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ABSTRACT  

   

In brain imaging study, 3D surface-based algorithms may provide more advantages 

over volume-based methods, due to their sub-voxel accuracy to represent subtle 

subregional changes and solid mathematical foundations on which global shape analyses 

can be achieved on complicated topological structures, such as the convoluted cortical 

surfaces. On the other hand, given the enormous amount of data being generated daily, it 

is still challenging to develop effective and efficient surface-based methods to analyze 

brain shape morphometry. There are two major problems in surface-based shape analysis 

research: correspondence and similarity. This dissertation covers both topics by proposing 

novel surface registration and indexing algorithms based on conformal geometry for brain 

morphometry analysis.  

First, I propose a surface fluid registration system, which extends the traditional 

image fluid registration to surfaces. With surface conformal parameterization, the 

complexity of the proposed registration formula has been greatly reduced, compared to 

prior methods. Inverse consistency is also incorporated to drive a symmetric 

correspondence between surfaces. After registration, the multivariate tensor-based 

morphometry (mTBM) is computed to measure local shape deformations. The algorithm 

was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).  

Next, I propose a ventricular surface registration algorithm based on hyperbolic 

Ricci flow, which computes a global conformal parameterization for each ventricular 

surface without introducing any singularity. Furthermore, in the parameter space, unique 

hyperbolic geodesic curves are introduced to guide consistent correspondences across 

subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) 



  ii 

statistic is computed from the registration to measure shape changes. This algorithm was 

applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.  

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This 

algorithm computes the Wasserstein distance between general topological surfaces as a 

shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, 

hyperbolic harmonic map, and optimal mass transportation map, which is extended to 

hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior 

work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an 

AD vs. control cortical shape classification study and achieved promising accuracy rate. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Surface Registration 

Surface registration is the process to find an optimal and meaningful correspondence 

between two surfaces. It has extensive applications in computer vision [1] and medical 

imaging [2, 3]. Given two 3D surfaces 𝑆1 and 𝑆2, which are represented as point clouds or 

triangular meshes, surface registration tries to find a map 𝑓 between them, such that 

𝑓(𝑆1) = 𝑆2, and provides both global and local information for shape comparisons. The 

surface 𝑆1 is usually called the source or deforming surface and 𝑆2 the target or template 

surface. Surface-based shape analysis usually pursues a diffeomorphic, i.e., smooth and 

one-to-one, map between two surfaces which are homotopic to each other under certain 

constraints such as landmark curve matching [4, 5]. 

Many surface registration algorithms have been proposed, as summarized in [6, 7]. 

The iterative closest point (ICP) method [8, 9] is based on minimizing the difference 

between two clouds of points. At the beginning, an initial estimation of the transformation 

to align the two surfaces is computed. Then the initial mapping is refined to best match the 

source surface to the target surface. In each iteration, the initial mapping is updated to the 

refined registration and used as the initial mapping for the next iteration, until the two 

surfaces are close enough to each other given a predefined measure of similarity. The ICP 

method can be used to register surfaces that are related by rigid transformations [10] or 

non-rigid deformations [11, 12]. However, the diffeomorphism of the resulting registration 

is not guaranteed and a good estimation of the initial mapping is usually required to succeed 
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with the ICP method. Another kind of methods start with a sparse set of point 

correspondences and then extend them to obtain dense point-to-point mappings between 

the surfaces [13-16]. Due to the discrete property of the sparse point mappings, these 

methods often require the preservation of certain measures between two sets of points, such 

as geodesic distance [13] or spectral quantities [15, 17, 18], etc., to enforce the consistent 

global alignment. The large deformation diffeomorphic metric mapping (LDDMM) [19] 

implements the surface registration by controlling the diffeomorphism group and 

deformation shape spaces to obtain an optimal correspondence between surfaces. This 

method has been widely applied in brain imaging field [20, 21]. Another type of methods 

starts by embedding the 3D surfaces to a higher spectral space [17, 22, 23], which is usually 

spanned by the eigen-system, i.e., eigenvalues and eigen-functions, of the Laplace-

Beltrami operator. The registration of surfaces is then obtained by directly warping the 

higher-dimensional embeddings with rigid or non-rigid transformations to minimize the 

distance between surfaces, or by gradually changing the metric on the original surfaces to 

minimize the differences between the embeddings. The resulting surface registration of the 

latter optimization method is conformal [24]. 

Recently, based on the development of various surface parameterization methods [25, 

26], surface registration can also be done by first mapping the surfaces to be matched onto 

a canonical parameter space, such as a unit sphere [26], a planar rectangle [27, 28], or a 2D 

hyperbolic disk [1], and then registering them in the simpler parameter domain. The 

correspondence field computed in the parameter domain also induces a registration of the 

original 3D surfaces [29, 30]. The surface registration algorithms that will be presented in 

this dissertation is based on this framework, as illustrated in figure 1.1. Given two 3D 
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homotopic surfaces 𝑆1 and 𝑆2, their parameterizations to a canonical space are computed 

by the maps 𝜙1 and 𝜙2, respectively. Then a mapping 𝑓 ̅is computed to match the surfaces 

in the parameter domain, which also induces the correpondence 𝑓 between the original 

surfaces, with 𝑓 = 𝜙2
−1 ∘ 𝑓̅ ∘ 𝜙1: 𝑆1 → 𝑆2. Specifially, the parameterizations 𝜙1, 𝜙2 are 

conformal maps, as will be introduced in Sec. 1.4. 

 

Figure 1.1. The surface registration framework used in this dissertation. 

 

1.2 Shape Indexing 

With the rapid development of 3D imaging and scanning techniques, 3D surface-

based representations of real-life objects are becoming more popular. Many databases of 

3D geometric models are emerging and expanding daily. Thus effective algorithms to store, 

classify, and retrieve the 3D models are highly demanded. Briefly speaking, shape indexing 

refers to the process to extract concise, refined, and meaningful shape descriptors from the 
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3D models to represent the geometric or topological features that are able to accurately 

describe the similarities and dissimilarities between different shapes. 

Many shape indexing algorithms have been proposed and applied [31]. Given a 

function 𝑓 defined on the sphere 𝕊2, if 𝑓: 𝕊2 → 𝑅 is an eigen-function of the Laplace-

Beltrami operator on 𝕊2, then 𝑓 is a spherical harmonic. For any function defined on a 

surface that can be mapped to a sphere, its expansion in terms of the spherical harmonics 

is invariant under rotation [25]. Thus, spherical harmonics are widely used to compare and 

match surfaces that are homotopic to spheres [32, 33]. The heat kernel signature (HKS) 

describes each surface point’s local and global geometric information using heat diffusion 

method [34]. The HKS is invariant to isometric transformations and has extensive 

applications in shape classification [35], matching [34], and retrieval [36]. The medial 

representations or m-reps [37] of surfaces encode rich information about local shape 

variants and are used in many shape analysis applications [38, 39].  

Some shape indexing methods are related to surface conformal geometry [40]. The 

Gauss–Codazzi equations proved that, conformal factor and mean curvature together can 

uniquely determine a surface in ℝ3, up to a rigid motion [41]. They are called the conformal 

representation of a surface and contain both intrinsic (conformal factor) and extrinsic 

(mean curvature) information and are invariant to rigid motions. The conformal 

representation will be used as automatically identified surface features and be matched 

across subjects in one of the proposed surface registration algorithms (Sec. 2.2.3). The 

histogram of the conformal factors was used in [42] to characterize different shapes and it 

is invariant to both rigid motions and pose changes. If two surfaces can be conformally 

mapped to each other, then they are conformal equivalent and share the same coordinate in 
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the Teichmüller shape space [43]. Shape indices based on Teichmüller space coordinates 

are invariant to conformal mappings and have been widely applied in computer vision [1] 

and brain imaging [44-46] research. 

Recently, the Wasserstein space, which is the space consists of all probability 

measures that are defined on a Riemannian manifold, is attracting more attention. It is an 

important part in the shape space theory [47]. The Wasserstein distance defines a 

Riemannian metric for the Wasserstein space and can intrinsically measure the similarities 

between different shapes. However, most existing Wasserstein distance computation 

algorithms only work with 2D images [48, 49]. Wasserstein distance on 3D surfaces is 

limited to genus-0 closed surfaces [50], 

 

1.3 Surface-based Brain Morphometry Analysis 

In brain imaging research, structural magnetic resonance imaging (MRI) plays an 

important role in studying brain shape morphometry in normal aging and 

neurodegenerative diseases. Most brain MRI scanning protocols have been designed to 

acquire volumetric data on the anatomy of a subject. To statistically compare or combine 

image data obtained from different people, or at different time-points, various non-linear 

brain volume-based registration methods [51-53] have been developed for brain image 

analysis. However, when registering structural MR images, the volume-based methods 

have much more difficulty with the highly convoluted cortical surfaces due to the 

complexity and variability of the sulci and gyri. Early research [26, 28, 54, 55] has 

demonstrated that surface-based brain mapping may offer advantages over volume-based 

brain mapping as a method to study the structural features of the brain, such as cortical 
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gray matter thickness, as well as the complexity and change patterns in the brain due to 

disease or developmental processes. The surface registration framework in figure 1.1 can 

be easily applied to brain surfaces by first parameterizing them to spheres [26, 56, 57] or 

planar domain [28, 58, 59]. A flow, computed in the parameter domain, induces a 

correspondence field in 3D brain surfaces [29, 30]. This flow can be constrained using 

anatomic landmark points or curves [60-62], by subregions of interest [63], by constraining 

the mapping of surface regions represented implicitly using level sets [59], or by using 

currents to represent anatomical variation [19, 20, 64]. Feature correspondence between 

two surfaces can be optimized by using the ℓ2-norm to measure differences in curvature 

profiles or convexity [26] or by using mutual information to align scalar fields of various 

differential geometric parameters defined on the surface [65]. Artificial neural networks 

may also be used to rule out or favor certain types of feature matches [66]. Finally, 

correspondences may be determined by using a minimum description length (MDL) 

principle, based on the compactness of the covariance of the resulting shape model [67, 

68]. After surface registration, the brain shape morphometry can be statisically analyzed 

with surface deformation meausres [32, 69, 70]. 

The various shape indexing algorithms have also been applied to analyze brain shape 

morphometry. For example, in [38], the m-rep has been used to study hippocampal shape 

variability in a population of schizophrenia patients. By parameterizing a cortical surface 

to a sphere, the spherical harmonics can be applied for surface smoothing, matching, and 

comparison [32]. With conformal parameterization, conformal-invariant shape indices can 

also be defined on brain surfaces. Conformal invariants are able to quantitatively measure 

local and global shape changes and may provide a powerful tool for brain morphometry 
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analysis [44-46]. In [50], the Wasserstein distance was computed on cortical surfaces, by 

using the conformal spherical domain [25] as a canonical space. The Wasserstein distance 

was applied in cortical shape classification and experimental results demonstrated its 

potential to be a brain shape index. 

 

1.4 Brain Surface Parameterization 

As discussed above, parameterization of brain surfaces to a canonical space is a 

fundamental problem for surface-based morphometry study. Sometimes, it is also called 

brain surface flattening. The goal of surface parameterization is to find some mappings 

between brain surfaces and some common flattened surfaces, that it, some surfaces with 

constant Gaussian curvature, such as a sphere [26, 56, 57] with positive Gaussian curvature, 

a Euclidean plane [28, 58, 59] with zero Guassian curvature, or the hyperbolic space [1] 

with negave Gaussian curvature. Brain surface parameterization has been studied 

extensively. A good surface parameterization preserves the geometric features and 

facilitates the following registration process between surfaces. Some research focus on 

isometry-based algorithms. An isometric mapping between two surfaces requires that their 

first fundamental forms be equivalent. However, it is impossible to compute a mapping 

from an irregular and complicated brain surface to regular canonical space that preserves 

all the distances. As proved by the theorema egregium [71], brain surfaces usually have 

variant Gaussian curvature on most of its surface areas, while the canonical surface has 

constant Gaussian curvature everywhere, these two surfaces cannot be isometric. 

Therefore, many isometry-based algorithms try to compute the quasi-isometric 

parameterization, i.e., an approximation of the isometric mapping [72-74]. Area-preserving 
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mappings were also introduced and applied to brain surface parameterization [75, 76]. 

Another branch of research used concepts from conformal geometry to compute brain 

surface conformal parameterization [77, 78]. In addition to the angle-preserving property, 

conformal parameterization provides a rigorous framework for representing, splitting, 

matching, and measuring brain surface deformations. Particularly, conformal mappings 

have an appealing property for surface registration. As shown in figure 1.1, let 𝜙1 and 𝜙2 

be conformal mappings, then if 𝑓 ̅is conformal, so is 𝑓; if 𝑓 ̅is diffeomorphic, so is 𝑓 [1]. 

Thus, surface conformal parameterization methods have been extensively applied and 

validated in the registration problem of brain surfaces [2, 25, 27, 79, 80]. Furthermore, as 

discussed above, many useful shape indices, such as conformal factor [42], mean curvature, 

and conformal invariants [45], can also be computed from surface conformal structure. 

Another advantage of conformal parameterization is its generality. All oriented 

surfaces have conformal structures. The uniformization theorem states that all surfaces can 

be conformally mapped to one of three canonical spaces: the unit sphere 𝕊2, the Euclidean 

plane 𝔼2, and the hyperbolic space ℍ2. For a closed genus-0 surface, the spherical 

conformal mapping method [25] can conformally map it to a sphere by minimizing the 

harmonic energy, as shown in figure 1.2 (a). For brain surface analysis, landmarks curves 

are usually introduced to annotate important anatomical or functional regions. After slicing 

the surfaces open along these landmark curves, they become genus-0 surfaces with multiple 

open boundaries. The Euclidean Ricci flow [2] method or holomorphic 1-form [80] method 

can conformally map them to the Euclidean plane, as shown in figure 1.2 (b) and (c), 

respectively. Their conformal parameterization can also be computed under the hyperbolic 

geometry [4, 5, 81], as shown in figure 1.2 (d). These conformal parameterization methods 
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are technically sound and numerically stable. They may increase computational accuracy 

and efficiency when solving the partial differential equations on surfaces. In this 

dissertation, surface conformal parameterization is chosen to solve the registration and 

indexing problems of brain surfaces. 

 

Figure 1.2. Illustration of different brain surface conformal parameterization methods. (a) 

is the spherical harmonic mapping for closed genus-0 surfaces [25]; for genus-0 surfaces 

with multiple boundaries, their conformal parameterization can be computed by the 

Euclidean Ricci flow (b) [2], the holomorphic 1-form method (c) [80], or the hyperbolic 

Ricci flow (d) [81]. 

 

1.5 Organization of the Dissertation 

This dissertation will introduce three new surface-based shape analysis algorithms 

for brain imaging study, including two surface registration methods and one shape indexing 

method. The proposed methods are based on surface conformal geometry, thus they are 
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stable, efficient, and general. Applications of these algorithms to study brain shape 

morphometry in Alzheimer’s disease (AD) will also be described. 

In Chapter 2, a surface fluid registration algorithm will be introduced, which is based 

on surface conformal parameterization with holomorphic 1-forms [27], inverse consistent 

surface fluid registration, and multivariate tensor-based morphometry (mTBM) [69, 82]. 

Traditional image fluid registration algorithm [83] is extended to 3D surfaces. By utilizing 

conformal parameterization, the complexity of the resulting registration formula is greatly 

reduced, when compared with prior work [28]. The algorithm was applied on the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) baseline dataset to study atrophy in 

hippocampal surfaces that is associated with AD. The proposed method successfully 

detected significant difference between different diagnostic groups (AD, MCI, and control) 

and outperformed other two publically available subcortical shape analysis tools. The 

genetic influence of the Apolipoprotein E 𝜖4 allele (ApoE4) on hippocampal shape 

morphometry was also studied. The proposed method successfully detected statistically 

significant difference in hippocampal shape between ApoE4 carriers and noncarriers in 

both MCI patients and healthy control subjects. 

In Chapter 3, a ventricular surface registration algorithm will be introduced, which is 

based on hyperbolic Ricci flow [1] and tensor-based morphometry (TBM) [32]. Lateral 

ventricle is a fluid-filled structure deep in human brain, which is usually abnormally 

enlarged in neurodegenerative diseases. Ventricular enlargement often reflects atrophy of 

surrounding brain tissues and may give indirect information about brain morphometry in 

normal aging and cognitive diseases [84-86]. However, surface-based ventricular 

morphometry analysis is challenging. The surface registration framework in figure 1.1 is 
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not easily applicable to ventricular surfaces. Due to its branchy and complicated topology, 

it is difficult to find a global parameterization of a ventricular surface without introducing 

distortions or singularity points. The proposed algorithm computes the ventricular surface 

conformal parameterization with hyperbolic Ricci flow [1]. The resulting parameterization 

has minimal angle distortion and no singularities. With geodesic curve lifting, a 

diffeomorphic registration with consistent boundary conditions is computed between 

different ventricular surfaces. Then the TBM statistic [32] is computed from the 

registration to measure surface deformations. The algorithm was applied on MRI scans of 

two groups of MCI patients from the ADNI baseline dataset, with one group of MCI 

converters and one group of MCI non-converters. The proposed method detected 

significant difference in ventricular shapes between the two groups. The correlations 

between ventricular morphometry, neuropsychological measures, and a previously 

introduced brain functional index [87], were also analyzed, as both a validation of the 

correctness of the proposed method and an exploration of the relationship between brain 

structural and functional changes. 

In Chapter 4, a novel shape index, the hyperbolic Wasserstein distance, will be 

introduced. Unlike prior studies [48-50], the proposed method computes the Wasserstein 

distance between general surfaces with hyperbolic Ricci flow [1], hyperbolic harmonic 

map [4], TBM statistic [32], and optimal mass transportation map [88, 89], which is 

extended to the hyperbolic space. The proposed hyperbolic Wasserstein distance was 

applied to study cortical shape morphometry with data from the ADNI baseline dataset and 

achieved a higher rate in the AD vs. control classification study, when compared with other 

standard brain shape measures. 
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In Chapter 5, the proposed algorithms and their applications in this dissertation are 

summarized. 
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CHAPTER 2 

SURFACE FLUID REGISTRATION 

 

This chapter presents a new automated surface registration algorithm based on 

surface conformal parameterization with holomorphic 1-forms, inverse consistent surface 

fluid registration, and multivariate tensor-based morphometry (mTBM). First, a surface is 

conformally mapped onto a planar rectangle with holomorphic 1-forms. Second, the 

conformal representation of the surface is computed by combining its local conformal 

factor and mean curvature. Then the dynamic range of the conformal representation is 

linearly scaled to form the feature image of the surface. Third, the feature image is matched 

to a chosen template image via the fluid image registration algorithm, which has been 

extended into the curvilinear coordinates to adjust for the distortion introduced by surface 

parameterization. The inverse consistent image registration algorithm is also incorporated 

to jointly estimate the forward and inverse transformations between the study and template 

images. This alignment induces a corresponding deformation on the surface. The algorithm 

was tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) baseline dataset to 

study AD symptoms on hippocampus. By modeling the hippocampus as a 3D parametric 

surface, we nonlinearly registered each surface with a selected template surface. Then 

mTBM was used to analyze the morphometry difference between diagnostic groups. 

Experimental results show that the new method has better performance than two publically 

available subcortical surface registration tools: FIRST and SPHARM. The genetic 

influence of the Apolipoprotein E 𝜖4 allele (ApoE4), which is considered as the most 

prevalent risk factor for AD, was also studied. The proposed method successfully detected 
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statistically significant hippocampal difference between ApoE4 carriers and noncarriers in 

the non-demented cohort of ADNI baseline dataset, which consists of mild cognitive 

impairment (MCI) patients and healthy control subjects. The results demonstrate that the 

ApoE4 genotype may be associated with accelerated brain atrophy so that this work 

provides a new MRI analysis tool that may help presymptomatic AD research. 

 

2.1 Introduction 

In brain imaging study, although most subcortical structure analysis work use volume 

as the atrophy measurement [84, 90-95], recent research [85, 96-105] has demonstrated 

that surface-based subcortical structure analysis may offer advantages over volume 

measure. For example, the surface-based methods have studied patterns of hippocampal 

subfield atrophy and detailed point-wise correlation between atrophy and cognitive 

functions/biological markers. There are several methods that match surfaces of subcortical 

structures using parametric surfaces, such as contour parameterization [85, 106, 107], 

SPHARM (spherical harmonic) methods [96], large deformation diffeomorphism metric 

matching (LDDMM) [103, 108, 109], Laplacian-Beltrami eigen-features [110], multi-

resolution geodesic construction on Riemannian manifolds [111] and Beltrami 

holomorphic flow [112]. In recent years, a set of parametric surfaces have been introduced 

using concepts from conformal geometry which provide a rigorous framework for 

representing, splitting, parameterizing, matching and measuring subcortical surfaces [79]. 

They have been successfully applied to study HIV/AIDS [79] and AD [27]. Even so, an 

automated substructure surface registration system that uses complete surface geometric 

features for a diffeomorphic mapping is still highly advantageous. 
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Using holomorphic 1-forms, a global conformal parameterization can be developed 

to map a surface to a rectangular domain in the Euclidean plane [70]. On the other hand, 

fluid registration has been widely used to drive a large-deformation diffeomorphic flow for 

image correspondence. By adjusting the viscous fluid method to parametrically match 

scalar-valued signals representing surface geometry, I derive a method for landmark-free 

surface registration. Since both kinds of mappings are diffeomorphic, their composition 

leads to diffeomorphic shape correspondence (i.e., a smooth, one-to-one correspondence). 

Wang et. al [65] proposed an automated surface fluid registration method based on 

conformal mapping and image fluid registration, and applied it to register human faces and 

hippocampal surfaces. Here, the Navier-Stokes equation in [65, 113] is extended into 

general surface space using covariant derivatives. Due to the simple Riemannian metric 

induced by conformal parameterization, the general Navier-Stokes equation can be easily 

adjusted for area distortion. As pointed out in [114], inverse consistent registration method 

is more robust than the traditional unidirectional registration. Leow et al. [114] presented 

a novel inverse consistent image registration scheme with linear elastic regularization. 

Chiang et al. [115] extended the method in [114] with viscous fluid regularization to enable 

large deformations, and applied the method to diffusion tensor images. I extend the method 

proposed in [115] to surfaces. By solving the Navier-Stokes equation on the surface and 

matching geometrically-informed scalar functions, an inverse consistent surface 

registration algorithm is developed. 

In general, in order to study structural features of the brain, such as cortical gray 

matter thickness, complexity, and deformation over time, etc., there are roughly two 

different approaches, deformation-based morphometry (DBM) [116-119] and tensor-based 
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morphometry (TBM) [29, 32, 120]. DBM tends to analyze 3D displacement vector fields 

encoding relative positional differences across subjects, while TBM tends to examine 

spatial derivatives of the deformation maps registering brains to a common template, 

constructing morphological tensor maps such as the Jacobian determinant, torsion or 

vorticity. One advantage of TBM for surface morphometry is that TBM can make use of 

the intrinsic Riemannian surface metric to characterize local anatomical changes.  Chung 

et al. [32] showed that the single value of the determinant of Jacobian can reliably detect 

surface morphometry due to autism. In the proposed algorithm, multivariate statistics based 

on surface deformation tensors are used to study brain surface morphometry as proposed 

in [69, 82]. The multivariate tensor-based morphometry (mTBM) computes statistics from 

the Riemannian metric tensors that retain the full information in the deformation tensor 

fields, thus may be more powerful in detecting surface difference than many other statistics 

[2, 27, 70, 79]. The hypothesis is that, together with mTBM as the surface statistics, the 

proposed surface fluid registration method may help boost statistical power to detect 

disease burden and genetic influence on hippocampal morphometry compared with some 

existing researches in the literature. Here I set out to validate the algorithm in the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) baseline dataset. In AD research, 

magnetic resonance imaging (MRI) based measures in several brain structures, including 

whole-brain [121-123], entorhinal cortex [124], hippocampus [84, 85, 92, 93, 105], and 

temporal lobe volumes [125], as well as ventricular enlargement [84, 85], correlate closely 

with changes in cognitive performance, supporting their validity as markers of disease 

progression [97, 104]. Of all the MRI markers of AD, hippocampal atrophy assessed on 

high-resolution T1-weighted MRI is the best established and validated. One of the key 
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research topics for clinical assessment in diagnosis and monitoring of progression of 

patients with suspected Alzheimer dementia is to establish and validate efficient 

biomarkers based on subcortical structures including hippocampus.  

Figure 2.1 summarizes the overall step sequence in the system. The brain MR image 

is from ADNI baseline dataset. The hippocampal regions and surfaces are segmented and 

constructed automatically. We then compute hippocampal surface conformal 

parameterization with holomorphic 1-forms and obtain their feature images that consist of 

conformal factor and mean curvature. With the inverse consistent surface fluid registration 

method, symmetric displacements in both surfaces are enforced (𝒉(𝒙) denotes the forward 

mapping and 𝒈(𝒙) denotes the inverse mapping, where 𝒈(𝒙) = 𝒉−1(𝒙)). Multivariate 

statistics are computed to study differences between diagnostically different groups and the 

genetic influence on hippocampal morphometry. 

 

2.2 Surface Fluid Registration System 

2.2.1 Image Segmentation and Preprocessing 

The FIRST software (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST) is used to 

automatically segment the hippocampal volume from T1-weighted MRI scans. FIRST is 

an integrated surface registration and segmentation tool developed as part of the FSL 

library, which is written mainly by members of the Analysis Group, FMRIB, Oxford, UK. 

FIRST is able to extract subcortical structures and assign the image voxels with different 

numerical labels. Then the binary image segmentation can be obtained by a simple 

threshold process. After obtaining the binary segmentation, a topology-preserving level set 
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method [126] is used to build surface models. Based on that, the marching cubes algorithm 

[127] is applied to obtain triangular surface meshes. 

 

Figure 2.1. A segmentation and surface construction chart showing the key steps in the 

system. After the hippocampal surfaces are extracted from MRI scans automatically with 

FIRST, we compute their conformal parameterizations with holomorphic 1-forms. Then 

feature images are generated by combining the local conformal factor and mean curvature 

that are computed from the conformal parameterizations. After the inverse consistent fluid 

registration is done in the feature image domain, we deform the surfaces using the obtained 

displacements. The statistics of mTBM are computed at each point on the resulting 

matched surface. Then the Hotelling 𝑇2 test is applied to compute differences between two 

different groups. 
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However, the surface models constructed from medical image data, which has limited 

resolution and noise from scanning, may contain much noise. Surface smoothing may help 

restore the original shape and overcome partial volume effects. Furthermore, the triangular 

meshes obtained by the marching cubes algorithm [127] often contain obtuse angles, which 

make the meshes inappropriate for direct use in conformal parameterization. Here, to 

compute the conformal parameterization, we need firstly compute harmonic forms and they 

require solving a linear system to minimize the harmonic energy [27]. In the finite element 

formulation, there is a cotangent weight term [25] which should be positive. The 

formulation becomes unsolvable if there are too many obtuse angles (negative cotangent 

weight terms). Thus mesh smoothing is needed before any further processing. Here a two-

step mesh smoothing method is applied to the hippocampal surfaces. The smoothing 

process consists of mesh simplification using “progressive meshes” [128] and mesh 

refinement by Loop subdivision surface [129]. All the meshes were smoothed by several 

iterations of mesh simplification using “progressive meshes” and Loop subdivision. Later 

all the smoothed meshes were normalized into a standard space using affine transformation 

with a 9-parameter (3 parameters for translation, 3 parameters for rotation, and 3 

parameters for scaling) matrix that was computed by FIRST. 

 

2.2.2 Surface Conformal Parameterization with Holomorphic 1-Forms 

Let 𝑆 be a surface in ℝ3 with an atlas {(𝑈𝛼 , 𝑧𝛼)}, where (𝑈𝛼, 𝑧𝛼) is a coordinate chart 

defined on 𝑆. The atlas thus is a set of consistent charts with smooth transition functions 

between overlapping charts. Here 𝑧𝛼: 𝑈𝛼 → ℂ maps an open set 𝑈𝛼 ⊂ 𝑆 to a complex plane 

ℂ. If on any chart (𝑈𝛼 , 𝑧𝛼) in the atlas, the Riemannian metric or the first fundamental form 
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can be formulated as 𝑑𝑠2 = 𝜆(𝑧𝛼)
2𝑑𝑧𝛼𝑑𝑧�̅�, and the transition maps 𝑧𝛽 ∘

𝑧𝛼
−1: 𝑧𝛼(𝑈𝛼⋂𝑈𝛽) → 𝑧𝛽(𝑈𝛼⋂𝑈𝛽) are holomorphic, the atlas could be called conformal. 

