet, head and belly were

extracted by Ali et al. [5] through a semi-supervised joint detection and tracking.

We extract the approximate entropy based features as described in section 6.2, and

train a PLS regressor using leave-one-video-out cross validation scheme. Table 6.1

shows confusion matrix for simultaneous segmentation and action classification, and

we achieve a mean accuracy of 88.18% in comparison with 87.7% reported by Hoai

et al. [60].

Baselines for Kinect Datasets: The baselines used for comparison of evaluation

results were:
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(1) Joint positions (JP): We concatenate 3D coordinates of all the body joints, as

in [140], to form our feature representation.

(2) Recurrence plots (RP-3D): These are matrices obtained by calculating dis-

tances between observation vectors of every pair of frames, such that the (i, j)th entry

in the recurrence plot is the distance between observation vectors at ith frame and jth

frame. The observation vector used is the vector of (x, y, z) co-ordinates of all body

joints, and the distance metric used is Euclidean distance.

(3) Linear Dynamical System (RP-LDS): For each frame, we consider a window

of 32 frames centered at the frame concerned. Using the vector of (x, y, z) coordinates

of all body joints as feature vector for individual frames, we fit LDS [136] and extract

the system parameters, A (transition matrix) and C (measurement matrix). Using

(Ai, Ci) as the observation vector for the ith frame, and the Martin distance as the

distance metric, we construct recurrence plots. The recurrence plots for one sequence

in MSR Action 3D dataset is shown in Fig 6.7, where the temporal segments of ac-

tion sequences are clearly visible. Treating recurrence plots as textures, we extract

texture-based per-frame feature in the following way: For each frame i, we extract a

band of 32 rows, centered at the ith row in the recurrence plot. We compute local

binary pattern (LBP) feature [80] and use it as the feature vector for the ith frame.

MSR Action 3D Dataset

The MSR Action 3D dataset consists of 20 actions performed by 10 subjects, with each

subject performing every action twice or thrice. The dataset is comprehensive with

many different actions and consists of a total of 557 action sequences. The dataset

provides 3D joint positions and will be used as input to our framework. These 20

action classes were further divided into 3 Action Sets: AS1, AS2 and AS3 by Li et al.

in [76] to account for large computation involved in classification of these actions.
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Figure 6.7: Exemplar recurrence plots generated from action sequences performed
by a single subject in MSR Action 3D dataset. A distinctive structure is evident in
the recurrence plot marking temporal segments of action sequences.

To generate a dataset suitable for the evaluation protocol in our framework, we

concatenate the existing action sequences containing all actions performed by a given

subject. This process of synthetically generating untrimmed action data from pre-

segmented action sequences is repeated for all three action sets. We follow the cross-

subject test setting as described in [76] using subjects 1, 3, 5, 7, and 9 for training and

the rest for testing. The evaluation results of frame-level accuracy are tabulated in

Table 6.2, with a mean accuracy of 82.62% across all three action sets. The state-

of-the-art recognition results reported on this dataset is 92.46% [140], but cannot

be compared with our numbers as their framework requires access to pre-segmented

action sequences and hence does not provide any segmentation accuracy. The mean

accuracy achieved by the proposed framework is much higher than the three baseline

representations indicating its usefulness.
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Dataset JP RP-3D RP-LDS Proposed

AS1 27.51 55.12 52.22 80.39

AS2 30.66 43.98 45.77 74.49

AS3 37.72 57.86 53.04 92.98

Average 31.96 52.32 50.34 82.62

Table 6.2: Automatic segmentation and recognition performance on the MSR Action
3D dataset following the cross-subject evaluation protocol of [76] in that subjects
1,3,5,7, and 9 were used for training and the rest were used for testing.

UTKinect-Action Dataset

The UTKinect-Action dataset [152] consists of a total of 199 action sequences with

10 action classes performed twice by each of 10 subjects. In addition, the subject

performs all actions in one go during recording, which makes it a suitable choice for

our experimental protocol of simultaneous segmentation and action classification. The

dataset provides 3D locations of 20 body joints, and is considered as a challenging

dataset due to variations in view-point. The frame-level action segmentation and

classification accuracy achieved using proposed feature representation was 80.3%,

when using 50% subjects as training and rest as testing data. In comparison, baseline

JP achieved highest accuracy of 66.6% across other baseline measures.

Florence3D-Action Dataset

The Florence3D-Action dataset [115] consists of 9 actions performed by 10 subjects

twice or thrice resulting in a total of 215 action sequences. The dataset provides 3D

locations of 15 body joints. We achieve an accuracy of 61.9% on the cross-subject

test setting.

All the above experimental results clearly indicates that the proposed feature rep-

resentation is a good choice for simultaneous segmentation and action classification.
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Dataset JP RP-3D RP-LDS Proposed

UTKinect 66.6 56.0 37.6 80.3

Florence3D 46.9 54.3 48.5 61.9

Table 6.3: Automatic segmentation and recognition performance on the UTKinect
and Florence3D action datasets following the cross-subject evaluation protocol of
[160] in that 50% of the subjects were used for training and the rest were used for
testing.

6.3.3 Temporal Segmentation

In this experiment, we use the publicly available Carnegie Mellon University motion

capture database [1]. As in [157], we use the data collected from subject 86 with 14

markers placed on the most informative body joints with the motion capture system

recording at 120 Hz. The dataset is a collection of 14 action sequences, each sequence

containing multiple natural actions such as walking, punching, drinking, running.

