
Perceptual-Based Locally Adaptive Noise and Blur Detection

by

Tong Zhu

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved February 2016 by the
Graduate Supervisory Committee:

Lina Karam, Chair
Baoxin Li

Daniel Bliss
Soe Myint

ARIZONA STATE UNIVERSITY

May 2016



ABSTRACT

The quality of real-world visual content is typically impaired by many factors including

image noise and blur. Detecting and analyzing these impairments are important steps for

multiple computer vision tasks. This work focuses on perceptual-based locally adaptive

noise and blur detection and their application to image restoration.

In the context of noise detection, this work proposes perceptual-based full-reference

and no-reference objective image quality metrics by integrating perceptually weighted lo-

cal noise into a probability summation model. Results are reported on both the LIVE and

TID2008 databases. The proposed metrics achieve consistently a good performance across

noise types and across databases as compared to many of the best very recent quality met-

rics. The proposed metrics are able to predict with high accuracy the relative amount of

perceived noise in images of different content.

In the context of blur detection, existing approaches are either computationally costly

or cannot perform reliably when dealing with the spatially-varying nature of the defocus

blur. In addition, many existing approaches do not take human perception into account.

This work proposes a blur detection algorithm that is capable of detecting and quantifying

the level of spatially-varying blur by integrating directional edge spread calculation, prob-

ability of blur detection and local probability summation. The proposed method generates

a blur map indicating the relative amount of perceived local blurriness. In order to de-

tect the flat/near flat regions that do not contribute to perceivable blur, a perceptual model

based on the Just Noticeable Difference (JND) is further integrated in the proposed blur

detection algorithm to generate perceptually significant blur maps. We compare our pro-

posed method with six other state-of-the-art blur detection methods. Experimental results

show that the proposed method performs the best both visually and quantitatively.

This work further investigates the application of the proposed blur detection methods

to image deblurring. Two selective perceptual-based image deblurring frameworks are
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proposed, to improve the image deblurring results and to reduce the restoration artifacts.

In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to

achieve better reconstructed results for the edge regions.
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Chapter 1

INTRODUCTION

The quality of real-world visual content is typically affected and/or impaired by many

factors including but not limited to acquisition, compression, transmission, protection and

reproduction. Detecting and analyzing these impairments are critically important for mul-

tiple computer vision tasks such as perceptual image quality assessment, image restoration,

object recognition and image understanding.

Among all of these impairments, image noise and blur are among the most common

and most important ones. Image noise manifests itself as a random variation of image in-

tensity, visible as grain in film and pixel-level intensity variations in digital images. Types

of noise include but are not limited to imaging sensor noise, quantization noise due to

compression, channel noise during transmission. As an example, imaging sensor noise

can arise from the photon nature of light and the thermal energy of heat inside image

sensors [1]. Image blurriness/sharpness is typically affected by the camera lens (e.g. man-

ufacturing quality, focal length, aperture, and distance from the image center), the imaging

sensor (e.g., sensor size and density), camera/object motion, atmospheric disturbances and

focus accuracy.

It is of great importance to detect and quantify the level of perceived image noise

and blur and evaluate the perceived impairment. This information can be used for image

capturing system characterization, and for improving the performance of image processing

and computer vision systems including but not limited to restoration, recognition, motion

analysis and 3D scene reconstruction.

Furthermore, many image processing algorithms such as image denoising and de-

blurring are applied throughout the image processing pipeline in consumer electronics.

This increases the need for reliable perceptually-motivated image noise and blur detection

methods. On one hand, these image noise and blur detection methods can be used to evalu-
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ate the performance of image denoising/deblurring algorithms in terms of resulting visual

quality or as stopping criteria within these algorithms when a desired visual quality is met.

On the other hand, they can be incorporated into image denoising/deblurring algorithms,

in order to improve the performance of these algorithms in terms of visual quality and/or

computational cost.

1.1 Problem Statement

Noisiness and blurriness are two key distortions in multiple applications, and typically

there is a tradeoff to balance between noisiness and blurriness. For example, in soft-

thresholding for image denoising [2], the image could be blurry when the threshold is

high, while the image could remain noisy when the threshold is low. Also, in Wiener-

based super-resolution [3], too much regularization will result in less noise at the expense

of more blur. The reconstructed image could be blurry when the auto-correlation func-

tion is modeled to be too flat, while the reconstructed image could be noisy when the

auto-correlation function is modeled to be too sharp. No-reference image sharpness/blur

metrics were discussed in [4, 5]. However, these image sharpness/blur metrics typically

fail in the presence of noise. The sharpness metrics may indicate an increase in sharp-

ness when noise increases. A no-reference noise-immune image sharpness metric was

proposed in [6]. Furthermore, all the edge-based sharpness metrics can be easily applied

in the wavelet domain as described in [6] to provide resilience to noise. Still, these meth-

ods were focused on blur assessment and lack the ability to assess the impairment due

to noise. For visual quality assessment of noisiness, many full-reference metrics are pre-

sented in [7], such as peak signal-to-noise ratio (PSNR), multi-scale structural similar-

ity (MS-SSIM) [8], noise quality measure (NQM) [9], and information fidelity criterion

(IFC) [10]. However, these full-reference metrics require the reference image for calcula-

tion. There is a need to develop a no-reference noisiness quality metric. Furthermore, such

noisiness metric could be used to provide a better prediction of image quality for several
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applications including super-resolution, image restoration, and other multiply distorted

images. A global estimate of image noise variance was used as a no-reference noisiness

metric in [11]. The histogram of the local noise variances is used to derive the global

estimate. However, the locally perceived visibility of noise is not considered. Similarly

in [12], noisiness is expressed by the sum of estimated noise amplitudes and the ratio of

noise pixels. Both the metrics of [11, 12] do not account for the effects of locally varying

noise on the perceived noise impairment and they do not exploit the characteristics of the

Human Vision System (HVS). The HVS characteristics should be taken into consideration

since the visual impairment due to the same noise could be perceived differently based on

the local characteristics of the visual content. This problem is discussed and tackled in

detail in Chapter 3.

In recent years many approaches were proposed to address the issue of blur detec-

tion. When assuming the blur is spatially uniform [13–17], one can estimate the blur

from global evidence across the entire image plane. Fergus et al. [18] adopt a variational

Bayesian framework for the kernel estimation task. Levin et al. [19] propose to first esti-

mate the blur kernel as that which is most likely under a distribution of sharp images, for

uniform blur detection. Additional work includes Cho and Lee [20], Xu and Jia [21], and

Krishnan et al. [22]. Blur caused by camera/object motion or defocus often varies spatially

in an image. Despite the recent advances in uniform-blur estimation, estimating spatially-

varying blur from a single image proved hard to accomplish reliably [23] and efficiently,

due to the fact that the spatially-varying blur must be inferred locally and using much

fewer local observations. Chakrabarti et al. [23] combined a local sub-band decomposi-

tion and a Gaussian Scale Mixture based prior model to analyze spatially-varying blur. Liu

et al. [24] adopt features such as local power spectrum slope, saturation, local autocorrela-

tion, to name a few. Lin et al. [25] use global and local gradient statistics to estimate local

blur. Wang et al. [26] employ morphological operations in the gradient domain to segment

the blur region. Couzinie et al. [27] estimate the local blur using logistic regression. Then
3



the local blur is combined with smoothness constraints in an energy minimization frame-

work. Shi et al. [28] propose to use the kurtosis and a heavy detailedness measure of the

gradient histogram in a multi-scale scheme. However Shi et al. [28] make use of the Ex-

pectation Maximization (EM) and Gaussian Mixture Model (GMM) in every local block

to analyze the gradient histogram span, which greatly increases the computational cost.

Some other approaches are also used such as singular value decomposition [29], edge pat-

tern fitting [30], local mean square error [31] and harmonic variance [32]. More recently,

Shi et al. [33] proposed a blur characterization method based on sparse representation and

image decomposition. However, the method of Shi et al. [33] does not consider humans’

blur sensitivity to regions of different contrast [4].

Still, existing approaches are either computationally costly or cannot perform reliably

when dealing with the spatially-varying nature of the defocus. In addition, many existing

approaches do not take human perception into account, but rather they focus on tuning their

parameters and precision based on a binary sharp/blur mask, which lacks the information

about the level of perceived blur. Furthermore, there exist perceptually flat/less significant

regions in the image that provide very limited cue to blur perception. Existing techniques

do not distinguish these regions from the actually blurred areas and include these in their

resulting blur mask. In Chapter 4 of this thesis, some of these challenges are discussed and

novel solutions are proposed for efficient perceptual-based spatially varying blur detection.

Image deblurring is performed to recover a sharp version of a blurred input image. It

is a long-standing challenging problem in the field of image processing, computational

photography and computer vision. On one hand, image deblurring is useful to recover a

high visual-quality image, which is of great importance in the field of consumer electron-

ics and medical imaging applications. On the other hand, image deblurring can be used

to overcome camera limitations, in order to make imaging devices more affordable, com-

pact and portable. Image deblurring methods could be categorized into non-blind image

deblurring and blind image deblurring. For blind image deblurring, both the blur kernel
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and desired sharp image are unknown. However, many of the existing image deblurring

methods [19,22,34,35] assume that the blur kernel is fixed for the entire image. In real-life

applications, the defocus blur often varies spatially in an image, due to the fact that objects

could be at different depths away from the lens. Blind deconvolution for spatially-varying

blurred images is a challenging task, as compared with non-blind deconvolution or non-

varying blur cases. Many of existing blind deblurring methods are either computationally

costly and/or cannot perform reliably when dealing with spatially-varying blurred images.

These methods could potentially be applied to local image patches; still they generally do

not take human perception into account. Certain regions of the image may not contain

perceivable blur, thus no deconvolution is needed in these regions. The application of the

proposed spatially-varying blur detection methods can benefit the image blind deconvolu-

tion process by applying selectively the restoration to only those regions with perceivable

blur, which may result in a reduction of restoration artifacts and a possible reduction in

computational cost. Selective perceptual-based deblurring will be discussed in Chapter 5.

Super-resolution (SR) is widely used to increase the image resolution by fusing several

low-resolution (LR) images in the same scene in order to overcome sensor limitations and

image impairments. SR algorithms can be divided into several categories. Maximum A

Posteriori (MAP) based [36] regularized norm-minimization solutions can converge to a

high quality result but are iterative and exhibit a relatively high computational complexity.

MAP-based SR methods have the advantage of being able to include prior knowledge into

the observation model. However, these methods are sensitive to the assumed statistical

models for the data and noise. To reduce the computational complexity and enhance the

robustness to noise, a Fusion-Restoration method [37] was proposed using l1-norm min-

imization and a robust regularization based on a bilateral prior. However, this method is

still iterative and computationally intensive due to the high dimensionality of the problem.

Karam et al. [38] exploit human perception resulting in significant reduction in computa-

tions for iterative SR approaches and an improved SR visual quality. Another faster non-
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iterative Fusion-Interpolation (FI)-based SR approach [3] requires less computation but

suffers from a limited reconstruction quality. It is found that the FI-based SR approach [3]

does not result in a satisfactory reconstruction of the strong edges in the image, and results

in a significantly blurred reconstruction of weak edges. This work discusses in Chapter

6 improvements to the FI-based SR approach in order to achieve a higher reconstruction

quality without significantly increasing the computational complexity.

1.2 Contributions

In Chapter 3, a full-reference (FR) image noisiness metric that integrates perceptually

weighted local noise into a probability summation model is presented. This proposed

metric can predict the perceptual noisiness in images with high accuracy. In addition, a

no-reference (NR) objective noisiness metric is derived based on local noise standard de-

viation, local perceptual weighting, and probability summation. The experimental results

show that the proposed FR and NR metrics show better and more consistent performance

across databases and noise types, when compared with several very recent FR and NR

image quality metrics.

In Chapter 4, a spatially-varying blur detection and quantification algorithm is pro-

posed. The proposed algorithm is capable of detecting and quantifying the level of spatially-

varying blur by integrating directional edge spread calculation, probability of blur detec-

tion and local probability summation. The proposed method generates a blur map indicat-

ing the relative amount of perceived local blurriness. In order to detect the flat/near flat

regions that do not contribute to perceivable blur, a perceptual model based on the Just

Noticeable Difference (JND) is further integrated into the proposed blur detection algo-

rithm to generate perceptually significant blur maps. The proposed methods are compared

with six other state-of-the-art blur detection methods. Experimental results show that the

proposed methods achieve a competitive performance both visually and quantitatively in

terms of precision-recall.
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In Chapter 5, this work further investigates the application of the proposed spatially-

varying blur detection method in image deblurring. Two selective perceptual-based image

deblurring frameworks are demonstrated. The experimental results show that the proposed

frameworks are capable of achieving a good reconstructed image quality for spatially-

varying blurred images.

In Chapter 6, this work proposes an FI-based edge-enhanced super-resolution (EE-SR)

algorithm. After initial SR estimation, a distributed edge detection method [39] is used to

detect edge regions. Then a refined SR estimation of the edge regions is conducted based

on the auto-correlation characteristics of the edge regions. Experiments show that the

proposed FI-based EE-SR algorithm results in sharper edges as compared to the existing

FI-based SR approach. Only edge regions get updated, which helps in limiting the increase

in computational complexity.

1.3 Organization

This thesis is organized as follows. Chapter 2 presents the background on image distortion

and perceptual visual quality assessment. This chapter covers basic concepts related to

image blur and image noise, subjective quality assessment, and existing objective qual-

ity metrics. Chapter 3 presents perceptual-based full-reference and no-reference objec-

tive image noisiness metrics and corresponding performance analysis on image quality

databases. In Chapter 4, perceptual-based spatially varying blur detection and quantifica-

tion algorithms are proposed, with comparisons to multiple state-of-the-art blur detection

algorithms. In Chapter 5, two selective perceptual-based image deblurring frameworks are

proposed based on the proposed blur detection algorithms. In Chapter 6, a non-iterative

edge-enhanced super-resolution (EE-SR) algorithm is proposed. Finally, Chapter 7 sum-

marizes the contributions of this work and presents possibilities for future work.
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Chapter 2

VISUAL QUALITY ASSESSMENT

Reliable assessment of image/video quality plays an important role in meeting the promised

quality of service (QoS) and in improving the end users’ quality of experience (QoE). It

is a critical topic to explore how image distortions and image restorations affect the per-

ceived visual quality. In addition, visual quality assessment can be used to understand

how visual quality affects the subjects’ ability to recognize objects in a scene. It can also

be used in evaluating the performance of image acquisition systems and image process-

ing algorithms, including image denoising, compression and deblurring. Controlling and

monitoring the individual system components by appropriately selecting image process-

ing methods and parameters are important for efficiently achieving high overall system

performance and improved user QoE.

2.1 Image Quality Factors

Digital images have large variations in image quality as a result of different distortions

caused by the image acquisition, processing, compression and transmission processes.