Given a conformal atlas, a chart is compatible with the atlas if adding this chart still 

generates a conformal atlas. A conformal structure is obtained by adding all possible 

compatible charts to a conformal atlas. A Riemann surface is a surface with a conformal 

structure. All metric oriented surfaces are Riemann surfaces. One coordinate chart in the 

conformal structure introduces a conformal parameterization between a surface patch and 

the image plane. The conformal parameterization is angle-preserving and intrinsic to the 

surface geometry [71, 130]. 

For a Riemann surface 𝑆 with genus g > 0, its conformal structure can always be 

represented in terms of a holomorphic 1-form basis, which is a set of 2g functions 𝜏𝑖: 𝐾1 →

ℂ, 𝑖 = 1,… , 2g [131]. Here, 𝐾1 represents the simplicial 1-complex (In mathematics, a 

simplicial complex is a topological space that is constructed by gluing together points, line 

segments, triangles, and their 𝑛-dimensional counterparts. A simplicial 𝑘-complex 𝐾𝑘 is a 

slimplicial complex where the largest dimension of any component in 𝐾𝑘 equals to 𝑘. In 

discrete settings, a simplicial 1-complex is an edge.). Any holomorphic 1-form 𝜏 is a linear 

combination of these functions. This finite-dimensional linear space generates all possible 

conformal parameterizations of surface 𝑆 and the quality of a global conformal 

parameterization is fundamentally determined by the choice of the holomorphic 1-form 

[27, 131]. By considering the holomorphic 1-form as an ℝ2 function, the conformal 

parameterization 𝜙: 𝑆 → ℝ2 at point 𝑝 can be computed by integrating the holomorphic 1-

form: 
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 𝜙(𝑝) = ∫ 𝜏
 

𝛾
.                                                       (2.1)  

where 𝛾 is an arbitrary path joining 𝑝 to a fixed point 𝑝0 on the surface. The details of the 

holomorphic 1-form based conformal parameterization algorithms were reported in prior 

work [27, 131]. Figure 2.2 illustrates a pair of hippocampal surfaces and their conformal 

parameterizations to a rectangular domain. 

 

Figure 2.2. Illustration of surface conformal parameterization. The boundaries generated 

in the topology optimization step (Sec. 2.3.2) are labeled in blue color. Each side of the 

hippocampal surfaces is conformally mapped to a rectangle in the parameter domain. The 

overlaid checkboard texture is used to demonstrate angle-preserving property; the shading 

effect on the parameter space is generated by rendering the normal direction on each point 

of the original 3D surface. 
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2.2.3 Surface Conformal Representation 

It has been known that surface registration requires defining a lot of landmarks in 

order to align corresponding functional regions. Labeling features could be accurate but 

time-consuming. Here we show that surface conformal parameterization could represent 

surface geometric features, thus avoiding the manual definition of landmarks. 

For a general surface and its conformal parameterization 𝜙: 𝑆 → ℝ2, the conformal 

factor at a point 𝑝 can be determined by the formula:  

𝜆(𝑝) =  
Area(𝐵𝜖(𝑝))

Area(𝜙(𝐵𝜖(𝑝)))
                                                  (2.2) 

where 𝐵𝜖(𝑝) is an open ball around 𝑝 with a radius 𝜖. The conformal factor 𝜆 encodes a lot 

of geometric information about the surface and can be used to compute curvatures and 

geodesic. In this work, the surface mean curvatures are computed only from the derivatives 

of the conformal factors as proposed in [132], instead of the three coordinate functions and 

the normal, which are generally more sensitive to digitization errors. Mathematically, the 

mean curvature is defined as:  

𝐻 =
1

2𝜆
sign(𝜙)|Δ𝜙|                                                 (2.3) 

where sign(𝜙) =
<𝛥𝜙,�⃗⃗� >

|Δ𝜙|
. Using this formulation of 𝐻, the surface normal �⃗⃗�  is only used 

when computing sign(𝜙), which takes the value 1 or -1. Thus, the surface normal does not 

need to be accurately estimated and still we can get more accurate mean curvatures. Using 

the Gauss and Codazzi equations, one can prove that the conformal factor and mean 

curvature uniquely determine a closed surface in ℝ3, up to a rigid motion [41]. We call 

them the conformal representation of the surface. Figure 2.3 shows the computed 

conformal factor (left) and mean curvature (right) on a pair of hippocampal surfaces with 
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color indices according to the values. Since conformal factor and mean curvature encode 

both surface intrinsic structure and 3D embedding information, they are complete surface 

features to be used for solving surface registration problems [113, 133]. 

 

Figure 2.3. Illustration of surface geometric features, which are color-coded on a pair of 

hippocampal surfaces. The geometric features are used for surface registration and 

morphometric analysis. 

 

2.2.4 Inverse Consistent Surface Fluid Registration 

After computing surface geometric features, the surfaces are aligned in the parameter 

domain with a fluid registration technique to maintain smooth, one-to-one topology [51]. 

Using conformal mapping, the surface registration problem has essentially been converted 

to an image registration problem. Prior work [113] proposed an automated surface fluid 

registration method combining conformal mapping and image fluid registration [134] with 

mutual information [135-139] as the driving force of the viscous fluid. In [113], the mutual 

information between two surface feature images, i.e., the conformal representations of the 
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two surfaces that need to be registered, was maximized by the viscous fluid flow as in 

[134]. On ℝ2, fluid flow is governed by the Navier-Stokes equation. For compressible fluid 

flow, we have 

𝜇Δ𝒗(𝒙) + (𝜇 + 𝜏)∇(∇ ∙ 𝒗(𝒙)) = 𝒇(𝒙, 𝒖(𝒙))                               (2.4) 

Here 𝒗(𝒙) is the deformation velocity, 𝜇 and 𝜏 are the viscosity constants. 𝒇(𝒙, 𝒖(𝒙)) is 

the force field that is used to drive the fluid flow, which was defined as the mutual 

information in [113]. 

To simulate fluid flow on Riemann surfaces, Eq. 2.4 needs to be extended into surface 

space by the manifold version of Laplacian and divergence [140-142]. By covariant 

derivatives, the Navier-Stokes equation for Riemann surface can be defined as: 

𝜇

𝜆
Δ𝒗 +

𝜇+𝜏

𝜆
∇(∇ ∙ 𝒗) = 𝒇                                            (2.5) 

where 𝜆 is the conformal factor as introduced in Sec. 2.2.3. Please refer the appendix A for 

the derivation of Eq. 2.5. It is well known that area distortion is an inevitable problem in 

conformal parameterization. However, considering the definition of conformal factor 𝜆 as 

Eq. 2.2, we can see that conformal factor is a smooth function which describes the 

stretching effect of conformal parameterization [143]. In Eq. 2.5, by factoring out the 

conformal factor 𝜆, the flow induced in the parameter domain is adjusted for the area 

distortion introduced by the conformal parameterization. As a result, Eq. 2.5 is now 

governing fluid flow on the manifolds. Considering that hippocampi across the population 

should have similar shapes, we assume the conformal representations of different 

hippocampi have similar intensity range and distribution. Thus, the body force 𝒇 in Eq. 2.5 

driving the fluid flow in this study is defined as the sum of squared intensity differences 

(SSD) between the deforming image and the template image. In the experiments, the SSD 
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based energy formulation has similar performance with mutual information energy which 

was adopted in prior work [113] while significantly improves algorithm efficiency 

compared with the latter method. As shown in figure 2.4, the performance of the inverse 

consistent fluid registration driven by SSD and mutual information is illustrated, 

respectively, on the synthetic C-shape images. The figure shows that these two types of 

driving forces were able to obtain similar registration results while the time cost by SSD 

was 14.15 seconds. It was much more efficient than mutual information based energy 

formulation, which ran up to 1730.15 seconds. Both algorithms were executed on a 

2.66GHz Intel Quad CPU Q8400 PC with Windows 7 64-bit operating system. Given the 

large number of surfaces to be registered, we chose to adopt SSD based energy formulation 

for improved efficiency [83, 144]. Since conformal mapping and fluid registration generate 

diffeomorphic mappings, a diffeomorphic surface-to-surface mapping is then recovered 

that matches surfaces in 3D. 

As pointed out in [114], image registration problem should be symmetric, i.e., the 

correspondences established between the two images should not depend on the order 

people use to compare them. However, traditional non-linear image registration algorithms 

are not symmetric, thus the deformation field depends on which image is assigned as the 

deforming image and which image the non-deforming target image. Furthermore, the 

asymmetric algorithms tend to penalize the expansion of image regions more than the 

shrinkage [145], making these methods problematic in applications where the Jacobian of 

the mappings is interpreted as measuring anatomical tissue loss or expansion. Many inverse 

consistent registration algorithms [110, 146-148] have been proposed to overcome the 

shortcomings of conventional inverse non-consistent methods. Leow et al. [114] proposed 
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a novel inverse consistent image registration method. Instead of enforcing inverse 

consistency using an additional penalty that penalizes inconsistency error as in [146], the 

method in [114] directly modeled the reverse mapping by inverting the forward mapping. 

Chiang et al. [115] replaced the linear elastic regularizer in [114] with the fluid 

regularization to enable large deformations and applied the inverse consistent fluid 

registration algorithm to diffusion tensor images. Here with the inverse consistent scheme 

proposed in [115], we extend Eq. 2.5 into an inverse consistent surface fluid registration 

method.  

 

Figure 2.4. Inverse consistent fluid registration driven by sum of squared intensity 

difference (SSD) (a) and mutual information (MI) (b) respectively on synthetic images to 

demonstrate the efficiency of SSD. Although the registration results were similar, the SSD 

based method took 14.15 seconds while the MI based method took 1730.15 seconds. 
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Let 𝐼1(𝒙), 𝐼2(𝒙) be two images, using the sum of squared intensity differences as the 

matching cost function, the inverse consistent image registration problem seeks two 

mappings 𝒉(𝒙) and 𝒈(𝒙) to minimize the following energy function: 

E(𝐼1(𝒙), 𝐼2(𝒙)) = ∫ |𝐼1(𝒉(𝒙)) − 𝐼2(𝒙)|
2
𝑑𝒙

 

Ω
+ 𝛼𝑅(𝒉(𝒙)) + ∫ |𝐼2(𝒈(𝒙)) − 𝐼1(𝒙)|

2
𝑑𝒙 

 

Ω
+

𝛼𝑅(𝒈(𝒙))     (2.6) 

where 𝒉(𝒙) = 𝒙 − 𝒖𝑓(𝒙) is the mapping from image 𝐼1 to image 𝐼2 (forward direction) 

and 𝒖𝑓(𝒙) is the forward displacement field. 𝒈(𝒙) = 𝒙 − 𝒖𝑏(𝒙) is the mapping from 

image 𝐼2 to image 𝐼1 (backward direction) and 𝒖𝑏(𝒙) is the backward displacement field, 

𝒈(𝒙) = 𝒉−1(𝒙). α is a positive scalar weighting of the regularization terms applied to the 

forward and backward mappings. Following prior work in fluid registration [114, 115], we 

let α = 1 to achieve a fast and stable convergence. Eq. 2.6 is symmetric and does not 

depend on the order of 𝐼1 and 𝐼2, i.e., 𝐸(𝐼1, 𝐼2) = 𝐸(𝐼2, 𝐼1). Suppose given two surfaces 𝑆1, 

𝑆2 and their conformal representation 𝐼1, 𝐼2in ℝ2. With fluid regularization scheme, 

𝑅(𝒉(𝒙)) is defined as ∫ ∫ ‖𝐿𝒗𝑓(𝒙)‖
2
𝑑𝒙𝑑𝑡

 

Ω

1

0
 and 𝑅(𝒈(𝒙)) is defined as 

∫ ∫ ‖𝐿𝒗𝑏(𝒙)‖
2𝑑𝒙𝑑𝑡

 

Ω

1

0
 with the forward and backward velocities 𝒗𝑓(𝒙) and 𝒗𝑏(𝒙), 

respectively. 𝐿 =
𝜇

𝜆
Δ +

𝜇+𝜏

𝜆
∇(∇ ∙) is the surface linear operator as in Eq. 2.5. Then the 

energy function in Eq. 2.6 can be minimized by solving for the velocities 𝒗𝑓(𝒙) and 𝒗𝑏(𝒙) 

in the following general Navier-Stokes equations: 

𝜇

𝜆𝑓,𝑏
Δ𝒗𝑓,𝑏 +

𝜇+𝜏

𝜆𝑓,𝑏
∇(∇ ∙ 𝒗𝑓,𝑏) = 𝒇𝑓,𝑏                                  (2.7) 
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where the forward force field 𝒇𝑓 = −[𝐼1 (𝒙 − 𝒖𝑓(𝒙)) − 𝐼2(𝒙)] ∇𝐼1(𝒙 − 𝒖𝑓(𝒙)) and 

backward force field 𝒇𝑏 = −[𝐼2(𝒙 − 𝒖𝑏(𝒙)) − 𝐼1(𝒙)]∇𝐼2(𝒙 − 𝒖𝑏(𝒙)). 𝜆𝑓 is the conformal 

factor of surface 𝑆1 and 𝜆𝑏 is the conformal factor of surface 𝑆2. 

With the mappings 𝒉(𝒙), 𝒈(𝒙) initialized as the identical mapping at 𝑡 = 0, the 

forward and backward mappings at time 𝑡 are given by the following equations as in [114]: 

𝒉𝑡(𝒙) = 𝒉𝑡−1(𝒙) + 𝜖𝜼1(𝒙) + 𝜖𝜼2(𝒙) 

𝒈𝑡(𝒙) = 𝒈𝑡−1(𝒙) + 𝜖𝝃1(𝒙) + 𝜖𝝃2(𝒙)                                  (2.8) 

Here, ϵ is an infinitesimally small positive time step. 𝜼1, 𝜼2, 𝝃1, 𝝃2 are computed as [115]: 

𝜼1(𝒙) = −(∇𝒉𝑡−1(𝒙))𝒗𝑓
𝑡−1(𝒙), 𝜼2(𝒙) = 𝒗𝑏

𝑡−1(𝒉𝑡−1(𝒙)) 

𝝃1(𝒙) = 𝒗𝑓
𝑡−1(𝒈𝑡−1(𝒙)), 𝝃2(𝒙) = −(∇𝒈𝑡−1(𝒙))𝒗𝑏

𝑡−1(𝒙)                   (2.9) 

 

2.2.5 Multivariate Tensor-Based Morphometry Statistics 

Suppose 𝜙: 𝑆1 → 𝑆2 is a map from the surface 𝑆1 to the surface 𝑆2.  To simplify the 

formulation, the isothermal coordinates of both surfaces are used as the arguments. Let 

(𝑢1, 𝑣1) be the isothermal coordinates of 𝑆1 and 𝑆2. The Riemannian metric of 𝑆𝑖 is 

represented as 𝐠𝑖 = 𝑒
2𝜆𝑖(𝑑𝑢1

2 + 𝑑𝑣1
2), 𝑖 = 1,2. In the local parameters, the map 𝜙 can be 

represented as 𝜙(𝑢1, 𝑣1) = (𝜙1(𝑢1, 𝑣1), 𝜙2(𝑢1, 𝑣1)). The derivative map of 𝜙 is the linear 

map between the tangent spaces, 𝑑𝜙: 𝑇𝑀(𝑝) → 𝑇𝑀(𝜙(𝑝)), induced by the map 𝜙. In the 

local parameter domain, the derivative map is the Jacobian of 𝜙: 

𝑑𝜙 =

[
 
 
 
𝜕𝜙1
𝜕𝑢1

𝜕𝜙1
𝜕𝑣1

𝜕𝜙2
𝜕𝑢1

𝜕𝜙2
𝜕𝑣1 ]
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Let the position vector of 𝑆1 be r(𝑢1, 𝑣1). Denote the tangent vector fields as 
𝜕

𝜕𝑢1
=

𝜕r

𝜕𝑢1
 , 

𝜕

𝜕𝑣1
=

𝜕r

𝜕𝑣1
. Because (𝑢1, 𝑣1) are isothermal coordinates, 

𝜕

𝜕𝑢1
 and 

𝜕

𝜕𝑣1
 only differ by a 

rotation of 𝜋/2. Therefore, an orthonormal frame on the tangent plane of 𝑆1 can be 

constructed as {𝑒−𝜆1
𝜕

𝜕𝑢1
, 𝑒−𝜆1

𝜕

𝜕𝑣1
}.  

Similarly, an orthonormal frame on 𝑆2 for its isothermal coordinates can be 

constructed. Since any two surfaces are locally conformal [149], we can have an 

orthonormal frame on 𝑆2 as {𝑒−𝜆2
𝜕

𝜕𝑢1
, 𝑒−𝜆2

𝜕

𝜕𝑣1
}. The derivative map under the 

orthonormal frames is represented as 

𝑑𝜙 = 𝑒𝜆2−𝜆1

[
 
 
 
𝜕𝜙1
𝜕𝑢1

𝜕𝜙1
𝜕𝑣1

𝜕𝜙2
𝜕𝑢1

𝜕𝜙2
𝜕𝑣1 ]

 
 
 

 

In practice, smooth surfaces are approximated by triangle meshes. In the triangle 

mesh surface, the derivative map 𝑑𝜙 is approximated by the linear map from one face 

[𝑣1, 𝑣2, 𝑣3] to another [𝑤1, 𝑤2, 𝑤3]. First, the surfaces [𝑣1, 𝑣2, 𝑣3] and [𝑤1, 𝑤2, 𝑤3] are 

isometrically embedded onto the plane ℝ2 (i.e., 𝜆1 = 𝜆2 = 0 in the above equation), the 

planar coordinates of the vertices 𝑣𝑖 , 𝑤𝑖 are denoted by the same symbol 𝑣𝑖 , 𝑤𝑖. Then the 

Jacobian matrix for the derivative map 𝑑𝜙 can be explicitly computed as [70] 

𝐽 = 𝑑𝜙 = [𝑤3 − 𝑤1, 𝑤2 − 𝑤1][𝑣3 − 𝑣1, 𝑣2 − 𝑣1]
−1.                     (2.10)  

The deformation tensor can be defined as 𝑆 = (𝐽𝑇𝐽)
1

2 [117, 125]. Instead of analyzing shape 

change based on the eigenvalues of the deformation tensor, a new family of metrics, the 

“Log-Euclidean metrics” [150] is considered in the multivariate tensor-based morphometry 

(mTBM). In this framework, Riemannian computations can be converted into Euclidean 
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ones once tensors have been transformed into their matrix logarithms [150]. This 

conversion makes computations on tensors easier to perform, as they are chosen such that 

the transformed values form a vector space, and statistical parameters can then be 

computed easily using the standard formulae for Euclidean space [69, 82].  

To compute group differences with mTBM, the Hotelling's 𝑇2 test [151-154] is 

applied on sets of values in the log-Euclidean space of the deformation tensors. Given two 

groups of 𝑛 × 1-dimensional vectors, 𝑆𝑖 , 𝑖 = 1,2, … , 𝑝, 𝑇𝑗 , 𝑗 = 1,2, … , 𝑞, we use the 

Mahalanobis distance 𝑀 to measure the group mean difference, 

𝑀 =
𝑁𝑆𝑁𝑇

𝑁𝑆+𝑁𝑇
(𝑆̅ − �̅�)𝑇∑−1(𝑆̅ − �̅�).                                (2.11) 

where 𝑁𝑆 and 𝑁𝑇 are the number of subjects in the two groups,  𝑆̅ and �̅� are the means of 

the two groups and ∑ is the combined covariance matrix of the two groups [27, 69, 79]. In 

current study, 𝑆 and 𝑇 are the log-Euclidean metrics, e.g. 𝑆𝑖 = log[(𝐽𝑖
𝑇𝐽𝑖)

1

2], 𝑖 = 1,2, … , 𝑝 

and 𝑇𝑗 = log[(𝐽𝑗
𝑇𝐽𝑗)

1

2], 𝑗 = 1,2, … , 𝑞. Since the statistic 𝑀 is a uni-variate, the analysis does 

not introduce any bias because of the increase of the variable number. 

 

2.3 Experimental Results 

2.3.1 Synthetic Surface Registration 

In order to validate the effectiveness of the proposed method, we generated two 

synthetic surfaces as shown in figure 2.5 (a) and (b). The two C shapes have different sizes 

and positions. This can also be seen from the corresponding feature images at the bottom 

of figure 2.5 (a) and (b). The feature images were generated by summing up the local 

conformal factor and the mean curvature, expressed in the conformal parameterization 
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domain. The black lines drawn on the surfaces are used to show equal distances on the 

surfaces and represent the differences in their shapes. With the inverse consistent fluid 

registration, figure 2.5 (c) and (d) show that the feature image of surface 1 was successfully 

registered to the feature image of surface 2 and the feature image of surface 2 was also 

registered to the feature image of surface 1. With the forward and backward mappings 

obtained in the parameter domain, a forward deformation and a backward deformation in 

surface 1 and surface 2 were induced, respectively. As can be seen from figure 2.5 (c) and 

(d), without changing the shape of the surfaces, the features on them are well aligned to 

each other. 

 

2.3.2 Hippocampal Surface Registration 

An automatic algorithm is used to identify two landmark curves at the front and back 

of each hippocampal surface, representing its anterior junction with the amygdala, and its 

posterior limit as it turns into the white matter of the fornix (the hole boundaries are shown 

as blue curves in figure 2.2) [27]. They are biologically valid and consistent landmarks 

across subjects. Given the hippocampal tube-like shape, these landmark curves can be 

automatically detected by checking the extreme points by searching along the first principle 

direction of geometric moments of surface [27, 155, 156]. For consistency, we also make 

sure these landmark curves have the same length. Next the surface is cut open along the 

two landmark curves. The new surface still has the same geometry but becomes a genus-0 

surface with two open boundaries. This operation is termed as topology optimization. The 

goal is to compute curvilinear coordinates by holomorphic 1-forms (as shown in figure 2.1 

(c)) which introduce a planar surface conformal parameterization. To register hippocampal 
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surfaces, the boundaries serve as landmark curves and are forced to match each other. The 

computed curvilinear coordinates help apply fluid registration method to align other 

geometric similar areas. The topology optimization method has been applied in a few of 

prior work [27, 46, 70] and the method can identify these consistent landmark curves. 

Besides, for quality control purpose, all the hole-labeled meshes were manually checked. 

Then the surfaces were conformally mapped to a rectangle plane using holomorphic 1-

forms.  

We chose to encode hippocampal surface features using a compound scalar function 

based on the local conformal factor and the mean curvature: 𝐶(𝑢, 𝑣) = 𝛽𝜆(𝑢, 𝑣) +

𝐻(𝑢, 𝑣), where (𝑢, 𝑣) is the conformal coordinates of the surface and 𝛽 is a constant scalar 

to control the ratio of conformal factor and mean curvature. In the current study, similar to 

prior work [65, 113], 𝛽 was empirically set as 7 for both visualization and registration. 

Then the dynamic range of the conformal representation was linearly scaled into [0,255]. 

With a target image randomly selected, the deforming images were aligned to the target 

image with the inverse consistent fluid registration method as introduced in Sec. 2.2.4. The 

alignment induced displacements in both 𝑢 and 𝑣 directions in a deforming image. Then 

the corresponding surface was deformed with these displacement vectors. After the cross-

subject registration was computed with a selected target surface, the Jacobian matrix 𝐽 was 

computed as Eq. 2.10. The “Log-Euclidean metric” on the set of deformation tensors, 𝑆, 

was computed as the matrix logarithm log (𝑆). Since 𝑆 is a positive-definite matrix, the first 

3 of the 4 vector elements, analyzed in mTBM, are the logarithm of the deformation tensor 

𝑆. The multivariate surface morphometry statistic is defined as a 3 × 1 feature vector 

consisting of the logged deformation tensors (detailed in Section 2.2.5). 
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Figure 2.5. Matching of geometric features in the 2D parameter domain with the inverse 

consistent fluid registration of two synthetic surfaces. With the forward and backward 

mappings obtained in the parameter domain, we induce a forward deformation and a 

backward deformation in surface 1 and surface 2, respectively. As can be seen from (c) and 

(d), without changing the shape of the surfaces, the features on them are well aligned to 

each other. 
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2.3.3 Subjects 

The proposed method was tested on the ADNI baseline dataset 

(http://adni.loni.usc.edu/) to study AD symptoms on hippocampus. At the time of 

downloading (09/2010), the baseline dataset consisted of 843 adults, ages 55 to 90, 

including 233 elderly healthy controls, 410 subjects with MCI and 200 AD patients. In this 

study, 1 subject from the control group and 2 subjects from the MCI group were manually 

excluded because of name duplication. For subjects with duplicated names, the one which 

was the repeated scan was retained. All subjects underwent thorough clinical and cognitive 

assessment at the time of acquisition, including the Mini-Mental State Examination 

(MMSE) score [157], Clinical Dementia Rating (CDR) [158], and Delayed Logical 

Memory Test [159]. Furthermore, 1 subject from each group (AD, MCI, and control) failed 

the FIRST segmentation step (Sec. 2.2.1) probably due to the original images’ resolution 

or contrast issues. We also manually checked all the constructed and smoothed meshes and 

excluded 5 AD, 5 MCI, and 3 control subjects due to wrong topologies. As a result, the 

baseline MR hippocampus image data of 194 AD (age: 76.1±7.6 years), 402 MCI (age: 

75.0±7.3 years), and 228 controls (age: 76.0±5.0 years) were studied using the new 

system. 

 

2.3.4 Associating Hippocampal Morphometry and Clinical Characteristics 

To check the group difference between any two groups (AD vs. MCI, AD vs. control, 

and control vs. MCI), we performed a group comparison with the Hotelling’s 𝑇2 test as 

Eq. 2.11 on the 3-dimensional mTBM feature vectors. Specifically, for each point on the 

hippocampal surface, given 0.05 as the significant level, we ran a permutation test with 
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10,000 random assignments of subjects to groups to estimate the statistical significance of 

the areas with group differences in surface morphometry. The probability was estimated as 

the ratio of the Mahalanobis distance for a random assignment larger than the group 

Mahalanobis distance with the true group membership. The probability was later color 

coded on each surface point as the statistical p-map of group difference. Figure 2.6 (a)-(c) 

shows the p-maps of group difference detected between AD and control, AD and MCI, 

control and MCI groups, respectively, using mTBM as a measure of local surface area 

change and the significance level at each surface point as 0.05. In figure 2.6, the non-blue 

color areas denote the statistically significant difference areas between two groups. All 

group difference p-maps were corrected for multiple comparisons using the widely-used 

false discovery rate method (FDR) [160]. The FDR method decides whether a threshold 

can be assigned to the statistical map that keeps the expected FDR below 5% (i.e., no more 

than 5% of the voxels are false positive findings). Figure 2.6 (d)-(f) are the cumulative 

distribution function (CDF) plots showing the uncorrected p-values (as in a conventional 

FDR analysis). The 𝑥 value at which the CDF plot intersects the 𝑦 =  20𝑥 line represents 

the FDR-corrected p-value or q-value. It is the highest statistical threshold that can be 

applied to the data, for which at most 5% false positives are expected in the map. In general, 

a larger q-value indicates a more significant difference in the sense that there is a broader 

range of statistic threshold that can be used to limit the rate of false positives to at most 

5%. The use of the 𝑦 =  20𝑥 line is related to the fact that significance is declared when 

the volume of suprathreshold statistics is more than 20 times that expected under the null 

hypothesis [27].  
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In this experiment, the 194 AD, 402 MCI, and 228 healthy control surfaces were 

successfully registered by the proposed system.  The FDR-corrected p-values for AD vs. 

control, AD vs. MCI, and control vs. MCI are 0.049, 0.0244, and 0.0483, respectively. 

 

Figure 2.6. Illustration of inverse consistent surface fluid registration on map of local shape 

differences (p-values) between different diagnostic groups, based on the multivariate TBM 

method with hippocampal surfaces from ADNI baseline dataset, which were automatically 

segmented by FIRST. (a), (b), (c) are group difference 𝑝-maps between AD and control, 

AD and MCI, MCI and control, respectively, in 194 AD, 402 MCI, and 228 control 

subjects. The p-map color scale is the same as figure 2.8. (d), (e), (f) are the CDF plots. 

 

2.3.5 Diagnostic Group Difference Comparison 

In this experiment, the proposed method was compared with the popular surface 

registration tools FIRST and SPHARM [161] in diagnostic group difference detection.  