The main idea in [157, 158] is that such natural actions are inherently periodic, and

this periodicity can be observed in the recurrence matrix showing block structures.

Clustering methods such as spectral clustering can be used to cluster (segment) these

blocks to achieve temporal segmentation of actions, and hence the clustering accu-

racy will greatly depend on the quality of the recurrence matrix. In this work, we

demonstrate that quantifying regularity in actions using approximate entropy-based

features can be used to improve the quality of recurrence matrix. We calculate the

approximate entropy features as explained in section 6.2 over a sliding window and

the estimated feature values are indexed to the center of the sliding window. The

recurrence matrix is now calculated on the approximate entropy feature values in-

stead of the time series data collected from the mo-cap system. Figure 6.8 shows

an illustration of our proposed idea using one-dimensional time series data, where we

clearly see that the recurrence matrix in (d) calculated from approximate entropy fea-
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ture values looks more suitable to segment the three actions than recurrence matrix

in (b) calculated directly from mo-cap raw time series data. We follow the evalua-

tion protocol as in [157] using the Hungarian algorithm to find the optimum cluster

correspondence and to compute clustering accuracy [22]. We compute the confusion

matrix between the segmentation provided by the algorithm and the ground truth

such that each entry Cc1,c2 in the confusion matrix represents the total number of

frames that belong to the cluster segment c1 that are shared by the cluster segment

c2 in the ground truth. The accuracy is then given by the equation

accuracy = max
tr(CP)

tr(C1k×k)
(6.4)

where P ∈ {0, 1}k×k is a permutation matrix.

Figure 6.9 shows exemplar segmentation results obtained using the approximate

entropy-based features along with Spectral Clustering (SC) and HACA on two action

sequences. Different colors mark different actions and the ground truth segmenta-

tion was obtained from human observers. In both these examples we see that using

approximate entropy features provides better segmentation than just using SC or

HACA on mo-cap time series data. Due to space constraints, we only show the seg-

mentation results on two sequences. We report the average segmentation accuracy

using various features in Table 6.4, which further supports our claim that using the

proposed approximate entropy-based features along with a clustering approach will

provide better segmentation accuracy compared to using a clustering approach on

mo-cap time series data.

6.3.4 Movement Quality Assessment

The main objective in this experiment is to quantitatively assess the quality of move-

ments performed by stroke survivors. We use the approximate entropy based feature
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Figure 6.8: Illustration of utility of approximate entropy feature for quantifying
regularity and improving quality of recurrence matrix. (a) shows exemplar time
series data collected from hip joint of a subject performing DANCE, JUMP and RUN
actions, (c) shows the corresponding ApEn feature values, (b) and (d) respectively
show the recurrence matrix estimated on raw time series data in (a) and ApEn feature
values in (c).

Method Avg. Accuracy

ApEnFT+HACA 0.93

HACA 0.91

ApEnFT+SC 0.86

SC 0.75

Baseline Avg. Accuracy

UniAp+HACA 0.67

UniAp+SC 0.56

Dynamics+HACA 0.65

Dynamics+SC 0.63

Table 6.4: Comparison of average temporal segmentation accuracy for various meth-
ods.

representations to computationally estimate the impairment scores as assigned by

traditional clinical measures such as the Wolf Motor Function Test [149]. The data

was collected using a motion capture system using 14 markers on the right-hand,

arm and torso. A total of 15 impaired subjects perform reach and grasp movements
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Figure 6.9: Comparison of temporal clustering methods on the CMU motion capture
dataset. Different colors indicate different actions. Ground truth motion segmenta-
tion was provided by human observers.
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Figure 6.10: The impairment scores assigned to movements performed by stroke
survivors by the WMFT (in blue) and our proposed framework (in red). The pearson
correlation coefficient was found to be 0.8603.

to a target. The experimental protocol defined in [142] allows us to use only the

data corresponding to single marker on the wrist. Using the approximate entropy

based feature representation as explained in section 6.2 along with a PLS regressor,

we achieve a correlation coefficient of 0.8603 with the scores assigned by the WMFT

protocol as compared to correlation coefficient of 0.8527 reported in [142].

6.3.5 Action Quality Assessment on Diving Datasets

In the next experiment, we show that the proposed feature can also be used to quantify

the quality of diving actions. For this experiment, we use the diving dataset released

by Pirsiavash et al. [101] which is a collection of videos downloaded from YouTube.

The diving dataset consists of 159 videos of diving actions performed by multiple

subjects with their respective quality scores given by expert judges. The dataset

also provides estimated pose for each frame of the video which is used as input to

our framework. The problem of quantifying the quality of diving actions on this

dataset is shown to be challenging by the experimental analysis done by Pirsiavash

et al. in [101], where the best performance achieved was of mean rank correlation of
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Method STIP Hierarchical Pose+DFT Pose+DCT UniAp Dynamics Proposed

SVR 0.07 0.19 0.27 0.41 0.05 0.17 0.45

Table 6.5: Mean rank correlation for various methods. Our proposed feature achieves
10% improvement in the correlation coefficient compared to the state-of-the-art. [101]
reported correlation coefficient using STIP, hierarchical and pose+DCT features.