When an image is taken by a digital camera, the noise contamination could increase due

to low lighting, long shutter exposure and high light sensitivity. Also, improper focus,

lens or camera shake could lead to image blur. In addition, typically, digital images are

compressed using lossy compression methods such as JPEG and JPEG2000, subject to

different quality levels determined by the tradeoff between image size and image quality.

Furthermore, the image data can get corrupted during the transmission process. Finally,

many image processing algorithms could be applied, including image denoising, deblur-

ring, demosaicing, contrast enhancement, color correction and super-resolution. All of

these will affect the final image quality. In the following we will focus on image noise and

image blur. Other image quality factors include dynamic range, tone correction, contrast,

color accuracy and optics distortions, to name a few.
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2.1.1 Image Noise

Noise is a random variation of image density, visible as grain in film and pixel-level vari-

ations in digital images. It arises from the effects of basic physics: the photon nature of

light and the thermal energy of heat inside image sensors [1].

• Gaussian noise and white Gaussian noise

A Gaussian noise signal is generated by a Gaussian distributed source. If the Gaussian

noise source has a constant power spectral density (PSF), then the noise signal is a Gaus-

sian white noise. Additive white Gaussian noise (AWGN) is the most commonly used

model for image noise.

• Low frequency noise

Low frequency noise is one case of additive noise that is not white. This kind of noise

signal has higher PSF values in the lower frequency range as compared to PSF values

in the higher frequency range. Low frequency noise could be introduced by filtering the

noisy image through a low-pass filter. Low-pass spatially correlated noise appears to have

coarser grains. Pink noise is a typical low frequency noise.

• High frequency noise

High frequency noise is another case of additive noise that is not white. This kind of noise

signal has lower PSF values in the lower frequency range as compared to PSF values in the

higher frequency range. High frequency noise could be introduced by filtering the noisy

image through a high pass filter. High frequency noise appears to have finer grains. Blue

noise is a typical high frequency noise.

• Salt-and-pepper noise

The salt-and-pepper noise is not additive and causes the image values to take on two pos-

sible values, one close to 0 and the other close to 255 for an 8-bit image.

• Color components noise

Noise can also occur in each of the image color components in addition to the luminance.

9



2.1.2 Image Blur

Image blurriness/sharpness is another important image quality factor. Image blurriness/

sharpness is typically affected by the camera lens (e.g., manufacturing quality, focal length,

aperture, and distance from the image center), imaging sensor (e.g., sensor size, pixel

count), camera/object motion, atmospheric disturbances and focus accuracy.

• Gaussian blur

The Gaussian blur is the most commonly used image blur model. The Gaussian blur refers

to a low-pass filter whose impulse response takes the form of or is designed to approximate

a Gaussian function. In two dimensions, the ideal impulse response can be expressed as:

h(x,y) =
1

2πσ2 e−
x2+y2

2σ2 . (2.1)

where σ is the standard deviation of the Gaussian distribution, x is the horizontal distance

from the origin, and y is the vertical distance from the origin.

• Out-of-focus blur

Out-of-focus blur occurs frequently in digital images. The out-of-focus blur caused by a

system with circular aperture can be modeled as a linear, shift-invariant system with the

following impulse response:

h(x,y) =


1

πR2 , if
√

x2 + y2 ≤ R

0, otherwise
(2.2)

where R is the radius of the circular region of support of the impulse response h(x,y). Blur

caused by defocus varies spatially in an image due to, for example, objects in the scene at

different distances from the lens.

•Motion blur

Motion blur happens when the image being recorded changes during the recording of

a single frame, due to object movement, camera shake, or long exposure. Directional-
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motion blurred images could have blur along the motion direction, while still keeping

sharp details along the other directions.

• Compression Blur

Another cause of image blur is compression by using image codecs such as JPEG and

JPEG2000. Lower quality settings could cause the image to be more blurred, due to the

heavy quantization and reduction of high frequency components.

2.2 Subjective Image/Video Quality Assessment

In many applications, images and videos are acquired and processed to be viewed by

human observers. So one direct way to evaluate image/video quality is through subjective

tests. In this test, a group of human subjects is invited to judge the quality of the image

or video sequence under predefined system conditions. The scores given by observers are

averaged to produce the Mean Opinion Score (MOS). Subjective tests usually include a

training session and the actual test. Training sessions are held for the subjects to become

familiar with the task, including the range of considered qualities and the interface. Scores

obtained during training sessions are not recorded.

2.2.1 Psychophysical Experiment

The following procedures are commonly used to evaluate subjective quality, based on

subjective testing methodologies described in ITU-R Rec. BT.500-11 [40].

• Double Stimulus Continuous Quality Scale (DSCQS)

In the DSCQS method, the reference and test content are shown to subjects twice in an

alternating fashion. The order of those combinations is chosen randomly. After the second

content, subjects evaluate the overall quality of both contents on a continuous scale of 0 to

100. The subjects are not told which is the reference content and which is the test content.

• Double Stimulus Impairment Scale (DSIS)

In the DSIS method, the reference content and test content are shown to subjects only

once. The subjects are told which is the reference content and which is the test content.
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Subjects evaluate the overall quality of the test content on a discrete five-level scale from

very annoying to imperceptible.

• Single Stimulus Continuous Quality Evaluation (SSCQE)

SSCQE applies longer sequences (several minutes) for subjects to continuously evaluate

the instantaneous quality by adjusting a slider real-time. The scale of the slider varies from

bad to excellent. This method is not frame accurate since there will be a delay between

perception of degradation and actual movement of the scaled slider. Still, SSCQE is good

to illustrate the trend of visual quality as time goes.

• Single Stimulus (SS)

In the SS methods, a single content is used and the assessor provides a score for each

presented stimulus. When a random order of sequences is used, there are two variants

of the structure of presentations: Single Stimulus (SS) and single stimulus with multiple

repetitions (SSMR).

• Stimulus Comparison

In the stimulus comparison methods, two contents are displayed and the viewer provides

a score for assessing the relation between the two presentations. Stimulus-comparison

methods assess the relations among conditions more fully when judgments compare all

possible pairs of conditions.

2.2.2 Existing Image/Video Quality Databases

This section presents an overview of popular existing image/video quality databases.

• The LIVE database

The LIVE image quality database is developed as described in [7]. It is derived from

twenty-nine high quality color images. These images include pictures of different content

such as faces, people, animal, natural scenes, and also different shot configurations. Most

images are 768×512 pixels in size. The LIVE image quality database consists of 779

images, including 169 JPEG compressed images, 175 JPEG2000 compressed images, 145
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Gaussian blur images, 145 white noise images and 145 JPEG2000 bit error images. The

level of distortion varies from imperceptible levels to high levels of impairment.

• The TID2008 database

TID2008 is proposed by Ponomarenko et al. [41]. It contains 1700 test images (25 refer-

ence images, 17 types of distortions for each reference image, and 4 different levels of each

type of distortion). The distortion types include: additive Gaussian noise, additive color

noise, spatially correlated noise, masked noise, high frequency noise, impulse noise,

quantization noise, Gaussian blur, image denoising, JPEG compression, JPEG2000

compression, JPEG transmission errors, JPEG2000 transmission errors, non-eccentricity

pattern noise, local block-wise distortions of different intensity, intensity shift and con-

trast change.

In the subjective experiment of TID2008, the reference image and a pair of distorted

images are simultaneously presented. Each observer was asked to select a distorted image

that differs less from the reference one. In total, 838 observers have performed 256428

comparisons of visual quality of distorted images. The obtained MOS score ranges from

0 to 9, where the higher MOS corresponds to a higher visual quality of the image.

• The CSIQ database

The CSIQ database [42] consisted of 30 original images distorted using six different types

of distortions. Each distortion has four or five different levels, resulting in a total of 866

distorted versions of the original images. The distortion types include JPEG compression,

JPEG-2000 compression, global contrast decrements, additive pink Gaussian noise, addi-

tive white Gaussian noise, and Gaussian blurring. The database contains 5000 subjective

ratings from 25 different subjects.

Other image quality databases include IVC [43], A57 [44], WIQ [45] and MMSPG 3D

image [46], to name a few.
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2.3 Objective Image Quality Metric

Though subjective image quality tests can record human perceived image/video quality,

they are time-consuming, laborious and expensive. This has led to a growing interest

to develop objective quality assessment algorithms. Traditional image quality metrics,

such as signal-to-noise ratio (SNR), peak-signal-to-noise ratio (PSNR), and mean squared

error (MSE) have low computational cost. However, these metrics simply compare the

difference of pixels values, without considering the perceptual characteristics of human

visual perception. More advanced visual quality metrics are developed, such as struc-

tural similarity (SSIM) [47], noise quality measure (NQM) [9], visual signal to noise ratio

(VSNR) [48], to name a few. Ideal image quality metrics could produce quality scores that

reflect the perceived image quality, and the produced quality scores should correlate well

with the subjective scores. Objective quality assessment methods can be categorized as

full-reference (FR), reduced-reference (RR) and no-reference (NR) depending on whether

a reference, partial information about a reference or no reference is used for calculation.

2.3.1 Full-Reference Quality Metrics

A full-reference (FR) metric uses a reference to generate the predicted quality score. Ex-

isting FR metrics include NQM [9], SSIM [47], MS-SSIM [8], VSNR [48], IFC [10] and

VIF [49], to name a few.

• NQM

Noise quality measure (NQM) [9] is proposed by modeling the degraded image as an

original image subject to linear frequency distortion and additive noise. The NQM takes

into account the following: (1) variation in contrast sensitivity with distance, image di-

mensions, and spatial frequency; (2) variation in the local luminance mean; (3) contrast

interaction between spatial frequencies; (4) contrast masking effects.

• SSIM and MS-SSIM

SSIM [47] and MS-SSIM [8] are image structure based quality metrics. The structural sim-
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ilarity (SSIM) [47] index is a full-reference metric that measures the similarity between

two images. In this method, quality degradations are considered to be mainly caused by

perceptual structural information loss. So structural distortions are used to evaluate percep-

tual quality. The SSIM defines the luminance comparison function, contrast comparison

function and structure comparison function, in order to generate the final SSIM metric.

The Multi-Scale SSIM (MS-SSIM) [8] provides more flexibility than single-scale meth-

ods in incorporating the variations of viewing conditions. Luminance, contrast and struc-

ture comparisons are computed for each scale. Single-scale SSIM could be considered as

a special case of MS-SSIM.

Numerous image quality assessment (IQA) algorithms have been further developed

based on SSIM [47], such as the methods of Yang et al. [50], HWSSIM [51], Cao et

al. [52], Shi et al. [53], RFSIM [54], Fei et al. [55], three-component weighted SSIM [56]

and information content weighted SSIM [57].

• VSNR

The visual signal to noise ratio (VSNR) [48] is proposed for quantifying the visual fidelity

of natural images based on near-threshold and supra-threshold properties of human vision.

It is composed of two stages. In the first stage, contrast thresholds for the detection of

distortions in natural images are computed using wavelet-based models of visual masking

and visual summation, in order to determine whether the distortions in the test image

are visible. When the distortion is below the detection threshold, no further analysis is

needed. When the distortion is supra-threshold, a second stage is applied based on the

low-level visual property of perceived contrast and the mid-level visual property of global

precedence. These two properties are modeled as Euclidean distances that are combined

as a linear sum to generate the VSNR.
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2.3.2 Reduced-Reference Quality Metrics

A reduced-reference (RR) metric uses partial information of a reference to generate the

predicted quality score. This partial information is also referred to as side information. The

standard deployment of an RR method requires the side information to be sent through an

ancillary data channel. Other solutions would be to send the side information in the same

channel, through header information or information hiding. Several RR image quality

metrics were proposed, including quality-aware images (QAI) [58], and reduced reference

entropic differencing (RRED) [59], Li et al. [60] and Gao et al. [61], to name a few.

• QAI

Quality-aware images (QAI) [58] is a reduced-reference image quality assessment algo-

rithm based on a statistical model of natural images in the wavelet domain. The histograms

of the wavelet subband coefficients are calculated. It is shown that the marginal distribu-

tion of the wavelet coefficients changes differently for different types of image distortions.

The Kullback-Leibler divergence (KLD) is used to quantify the difference between wavelet

coefficient distributions of a reference image and a distorted image. A Generalized Gaus-

sian density (GGD) model is applied to model the wavelet coefficient distributions of the

reference image.

• RRED indices

Reduced reference entropic differencing (RRED) [59] is proposed by measuring the en-

tropy difference between the reference and distorted image in the wavelet domain. A

family of models is presented, by varying the subband in which the quality is evaluated

and the amount of information that is required from each subband for quality computation.

It is illustrated that the amount of information can be reduced gradually from an almost

full-reference scenario to an almost no-reference scenario.
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2.3.3 No-Reference Quality Metrics

A no-reference (NR) metric uses only the test image to generate the predicted quality

score, without a reference. NR metrics have received increasing attention in recent years,

since they do not rely on a reference. Existing state-of-the-art NR image quality metrics

include BIQI [62], HNR [63], BLINDS-II [64], BRISQUE [65] and NIQE [66], to name

a few.

• BIQI

Blind image quality index (BIQI) [62] is a two-step framework for no-reference image

quality assessment based on natural scene statistics (NSS). The algorithm first estimates

the probability of each distortion in the image, such as JPEG, JPEG2000, white noise,

Gaussian blur and fast fading. The Generalized Gaussian distribution (GGD) is used to

parametrize wavelet subband coefficients. These feature vectors are applied to classify

the images into five different distortion categories, through a multiclass support vector

machine (SVM) with a radial-basis function (RBF) kernel. The second stage evaluates

the quality of the image along each of these distortions. The computed feature vectors

are reused and fed into a support vector regression. The final quality of the image is then

expressed as a probability-weighted summation.

• HNR

The hybrid no-reference (HNR) model [63] is a natural scene statistics (NSS) method

based on a hybrid of curvelet, wavelet, and cosine transforms. In the curvelet domain, the

Log-PDF of the magnitude of curvelet coefficients is calculated and referred to as LPMCC.

Then the curvelet no-reference (CNR) model is proposed by choosing the peak coordinate

of the LPMCC as the image characteristic (IC) extracted from the coefficients of the trans-

formed images. The LPMCC is considered on a scale by scale basis since curvelets have

multiple scales. These ICs were used to built the CNR model through training. Similarly,

wavelet no-reference (WNR) and DCT no-reference (DCTNR) methods were proposed
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when using the wavelet transform or DCT transform, respectively. Finally, CNR, WNR

and DCTNR were further combined to propose the hybrid no-reference (HNR) model.