FIRST is an integrated registration and segmentation tool [162]. Before 

segmentation, FIRST aligns all images onto the MNI152 template with FSL’s integrated 
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registration tool, FLIRT. This is a two-stage linear registration process. The first stage is 

an affine transformation of the whole head to the template with a standard 12 degrees of 

freedom registration and the second stage achieves a more accurate and robust 12 degrees 

of freedom registration to the template using a subcortical mask, which is defined in the 

MNI space. Following the registration, the inverse transformation will be applied to the 

surface models to get them into the native image space. The subsequent segmentation will 

be conducted in the native image space with the original non-interpolated voxel intensities 

[162]. With the default configuration, we obtained hippocampal surface models generated 

by FIRST, which are in their native image spaces. Then the surfaces were transformed into 

MNI standard space with the transformation matrices computed by FLIRT. As pointed out 

in [163], applying the original transformation to the mesh in the native image space is 

equivalent to reconstructing the mesh from the MNI space model. Thus all the surfaces 

have a common reference frame. The mTBM statistics were computed directly on these 

registered surfaces given that all the hippocampal surfaces have the same number of 

vertices and faces and the cross-subject vertex correspondence established by FIRST [162]. 

It is notable that some prior work [162-164] also took the established vertex 

correspondences across subjects by FIRST to study local subcortical structure shape 

difference between AD patients and healthy controls [162, 163] and between patients with 

learning disabilities and healthy controls [164]. 

SPHARM is another surface mapping tool which is extensively used in the literature 

[165-168]. It takes binary image segmentation as input and provides functions such as 

surface extraction, spherical harmonic mapping and surface registration; statistical tools 

are also included [161]. In the comparison experiments, the binary image segmentations 
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processed by FIRST and thresholding, as described in Sec. 2.2.1, were resampled with 

FIRST to generate images with isotropic resolution of 1mm × 1mm× 1mm. The 

generated isotropic images were used as the input of SPHARM. The parameters used with 

SPHARM package were set as recommended for hippocampus [161]. The template was 

chosen as the same template with the inverse consistent fluid registration. The registered 

surfaces obtained by SPHARM have the same number of vertices and faces and cross-

subject vertex correspondence. The mTBM statistics were computed on these surfaces and 

the significance p-maps were generated. In the experiments, within the dataset that was 

processed in the fluid registration experiments, 4 AD and 6 MCI subjects failed in 

SPHARM system either due to segmentation failure or parameterization failure and they 

were excluded from these experiments. The details of the experiment with SPHARM are 

discussed in Appendix B.  

For performance comparison purpose, figure 2.7 illustrates the experimental results 

showing group difference p-maps resulted from the inverse consistent surface fluid 

registration, FIRST, and SPHARM among the three diagnostic groups (AD, MCI and 

control) and the CDF plots. In this experiment, considering fairness, the 4 AD and 6 MCI 

subjects that failed in SPHARM were excluded from the dataset studied by surface fluid 

and FIRST methods. Thus, 190 AD, 228 controls, 396 MCI subjects were used to compare 

the surface fluid, FIRST, and SPHARM statistics. MCI is an intermediate stage between 

the expected cognitive decline of normal aging and the more pronounced decline of 

dementia. If MCI could be found and treated, the risk of AD will be significantly reduced. 

However, at MCI stage, changes in brain surface are not significant thus impose more 

difficulty on the detection. It can be seen from figure 2.6 and figure 2.7 that, in the 
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experimental results, the most prominent results between the proposed method and other 

methods are in figure 2.6 (b) and figure 2.7 (b). Figure 2.6 (b) showed that the new method 

detected more significant different areas on right side of hippocampus between AD and 

MCI groups. On the left side, the significant areas are more on lateral zone proximal to the 

CA1 subfield and superior zone proximal to the combined CA2, CA3, CA4 subfields and 

gyrus dentaus (GD) [105, 169]. The results agree well with a prior discovery on 

morphology difference between AD and MCI groups [107], although these two methods 

use different hippocampal segmentation methods and different surface statistics. 

Comparing two results, the proposed method detected more significant areas. Table 2.1 

gives the FDR corrected p-values comparison, which also shows that the proposed surface 

fluid registration system outperformed two other methods as the method achieved higher 

FDR corrected p-values. 

 Surface Fluid FIRST SPHARM 

AD-CTL 0.0485 0.0455 0.0461 

AD-MCI 0.0259 0.0058 0.0134 

CTL-MCI 0.0479 0.0408 0.0468 

Table 2.1. FDR corrected p-values comparison. The proposed system generated stronger 

statistical power than two other subcortical morphometry systems. 
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Figure 2.7. Illustration of comparisons of inverse consistent surface fluid registration with 

FIRST and SPHARM on map of local shape differences (p-values) between different 

diagnostic groups, based on the multivariate TBM method with hippocampal surfaces from 

ADNI baseline dataset, which were automatically segmented by FIRST. (a), (b), (c) are 

results of proposed method, (d), (e), (f) are result of FIRST, (g), (h), (i) are results of 

SPHARM on group difference between AD and control, AD and MCI, MCI and control, 

respectively, in 190 AD, 396 MCI, and 228 control subjects. The p-map color scale is the 

same as figure 2.8. (j), (k), (l) are the CDF plots showing the comparisons of the three 

methods. 
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2.3.6 Influence of Apolipoprotein E 𝜖4 Genotype on Hippocampal Morphometry 

The Apolipoprotein E 𝜖4 allele (ApoE4) gene is of special interest in AD analysis as it is 

the major genetic risk for AD [170, 171]. It has been found that the presence of this allele 

is more frequent in AD patients than age-matching normal persons and is associated with 

a younger age of disease onset [170-174]. MRI studies have shown that this allele is 

associated with greater hippocampal atrophy [175-178] and one work [178] reported a 

significant correlation between hippocampal loss and memory deficits. However, only a 

few studies have investigated the local effect of ApoE4 on hippocampal atrophy in patients 

of AD/MCI or healthy control subjects [107, 179-181]. Morra et al. [107] discussed that in 

healthy elderly subjects, presence of ApoE4 may be correlated with future development of 

AD. In order to investigate this correlation, the authors designed two experiments: (1) 

group difference between ApoE4 carriers and noncarriers in all samples; (2) group 

difference between ApoE4 carriers and noncarriers in subjects that have not developed AD, 

i.e., MCI and control groups. The experiments are aimed to determine if the ApoE4 allele 

is linked with hippocampal atrophy in all subjects or in just the non-AD subjects. In their 

study [107], 400 subjects with 100 AD subjects, 200 MCI subjects, and 100 healthy 

controls from ADNI baseline dataset were analyzed with surfaces segmented by a prior 

work [99]. However, no significance was reported in [107]. Qiu et al. [180] studied ApoE4 

effects on hippocampal volume and shape in 38 depressed patients without ApoE4, 14 

depressed patients with one ApoE4 allele and 31 healthy controls without the ApoE4 allele. 

They found that the depressed patients with one ApoE4 showed more pronounced shape 

inward-compression in the anterior CA1 than the depressed patients without the ApoE4 

when compared with the healthy controls without the ApoE4. Pievani et al. [181] designed 
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more systematic experiments to study ApoE4 effects. Their studying subjects included 14 

AD patients heterozygous for the ApoE4 allele and 14 patients not carrying the ApoE4 

allele and 28 age-, sex-, and education-matched controls. Radial atrophy was analyzed by 

the same method that used in [107]. In the group difference study between AD patient 

ApoE4 carriers and AD noncarriers, they found statistically different atrophy on the left 

hippocampus but not on the right side. Neuropsychological studies also showed the 

accelerated decline of memory scores in a gene-dose pattern in ApoE4 carriers beginning 

between age 55 and 60 [182] that is further accelerated in ApoE4 homozygotes by 

cerebrovascular risk factors [183].  

 
ApoE 

Genotype 

Number 

of 

Subjects 

Gender 

(M/F) 
Education Age 

MMSE at 

Baseline 

AD 

𝜖2/𝜖2 0 - - - - 

𝜖2/𝜖3 4 1/3 15.00±2.24 74.25±8.26 22.00±1.58 

𝜖2/𝜖4 4 0/4 15.75±1.79 79.25±5.12 24.75±2.17 

𝜖3/𝜖3 52 27/25 15.15±2.05 76.96±8.58 23.23±2.05 

𝜖3/𝜖4 73 44/29 14.62±3.16 75.93±6.43 23.42±2.00 

𝜖4/𝜖4 34 20/14 14.71±2.67 71.92±7.17 23.44±1.83 

Cont

rol 

𝜖2/𝜖2 1 1/0 16 70 30 

𝜖2/𝜖3 24 12/12 15.83±3.14 76.13±5.68 28.83±1.14 

𝜖2/𝜖4 2 2/0 13.00±1.00 76.50±5.50 27.50±2.50 

𝜖3/𝜖3 125 69/56 16.20±2.71 76.29±4.83 29.18±0.89 

𝜖3/𝜖4 48 25/23 16.13±2.73 76.50±4.48 29.25±0.83 

𝜖4/𝜖4 4 2/2 16.75±1.92 73.75±3.34 29.00±0.71 

MCI 

𝜖2/𝜖2 0 - - - - 

𝜖2/𝜖3 15 7/8 15.93±2.86 76.67±7.44 27.60±1.50 

𝜖2/𝜖4 10 7/3 16.50±2.33 74.20±8.58 28.00±1.26 

𝜖3/𝜖3 145 95/50 15.81±2.94 76.20±7.71 27.23±1.77 

𝜖3/𝜖4 141 91/50 15.61±3.06 74.82±6.63 26.94±1.76 

𝜖4/𝜖4 43 25/18 15.81±2.57 71.81±5.91 26.84±1.95 

Table 2.2. Demographic information of studied subjects in ADNI baseline dataset. 
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Figure 2.8. Illustration of local shape differences (p-values) between the ApoE4 noncarriers 

(𝜖3/𝜖3, N = 322) and carriers (𝜖3/𝜖4 and 𝜖4/𝜖4, N = 343) in the full ADNI cohort. Non-

blue colors show vertices with significant differences, at the predefined 0.05 level, 

uncorrected. The overall significance after multiple comparisons with permutation test is p 

< 0.0002. 

 

Here the proposed system was applied to study the genetic influence of ApoE4 on 

hippocampal morphometry. Among the successfully processed hippocampal surfaces from 

the ADNI baseline dataset, 725 subjects with ApoE4 information, including 167 AD (age: 

75.5±7.6 years), 354 MCI (age: 75.1±7.2 years), and 204 controls (age: 76.2±4.9 years) 

were studied in this experiment. Table 2.2 gives detailed demographic information of the 

subjects. Following prior work [99, 107], we pooled both the subjects who are 

heterozygous ApoE4 carriers (𝜖3/𝜖4) and homozygous ApoE4 carriers (𝜖4/𝜖4) together to 

form the ApoE4 carriers group and correlated presence of the ApoE4 allele with 
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hippocampal morphometry, both (1) in the entire sample and (2) in non-demented (pooled 

MCI and controls) subjects. These two populations are termed as the full ADNI cohort and 

non-demented cohort, respectively. 

This study applied the multivariate morphometry statistical analysis consists of 

mTBM (Sec. 2.2.5) and radial distance [85, 184]. As mTBM retains the full information in 

the deformation tensor fields, it is very sensitive to deformations such as rotation, dilation, 

and shear along the surface tangent direction, which is perpendicular to the surface normal. 

Given the hippocampal tube-like shape, its atrophy and enlargement directly affect the 

distance from each surface point to its medial core (analogous to the center line in a tube). 

This distance is called the radial distance of a hippocampal surface. Radial distance mainly 

describes morphometric changes along the surface normal direction and has been applied 

in many subcortical studies [85, 99, 184-186]. Thus, these two statistics are complementary 

to each other and their combination may boost the statistical power to study surface 

morphometry [27]. As introduced in Sec. 2.3.2, mTBM is a 3 × 1 vector on each surface 

point. Hippocampal radial distance is a scalar function. The new multivariate surface 

morphometry statistic was formed as a 4 × 1 vector on each surface vertex and the 

Hotelling’s T2 test (Sec. 2.2.5) was applied on the new statistic. Permutation test (Sec. 

2.3.4) was used to perform group comparison and correct for multiple comparisons. The 

overall significance of the map is defined as the probability of finding, by chance alone, a 

statistical map with at least as large a surface area beating the predefined statistical 

threshold of p = 0.05. This omnibus p-value is commonly referred to as the overall 

significance of the map (or the features in the map), corrected for multiple comparisons. It 

basically quantifies the level of surprise in seeing a map with this amount of the surface 
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exceeding a predefined threshold, under the null hypothesis of no systematic group 

differences. The permutation test on the overall rejection areas is used to evaluate the 

significance of overall experimental results and correct the overall significant p-values for 

multiple comparisons. 

 

Figure 2.9. Illustration of local shape differences (p-values) between the ApoE4 noncarriers 

(𝜖3/𝜖3, N = 270) and carriers (𝜖3/𝜖4 and 𝜖4/𝜖4, N = 236) in the non-demented cohort (MCI 

and controls). Non-blue colors show vertices with significant differences, at the predefined 

0.05 level, uncorrected. The overall significance after multiple comparisons with 

permutation test is p < 0.0027. 
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Figure 2.10. Illustration of local shape differences (p-values) between the heterozygous 

ApoE4 carriers (𝜖3/𝜖4, N = 262) and the homozygous ApoE4 carriers (𝜖4/𝜖4, N = 81) in 

the full ADNI cohort. Non-blue colors show vertices with significant differences, at the 

predefined 0.05 level, uncorrected. The overall significance after multiple comparisons 

with permutation test is p < 0.0129. 

 

Effects of ApoE4 Genotype. To explore whether the presence of the ApoE4 allele is 

associated with greater hippocampal atrophy, two experiments were conducted to study the 

effects of ApoE4 genotype on hippocampal morphometry in two populations:  

(1). ApoE4 carriers versus noncarriers in the full ADNI cohort; 

(2). ApoE4 carriers versus noncarriers in the non-demented cohort. 

Here the ApoE4 noncarriers are those subjects who are homozygous noncarriers (𝜖3/𝜖3). 

Subjects with one 𝜖2 allele, i.e., 𝜖2/𝜖3 and 𝜖2/𝜖4 were excluded due to the possible 
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protective effect of 𝜖2 allele for AD [99]. In the 725 subjects of known ApoE4 genotype, 

there were 322 noncarriers (all homozygous for ApoE 𝜖3) and 343 ApoE4 carriers. The 

non-demented cohort consisted of 506 subjects who were either MCI or control subjects, 

including 270 𝜖4 noncarriers and 236 𝜖4 carriers. Figure 2.8 shows the statistical p-map 

for the full ADNI cohort (N = 665; 322 noncarriers and 343 carriers). Non-blue colors show 

vertices with statistical differences at the predefined 0.05 level, uncorrected for multiple 

comparisons. As shown in figure 2.8, the ApoE4 carriers differed significantly from the 

noncarriers (p < 0.0002). Figure 2.9 shows the p-map for the non-demented cohort (N = 

506; 270 noncarriers and 236 carriers). After correcting for multiple comparisons, the 

difference remained highly significant (p < 0.0027). 

ApoE4 Dose Effects: Difference Comparison Between Heterozygous and 

Homozygous ApoE4 Carriers. To explore whether ApoE4 allele dose affects hippocampal 

surface morphometry and how this atrophy is related to normal aging, hippocampal 

morphometry between persons homozygous for the ApoE4 allele and those heterozygous 

for this allele was studied. The group differences between heterozygous and homozygous 

ApoE4 subjects in the full ADNI cohort, and in the non-demented ApoE4 carrier cohort, 

were analyzed. Among the ApoE4 carriers, 81 subjects were homozygous (𝜖4/𝜖4) and 262 

were heterozygous (𝜖3/𝜖4) for ApoE4 allele. Figure 2.10 shows the statistical p-map for 

all ApoE4 subjects. The 𝜖4 heterozygotes differed significantly from the 𝜖4 homozygotes 

(p < 0.0129 after multiple comparisons correction with the permutation test). Excluding 

those ApoE4 carriers in the AD group, the non-demented ApoE4 carrier group consisted 

of 189 𝜖4 heterozygotes and 47 homozygotes. Figure 2.11 shows the statistical p-map for 

non-demented ApoE4 carriers. However, after correcting for multiple comparisons, the 
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effect was not significant (p < 0.142). (There may be some subthreshold difference for the 

right hippocampus, but a larger sample size would be needed to detect it, if present.) 

 

Figure 2.11. Illustration of local shape differences (p-values) between the heterozygous 

ApoE4 carriers (𝜖3/𝜖4, N = 189) and the homozygous ApoE4 carriers (𝜖4/𝜖4, N = 47) in 

the non-demented cohort. Non-blue colors show vertices with significant differences, at 

the predefined 0.05 level, uncorrected. The overall significance after multiple comparisons 

with permutation test is p < 0.142. 

 

ApoE4 Dose Effects: Difference Comparison Between ApoE4 Noncarriers and 

Carriers with Different ApoE4 Dose. To further study the ApoE4 dose effects, the subjects 

were divided into three groups, ApoE4 homozygotes, heterozygotes, and noncarriers. We 

performed group difference analysis between two groups and compared the statistical 

power. The hypothesis was that morphometric differences would be greater in ApoE4 
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homozygotes than heterozygotes, who would in turn show greater deformities compared 

to 𝜖4 noncarriers. Figures 2.12 and 2.13 show how ApoE4 noncarriers differ in 

hippocampal shape from ApoE4 heterozygotes and homozygotes in the full ADNI cohort 

and the non-demented cohort, respectively. Figure 2.12 shows the statistical p-map for the 

full ADNI cohort. Non-blue colors show vertices with statistical differences, at the 

predefined 0.05 level, uncorrected. As shown in figure 2.12 (a), the ApoE4 heterozygotes 

differed from 𝜖4 noncarriers (p < 0.0031). Figure 2.12 (b) shows the statistical p-map for 

the full ADNI cohort and demonstrates that the ApoE4 homozygotes differed from 𝜖4 

noncarriers (p < 0.0001). Figure 2.12 (b) also shows more extensive statistically significant 

areas of difference than those in figure 2.12 (a), for both the left and right hippocampal 

surfaces. After excluding AD subjects from these three groups, the group difference 

analysis was repeated among ApoE4 noncarriers (𝜖3/𝜖3, N = 270), 𝜖4 heterozygotes 

(𝜖3/𝜖4, N = 189), and 𝜖4 homozygotes (𝜖4/𝜖4, N = 47). Figure 2.13 (a) shows the statistical 

p-map for the non-demented cohort [N = 459; 270 noncarriers (𝜖3/𝜖3) and 189 ApoE4 

heterozygous carriers (𝜖3/𝜖4)]. The ApoE4 heterozygotes differed from the 𝜖4 noncarriers 

(p < 0.017). Figure 2.13 (b) shows the p-map for the non-demented cohort [N = 317; 270 

noncarriers (𝜖3/𝜖3) and 47 ApoE4 homozygous carriers (𝜖4/𝜖4)] and shows that the ApoE4 

homozygotes differed from the 𝜖4 noncarriers (p < 0.006). Similar to figure 2.12, the 

homozygous vs. noncarriers comparison showed more extensive areas of difference in the 

uncorrected p-maps. In figure 2.14, the CDFs of the p-values observed for the contrast of 

ApoE4 carriers versus noncarriers are plotted against the corresponding p-value that would 

be expected, under the null hypothesis of no group difference, for the four experiments 

shown in figures 2.12 and 2.13. For null distributions, the cumulative distribution of p-
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values is expected to fall approximately along the dotted line. Large deviations from that 

curve are associated with significant signal, and greater effect sizes represented by larger 

deviations. Note that the deviation of the statistics from the null distribution generally 

increases from heterozygotes vs. noncarriers to homozygotes vs. noncarriers in both the 

full ADNI cohort and non-demented cohort studies. As such, although more rigorous 

statistical tests are certainly necessary, from the p-maps and CDF plots, the trend can be 

observed that in all groups, ApoE4 homozygotes appear to differ more from noncarriers 

than do 𝜖4 heterozygotes, suggesting a clear ApoE4 dose effect. 

 

2.4 Discussion 

This study has two main contributions. First, a subcortical structure surface 

morphometry system was built with conformal parameterization and 2D inverse consistent 

image fluid registration. Pioneering work [28, 58] in brain surface registration proposed a 

cortical pattern matching algorithm to register cortical surfaces by computing a flow field 

in the cortical parameter space, which matches up corresponding sulci (represented as a 

set of landmark curves). With surface conformal parameterization [131], here we show 

how the image fluid registration method may be adjusted to enforce appropriate surface 

correspondences in the parameter domain. Novel surface features, surface conformal 

representation, were proposed to guide the fluid flow to register subcortical surfaces. The 

surface conformal representation captures both intrinsic surface feature, i.e. conformal 

factor and extrinsic surface feature, i.e. mean curvature. The surface conformal 

parameterization was computed by solving a linear system [131] so the system is 

computationally efficient and scalable. Furthermore, due to the simplicity of the  
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Figure 2.12. Illustration of local shape differences (p-values) between the ApoE4 

noncarriers (𝜖3/𝜖3, N = 322) and heterozygous carriers (𝜖3/𝜖4, N = 262; a), between the 

ApoE4 noncarriers (𝜖3/𝜖3, N = 322) and homozygous carriers (𝜖4/𝜖4, N = 81; b), in the 

full ADNI cohort. Non-blue colors show vertices with significant differences, at the 

predefined 0.05 level, uncorrected. The overall significances after multiple comparisons 

with permutation test are p < 0.0031 for (a) and p < 0.0001 for (b). 
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Figure 2.13. Illustration of local shape differences (p-values) between the ApoE4 

noncarriers (𝜖3/𝜖3, N = 270) and heterozygous carriers (𝜖3/𝜖4, N = 189; a), between the 

ApoE4 noncarriers (𝜖3/𝜖3, N = 270) and homozygous carriers (𝜖4/𝜖4, N = 47; b), in the 

non-demented cohort. Non-blue colors show vertices with significant differences, at the 

predefined 0.05 level, uncorrected. The overall significances after multiple comparisons 

with permutation test are p < 0.017 for (a) and p < 0.006 for (b). 
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Figure 2.14. Illustration of cumulative distribution functions of the p-values observed for 

the contrast of ApoE4 carriers versus noncarriers, plotted against the corresponding p-value 

that would be expected under null hypothesis of no group difference, for the four 

experiments shown in figures 2.12 and 2.13. We note that the deviation of the statistics 

from the null distribution generally increases from heterozygotes vs. noncarriers to 

homozygotes vs. noncarriers in both the full ADNI cohort and non-demented cohort 

studies, suggesting that the ApoE4 allele dose may be associated with more accelerated 

atrophy of hippocampus. 
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Figure 2.15. Comparison of surface fluid registration and SPHARM on synthetic surfaces. 

(a) is the synthetic volumetric image for a cylinder and its surface model constructed with 

SPHARM tools. (b) shows the surfaces on which two synthetic C-shapes were put at 

different locations. (c) and (d) illustrate the surface registration achieved by proposed 

method (c) and SPHARM method (d). To show the registered correspondence, the C-shape 

was drawn on the study surface with red color and the color was directly transferred to the 

template surface. In (c) the C-shape on template surface is in red while in (d), the red color 

does not totally cover the C-shape. This simple experiment shows that the new method 

registers surface by matching detailed surface features. 
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Riemannian metric introduced by conformal parameterization, extension of Navier-Stokes 

equation into general surface space is easy to implement and thus avoids rather complicated 

Christoffel symbol computation [28]. The registration software package together with the 

multivariate statistic package are publically available at [187]. Second, in an open brain 

imaging dataset, ADNI, we demonstrated ApoE4 is associated with greater atrophy of 

hippocampal formation in the non-demented baseline cohort. This work outperformed the 

results of a prior work [107] on the same dataset and also validated the observations in 

[181] in a much larger imaging dataset. The results are related to the preclinical stage AD, 

a concept that has been validated through autopsy studies [188-192], fluorodeoxyglucose 

positron emission tomography (FDG-PET) studies [193, 194] and amyloid ligand binding 

studies [195] based on the use of Pittsburgh Imaging Compound B (PiB). The proposed 

work may provide a structural MRI analysis tool that helps study large numbers of 

genetically at-risk individuals before the onset of symptomatic memory impairment. 

Comparison with SPHARM on synthetic models. The main advantage of the new 

algorithm is the ability to register surface features via a diffeomorphic mapping while 

preserving the surface topology. To validate the idea, a synthetic experiment was 

conducted to compare the proposed method with SPHARM given that the source code of 

SPHARM is available online. First, a binary volumetric image of a cylinder (figure 2.15 

(a)) was generated. The SPHARM image segmentation and surface construction tool 

generated the surface model (figure 2.15 (a)).  Then, a C-shape was added on the cylinder 

model at two different locations to simulate the region of interests (ROI) on different 

surfaces (figure 2.15 (b)). The combination of the C-shape and the cylindrical surface did 

not change the vertex number, face number, and connectivity of the original cylindrical 
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surface. Note some staircase effect on the surfaces in figure 2.15 (b) was introduced from 

the SPHARM surface construction tool. For a fair comparison, these two surfaces were 

applied as the input for both SPHARM and the inverse consistent surface fluid registration. 

As shown in figure 2.15 (c) and (d), the resulting SPHARM surfaces were reconstructed 

from the spherical harmonic coefficients, which were computed from the input surfaces 

and their spherical parameterizations. To show the registration results, we drew the ROI 

on the study surface with red color and the rest area with blue color. All the color setting 

was transferred to the template surface via the registration. Presumably, a good registration 

result will have a clear C-shape (i.e. the ROI) drawn in the red color. In figure 2.15 (d), it 

can be seen that the resulting C-shape is not totally in red, which indicates that the two 

ROIs were not well aligned. We also see that some surface features were lost or altered 

during the reconstruction. On the other hand, as shown in figure 2.15 (c), the C-shape on 

the template surface is clearly in red and the rest in blue, which indicates that the proposed 

method was able to well register the regions of interest and keep the surface topology as 

well. The staircase effect of the input surfaces was well retained in our results. This simple 

experiment may demonstrate that the new method can register surfaces by matching 

surface features, such as curvature or conformal factor.  

Comparison of the inverse consistent fluid registration with/without area distortion 

correction on synthetic surfaces. The inverse consistent surface fluid registration method 

involves solving the Navier-Stokes equation on general manifold. It requires the 

comparison of vectors at different points on the surface. In general, these vectors are in 

different tangent planes and a way is needed to compare them in a common space [141]. 

On the other hand, parametric surfaces allow tangent vectors to be compared in their 
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parameter domains. To do that, one needs formulate the distortions caused by the surface 

parameterizations and remedy them by some compensation terms, so we can achieve a set 

of coordinate invariant differential operators [28, 131, 140, 141]. Compared with the 

relatively complicated area distortion compensation terms adopted by some prior work [28, 

141], the global conformal parameterization allows a simple formulation using the 

conformal factor [131, 140]. In computer graphics literature (e.g. [141]), it has been 

observed that the fluid simulation artifacts were drastically reduced when these 

compensation terms were applied. To validate if the compensation terms help improve 

surface registration quality, two experiments were performed on the synthetic surface 

models that have been used in figure 2.5. In this experiment, the inverse consistent surface 

fluid registration on both directions was applied to register surface 1 to surface 2 (the first 

row in figure 2.16) and surface 2 to surface 1 (the second row in figure 2.16). The 

registration has been performed with and without the parameterization compensation 

terms. The pull-back metrics were visualized by drawing equal-spaced black strips defined 

on the target surfaces back to the source surfaces based on the registration. It is obvious 

that the registration results with the area distortion correction ((c) and (d)) have more 

uniform strips than those without the area distortion correction ((e) and (f)). Similar to prior 

work [28, 131, 140, 141], this simple example may help justify the new formulation and 

demonstrate its efficacy to produce a good surface correspondence. 

𝜖-Isometric parameterization vs. conformal parameterization . Mathematically 

speaking, an isometric mapping between two surfaces requires that the first fundamental 

forms to be equivalent throughout the surfaces whereas a conformal mapping only requires 

the first fundamental forms to be different by a scalar. As a result, the conditions for 
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conformal mapping are relatively loose. Similar to the cartography problems, it is 

impossible to compute a mapping from the hippocampal surface to a Euclidean plane that 

preserves all the geodesic distances. This is a consequence of the theorema egregium [71]: 

because the Gaussian curvature of the hippocampal surface is nonzero on most of surface 

areas, whereas the plane has zero curvature, these two surfaces cannot be isometric.  