0.41 between predicted scores and ground truth scores given by judges. We use the

same evaluation protocol of generating random training and testing example splits

200 times as introduced in [101] with 100 instances as training examples and the

rest as testing examples. Using the estimated pose for each frame, we calculate

the approximate entropy features as explained in section 6.2 for different values of

radius (r = 0.1, 0.12, 0.14, 0.18) and concatenate to get a high-dimensional feature

vector. Using PCA to achieve dimensionality reduction and an SVM regressor to

generate real-valued scores indicative of the quality of diving actions, we show that

our approximate entropy-based feature performs better than the traditional DCT-

based feature. We believe that this is achieved due to the fact that our feature

encodes the dynamical information in the time series of poses while DCT does not. In

addition, traditional approaches consider each joint independently, while the proposed

framework incorporates the interdependency between the joints. The results are

tabulated in Table 6.5 and we achieve a rank correlation of 0.45 in comparison with

0.41 reported in [101].
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7 MULTIVARIATE EMBEDDING BASED QUALITY AS-

SESSMENT OF DIVING ACTIONS

7.1 Introduction

The vision community has been interested in modeling human motion for numer-

ous applications including video surveillance, automatic video annotation, and health

monitoring [4]. Many methods have been proposed in the literature to model the

underlying dynamics in human motion, and forms the core idea for activity analy-

sis. An activity can be seen as a resultant of coordinated movement of body joints

and their respective interdependencies to achieve a goal-directed task. Traditional

approaches to model the dynamics operate on the level of individual dimensions of

body joints of the human body [5]. Only recently, researchers have started exploring

relationships between body joints, using rotations and translations in 3D space [140];

however these approaches lack dynamical information. In this paper, we use the mul-

tivariate embedding approach to model the dynamics of individual body joints, and

show improved performance on fine-grained quality assessment of actions.

After achieving adequate success in recognizing actions from videos, researchers

in the vision community have become interested in fine-grained analysis of human

activities. Frameworks for quantification of movement quality for applications in

stroke rehabilitation and sports have been developed [101, 142]. In this paper, we

focus our interest on the quantification of quality of diving actions from RGB videos
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Figure 7.1: Block diagram showing the algorithmic flow of our framework for assess-
ing quality of diving actions using videos. The dataset provides access to high-level
pose features for each frame.

as shown in Fig. 7.1. We propose the use of global descriptors of the shape of the

attractor of the dynamical system as a feature as in [142, 141] to quantify the quality

of diving actions.

A tremendous amount of research has been conducted on activity analysis using

RGB videos [4, 51]. Traditional dynamical modeling approaches for action recogni-

tion include parametric methods such as Hidden Markov Models (HMMs) and Linear

Dynamical Systems (LDSs), which have been used for computer vision applications

like action recognition [146, 154] and gait analysis [16]. Such parametric approaches

assume a model and impose it on the data trying to fit the observed data to the

assumed model. Recent work by Ali et al. proposed the use of a nonparametric

modeling approach using ideas from chaos theory to model the dynamics in human

actions [4]. The authors use largest Lyapunov exponent, correlation dimension and

correlation integral from trajectories of action data as part of their feature repre-

sentation. These traditional chaotic measures have been extensively used to model

human actions [5, 37, 95, 127]. However, [109] and [132] have shown that these non-
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linear dynamical measures need large amounts of data to have good estimates using

the existing algorithms (10m, where m is the embedding dimension). In [142, 141],

the authors propose a shape-theoretic framework for dynamical analysis of human

movement from 3D data. They use global descriptors of the shape of the attractor

of the dynamical system as a feature for modeling actions. The shape distribution

descriptor operated on an individual dimension of body joints using a univariate em-

bedding technique to reconstruct the attractor. Here we use multivariate embedding

to reconstruct the attractor and we show improved results on the application of in-

terest.

7.2 Framework

In this section, we introduce the necessary background and present each block in the

pipeline of our framework.

7.2.1 Phase Space Reconstruction

Sensing systems such as RGB cameras allow us to sense a series of 2D images of

human movement which is a result of projection of high dimensional data onto 2D

space without allowing us to observe all the variables of the system. One would prefer

to have access to all independent variables of the system and their interactions for a

complete understanding of the system. Traditional parametric approaches assume an

underlying mapping function f to describe the dynamics of the system. The theory

of chaotic systems allows for determining certain invariants of the dynamical system

function f without making any assumptions about the system using a method called

phase space reconstruction.

The phase space is defined as the space with all possible states of a system [145, 3].

Given one-dimensional time series data, we can reconstruct the important topo-
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logical properties of the original dynamical system using time delay embedding as

proposed by Takens [? ]. This process finds the mapping function f between the

one-dimensional observed time series and the m-dimensional attractor, with the as-

sumption that all variables of the system influence one another.

For a discrete dynamical system with a multidimensional phase space, time-delay

vectors (or embedding vectors) are obtained by concatenation of time-delayed samples

given by

xi(n) = [xi(n), xi(n+ τ), · · · , xi(n+ (m− 1)τ)]T . (7.1)

where m is the embedding dimension and τ is the embedding delay. This method of

embedding is called as Univariate Embedding, as the method uses one-dimensional

observed time series data to recover the system dynamics. The embedding theorem

by Takens does not suggest optimal values for parameters m and τ , but there are

approaches in literature to estimate these values such as the false nearest neighbors

[68] for m and the first zero crossing of the autocorrelation function [122] for τ .