• BLINDS-II

The blind image integrity notator using DCT statistics (BLINDS-II) [64] uses a natural

scene statistics (NSS) model of discrete cosine transform (DCT) coefficients. It consists

of a process of feature extraction from the image, followed by statistical modeling of the

extracted features. The BLINDS-II relies on learning the NSS model parameters across

different perceptual levels of image distortion. The algorithm is trained using features

derived directly from a generalized parametric statistical model of natural image DCT

coefficients against various perceptual levels of image distortion. The learning model is

then used to predict perceptual image quality scores. BLINDS-II includes multi-scale im-

age generation, local DCT computation, DCT coefficient generalized Gaussian modeling,

model-based feature extraction and a probabilistic model. Four model-based DCT domain

NSS features were used, including the generalized Gaussian model shape parameter, the

coefficient of frequency variation, the energy subband ratio measure and the orientation

model-based feature. BLIINDS-II requires nonlinear sorting of block-based NSS features,

which slows it considerably.

2.4 Evaluation of Objective Quality Metrics

There are three common methods that are used for evaluating the performance of objective

video quality metrics when correlating with the subjective scores, including the Pearson

correlation coefficient (PCC), Spearman rank order correlation coefficient (SROCC) and

root mean square error (RMSE).

The Pearson correlation coefficient (PCC) is the linear correlation coefficient between

the predicted and subjective MOS/DMOS. The fidelity of an objective quality assessment

metric is considered high if the PCC is close to 1 or -1. The PCC is given by:

PCC(x,y) =
∑(xi− x̄)(yi− ȳ)√

∑(xi− x̄)2
√

∑(yi− ȳ)2
(2.3)
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where xi refers to the predicted MOS/DMOS, and yi refers to the subjective MOS/DMOS.

x̄ and ȳ is the mean of xi and yi, respectively.

The Spearman rank order correlation coefficient (SROCC) is actually the PCC for the

ranked predicted MOS/DMOS and ranked subjective MOS/DMOS and is given by:

SROCC(x,y) =
∑(Xi− X̄)(Yi− Ȳ )√

∑(Xi− X̄)2
√

∑(Yi− Ȳ )2
(2.4)

Here Xi refers to the ranked predicted MOS/DMOS, and Yi refers to the ranked subjec-

tive MOS/DMOS. X̄ and Ȳ are the mean of Xi and Yi, respectively.

The root mean square error (RMSE) is defined as:

RMSE =
√

(1/N)∑(xi− x̄)2 (2.5)

where N is the total number of images.

19



Chapter 3

A NO-REFERENCE OBJECTIVE IMAGE QUALITY METRIC BASED ON

PERCEPTUALLY WEIGHTED LOCAL NOISE

This work proposes perceptual-based full-reference and no-reference objective image qual-

ity metrics by integrating perceptually weighted local noise into a probability summation

model. Results are reported on both the LIVE and TID2008 databases. The proposed met-

rics achieve consistently a good performance across noise types and across databases as

compared to many of the best very recent quality metrics. The proposed metrics are able

to predict with high accuracy the relative amount of perceived noise in images of different

content.

3.1 Introduction

Reliable assessment of image quality plays an important role in meeting the promised

quality of service (QoS) and in improving the end user’s quality of experience (QoE).

There is a growing interest to develop objective quality assessment algorithms that can

predict perceived image quality automatically. These methods are highly useful in vari-

ous image processing applications, such as image compression, transmission, restoration,

enhancement, and display. For example, the quality metrics can be used to evaluate and

control the performance of individual system components in image/video processing and

transmission systems.

One direct way to evaluate video quality is through subjective tests. In these tests, a

group of human subjects are asked to judge the quality under a predefined viewing con-

dition. The scores given by observers are averaged to produce the mean opinion score

(MOS). However, subjective tests are time-consuming, laborious, and expensive. Objec-

tive image quality (IQA) assessment methods can be categorized as full reference (FR),

reduced reference (RR), and no reference (NR) depending on whether a reference, partial

information about a reference, or no reference is used for calculation. Quality assessment
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without a reference is challenging. A no-reference metric is not relative to a reference

image, but rather an absolute value is computed based on characteristics of the test image.

Of particular interest to this work is the no-reference noisiness objective metric. Nois-

iness is a common image distortion that occurs in multiple applications, including acqui-

sition, storage, transmission, processing, to name a few. For visual quality assessment

of noisiness, many full-reference metrics are presented in [7], such as peak signal-to-

noise ratio (PSNR), multi-scale structural similarity (MS-SSIM) [8], noise quality measure

(NQM) [9], and information fidelity criterion (IFC) [10]. However, these full-reference

metrics require the reference image for calculation. There is a need to develop a no-

reference noisiness quality metric. Furthermore, such noisiness metric could be used

to provide a better prediction of image quality for several applications including super-

resolution, image restoration, and other multiply distorted images. A global estimate of

image noise variance was used as a no-reference noisiness metric in [11]. The histogram

of the local noise variances is used to derive the global estimate. However, the locally

perceived visibility of noise is not considered. Similarly in [12], noisiness is expressed

by the sum of estimated noise amplitudes and the ratio of noise pixels. Both the metrics

of [11, 12] do not account for the effects of locally varying noise on the perceived noise

impairment and they do not exploit the characteristics of the human visual system (HVS).

To tackle this issue, this thesis firstly presents a full-reference image noisiness metric

which integrates perceptually weighted local noise into a probability summation model.

This proposed metric can predict the perceptual noisiness in images with high accuracy.

In addition, a no-reference objective noisiness metric is derived based on local noise stan-

dard deviation, local perceptual weighting, and probability summation. The experimental

results show that the proposed FR and NR metrics show better and more consistent per-

formance across databases and distortion types, when compared with several very recent

FR and NR metrics.

The remainder of this chapter is organized as follows. A perceived noisiness model
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based on probability summation is presented first followed by details on the contrast sen-

sitivity thresholds computation. A full-reference perceptually weighted noise (FR-PWN)

metric is proposed next based on perceptual weighting using the computed contrast sen-

sitivity thresholds and probability summation. After that, a no-reference perceptually

weighted noise (NR-PWN) metric is further derived. Performance results and compari-

son with existing metrics are presented followed by a conclusion.

3.2 Perceptual Noisiness Model Based on Probability Summation

The human visual system should be taken into consideration since the visual impairment

due to the same noise could be perceived differently based on the local characteristics of

the visual content. Contrast is a key concept in vision science because the information

in the visual system is represented in terms of contrast and not in terms of the absolute

level of light. So, the relative changes in luminance are important rather than the absolute

ones [4]. The contrast sensitivity threshold measures the smallest contrast or the just-

noticeable difference (JND) that yields a visible signal over a uniform background. The

proposed metric makes use of JND for calculating the probability of noise detection. Even

when the noise is uniform, the impact of the noise will be more visible in image regions

with a relatively lower JND. Consider the noisy signal y as

y(i, j) = y′(i, j)+ error(i, j) (3.1)

where y′(i, j) is the original undistorted image. The probability of detecting a noise dis-

tortion at location (i, j) can be modeled as an exponential having the following form

P(i, j) = 1− exp

(
−
∣∣∣∣error(i, j)
JND(i, j)

∣∣∣∣β
)

(3.2)

where JND(i, j) is the JND value at (i, j) and it depends on the mean intensity in a local

neighborhood region surrounding pixel (i, j). β is a parameter whose value is chosen to

maximize the correspondence of (3.2) with the experimentally determined psychometric

function for noise detection. In psychophysical experiments that examine summation over
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space, a value of about 4 has been observed to correspond well to probability summation

[67].

A less-localized probability of noise detection can be computed by adopting the ‘prob-

ability summation’ hypothesis which pools the localized detection probabilities over a

region of interest, R [68]. The probability summation hypothesis is based on the follow-

ing two assumptions: (1) A noise distortion is detected if and only if at least one detector

senses the presence of a noise distortion; (2) The probabilities of detection are indepen-

dent; i.e., the probability that a particular detector will signal the presence of a distortion

is independent of the probability that any other detector will. The measurement of noise

detection in a region R is then given by

Pnoise(R) = 1− ∏
i, j∈R

(1−P(i, j)). (3.3)

Substituting (3.2) into (3.3) yields

Pnoise(R) = 1− exp(−Dβ

R) (3.4)

where

DR =

(
∑

i, j∈R

∣∣∣∣error(i, j)
JND(i, j)

∣∣∣∣β
)1/β

(3.5)

From (3.4), it can be seen that Pnoise(R) increases if DR increases and vice versa. So DR can

be used as a noisiness metric over region R. However, the probability of noise detection

does not directly translate to noise annoyance level. In this work, the β parameter in (3.4)

and (3.5) is replaced with α = β × s, which has the effect of steering the slope of the

psychometric function in order to translate noise detection levels into noise annoyance

levels. The factor s was found experimentally to be 1/16 resulting in a value of 0.25 for α .

More details about how JND(i, j) is computed is given in Section 3.3.

3.3 Perceptual Contrast Sensitivity Threshold Model and JND Computation

Multiple parameters including screen resolution, the viewing distance, the minimum dis-

play luminance, and the maximum display luminance are considered in the contrast sensi-
23



tivity model [38]. The thresholds are computed locally for each block. Firstly, the contrast

sensitivity threshold t128 is generated for a region with a mean grayscale value of 128 as

follows:

t128 =
T Mg

Lmax−Lmin
(3.6)

where Lmin and Lmax are the minimum and maximum display luminances, Mg is the total

number of gray scale levels, and T is given by the following parabolic approximation [69]:

T = min(10g0,1,10g1,0), (3.7)

g0,1 = log10 Tmin +K(log10
1

2Nωy
− log10 fmin)

2, (3.8)

g1,0 = log10 Tmin +K(log10
1

2Nωx
− log10 fmin)

2. (3.9)

In (3.8) and (3.9), Tmin is the luminance threshold at frequency, fmin, where the threshold

is minimum. ωx and ωy represent, respectively, the horizontal width and the vertical height

of a pixel in degrees of visual angle, K is the steepness of the parabola. N is the local

neighborhood size and is set to 8. Tmin, fmin, and K can be computed as [69]:

Tmin =


LT
S0
( L

LT
)αT ,L≤ LT

L
S0
,L > LT

 (3.10)

fmin =

 f0(
L
L f
)α f ,L≤ L f

f0,L > L f

 (3.11)

K =

 K0(
L

LK
)αK ,L≤ LK

K0,L > LK

 (3.12)

The values of the constants in (3.10)− (3.12) are [69] LT = 13.45 cd/m2, S0 = 94.7,

αT = 0.649, α f = 0.182, f0 = 6.78 cycle/deg, L f = 300 cd/m2, K0 = 3.125, αK = 0.0706

and LK = 300 cd/m2. Equations (3.10)− (3.12) give Tmin, fmin, and K as functions of
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local background luminance L. For a background intensity value of 128, given a gamma-

corrected display, the corresponding local background luminance is computed as follows:

L = Lmin +128
Lmax−Lmin

Mg
(3.13)

where Lmin and Lmax denote the minimum and maximum luminances of the display. Once

the JND for a region with mean grayscale value of 128, t128, is calculated using (3.6), the

JND for regions with other mean grayscale values are approximated as follows [70]:

JND(i, j) = t128

(
∑

N−1
n1=0 ∑

N−1
n2=0 In1,n2

N2(128)

)αT

= t128

(
Mean(In1,n2)

128

)αT

(3.14)

where In1,n2 is the intensity level at pixel location (n1,n2) in a N×N region surrounding

pixel (i, j). It should be noted that the indices (n1,n2) are used to denote the location with

respect to the top left corner of the N×N region, while the indices (i, j) are used to denote

the location with respect to the top left corner of the whole image. Mean(In1,n2) is the mean

value over the considered N×N region surrounding pixel (i, j). αT is a correction exponent

that controls the degree to which luminance masking occurs and is set to αT = 0.649, as

given in [70]. JND(i, j) in (3.5) is computed using (3.14). In our implementation, N = 8

was used for the N×N region.

3.4 Full-Reference Noisiness Metric

This work firstly presents a full-reference noisiness metric based on the probability sum-

mation model presented in the previous sections. Figure 3.1 shows the block diagram of

the proposed full-reference FR-PWN metric. The input image is first divided into blocks

of M×M. The block will be the region of interest Rb. The block size is chosen to cor-

respond with the foveal region. Let r be the visual resolution of the display in pixels per

degree, v the viewing distance in centimeters, and d the display resolution in pixels per

centimeter. Then the visual resolution can be calculated as follows [71]:

r = d · v · tan(π/180)≈ d
vπ

180
≈ d

v
57.3

. (3.15)
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Figure 3.1: Diagram of the Proposed Full-Reference FR-PWN Metric.

In the HVS, the foveal region has the highest visual acuity and corresponds to about 2◦

of visual angle. The number of pixels contained in the foveal region can be computed as

(2brc)2 [71]. For example, for a viewing distance of 60 cm and 31.5 pixels/cm display,

the number of pixels contained in the foveal region is (64)2, corresponding to a block size

of 64×64. Using (3.5), the perceived noise distortion within a block Rb is given by

DRb =

(
∑

i, j∈Rb

∣∣∣∣error(i, j)
JND(i, j)

∣∣∣∣α
)1/α

(3.16)

where JND(i, j) is the JND at location (i, j) and is computed using (3.14). Using the

probability summation model as discussed previously, the noisiness measure D for the
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whole image I is obtained by using a Minkowski metric for inter-block pooling as follows:

D =

(
∑
Rb

|DRb|
α

)1/α

(3.17)

The resulting distortion measure, D, normalized by the number of blocks, is adopted as

the proposed full-reference metric FR-PWN. This full-reference metric not only works for

noisiness, but could also work for other additive distortions.