 

Figure 2.16. Comparison of the inverse consistent surface fluid registration with and 

without the area distortion correction term in Eq. 2.5. The pull-back metrics are visualized 

by drawing equal-spaced black strips defined on the target surfaces back to the source 

surfaces. Overall the registration results with the area distortion correction ((c) and (d)) are 

more uniform, i.e. less drastic area distortion strips, than the ones without the area 

distortion correction ((e) and (f)). 
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In computer graphics and computer vision fields, there are numerous methods proposed to 

compute the 𝜖-isometric parameterization, i.e. an approximation of isometric mapping, e.g. 

some methods [72, 73] apply a multidimensional scaling method [196-199] to compute the 

near-isometry mapping to the plane for retinotopic mapping and 3D face recognition study.  

On the other hand, conformal parameterization was adopted in various imaging and 

graphics applications to study surface registration [2, 200, 201]. Because of the 

uniformization theorem, conformal mappings to certain domains exist on every simply 

connected Riemann surface. The discrete conformal mapping has a rigorous theoretic 

definition and can be computed accurately. In this study, there exists a conformal mapping 

from a hippocampal surface with two introduced cuts to the Euclidean plane. Prior work 

[131] introduced a holomorphic 1-form based method to compute such a conformal 

mapping. Although there are area distortions on a conformal mapping, considering the 

definition of conformal factor λ as Eq. 2.2, it can be seen that conformal factor is a smooth 

function which describes the stretching effect of conformal parameterization. With the 

conformal factor as the compensation term, the major novelty of this work is to introduce 

the Navier-Stokes equation for Riemann surface by the covariant derivatives. Specifically, 

in Eq. 2.5, by dividing the conformal factor λ, the flow induced in the parameter domain is 

adjusted for the area distortion introduced by the conformal parameterization and one may 

achieve a coordinate invariant PDE solving formulation. The proposed formulation is 

simpler than prior work [28, 58] and may offer a numerically stable and efficient method 

for surface registration problem. 

Comparison with isometry-based surface registration methods. Many existing 

isometry-based algorithms have focused on mappings of surfaces to their flattened ones on 
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the Euclidean plane [202-205]. Some research also tried to enforce either distance 

preserving or near-isometry in the surface registration work [111, 206, 207]. Among them, 

Cho et al. [111] proposed a multi-resolution distortion-minimizing mapping scheme to 

compute surface correspondence between subcortical surfaces. The same research problem 

that we are trying to address may justify the effort to briefly compare this work with their 

work. 

In [111], although they do not map a hippocampal surface to the Euclidean plane, 

they employ an area-preserving approximation spherical parameterization method [208] to 

establish an initial surface alignment and, in each iteration, generalize the mapping from 

the low resolution meshes to high resolution meshes. In the registration step, they formulate 

the matching problem as an energy minimization problem that is defined on a high-

dimensional Riemannian manifold and penalizes the deviation from isometric mapping and 

triangle flippings. The surface deformation is constrained to move along the source 

surfaces. Our work formulates the surface registration as an image flow problem so that a 

3D registration problem is converted to a 2D one via the conformal parameterization. 

Because of the nature of 2D image registration, this work is more intuitive and easier to be 

visualized. Due to the differential covariants, this work compares vector fields and deforms 

surfaces on their tangent planes and also deforms surfaces on surfaces themselves (both 

source and target surfaces). Furthermore, the inverse consistent registration framework 

helps maintain a symmetric correspondence and does not depend on the order people use 

to compare surfaces. Overall, these two systems take two different approaches, i.e. one 

projects the matching problem to a high-dimensional Riemannian manifold and pursues an 

approximated isometry deformation while the other converts the problem to the 2D image 
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plane and solves it with some stable 2D image registration schemes. Although a 

quantitative comparison may be of interest for future work, two algorithms are comparable 

and complementary to each other. People may expect one method outperforms the other in 

some contexts but not others, or in some diseases but not others, depending on the type of 

surfaces to be registered. 

Benefits of conformal parameterization. For surface morphometry study, one 

traditional way to do this is to set up parametric grids on surfaces, which are registered 

across subjects, and then use differential geometry to come up with useful descriptors of 

surface features of interest, or to summarize the geometry as a whole. Conformal maps 

help to induce particularly well-organized grids on surfaces. This simplifies a number of 

downstream computations of registration and surface metrics. The major benefits of 

conformal parameterization in the proposed method include: (1) a good initialization 

alignment. For two similar shapes, their conformal structures are also similar. As a result, 

the conformal parameterization provides good initial alignments between hippocampal 

surfaces which are similar in nature; (2) surface conformal representation. It represents 

both surface intrinsic and extrinsic geometry features; (3) an efficient numerical scheme to 

solve PDEs on general surfaces. It simplifies the extension of PDEs such as Navier-Stokes 

equation, to general surface and avoids complicated Christoffel symbol computation [28]. 

The proposed method pursues an inverse consistent registration so the PDEs need to be 

solved multiple times. Therefore, the computational efficiency introduced by the conformal 

parameterization may help achieve an efficient and stable solution for surface 

morphometry study. 
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System structure design. As a shape analysis software tool, the input to the proposed 

system is binary images, which are obtained either by some automatic image segmentation 

tools [162, 209] or manual segmentation results using some interactive graphic tools [210, 

211]. In the current study, the input was chosen as the automatic segmentation results by 

FIRST [162]. The binary images were generated by thresholding the segmentation results 

and surface models were built for the subsequent surface morphometry analysis. Note other 

options are also available for such a morphometry system. For example, the FIRST 

software tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST) generated both images and 

surface models of subcortical structures. The surface models obtained by FIRST already 

had cross-subject correspondences and were used in this study as a comparison method. 

Whether or not the integrated system provides superior discrimination power than the one 

working with binary images still needs more validation. However, the benefit of current 

system design is the flexibility for users to adapt the system to different data sources. 

Furthermore, similar to some other work that used FIRST segmentation results to study 

relative pose information of subcortical nuclei [212], our software tool may also be 

interesting to FIRST users so that it may be appealing to a broader range of researchers in 

the neuroimaging community. 

Alternative pipeline consideration. Since the initialization is affected by the mapping, 

so one may wonder whether it is possible to use a least metric distortion mapping for 

initialization and then conformal mapping for the fluid flow. The alternative pipeline is 

appealing but it has some difficulties. Firstly, in this work, similar to M-reps or cm-rep 

work [184, 213], a cylindrical parameterization for the hippocampus [27, 79] is used. Under 

this setting, it is rare to have two conformally equivalent hippocampal surfaces (i.e. there 
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is a conformal mapping between them) because of the biological variety. As a result, the 

fluid flow does not generate a conformal mapping in general. Secondly, it is a common 

belief that a least metric distortion mapping, either defined by explicitly defined landmarks 

or implicit geometry features, could align anatomical surface for neuroanatomy analysis 

because functional and architectonic boundaries of the human brain have been linked to 

the brain structure shapes [214]. So for the current approach, to use conformal 

parameterization for initial alignment and refine it with least metric distortion mapping, is 

indeed a valid and practical approach. 

Initial alignment computation. The initial alignment is important for the success of 

the proposed surface registration algorithm. Numerous efforts are taken to guarantee good 

initial alignments between surfaces to be registered. Firstly, all input data has been 

registered to the MNI standard space, where all the surfaces have the same orientation. 

Secondly, two consistent landmark curves are labeled at the front and back of the 

hippocampal surface, representing its anterior junction with the amygdala, and its posterior 

limit as it turns into the white matter of the fornix. They are biologically valid and 

consistent landmarks across subjects. Given the hippocampal tube-like shape, these 

landmark curves can be automatically detected by checking the extreme points by 

searching along the first principle direction of geometric moments of surface [27, 155, 

156]. For the quality control purpose, the consistency of all landmark positions has been 

manually checked in this work. Lastly, the surfaces are parameterized to a rectangle by 

tracing a constant line (iso-𝑢) on the parameter domain. The cutting curve is guaranteed to 

pass a geometrically consistent point, e.g. the extreme point on 𝑥 direction in the MNI 

standard space. Because the conformal structure is surface intrinsic feature and all 
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hippocampal surfaces have similar shapes, their conformal parametrizations are very 

similar on the 2D plane. Take the parameterization as the canonical space, the initial 

alignment is established between hippocampal surfaces. 

Global affine normalization. In computational neuroanatomy research, brain images 

are usually transformed into a standardized stereotactic space via a global affine 

transformation followed by a nonlinear deformation to match the atlas or template, which 

is a fixed reference coordinate system of the brain. The global affine normalization 

removes most of the within- and between-subject global differences in brain size. Because 

global brain size difference does not provide much biological information, these global 

morphological variabilities should be removed before any localized shape analysis is 

performed [215]. It is a common practice for tensor-based morphometry (TBM) research 

[27, 29, 32, 79, 80, 120]. In this work, after segmentation, the segmented hippocampal 

models were transformed into MNI standard space with the transformation matrices 

computed by FLIRT. Since the parameterization space is used as a common space for 

registration, this global affine normalization does not affect the registration. The 

normalization is purely for the following mTBM analysis. It may affect the area or the 

deformation tensor computation but, by removing the global differences in brain sizes, it 

provides a stable reference space for hippocampal subfield analysis. 

Area distortion compensation and registration regularization terms. There are 

several coefficients in the proposed formulation (Eqs. 2.6, 2.7 and 2.8). Among them, 𝜆𝑓,𝑏 

are conformal factors and used as the area distortion compensation terms for parametric 

surface based PDE solving. 𝛼, 𝜇 and 𝜏 are registration regularization terms. Although they 

are all involved in surface registration, they have different functions. As discussed above,  
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𝜆𝑓,𝑏 mainly help achieve coordinate invariant differential operators so that one may solve 

surface fluid PDEs with parametric surfaces. The benefits to have 𝜆𝑓,𝑏 are not to achieve 

an area preserving mapping between 3D surface and parameter domain, instead, they are 

used to define partial differential operators on manifolds and the covariant differentiation 

on tensor fields [71]. With conformal parameterization, their computation becomes very 

simple and is only related to conformal factors, 𝜆𝑓,𝑏. On the other hand, similar to prior 

work [114, 115], 𝛼, 𝜇 and 𝜏 are registration regularization terms which controls the 

distortion introduced during the fluid registration. With different settings on these 

parameters, one may penalize the induced area distortion or enforce smoothness. With 

these two different regularization terms, the surface fluid registration framework is aimed 

to achieve a surface registration framework which is both computationally efficient 

(induced by the conformal parameterization) and produces diffeomorphic surface 

mappings with controlled distortion (enforced by registration regularization terms). 

Inverse consistency for a loss of alignment accuracy? In this work, inverse 

consistency is imposed as a constraint. At the initialization, both the forward and backward 

maps are set as identity maps. They are inverse consistent for sure. But the sum of squared 

intensity differences (SSD) between the two different images that to be registered will 

make the whole energy too large to be optimal. Then by changing the forward and 

backward maps, we gradually reduce the SSD while keeping the inverse consistency of the 

two maps until the energy cannot be decreased anymore. Here the inverse consistency 

constraint may even improve the accuracy of the alignment because the two images deform 

to each other, thus the driving force computed by SSD between them may lead the flows 

to get more accurate alignments. In summary, besides the fact that it helps a diffeomorphic 
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and balanced surface registration, the inverse consistency does not necessarily sacrifice 

surface registration accuracy. 

Conformal equivalence and conformal factor update. The final deformed map is 

obtained by first conformally mapping a surface to the parameter domain and second 

deforming to a template surface by the inverse consistent fluid registration. The former is 

a conformal mapping and the latter is not a conformal mapping. Since conformal mapping 

and fluid registration generate diffeomorphic mappings, the surface-to-surface mapping 

established by the proposed method is a deffeomorphic mapping but usually is not a 

conformal mapping. To achieve conformal mappings between hippocampal surfaces, the 

two surfaces have to be conformally equivalent. Generally speaking, two hippocampal 

surfaces may not be conformally equivalent after introducing the cuts so the conformal 

mappings do not always exist. However, subtle surface differences may be detected by 

studying the conformal structure quotient space - Teichmüller shape space as demonstrated 

in prior work [45, 46]. 

As a surface intrinsic feature, the conformal factor is computed after getting the 

parameterization of the surface and is not adjusted as the map changes. This correction 

term for fluid registration could make the flow computed in the parameter domain 

independent of underlying surface metrics, thus the flow directly establishes a mapping 

between surfaces. 

Does the surface smoothing distort the original surfaces? To reduce the noise in MR 

image acquisition and overcome the partial volume effects, as well as reduce the number 

of obtuse triangles for surface parameterization, a smoothing process was applied on all 

the hippocampal surfaces. Many mesh smoothing algorithms have been proposed. In 
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Figure 2.17. Histogram showing the Hausdorff distances between the smoothed meshes 

and original meshes. The majority of the absolute distances fall into the range [0.9, 1.1] 

with the unit as millimeter. Given the volumes of hippocampus lie between 3000 and 4000 

𝑚𝑚3 [164, 216-218], the smoothed meshes can be regarded as accurate approximations of 

the original surfaces. 

 

[219], Taubin proposed a simple, linear and isotropic method to improve the smoothness 

of a surface mesh. This method is fast because it does not rely on expensive functional 

minimizations. Some variants of this algorithm have also been developed [220, 221]. 

However, these techniques are isotropic, thus indiscriminately smooth noise and salient 

surface features. Recently, feature-preserving mesh smoothing methods [222-231] have 

also drawn more and more interests. In the proposed system, a two-step mesh smoothing 

method was applied to all the surfaces. The smoothing process consists of mesh 

simplification using “progressive meshes” [128] and mesh refinement by Loop subdivision 

surface [129]. All the hippocampal meshes were consistently smoothed by 5 iterations of 

mesh simplification using “progressive meshes” and Loop subdivision. In order to smooth 
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the surfaces while preserve surface features, the face numbers of the surfaces in each 

iteration were gradually increased. As a result, we obtained relatively smooth but accurate 

surfaces that are suitable for computing derivative maps. Figure 2.17 illustrates the 

histograms of the Hausdorff distances between the smoothed meshes and the original 

meshes for both the left and right hippocampi that were studied in this chapter. The figure 

shows that the majority of the absolute distances fall into the range [0.9, 1.1] with the unit 

as millimeter. Given the volumes of hippocampus lie between 3000 and 4000 mm3 [164, 

216-218], the smoothed meshes can be regarded as accurate approximations of the original 

surfaces. This method has been applied in many prior subcortical surface analysis studies 

[27, 79]. Empirically, a continuous subdivision and mesh simplification process will 

generally eliminate the obtuse angles and improve the mesh quality. 

Does the cutting affect the statistics? To achieve an accurate registration between 

surfaces, we cut open two landmark curves and convert the landmark matching problem as 

an explicit boundary matching problem. This approach has been adopted in prior work on 

brain cortical surface registration [2] and subcortical surface registration [27]. The 

topology cuts do not change the overall surface geometry because the two sides of the cuts 

are still in the identical positions. So the cuts do not affect the surface registration and the 

following shape analysis work. Also since the conformal factor is used as the compensation 

term for the area distortion in the fluid registration framework, theoretically these cuts 

should not affect the statistical results on the neighboring regions. As shown in figure 2.18, 

the enlarged figures highlight the positions of the landmark curves and the insignificant 

regions on the p-map. It can be seen that the statistically insignificant area does not align 

exactly with the cutting positions. However, to achieve an accurate surface registration and 
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morphometry analysis, the cut positions need to be consistent across subjects. Besides the 

automatic moment-based landmark curve identification method discussed in Sec. 2.3.2, we 

also applied a quality control step by manually checking all the cutting positions after the 

automatic landmark identification step. Although inconsistency was not found in this work, 

it is a recommended step when applying our pipeline for new analyses. 

 

Figure 2.18. Positions of landmark curves and statistically insignificant regions on the p-

maps of the inverse consistent surface fluid registration method. The statistically 

insignificant area does not align exactly with the cutting positions. 

 

Visualization of the differences between groups. Here we mainly applied a 

nonparametric, multivariate permutation testing on Hotelling’s 𝑇2 statistics. Compared 

with the conventional Jacobian determinant [63, 103, 108, 109], the logarithmic transforms 

are applied to convert the tensors into vectors that are more tractable for Euclidean 

operations. On the other hand, standard multivariate random field theory may also be 

applicable to analyze the new multivariate statistics.  For instance, in [232, 233], results 

based on random field theory for Roy’s maximum root was proposed. The inference for 

Roy’s maximum root is based on the Roy’s union-intersection principle [234]. Recently, 

Chung et al. [235] used this statistic to quantify abnormal local shape variations of the 
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amygdala in 22 high-functioning autistic subjects. Here since Hotelling 𝑇2 test is used, the 

significant map results are like 2-sided tests and do not carry the direction information. To 

visualize the deformation directions, a new measurement [236] is defined at each vertex 𝑘 

as 

𝑅𝑘 =
∑ det 𝐽1𝑖

𝑘𝑁1
𝑖

∑ det 𝐽2𝑗
𝑘𝑁2

𝑗

𝑁2

𝑁1
                                               (2.12) 

where 𝐽1𝑖
𝑘  and 𝐽2𝑗

𝑘  are the Jacobian matrices for the ith subject in one group and the jth 

subject in another group, respectively, and 𝑁1 and 𝑁2 are the number of subjects in one 

group and in another group. The determinant of Jacobian matrix indicates the difference in 

size of the region in the individual subject compared to the template. When registering the 

two groups of subjects to a common template, 𝑅𝑘 with values greater than 1 indicating that 

the surface area at that vertex is larger in one group when compared to the other group and 

vice versa for values smaller than 1. Figure 2.19 shows that when comparing AD patients 

with healthy controls or MCI subjects and when comparing MCI subjects with healthy 

controls, as expected, the major area on the hippocampal surface shows atrophy, which is 

represented by the red color. This also matches the corresponding p-maps as shown in 

figure 2.6. Some enlargements are also observed at the anterior and the posterior sides of 

the surface, which are represented by blue color. As pointed out in [97], this is probably 

due to the tissue loss in the neighboring structures of hippocampus, as the anterior and 

posterior are the junctions with the amygdala and the white matter of the fornix, 

respectively. As a result, the enlargements may be caused by the shifting of the long axis 

of the hippocampus. 
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Clinical significance of surface-based morphometry statistics. Atrophy of brain 

structures is associated with cognitive impairment in normal aging and AD [86], and 

typically results from a combination of neuronal atrophy, cell loss, and impairments in 

myelin turnover and maintenance, and corresponding reductions in white matter volume. 

These cellular processes combine at the macroscopic level to induce observable differences 

on brain MRI. Several of processes (such as cellular atrophy) occur with normal aging, and 

others (including neuronal loss) are further promoted by amyloid plaque and neurofibrillary 

tangle deposition. This work applies mTBM, a surface-based morphometry feature, to 

study brain structure changes. Although surface expansion and contraction are less 

traditional measures of morphometry, it is likely that they simply reflect the same processes 

that cause progressive brain tissue loss. This work, as well as some approaches developed 

by other groups (e.g. [237, 238]), measure the extent and severity of cortical and 

hippocampal shape deformations as a proxy for cortical and hippocampal atrophy. The 

detected expansion or compression of the surface areas are associated with macrostructural 

and microstructural loss in different brain regions and their association with cognition and 

genetic influence makes them useful indices of the neurodegenerative process. 

Integration of contextual information for hippocampal subfield analysis. Usually 

surface-based brain imaging approaches [26, 54, 55, 239] rely on segmented image to 

build surfaces. They solely use surface geometry information for image registration and 

shape analysis. Some contextual information is considered in the image segmentation stage 

and boundaries between two different tissues are determined based on some priors learned 

from the training data. In hippocampal subfield shape analysis work [27, 85, 107, 180, 

240], the morphometry comparison usually only uses geometric information. 
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Figure 2.19. Maps of the ratios of average determinants of the Jacobian matrices 𝑅𝑘, 

defined in Eq. 2.12. (a) AD over control, (b) AD over MCI, (c) MCI over control. The 

pictures illustrate the continuous increasing of the atrophy (red color) from control group 

to MCI and AD. There are also some enlargement areas (blue color). This is probably due 

to the tissue loss in the neighboring structures of hippocampus, which causes the shifting 

of the long axis of the hippocampus. 
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Some methods [105, 119, 241-243] segment hippocampus into different regions and 

analyze the volume and shape changes of these subfields. These methods compute 

volumetric image registration between template and individual subject and translate and 

visualize the deformation on surfaces. The contextual information, e.g. surface registration 

that considers neighboring image information, may improve the registration accuracy. 

Nonetheless, the integration has many challenges, such as different resolutions, high 

dimension, etc. How to combine the contextual information, e.g. considering the 

neighboring image information in the analysis, to improve statistical power still needs 

further investigation. Some recent work [244] has proposed new methods which integrate 

information of curves, surface and volumetric images. It could be a potential future work 

to improve hippocampal subfield analysis research. 

The proposed algorithm is generic and may be useful for other subcortical structure 

analysis. There are two main caveats when applying the developed surface fluid 

registration method to study general subcortical surface registration problem. First, in the 

topology optimization step, the current algorithm requires two landmark cuts, which may 

restrict the applicability of the proposed method with other subcortical structures. Thus far, 

we have applied this algorithm to study putamen morphometry in prematurity study [245] 

and applied another similar algorithm (constrained harmonic map through flattening 3D 

surfaces [27]) to study morphometry of thalamus [236] and corpus collosum [246] on 

prematurity and achieved some limited success. Since the subcortical structures are 

normalized in a common stereotaxic coordinate system in a controlled manner, it is 

reasonable to assume some geometry extreme positions can serve as geometrically valid 

and consistent landmarks across subjects in these work. However, it deserves more careful 
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validation on whether these landmarks are also biologically valid and one should be 

cautious about how consistent they are for a population based study. Second, to map a 

hippocampal surface to a 2D plane, a few cuts are introduced on the surfaces. Currently, 

by introducing the same length cuts on consistent surfaces, it is guaranteed that the induced 

boundaries are consistent across surfaces on the parameter domain and the flow 

computation is the same for vertices that are close to the boundaries as those in the internal 

areas. Although the cuts may not alter the geometry of the original surface, it could affect 

the quality of vertex correspondences near the two curves during the surface fluid 

registration. Even so, it is a logical conclusion from observing the maps in figure 2.18 that 

the introduced boundaries do not seem to introduce artifacts and affect the statistical 

results.  

 

2.5 Conclusion and Future Work 

With conformal parameterization, the inverse consistent image fluid registration 

method was extended to match general surfaces. This has numerous applications in medical 

imaging. The examples of matching various hippocampal surfaces are relevant for mapping 

how degenerative diseases affect the brain, as well as building statistical shape models to 

detect the anatomical effects of disease, aging, or development. The hippocampus is used 

as specific examples, but the method is general and is applicable in principle to other 

subcortical surfaces. 

The surface-based fluid registration system automates the matching of surfaces by 

computing a correspondence field guided by the differences of features between the 

surfaces. This is a natural idea, in that it uses conformal parameterization to transform a 
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surface matching problem into an image registration problem. Whether or not this approach 

provides a more relevant correspondence than those afforded by other criteria (mutual 

information, neural nets, or hand landmarking) requires careful validation for each 

application. Optimal correspondence depends more on utility for a particular application 

than on anatomical homology. Because different correspondence principles produce 

different shape models, one future work is to compare them for detecting group differences 

and genetic influence in brain structures.  

As described in Sec. 2.3, the inverse consistent fluid flow that matches one surface 

to another was computed with the surface feature images and the images were computed 

by summing up local conformal factor and mean curvature and linearly scaling the dynamic 

range to [0, 255]. It is possible that some dynamic ranges in the features will be scaled into 

just one range in the image. Thus an improvement of the accuracy of the fluid registration 

is to compute the flow directly on the triangular surface coordinates with the original 

features and finite element method. 

As discussed in the Sec. 2.3, results of the proposed method agree with some 

literature [107, 181]. Similar to other surface-based hippocampal subfield analysis work 

[85, 107, 180, 240], the proposed method is able to detect some specific significantly 

different regions. With the current statistical validation strategies, permutation test and 

false discovery rate, the results match with those from two other methods, SPHARM and 

FIRST. The spreading results, e.g. between controls and MCI/AD, do not indicate the 

differences are simply smoothed/averaged over the whole structure. One future work is to 

further investigate how to apply these detected statistical group differences with drug trials 

[247], classification [248], and progression [249]. 
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The inverse consistent surface fluid registration framework can also be applied to 

work with other surface features, such as surface heat kernel signature [34], Beltrami 

coefficients [112], etc. The proposed multivariate measures may help in detection of 

degenerative effects, and may also benefit imaging genetics research [250]. In this work, 

group difference study was used as an application. With multivariate features, it is natural 

to apply machine learning methods to perform computer-assisted diagnosis and predict 

future clinical decline [251-253]. One future work is to incorporate the proposed system 

with some machine learning tools, such as support vector machine [254], sparse learning 

[255], etc., and build a system which may identify imaging biomarkers that are able to 

evaluate AD related disease burden and predict progression and response to interventions. 

The combined system may offer a surface-based subcortical structure morphometry tool to 

detect the anatomical effects on aging and disease. 
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CHAPTER 3 

SURFACE REGISTRATION WITH HYPERBOLIC RICCI FLOW 

 

Lateral ventricle is an important part in human brain. Its shape morphometry may be 

associated with many cognitively degenerative diseases, including Alzheimer’s disease 

(AD). However, surface-based ventricular morphometry analysis remains challenging 

because of its complicated topological structure. This chapter describes a novel ventricular 

surface registration method based on the hyperbolic Ricci flow algorithm and tensor-based 

morphometry (TBM). Unlike prior ventricular surface parameterization methods, 

hyperbolic conformal parameterization is angle-preserving and does not introduce any 

singularities. The proposed algorithm generates a one-to-one diffeomorphic mapping 

between ventricular surfaces with consistent boundary matching conditions. The TBM 

statistics encode a great deal of surface deformation information that could be inaccessible 

or overlooked by other methods. The proposed method was applied to study ventricular 

enlargement in mild cognitive impairment (MCI) converters. The dataset consisted of 

baseline MRI scans of a set of MCI subjects from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined 

ventricular area and volume features did not differ between the two groups, our fine-

grained surface analysis revealed significant differences in the ventricular regions close to 

the temporal lobe and posterior cingulate, structures that are affected early in AD. 

Significant correlations were also detected between ventricular morphometry, 

neuropsychological measures, and a previously described imaging index based on 

fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel 
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ventricular surface registration method may offer a new and more sensitive approach to 

study preclinical and early symptomatic stage AD. 

 

3.1 Introduction 

Lateral ventricle is a fluid-filled structure in human brain, which usually enlarges in 

neurodegenerative diseases, such as Parkinson’s disease [256], schizophrenia [257], AD 

[27], etc. Owing to the high contrast between the cerebrospinal fluid (CSF) and surrounding 

brain tissue on T1-weighted images, lateral ventricles can be measured more reliably than 

hippocampus or other structures, whose boundaries are difficult for experts to agree on 

[106]. Furthermore, lateral ventricles span a large area within the cerebral hemispheres. 

Changes in ventricular morphology, such as enlargement, often reflect atrophy of the 

surrounding cerebral hemisphere which itself may be regionally differentiated (for 

example, frontotemporal in contrast to posterior cortical atrophy). Regional differences in 

cerebral atrophy may be reflected in specific patterns of change in ventricular morphology, 

so accurate analysis of ventricular morphology has the potential to both sensitively and 

specifically characterize a neurodegenerative process. Particularly, lateral ventricles abut 

several structures that are relevant to AD, including the hippocampus, amygdala and 

posterior cingulate. Thus, they may provide an important and sensitive biomarker for AD 

study. 

However, surface-based ventricular shape morphometry study is challenging. It is 

difficult to apply the surface registration framework as introduced in Chapter 1 to 

ventricular surfaces, due to their concave shape, complex branching topology and extreme 

narrowness of the inferior and occipital horns. Thus, surface-based subregional analysis of 
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ventricular enlargement is notoriously difficult to assess, exemplified by the conflicting 

findings regarding genetic influences on ventricular volumes [258, 259]. Pioneering 

ventricular morphometry work [96, 168] used spherical harmonics to analyze ventricular 

surfaces where each ventricular surface was mapped to a sphere and registered to a 

common template. However, as demonstrated previously [79], this spherical 

parameterization method may result in significant shape distortion that affects the analysis. 