Recent theoretical and empirical findings have demonstrated that multivariate

embedding of time series data by simple concatenation of individual univariate em-

bedding vectors achieves good phase space reconstruction as evaluated by the shape

and dynamics distortion measures [144] and significantly improves the attractor re-

construction when compared to univariate embedding. In this work, we propose to

use the multivariate embedding procedure as described by Cao et al. [23] per body

joint to reconstruct the attractor.

Multivariate Embedding – This simple yet powerful extension of univariate

embedding as proposed by Cao et al. [23] has proven to be useful in computer vision

applications such as action synthesis and dynamic texture synthesis [12]. The findings

in [144] indicate that in scenarios with access to more than one-dimensional observed

time series data, one can reconstruct the phase space better using the multivariate
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Figure 7.2: Exemplar video frames shown from the diving action dataset collected
by [101].

embedding approach compared to univariate embedding. Given multivariate time

series data [xi(n)]Tn=1, i = 1, . . . , p, where p is the dimension of time series data, the

reconstructed phase space vector is of the form

zt = [x1(n), x1(n+ τ1), . . . , x1(n+ (m1 − 1)τ1),

x2(n), x2(n+ τ2), . . . , x2(n+ (m2 − 1)τ2),

. . . ,

xp(n), xp(n+ τp), . . . , xp(n+ (mp − 1)τp)]
T .

(7.2)

where mi and τi are respectively the embedding dimension and time delay for each

of the p-dimension in the multivariate time series data. The authors in [144] define

evaluation metrics shape distortion and dynamics distortion to quantify the quality

of reconstructed phase space and discover that multivariate embedding outperforms

univariate embedding in reconstructing the dynamics of standard nonlinear dynamical

models such as the Lorenz, Rossler, and coupled Rossler and Lorenz. We use the

multivariate embedding technique in our framework and show improvement over other

methods in the literature for quality assessment of diving actions.

7.2.2 Features from Reconstructed Phase Space

In this section, we present various feature representations extracted from the recon-

structed phase space.
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Traditional Dynamical Invariants

Quantifying divergence of closely spaced trajectories in the reconstructed phase space

is a well-studied problem in the field of chaos theory. Largest Lyapunov exponent

[148], correlation sum [3], and correlation dimension [3] are a few examples of invari-

ant measures proposed in the literature to quantify complexity of nonlinear dynamical

systems. The largest Lyapunov exponent is a measure of the average rate of divergence

(or convergence) of initially closely-spaced trajectories over time [3, 145]. Correlation

sum is an invariant used to quantify density of points in the reconstructed phase

space. Correlation dimension or the fractal dimension defines the dimensionality of

the reconstructed phase space, and is given by the slope of the line in the plot of cor-

relation sum for different values of radius (r) versus radius. The main contribution

of our work is to propose a better way to encode dynamics compared to traditional

chaotic invariants. To evaluate the effectiveness of our framework, we provide com-

parative results with a feature vector 1 of traditional chaotic invariants obtained by

concatenating the largest Lyapunov exponent, correlation dimension and correlation

integral (for 8 values of radius) resulting in a 10-dimensional feature vector denoted

as Chaos .

Attractor Shape Distributions

In this section, we discuss the feature representation used in [142, 141] for action

recognition and quality assessment by quantifying the shape of the reconstructed

phase space. Using the idea proposed by Osada et al. in [92], we compute shape

distribution of the reconstructed phase space sampled from the shape function by

measuring the global geometric properties. It is said that any function can be used

1Code available at
http://www.physik3.gwdg.de/tstool/HTML/index.html
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Algorithm 1 Multivariate Attractor Shape Distribution

1: Input: x(n) ∈ RD, n = 1, . . . T

2: for dim = 1→ D do

3: Reconstruct attractor using method of delays [? ].

zt = [x1(n), x1(n+ τ1), . . . , x1(n+ (m1 − 1)τ1),

x2(n), x2(n+ τ2), . . . , x2(n+ (m2 − 1)τ2), ]
T .

4: for iter = 1→ N do

5: DT2ij = e−γ|ti−tj | ∗ ||zi − zj||2.

6: end for

7: Calculate histogram with 50 bins on DT2ij.

8: end for

to extract the shape distribution [92]; we use the shape function which encodes in-

formation about dynamical evolution in the phase space as proposed by [141] given

by,

DT2ij = e−γ|ti−tj | ∗ ||zi − zj||2, (7.3)

where ti and tj are the time indexes of the randomly selected pair of embedding vectors

in the reconstructed phase space. δ and γ are empirically determined parameters such

that δ, γ ≥ 0. zi and zj are points (embedding vectors) in the reconstructed phase

space. A set (of size N) of these distances for randomly chosen embedding vector pairs

are computed. From this set, we construct a histogram by counting the number of

samples which fall into each of B = 50 fixed sized bins to obtain the attractor’s shape

distribution. The procedure to extract the multivariate attractor shape distribution

from a given multivariate time series data is outlined in algorithm 1.
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7.3 Experimental Evaluation

The proposed framework for representation of dynamics was evaluated on the diving

action video dataset.

7.3.1 Diving Action Dataset

The diving action dataset was collected by a research group at MIT [101] consists of

159 videos of diving actions performed by athletes participating in the Olympics. Each

video has approximately 150 frames. The ground truth labels were collected from

judges whose scores varied between 20 (worst) and 100 (best). An exemplar diving

action is shown in Fig. 7.2 showing the transition from left to right. The dataset

provides access to high-level pose features using a pose estimation algorithm [155] for

each frame independently and links the poses using a dynamic programming algorithm

to find the best track of poses in the entire video. We use the evaluation protocol

of generating random training and testing example splits 200 times as introduced in

[101] with 100 instances as training examples and the rest as testing examples. Using

the estimated pose for each frame, we perform multivariate embedding on each body

joint (p = 2) and concatenate the calculated attractor shape distribution feature

for all body joints to form our feature representation. Using an SVM regressor, we

generate real-valued scores indicative of the quality of diving actions.