3.5 No-Reference Noisiness Metric

In the previous section, a full-reference quality metric is presented based on the probability

summation model and JND. However, in many cases, the reference image is not available,

so error(i, j) in (3.16) can not be computed. Therefore, there is a need to develop a no-

reference noisiness quality metric. Figure 3.2 shows the block diagram of the proposed

no-reference NR-PWN metric. From (3.14), it can be seen that JND(i, j) depends on the

local mean of the neighborhood surrounding (i, j). For the proposed NR metric, the local

mean for a pixel (i, j) belonging to a region RN is taken to be the mean of region RN and

is denoted by mean(RN). Consequently, Equation (3.14) can be written as follows:

JND(i, j) = JND(RN) = t128

(
Mean(RN)

128

)αT

, for all (i, j) ∈ RN . (3.18)

Now only one JND(RN) will be calculated for all pixel (i, j) belonging to the same RN ,

and different JND(RN) will be calculated separately for each RN within the considered

region of interest block Rb. The size of the block Rb is chosen to approximate a foveal

region (e.g., 64× 64 as discussed previously). Using p,q as the indices within a local

neighborhood RN , the proposed NR metric is derived from the presented FR metric (3.16)

as follows:

DRb =

(
∑

RN∈Rb

∑
p,q∈RN

∣∣∣∣error(p,q)
JND(p,q)

∣∣∣∣α
)1/α

=

(
∑

RN∈Rb

∑p,q∈RN |error(p,q)|α

(JND(RN))α

)1/α

(3.19)

In (3.19), ∑p,q∈RN |error(p,q)|α can be approximated by N2E[|(error(p,q)|α ] under the

ergodicity assumption, where N×N is the size of each local neighborhood RN . Also, if
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Figure 3.2: Diagram of the Proposed No-Reference NR-PWN Metric.

error(p,q) can be approximated as a Gaussian distribution process with a mean of 0 and a

standard deviation of σRN , using the central absolute moments of a Gaussian distribution

process [72], it can be shown that

E[|error(p,q))|α ] = σ
α
RN

2α/2Γ(α+1
2 )

π1/2 , for α >−1 (3.20)

where Γ(t) is the gamma function

Γ(t) =
∫

∞

0
xt−1e−xdx. (3.21)
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Using (3.20), DRb in (3.19) can be written as follows:

DRb =

 ∑
RN∈Rb

N2σα
RN

2α/2Γ(α+1
2 )

π1/2

(JND(RN))α

1/α

(3.22)

For a given α , define a constant C as

C =
2α/2Γ(α+1

2 )

π1/2 . (3.23)

Then, the proposed NR noisiness metric over the region Rb is given by

DRb =

(
∑

RN∈Rb

C ·N2 ·σα
RN

(JND(RN))α

)1/α

. (3.24)

As in (3.17), the noisiness metric over the image I can be computed as follows:

D =

(
∑
Rb

|DRb |
α

)1/α

. (3.25)

The resulting noise measure D, normalized by the number of blocks, is adopted as the

proposed no-reference NR-PWN metric.

In (3.24), the noise variance σRN is estimated directly from the test image, without the

reference image. Multiple methods are available to estimate the noise variance, such as

the fast noise variance estimation (FNV) [73] and the generalized cross validation (GCV)-

based methods [74]. In our implementation, the GCV method [74] was used for computing

the local noise variance. Similar results were also obtained using the FNV [73] noise

estimation method.

3.6 Performance Results

The performance of the proposed FR-PWN and NR-PWN metrics is assessed using the

LIVE [7] and TID2008 [41] databases.

The LIVE database [7] consists of 29 RGB color image. The images are distorted

using different distortion types: JPEG2000, JPEG, Gaussian blur, white noise, and bit

errors. The difference mean opinion score (DMOS) for each image is provided. The
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white noise part of the LIVE database includes 174 images with a noise standard deviation

ranging from 0 to 2. White noise was added to the RGB components of images after

scaling between 0 and 1. All of the white noise images (174 images) from the LIVE

database are used in our experiments.

The TID2008 database [41] consists of 25 reference images (512× 384) and 1,700

distorted images. The images are distorted using 17 types of distortions, including addi-

tive Gaussian noise, high-frequency noise, JPEG2000, and Gaussian blur. The MOS was

obtained using a total of 838 observers with 256,428 comparisons of the visual quality

of distorted images. All of the additive Gaussian noise images (100 images) and high-

frequency noise images (100 images) from the TID2008 database are used in our exper-

iments. As mentioned in [41], additive zero-mean noise is often present in images and

it is commonly modeled as a white Gaussian noise. This type of distortion is included in

most studies of quality metric effectiveness. High-frequency noise is an additive non-white

noise which can be used for analyzing the spatial frequency sensitivity of the HVS [75].

High-frequency noise is typical in lossy image compression and watermarking.

To measure how well the proposed metrics correlate with the provided subjective

scores, the correlation coefficients adopted by VQEG [76] are used, including the Pear-

son’s linear correlation coefficient (PLCC) and the Spearman rank-order correlation coef-

ficient (SROCC). A four-parameter logistic function as suggested in [76] is used prior to

computing the Pearson’s linear correlation coefficient:

MOSPi =
β1−β2

1+ exp
(

Mi−β3
|β4|

) +β2 (3.26)

where Mi is the quality metric for image i, MOSPi is the predicted MOS or DMOS. Fig-

ure 3.3 shows the DMOS score and predicted DMOS obtained using NR-PWN for the

LIVE database.

Table 3.1 shows the evaluation results for the LIVE database. In addition to the pro-

posed FR-PWN and NR-PWN metrics, the performance results of various existing metrics
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Figure 3.3: Correlation of the Predicted Score of NR-PWN and DMOS Using the LIVE
Database.

are presented for comparison, including seven full-reference metrics, DCTune [77], pic-

ture quality scale (PQS) [78], NQM [9], Fuzzy S7 [79], blockwise spectral distance mea-

sure (BSDM) [80], MS-SSIM [8], IFC [10], one reduced reference metric quality-aware

images (QAI) [58], and seven no-reference metrics, blind image integrity notator using

DCT statistics (BLINDS-II) (SVM) [64], BLINDS-II (Prob.) [64], hybrid no-reference

(HNR) [63], blind/referenceless image spatial quality evaluator (BRISQUE) [65], natu-

ralness image quality evaluator (NIQE) [66], blind image quality index (BIQI) [62], and

learning a blind measure of perceptual image quality (LBIQ) [81]. The benchmarks of

full-reference metrics are obtained from [7], and the others are obtained from their respec-

tive authors or available implementations. The shown ‘N/A’ in Table 3.1 means the value

is not provided in the literature.

Table 3.2 shows the performance of the proposed FR-PWN and NR-PWN metrics us-

ing images with different types of distortion as provided by the TID2008 database [41].

The proposed metrics are compared with three full-reference metrics DCTune [77], NQM

[9], MS-SSIM [8], and six very recent no-reference metrics that reported results for TID2008:

BLINDS-II (SVM) [64], BLINDS-II (Prob.) [64], BRISQUE [65], NIQE [66], general re-
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Table 3.1: Performance Evaluation for the LIVE Database

Metrics PLCC SROCC
FR DCTune [77] 0.9288 0.9324

PQS [78] 0.9603 0.9535
NQM [9] 0.9885 0.9854
Fuzzy S7 [79] 0.9038 0.9199
BSDM (S4) [80] 0.9559 0.9327
MS-SSIM [8] 0.9737 0.9805
IFC [10] 0.9766 0.9625
FR-PWN (proposed) 0.9846 0.9835

RR QAI [58] 0.8889 0.8639

NR BLINDS-II(SVM) [64] 0.9799 0.9691
BLINDS-II(Prob.) [64] 0.9854 0.9783
HNR [63] 0.962 N/A
BRISQUE [65] 0.9851 0.9786
NIQE [66] 0.9773 0.9662
BIQI [62] 0.9538 0.9510
LBIQ [81] 0.9761 0.9702
Estimated noise standard deviation 0.9497 0.9713
NR-PWN (proposed) 0.9770 0.9816

gression neural network (GRNN) [82], and Li et al. [83]. The benchmarks of full-reference

metrics are obtained from [41], and the others are obtained from their respective authors or

available implementations. The shown N/A in Table 3.2 means the value is not provided

in the literature. The proposed metrics use the same parameters as used with the LIVE

database without any training.

From Table 3.1, it can be observed that the proposed FR-PWN metric outperforms the

existing FR metrics for the LIVE database while achieving a similar performance as the

NQM [9] metric. Table 3.2 shows that the proposed FR-PWN metric outperforms the ex-

isting FR metrics for the TID2008 database, on both Gaussian noise and high-frequency

noise. The proposed NR-PWN metric comes close in performance to the proposed FR-

PWN metric for both the LIVE and the TID2008 databases. In particular, Table 3.1 shows

that the proposed NR-PWN metric performs better than existing NR metrics except for the
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Table 3.2: Performance Evaluation Using SROCC for the TID2008 Database

Metrics Additive Gaussian noise High-frequency noise
FR MS-SSIM [8] 0.8094 0.8685

DCTune [77] 0.8415 0.8721
NQM [9] 0.7679 0.9015
FR-PWN (proposed) 0.8818 0.9194

NR BLINDS-II (SVM) [64] 0.6600 N/A
BLINDS-II (Prob.) [64] 0.6956 0.7454
BRISQUE [65] 0.829 0.6234
NIQE [66] 0.7775 0.8539
GRNN [82] 0.7532 N/A
Li et al. [83] 0.7043 N/A
NR-PWN (proposed) 0.8020 0.9136

Blinds-II and BRISQUE metrics in terms of PLCC. The proposed NR-PWN metric out-

performs all the considered NR metrics in terms of SROCC and even existing FR metrics

except the full-reference NQM [9] for the LIVE database. Table 3.2 shows that the pro-

posed NR-PWN metric surpasses existing NR metrics except BRISQUE [65] for additive

Gaussian noise, and that it significantly outperforms existing FR and NR metrics for high-

frequency noise. Particularly, it should be noted that the performance of BRISQUE [65]

drops dramatically on high-frequency noise and is significantly lower than the proposed

metric. In addition, many of the shown state-of-the-art metrics including BLINDS-II [64],

NIQE [66], and BRISQUE [65] use 80% of the data for training [64–66]. Consequently,

these may not perform well on new distortions outside the training set, such as high-

frequency noise (Table 3.2). In contrast, the proposed NR-PWN does not require training

and still performs well on this new distortion.

Furthermore, it is worth indicating that as shown in Tables 3.1 and 3.2, the existing

metrics exhibit differences in performance across different databases and types of distor-

tions. It is noted in [84] that the performance of many image quality metrics could be

quite different across databases. The difference in performance can be attributed to the

differences in quality range, distortions, and contents across databases. Despite this, the
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results obtained show that the proposed FR-PWN and NR-PWN metrics achieve consis-

tently a good performance across noise types (white noise and high-frequency noise) and

across databases as compared to the existing quality metrics. For example, the proposed

FR-PWN metric exhibits a performance similar to NQM [9] for the LIVE database, while

it significantly outperforms NQM [9] for white noise images from TID2008. Also, the

existing BLINDS-II [64] performs fairly well for the LIVE database, but its performance

significantly decreases when applied to TID2008. It is also interesting to note that although

the mathematical derivations for the proposed NR-PWN is based on white noise, the pro-

posed NR-PWN metric performs consistently well for high-frequency noise, a non-white

noise.

The performance results presented in Tables 3.1 and 3.2 for the proposed NR-PWN

metric are obtained using the GCV method [74] for local variance estimation. If the local

variance is estimated using the FNV method [73], the resulting SROCC values are 0.9627

for the LIVE database additive Gaussian noise, 0.7850 for the TID2008 database additive

Gaussian noise, and 0.9210 for the TID2008 database high-frequency noise, respectively.

Finally, the calculation of the proposed FR-PWN and NR-PWN metrics involves pa-

rameters of viewing conditions such as maximum luminance Lmax of the monitor. How-

ever, the performance of the proposed metrics are resilient to different Lmax values. In

Tables 3.1 and 3.2, the proposed metrics are calculated using Lmax = 175 cd/m2. The

Lmax in real viewing conditions may vary from 100 cd/m2 for CRT monitors to 300 cd/m2

for LCD monitors. Table 3.3 shows the performance of the proposed metric in terms of

SROCC using different values of Lmax, for both the LIVE and the TID2008 databases. It

can be observed that the proposed metrics are not sensitive to the selection of Lmax.

3.7 Conclusion

This chapter proposed both a full-reference and a no-reference noisiness metrics. The no-

reference noisiness metric is derived from the proposed full-reference metric and integrates

34



Table 3.3: SROCC of the Proposed Metrics Using Different Lmax

Lmax (cd/m2) 100 175 300
LIVE additive FR-PWN 0.9835 0.9835 0.9835
Gaussian noise NR-PWN 0.9816 0.9816 0.9816

TID2008 additive FR-PWN 0.8816 0.8818 0.8818
Gaussian noise NR-PWN 0.8020 0.8020 0.8020

TID2008 high- FR-PWN 0.9194 0.9194 0.9197
frequency noise NR-PWN 0.9136 0.9136 0.9136

noise variance estimation and perceptual contrast sensitivity thresholds into a probability

summation model. The proposed metrics can predict the relative noisiness in images based

on the probability of noise detection. Results show that the proposed metrics achieve a

consistently good performance across noise types and across databases as compared to the

existing quality metrics.
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Chapter 4

EFFICIENT PERCEPTUAL-BASED SPATIALLY VARYING OUT-OF-FOCUS BLUR

DETECTION

This chapter proposes a blur detection algorithm that is capable of detecting and quanti-

fying the level of spatially-varying blur by integrating directional edge spread calculation,

probability of blur detection and local probability summation. The proposed method gen-

erates a blur map indicating the relative amount of perceived local blurriness. In order

to detect the flat/near flat regions that do not contribute to perceivable blur, a perceptual

model based on the Just Noticeable Difference (JND) is further integrated in the proposed

blur detection algorithm to generate perceptually significant blur maps. We compare the

proposed methods with six other state-of-the-art blur detection methods. Experimental

results show that the proposed method performs the best both visually and quantitatively.

4.1 Introduction

Many images contain blurred regions caused by factors such as defocus, camera/object

motion and camera shaking. Efficient and effective blur detection naturally benefit many

applications including but not limited to image segmentation, image restoration and image

understanding. In recent years many approaches have been proposed to address the issue

of blur detection. When assuming the blur is spatially uniform [13–17], one can estimate

the blur from global evidence across the entire image plane. Fergus et al. [18] adopt a

variational Bayesian framework for the kernel estimation task. Levin et al. [19] propose

to first estimate the blur kernel as that which is most likely under a distribution of sharp

images, for uniform blur detection. Additional work includes Cho and Lee [20], Xu and

Jia [21], and Krishnan et al. [22].

Blur caused by camera/object motion or defocus often varies spatially in an image.

Despite the recent advances in uniform-blur estimation, estimating spatially-varying blur

from a single image is challenging [23], due to the fact that the spatially-varying blur must
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be inferred locally and using much fewer local observations. Chakrabarti et al. [23] com-

bined a local sub-band decomposition and a Gaussian Scale Mixture based prior model

to analyze spatially-varying blur. Liu et al. [24] adopt features such as local power spec-

trum slope, saturation, local autocorrelation, to name a few. Lin et al. [25] use global and

local gradient statistics to estimate local blur. Wang et al. [26] employ morphological op-

erations in the gradient domain to segment the blur region. Couzinie et al. [27] estimate

the local blur using logistic regression. Then the local blur is combined with smoothness

constraints in an energy minimization framework. Shi et al. [28] propose to use the kur-

tosis and a heavy detailedness measure of the gradient histogram in a multi-scale scheme.

They also make use of the Expectation Maximization (EM) and Gaussian Mixture Model

(GMM) in every local block to analyze the gradient histogram span, which greatly in-

creases the computational cost. Some other approaches are used such as singular value

decomposition [29], edge pattern fitting [30], local mean square error [31] and harmonic

variance [32]. More recently, Shi et al. [33] developed a blur feature via sparse representa-

tion and image decomposition. However, it does not consider humans’ blur sensitivity to

regions of different contrast [4] and is relatively expensive due to the l1-norm based sparse

coding that is applied locally to image blocks.