Prior work [27, 79, 131] computed the first global conformal parameterization of lateral 

ventricular surfaces based on holomorphic 1-forms (Sec. 2.2.2). However, this conformal 

parameterization method always introduces a singularity point (zero point, figure 3.9 (a)) 

in the resulting parameter domain. As a result, each ventricular surface had to be partitioned 

into three pieces with respect to the zero point, the superior horn, the inferior horn, and the 

occipital horn. These three pieces were mapped to three planar rectangles and registered 

across subjects separately. To model a topologically complicated ventricular surface, 

hyperbolic conformal geometry emerges naturally as a candidate method. Hyperbolic 

conformal geometry has an important property that it can induce conformal 

parameterizations on high-genus surfaces or surfaces with negative Euler numbers and the 

resulting parameterizations have no singularities [260]. Motivated by recent advances in 

hyperbolic conformal geometry based brain imaging research [5, 44, 45, 81, 261], here I 

propose to use the hyperbolic Ricci flow method to build the canonical parameter domain 

for ventricular surface registration. The resulting parameterizations are angle-preserving 

and have no singularity points. After surface registration across subjects, surface 

deformations are measured by the tensor-based morphometry (TBM) [29, 30, 32, 118], 

which quantifies local surface area expansions or shrinkages. The Ricci flow method is 
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theoretically sound and computationally efficient [2, 262, 263]. In addition, TBM has been 

used extensively to detect regional differences in surface and volume brain morphology 

between groups of subjects [2, 27, 80, 118, 125, 264-267]. The hypothesis is that the 

hyperbolic Ricci flow together with TBM may offer a set of accurate surface statistics for 

ventricular morphometry study. 

This chapter presents a ventricular surface registration system based on hyperbolic 

Ricci flow and TBM statistic. It was applied to study ventricular structural differences 

associated with baseline T1-weighted brain images from the ADNI dataset, including 71 

MCI patients who developed incident AD during the subsequent 36 months (MCI converter 

group) and 62 MCI patients who did not convert during the same period (MCI stable 

group). These subjects were also selected based on the availability of fluorodeoxyglucose 

positron emission tomography (FDG-PET) data and cognitive assessment information. 

MCI is a transitional stage between normal aging and dementia and people with MCI are 

at high risk of progression to dementia. MCI is attracting increasing attention, as it offers 

an opportunity to target the disease process during an early symptomatic stage. As the 

paradigm in AD research shifts to a new stage, targeting earlier intervention and prevention 

[268, 269], there is a requirement for biologically grounded, highly objective biomarkers 

that can help to identify those high AD risk MCI individuals for whom early intervention 

may be most appropriate. Various neuroimaging techniques can track disease progression 

and therapeutic efficacy in MCI [87, 270-276] and others are beginning to identify 

abnormal anatomical or functional patterns and their rates of decline. Here I set out to test 

whether the new system can detect subtle MCI conversion related ventricular changes and 
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whether the changes are correlated with FDG-PET biomarkers and other cognitive 

measures. 

 

3.2 Ventricular Surface Registration with Hyperbolic Ricci Flow 

3.2.1 Algorithm Overview 

This section briefly overviews the processing procedures in the proposed method. 

Following sections are detailed explanations of each step. 

Figure 3.1 summarizes the overall sequence of steps in the algorithm. First, from each 

MRI scan (a), the lateral ventricular volumes are automatically segmented with the multi-

atlas fluid image alignment (MAFIA) method [106]. The MR image overlaid with the 

segmented ventricle is shown in (b). A ventricular surface built with marching cube 

algorithm [127] is shown in (c). Lateral ventricle segmentation and surface reconstruction 

will be introduced in Sec. 3.2.2. After the topology optimization, we apply hyperbolic Ricci 

flow method on the ventricular surface and conformally map it to the Poincaré disk. The 

concepts of topology optimization and Poincaré disk model will be introduced in Sec. 3.2.3. 

Details about conformal parameterization with hyperbolic Ricci flow and embedding in 

Poincaré disk are in Sec. 3.2.4 and 3.2.5, respectively. On the Poincaré disk, consistent 

geodesics are computed and projected back to the original ventricular surface, a method 

called geodesic curve lifting. The results are shown in (d). Further, the Poincaré model is 

converted to the Klein model, where the ventricular surfaces are registered by the 

constrained harmonic map [1]. The registration diagram is shown in (e). Geodesic curve 

lifting and surface registration will be detailed in Sec. 3.2.6. Next, we compute the TBM 

features and smooth them with the heat kernel method [277] (f). TBM computation and its 
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smoothing are in Sec. 3.2.7. Finally, the smoothed TBM features are applied to analyze 

both group difference between the two MCI groups and correlation of ventricular shape 

morphometry with cognitive test scores and FDG-PET index. Significance p-maps are used 

to visualize local shape differences or correlations (g). Correction for multiple comparisons 

is used to estimate the overall significance (corrected p-values). 

 

Figure 3.1. A chart showing the key steps in the ventricular surface registration method.  
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3.2.2 Image Segmentation and Preprocessing 

The T1-weighted images from ADNI baseline dataset were automatically skull-

stripped with the BrainSuite Extraction Software [210]. Then the imperfections in this 

automatic segmentation procedure were corrected manually. In order to adjust for global 

differences in brain positioning and scaling, the segmented images were normalized to the 

ICBM space with a 9-parameter (3 translations, 3 rotations, and 3 scales) linear 

transformation obtained by the Minctracc algorithm [278]. After resampling into an 

isotropic space of 2203 voxels with the resolution 1mm × 1mm× 1mm, the registered 

images were then histogram-matched to equalize image intensities across subjects. Finally, 

the lateral ventricular volumes were extracted using the multi-atlas fluid image alignment 

(MAFIA) method that combines multiple fluid registrations to boost accuracy [106]. 

Briefly, in the MAFIA method, 6 MRI scans (2 AD, 2 MCI, and 2 normal) after 

preprocessing were randomly chosen from the ADNI baseline dataset. The lateral 

ventricles were manually traced in these 6 images following the delineation protocol 

described in http://resource.loni.usc.edu/resources/downloads/research-

protocols/segmentation/lateral-ventricle-delineation. These labeled images are called 

atlases and segmentation of lateral ventricles in other unlabeled images was done by fluidly 

registering the atlases to all other images. For details of this method, please refer to [106]. 

As introduced in Sec. 2.2.1, after obtaining the binary segmentations of the lateral 

ventricles, a topology-preserving level set method [126] was used to build surface models. 

Based on that, the marching cubes algorithm [127] was applied to construct triangular 

surface meshes. Then, in order to reduce the noise from MR image scanning and to 

overcome the partial volume effects, the two-step surface smoothing process introduced in 
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Sec. 2.2.1 was also applied consistently to all ventricular surfaces. As proved in Sec. 2.4, 

the smoothed meshes are accurate approximations to the original surfaces with higher 

signal-to-noise ratio (SNR). 

 

Figure 3.2. Illustration of hyperbolic geometry. (a) is a pair of topological pants with three 

boundaries 𝛾1, 𝛾2, 𝛾3. 𝜏1, 𝜏2 are automatically traced paths connecting 𝛾1 to 𝛾2, 𝛾1 to 𝛾3, 

respectively. After slicing along 𝜏1, 𝜏2, the topological pants can be conformally mapped 

to the hyperbolic space and isometrically embedded in the topological disk of fundamental 

domain, as shown in (b). (c) is an illustration of the Poincaré disk model. (d) is a saddle 

plane which has constant negative Gaussian curvatures with a hyperbolic triangle. 
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3.2.3 Theoretical Background 

This section briefly introduces the theoretical background necessary for this work. 

Conformal deformation. Let 𝑆 be a surface in ℝ3 with a Riemannian metric 𝐠 induced 

from the Euclidean metric. Let 𝑢: 𝑆 → ℝ be a scalar function defined on 𝑆. It can be verified 

that �̃� = 𝑒2𝑢𝐠 is also a Riemannian metric on 𝑆 and angles measured by �̃� are equal to 

those measured by 𝐠, i.e. the induced mapping is angle-preserving. Thus, �̃� is called a 

conformal deformation of 𝐠 and 𝑢 is called the conformal factor. Furthermore, when 

surface metrics change, the Gaussian curvature 𝐾 of the surface will change accordingly 

and become �̃� = 𝑒−2𝑢(−Δ𝐠𝑢 + 𝐾), where Δ𝐠 is the Laplace-Beltrami operator under the 

original metric 𝐠. The geodesic curvature 𝑘𝑔 will become 𝑘�̃� = 𝑒
−𝑢(𝜕𝒓𝑢 + 𝑘𝑔), where 𝒓 

is the tangent vector orthogonal to the boundary. The total curvature of the surface is 

determined by its topology with the Gauss-Bonnet theorem [71]: ∫ 𝐾
 

𝑆
𝑑𝐴 + ∫ 𝑘𝑔𝑑𝑠 =

 

𝜕𝑆

2𝜋𝜒(𝑆), where 𝑑𝐴 is the surface area element, 𝜕𝑆 is the boundary of 𝑆, 𝑑𝑠 is the line 

element, and 𝜒(𝑆) is the Euler characteristic number of 𝑆. 

Uniformization theorem. Given a surface 𝑆 with Riemannian metric 𝐠, there exist an 

infinite number of metrics that are conformal to 𝐠. The uniformization theorem states that, 

among all conformal metrics, there exists a unique representative which induces constant 

Gaussian curvature everywhere. Moreover, the constant will be one of {+1, 0, −1}. 

Therefore, the universal covering space of any closed surface can be embedded onto one 

of the three canonical spaces using its uniformization metric: the unit sphere 𝕊2 for genus-

0 surfaces with positive Euler characteristic numbers; the plane 𝔼2 for genus-1 surfaces 

with zero Euler characteristic numbers; the hyperbolic space ℍ2 for high-genus surfaces 
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with negative Euler characteristic numbers. Accordingly, we can say that surfaces with 

positive Euler numbers admit spherical geometry; surfaces with zero Euler numbers admit 

Euclidean geometry; and surfaces with negative Euler numbers admit hyperbolic 

geometry.  

Topology optimization. Due to the concave and branching shape of the ventricular 

surfaces, it is difficult to find a conformal grid for the entire structure without introducing 

significant area distortions. Here, as in prior studies [27, 79], three cuts were automatically 

located and introduced on each ventricular surface, with one cut on the superior horn, one 

cut on the inferior horn, and one cut on the occipital horn. The locations of the cuts are 

motivated by examining the topology of the lateral ventricles, in which several horns are 

joined together at the ventricular “atrium” or “trigone”. Meanwhile, the locations of the 

cuts were guaranteed to be consistent across subjects. This operation is called topology 

optimization [27, 79] of ventricular surfaces. After being modeled in this way, each 

ventricular surface becomes a genus-0 surface with 3 boundaries and is homotopic to a pair 

of topological pants, as shown in figure 3.2 (a). Figure 3.4 (a) shows two different views 

of a ventricular surface with the three boundaries, which are denoted as 𝛾1, 𝛾2, 𝛾3. As a 

result, each ventricular surface has the Euler characteristic number −1, which means that 

it admits the hyperbolic geometry. This work tries to compute conformal mappings from 

ventricular surfaces to the hyperbolic space ℍ2 and uses it as the canonical parameter space 

to register ventricular surfaces. 

Poincaré disk model. As the hyperbolic space cannot be realized in ℝ3, the Poincaré 

disk model is used to visualize it. The Poincaré disk is the unit disk |𝑧| < 1, 𝑧 = 𝑥 + 𝑖𝑦 in 

the complex plane with the metric 𝑑𝑠2 =
4𝑑𝑧𝑑�̅�

(1−𝑧�̅�)2
. The rigid motion in the Poincaré disk is 
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the Möbius transformation: 

𝑧 → 𝑒𝑖𝜃
𝑧−𝑧0

1−𝑧0̅̅ ̅𝑧
                                                    (3.1) 

In Euclidean space, rigid motions include translation and rotation. Any transformation 

consisting of rigid motions changes the position of an object without deforming the shape 

of the object. As the Poincaré disk is a representation of the hyperbolic space, the rigid 

motion in it is defined by Eq. 3.1, which is the Möbius transformation and is different from 

that in the Euclidean space. However, the Möbius transformation has the same properties 

as the Euclidean rigid motion. For example, as shown in figure 3.4 (d), the object at the 

center is transformed to four other different positions in the Poincaré disk with four 

different Möbius transformations. Each of the four pieces (shown in four colors) is a copy 

of the center object. They have different positions, but their shapes are the same in the 

hyperbolic space. A hyperbolic line (a geodesic) in the Poincaré disk is a circular arc which 

is perpendicular to the unit circle |𝑧| = 1. A hyperbolic circle 𝑐𝑖𝑟𝑐(𝑐, 𝑟) (𝑐 is the center 

and 𝑟 is the radius) looks like a Euclidean circle 𝐶𝑖𝑟𝑐(𝐶, 𝑅), with 𝐶 =
2−2𝜇2

1−𝜇2|𝑐|2
, and 𝑅2 =

|𝐶|2 −
|𝑐|2−𝜇2

1−𝜇2|𝑐|2
, where 𝜇 =

𝑒𝑟−1

𝑒𝑟+1 
. Figure 3.2 (c) shows an illustration of the Poincaré disk. 

In order to map the ventricular surfaces to the hyperbolic Poincaré disk, two paths, 𝜏1 

connecting 𝛾1 and 𝛾2 and 𝜏2 connecting 𝛾1 and 𝛾3, were automatically traced, as shown in 

figure 3.4 (b). Initially, the locations of the paths were not required to be consistent across 

subjects. But they were required to connect consistent ends of 𝛾1, 𝛾2, 𝛾3 for consistent 

surface mappings to be discussed in Sec. 3.2.6. As shown in figure 3.4 (a-b), endpoints 

with same colors were connected to each other. After slicing along the paths, a ventricular 

surface became a simply connected domain, which we call a topological disk. Figure 3.2 
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(b) is an illustration of the topological disk of the topological pants in figure 3.2 (a), which 

provides the fundamental domain when embedded in the Poincaré disk. 

In practice, surfaces are represented by triangular meshes. If a surface admits 

hyperbolic geometry, all triangles on it are hyperbolic triangles. As an illustration of the 

hyperbolic geometry, figure 3.2 (d) shows a saddle-shape plane which has constant 

negative Gaussian curvatures with a hyperbolic triangle. 

 

3.2.4 Hyperbolic Ricci Flow 

This work uses the surface Ricci flow method [1, 2, 45, 262, 263] to conformally 

project the ventricular surfaces to the hyperbolic space and isometrically embeds them in 

the Poincaré disk. This method is called the hyperbolic Ricci flow. 

Ricci flow is a powerful curvature flow method, which was first introduced in [279]. 

Let 𝑆 be a smooth surface with Riemannian metric 𝐠 = (𝑔𝑖𝑗), the Ricci flow deforms the 

metric 𝐠(𝑡) according to the Gaussian curvature 𝐾(𝑡) (induced by the metric itself), 

𝑑𝑔𝑖𝑗(𝑡)

𝑑𝑡
= −2𝐾(𝑡)𝑔𝑖𝑗(𝑡)                                             (3.2) 

where 𝑡 is the time parameter. Eq. 3.2 states that the metric should change according to the 

Gaussian curvature, so that the curvature evolves like a heat diffusion process. There is an 

analogy between the Ricci flow and heat diffusion. Suppose 𝑇(𝑡) is a temperature field on 

the surface, the heat diffusion equation is 
𝑑𝑇(𝑡)

𝑑𝑡
= −Δ𝐠𝑇(𝑡), where Δ𝐠 is the Laplace-

Beltrami operator induced by the surface metric. The temperature field becomes more and 

more uniform with the increase in 𝑡, and it will become constant eventually. In a physical 

sense, the curvature evolution induced by the Ricci flow is exactly the same as the heat 
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diffusion on the surface as 
𝑑𝐾(𝑡)

𝑑𝑡
= −Δ𝐠(𝑡)𝐾(𝑡), where Δ𝐠(𝑡) is the Laplace-Beltrami 

operator induced by the metric 𝐠(𝑡). For the proof of this analogy, please refer to [2]. 

With conformal mapping, which requires 𝐠(𝑡) = 𝑒2𝑢(𝑡)𝐠(0), we have a simplified 

Ricci flow equation 

𝑑𝑢(𝑡)

𝑑𝑡
= −2𝐾(𝑡)                                                       (3.3) 

the derivation of Eq. 3.3 can be found in [2]. 

 

Figure 3.3. Illustration of the hyperbolic cosine law (a) and visualization of the circle 

packing metric on a hyperbolic triangle (b). 

 

In engineering field, surfaces are approximated by triangular meshes. Major concepts 

such as metric, curvature, Ricci flow, etc., which were introduced above in the continuous 

setting, need to be generalized to the discrete setting. Suppose 𝑀(𝑉, 𝐸, 𝐹) is a triangular 

mesh, with the vertex set 𝑉, edge set 𝐸, and face set 𝐹. We define 𝑣𝑖 the 𝑖th vertex, [𝑣𝑖 , 𝑣𝑗] 

the edge connecting vertices 𝑣𝑖 and 𝑣𝑗, and [𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘] the face formed by 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘. The 

discrete Riemannian metric on 𝑀 is a function defined on each edge 𝑙: 𝐸 → 𝑅+ such that 
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in each face [𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘], the triangle inequality holds 𝑙𝑖 + 𝑙𝑗 > 𝑙𝑘. Usually, it is the edge 

length. As shown in figure 3.3 (a), the corner angles in each face are determined by the 

metric according to the hyperbolic cosine law: 

𝜃𝑖 = cos
−1 cosh𝑙𝑗cosh𝑙𝑘−cosh𝑙𝑖

2sinh𝑙𝑗sinh𝑙𝑘
                                                (3.4) 

Let 𝑓𝑖𝑗𝑘 be the face formed by 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘, and 𝜃𝑖
𝑗𝑘

 the corner angle at 𝑣𝑖 in this face, 

the discrete Gaussian curvature on 𝑣𝑖 can be defined by the angle deficit: 

𝐾𝑖 = {
2𝜋 − ∑ 𝜃𝑖

𝑗𝑘
𝑓𝑖𝑗𝑘∈𝐹         𝑣𝑖 ∉ 𝜕𝑀

𝜋 − ∑ 𝜃𝑖
𝑗𝑘

𝑓𝑖𝑗𝑘∈𝐹             𝑣𝑖 ∈ 𝜕𝑀
                                          (3.5) 

The discrete Gaussian curvature definition is an approximation of that in the continuous 

setting, for the derivation, please refer to [40]. Accordingly, the Gauss-Bonnet theorem 

also holds for the discrete meshes ∑ 𝐾𝑖𝑣𝑖∈𝑉 = 2𝜋𝜒(𝑀) [71]. 

By definition, the conformal deformation maps infinitesimal circles in one surface to 

infinitesimal circles in another and preserves angles among the circles. The discrete 

conformal deformation uses circles with finite radii to approximate the infinitesimal 

circles. The concept of the circle packing metric was introduced in [280] and later adopted 

by Hurdal and Stephenson in their discrete cortical conformal flattening work [78, 281]. 

Figure 3.3 (b) shows a hyperbolic triangle together with three circles centered at its three 

vertices. Let Γ be a function defined on vertices Γ: 𝑉 → ℝ+, which assigns a radius 𝛾𝑖 to 

vertex 𝑣𝑖. Similarly, let 𝛷 be a function defined on edges 𝛷:𝐸 → [0,
𝜋

2
], which assigns an 

acute angle 𝜙𝑖𝑗 to edge 𝑒𝑖𝑗 and is called a weight function of the edge. The pair of vertex 

radius function and edge weight function, (Γ, 𝛷), is called the circle packing metric of 𝑀. 

As shown in [1, 2, 282], the circles in the circle packing metric are not necessarily tangent 
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to each other, they can intersect [2], or not intersect at all [1]. As shown in figure 3.3 (b), 

for each triangle [𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘], one can compute the Riemannian metrics by the hyperbolic 

cosine law: 

𝑙𝑘 = cosh
−1(cosh𝛾𝑖cosh𝛾𝑗 + cos𝜙𝑖𝑗sinh𝛾𝑖sinh𝛾𝑗)                            (3.6) 

Let 𝑈: 𝑉 → ℝ be the discrete conformal factor and [1, 263], 

𝑢𝑖 = log (tanh
𝛾𝑖

2
)                                                        (3.7) 

the discrete Ricci flow is defined as 

𝑑𝑢𝑖

𝑑𝑡
= −2𝐾𝑖                                                             (3.8) 

The discrete Ricci flow is in the exact same form as the smooth Ricci flow (Eq. 3.3). Let 

𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑛) be the conformal factor vector, where 𝑛 is the number of vertices on 

𝑀, and 𝑈0 = (0,0, … ,0), then the discrete hyperbolic Ricci energy is defined as [263] 

𝐸(𝑈) = ∫ ∑ 𝐾𝑖𝑑𝑢𝑖
𝑛
𝑖=1

𝑈

𝑈0
                                                     (3.9) 

Given the definitions 3.4, 3.6 and 3.7, by direct computations, we get 
𝜕𝜃𝑖

𝜕𝑢𝑗
=
𝜕𝜃𝑗

𝜕𝑢𝑖
. 

Considering the definition of 𝐾𝑖 (Eq. 3.5), immediately we get 
𝜕𝐾𝑖

𝜕𝑢𝑗
=
𝜕𝐾𝑗

𝜕𝑢𝑖
. Thus, the 

differential 1-form 𝜔 = ∑ 𝐾𝑖𝑑𝑢𝑖
𝑛
𝑖=1  is closed as 𝑑𝜔 = 0. This proves that the hyperbolic 

Ricci energy (Eq. 3.9) is convex and its unique global minimum corresponds to the 

hyperbolic metric with zero vertex Gaussian curvatures. The discrete Ricci flow is the 

negative gradient flow of the hyperbolic Ricci energy. 

The algorithm with gradient descent is summarized as following: 

i. Compute the initial radius 𝛾𝑖 for each vertex 𝑣𝑖, and weight 𝜙𝑖𝑗 for each edge 𝑒𝑖𝑗 

with the hyperbolic cosine law; 
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ii. Set the target Gaussian curvature as zero; 

iii. Compute edge lengths with Eq. 3.6, face corner angles with Eq. 3.4, and the 

Gaussian curvature with Eq. 3.5. 

iv. Update 𝑢𝑖 for each vertex 𝑣𝑖 with Eq. 3.8 as 𝑢𝑖
𝑡+1 = 𝑢𝑖

𝑡 − 2Δ𝑡𝐾𝑖. 

v. Update 𝛾𝑖 with Eq. 3.7. 

vi. Repeat steps (3) to (5) until the final Gaussian curvature is no greater than a user-

specified error tolerance. 

Instead of gradient descent, the Ricci energy (Eq. 3.9) can also be optimized by 

Newton’s method [2, 263], which requires compute the Hessian matrix. Let 𝐻 = (ℎ𝑖𝑗) be 

the Hessian matrix, then 

ℎ𝑖𝑗 =
𝜕𝐾𝑖
𝜕𝑢𝑗

, ℎ𝑖𝑖 =
𝜕𝐾𝑖
𝜕𝑢𝑖

 

In the experiments, the Newton’s method was used to optimize the Ricci energy, which is 

stable and fast (details are in Sec. 4.4.2). For a ventricular surface with more than 50K 

vertices, the optimization took less than 30 seconds on a 2.66 GHz Intel Quad CPU Q8400 

PC with Windows 7 64-bit operating system. 

 

3.2.5 Embedding into the Poincaré Disk Model 

After computing the discrete hyperbolic metric of a surface, it can be embedded onto 

the Poincaré disk. At the beginning, a seed face 𝑓012 is selected and the positions of its 

vertices 𝑣0, 𝑣1, 𝑣2 are computed in the Poincaré disk as following: 

𝑝(𝑣0) = (0,0), 𝑝(𝑣1) =
𝑒𝑙01 − 1

𝑒𝑙01 + 1
(1,0), 𝑝(𝑣2) =

𝑒𝑙02 − 1

𝑒𝑙02 + 1
(cos𝜃0

12, sin𝜃0
12) 

Then the embedding is propagated to other faces. We put all un-embedded faces adjacent 
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to the current face into a queue. A face 𝑓𝑖𝑗𝑘 is popped from the queue and checked whether 

all its vertices have been embedded. If so, continue to pop the next face from the queue. 

Otherwise, suppose that 𝑣𝑖 and 𝑣𝑗 are embedded, then 𝑝(𝑣𝑘) can be computed as one of 

the two intersections between two hyperbolic circles, 𝑐𝑖𝑟𝑐(𝑝(𝑣𝑖), 𝑙𝑘𝑖) and 𝑐𝑖𝑟𝑐(𝑝(𝑣𝑗), 𝑙𝑘𝑗), 

satisfying (𝑝(𝑣𝑗) − 𝑝(𝑣𝑖)) × (𝑝(𝑣𝑘) − 𝑝(𝑣𝑖)) > 0. Continue to do so until the queue is 

empty. Figure 3.4 (c) shows the embedding of the ventricular surface in the Poincaré disk. 

The boundaries 𝛾1, 𝛾2, 𝛾3 have become geodesics 
𝛾1

2
,
𝛾1

2
, 𝛾2, 𝛾3. It is called the Poincaré disk 

embedding of the fundamental domain of the surface. As pointed out in [263], different 

selections of the seed face will result in different layouts of the fundamental domain. In 

this work, to keep the fundamental domain consistency across subjects, prior holomorphic 

1-form based method [27, 283] was firstly applied to compute a Euclidean conformal 

mapping and the seed face was then automatically chosen as the center of the zero point 

region [131], as shown in figure 3.9 (a). 

The computed boundaries of the fundamental domains of different ventricular 

surfaces are not consistent, i.e., the positions of 𝜏1, 𝜏2 may not be consistent. A geodesic 

lifting step is further applied to achieve consistent boundaries with the deck transformation 

group generators. For a surface with hyperbolic geometry, its universal covering space is 

the entire Poincaré disk. As shown in figure 3.4 (c), there are 4 free sides in the fundamental 

domain, 𝜏1, 𝜏2 and their compliments 𝜏1
−1, 𝜏2

−1 (after cutting along a curve, it generates two 

boundaries on the new surface, one is 𝜏1 and its compliment is 𝜏1
−1). The rigid 

transformations across these sides induce different periods of the surface mapping. In 

Poincaré disk, all rigid motions are Möbius transformations. There exist unique Möbius 
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transformations map 𝜏1 to 𝜏1
−1 and 𝜏2 to 𝜏2

−1, respectively, as shown in figure 3.4 (d). The 

details for computing the Möbius transformation that maps 𝜏1 to 𝜏1
−1 are explained here. 

Counterclockwisely, let the starting and ending vertices of the two sides be 𝜕𝜏1 = (𝑝0, 𝑞0) 

and 𝜕𝜏1
−1 = (𝑞1, 𝑝1). The geodesic distance from 𝑝0 to 𝑞0 equals the geodesic distance 

from 𝑝1 to 𝑞1 in the Poincaré disk. To align them, a Möbius transformation 𝑡0, which maps 

𝑝0 to the origin and 𝑞0 to a positive real number, is computed with 

𝑡0 = 𝑒
𝑖𝜃0

𝑧 − 𝑝0
1 − 𝑝0̅̅ ̅𝑧

, 𝜃0 = 𝑎𝑟𝑔
𝑝0 − 𝑞0
1 − 𝑝0̅̅ ̅𝑞0

 

 

Figure 3.4. A chart showing the computation of geodesic curves for a ventricular surface. 
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Similarly, another Möbius transformations 𝑡1, which maps 𝑝1 to the origin and 𝑞1 to 

a positive real number, can be computed. Then with 𝑡0(𝑞0) = 𝑡1(𝑞1), the final Möbius 

transformation is 𝑡 = 𝑡1
−1 ∘ 𝑡0, which satisfies 𝑝1 = 𝑡(𝑝0) and 𝑞1 = 𝑡(𝑞0). Any deck 

transformation can be composed by the generators. Then the universal covering space can 

be tiled by transforming a fundamental domain by the deck transformations and gluing the 

transformed fundamental domains with the original fundamental domain. Figure 3.4 (d) 

shows a portion of the universal covering space, which is tiled by 5 fundamental domains, 

one original and 4 transformed by the 4 deck transformation group generators. 

 

3.2.6 Geodesic Curve Lifting and Ventricular Surface Constrained Harmonic Map via the 

Klein Model 

As stated in Chapter 1, to register brain surfaces, a common approach is to compute 

a range of intermediate mappings to a canonical parameter space, such as a sphere [25, 56, 

57, 284] or a planar domain [28, 58, 79, 80, 285, 286]. In the current work, the Klein model 

is used as the canonical space to register ventricular surfaces. 

First, the Poincaré disk model is used to achieve consistent geodesic curves across 

ventricular surfaces. As shown in figure 3.4 (c), 
𝛾1

2
,
𝛾1

2
, 𝛾2, 𝛾3 are already geodesics on the 

Poincaré disk model, but the paths between them, 𝜏1, 𝜏2, 𝜏1
−1, 𝜏2

−1, are not. Figure 3.4 (b) 

shows the paths on the original surface. If the positions of the paths are not consistent 

across subjects, the fundamental domains will also be different for different surfaces. This 

problem can be solved by locating the geodesic on the Poincaré disk between two fixed 

points and mapping it back to the original surface, a step known as geodesic curve lifting. 