The problem of quantifying the quality of diving actions on this dataset is shown

to be challenging by the experimental analysis done by Pirsiavash et al. in [101],

where the best performance achieved was of mean rank correlation of 0.41 between

predicted scores and ground truth scores given by judges using Discrete Cosine Trans-

form (DCT) on the estimated poses. The authors in [101] use DCT to reject noise

due to pose estimation errors by keeping only the low frequency components to cre-

112



Table 7.1: Mean rank correlation for various methods. Our proposed feature achieves
10% improvement in the correlation coefficient compared to the state-of-the-art. [101]
reported correlation coefficient using STIP, Hierarchical, and Pose+DCT features.

Method Mean Rank Correlation

STIP [101] 0.07

Hierarchical [101] 0.19

Pose+DFT [101] 0.27

Pose+DCT [101] 0.41

Pose+Chaos [5] 0.17

Pose+Univariate DT2 [141] 0.24

Proposed 0.45

ate the feature vector. We achieve a mean rank correlation of 0.45 in comparison

with 0.41 reported in [101] using Pose+DCT. We also show comparative results with

STIP (Space Time Interest Points), low-level hierarchical features and pose-based

features with Discrete Fourier Transform (DFT) which performs significantly worse

compared to our method. Use of the traditional chaotic invariants achieves only mean

correlation coefficient of 0.17. These results indicate that the proposed feature repre-

sentation provides a better way to encode the temporal information in diving action

and is also robust to noise due to pose estimation errors.

7.4 Conclusion

In this paper, we are interested in the problem of fine-grained assessment of the

quality of actions with real-world applications in sports. The proposed framework is

an extension of the shape theory based dynamical analysis framework for movement

quality assessment and action recognition introduced in [142, 141]. In this work, we
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use the multivariate embedding approach to reconstruct the dynamical attractor per

body joint as opposed to the traditional way of operating on individual dimensions

of time series data. In addition, the proposed framework addresses the drawbacks of

traditional measures from chaos theory by combining the concepts of nonlinear time

series analysis and shape theory to extract robust and discriminative features from

reconstructed phase space.
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8 PERSISTENT HOMOLOGY OF ATTRACTORS FOR AC-

TION RECOGNITION

The rapid technological advancements in sensing and computing has resulted in large

amounts of data warranting the development of new methods for their analysis. In

the past decade, topological data analysis (TDA) has shown to be a promising new

paradigm for analyzing and deriving inferences [24]. In this paper, we explore the

suitability of TDA for analyzing human actions by modeling each action as a dynam-

ical system and extracting the topological features of the attractor. These features

are then used in a demonstrative application of classifying actions.

The task of recognizing human activities has a wide range of applications such

as surveillance, health monitoring and animation. Modeling the spatio-temporal evo-

lution of human body joints is traditionally accomplished by defining a state space

and learning a function that maps the current state to the next state [16, 104]. An

alternate approach proposed derives a representation for the dynamical system di-

rectly from the observation data using tools from chaos theory [5, 142, 141, 143],

thereby learning a generalized model representation suitable for analyzing a wide

range of dynamical phenomenon. In this paper, we use the framework proposed in

[5, 142] to extract a reconstructed phase-space from the available time series data,

which preserves the topological properties of the underlying dynamical system of a

given action. We treat the reconstructed attractor as a point cloud and we extract

topological features from the point cloud based on persistent homology [45, 25].
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8.1 Related Work

Human activity analysis is a well-studied problem in the vision community with

extensive literature on the subject. We suggest the readers to refer [4, 51] for a

detailed review of the approaches for modeling and recognition of human activities.

Since our contribution in this paper is related to topological data analysis and non-

parametric approaches for dynamical system analysis for action modeling, we restrict

our discussion to related methods.

Activity Analysis using Dynamical Invariants: Traditional methods for ac-

tion recognition by parametric modeling approaches impose a model and learn the

associated parameters from the training data. Hidden Markov Models (HMMs) [103]

and Linear Dynamical Systems (LDSs) [26] are the most popular parametric model-

ing approaches employed for action recognition [154, 146, 139, 33] and gait analysis

[65, 77, 16]. Nonlinear parametric modeling approaches like Switching Linear Dy-

namical Systems (SLDSs) have been utilized to model complex activities composed

of sequences of short segments modeled by LDS [20]. While, nonlinear approaches

can provide a more accurate model, it is difficult to precisely learn the model pa-

rameters. In addition, one would only approximate the true-dynamics of the system

with attempts to fit a model to the experimental data. An alternative nonparametric

action modeling approach based on tools from chaos theory, with no assumptions on

the underlying dynamical system like the largest Lyapunov exponent, correlation di-

mension and correlation integral, have been extensively used to model human actions

[5, 37, 95, 127].

Topological Data Analysis: Topological data analysis has gained its importance

in analyzing point cloud data [25], and is seen as a tool to obtain the shape of high-

dimensional data as opposed to geometric approaches that try to understand the size
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of the data. Such tools are also very useful in visualization applications [120, 41].