Still, existing approaches are either computationally costly or cannot perform reliably

when dealing with the spatially-varying nature of the defocus. In addition, many existing

approaches do not take human perception into account, but rather they focus on tunning

their parameters and precision based on a binary sharp/blur mask, which lacks the infor-

mation about the level of perceived blur. Furthermore, there exists perceptually flat/less

significant regions in the image that provide very limited cue to blur perception. Existing

techniques do not distinguish these regions from the actually blurred areas and include

these in their resulting blur mask.

Our contribution consists of three parts. First, we designed an efficient, training-free,

Spatially Varying out-of-focus Blur Detection (SVBD) algorithm, by integrating direc-
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tional edge spread calculation, Just Noticeable Blur (JNB) and local probability sum-

mation. Second, in order to detect the flat/near flat regions that do not contribute to

perceivable blur, we propose a perceptually significant pixel detection model. Finally,

the proposed perceptually significant pixel detection model is further integrated into the

blur detection resulting in a Perceptually Significant Spatially-Varying Blur Detection (PS-

SVBD) scheme. This enables the deblurring process to be applied selectively to a small

set of perceptually significant locations, thus significantly increasing the computational

efficiency and reducing the deblurring artifacts.

The proposed methods are compared with six other state-of-the-art blur detection

methods, including Chakrabarti et al. [23], Shi et al. 2014 [28], Su et al. [29], Shi et

al. 2015 with propagation [33], Shi et al. 2015 without propagation [33] and Zhuo et

al. [85]. Experimental results show that the proposed methods exhibit a superior perfor-

mance both visually and quantitatively.

This work is organized as follows. Section II presents a review of popular existing

blur detection methods. Section III describes the proposed SVBD algorithm. Section IV

presents the proposed PS-SVBD scheme. Performance results are presented in Section V,

including visual and quantitative comparison, followed by a conclusion in Section VI.

4.2 Related Work on Blur Features/Blur Detection

This section presents an overview of popular existing blur detection methods.

4.2.1 Gradients and Local Filters based Methods

Tai and Brown [86] proposed the local contrast prior to measure image blur. The local con-

trast prior is defined as the local gradient normalized by local contrast. Zhuo and Sim [85]

re-blur the input image using a known Gaussian blur kernel and calculate the ratio be-

tween the gradients of input and re-blurred images. They show that the blur amount at the

edge location can be derived from the ratio. In [87], first-order (gradient) and second-order

(Laplacian) derivatives are used for blur detection. In addition, the gradient histogram span
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is commonly used in image blur detection [24, 28]. Blurred regions usually contain less

sharp edges, which leads to gradient distributions containing small values. So the blurred

patch gradient distribution tends to have a relatively strong peak at the origin and a small

tail. Peakedness could then be measured using the kurtosis of the gradient distribution.

Heavy-tailedness could be measured by fitting the local gradient magnitude distribution

to a mixture of a two-component Gaussian model [24, 28], where one component is re-

lated to the peak and the other component is related to the tail. So the component with a

larger variance between the two can be used as a measure of heavy-tailedness However,

fitting a Gaussian mixture model to every image patch is computationally demanding. The

methods of [88] and [89] use the kurtosis in the DCT domain to measure image sharp-

ness. Shi et al. [28] developped a group of linearly independent filters to separate blur and

unblurred patches through computing an invertible mapping matrix to make the mapped

feature response most discriminative.

4.2.2 Frequency Spectrum based Methods

The frequency spectrum is another important feature for blur detection. The authors of

[90] estimate the image blur by computing the summation of all frequency component

magnitudes above a certain threshold. Marichal et al. [91] use the occurrence histogram of

nonzero DCT coefficients as a blurriness metric. Shaked and Tastl [92] apply a high-pass to

band-pass frequency ratio to measure blur. Nill and Bouzas [93] calculate the normalized

image power spectrum weighted by a modulation transfer function (MTF) that is derived

empirically by taking into account the response of the Human Visual System (HVS) to

different frequencies. In more recent explorations, the methods of [24, 28] are based on

the observation that the power spectrum of a blurred patch usually falls off much faster

than its sharp counterpart, due to the lowpass characteristics of a blurred patch. In [24],

the fall-off rate of the power spectrum of the considered patch is estimated and used to

determine the blurriness of the patch. The method of [28] is based on the assumption that
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the cumulative average power spectrum for the blurred patch is smaller than that for its

sharp counterpart.

4.2.3 Maximum Saturation Method

A color-based blur estimation method is presented in [24] based on the assumption that the

maximum value of the saturation for blurred patches tend to be smaller than sharp ones.

The saturation Sp is calculated for each pixel and a saturation metric for each patch p is

computed as [24]:

q =
max(Sp)−max(S0)

max(S0)
(4.1)

where max(Sp) is the maximum saturation for patch p and max(S0) is the maximum satu-

ration for the whole image.

4.2.4 Local Autocorrelation based Methods

The 2D local autocorrelation function is commonly used to measure how well a patch

matches its spatially shifted version. The autocorrelation function is used in [87] to mea-

sure the image blur. An autocorrelation-based blur measure, denoted as local autocor-

relation congruency, was presented in [24]. This measure was also used to discriminate

between different types of blur (e.g., motion blur and out-of-focus blur). For motion blur,

all edges of the object will be blurred, except those edges with gradients perpendicular to

the blur direction. For the out-of-focus blur, all edges will be blurred.

4.2.5 Singular Value Feature based Method

Su et al. [29] proposed a blur measure based on the singular value decomposition (SVD).

Given an image patch I, the SVD can be represented as

I =UΛV T (4.2)
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where U,V are orthogonal matrices and Λ is a diagonal matrix composed of singular values

λi. Then the image I can be decomposed into multiple eigen-images as follows:

I =
n

∑
i=1

λiuivT
i (4.3)

where ui and vi are, respectively, the column vectors of U and V . Su et al. [29] indicated

that the first few most significant singular values will be larger for a blurred image as

compared to its sharp counterpart. Based on this, they proposed a blur measure based on

a ratio of the singular values.

4.2.6 Edge Sharpness based Methods

Another category of blur detection methods is based on edge sharpness [4, 5, 33, 94–97].

In [94], the average edge width for Canny edge pixels is adopted in an exponential model.

The method of [95] locates edge pixels in the wavelet domain. Then the edge pixels are

categorized as Dirac-Structure, Astep-Structure, Roof-Structure and Gstep-Structure. A

Roof-Structure or a Gstep-Structure edge pixel is classified as blurred if its edge intensity is

smaller than a threshold. Then the number of blurred Roof-Structure and Gstep-Structure

edge pixels is taken as the measure of blur of the entire image. In [96], blur is estimated

based on estimating the width of horizontal edges in the image. Zhang and Cham [97]

estimate the defocus map by adopting a parameterized multi-point scheme to measure

the edge blurriness. Ferzli and Karam [4] were the first to proposed the concept of Just

Noticeable Blur (JNB). The JNB is defined as the minimum amount of perceived blurriness

around an edge at a given contrast. The cumulative probability of blur detection (CPBD) is

proposed by Narvekar and Karam [5] as a blur metric for the entire image. More recently,

Shi et al. [33] also used the notation of Just Noticeable Blur (JNB) to refer to a blur

spanning about 3 to 9 pixels and losing a quantitatively insignificant level of structures.

However, they do not explicitly account for the Human Visual System (HVS)’s sensitivity

to blur.
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Figure 4.1: Diagram of the Proposed Spatially-Varying Blur Detection (SVBD) Algo-
rithm.

4.3 Proposed Spatially-Varying Blur Detection Algorithm

Fig. 4.1 shows the diagram of the proposed Spatially Varying out-of-focus Blur Detec-

tion (SVBD) algorithm. The proposed algorithm is mainly composed of directional edge

spread calculation, probability of blur detection and local probability summation. More

details about the proposed SVBD algorithm are given below.

4.3.1 Directional Edge Spread Calculation

Marziliano et al. [96] proposed a method to measure blur by measuring the spread of

edges or the edge width. In [96], the image is scanned along each row to get the start

and end position of the edge pixels. For each edge pixel, the start and end position of

the edge is defined as the locations of the local luminance extrema closest to the edge.

The width of the edge is then given by the distance between the end and start positions,

and used as a blur measure for this edge pixel. The method of [96] targeted overall image

quality assessment in the presence of uniform blur distortions and is not appropriate for the
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(a) (b) (c)

(d) (e)

Figure 4.2: (a) Original Input Image. (b) Edge Detection Image. (c) Quantized Edge
Direction Image. (d) Probability of Blur Detection Map for Edge Pixels if Using the Edge
Spread Map Generated by [96]. (e) Probability of Blur Detection Map for Edge Pixels
Using the Proposed Directional Edge Spread Method.

detection of spatially varying blur as it only scans the image for edges along one direction.

In the proposed algorithm, the edge gradient direction is calculated and quantized into

eight direction bins (−180◦, −135◦, −90◦, −45◦, 0◦, 45◦, 90◦ and 135◦), for every edge

pixel. The edge pixels can be detected using any popular edge-detection scheme such

as the Canny or Sobel edge detectors. Then the corresponding local luminance extrema

are located along the quantized gradient direction. This proposed method is capable of

obtaining a more dense edge spread measure, resulting in a more accurate blur measure

as shown later in this work, especially for spatially varying and directional blur cases.

Visual results providing a comparison between [96] and our proposed method are shown

in Fig. 4.2 with more details given in Section 4.3.2.
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4.3.2 Just Noticeable Blur and Probability of Blur Detection

As described in Section 4.3.1, the proposed method computes a directional dense edge

spread measure. However, this measure by itself does not fully take the Human Visual

System (HVS) into account, since the blur detection due to the same amount of edge

spread could be perceived differently based on the local characteristics of the visual con-

tent. Ferzli and Karam [4] proposed the concept of Just Noticeable Blur (JNB). The JNB is

defined as the minimum amount of perceived blurriness around an edge at a given contrast.

For an edge pixel ei, the probability of blur detection is modeled based on an exponential

psychometric function of the form:

P(ei) = 1− exp

(
−
∣∣∣∣ w(ei)

wJNB(ei)

∣∣∣∣β
)

(4.4)

where β = 3.6, w(ei) is the width of edge ei, and wJNB(ei) is the JNB width corresponding

to the local contrast in the neighborhood of edge ei as described in [4].

Fig. 4.2 shows results of the proposed directional edge spread and probability of blur

detection components of the proposed perceptual-based SVBD algorithm. We use the

input image of Fig. 4.2(a) as a test image to illustrate the importance of directional edge

computation, since it contains edges covering a large range of directions. Figs. 4.2(a),

(b) & (c) show the input image, detected edge pixels, and quantized edge directions at

each edge pixel, respectively. Figs. 4.2(d) & (e) show color-coded probability of blur

detection maps, in which red, yellow and light blue colors represent large, medium and

small probability of blur detection, respectively. The dark blue color in the background

indicates that the probability of blur detection is not available, due to no or insufficient

amount of edge pixels. When using (4.4) and the non-directional edge width computation

method of [96], the resulting probability of blur detection map is shown in Fig. 4.2(d),

while a more accurate and more dense probability of blur detection map is generated when

using (4.4) and the proposed directional edge spread calculation, as shown in Fig. 4.2(e).
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4.3.3 Local Probability Summation

Equation (4.4) gives the probability of blur detection at an edge pixel. When a human

observer views an image, the visual information is pooled in a neighborhood region to

come up with an overall perception. A proper local summation model is needed to obtain

the perceived blur level at location (i, j) by pooling within the neighborhood region cen-

tered at (i, j). The locally perceived blur map is obtained by applying a local summation

model on overlapped blocks around every pixel. Our spatially varying blur detection task

differentiates itself from existing work in the field of image quality assessment such as [4]

and [5], which apply pooling over the entire image to get the overall blurriness/sharpness.

In our case the blur is considered as spatially-varying, and a localized image blur detec-

tor is needed. For this purpose, we propose the following local pooling in each pixel’s

neighborhood:

PBlur(i, j) =


NUMEB
NUME

, if NUME > 0

1, else
(4.5)

where NUME is the total number of edge pixels within the N×N neighborhood block RN

centered at (i, j), and NUMEB denotes the total number of edge pixels with a detectable

blur in RN . Here detectable blur means that the probability of blur detection P(ei) is

larger than the just noticeable blur detection probability PJNB. PJNB results when w(ei) =

wJNB(ei) in (4.4), which gives a probability of detection equal to 63% [4].

PBlur(i, j) given by (4.5) corresponds to the blur map, which gives the level of perceiv-

able blur at each pixel location (i, j) in the image. In our implementation, N is chosen to be

64 as in [4, 71], to model the foveal region (2 degrees of visual angle) for common view-

ing conditions. For hybrid environments (corresponding to different viewing distances

and displays), N can be set based on the smallest viewing distance and highest display

resolution.

Since we pool over a N×N local block, for blurred edge pixels near the boundary of
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a sharp region, edge pixels in the sharp regions that are spatially close to the boundary

can incorrectly contribute to the pooling resulting in an underestimated low PBlur value.

This occurs due to the fact that sharp regions typically contain a significantly high number

of detected edge pixels as compared to the blurred regions, which causes the bias toward

sharp near the blur/sharp region boundaries. To remove outliers that might occur near the

boundaries of sharp and blurred regions and improve the blur boundary precision, outlier

removal is applied to each N×N neighborhood RN that contains a sufficient number of

edges and that has a low PBlur (PBlur < 0.6 is used in our implementation) by analyzing

the spatial location of sharp edge pixels at which the P(ei) is smaller than PJNB. Within

each such local neighborhood RN , we calculate the centroid of edge pixels at which the

P(ei) is smaller than PJNB. The centroid is denoted as Cs. The distance between Cs and

the local neighborhood center C is calculated. If this distance is above a threshold Dth (a

quarter of the pooling block RN size is used as the Dth in our implementation), then the

distribution of these edge pixels without a detectable blur is unbalanced and diverges away

from the pooling block center. In this case, these sharp edge pixels in RN are masked and

are thus not included in the computation of PBlur as in (4.5). These PBlur values for the

pixels near the boundaries of sharp and blurred region could be further refined through

post processing operations such as image matting [85].