Specifically, each of these geodesics is an arc on a circle which passes two fixed points in 
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the Poincaré disk and is orthogonal to the unit circle. Thus the geodesics are unique. The 

fixed points are the endpoints of existing geodesics. For example, as shown in figure 3.4 

(e), 𝜏1 is an arc on the circle which passes one endpoint of 
𝛾1

2
 and one endpoint of 𝛾2 and is 

orthogonal to |𝑧| = 1. As stated in Sec. 3.2.3, the initial paths 𝜏1, 𝜏2 can be inconsistent, 

but they have to connect consistent endpoints of 𝛾1, 𝛾2, 𝛾3, as to guarantee the consistency 

of the geodesic curve computation. After slicing the universal covering space along the 

geodesics, we get the canonical fundamental domain, as shown in figure 3.4 (g). All the 

boundary curves become geodesics. As the geodesics are unique, they are also consistent 

when mapped back to the surface in ℝ3. As shown in figure 3.5, the first row shows a left 

ventricular surface from the MCI stable group and second row shows one from the MCI 

converter group. It can be seen that, although the two surfaces have different shapes due to 

disease progression, the geodesics 𝜏1, 𝜏2 on them are consistent. 

Furthermore, the Poincaré model is converted to the Klein model with the following 

transformation [1],  

𝑧 →
2𝑧

1+�̅�𝑧
                                                    (3.10) 

It converts the canonical fundamental domains of the ventricular surfaces to a Euclidean 

octagon, as shown in figure 3.4 (h). Then the Klein disk is used as the canonical parameter 

space for the ventricular surface registration.  

In the experiment, 133 left and 133 right ventricular surfaces were registered to a 

common left and right template, respectively. The templates are the left and right 

ventricular surfaces from a randomly selected subject. The octagon constrained harmonic 

map [2, 27] was implemented. Briefly, the constrained harmonic map was computed by 
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solving the Laplace equation with the Dirichlet boundary condition. Suppose 𝑀,𝑁 are two 

ventricular surfaces with their Klein disks, the map 𝑓:𝑀 → 𝑁 is a harmonic map if Δ𝑓 =

0. In order to solve the Laplace equation, all the boundary curves in the Klein octagon disk 

were treated as boundary conditions and enforced to be aligned across subjects with linear 

interpolation by the arc length parameter. To show the correspondences between 

boundaries, unique labels were assigned to geodesic boundaries shown in figure 3.5. 

 

Figure 3.5. Illustration of ventricular surface registration with the hyperbolic Ricci flow 

and geodesic curve lifting. Surface 1 and surface 2 were from the MCI stable group and 

MCI converter group, respectively. After computing their canonical fundamental domains 

with the steps in figure 3.4, the computed geodesic curves were lifted to the original 

surfaces. The last column shows that the geodesic curves introduced by the proposed 

method are consistent across subjects. Then the surfaces were registered by constrained 

harmonic map with consistent geodesic curve matching. 
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3.2.7 Surface Tensor-based Morphometry and Its Smoothness with Heat Kernel Method 

This work uses surface tensor-based morphometry (TBM) [29, 30, 32] to analyze the 

ventricular shape changes along with disease progression. Specifically, details for 

computing the Jacobian matrix of the map between two ventricular surfaces were given in 

Sec. 2.2.5. After computing the Jacobian matrix 𝐽 with Eq. 2.10, the TBM is defined as 

√det (𝐽). TBM measures the amount of local area changes in a surface with the map 𝜙 

[32]. 

As pointed out in [277, 287], in an integrated surface analysis system, each step in 

the processing pipeline including MR image acquisition, image segmentation, surface 

reconstruction, etc., are expected to introduce noise in the deformation measurement. To 

account for the noise effects, the heat kernel smoothing algorithm proposed in [277] is 

applied to increase the SNR in the TBM statistical features and boost the sensitivity of 

statistical analysis. The smoothing method is briefly described as follows, for details please 

refer to [277]. 

Let 𝑆 be a surface and 𝑝 ∈ 𝑆 be a point on 𝑆. 𝑌 is a real-valued function defined on 

𝑆, representing a measurement of the surface, e.g., the TBM features in this work. Consider 

a stochastic model for 𝑌 as 𝑌(𝑝) = 𝜃(𝑝) + 𝜖(𝑝), where 𝜃 is the unknown mean 

measurement and 𝜖 is a zero mean Gaussian random field. The heat kernel smoothing 

estimator of 𝜃 is defined by the convolution 

�̅�(𝑝) = 𝐾𝜎 ∗ 𝑌(𝑝) = ∫ 𝐾𝜎(𝑝, 𝑞)𝑌(𝑞)𝑑𝜇(𝑞)
 

𝑆
                               (3.11) 

where 𝑞 is a point on 𝑆 which is adjacent to 𝑝, 𝜇(𝑞) is the surface Lebesgue measure, and 

𝜎 is the smoothing parameter (bandwidth). In numerical implementation, if 𝜎 is sufficiently 

small and 𝑞 is sufficiently close to 𝑝, the heat kernel is defined as: 
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𝐾𝜎(𝑝, 𝑞) ≈
1

√2𝜋𝜎
exp[−

𝑑2(𝑝,𝑞)

2𝜎2
]                                            (3.12) 

where 𝑑(𝑝, 𝑞) is the geodesic distance between 𝑝 and 𝑞. Heat kernel smoothing with large 

bandwidth can be decomposed into iterated kernel smoothing with small bandwidth via 

𝐾𝜎
(𝑚)

∗ 𝑌 = 𝐾𝜎 ∗ 𝐾𝜎 ∗ …∗ 𝐾𝜎 ∗ 𝑌⏟            
𝑚 𝑡𝑖𝑚𝑒𝑠

= 𝐾√𝑚𝜎 ∗ 𝑌                              (3.13) 

For the case at hand, we define 𝑁𝑝 = {𝑞0, 𝑞1, … , 𝑞𝑘} to be the set of neighboring points of 

𝑝 on 𝑆 and the normalized truncated kernel for 𝑆 to be 

𝑊𝜎(𝑝, 𝑞𝑖) =
exp [−

𝑑2(𝑝,𝑞𝑖)

2𝜎2
]

∑ exp [−
𝑑2(𝑝,𝑞𝑗)

2𝜎2
]𝑘

𝑗=0

                                            (3.14) 

The discrete convolution is defined as 𝑊𝜎 ∗ 𝑌(𝑝) = ∑ 𝑊𝜎(𝑝, 𝑞𝑖)𝑌(𝑞𝑖)
𝑘
𝑖=0 . 

 

3.2.8 Ventricular Surface Morphometry Analysis of MCI Group Differences Study 

To evaluate whether ventricular morphometry, analyzed in this way, could be a valid 

predictive biomarker, morphological differences in the lateral ventricles extracted from the 

baseline MR images between the two different MCI groups were studied. The Student’s t 

test is applied on the TBM statistic to study group difference; same to Sec. 2.3.6, 

permutation tests are used to correct for multiple comparisons [288]. Given two groups of 

ventricular surfaces, on each surface point, a t value with true group labels is computed to 

represent the difference between the two groups of subjects on this point. Then the 

ventricular surfaces are randomly assigned into two groups with same number of subjects 

in each group as in the true grouping and the t value on each surface point is re-computed, 

which is denoted as the t’ value. The random group assignment is permuted 5,000 times 

and results in 5,000 t’ values on each point. A probability on each surface point is computed 
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as the ratio of the number of t’ values which are greater than the t value to the number of 

total permutations. These probability values (p-values) are color coded on an average 

ventricular shape to build the significance p-map (uncorrected) of the group comparison. 

Given a predefined statistical threshold of p = 0.05, the feature in a significance p-map is 

defined as number of surface points with p-values lower than this threshold, which is also 

regarded as the real effect in the true experiment. The feature is then compared with 

features that occur by accident in the random groupings. A ratio is computed describing 

the fraction of the time an effect of similar or greater magnitude to the real effect occurs in 

the random assignments. This ratio is the chance of the observed pattern occurring by 

accident and provides an overall significance value of the map (corrected for multiple 

comparisons) [289]. 

 

3.2.9 Correlation Between Ventricular Shape and Cognition and Other AD Biomarkers 

In addition to examining the group difference, we also investigated the ventricular 

shape morphometry correlation with each of several cognitive tests such as the 11-item 

Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-COG11)  [290], and with the 

FDG-PET based hypometabolic convergence index (HCI) [87], which is computed from 

the same subject’s FDG-PET image and is a single measurement of the extent to which the 

pattern and magnitude of cerebral hypometabolism in an individual’s FDG-PET image 

correspond to that in AD patients. Such correlation analysis may help evaluate whether the 

proposed ventricular morphometry is linked to cognition or abnormal levels of AD-related 

markers that were previously reported. A Pearson correlation method is applied to analyze 

the relationship between the ventricular shape morphometry and cognitive or FDG-PET 
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measures, where the latter is used as the predictor. The p-value of the correlation is 

estimated at every surface point to build the correlation p-map. The estimated r-value, i.e., 

the correlation coefficient on each surface point, is also computed. Similar to group 

difference analysis, the overall significance value of the correlation, corrected for multiple 

comparisons, is obtained through a permutation test (5,000 iterations) of cognitive or other 

AD biomarker values. 

 

3.3 Experimental Results 

3.3.1 Subjects 

High-resolution brain structural MRI scans were acquired at multiple ADNI sites 

using 1.5 Tesla MRI scanners manufactured by General Electric Healthcare, Siemens 

Medical Solutions, and Philips Medical Systems. For each subject, the T1-weighted MRI 

scan was collected with a sagittal 3D MP-RAGE sequence. Typical 1.5T acquisition 

parameters are repetition time (TR) of 2,400 ms, minimum full excitation time (TE), 

inversion time (TI) of 1,000 ms, flip angle of 8°, 24 cm field of view. The acquisition 

matrix was 192 × 192 × 166 in the x, y, and z dimensions and the voxel size was 1.25 ×

1.25 × 1.2 mm3. In-plane, zero-filled reconstruction (i.e., sinc interpolation) generated a 

256 × 256 matrix for a reconstructed voxel size of 0.9375 × 0.9375 × 1.2 mm3. 

Based on the availability of both volumetric MRI and FDG-PET data, 133 subjects 

were selected from the MCI group in the ADNI baseline dataset, including 71 subjects 

(age: 74.77 ± 6.81) who developed incident AD during the subsequent 36 months, which 

we call the MCI converter group, and 62 subjects (age: 75.42 ± 7.83 years) who did not 

convert during the same period, which we call the MCI stable group. These subjects were 
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chosen on the basis of having at least 36 months of longitudinal data. If a subject developed 

incident AD more than 36 months after baseline, it was assigned to the MCI stable group. 

All subjects underwent thorough clinical and cognitive assessment at the time of 

acquisition, including the Mini-Mental State Examination (MMSE) score [157], 

Alzheimer’s disease assessment scale – Cognitive (ADAS-COG) [290] and Auditory 

Verbal Learning Test (AVLT) [291]. The demographic information of the subjects is in 

Table 3.1. 

 
Gender 

(M/F) 
Education Age MMSE at Baseline 

MCI Converter 

(N = 71) 
45/26 15.99 ± 2.73 74.77 ± 6.81 26.83 ± 1.60 

MCI Stable 

(N = 62) 
44/18 15.87 ± 2.76 75.42 ± 7.83 27.66 ± 1.57 

Table 3.1. Demographic information of studied MCI subjects in ADNI baseline dataset. 

 

3.3.2 Volume and Area Differences between Diagnostic Groups 

We first tested if there were significant differences between two groups (MCI 

converter vs. stable) with two global measurements of shape changes: the total volumes 

and surface areas of the ventricles. In each experiment, the volumes or areas of the left and 

right ventricles were combined to form a 1 × 2 vector (𝑉𝑙 , 𝑉𝑟) or (𝐴𝑙 , 𝐴𝑟) for the 

permutation test with 5,000 random assignments of subjects to groups, given 0.05 as the 

significant level. However, neither of them detected significant differences between the 

groups. The permutation test corrected p-values are 0.0803 for the volume and 0.2922 for 

the area. 
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3.3.3 Group Difference Analysis with Tensor-based Morphometry 

A group comparison was performed with Student’s t test on the smoothed TBM 

features after registering the ventricular surfaces with the proposed method. Specifically, 

for all points on the ventricular surface, a permutation test with 5,000 random assignments 

of subjects to groups was run to estimate the statistical significance of the areas with group 

differences in surface morphometry. The probability was color coded on each surface point 

as the statistical p-map of group difference. Figure 3.6 shows the p-map of group difference 

detected between the MCI converter (N = 71) and stable (N = 62) groups, using the 

smoothed TBM as a measure of local surface area change and the significance level at each 

surface point as 0.05. In figure 3.6, the non-blue color areas denote the statistically 

significant difference areas between two groups. The overall significance of the map is 

0.0172. 

 

Figure 3.6. Illustration of statistical map showing local shape differences (p-values) 

between MCI converter and MCI stable groups from the ADNI baseline dataset, based on 

tensor-based morphometry (TBM), which was smoothed by the heat kernel smoothing 

method [277]. 
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3.3.4 Correlation Analysis of Ventricular Morphometry with Cognitive Measurements 

This experiment studied the correlation between the smoothed surface TBM statistic 

and three cognitive measurements, including MMSE score [157], ADAS-COG11 [290] 

and AVLT [291] on the 133 subjects with MCI. After the permutation tests, the correlation 

with ADAS-COG11 passed the multiple comparisons (the overall significance of the 

correlation value p = 0.0110) while the correlations with MMSE and AVLT did not pass 

the multiple comparisons test (the overall significance of the correlation value p = 0.8516 

for MMSE and p = 0.4358 for AVLT). Figure 3.7 (a) shows the p-map of correlation results 

with ADAS-COG11, where the non-blue color areas denote the statistically significant 

difference areas; (b) shows the r-map of the r-values where the red color denotes a positive 

correlation and the blue color a negative correlation. In the statistically significant areas in 

figure 3.7 (a), the maximum r-value is 0.3701, the average r-value is 0.1548, and the 

dominant correlations are positive (86.18%). 

 

3.3.5 Correlation Analysis of Ventricular Morphometry with HCI 

Since all subjects included in this study had both structural MRI and FDG-PET 

images, this experiment attempted to study whether ventricular morphometry features were 

correlated with FDG-PET based single global index HCI. If such a correlation holds, one 

may use MRI measures as surrogates of disease progression in AD, even in pre-clinical 

stages (for related work, please see [101, 106, 292-294]). Prior studies showed that HCI 

correlated with AD progression and smaller hippocampal volumes [295-298]. 

The smoothed TBM statistic of the 133 MCI patients was correlated with their HCI 

measurements, with the permutation test corrected p-value as 0.0001. Figure 3.8 (a) shows 
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the correlation p-map color-coded with uncorrected p-values and (b) shows the r-map 

color-coded with the correlation coefficients. On the statistically significant areas in figure 

3.8 (a), the maximum r-value is 0.5163, the average r-value is 0.3030, and the dominant  

 

Figure 3.7. Correlation maps with ADAS-COG11. (a) shows the p-map of correlation 

results with ADAS-COG11, where the non-blue color areas denote the statistically 

significant difference areas; (b) shows the r-map of the r-values where the red color denotes 

a positive correlation and the blue color a negative correlation. 
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Figure 3.8. Correlation maps with HCI. (a) shows the p-map of correlation results with 

HCI, where the non-blue color areas denote the statistically significant difference areas; 

(b) shows the r-map of the r-values where the red color denotes a positive correlation and 

the blue color a negative correlation. 

 

correlations are positive (99.40%). It is interesting to note that the enlargement of lateral 

ventricles in these patients was correlated with higher HCI, implicating enlarged ventricles 

were associated with greater glucose uptake reduction. Such positive correlation was 
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observed in multiple locations. Of special interest and relevant to reported AD 

hypometabolism were the regions in the neighborhood of posterior cingulate. 

 

3.4 Discussion 

This study has two main findings. First, it demonstrates the feasibility to apply 

hyperbolic geometry to register ventricular surfaces across subjects. In brain imaging, a 

surface-based morphometry analysis approach is to set up parametric grids on surfaces, 

and then use differential geometry to come up with useful descriptors of surface features 

of interest, or to summarize the geometry as a whole. Prior research has used sphere [96, 

299, 300] or Euclidean plane [27, 79] as the parameter domain. However, for ventricular 

surfaces with a branching structure, as demonstrated in [79], spherical mapping creates 

distortions and planar mapping some inevitable singularities. The hyperbolic Ricci flow 

method [1, 44, 45] is capable of parameterizing complex shapes. Thus it has the potential 

to detect subtle differences between people with high accuracy and categorize them into 

diseased and healthy control groups, or as in the current study categorize them into different 

risk levels of disease, by analyzing ventricular surface deformation tensors computed from 

a set of parametric surfaces using concepts from hyperbolic conformal parameterizations. 

In addition, the introduced hyperbolic Ricci flow method is theoretically sound and 

numerically efficient [1, 2, 263]. Together with geodesic curve lifting and the Klein model, 

the proposed computational framework may achieve a diffeomorphic ventricular surface 

registration with consistent boundary matching condition. Second, the surface tensor-based 

morphometry, which is computable from the conformal grid, carries rich information on 

local surface geometry that is defined at the coordinates of the well-organized surface grid. 
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As demonstrated in many prior studies [29, 30, 32, 118], the resulting set of surface tensor 

methods practically encodes a great deal of information that would otherwise be 

inaccessible, or overlooked. The analysis of parametric meshes for computational studies 

of ventricular structures can be made more powerful by analyzing the surface metric tensor 

information inherent in the surface.  

The proposed method was validated in our ongoing work on MCI conversion 

prediction [301] which examined baseline measurements of structural MRI and FDG-PET, 

in combination with cognitive tests, to distinguish individuals with MCI who developed 

incident AD from those who did not, with the aim of establishing their usefulness as 

predictors for progression to AD. This work focused on ventricular morphometry analysis. 

Although the analyses of global ventricular volume and surface area did not differentiate 

MCI converter and MCI stable groups, our fine-grained analysis revealed significant 

differences mostly localized around the subregion of the ventricular body that abuts medial 

temporal lobe structures. This subregional ventricular enlargement was reported to 

correlate with atrophy of medial temporal lobe which includes the hippocampal formation. 

Consistent with prior observations, e.g. [86, 289], our findings suggest that grey matter 

atrophy starts from the temporal lobe region and then spreads to involve frontal cortices, 

consistent with Braak staging of neurofibrillary pathology [302]. Importantly, they provide 

evidence that ventricular subfield analysis provides enhanced statistical power in structural 

MRI analysis compared with ventricular volume analysis. Some recent studies [303-305] 

found that including optimum features from multiple modalities provides better AD 

predictive value than any one measure alone. The proposed ventricular surface TBM 

features may enhance the predictive value of MRI-derived data in AD research. 
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Furthermore, the positive correlation between ventricular morphometry and ADAS-

COG11 that this study found is consistent with previous studies that correlated ventricular 

expansion with worsening cognition in MCI subjects [306, 307]. The strong positive 

correlation with HCI values supports the validity of the proposed algorithm and 

demonstrates the linkage between functional abnormalities and structural changes 

(ventricular enlargement particularly in this study). As shown in the Sec. 3.3, the 

ventricular subregions where the statistically significant correlation between ventricular 

enlargement and HCI abutted areas of earliest FDG-PET change in AD, particularly the 

posterior cingulate [308-310], and to our knowledge, this is the first study to explore the 

relationship between ventricular measures and FDG-PET measures. 

Applicability to other brain structures. As stated by the uniformization theorem, any 

surface with a negative Euler characteristic number admits a hyperbolic background 

geometry and can be conformally mapped to the hyperbolic space ℍ2. Geometrically, the 

Euler characteristic number is defined as 2 − 2g for closed surfaces, where g is the surface 

genus, i.e., the number of handles on a surface, and is defined as 2 − 2g − b for surfaces 

with boundaries, where b is the number of boundaries. Thus the hyperbolic Ricci flow 

method has broad applicability in human brain surface morphometry studies, as surfaces 

of brain structures are often irregular and topologically complicated. Take the cortical 

surface as an example. In human brain mapping field, a diffeomorphic mapping between a 

pair of cortical surfaces with landmark correspondence is usually pursued to study brain 

deformations along with disease progression. By slicing a cortical surface open along three 

or more landmark curves, the cortical surface becomes a genus-0 surface with multiple 

boundaries, which has a negative Euler number. Figure 1.2 (d) [81] illustrates the 
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application of the proposed method on a cortical surface with three landmark curves, which 

is homotopic to the topological pants. For cortical surfaces with more landmarks, which 

also have negative Euler numbers, the hyperbolic Ricci flow method is still applicable [4, 

5], so the remaining processes of the proposed method follow naturally. On the other hand, 

for different brain structures, certain processing steps in the pipeline may need to be 

adapted accordingly. For example, a major difference between cortical and ventricular 

surface processing with the proposed method is the topology optimization. Given the 

highly variable gyral patterns of cortical surfaces, one may need to work with experienced 

neuroanatomists to manually or automatically label homologous landmark curves across 

subjects following some well-established anatomical protocols such as [311], as described 

in prior work [2, 80]. In this case, the topology optimization reduces to slicing a cortical 

surface along a set of landmark curves to change it into a genus-0 surface with multiple 

boundaries. Chapter 4 will introduce the application of the proposed method on cortical 

surfaces with six automatically labeled landmark curves, where the hyperbolic harmonic 

map [4] is used to diffuse the surface registration constructed by this work to a global 

harmonic map. 

Comparison with holomorphic 1-form algorithm. The holomorphic 1-form algorithm 

[312] is a commonly used method to analyze lateral ventricular surfaces [27]. However, 

due to the limitation of holomorphic 1-form itself, this method introduces singularities and 

the number of singularities equals the absolute value of the Euler characteristic number of 

a surface. In analyzing lateral ventricular surfaces, each surface has a singular point, as 

shown in figure 3.9 (a), which was called zero point in [312] and [27] and used as the 

starting point to segment a ventricular surface into three parts, the superior horn, the  
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Figure 3.9. Lateral ventricular surface parameterization with a method based on 

holomorphic 1-forms [312]. Due to the property of holomorphic 1-forms, the ventricular 

surface parameterization has a zero point (a). In [312], the ventricular surface was 

segmented with curves traced from the zero point and each horn was mapped to the 

parameter domain and registered separately (b). After registering each part separately and 

merging them back together, the ventricular surface has a hole at the zero-point position 

(c). Surface registration is also affected by the locations of the cuts that divide a ventricular 

surface into three parts (d). 
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inferior horn, and the occipital horn, as shown in figure 3.9 (b). After registering the three 

horns separately and merging them to form the whole registered ventricular surface, a hole 

is generated around the zero point due to the changes from surface registration, as shown 

in figure 3.9 (c), which is not reasonable in analyzing anatomical surfaces. On the other 

hand, the new registration introduces no holes as shown in figure 3.6. Furthermore, the 

segmentation of ventricular surfaces with holomorphic 1-form, though consistent, 

separates an entire surface into independent partitions. The independent registrations of 

different partitions are based on matching surface features which should not be separated. 

For example, when registering the superior horn, the other two horns are not affected, 

which may not be true when registering the ventricular surfaces as a whole. Particularly, 

as shown in figure 3.6, as most of the significantly different areas concentrated at the 

locations of the partition cuts, the statistical analysis may be affected by the segmentations. 

Another problem with the ventricular surface segmentation is that the surface registration 

may be affected by the locations of the cuts that divide a ventricular surface into three parts. 

As shown in figure 3.9 (d), the locations of the cuts on a left ventricular surface (shown in 

two different views) were slightly changed, where the original cuts are shown in green, and 

the changed cuts are shown in red. Although the cutting locations almost overlap, the 

resulting registered ventricular surfaces are different. By measuring the differences with 

the Euclidean distances between pairs of vertices on the two registered surfaces, the 

differences are in the range of [0.0001, 1.3545]. Even more careful studies are necessary 

to determine the impact of the cutting locations on the statistical analysis. Thus it is 

advantageous for the new algorithm as it takes the ventricular surface as an entirety for the 

registration. 
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Comparison with SPHARM. SPHARM [161], as introduced in Sec. 2.3.5, is another 

surface mapping tool with a number of applications [165-168]. Briefly, it takes a binary 

image segmentation as input and provides functions such as surface reconstruction, 

spherical harmonic mapping and surface registration; statistical analysis tools are also 

included. The major limitation of SPHARM is that it assumes the input binary image 

segmentation has a spherical topology. Thus prior work on ventricular shape morphometry 

with SPHARM usually discarded the inferior horn [168, 186]. The inclusion of the long 

and narrow inferior horn in our segmentation makes the shape of the lateral ventricle non-

spherical. As a result, SPHARM cannot successfully parameterize the concave ventricular 

surfaces that are reconstructed from our segmentation unless a coarse resolution is used. 

For this experiment, the segmented binary images were resampled into a resolution of 2 ×

2 × 2 mm3. However, the resulting spherical parameterizations still have severe distortion 

and overlap on the inferior horn, as shown in figure 3.10 (a), and 22 subjects failed the 

parameterization process. After surface registration, the TBM statistic was computed at 

each vertex of the aligned surfaces as described in Sec. 3.2.7 and group difference was 

analyzed as in Sec. 3.2.8. The significance p-map of group comparison between 58 

converters and 53 stable MCI subjects with SPHARM is shown in figure 3.10 (b). The 

result of the proposed method is shown in figure 3.10 (c) and the cumulative distribution 

function (CDF) plots in figure 3.10 (d) show the comparison of the resulting p-values for 

each method. As described in Sec. 2.3.6, while the line 𝑦 = 𝑥 represents null hypothesis, 

which implies there is no detectable difference, a steeper curve suggests that greater 

differences are detected. The details of the experiment with SPHARM can be found in 

Appendix B. From the CDF comparison, both methods got comparable results, but the 
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proposed method is more robust for processing the concave ventricular surfaces.  

 

Figure 3.10. Comparison with SPHARM. (a) is the spherical harmonic mapping of a left 

ventricular surface; (b) is the statistical map from SPHARM [161] showing local shape 

differences (p-values) between MCI converter (N = 58) and MCI stable (N = 53) groups 

from the ADNI baseline dataset; (c) is the statistical map from the proposed method 

showing local shape differences (p-values) between the same groups as in (b); (d) shows 

the CDF plots comparing the two methods. 

 

The inferior horn on the lateral ventricle is also important for the study of AD, as it is 

adjacent to the hippocampus and its enlargement may indicate hippocampal atrophy – a 

well-established biomarker for AD. As shown in figure 3.6, our approach detected 

significant differences on both left and right inferior horns. Even with a smaller dataset, 
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the proposed method detected significant differences on the right inferior horn, as shown 

in figure 3.10 (c). The significance p-maps of the two methods are not quite consistent, 

most probably because that details in the original image segmentations were greatly 

removed during the resolution resampling step of SPHARM. A more convincing way to 

validate the new algorithm is to apply it to study cortical surface morphometry and compare 

the results to other extensively applied cortical analysis tools such as FreeSurfer [26]. 

Comparisons with voxel-based morphometry and pattern analysis. When studying 

brain morphology with imaging, the voxel-based morphometry (VBM) method has been 

extensively developed, improved, and used [313-318]. Briefly, VBM starts by spatially 

normalizing the T1-weighted image of each individual subject to a template image to 

establish a voxel-to-voxel correspondence across subjects. The registration process 

consists of both affine transformation and a nonlinear deformation. After segmenting the 

registered images into tissue classes, each voxel contains a measure of the probability that 

it belongs to a specific segmentation class. This quantity can be used to compute other 

brain anatomical features such as gray matter volume [313]. Voxel-wise statistical analyses 

are then applied to study local differences in the anatomical features of each tissue class 

across subjects. The VBM method is available in many major neuroimaging software 

packages such as FSL and SPM and is efficient and easy to apply. However, the VBM 

method may have limited accuracy in measuring some aspects of brain morphology, 

particularly in regions where fine anatomical features are found within brain structures. For 

example, the cerebral cortex has a highly folded geometry. Many of its anatomical features 

are built in deep folds. The voxel-wise nature of the VBM method may limit its capability 

to accurately measure such features and to align these features across subjects. On the other 
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hand, our surface-based method can achieve sub-voxel accuracy when applied to some 

specific structures. For example, as discussed above, the hyperbolic Ricci flow method can 

conformally flatten a convoluted cortical surface onto a 2D domain [4]. The flattened 

cortical surface retains substantial geometric information about the original surface with 

no singularities or overlap in the mapping, so all features in the cortical folds are well 

preserved and can be accurately analyzed. Pattern analysis [319-321] is another commonly 

applied method, which aims to identify the most discriminative disease-related features in 

brain images or surfaces. Here the proposed method is based on tensor-based morphometry 

(TBM), which is generalized to deal with 3D surfaces, to study the morphological 

deformation patterns of ventricular surfaces along with disease progression. The TBM 

features encode rich information about the local surface geometry, which may be 

inaccessible or overlooked in other methods [29, 30, 32, 118]. Experimental results in the 

group difference study illustrate the differentiation power of the TBM features, as shown 

in figure 3.6. These TBM features may also improve MRI-based diagnostic classification 

with sparse learning based feature selection method [80]. Despite the many advantages of 

the proposed method, however, a few issues need to be addressed before it can be 

established as an attractive alternative to other methods. First, more experiments on large-

scale datasets of ventricular and other brain structure surfaces, especially cortical surfaces, 

are necessary to validate the efficacy of the method. Second, the system needs to be 

automated to hide the complex details for general users. Third, the ability of TBM features 

in diagnostic classification needs more systematic study. Future work is needed to address 

these problems. 