The representations of persistent homology such as persistence diagrams and bar-

codes have several applications, such as speech signal analysis [21], wheeze detection

[46], document structure representation [159], detection of cancer [85], characterizing

decision surfaces in classifiers [? ] to name a few. There are also a number of freely

available software for computing persistent homology from point clouds [131? ].

Contributions: Our work has the following contributions: (1) We treat the recon-

structed phase-space of the dynamical system as a point cloud and derive features

based on homological persistence. (2) We incorporate links between adjacent time

points when building simplicial complexes from the point cloud. (3) We demonstrate

the value of the proposed framework in an action recognition task on a publicly

available motion capture dataset, using a nearest neighbor classifier with the the

persistence-based features.

Outline: In section 8.2, we introduce the theoretical concepts of phase-space recon-

struction and persistent homology. The feature which encodes the temporal evolution

information in the persistence diagrams will be introduced in section 8.3. In section

8.4, we present our experimental results on the motion capture dataset [5].

8.2 Preliminaries

In this section, we introduce the background necessary to develop an understanding

of nonlinear dynamical system analysis using tools from chaos theory and persistent

homology.
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Figure 8.1: Phase space reconstruction of dynamical attractors by delay embedding.
(a), (e) shows the 3D view of trajectories of Lorenz and Rossler attractors. The one-
dimensional time series (observed) of the Lorenz and Rossler systems are shown in
(b), (f). (c), (g) shows the reconstructed phase-space from observed time series using
delay embedding. The above example illustrates that the reconstructed phase-space
preserves certain topological properties of the original attractor.
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8.2.1 Phase Space Reconstruction

The data that we obtain from sensors is usually a projection of the original dynamical

system to a lower dimensional space, and hence do not represent all the variables in the

system. Hence, the available data is insufficient to model the dynamics of the system.

To address this, we have to employ methods for reconstructing the attractor to obtain

a phase-space which preserves the important topological properties of the original

dynamical system. This process is required to find the mapping function between

the one-dimensional observed time series data and the m-dimensional attractor, with

the assumption that all variables of the system influence one another. The concept

of phase-space reconstruction was proposed in the embedding theorem proposed by

Takens, called Takens’ embedding theorem [129]. For a discrete dynamical system

with a multidimensional phase-space, time-delay vectors (or embedding vectors) are

obtained by concatenation of time-delayed samples given by

xi(n) = [xi(n), xi(n+ τ), · · · , xi(n+ (m− 1)τ)]T . (8.1)

where m is the embedding dimension and τ is the embedding delay. The idea here is

that for a sufficiently large m, the important topological properties of the unknown

multidimensional system are reproduced in the reconstructed phase-space [3]. The

process of phase-space reconstruction from a one-dimensional observed time-series of

a Lorenz and Rossler system is shown in Fig 8.1, where the reconstructed phase-space

and the original attractor are topologically equivalent.

8.2.2 Persistent Homology

Consider a point cloud of T data samples in RD: X = [x1,x2, . . . , xT ]T . The point

cloud data can be viewed as samples from a unknown shape. Our aim is to esti-

mate the topological properties of the underlying shape by constructing a simplicial
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complex S using the point cloud X and examining the topology of the complex. A

simplicial complex is a set of simplices constructed from X glued together in a par-

ticular way. It is denoted by S = (X,Σ), where Σ is a family of non-empty subsets of

X, with each element σ ∈ Σ being a simplex. The other necessary condition is that

σ ∈ Σ and k ⊆ σ implies that k ∈ Σ. The simplices are usually constructed using

some neighborhood rule, such as the ε−neighborhood, where ε is the scale parameter.

We are interested in computing the rank of homology groups of a given dimension,

aka, Betti numbers (β), since they are one of the simple but informative characteriza-

tions of topology of the point cloud. Betti−0 or β0 denotes the number of connected

components, β1, the number of holes of dimension−1, β2, the number of holes of

dimension−2 and so on. Betti numbers depend on the scale (which is same as the

scale used with ε−nearest neighbors) at which the complex is constructed. Homology

groups that are stable across a wide range of scale values, i.e., persistent homology

groups, are the ones that provide the most information about the underlying shape.

Homology that do not persist are considered to be noise. The Betti numbers of a

given dimension can be compactly encoded in a 2−dimensional plot, which provides

the birth versus death times of each homology group, also known as the persistence

diagram. Persistence diagrams are multi-sets of points, with infinite number of points

on the diagonal where birth time equals death time. They admit several metrics and

hence distances between two diagrams can be estimated numerically [69].

Various approaches exist for constructing simplicial complexes from X at a given

scale ε. In our work, we use the Vietoris-Rips (VR) complex, VR(X, ε), where a

simplex is created if and only if the Euclidean distance between every pair of points

is less than ε [161]. Efficient construction of the VR complex can proceed by creating

an ε-neighborhood graph, also referred to as the one-skeleton of S. Then inductively,

triplets of edges that form a triangle are taken as two-dimensional simplices, sets of

120



Algorithm 2 Persistence diagrams from phase-space

1: Input: xi(n) ∈ RD, n = 1, . . . T

2: Output: Persistence diagram for homology group dimensions 0 & 1.

3: for i = 1→ D do

4: Reconstruct attractor using method of delays [3]

xi(n) = [xi(n), xi(n+ τ), · · · , xi(n+ (m− 1)τ)]T .

5: Construct metric space encoding temporal evolution

Temporal link between [xi(n− 1),xi(n),xi(n+ 1)].