Fig. 4.3 visually illustrates the need of the outlier removal step. Figs. 4.3(b) & (c)

show, respectively, the blur map PBlur(i, j) before outlier removal and the corresponding

extracted sharp regions when applying a binarized sharpness mask (1 is sharp; 0 is non-

sharp) to the input image. The binarized sharpness mask was obtained by thresholding

the blur map of Fig. 4.3(b) such that locations (i, j) with PBlur(i, j) less than a threshold

(a value of 0.6 was used in our implementation), correspond to pixels with no perceived

blur (sharp locations), and are assigned a value of 1; all other locations are considered

non-sharp and are assigned a value of 0. In Fig. 4.3(c), we circled out the outliers that are

wrongly labeled as sharp pixels, due to the aforementioned sharp bias near the boundaries.
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(a) (b) (c)

(d) (e)

Figure 4.3: Comparison of Blur Map Before and After Outlier Removal. (a) Original
Input Image. (b) Blur Map Before Outlier Removal (Dark Blue is Lowest and Dark Red
is Highest). (c) Applying Binarized Sharpness Mask (1 is Sharp; 0 is Non-sharp) Before
Outlier Removal on the Input Image. The Ellipses Show the Outlier Regions. (d) Blur
Map After Outlier Removal (Dark Blue is Lowest and Dark Red is Highest). (e) Applying
Binarized Sharpness Mask (1 is Sharp; 0 is Non-sharp) After Outlier Removal on the Input
Image.

Figs. 4.3(d) & (e) show, respectively, the blur map PBlur(i, j) after outlier removal and the

corresponding extracted sharp regions when applying the binarized sharpness mask to the

input image. These figures demonstrate that the outlier removal step helps in obtaining

better defined boundaries between sharp and blurred regions.

4.4 Perceptually Significant Blur Detection

In Section 4.3, a perceptual-based spatially-varying blur detection (SVBD) algorithm is

presented based on directional edge spread calculation, probability of blur detection, and

local probability summation. Blur values are generated for all the pixels, and can be used

for image deblurring. However, the proposed SVBD algorithm cannot distinguish flat ar-

eas from heavily blurred ones and just categorizes those as non-sharp areas, as shown in

Equation (4.5). Neither blurriness nor sharpness can be perceived in flat/near flat regions.
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Figure 4.4: Diagram of the Proposed Perceptually Significant Blur Detection Algorithm.

In other words, pixels with small/no spatial activity carry small/no information related to

sharpness/blurriness, in contrast to perceptually significant pixels such as edges/texture

which present important cues for human blur perception [98]. Additionally, image de-

blurring operations can barely reconstruct any perceivable information at perceptually flat

pixels, since there is a small/no perceivable spatial activity in these locations. Here we pro-

pose the concept of perceptually significant blur. Fig. 4.4 presents the diagram of the pro-

posed Perceptually Significant Spatially-Varying Blur Detection (PS-SVBD) algorithm. It

adds perceptually significant pixel detection into the local blur detection scheme proposed

in Section 4.3. The summation of the probability of blur detection is only applied to per-

ceptually significant pixels, to generate a final perceptually significant blur map. Unlike

the blur detection algorithm proposed in Section 4.3, which categorizes each pixel as non-

sharp or sharp pixel, the PS-SVBD method categorizes each pixel into blurred pixel, sharp
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pixel or perceptually less significant (near flat) pixel. In the proposed scheme, the image

blur detection and, thus, any restoration process can be applied selectively to a small set

of perceptually significant locations, thus significantly increasing the computational effi-

ciency of the restoration process and reducing the restoration artifacts. Details about the

proposed PS-SVBD algorithm are presented in the following subsections.

4.4.1 Perceptual Difference Detection Model based on Probability Summation

Perceptually significant pixels are pixels with significant spatial activity, changes or de-

tectable difference. Here we start to build the model based on the probability of difference

detection.

Consider the local value at a pixel (i, j) to be represented as:

I(i, j) = mean(RM)+diff(i, j) (4.6)

where mean(RM) is the local mean value over a local considered M neighborhood RM

surrounding pixel (i, j), and diff(i, j) is the difference between I(i, j) and the local mean.

This difference can be used as a starting point to represent spatial activity. Considering

that the same intensity difference could be perceived differently based on the local charac-

teristics of the visual content, the human visual system should be taken into account. The

information in the visual system is represented in terms of contrast and not in terms of the

absolute level of light. So the relative changes in luminance are important rather than ab-

solute ones [4]. The contrast sensitivity threshold measures the just noticeable difference

(JND) that yields a visible signal over a uniform background. The proposed difference

detection model makes use of the JND for calculating the probability of difference detec-

tion. The impact of the same diff(i, j) could be different in image regions with different

JNDs. The adopted JND model is proposed by Ahumada [69] and Watson [70], and can
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be expressed in the following form in the spatial domain [38]:

JND(i, j) = t128

(
∑

M−1
n1=0 ∑

M−1
n2=0 I(n1,n2)

M2(128)

)γ

= t128

(
mean(RM)

128

)γ
(4.7)

where I(n1,n2) is the intensity level at each pixel location (n1,n2) in a M×M region RM

surrounding pixel (i, j). It should be noted that the indices (n1,n2) are used to denote the

location with respect to the top left corner of the region RM, while the indices (i, j) are

used to denote the pixel location with respect to the top left corner of the whole image. In

Equation (4.7), mean(RM) is the mean value over the considered region RM surrounding

pixel (i, j), γ is a correction exponent that controls the degree to which luminance masking

occurs and is set to γ = 0.649, as given in [70]. M = 8 was used in our implementation.

Considering that there is an individual detector at each pixel, the probability of dif-

ference detection at location (i, j) can be modeled as an exponential having the following

form [68]:

P(i, j) = 1− exp
(
−
∣∣∣∣ diff(i, j)
JND(i, j)

∣∣∣∣α) (4.8)

where JND(i, j) is the JND value at (i, j) and it depends on the mean intensity, mean(RM),

in a local neighborhood region RM surrounding pixel (i, j), as given in Equation (4.7). α

is a parameter whose value is chosen to maximize the correspondence of (4.8) with the

experimentally determined psychometric function for difference detection. α is observed

to be about four in psychophysical experiments [68].

When a human observer views an image, the visual information is pooled in a neigh-

borhood region to come up with a difference perception. A local summation model [68]

is applied to obtain the perceived difference for the block center pixel (i, j) by computing

the probability of difference detection in the neighborhood region RM centered at (i, j) as

follows:

PRM(i, j) = 1− ∏
(n1,n2)∈RM

(1−P(n1,n2)). (4.9)
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where P(n1,n2) is given by Equation (4.8). Substituting (4.8) into (4.9) yields

PRM(i, j) = 1− exp(−Dα
RM

(i, j)) (4.10)

where

DRM(i, j) =

(
∑

(n1,n2)∈RM

∣∣∣∣ diff(n1,n2)

JND(n1,n2)

∣∣∣∣α
)1/α

(4.11)

From (4.10), it can be seen that PRM(i, j) increases (decreases) when DRM(i, j) increases

(decreases). So DRM(i, j) can be used as a local perceptual difference detection model in

place of PRM(i, j).

4.4.2 Perceptually Significant Pixel Detection

Equation (4.7) shows that JND(i, j) depends on the local mean mean(RM) of the neighbor-

hood RM surrounding pixel (i, j). For the proposed perceptually significant pixel detection

algorithm, when computing DRM(i, j) at a considered pixel (i, j), the mean of the local

neighborhood RM surrounding pixel(i, j), mean(RM), is used to approximate the local

mean of all pixels (n1,n2) in that neighborhood. Consequently,

JND(n1,n2) = JND(RM)

= t128

(
mean(RM)

128

)γ

,∀(n1,n2) ∈ RM.
(4.12)

Thus, for each local neighborhood RM, one JND(RM) will be calculated for all pixels

(n1,n2) belonging to RM, and different JND(RM) will be calculated separately for each

RM. Using (n1,n2) as the indices within a local neighborhood RM surrounding pixel (i, j),

the perceptual difference detection model is derived from (4.11) as follows:

DRM(i, j) =

(
∑

n1,n2∈RM

∣∣∣∣ diff(n1,n2)

JND(n1,n2)

∣∣∣∣α
)1/α

=

(
∑n1,n2∈RM |diff(n1,n2)|α

(JND(RM))α

)1/α
(4.13)

In (4.13), ∑n1,n2∈RM |diff(n1,n2)|α can be approximated as M2E[|(diff(n1,n2)|α ] under the

ergodicity assumption. Also, consider diff(n1,n2)∼ N(0,σRM), using the central absolute
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moments of a Gaussian distribution process [72], then

E[|diff(n1,n2))|α ] = σ
α
RM

2α/2Γ(α+1
2 )

π1/2 , for α >−1 (4.14)

where Γ(t) is the gamma function

Γ(t) =
∫

∞

0
xt−1e−xdx (4.15)

Using (4.14), DRM(i, j) in (4.13) can be expressed as follows:

DRM(i, j) =

M2σα
RM

2α/2Γ(α+1
2 )

π1/2

(JND(RM))α

1/α

(4.16)

For a given α , define a constant H as

H =

(
M2 ·2α/2Γ(α+1

2 )

π1/2

)1/α

(4.17)

Then, the proposed perceptual significance model for pixel (i, j) is given by:

SRM(i, j) =
DRM(i, j)

H
=

σRM

JND(RM)
(4.18)

where RM is the local neighborhood surrounding pixel (i, j). Equation (4.18) indicates that

the pixel perceptual significance can be represented as the image local standard deviation

weighted by the local JND.

4.4.3 Flat Region Detection and the proposed PS-SVBD Method

The perceptual significance map (4.18) can be binarized through thresholding, to generate

a perceptual significance mask. Here we use SRM > 1 to generate a perceptual signif-

icance mask in our implementation. The obtained perceptual significance mask is then

incorporated into the SVBD algorithm as shown in Fig. 4.4, in order to detect near flat

areas (corresponding to SRM < 1) in the image of interest as these do not contribute to

perceivable blur and should not be included in the perceptually significant blur mask. The

perceived blur level will be calculated only for perceptually significant pixels (correspond-

ing to SRM > 1) using ((4.5), while the other pixels (at which SRM < 1) are labeled as flat.
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This perceptual significance model has also the added advantage that it makes the pro-

posed method be more robust to the performance of the selected edge detector, which

might fail in detecting edges in heavily blurred regions. For those regions where edges are

not detected, our proposed PS-SVBD method could characterize these as flat or blurred

based on (4.18), which makes use of the local variance and local JND to characterize the

local spatial activity and perceptual significance. As indicated by (4.18), if the local vari-

ance is large relative to the JND, the considered local region with no/few edges detected

is characterized as heavily blurred (assigned a PBlur value of 1 according to (4.5)); oth-

erwise, if the local variance is small relative to the local JND, the considered region is

characterized as flat.

4.5 Experimental Results

Here the performance of the proposed SVBD and PS-SVBD algorithms is presented. For

this purpose, we test the proposed methods on a very recent blur detection database pro-

vided by [28]. This blur detection benchmark database contains 1000 blur images of

different resolutions, including 704 out-of-focus images and 296 motion blur images. A

binary ’ground-truth’ blur/sharp mask is provided for each image of the database. The

mask is obtained by human labeling of the blur regions. We used all of the 704 out-of-

focus images out of the entire 1000 test images in this database. We compare our method

with six state-of-the-art methods, including Chakrabarti et al. [23], Shi et al. 2014 [28], Su

et al. [29], Shi et al. 2015 with propagation [33], Shi et al. 2015 without propagation [33]

and Zhuo et al. [85].

4.5.1 Blur Detection Evaluation on All Pixels

We first provide the overall quantitative comparison of the proposed SVBD and existing

methods in Fig. 4.5 in terms of precision-recall plots. All pixels in all of the 704 out-of-

focus blur images are considered in the evaluation of precision and recall, where precision

refers to the fraction of retrieved instances that are relevant and recall refers to the fraction

53



Figure 4.5: Quantitative Comparison: Precision-Recall Curves for the Proposed and Ex-
isting Methods, Using All Pixels for Evaluation.

Table 4.1: Performance Results of Proposed and Existing Methods in Terms of the F-
measure.

Using all pixels Using perceptually significant pixels
Chakrabarti et al. [23] 0.7997 0.7697
Su et al. [29] 0.8289 0.7929
Zhuo et al.(includes matting) [85] 0.8132 0.7894
Shi et al. [28] 0.8357 0.7984
Shi et al. 2015 with propagation [33] 0.8095 0.7743
Shi et al. 2015 without propagation [33] 0.8562 0.8257
Proposed SVBD/PS-SVBD 0.8607 0.8326
Proposed SVBD/PS-SVBD with matting 0.8711 0.8489

of relevant instances that are retrieved. More specifically for our case, precision refers to

the percentage of detected blur that corresponds to actual blurred regions in the ground-

truth, and recall refers to the percentage of actual blurred regions that are detected. In

order to compare precision-recall curves, the F-measure, which takes both precision and
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.6: Visual Comparison of Blur Maps for the Proposed SVBD Algorithm and
Existing methods. For Maps Shown in (c)-(j), Blue Values Correspond to Sharp (Low
Blur Detection) Regions, and Red Values Correspond to Blurred (High Blur Detec-
tion) Regions. (a) Input; (b) Ground-Truth Mask (Black is Sharp and White is Non-
Sharp); (c) Chakrabarti et al. [23]; (d) Su et al. [29]; (e) Zhuo et al. [85]; (f) Shi et al.
2014 [28]; (g) Shi et al. 2015 with Propagation [33]; (h) Shi et al. 2015 without Propaga-
tion [33]; (i) Proposed SVBD Algorithm; (j) Proposed SVBD Algorithm with Matting.
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recall into consideration, is used and is given by [99]:

F = 2× precision× recall
precision+ recall

(4.19)

Table 4.1 (second column) shows the resulting F-measure for the proposed SVBD and

existing methods. From Table 4.1, it can be clearly seen that the proposed SVBD method

results in the best F-measure, and thus achieves the best precision-recall performance as

compared to the other six state-of-the-art methods. The result of the proposed SVBD al-

gorithm could be further improved by including a post-processing matting operation [85],

as shown in Fig. 4.5 and Table 4.1.

For visual comparison, the resulting blur maps are also shown in Fig. 4.6. The re-

sults of Fig. 4.6 vividly demonstrate that the proposed SVBD method is able to obtain a

consistently better blur detection result than existing competitive methods, while existing

methods failed in some of the test cases.

Finally, the computational cost of the proposed SVBD method is relatively low. The

best existing method Shi et al. without propagation [33] is a l1-norm minimization prob-

lem, which is iterative and computational complex. Although Shi et al. without propaga-

tion [33] utilized the OMP-Box package [100] for a fast l1-norm minimization, however,

it still takes a total of PL2 +Q(2PL+K2L+ 3KL+K3) operations [100], where P is the

size of the atom for the sparse dictionary, L is the number of the atoms in the dictionary, Q

is the number of elements in the signal and K is the target sparsity. In the implementation

of [33], P = 64, L = 128, Q is the number of the pixels in the test image and K = 64.

So the method of [33] takes an average of 827392 operations per pixel in the test image.