Statistical feature smoothing. In the proposed surface registration pipeline, each of 
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the MR image acquisition, image segmentation, surface reconstruction, surface 

parameterization, and surface registration procedures is expected to introduce noise in the 

TBM statistical features. The mesh smoothing process introduced in Sec. 2.2.1 is used to 

reduce the noise from image acquisition, segmentation and partial volume effects in surface 

reconstruction [266]. The remaining noise and noise introduced in subsequent processes 

still affect the SNR in the TBM features and the final statistical analysis. Thus, the heat 

kernel smoothing algorithm [277] has been applied to the TBM features before the group 

difference and correlation studies, as introduced in Sec. 3.2.7. From Eq. 3.13, the 

bandwidth of the smoothing process is determined by the number of iterations. As pointed 

out in [322], the correlation of noise in surface measurements falls off rapidly with distance 

on the surface, so it is sufficient to use a small kernel bandwidth. For heat kernel smoothing 

on cortical surfaces, usually applied parameters include bandwidth 𝜎 = 1 and number of 

iterations 𝑚 = 200 yielding the effective smoothness of √𝑚 = 14.14 𝑚𝑚 [323] or even 

smaller smoothness values such as 6 𝑚𝑚 in [322]. Based on these observations, in this 

work, we set 𝜎 = 1,𝑚 = 10, giving the effective smoothness of 3.16 𝑚𝑚. As few studies 

in the literature have validated the performance of the heat kernel smoothing method [324], 

the smoothing parameters were chosen tentatively. The group difference p-map with 

unsmoothed TBM features is shown in figure 3.11. In figure 3.6, the significant areas are 

consistent with those in figure 3.11, but the noisy distributions are greatly improved by the 

smoothing process. Similar comparison studies for correlation-based p-maps give similar 

results. Thus the parameters are suitable for current studies. A potential future work is to 

quantitatively study the effects of the heat kernel smoothing process on the statistical 

analysis. 
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Surface multivariate tensor-based morphometry. In some prior studies [79, 80], the 

multivariate tensor-based morphometry (mTBM) introduced in Sec. 2.2.5 was proved to 

be more powerful for checking group differences than other statistics including TBM. Here 

the proposed system used TBM as the statistic instead of mTBM because for the lateral 

ventricle, a fluid-filled subcortical structure, its changes vary drastically with normal aging, 

disease progression, or other brain activities. As the mTBM is very sensitive to local 

changes, the resulting significantly different areas spread on the ventricular surface even 

after smoothing, making the results difficult to be interpreted as meaningful anatomical 

findings or noise from subtle changes. Thus here TBM was used as the measurement of 

changes. 

 

Figure 3.11. Illustration of statistical map showing local shape differences (p-values) 

between MCI converter and MCI stable groups from the ADNI baseline dataset, based on 

determinant of Jacobian matrix (TBM), which was not smoothed. 

 

Integration of relative pose statistical analysis. In the current study, the proposed 

surface-based ventricular morphometry system relies on shape changes of the lateral 
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ventricles along with disease progression. Similar to other shape analysis studies of a single 

structure, ventricular pose information is discarded in this work during the surface 

registration stage. Pose mainly depends on extrinsic factors such as the position and 

orientation of a ventricular surface in ℝ3 while the proposed method depends on the 

intrinsic factors of the ventricular surfaces such as local enlargement. Although it rarely 

happens that atrophy of brain tissue causes only pose changes in adjacent structures without 

any local shape deformation, pose information is still very important in brain morphometry 

studies. In [212], the statistical analysis of relative pose was presented to study brain 

atrophy associated pose changes of the subcortical nuclei in AD. Same method was applied 

in [325] to study pose changes of thalamus due to prematurity and in [326] to study pose 

changes of corpus callosum due to traumatic brain injury. Briefly, the relative pose is 

computed by following steps, where we take ventricular surfaces as an example. First, one-

to-one point correspondences between different ventricular surfaces are established by a 

surface registration algorithm, such as the method proposed here. Second, for each 

registered ventricular surface, a pose matrix is obtained by fitting a template shape to this 

surface with a Procrustes alignment. Third, the mean pose is calculated iteratively with the 

pose matrix of each ventricular surface. The relative pose of each ventricular surface, which 

consists of 7 parameters: 1 scale scalar, 3 rotation scalars and 3 translation scalars, is 

obtained by subtracting the mean pose from its pose matrix. Statistical analyses are then 

applied on the relative pose parameters. For details of the algorithm, please refer to [212]. 

Since the proposed ventricular surface analysis gives indirect information about the atrophy 

of surrounding brain structures, integration of relative pose analysis in our algorithm may 

help to better understand the abnormal growth of brain tissue adjacent to lateral ventricles. 
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This could be a possible future work.  

In neuroimaging research, T1-weighted MRI has high contrast differences from 

surrounding structures making accurate lateral ventricle segmentation straightforward for 

both manual and automatic methods [84, 85, 106, 327, 328]. Thus structural MRI based 

lateral ventricular structure has been used to study a variety of human diseases including 

AD [27, 84, 85, 101, 247, 328, 329], HIV/AIDS [79, 330], normal pressure hydrocephalus 

[331], ventriculomegaly [168], vascular dementia [331], diabetes mellitus [300], drug 

addiction [299], and others. The proposed algorithm is very generalizable and may be 

applied to a similar range of diseases including but not limited to AD. Starting from prior 

work on brain surface conformal parameterization [4, 5, 25, 44, 45, 131], this work shows 

that the hyperbolic Ricci flow method can be adopted to analyze branching ventricular 

morphometry. Besides its global non-singularity parameterization, the proposed method 

also carries a few other novel ideas, such as using geodesic curve lifting to enforce a 

meaningful boundary matching, diffeomorphic surface registration via the Klein model, 

and combing hyperbolic conformal parameterization with TBM analysis. It is expected that 

this work can provide some practical experience and inspire more interest in hyperbolic 

geometry related neuroimaging research. 

 

3.5 Conclusion and Future Work 

This chapter presented a hyperbolic Ricci flow and surface TBM based ventricular 

surface registration algorithm, which can improve the computational efficiency and 

accuracy for in vivo regional structural MRI lateral ventricle estimation. This approach 

introduced the hyperbolic Ricci flow method which computes a ventricular surface 
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conformal parameterization on the hyperbolic Poincaré disk without any singularity. 

Through geodesic curve lifting and the conversion to the Klein model [1], a diffeomorphic 

surface mapping with consistent boundary matching condition was computed. 

Furthermore, the TBM was computed from the well-organized conformal grids and used 

to capture any possible subtle surface deformations. The method was applied to our 

ongoing work on MCI conversion prediction [301] and the results demonstrated that the 

proposed method achieved good correlation with cognition and other AD biomarker such 

as FDG-PET, which may help predict longitudinal AD conversion by capturing subtle 

ventricular morphometric differences from the baseline image analysis. 

In the past few years, our group has developed a series of structural MRI analysis 

software tools for AD research, such as multivariate TBM on cortical surface [80] and 

hippocampal abnormality analyses [27, 265-267], together with cortical thickness 

estimation with volumetric Laplace-Beltrami operator and heat kernel [332, 333]. One of 

the future work is to apply our structural MRI software tools, including this work, in the 

preclinical AD research [268, 269]. A broad range of research questions on structural MRI 

analysis [334] need to be carefully explored, such as (1) structural MRI as an AD biomarker 

to measure AD progression; (2) the relationship of structural MRI to cognition (3) and to 

other AD biomarkers including amyloid imaging and FDG-PET; and (4) the value for 

structural MRI measures to help predict cognitive decline. 

Furthermore, as discussed above, possible future work that may improve current 

ventricular surface registration method include (1) algorithm pipeline automation by hiding 

complex computational details; (2) quantitative evaluation of the effects of different TBM 

smoothing parameters and automatic choice of the parameters for different brain structures; 
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and (3) integration of relative pose analysis to analyze the abnormal morphometry of brain 

tissues adjacent to the studied structure. 
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CHAPTER 4 

SHAPE ANALYSIS WITH HYPERBOLIC WASSERSTEIN DISTANCE 

 

Shape space is an active research field in computer vision and medical imaging study. 

The shape distance defined in a shape space may provide a simple and refined index to 

represent a unique shape. Wasserstein distance defines a Riemannian metric for the 

Wasserstein space. It intrinsically measures the similarities between shapes and is robust 

to image noise. Thus it has the potential for the 3D shape indexing and classification 

research. While the algorithms for computing Wasserstein distance have been extensively 

studied, most of them only work for genus-0 surfaces. This chapter introduces a novel 

framework to compute Wasserstein distance between general topological surfaces with 

hyperbolic metric. The computational algorithms are based on Ricci flow, hyperbolic 

harmonic map, and hyperbolic power Voronoi diagram and the method is general and 

robust. The method was applied to study human facial expression, longitudinal brain 

cortical morphometry with normal aging, and cortical shape classification in Alzheimer's 

disease (AD). Experimental results demonstrate that the proposed method may be used as 

an effective shape index, which outperforms some other standard shape measures in the 

AD versus healthy control classification study. 

 

4.1 Introduction 

Over the past decade, exciting opportunities have emerged in studying 3D imaging 

data thanks to the rapid progress made in 3D image acquisition. There is a crucial need to 

develop effective 3D shape indexing and classification techniques. Shape space models, 
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which usually measure similarities between two shapes by the deformation between them, 

may provide a suitable mathematical and computational description for shape analysis (as 

reviewed in [335]). In computer vision research, shape space has been well studied for 

brain atlas estimation [336, 337], shape analysis [338-340], morphometry study [201, 341], 

etc. Recently, the Wasserstein space is attracting more attention. The Wasserstein space is 

the space consisting of all the probability measures on a Riemannian manifold. The 

Wasserstein distance defines a Riemannian metric for the Wasserstein space and it 

intrinsically measures the similarities between shapes. The advantages of Wasserstein 

distance for 3D shape analysis research are: (1) the geodesic distance between space points 

gives a continuous and refined shape difference measure, which is particularly useful for 

brain imaging study, where higher accuracy is usually expected; (2) it studies a transport 

between two probability measures on a canonical image or manifold so it is robust to noise. 

It holds the potential to quantitatively measure 3D shapes reconstructed from images and 

provide a theoretical foundation for 3D shape analysis. 

Wasserstein distance has been widely studied and applied in image and shape 

analysis. In [48], the Wasserstein distance was used to model local shape appearances and 

shape variances for joint variational object segmentation and shape matching. A linear 

optimal transportation (LOT) framework was introduced in [49], where a linearized version 

of the Wasserstein distance was used to measure the differences between images. Hong, et 

al. [342] used Wasserstein distance to encode the integral shape invariants computed at 

multiple scales and to measure the dissimilarities between two shapes. However, these 

methods only work with 2D images. In [50], the Wasserstein distance was generalized to 

Riemannian manifolds, but the method was only applied on genus-0 closed 3D surfaces, 
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where the spherical conformal domain was used as the canonical space for Wasserstein 

distance computation. To date, few studies have investigated Wasserstein distance defined 

on general topological surfaces. 

In practice, most 3D shapes have complicated topology (high-genus). In brain 

imaging research, to enforce the alignment of the major anatomic features, one may slice 

the surfaces open along certain landmark curves [4]. This procedure generates genus-0 

surfaces with multiple open boundaries. The current state-of-the-art Wasserstein space 

research is unable to compute Wasserstein distance on these high-genus surfaces or genus-

0 surfaces with multiple open boundaries. Here, to overcome these limitations, I propose a 

novel framework by integrating hyperbolic Ricci flow [1, 343], hyperbolic harmonic map 

[4], surface tensor-based morphometry (TBM) [30, 32], and optimal mass transportation 

map [88, 89]. The computation of the optimal mass transportation map and the Wasserstein 

distance is also extended to the hyperbolic space, i.e., the Poincaré disk. The resulting 

Wasserstein distance is called the hyperbolic Wasserstein distance. 

The hyperbolic Wasserstein distance was applied in this work to index and compare 

different 3D shapes. The algorithm was tested on genus-0 surfaces with multiple open 

boundaries, including human face surfaces with different expressions, longitudinal brain 

cortical morphology with normal aging, and cortical shape classification between 

Alzheimer's disease (AD) patients and healthy control people. Experimental results 

demonstrated that the proposed method is promising to be a new shape analysis tool. 

The major contributions can be summarized as follows: 

1. Propose a novel algorithm to compute Wasserstein distance between general 

surfaces with hyperbolic Riemannian metric. 
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2. Extend the optimal mass transportation map to hyperbolic Poincaré space, which 

greatly enhance its applicability for general surface analysis. 

3. Develop a general framework that may be applicable for other shape space work. 

Currently, most of shape space work were developed on genus-0 surfaces, e.g. [339, 344], 

which cannot be directly applied to high-genus surfaces because of the difficulty in 

building a canonical space for them. The proposed framework, which adopts a hyperbolic 

harmonic map to build diffeomorphic mappings between general surfaces, may be used to 

generalize other shape space studies to general surfaces as well. 

 

4.2 Prior Work 

Analysis and understanding of shapes is one of the most fundamental tasks in 

computer vision and medical imaging research. Many 3D shape indexing methods have 

been proposed and extensively applied. The spherical harmonic analysis [161, 186] and its 

extension, the weighted spherical harmonic representation [32], use spherical harmonics to 

match and compare shapes. But these methods require the surfaces to be homotopic to a 

sphere. The medial description of shapes [39, 184], which is composed of a set of medial 

samples (m-reps), is also widely applied. Wang et al. introduced a series of conformal 

invariants to represent and analyze shapes, which are the coordinates of surfaces in the 

Teichmüller space. The conformal invariants were computed with Euclidean Ricci flow 

[46] or hyperbolic Yamabe flow [45] and no surface registration was required. In brain 

imaging studies, the volumes and surface areas of cortical or subcortical structures are often 

used as biomarkers to characterize brain morphometry associated with cognitive diseases  

[345]. 
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The optimal mass transportation problem was first raised by Monge, concerning to 

find an optimal way to move a pile of soil from one place to another with minimal 

transportation cost [346]. The existence and uniqueness of the solution for the optimal mass 

transportation problem were proved in [88] using linear programming. The Monge-

Kantorovich optimization has been widely applied in various fields, including physics, 

economics, computer science, etc. Specifically, the optimal mass transportation map 

provides an important tool for image processing [347, 348]. Recently, the algorithm has 

been generalized to 3D surfaces for area-preserving mappings [349, 350] and Wasserstein 

distance computation [50, 340]. However, existing methods only work on genus-0 surfaces, 

while the proposed algorithm extends the optimal mass transportation problem to general 

surfaces with hyperbolic metric. 

Kendall [47] pioneered the manifold shape space research. In computational anatomy 

framework [351], the space of diffeomorphisms was carefully studied [352, 353]. In [354, 

355], shape space was defined as the space of orbits of the reparameterization group acting 

on the space of immersions. The reparameterization invariant (RI) metric constructed in 

[356] used the volume form and the mean curvature of the immersion 𝑓, and the metric in 

[344] used the area multiplication factor of 𝑓. Kurtek et al. [357] extended the work in 

[344] by adding landmark constraints. Jermyn et al. [358] simplified the RI metric 

computation and Gutman et al. [339] built a Riemannian framework for an intrinsic 

comparison of the RI metric structure. Lipman and Daubechies [359] introduced a metric 

for shape comparison based on conformal uniformization and optimal mass transportation. 

The metric is invariant under Möbius transformation. Later, Lipman et al. [360] provided 

a convergence analysis of the discrete approximation to the arising mass transportation 
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problems. Mémoli [361] presented a modification and expansion of the original Gromov-

Hausdorff notion of distance between metric spaces which considers probability measures 

defined on measurable subsets of metric spaces. 

 

4.3 Theoretical Background 

This section briefly introduces the most relevant concepts and theories. For details, 

please refer to [40] for computational conformal geometry, and to [88, 89] for optimal mass 

transportation map. 

Please refer to Sec. 3.2.3 for the concepts of conformal deformation, uniformization 

theorem, and Poincaré disk model. Suppose 𝑧1 and 𝑧2 are two points in the Poincaré disk, 

the hyperbolic distance between them is defined as 

dist(𝑧1, 𝑧2) = tanh
−1 |

𝑧1−𝑧2

1−𝑧1𝑧2̅̅ ̅
|                                      (4.1) 

Surface Ricci Flow. The uniformization metric of a surface can be computed by the 

Ricci flow method. The normalized surface Ricci flow is defined as 
𝑑𝐠(𝑡)

𝑑𝑡
=

(
4𝜋𝜒(𝑆)

𝐴(0)
− 2𝐾(𝑡)𝐠(𝑡)), where 𝐴(0) is the total area of 𝑆 at time 0, 𝐾(𝑡) is the Gaussian 

curvature induced by 𝐠(𝑡) and 𝜒(𝑆) is the Euler characteristic number of 𝑆. It has been 

proved that if 𝜒(𝑆) < 0, the solution to the normalized Ricci flow equation exists for all 

𝑡 > 0 and converges to a metric with constant Gaussian curvature 
2𝜋𝜒(𝑆)

𝐴(0)
 [279]. Thus, the 

hyperbolic uniformization metric of a surface, which introduces -1 Gaussian curvature 

everywhere, can be computed by the Ricci flow. 

Fuchsian Group. Suppose {𝑆, 𝐠} is a surface with a negative Euler characteristic 

number and its hyperbolic uniformization metric is �̃�. Let 𝑝 ∈ 𝑆 be a base point, two loops 
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through 𝑝 are homotopic, if one can deform to the other without leaving 𝑆. All the 

homotopic classes of loops starting from 𝑝 form a simply connected surface �̃�. Then the 

universal covering space of 𝑆, {�̃�, �̃�} , can be isometrically embedded in ℍ2. A Fuchsian 

transformation 𝜙 is a Möbius transformation that maps a universal covering space �̃� to 

another and preserves the projection 𝜙 ∘ 𝑝 = 𝑝. All Fuchsian transformations form the 

Fuchsian group, 𝐹𝑢𝑐ℎ𝑠(𝑆). The Fuchsian transformations are also called deck 

transformations, as introduced in Sec. 3.2.5. 

Harmonic Map. Given a surface{𝑆, 𝐠}, if the coordinates (𝑥, 𝑦) satisfy 𝐠 =

𝑒2𝑢(𝑥,𝑦)(𝑑𝑥2 + 𝑑𝑦2), where 𝑢 is the conformal factor, (𝑥, 𝑦) are called the isothermal 

coordinates. Consider a map 𝑓: {𝑆1, 𝐠1} → {𝑆2, 𝐠2}, 𝑧 and 𝑤 are the local isothermal 

coordinates on 𝑆1 and 𝑆2, respectively. We denote 𝑓(𝑧) = 𝑤 and 𝐠1 = 𝜎(𝑧)𝑑𝑧𝑑𝑧̅, 𝐠2 =

𝜌(𝑤)𝑑𝑤𝑑�̅�, where 𝑧, 𝑤 ∈ ℂ and 𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑢 + 𝑖𝑣, 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦, 𝑑𝑧̅ = 𝑑𝑥 −

𝑖𝑑𝑦. The harmonic energy of the map 𝑓 is defined as 

𝐸(𝑓) = ∫ 𝜌(𝑓(𝑧))(|𝑓𝑧|
2 + |𝑓�̅�|

2)
 

𝑆1
𝑑𝑥𝑑𝑦                               (4.2) 

where 𝑓𝑧 =
1

2
(
𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
), 𝑓�̅� =

1

2
(
𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
). 

If 𝑓 is a critical point of the harmonic energy, then it is called a harmonic map. The 

necessary condition for 𝑓 to be a harmonic map is the Euler-Lagrange equation 𝑓𝑧�̅� +

𝜌𝑓

𝜌
𝑓𝑧𝑓�̅� ≡ 0. The following theorem [362] shows that harmonic maps with hyperbolic 

metrics are beneficial for general surface registration study. 

Theorem 4.1 (Yau): Suppose 𝑓: {𝑆1, 𝐠1} → {𝑆2, 𝐠2} is a degree one harmonic map, 

furthermore, the Riemannian metric on 𝑆2 induces negative Gaussian curvature, then for 

each homotopy class, the harmonic map is unique and diffeomorphic. 
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Optimal Mass Transportation Map. Given a Riemannian manifold {𝑆, 𝐠}, let 𝜇 and 𝜈 

be two probability measures on 𝑆 with the same total mass, i.e., ∫ 𝜇𝑑𝑥
 

𝑆
= ∫ 𝜈𝑑𝑥

 

𝑆
, let 𝜙: 𝑆 →

𝑆 be a diffeomorphic map, then the pull-back measure induced by 𝜙 is 𝜙 𝜈 
∗ = det(𝐽) 𝜈 ∘

𝜙, where 𝐽 is the Jacobian matrix of 𝜙. If the pull-back measure satisfies 𝜙 𝜈 
∗ = 𝜇, then the 

map 𝜙 is measure preserving. The transportation cost of 𝜙 is defined as 

Cost(𝜙) = ∫ 𝑑𝐠
2 

𝑆
(𝑝, 𝜙(𝑝))𝜇(𝑝)𝑑𝑥                                     (4.3) 

where 𝑝 is a vertex on 𝑆 and 𝑑𝐠(𝑝, 𝜙(𝑝)) is the geodesic distance between 𝑝 and its image 

𝜙(𝑝) with respect to the metric 𝐠. The optimal mass transportation problem tries to find 

the measure preserving mapping, which uses minimal transportation cost (Eq. 4.3). 

Wasserstein Space and Wasserstein Distance. Given a Riemannian manifold {𝑆, 𝐠}, 

the Wasserstein space is defined as: 

Definition 4.1 (Wasserstein Space): Let 𝑃𝑛(𝑆) denote the space of all probability measures 

𝜇 on 𝑆 with finite 𝑛𝑡ℎ moment, where 𝑛 ≥ 1. Suppose there exists some point 𝑝0 ∈ 𝑆, such 

that ∫ 𝑑𝐠
𝑛(𝑝, 𝑝0)𝜇(𝑝)𝑑𝑥 < +∞

 

𝑆
. 

Given two measures 𝜇 and 𝜈 in 𝑃𝑛(𝑆), the Wasserstein distance between them is 

defined as the cost of the optimal mass transportation map 𝜙: 𝑆𝜇 → 𝑆𝜈. 

𝑊𝑛(𝜇, 𝜈) = inf
𝜙 𝜈 
∗ =𝜇

(∫ 𝑑𝐠
𝑛(𝑝, 𝜙(𝑝))𝜇(𝑝)𝑑𝑥

 

𝑆
)
1

𝑛                      (4.4) 

Theorem 4.2 [363]: The Wasserstein distance 𝑊𝑛 is a Riemannian metric of the Wasserstein 

space 𝑃𝑛(𝑆). 
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4.4 Computational Algorithms 

This section explains the computation framework of the hyperbolic Wasserstein 

distance. Genus-0 surfaces with multiple boundaries are used as examples to illustrate the 

algorithm. The pipeline is summarized in Algorithm 4.1 and illustrated in Fig. 4.1. 

 

Algorithm 4.1. Hyperbolic Wasserstein Distance Computation Pipeline. 

1. Slice the surface open along some delineated landmark curves to generate a genus-0 

surface with multiple boundaries (Fig. 4.1 (a)). 

2. Compute the hyperbolic uniformization metric of the surface with hyperbolic Ricci flow. 

3. Isometrically embed the surface onto the Poincaré disk and convert it to the Klein model 

(Fig. 4.1 (b)-(c)). 

4. With the Klein model, construct the initial mapping between the surface and a template 

surface with the constrained harmonic map. 

5. Improve the initial mapping with hyperbolic harmonic map to obtain a global 

diffeomorphic mapping on the Poincaré disk (Fig. 4.1 (d)). 

6. Compute the optimal mass transportation map between the surface and the template 

surface with the hyperbolic power Voronoi diagram, where the surface tensor-based 

morphometry of the hyperbolic harmonic map is used as a measure (Fig. 4.1 (e)). 

7. Compute the hyperbolic Wasserstein distance between the surface and the template 

surface. 
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Figure 4.1. Algorithm pipeline: (a) slice a surface open along landmark curves to generate 

a genus-0 surface with multiple boundaries; (b) embed the surface onto the Poincaré disk 

with its hyperbolic uniformization metric, which is computed by the hyperbolic Ricci flow; 

(c) covert the Poincaré disk to the Klein model to construct the initial map between the 

surface and a template; (d) compute the hyperbolic harmonic map by diffusing the initial 

map; (e) compute the optimal mass transportation map using hyperbolic power Voronoi 

diagram, with surface tensor-based morphometry as the probability measure, where the 

colored regions denote Voronoi cells. 
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4.4.1 Topology Optimization 

Surfaces with negative Euler characteristic numbers admit hyperbolic geometry. For 

closed surfaces with genus 𝑔 ≥ 2, their hyperbolic uniformization metric can be directly 

computed with hyperbolic Ricci flow. For genus-0 surfaces, we usually slice them open 

along multiple (3 or more) boundaries, as shown in Fig. 4.1 (a). This process is called 

topology optimization and is usually applied in medical imaging research [2, 4, 343], where 

landmark curve matchings are often enforced across subjects. 

 

4.4.2 Discrete Hyperbolic Ricci Flow 

The computational algorithm of discrete hyperbolic Ricci flow with gradient descent 

optimization is introduced in Sec. 3.2.4. This section describes the hyperbolic Ricci flow 

algorithm with Newton’s method [1, 2], which is more stable and efficient. 

Similar to Sec. 3.2.4, 𝑀(𝑉, 𝐸, 𝐹) denotes a triangular mesh, where 𝑉 is the vertex set, 

𝐸 is the edge set, and 𝐹 is the face set, respectively. The circle packing metric of 𝑀 is 

defined in the same form as Sec. 3.2.4, (Γ, 𝛷), where Γ = {𝛾𝑖}: 𝑉 → ℝ+ and 𝛷 =

{𝜙𝑖𝑗}: 𝐸 → [0,
𝜋

2
]. The gradient of the hyperbolic Ricci energy (Eq. 3.9) is ∇𝐸(𝑈) =

(
𝜕𝐸

𝜕𝑢1
,
𝜕𝐸

𝜕𝑢2
, … ,

𝜕𝐸

𝜕𝑢𝑛
) = (𝐾1, 𝐾2, … , 𝐾𝑛), where 𝑛 is the number of vertices. Then the elements 

in the Hessian matrix 𝐻 are ℎ𝑖𝑖 =
𝜕𝐾𝑖

𝜕𝑢𝑖
, ℎ𝑖𝑗 =

𝜕𝐾𝑖

𝜕𝑢𝑗
, 𝑖, 𝑗 = 1,2, … , 𝑛. Define 𝜏𝑖𝑗 =

sinh(𝛾𝑖) cosh(𝛾𝑗) + cosh(𝛾𝑖) sinh(𝛾𝑗) cos(𝜙𝑖𝑗), we have 

𝜕𝐾𝑖

𝜕𝑢𝑖
= sinh(𝛾𝑖) × ∑

𝐶𝐵−𝐷𝐴

𝐴√𝐴2−𝐵2
 
𝑓𝑖𝑗𝑘

,
𝜕𝐾𝑖

𝜕𝑢𝑗
= sinh(𝛾𝑗) × ∑

𝐸𝐵−𝐹𝐴

𝐴√𝐴2−𝐵2
 
𝑓𝑖𝑗𝑘

             (4.5) 

where  
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𝐴 = sinh(𝑙𝑘) sinh(𝑙𝑗) 

𝐵 = cosh(𝑙𝑘) cosh(𝑙𝑗) − cosh(𝑙𝑖) 

𝐶 = 𝜏𝑖𝑗 sinh(𝑙𝑗)
cosh(𝑙𝑘)

sinh(𝑙𝑘)
+ 𝜏𝑗𝑘 sinh(𝑙𝑘)

cosh(𝑙𝑗)

sinh(𝑙𝑗)
 

𝐷 = 𝜏𝑖𝑗 cosh(𝑙𝑗) + 𝜏𝑘𝑖 cosh(𝑙𝑘) 

𝐸 = 𝜏𝑗𝑖 sinh(𝑙𝑗)
cosh(𝑙𝑘)

sinh(𝑙𝑘)
 

𝐹 = 𝜏𝑗𝑖 cosh(𝑙𝑗) − 𝜏𝑗𝑘 

Algorithm 4.2 summarizes the hyperbolic Ricci ow method with Newton's optimization. 