6: Build Vietoris-Rips complexes [131, 161]

7: end for

four two-dimensional simplices that form a tetrahedron are taken as three-dimensional

simplices, and so on. This is repeated for increasing values of scale, known as filtration,

and the persistence diagrams are estimated. Although several types of topological

features can be extracted from point clouds, in our work, we will use it to refer

exclusively to persistence diagrams.

8.3 Topological Features from Attractor

Although VR complexes can successfully retrieve the topological features of a gen-

eral point cloud, topological features that incorporate the dynamical evolution in

phase-space can model actions better. In this section, we present a method to en-

code temporal information in persistence diagrams which in turn can be used as a

representative topological feature for the reconstructed phase-space.

Methods to build simplicial complexes from the point cloud data, such as the VR

filtration approach, only takes into consideration the adjacency in space, but not in

time. An activity is a resultant of coordinated movement of body joints and their re-

121



spective interdependencies to achieve a goal-directed task with temporal information

in trajectories of body joints. Modeling the underlying dynamics in the trajectories

forms the core idea in designing action recognition systems. Therefore, we explicitly

we create temporal links between xi(n− 1), xi(n), and xi(n+ 1) in the one-skeleton

of S, thereby creating a metric space which encodes adjacency in both space and

time. The persistence diagrams for homology groups of dimensions 0 and 1 are then

estimated. The pseudo code for our framework is outlined in algorithm 2.

As a demonstrative example, we use this approach to estimate the persistence

diagrams of Lorenz and Rossler attractors. From Fig. 8.1, we see that for the Lorenz

attractor, the ranks of homology groups that persist are, β0 = 1 and β1 = 1, whereas

for the Rossler attractor, β0 = 1 and, β1 = 2. Clearly they indicate the connected

components and 1−dimensional holes in each of the cases. Note that the points close

to the diagonal are considered to be noise with their birth and death times being

close to each other. Therefore these points represent homology groups that die in a

short time after they are born.

Distance Between Persistence Diagrams: For any two persistence diagrams X

and Y , the distance between the diagrams are usually quantified using the bottle-

neck distance or the q−Wasserstein distance [69]. In our experiments, we use the

1-Wasserstein distance given by,

W1(X, Y ) = inf
η:X→Y

∑
x∈X

||x− η(x)||1 (8.2)

Since each diagram contains an infinite number of points in the diagonal, this distance

is computed by pairing each point in one diagram uniquely to another non-diagonal

or diagonal point in the other diagram, and then computing the distance. This can

be efficiently obtained with the Hungarian algorithm or using a more efficient variant

[69].

122



8.4 Experimental Results

The proposed framework for topological data analysis for action representation was

evaluated on the motion capture dataset [5].

Baseline: To evaluate the effectiveness of our framework, we provide compara-

tive results using 10−dimensional feature vectors 1 of traditional chaotic invariants

obtained by concatenating the largest Lyapunov exponent, correlation dimension and

correlation integral (for 8 values of radius). The results with this approach are denoted

with Chaos in Table 8.1. We also tabulate the results using persistence diagrams ob-

tained from VR filtrations with no additional temporal encoding (VR Complex ), and

a recent shape-theoretic framework D2 and DT2 [141]. The evaluation with VR

complexes follow the same protocol as our proposed approach described below.

8.4.1 Motion Capture Data

We evaluate the performance of the proposed framework using 3-dimensional motion

capture sequences of body joints used in the [5]. The dataset is a collection of five

actions: dance, jump, run, sit and walk with 31, 14, 30, 35 and 48 instances respec-

tively. The dataset provides 3−dimensional time-series from 17 body joints which

were further divided into scalar time-series resulting in a 51-dimensional vector rep-

resentation for each action. We generate 100 random splits having 5 testing examples

from each action class and use a nearest neighbor classifier with the 1−Wasserstein

distance measure. The mean recognition rates for the different methods are given in

Table 8.1. Traditional chaotic invariants (Chaos) only achieves a mean recognition

rate of 52.44%. The best classification performance reported on the dataset uses

DT2 dynamical shape feature achieves a mean recognition rate of 93.92% which en-

1Code available at
http://www.physik3.gwdg.de/tstool/HTML/index.html
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Table 8.1: Comparison of classification rates for different methods using nearest
neighbor classifier on the motion capture dataset.

Method Mean Accuracy (%) Std. dev

Chaos [5] 52.44 0.0081

VR Complex [131] 93.68 0.0054

D2 [142] 91.96 0.0036

DT2 [141] 93.92 0.0051

Proposed 96.48 0.0053

Table 8.2: Confusion table for motion capture dataset using our proposed framework
which achieves mean classification rate of 96.48%.