In the proposed SVBD algorithm, the Sobel edge detector takes 19Q operations; the edge

gradient direction takes 6Q operations; the directional edge width computation takes 89Q

operations for the worst scenario corresponding to the largest possible search range for

local luminance extrema; the block contrast computation takes 3Q operations; the JNB

computation takes Q operations; the probability of blur detection takes 5Q operations; the
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local probability summation takes 258Q operations. So the proposed SVBD algorithm

takes a total of only 381 operations per pixel in the test image, which is significantly lower

than that of Shi et al. without propagation [33]. In addition, Shi et al. without propaga-

tion [33] requires offline training.

4.5.2 Blur Detection Evaluation on Perceptually Significant Pixels

As we discussed in Section 4.4, perceptually less significant pixels have a relatively lower

local variance and/or higher JND. Those pixels correspond to perceptually flat or near flat

areas and play a less important role in blur perception, in contrast to perceptually signif-

icant pixels which have a relatively higher local variance and/or lower JND. To further

validate the effectiveness of the proposed PS-SVBD algorithm, we provide the precision-

recall comparison by taking only those perceptually significant pixels into the evaluation of

precision and recall. These perceptually significant pixels can be detected through the per-

ceptual significance detection model as described in Section 4.4.2. Here we use SRM > 1 to

detect perceptually significant pixels in our implementation. The quantitative comparison

results are shown in Fig. 4.7.

Table 4.1 (third column) shows the resulting F-measure for the proposed PS-SVBD

method and existing methods, when only perceptually significant pixels are taken into

consideration. From Table 4.1, it can be clearly seen that the proposed PS-SVBD method

results in the best F-measure, and thus achieves the best precision-recall performance as

compared to the other six state-of-the-art methods. Similarily, the result of the proposed

PS-SVBD algorithm could be further improved by including a post-processing matting

operation [85], as shown in Fig. 4.7 and Table 4.1.

Fig. 4.8 shows the resulting blur maps for several images using our proposed PS-SVBD

scheme (Figs. 4.8(g) & (h)) and existing methods. For the blur maps shown in Figs. 4.8(b)-

(h), blue values correspond to sharp (low blur detection) regions and red values correspond

to blurred (high blur detection) regions. In addition, in the blur maps generated by the
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Figure 4.7: Quantitative Comparison: Precision-Recall Curves for the Proposed and Ex-
isting Methods, Using Only Perceptually Significant Pixels for Evaluation.

proposed PS-SVBD method (Figs. 4.8(g) & (h)), white values correspond to flat/near flat

areas. None of the existing methods are able to detect these regions. Fig. 4.8 clearly

shows that our proposed SVBD and PS-SVBD methods can better predict the perceived

blur, while Shi et al. 2014 [28] fails for the second test image and and Zhuo et al. [85] fails

for the third test image.

In addition, our proposed methods are not only capable to detect blur, but also to

indicate the different amount of perceived blur. As shown for the third test image in

Fig. 4.8, our method not only distinguishes two sharp and two blurred objects, but also

assigns different values of perceived blur to those two relatively sharp objects, while the

method in [28] fails to distinguish that the level of sharpness is different for these objects.

Moreover, as shown in Figs. 4.8(g) & (h), our proposed PS-SVBD method is capable to

detect and characterize flat/near flat regions in addition to sharp and blurred ones.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8: Visual Comparison of Blur Maps for the Proposed PS-SVBD Algorithm and
Existing Methods. For Maps Shown in (b)-(h), Blue Values Correspond to Sharp (Low
Blur Detection) Regions; White Values Correspond to Flat Regions; and Yellow to Red
Correspond to Blur to More Heavily Blurred Regions. (a) Input; (b) Zhuo et al. [85]; (c) Shi
et al. 2014 [28]; (d) Shi et al. 2015 with Propagation [33]; (e) Shi et al. 2015 without
Propagation [33]; (f) Proposed SVBD Algorithm with Matting; (g) Proposed PS-SVBD
Algorithm; (h) Proposed PS-SVBD Algorithm with Matting.

4.6 Conclusion

This chapter presents a perceptual-based Spatially Varying Blur Detection (SVBD) al-

gorithm that is capable of generating a spatially varying blur map including the relative

amount of local perceived blurriness. The proposed blur detection method involves direc-
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tional edge spread calculation, probability of blur detection, and local probability summa-

tion. In addition, a local perceptual significance model is derived and incorporated into

the blur detection resulting in a Perceptually Significant Spatially Varying Blur Detection

(PS-SVBD) algorithm. This latter method enables the detection of perceivable blur while

eliminating flat and near flat regions from the blur map. Experimental results and com-

parison with state-of-the-art blur detection methods show that the proposed methods out-

perform existing state-of-the-art blur detection methods both visually and quantitatively in

terms of precision-recall.
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Chapter 5

SELECTIVE PERCEPTUAL BASED IMAGE DEBLURRING

In this chapter, we study the problem of image blind deblurring. State-of-the-art blind

deconvolution methods are presented. After that, two selective perceptual-based image

deblurring frameworks are demonstrated. The experimental results show that the proposed

frameworks are capable of achieving a good reconstructed image quality for spatially-

varying blurred images.

5.1 Introduction

Image blur is caused by factors such as object-camera motion, defocus, atmospheric turbu-

lence, and sensor limitations. Image deblurring is performed to recover a sharp version of

a blurred input image. It is a long-standing challenging problem in the field of image pro-

cessing, computational photography and computer vision. On one hand, image deblurring

is useful to recover a high visual-quality image, which is of great importance in the field of

consumer electronics, medical imaging and surveillance applications. On the other hand,

image deblurring can be used to overcome camera limitations, in order to make imaging

devices more affordable, compact and portable. In a typical image deblurring framework,

a blurry image y is modeled as a convolution between a sharp image x and a blur kernel k,

with additive noise n as follows:

y = k ∗ x+n (5.1)

Image deblurring methods can be categorized into non-blind image deblurring and blind

image deblurring. In non-blind image deblurring/deconvolution, the blur kernel k is ei-

ther given or can be estimated through a special calibration pattern in a controlled lab

setup. Only x is unknown. Existing research on non-blind image deconvolution include

the Richardson-Lucy method [101], and methods proposed by Krishnan and Fergus [102],

Zoran and Weiss [103] and Joshi et al. [16], to name a few. For blind image deblurring,
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both the blur kernel and desired sharp image are unknown. We will focus on blind de-

convolution in this research. The blind deconvolution can be analyzed through a Bayesian

framework by maximizing a posteriori probability (MAP), seeking a pair (x,k) maximiz-

ing [19]:

p(x,k | y) ∝ p(y,x | k)p(x)p(y) (5.2)

where ∝ is the proportional symbol. The blind deconvolution could also be performed by

solving the following regularized cost minimization [104]:

minx,k ‖k ∗ x− y‖2
2 +λJ(x)+ γG(k) (5.3)

where J(x) is the regularization term for x, G(k) is the regularization term for k, λ and γ

are the weights for J(x) and G(k), respectively. When updating x and k simultaneously,

the solution is referred to as a MAPx,k solution. Prior knowledge about the statistical

distribution of natural images such as their sparse derivative distribution [105] is typically

utilized as a regularization term when solving the blind deconvolution problem. Such prior

knowledge is introduced in the hope of favoring natural images over unnatural ones as the

desired solution. Different prior information is adopted for image deblurring, such as the

l2-norm or l1-norm [105]. In addition, extra components are added to improve deblurring

quality, including selecting sharp gradients/edges from the image [20, 21], and marginal-

ization over all possible images [106–108], in which the kernel estimation accounts for the

covariance around x and not only for the mean solution.

However, many of the existing image deblurring methods [19, 22, 34, 35] assume that

the blur kernel is fixed for the entire image. In real-life applications, the defocus blur

often varies spatially in an image, due to the fact that objects could be at different depths

away from the lens. Blind deconvolution for spatially-varying blurred images is a more

challenging task, as compared to non-blind deconvolution or non-varying blur cases. Many

of the existing blind deblurring methods are either computationally costly and/or cannot

perform reliably when dealing with spatially-varying blurred images, especially when the
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blur is not caused by camera motion. These methods could potentially be applied to local

image patches; still they generally do not take human perception into account. Certain

regions of the image may not contain perceivable blur, thus no deconvolution is needed

there. The application of the spatially-varying blur detection methods that were proposed

in Chapter 4 can benefit the image blind deconvolution process by applying selectively the

restoration to only those regions with perceivable blur, which may result in a reduction of

restoration artifacts and a possible reduction in computational cost.

Some existing methods claim to be applicable to performing a blind deconvolution

for spatially-varying blurred images. But these methods either deal with motion blur [23]

or require enough edges at most orientations [16]. These constraints greatly limit their

reliability and possible applications to out-of-focus image deblurring. In addition, these

existing methods do not take human perception into account.

The remainder of this chapter is organized as follows. Firstly existing state-of-the-art

blind deconvolution methods are presented. Then two selective perceptual-based image

deblurring frameworks are presented, followed by experimental results.

5.2 Existing Blind Deconvolution Methods

Hereby we discuss state-of-the-art blind deconvolution methods. A wide range of para-

metric image priors were proposed for image deblurring. The simplest choice is to use the

l2-norm [19] penalties on the output of local derivative operators. However, one can easily

find that the derivative histogram of a natural image is non-Gaussian [19]. The l2-norm is

not able to adequately model the sparse nature of common image and blur gradients, and

results in deblurred images that are either over-smoothed or have ringing. Instead, many

approaches use a lp-norm on the gradient, with p < 1 [105, 109, 110]. This exponential

distribution with p smaller than one is sparse, encourages small values and punishes large

values in the image gradient distribution, reflecting the statistics of natural images. An-

other alternative for regularization is the use of total variation (TV) [111]. For a real-valued
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continuous function, its total variation is a measure of the one-dimensional arclength of

the curve on the interval of definition [112]. However, total variation may introduce loss

of contrast in the reconstructed image [113].

Levin et al. [19] show that the direct application of many commonly used sparse deriva-

tive prior in a MAPx,k framework fails to reach the desired sharp image solution. To be

more specific, the MAPx,k score does favor sharp signals for step edges, and thus steer-

ing it towards the sharp solution. However, it is not the case for impulse edges and sharp

natural images [19]. So many of those MAPx,k algorithms require additional components

to reach the desired sharp image solution. Some methods use heuristics to select sharp

gradients/edges [20, 21], in order to reduce the generation of artifacts. Others include

spatially-varying prior terms [114], computing marginal probabilities over all possible im-

ages [19, 106–108] and determining of the edge locations using shock filtering [115].

Levin et al. [19] propose the MAPk estimation while marginalizing over x. This is

proposed based on the fact that the dimensionality of k is relatively small. While a si-

multaneous MAPx,k estimation fails to reach the desired sharp image solution, a MAPk

estimation of k alone (marginalizing over x), is well constrained and recovers an accurate

kernel [19]. Such MAPk estimation can be expressed as follows:

k̂ = arg max p(k | y) = arg max
∫

p(x,k | y)dx (5.4)

The computation of MAPk is challenging since it involves a computationally intractable

marginalization over all possible x explanations. Approximation methods of MAPk are

adopted, such as the EM MAPk approach of Levin et al. [34].

In more recent developments of blind deconvolution, Babacan et al. [35] presented

a general method for blind image deconvolution using Bayesian inference with super-

Gaussian sparse image priors. Sun et al. [116] explored a new approach for kernel esti-

mation from a single image via modeling image edge primitives using patch priors. Both

a statistical prior learned from natural images and a simple synthetic prior are examined.
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Xu et al. [117] proposed a new sparse l0 approximation scheme. Perrone et al. proposed

projected alternating minimization in [113] and developed a blind deconvolution method

based on a family of logarithmic image priors [118].

Krishnan et al. [22] proposed to use the ratio of l1-norm to l2-norm for image regular-

ization in a MAPx,k approach, which favors sharp images over blurry ones. The l1-norm is

generally used to impose signal sparsity and penalize the high frequency bands. When an

image is more blurred, its high frequency components get reduced as well as their l1-norm.

Minimizing the l1-norm will favor blurry images and a delta kernel, instead of a sharp im-

age and a blur kernel. The l1/l2 ratio is a normalized version of the l1-norm. When the

image is more blurred, both the l1-norm and the l2-norm decrease but the l2-norm de-

creases faster. This regularizer compensates for the attenuation of high frequencies and

therefore favors a sharp image and a blur kernel. The cost function is modeled as:

minx,k ‖k ∗ x− y‖2
2 +
‖x‖1
‖x‖2

+ψ ‖k‖1 (5.5)

Similarly like other MAPx,k algorithms, this method [22] alternates between two main

steps: 1) set k constant and solve for the best x, and 2) set x constant and solve for the

best k. The x sub-problem is non-convex due to the l1/l2 term. The iterative shrinkage-

thresholding algorithm (ISTA) [119] is adopted by fixing the denominator of the regular-

izer from the previous iteration and solving the convex l1-norm regularized problem. Un-

constrained iterative re-weighted least squares (IRLS) is used for the k sub-problem [22].

5.3 Proposed Selective Perceptual-Based Image Deblurring-I (SPID-I) Framework

Fig. 5.1 shows a block diagram of the proposed selective perceptual-based image deblurring-

I (SPID-I) framework. The application of the proposed selective perceptual significant

blur detection framework (Chapter 4) will benefit the image blind deconvolution process

by applying the restoration process selectively to a small set of perceptually significant

blur locations, thus significantly reducing the restoration artifacts. As shown in Fig. 5.1,

a perceptually significant blur map is first generated for the considered input image using
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Figure 5.1: Diagram of The Proposed Selective Perceptual-Based Image Deblurring-I
(SPID-I) Framework.

the proposed PS-SVBD method. The generated blur map has a high value at perceptually

significant blur pixels, as discussed in Chapter 4. Then a selected image patch is deblurred

only when the patch contains perceptually significant blur pixels. The deconvolution ker-

nel is estimated by applying the selected blind deconvolution method to the considered

image patch. Then the estimated kernel is applied through a non-blind devolution oper-

ation on the same patch, to get the initial deblurred result of the considered patch. The

binarized blur map is applied to merge the initial deblurred result and the input image.

Only those perceptually significant blur pixels will be updated using the pixel value of the

initial deblurred result.

5.4 Experimental Results for the SPID-I Framework

Here we use a test image with a spatially varying blur to demonstrate the proposed SPID-I

framework, as shown in Fig. 5.2. Four different patches are chosen at different distances
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Figure 5.2: The Test Image to Demonstrate the Proposed SPID-I Framework.

from the camera. In addition to the proposed SPID-I method, three state-of-the-art meth-

ods are compared including Babacan et al. [35], Levin et al. [34], and Krishnan et al. [22].