 

Algorithm 4.2. Hyperbolic Ricci flow with Newton’s Optimization 

Input: triangular mesh 𝑀(𝑉, 𝐸, 𝐹). 

Output: hyperbolic uniformization metric of 𝑀. 

1. Compute the initial circle radius 𝛾𝑖 for each vertex 𝑣𝑖 and the weight 𝜙𝑖𝑗 for each edge 

𝑒𝑖𝑗. 

2. Set the target Gaussian curvature as zero. 

3. repeat 

(1) Compute the edge lengths with Eq. 3.6, face corner angles with Eq. 3.4, and the 

Gaussian curvature with Eq. 3.5. 

(2) For each vertex 𝑣𝑖, compute 
𝜕𝐾𝑖

𝜕𝑢𝑖
 and 

𝜕𝐾𝑖

𝜕𝑢𝑗
 with Eq. 4.5 and construct the Hessian 

matrix 𝐻. 

(3) Solve the linear system 𝐻Δ𝑈 = −2𝐾. 

(4) Update 𝑢𝑖 for vertex 𝑣𝑖 with 𝑢𝑖 ← 𝑢𝑖 + Δ𝑢𝑖. 
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(5) Update 𝛾𝑖 for vertex 𝑣𝑖 with Eq. 3.7. 

until the resulting Gaussian curvature of all vertices is less than a user-defined threshold. 

 

4.4.3 Initial Map Construction 

With the hyperbolic uniformization metric, the surface can be isometrically 

embedded onto the Poincaré disk, using the method in Sec. 3.2.5. Then a finite portion of 

the universal covering space of the surface is tiled with Fuchsian group generators, as 

shown in Fig. 4.1 (b). The computation of the Fuchsian transformations is introduced in 

Sec. 3.2.5. With the geodesic curve lifting algorithm (Sec. 3.2.6), the canonical Poincaré 

disk of the surface is obtained, where all boundaries become geodesics. We then convert 

the Poincaré disk to the Klein model (Eq. 3.10), which is a hyperbolic polygon with all the 

hyperbolic lines coincide with Euclidean straight lines, as shown in Fig. 4.1 (c). With the 

Klein model, the initial map between the surface and a template surface is constructed 

using the constrained harmonic map [2, 4, 343], as introduced in Sec. 3.2.6. As indicated 

in [362], if the target domain is convex, the planar harmonic maps are diffeomorphic. Thus, 

the constructed initial map is diffeomorphic. 

 

4.4.4 Hyperbolic Harmonic Map 

The initial map is then diffused to form the hyperbolic harmonic map [4]. Given two 

surfaces 𝑀 and 𝑁 with hyperbolic metrics 𝐠𝑀 and 𝐠𝑁, respectively, their local isothermal 

coordinates are denoted as 𝑧 and 𝑤. Suppose 𝑓:𝑀 → 𝑁 is the initial map, locally, it can be 

written as 𝑓(𝑧) = 𝑤. Then the diffusion process is given by the following gradient descent 

method 
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𝑑𝑓(𝑧,𝑡)

𝑑𝑡
= −[𝑓𝑧�̅� +

𝜌𝑤(𝑤)

𝜌(𝑤)
𝑓𝑧𝑓�̅�]                                      (4.6) 

where 𝜌(𝑤) =
1

(1−𝑤�̅�)2
 is the hyperbolic metric in the Poincaré disk. Algorithm 4.3 gives 

the detailed computation steps. A hyperbolic harmonic map example is illustrated in Fig. 

4.1 (d). 

 

Algorithm 4.3. Hyperbolic Harmonic Map 

1. Given two surfaces {𝑀, 𝐠𝑀} and {𝑁, 𝐠𝑁}, where 𝐠𝑀 and 𝐠𝑁 are hyperbolic metrics in 

the Poincaré disk. There is a one-to-one correspondence between these two surfaces, 

(𝑚𝑖 , 𝑛𝑖), where 𝑚𝑖 and 𝑛𝑖 are vertices on 𝑀 and 𝑁, respectively. 

2. For each pair of corresponding vertices 𝑚𝑖 ∈ 𝑀 and 𝑛𝑖 ∈ 𝑁, embed their one-ring 

neighboring vertices onto the Poincaré disk. Let 𝑧𝑖 and 𝑤𝑖 = 𝑓(𝑧𝑖) denote the 2D 

coordinates of 𝑚𝑖 and 𝑛𝑖 in the Poincaré disk, respectively. 

3. Compute 
𝑑𝑤𝑖(𝑧𝑖,𝑡)

𝑑𝑡
 with Eq. 4.6. 

4. Update 𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜖
𝑑𝑤𝑖(𝑧𝑖,𝑡)

𝑑𝑡
. 

5. Compute the new 3D coordinates of 𝑛𝑖 with the new 𝑤𝑖. 

6. Repeat steps 2 to 5, until 
𝑑𝑤𝑖(𝑧𝑖,𝑡)

𝑑𝑡
 is less than a user-specified threshold. 

 

In this work, surface tensor-based morphometry (TBM) [30, 32] of the hyperbolic 

harmonic map is used to define the probability measure on the Poincaré disk. The 

computation of the TBM is detailed in Sec. 3.2.7. 
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4.4.5 Optimal Mass Transportation Map and Hyperbolic Wasserstein Distance 

As shown in [50, 340], the optimal mass transportation map between two probability 

measures that are defined on surfaces can be computed by the power Voronoi diagram 

[364]. Here we use the hyperbolic space as the canonical space and TBM as the measure 

to compute the power Voronoi diagram on the Poincaré disk. 

Given a surface 𝑆 with the Riemannian metric 𝐠, let 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} be a set of 𝑛 

discrete points on 𝑆 and 𝒘 = {𝑤1, 𝑤2, … , 𝑤𝑛} be the weights defined on each point. 

Definition 4.2 (Power Voronoi Diagram): Given a point set 𝑃 and its corresponding weight 

vector 𝒘, the power Voronoi diagram induced by (𝑃,𝒘) is a cell decomposition of the 

surface {𝑆, 𝐠}, such that the cell spanned by 𝑝𝑖 is given by 

Cell𝑖 = {𝑥 ∈ 𝑆|𝑑𝐠
2(𝑥, 𝑝𝑖) − 𝑤𝑖 ≤ 𝑑𝐠

2(𝑥, 𝑝𝑗) − 𝑤𝑗}, 𝑗 = 1,2, … , 𝑛 and 𝑖 ≠ 𝑗      (4.7) 

In this work, with the Poincaré disk model, the geodesic distance 𝑑𝐠 between two points is 

defined by Eq. 4.1. The term 𝑑𝐠
2(𝑥, 𝑝𝑖) − 𝑤𝑖 is called the power distance between 𝑥 and 𝑝𝑖. 

Figure 4.2 (a) shows the power distance on the Euclidean plane. Figure 4.2 (b) illustrates 

the power Voronoi diagram on the Poincaré disk. 

Theorem 4.3: Given a Riemannian manifold {𝑆, 𝐠}, 𝜇 and 𝜈 represent two probability 

measures defined on 𝑆 and they have the same total mass. 𝜈 is a Dirac measure, with 

discrete point set support 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} and 𝜈(𝑝𝑖) = 𝜈𝑖. Then there exists a weight 

vector 𝒘 = {𝑤1, 𝑤2, … , 𝑤𝑛}, unique up to a constant, such that the power Voronoi diagram 

induced by (𝑃,𝒘) gives the optimal mass transportation map between 𝜇 and 𝜈: 

𝜓: Cell𝑖 → 𝑝𝑖 , 𝑖 = 1,2, … , 𝑛 

and 
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∫ 𝜇(𝑥)𝑑𝑥
 

Cell𝑖

= 𝜈𝑖 , ∀𝑖 ∈ [1, … , 𝑛] 

The proof of Theorem 4.3 can be found in [50]. 

 

Figure 4.2. Illustration of the power distance between two points on the Euclidean plane 

and the power Voronoi diagram on the Poincaré disk. 

 

The optimal weight for the power Voronoi diagram that induces the optimal mass 

transportation map can be computed by 

𝑑𝑤𝑖

𝑑𝑡
= 𝜈𝑖 − ∫ 𝜇(𝑥)

 

Cell𝑖
𝑑𝑥, 𝑥 ∈ 𝑆                               (4.8) 

Algorithm 4.4 gives the details about the optimal mass transportation map 

computation with hyperbolic metric. Figure 4.1 (e) illustrates the hyperbolic power 

Voronoi diagram that results in the optimal mass transportation map between the cortical 

surface in Fig. 4.1 (a) and a template cortical surface. In Fig. 4.1 (e), the black points form 

the discrete point set 𝑃. The initial hyperbolic geodesic Voronoi diagram is computed by 

the method in [365]. 
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Algorithm 4.4. Optimal Mass Transportation Map 

1. Given a triangular mesh 𝑀 with hyperbolic metric 𝐠 on the Poincaré disk, define a 

measure 𝜇 and a Dirac measure (𝑃, 𝜈) = {(𝑝𝑖 , 𝜈𝑖)}, 𝑖 = 1, 2, … , 𝑛, ∫ 𝜇(𝑥)𝑑𝑥
 

𝑀
= ∑ 𝜈𝑖

𝑛
𝑖=1 . 

2. For each 𝑝𝑖 ∈ 𝑃, compute it geodesic distance to every other vertex on 𝑀 with Eq. 4.1. 

3. For each vertex 𝑣𝑖 ∈ 𝑀, determine which Voronoi cell it belongs to with Eq. 4.7. 

4. For each 𝑝𝑖 ∈ 𝑃, compute the total mass of the measures in the cell spanned by it, 𝜇𝑖 =

∫ 𝜇(𝑥)𝑑𝑥
 

Cell𝑖
. 

5. Update each weight by 𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 + 𝜖(𝜈𝑖 − 𝜇𝑖).  

6. Repeat steps 3 to 5, until |𝜈𝑖 − 𝜇𝑖|, ∀𝑖, is less than a user-specified threshold. 

 

The cost of the optimal mass transportation map computed by Algorithm 4.4 gives 

the Wasserstein distance between two measures. With the hyperbolic metric, we define the 

hyperbolic Wasserstein distance between two measures that are defined on the Poincaré 

disk by 

Wasserstein(𝜇, 𝜈) = ∑ ∫ (tanh−1 |
𝑥−𝑝𝑖

1−𝑥𝑝𝑖̅̅̅
|)
2
𝜇(𝑥)𝑑𝑥

 

Cell𝑖

𝑛
𝑖=1                (4.9) 

 

4.5 Experimental Results 

4.5.1 Human Facial Expression Analysis 

In the first experiment, the proposed method was applied to study 3D human face 

expression. Human facial expression modeling is an interesting problem studied for a long 

time [366]. The goal is to discriminate and describe different human facial expressions. It 

is useful for face recognition and dynamical facial animation research. 
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Three face meshes were selected from the BU-3DFE Database [337], including an 

angry face (Fig. 4.3 (a)), a happy face (Fig. 4.3 (b)), and a happier face (Fig. 4.3 (c)), which 

all belong to a randomly selected sample. On each face surface, two eyes and the mouth 

were removed along their boundaries, a common approach used in 3D face modeling [1]. 

The resulting facial surface became a genus-0 surface with four open boundaries. The 

happy face was used as the template surface to compute the hyperbolic harmonic map and 

the optimal mass transportation map. First, we ran hyperbolic Ricci flow on the three 

surfaces and isometrically embedded them on the Poincaré disk, as shown in Fig. 4.3 (d-

f). Then, the angry and happier faces were registered to the happy face with the hyperbolic 

harmonic map (Fig. 4.3 (g)). Finally, with the TBM measures, the optimal mass 

transportation maps were constructed between both faces and the template face with the 

hyperbolic power Voronoi diagram (Fig. 4.3 (h)). Later, the hyperbolic Wasserstein 

distances between the angry face and the template face, between the happier face and the 

template face, were computed as the costs of respective optimal mass transportation maps. 

Intuitively, the happier face is more similar to the template, thus it should have smaller 

Wasserstein distance. The experimental results verify our intuition, where the hyperbolic 

Wasserstein distances for the angry face and happier faces are 25.94 and 11.75, 

respectively. Although multi-subject studies are clearly necessary, this experiment 

demonstrates that the hyperbolic Wasserstein distance may have the potential to quantify 

and measure human expression changes. 
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Figure 4.3. Experimental results of human facial expression analysis with hyperbolic 

Wasserstein distance. 
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4.5.2. Longitudinal Cortical Morphometry Analysis 

This experiment applied the proposed algorithm to analyze cortical surface 

morphology in normal aging. Brain atrophy seems to be inevitable for elderly people [86]. 

However, a simple, non-invasive brain imaging biomarker would be beneficial to quantify 

brain morphometry change patterns and identify abnormal changes potentially for early 

interventions. 

An elderly heathy subject (85-year old male) was randomly selected from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) [367]. The longitudinal structural 

magnetic resonance images (MRIs) at three time points, the baseline, 12 months, and 24 

months after screening, were studied. The structural MRIs were preprocessed using 

FreeSurfer [26] to reconstruct the cortical surfaces. Only the left hemispheric cerebral 

cortices were used here. Six major brain landmark curves were automatically labeled on 

each cortical surface with the Caret software package [55], including the Central Sulcus, 

Anterior Half of the Superior Temporal Gyrus, Sylvian Fissure, Calcarine Sulcus, Medial 

Wall Ventral Segment, and Medial Wall Dorsal Segment, as shown in Fig. 4.4. 

After we cut the cortical surfaces along the delineated landmark curves, they became 

genus-0 surfaces with six open boundaries. The baseline cortical surface was used as the 

template and the same analysis as in Sec. 4.5.1 was done. The hyperbolic power Voronoi 

diagrams for the 12-month and 24-month cortical surfaces are shown in Fig. 4.5. The 

hyperbolic Wasserstein distances between the template surface and the 12-month and 24-

month surfaces are 132.28 and 201.70, respectively, revealing the cortex changing process 

along with normal aging [368]. This shows that the proposed method may serve as an 

imaging index to study the longitudinal brain morphometry. 
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Figure 4.4. Landmark curves on a left cortical surface, which are automatically labeled by 

Caret [55], showing in two different views. 

 

 

Figure 4.5. Optimal mass transportation maps between the 12-month, 24-month cortical 

surfaces and baseline surface with hyperbolic power Voronoi diagram. 
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4.5.3 Cortical Shape Classification 

The hyperbolic Wasserstein distance was also applied to study the classification 

problem with cortical surfaces between healthy control subjects and AD patients. Thirty 

AD patients and thirty healthy controls were randomly selected from the ADNI baseline 

dataset. The inclusive rules were based on segmentation and reconstruction result quality 

of the FreeSurfer package [26]. Only left hemispheric cortices were studied here, as some 

prior research, e.g. [267], has identified a trend that AD related brain atrophy may starts 

from left side and subsequently extends to the right. The left cortical surface of a healthy 

control subject, who is not in our 60 studied subject dataset, was randomly selected as the 

template surface. Similar to Sec. 4.5.2, Caret was used to automatically identify six 

landmark curves on each cortical surface. After cutting open the cortical surfaces along the 

landmark curves, we modeled each left hemispheric cortical surface as a genus-0 surface 

with six open boundaries and computed the hyperbolic Wasserstein distance between each 

cortical surface and the common template surface. 

With the computed hyperbolic Wasserstein distances, the complex tree in the 

Statistics and Machine Learning Toolbox of MATLAB was used as a classifier. With a 5-

fold cross validation, the classification rate of the proposed method is 76.7%. As a 

comparison, we also computed two other standard cortical surface shape features, the 

cortical surface area and cortical surface volume. The same classifier was applied on the 

two measurements with 5-fold cross validation. Their results are summarized in Table 4.1. 

It can be noticed that the new method significantly outperformed them. Generally speaking, 

the discrimination of the AD progression and normal aging is challenging, but has 

numerous benefits to help design early interventions. Whether or not the new approach 
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provides a more accurate way to quantify the cortical changes than those afforded by other 

criteria (such as SPHARM [161], radial distance [369], or Teichmüller shape space 

coordinates [44-46]) requires careful validation for each application. If statistical power is 

increased in shape feature representation, this would support the use of 3D modeling 

techniques in advanced brain imaging research. Meanwhile, this work may build a 

theoretical foundation to extend other shape space work to general surfaces to further 

improve AD imaging biomarkers for preclinical AD research. 

Method Classification Rate 

Hyperbolic Wasserstein distance 76.7% 

Surface area 41.7% 

Surface volume 51.7% 

Table 4.1. Classification rate comparison of the hyperbolic Wasserstein distance and two 

other cortical surface shape features, the cortical surface area and cortical surface volume. 

The results demonstrated a higher accuracy rate achieved by the proposed method. 

 

4.6 Conclusion and Future Work 

This work introduced a novel algorithm to compute the Wasserstein distance between 

general surfaces with hyperbolic metric. With hyperbolic Ricci flow, hyperbolic harmonic 

map, surface TBM, and hyperbolic power Voronoi diagram, the hyperbolic Wasserstein 

distance was computed. This method generalized the optimal mass transportation and 

Wasserstein space work to general surfaces.  In the experiments, the algorithm was applied 

to study human facial expression changes, cortical longitudinal morphometry and cortical 

shape classification in AD.  
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In future, the new algorithm should be further validated with more 3D brain imaging 

data and its potential to be generalized to other shape space work needs to be explored. 

Another possible future work is to improve the performance of the algorithm by 

considering other probability measures for the optimal mass transportation map, such as 

the multivariate tensor-based morphometry (mTBM) [70], as introduced in Sec. 2.2.5. 
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CHAPTER 5 

SUMMARY 

 

This dissertation presented three novel surface-based shape analysis methods based 

on mathematical theories and computational algorithms from conformal geometry. The 

proposed algorithms have been applied to study brain shape morphometry associated with 

Alzheimer’s disease (AD). 

With holomorphic 1-form based surface conformal parameterization [27, 79], the 

proposed surface fluid registration algorithm extended the inverse consistent image fluid 

registration method to match general surfaces. Compared to prior work [28], application of 

conformal parameterization in the proposed method resulted in a concise surface 

registration formula, which is easy to understand and implement. Furthermore, as the area 

distortion correction term in the Navier-Stokes equation was reduced to a scalar function, 

which can be evaluated before the registration, the new method is also stable and efficient. 

Integration of the multivariate tensor-based morphometry (mTBM) [69, 80] in the 

proposed framework may boost the statistical power to detect subtle changes in the 

surfaces, as mTBM is able to retain full information in the deformation tensor. The 

algorithm was applied to study the effects of AD symptoms and Apolipoprotein E 𝜖4 

(ApoE4) gene on hippocampal atrophy, with data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) baseline dataset. The new method outperformed two other 

widely applied subcortical shape analysis tools, FIRST and SPHARM [161], in group 

comparisons between different diagnostic groups. Also, the ApoE4 genetic influence on 

hippocampal atrophy was found, for the first time, in the non-demented ADNI baseline 
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cohort, which consists of mild cognitive impairment (MCI) patients and healthy people. 

The examples of matching various hippocampal surfaces are relevant for mapping how 

degenerative diseases affect the brain, as well as building statistical shape models to detect 

the anatomical effects of disease, aging, or development. The hippocampus was used as 

specific examples, but the method is general and is applicable in principle to cortical and 

other subcortical surfaces. Furthermore, the surface-based fluid registration system 

automated the matching of surfaces by computing a correspondence field guided by the 

differences of features between the surfaces. This is a natural idea, in that it uses conformal 

parameterization to transform a surface matching problem into an image registration 

problem. Whether or not this approach provides a more relevant correspondence than those 

afforded by other criteria (mutual information, neural nets, or hand landmarking) requires 

careful validation for each application. Optimal correspondence depends more on utility 

for a particular application than on anatomical homology. Because different 

correspondence principles produce different shape models, a systematic comparison of 

their efficacy for detecting group differences and genetic influence in brain structures is 

necessary. 

Surface conformal parameterization with holomorphic 1-forms is linear and stable. 

However, its major limitation is that it generates singularity points and the number of 

singularity points equals the absolute value of the Euler number of the surface [40]. There 

are no curvilinear coordinates defined on the singularity points. When using the resulting 

parameter domain for surface registration, the surfaces have to be segmented into pieces 

with respect to the singularity points and separate pieces are registered independently [79]. 

Thus, although surface fluid registration algorithm works in principle for a wide range of 
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cortical or subcortical surfaces, resulting registration may not be meaningful in the 

anatomical sense. In brain imaging study, surfaces of many brain structures have non-zero, 

particularly, negative Euler numbers, such as the lateral ventricles and cortical surfaces 

with multiple landmark curves. For these surfaces, conformal parameterization with 

hyperbolic Ricci flow [1] provides a better solution. The resulting parameterization has 

minimal angle distortion and no singularities. To start, a surface registration algorithm for 

ventricular morphometry study was proposed based on hyperbolic Ricci flow and tensor-

based morphometry (TBM) [32]. The approach applied the hyperbolic Ricci flow method 

to compute a singularity-free ventricular surface conformal parameterization onto the 

hyperbolic Poincaré disk. Through geodesic curve lifting and the conversion to the Klein 

model, a diffeomorphic surface registration with consistent boundary matching conditions 

was constructed. Furthermore, the TBM was computed from the well-organized conformal 

grids and used to capture any possible subtle surface deformations. The algorithm was 

applied to our ongoing work on MCI conversion prediction with the ADNI baseline dataset. 

Experimental results demonstrated that the proposed method achieved good correlation 

with cognition and other AD biomarker such as FDG-PET [87], which may help predict 

longitudinal AD conversion by capturing subtle ventricular morphometric differences from 

the baseline image analysis. 

Shape space theory has been extensively applied in computer vision and medical 

imaging. Wasserstein space is composed of all probability measures that are defined on a 

Riemannian manifold. Wasserstein distance defines a Riemannian metric for the 

Wasserstein space and it can intrinsically measure the similarities between different shapes. 

The Wasserstein distance is continuous, accurate, and robust to image noise, thus it may 
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provide a succinct and refined descriptor for 3D shape indexing and classification. 

However, existing algorithms for Wasserstein distance computation only work with 2D 

images [48, 49, 342] or genus-0 closed 3D surfaces [50], which greatly limit its 

applications. This dissertation presents a novel algorithm to compute Wasserstein distance 

between general topological surfaces. Briefly, with hyperbolic Ricci flow [1] and 

hyperbolic harmonic map [4], a global diffeomorphic registration can be established 

between any two general surfaces that are homotopic to each other. Then the TBM of the 

registration naturally defines a probability measure on the template surface. Using the 

hyperbolic Poincaré disk of the template surface as the canonical parameter space, the 

Wasserstein distance between two TBM measures can be computed by the optimal mass 

transportation map [88, 89], which is also extended to the hyperbolic space. The new 

Wasserstein distance is called hyperbolic Wasserstein distance. The algorithm was applied 

to study cortical shape morphometry in AD, with a set of cortical surfaces from the ADNI 

baseline dataset. Experimental results demonstrated that the proposed method 

outperformed other standard shape measures in the AD vs. healthy control classification 

study, supporting its potential to be used as an effective shape index for brain imaging 

study. 

Overall, the algorithms in this dissertation helped solve a broad range of problems in 

shape analysis of brain imaging data. Due to the usage of surface conformal geometry, 

these algorithms are stable, efficient, and general. They are complimentary to many 

existing shape analysis methods and may provide new opportunities for many future 

directions. 
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DERIVATION OF EQ. 2.5 
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With conformal parameterization, the Riemann metric is defined as: 

[gij] = [
g11 g12
g21 g22

 ] = [
λ 0
0 λ

] 

The inverse of [gij] is: 

[gij] = [
g11 g12

g21 g22
] = [

1/λ 0
0 1/λ

] 

The differential operators that appear in Eq. 2.4 are expressed in general coordinates as 

[141, 142]. 

Gradient: 

∇Sφ = g
ij
∂φ

∂xj
= gi1

∂φ

∂x1
+ gi2

∂φ

∂x2
=

[
 
 
 g11

∂φ

∂x1
+ g12

∂φ

∂x2

g21
∂φ

∂x1
+ g22

∂φ

∂x2]
 
 
 

 

Thus the gradient operator ∇S can be written as: 

∇S=

[
 
 
 g11

∂

∂x1
+ g12

∂

∂x2

g21
∂

∂x1
+ g22

∂

∂x2]
 
 
 

 

Divergence: 

∇S ∙ u =  
1

√g

∂

∂xi
(√gui) =

1

√g
(
∂

∂x1
(√gu1) +

∂

∂x2
(√gu2)) 

where u = [
u1
u2
] and √g = √det([gij]) = √g11g22 − g12g21. 

The Laplacian can be computed by gradient and divergence as: 

ΔSφ = ∇S ∙ (∇Sφ)

=
1

√g
(
∂

∂x1
(√gg11

∂φ

∂x1
+√gg12

∂φ

∂x2
) +

∂

∂x2
(√gg21

∂φ

∂x1
+√gg22

∂φ

∂x2
)) 
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Given conformal parameterization ϕ: S → ℝ2, where √g = λ, g11 = g22 =
1

λ
, g12 = g21 =

0, we have 

ΔSv =
1

λ
Δv 

For a velocity field v = [
v1
v2
], ∇S(∇S ∙ v) = ∇ (g

11 ∂v1

∂x1
+ g12

∂v1

∂x2
+ g21

∂v2

∂x1
+ g22

∂v2

∂x2
) =

1

λ
∇(∇ ∙ v). 
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APPENDIX B  

EXPERIMENTAL DETAILS WITH SPHARM 
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In details, three commands from SPHARM system were used in sequence: 

(1) SegPostProcess: This command can be used to extract a single label or a label 

range from the input image, to resample the input image into isotropic resolution, and to 

ensure the spherical topology of the substructure represented by the image label. Styner et 

al. [161] claimed that the input to next command, GenParaMesh has to be of isotropic 

resolution and a relatively fine resolution is preferred and suggested an isotropic resolution 

of 0.5𝑚𝑚 × 0.5𝑚𝑚 × 0.5𝑚𝑚 for hippocampi. However, in the experiment, if we 

resample the binary images obtained by FIRST with the command SegPostProcess, about 

20% of the subjects will fail the following processing. As a result, before running the 

command, the binary images were resampled into an isotropic resolution of 1𝑚𝑚 ×

1𝑚𝑚 × 1𝑚𝑚 with the linear registration given by FLIRT. Thus, in the comparison 

experiment, the SegPostProcess command was used as a format conversion tool, i.e., to 

convert the binary analyze images into a format that can be read by the subsequent 

commands. The command was run by the following example command line on each 

isotropic image: 

SegPostProcess Label.hdr –o Label_PP.hdr –label 1 

where Label.hdr is the input and Label_PP.hdr is the output. 

(2) GenParaMesh: This command extracts the surface of the input label segmentation 

and maps the surface to a sphere with the area-preserving, distortion-minimizing spherical 

mapping [161]. The command was run by the following example command line: 

GenParaMesh Label_PP.hdr –iter 1000 –label 1 

This command will output two surfaces: Label_PP_surf.meta is the surface and 

Label_PP_para.meta is the spherical parameterization.  
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(3) ParaToSPHARMMesh: This command computes the SPHARM-PDM 

representation and resolves issues of correspondence and alignment. The command was 

run by the following example command line: 

ParaToSPHARMMesh Label_PP_surf.meta Label_PP_para.meta –subdivLevel 10 –

spharmDegree 12     –flipTemplate template.coef –regTemplate template.meta 

The parameters subdivLevel and spharmDegree were set as recommended for 

hippocampus [161]. The flip template was chosen as the same template with the inverse 

consistent fluid registration and was computed by the above command without providing 

a flip template. The output of the command will be registered surfaces. 