Action Dance Jump Run Sit Walk

Dance 0.98 0 0 0.02 0

Jump 0.08 0.92 0 0 0

Run 0 0 0.96 0 0.04

Sit 0.03 0 0 0.97 0

Walk 0 0 0.01 0 0.99

codes temporal information. In comparison, our proposed method achieves 96.48%

which is significantly better than the results achieved by any of the previous meth-

ods. Clearly, topological persistence features are informative, since they summarize

the feature evolution over a range of scale values when compared to chaotic invariants

such as largest Lyapunov exponents. The standard deviation of classification accu-

racy over the different random splits are also tabulated. The class confusion matrix

for the proposed framework is shown in Table 8.2.
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9 Conclusion and Future Directions

In this work, we have proposed a shape theoretic dynamical analysis framework for

applications in action and gesture recognition, movement quality assessment for stroke

rehabilitation and dynamical scene classification. We address the drawbacks of tradi-

tional measures from chaos theory for modeling the dynamics by proposing a frame-

work combining the concepts of nonlinear time-series analysis and shape theory to

extract robust and discriminative features from the reconstructed phase space. Our

experiments on nonlinear dynamical models and joint trajectory data from motion

capture support our hypothesis that the shape of the reconstructed phase space can

be used as feature representation for the above discussed applications. Furthermore,

the wide range of experimental analysis on publicly available datasets for recognition

of actions, gestures and scenes validate our claims. The framework was also tested

on movement analysis on a finer scale, where we were interested in quantifying the

movement quality (level of impairment) for applications in stroke rehabilitation. Our

experiments using a single marker indicate that with combination of dynamical fea-

tures and machine learning tools, we are able to achieve comparable performance

levels to a heavy marker-based system in movement quality assessment.

We have also proposed the use of an approximate entropy-based feature represen-

tation to quantify dynamical regularity in time series of action data for applications

in (a) temporal segmentation of actions and (b) quantification of quality of diving ac-

tions. The novelty in the proposed feature is in the use of the multivariate embedding
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approach for approximate entropy to model dynamics in individual body joints and

cross approximate entropy to model interaction between body joints. Using nonlinear

dynamical models such as the coupled Rossler system, we showed that the proposed

feature is sensitive to changes in coupling factor, analogous to interactions between

body joints in different actions. Extensive experimental evaluation was presented on

two publicly available databases showing better results than the state-of-the-art and

the traditional approaches used as baseline measures.

Another idea we have proposed is a novel topological feature representation for

persistent homology which encodes temporal information in any given point cloud

suitable for applications in action recognition. The proposed framework addresses

the drawbacks of conventional methods, by combining the principles from nonlinear

time-series analysis and topological data analysis, to extract robust and discriminative

features from the reconstructed phase-space.

Since computing distances between persistence diagrams is similar to obtaining

Wasserstein distance between two probability mass functions, a well-designed multi-

resolution approach can be used to reduce complexity, particularly in applications

where we only need approximate distances. Further, using recently proposed persis-

tence kernels can significantly widen the scope of applications of topological persis-

tence features.
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nition from temporal self-similarities. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(1):172–185, 2011.

131



[65] A. Kale, A. Sundaresan, A. Rajagopalan, N. P. Cuntoor, A. K. Roy-Chowdhury,
V. Kruger, and R. Chellappa. Identification of humans using gait. IEEE Trans-
actions on Image Processing, 13(9):1163–1173, 2004.

[66] J. J. Kavanagh. Lower trunk motion and speed-dependence during walking.
Journal of neuroengineering and rehabilitation, 6(1):9, 2009.

[67] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In
International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[68] M. B. Kennel, R. Brown, and H. D. Abarbanel. Determining embedding dimen-
sion for phase-space reconstruction using a geometrical construction. Physical
review A, 45(6):3403, 1992.

[69] M. Kerber, D. Morozov, and A. Nigmetov. Geometry helps to compare persis-
tence diagrams.

[70] A. N. Kolmogorov. A new metric invariant of transient dynamical systems and
automorphisms in lebesgue spaces. In Dokl. Akad. Nauk SSSR (NS), volume
119, pages 861–864, 1958.

[71] T. Krabben, G. Prange, B. Molier, J. Rietman, and J. Buurke. Objective mea-
surement of synergistic movement patterns of the upper extremity following
stroke: an explorative study. In IEEE International Conference on Rehabilita-
tion Robotics (ICORR),, pages 1–5. IEEE, 2011.

[72] G. Kwakkel, B. Kollen, and E. Lindeman. Understanding the pattern of func-
tional recovery after stroke: facts and theories. Restorative neurology and neu-
roscience, 22(3):281–299, 2004.

[73] N. Lehrer, S. Attygalle, S. L. Wolf, and T. Rikakis. Exploring the bases for
a mixed reality stroke rehabilitation system, part i: A unified approach for
representing action, quantitative evaluation, and interactive feedback. Journal
of neuroengineering and rehabilitation, 8(1):51, 2011.

[74] N. Lehrer, Y. Chen, M. Duff, S. L. Wolf, and T. Rikakis. Exploring the bases
for a mixed reality stroke rehabilitation system, part ii: Design of interactive
feedback for upper limb rehabilitation. Journal of neuroengineering and reha-
bilitation, 8(1):54, 2011.

[75] N. Lehrer, Y. Chen, M. Duff, S. L. Wolf, and T. Rikakis. Exploring the bases
for a mixed reality stroke rehabilitation system, part ii: Design of interactive
feedback for upper limb rehabilitation. Journal of neuroengineering and reha-
bilitation, 8(1):54, 2011.

[76] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points.
In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 9–14, Jun. 2010.

132



[77] Z. Liu and S. Sarkar. Improved gait recognition by gait dynamics normalization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6):863–
876, 2006.

[78] C. Lu and N. J. Ferrier. Repetitive motion analysis: segmentation and event
classification. Transactions on Pattern Analysis and Machine Intelligence,
26(2):258–263, 2004.

[79] J. Mackay, G. A. Mensah, and K. Greenlund. The atlas of heart disease and
stroke. World Health Organization, 2004.
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