The obtained performance results and comparisons with existing methods using different

patches are presented in Fig. 5.3 to Fig. 5.6. It can be clearly seen that the proposed SPID-I

method results in the best visual quality for the deblurred image. In comparison, the results

of Babacan et al. [35] and Levin et al. [34] methods are less sharp. The Krishnan et al. [22]

is capable of getting the sharpest reconstructed results among those three existing meth-

ods, while it suffers from reconstruction artifacts in the non-blur region. In the proposed

SPID-I framework, the final deconvolution result is generated by merging the input image

with the deblurred result of the method of Krishnan et al. [22], based on the binarized blur

map, by only updating the perceptually significant blurred pixels of the input image (bina-

67



(a)

(b)

(c)

(d)

(e)

Figure 5.3: Comparison of Image Deblurring, test patch 1. (a) Original Input Image.
(b) Babacan et al. [35]. (c) Levin et al. [34]. (d) Krishnan et al. [22]. (e) Proposed SPID-I
Method.
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(a) (b) (c)

(d) (e)

Figure 5.4: Comparison of Image Deblurring, test patch 2. (a) Original Input Image.
(b) Babacan et al. [35]. (c) Levin et al. [34]. (d) Krishnan et al. [22]. (e) Proposed SPID-I
Method.

rized blur map is 1 at these pixels’ locations) with their corresponding deblurred values.

The deblurring results of the proposed SPID-I framework preserve the sharpness of the

method of Krishnan et al. [22], while significantly reducing the restoration artifacts.

5.5 Proposed Selective Perceptual-Based Image Deblurring-II (SPID-II) Framework

In the proposed SPID-I framework, for different patches within the same image, the decon-

volution kernel need to be estimated again. Since the kernel estimation is computational

much more expensive than non-blind devolution, it would be beneficial if the estimated

kernel could be applied to other patches with a similar blur level. The proposed SVBD

algorithm is capable of generating a blur map indicating the relative amount of perceived

local blurriness. The generated blur map could be used as a guidance to selectively apply
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(a) (b) (c)

(d) (e)

Figure 5.5: Comparison of Image Deblurring, test patch 3. (a) Original Input Image.
(b) Babacan et al. [35]. (c) Levin et al. [34]. (d) Krishnan et al. [22]. (e) Proposed SPID-I
Method.

the estimated kernel to other blur patches.

Many natural images are composed of background and foreground. While the blur

level for the background and foreground are quite different, the blur level within the back-

ground or the foreground could be relatively close. The proposed SPID-II framework is

especially useful for these cases. As illustrated in Fig. 5.7, the blur map is generated using

the proposed SVBD algorithm, and a local patch is selected in the blur region. Then the

deconvolution kernel is estimated by applying a blind deconvolution on the considered

local patch. The estimated kernel is then applied to other local patches whose blur level is

close to the local patch that was used to estimate the blur kernel.

70



(a) (b) (c)

(d) (e)

Figure 5.6: Comparison of Image Deblurring, test patch 4. (a) Original Input Image.
(b) Babacan et al. [35]. (c) Levin et al. [34]. (d) Krishnan et al. [22]. (e) Proposed SPID-I
Method.

5.6 Experimental Results for the SPID-II Framework

Here we use three natural images to demonstrate the proposed SPID-II framework. The

results are shown in Fig. 5.8. As described in the SPID-II framework, a deconvolution

kernel is estimated by applying a blind deconvolution to the considered image local patch.

In this experiment, the applied kernel estimation method is Krishnan et al. [22] and the

image local patch is chosen as a rectangular region in the background. If the same de-

convolution kernel is applied to the whole image through non-blind deconvolution, the

deblurring result is shown in Fig. 5.8(d). The applied non-blind deconvolution is Krishnan

et al. [102]. While the originally blurry background does get sharper, this method creates

a lot of restoration artifacts in the foreground. Our proposed SPID-II framework is ca-

pable of differentiating the blur region and sharp region, and applying the deconvolution
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Figure 5.7: Diagram of the Proposed Selective Perceptual-Based Image Deblurring-II
(SPID-II) Framework.

selectively to the blur region, which significantly reduces the restoration artifacts, while

preserving the sharpness of the deblurred image.

The corresponding objective comparisons are provided in Table. 5.1 using the CPBD [5]

and SSIM [47] objective quality assessment methods. SSIM [47] is used to evaluate the

fidelity between the sharp region of the input image and the same region of the deblurred

results. CPBD [5] is used to evaluate the sharpness of the blur region. As shown in Ta-

ble. 5.1, when the same deconvolution kernel is applied to the whole image, the resulting

deblurred image has a higher CPBD than the original image, indicating an increase in im-

age sharpness; however, the resulting deblurred image leads to a reduced SSIM for the

sharp regions due to the introduction of restoration artifacts. The proposed SPID-II frame-

work results in a high CPBD for the deblurred blur regions, while maintaining a high SSIM
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(a) (b) (c) (d) (e)

Figure 5.8: Visual Results for the Proposed SPID-II Framework. For Maps Shown in
(c), Red Values Correspond to Blurred (High Blur Detection) Regions, and Blue Values
Correspond to Sharp Regions. (a) Input Image; (b) Grayscale Input Image; (c) Blur Map
Generated by the SVBD Algorithm with Matting; (d) Deblurring Result when Applying
One Estimated Kernel globally; the Kernel is Estimated Using a Blurred Patch; (e) De-
blurring Result of the Proposed SPID-II Framework; One Kernel was Estimated.

Table 5.1: Objective Quality Comparison of the Input Image and Deblurred Results.

CPBD on blur region SSIM on sharp region
Input
image

Results of
Fig. 5.8(d)

Proposed
SPID-II

Input
image

Results of
Fig. 5.8(d)

Proposed
SPID-II

bald 0.0544 0.5790 0.5753 1 0.5422 0.9940
women 0.0736 0.4614 0.4560 1 0.3608 0.9961
owl 0.2010 0.3338 0.3735 1 0.2808 0.9954

for the sharp regions.

For the results in Fig. 5.8, we only consider the image to consist of two types of regions:

sharp regions and blur regions (two blur levels). We then apply the same deconvolution

kernel throughout to the blur region. A more general setting of the SPID-II framework is

shown in Fig. 5.9. It could consider multiple quantized blur levels in the blur region by

quantizing the blur map that is generated by the SVBD/PS-SVBD algorithms. In addition,
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Figure 5.9: Diagram of the Proposed Selective Perceptual-Based Image Deblurring-II
(SPID-II) Framework, a More General Setting.

the sharp region could be considered as a region with low levels of blur. In the following,

the entire image is categorized into three regions, based on the blur map. One deconvo-

lution kernel is estimated per blur level, and selectively applied to the subregion of the

corresponding blur level only. The results are shown in Fig. 5.10. The corresponding ob-

jective comparisons are provided in Table. 5.2 using CPBD [5]. The obtained results show

that the proposed SPID-II framework could achieve sharp restoration results, and can be

applied to more complex images with multiple blur levels.

74



(a) (b) (c) (d)

Figure 5.10: Visual Results for the Proposed SPID-II Framework in a More General Set-
ting. For Maps Shown in (c), Red Values Correspond to Blurred (High Blur Detection)
Regions, and Blue Values Correspond to Sharp Regions. (a) Input Image; (b) Grayscale In-
put Image; (c) Blur Map Generated by the SVBD Algorithm with Matting; (d) Deblurring
Result Using the Proposed SPID-II Framework, Three Kernels were Estimated.

Table 5.2: CPBD [5] Comparison of the Input Image and Deblurred Results.

Input image Proposed SPID-II
region
1

region
2

region
3

overall region
1

region
2

region
3

overall

soldier 0.1219 0.4557 0.6686 0.4358 0.5553 0.6839 0.7872 0.6680
hat 0.0590 0.2201 0.6160 0.3356 0.5491 0.6072 0.7306 0.6230
bird 0.0695 0.1435 0.4880 0.2107 0.5084 0.5305 0.7227 0.5709

75



Chapter 6

EDGE ENHANCED SUPER RESOLUTION

Edge regions play an important role in the quality of the super-resolution (SR) results. In

the existing adaptive Wiener filter based SR algorithm [36], a universal auto-correlation

model is used for both the edge regions and other regions. This leads to a not-as-sharp re-

construction of the edge regions. In the proposed Edge-Enhanced SR (EE-SR) algorithm,

distributed edge detection is used to detect the edge regions. Then a refined estimation

of the edge regions is conducted based on the auto-correlation characteristics of the edge

regions. Experimental results show that the proposed EE-SR algorithm achieves a better

reconstruction quality than existing algorithm of [36]. In the proposed EE-SR method,

only the edge regions get updated so that limited calculations are added.

6.1 Introduction

Super-resolution (SR) is widely used to increase the image resolution by fusing several

low resolution (LR) images in the same scene to overcome sensor limitations and image

impairments in a cost-effective manner [120]. Image impairments such as sensor noise,

packet loss and compression, can be reduced through SR. In addition, advances in display

technologies and the increase of hardware computational capabilities enabled the develop-

ment of efficient and effective super-resolution techniques.

SR algorithms can be divided into several categories. Maximum A Posteriori (MAP)

based [36] regularized norm-minimization solutions can converge to a high quality result

but are iterative and exhibit a relatively high computational complexity. MAP-based SR

methods have the advantage of being able to include prior knowledge into the observation

model. However, these methods are sensitive to the assumed statistical models for the data

and noise. To reduce the computational complexity and enhance the robustness to noise,

a Fusion-Restoration method [37] was proposed using l1-norm minimization and a robust

regularization based on a bilateral prior. However, this method is still iterative and com-
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putationally intensive due to the high dimensionality of the problem. Karam et al. [38]

exploit human perception resulting in significant reduction in computations for iterative

SR approaches and an improved SR visual quality. Another faster non-iterative Fusion-

Interpolation (FI)-based SR approach [3] requires less computation but suffers from a lim-

ited reconstruction quality. It is found that the SR result of the FI-based SR approach [3]

does not result in a satisfactory reconstruction of the strong edges in the image, and results

in a significantly blurred reconstruction of weak edges.

To tackle this issue, this chapter proposes an Edge-Enhanced SR (EE-SR) approach, in

order to achieve a higher reconstruction quality without significantly increasing the com-

putational complexity. Experiments show that the proposed FI-based EE-SR algorithm

results in sharper edges as compared to the existing FI-based SR approach.

The remainder of this chapter is organized as follows. Section 6.2 describes the obser-

vation model. Section 6.3 describes the proposed EE-SR approach. Experimental results

are given in Section 6.4, followed by subjective quality assessment results in Section 6.5

and a conclusion in Section 6.6.

6.2 Observation Model

The observation model assumes that all LR images are generated from the same HR im-

age, with different sub-pixel shifts between LR frames. Due to the fractional pixel LR

shifts, registered HR samples will not always fall on a uniformly spaced HR grid, thus

providing over-sampled information necessary for solving the SR inverse problem. After

the geometric transformation, the LR pixels are defined as a weighted sum of appropriate

HR pixels. The weighing function models the blurring caused by the system point spread

function (PSF). After that, an additive Gaussian noise is added to represent random errors

and sensor noise. Since the LR images are acquired from the same HR image, and using

the same camera with the same resolution enhancement ratio, it is reasonable to assume

that the PSF and the noise are static for all LR observations. Now we can express the kth
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LR frame as :

Yk = DHFkZ +n (6.1)

where Z represents the lexicographically ordered HR image, n is the additive noise mod-

eled as an independent and identically distributed (i.i.d.) Gaussian random variable with

variance σ2
n , Fk is the warping matrix, H is the blurring matrix representing the common

PSF function, and D is the decimation matrix.

6.3 Proposed Edge Enhanced SR (EE-SR) Approach

An edge-enhanced SR (EE-SR) approach is proposed to achieve a better reconstruction

quality for the edge regions. It can be divided into three steps: initial SR estimation,

distributed detection of edge regions and the refined SR estimation of edge regions’ pixels.

In our implementation, the initial SR estimation is based on the adaptive Wiener filter

super-resolution (AWF-SR) method [3].

6.3.1 Initial SR Estimation

Fused LR samples are processed locally using a moving observation window to estimate

the interpolation kernel and an estimation window to apply the designed kernel on the

spanned LR observed samples in order to estimate the missing HR pixels. Let i be the

index of the considered observation window, L be the SR ratio, and N be the number of

LR frames. Also Assume the size of the observation window is M2 pixels on the high

resolution grid and that it spans a total of K = (N ·M2)/L2 LR pixels represented by the

observation vector Gi of length K. The estimation window is a subwindow within the

observation window and is composed of Dx×Dy pixels on the high resolution grid. As

proposed by Hardie et al. [3], estimating the HR vector Di in the local estimation window

is achieved by applying locally designed kernel weights Wi to the observation vector Gi,

as follows:

Di =W T
i ·Gi (6.2)
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where Wi is a K×DxDy matrix of weights given by

Wi = R−1
i Pi (6.3)

where Ri is the autocorrelation matrix of the observation vector, and Pi is the cross-

correlation between the desired vector Di and the observation vector Gi .

Define Fi as the noise-free version of the observation vector Gi and ni as the zero-mean

Gaussian noise with standard deviation of σn. Gi, Ri, and Pi can then be expressed as:

Gi = Fi +ni (6.4)

Ri = E(GiGT
i ) = E(FiFT

i )+σ
2
n I (6.5)

Pi = E(GiDT
i ) = E(FiDT

i ) (6.6)

The continuous-domain cross-correlation function RDF(x,y) and autocorrelation func-

tion RFF(x,y) can be written as follows:

RFF = RDD(x,y)∗h(x,y)∗h(−x,−y) (6.7)

RDF = RDD(x,y)∗h(x,y) (6.8)

In the above expressions, RDD(x,y) is defined as a continuous domain wide sense sta-

tionary auto-correlation function for the desired HR coefficients Di, h(x,y) is the continu-

ous domain blurring function, and x and y are continuous spatial distances between pixels.

The horizontal and vertical distances between observation pixels can be easily computed.

Evaluating (6.7) using all these displacement yields E(FiFT
i ), then Ri can be calculated

using (6.5). Similarly, Pi can be calculated using (6.8) and (6.6). Now the problem of com-

puting the filter weights reduces to modeling the auto-correlation function RDD. In [3], the

auto-correlation function is modeled using a spatially varying circularly symmetric para-

metric auto-correlation model as follows:

RDDi(x,y) = σ
2
Di

ρ

√
x2+y2

(6.9)
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where ρ is a tuning parameter and σDi is the standard deviation of the local region of the

desired image Di and can be expressed as:

σ
2
Di

=
1

C(ρ)
σ

2
Fi
=

1
C(ρ)

(σ2
Gi
−σ

2
n ) (6.10)

in (6.10), C(ρ) can be expressed as:

C(ρ) =
∫

∞

−∞

∫
∞

−∞

ρ

√
x2+y2

h(x,y)∗h(−x,−y)dxdy (6.11)

and σGi is the standard deviation of the elements of the observation vector Gi. The above

expressions (6.10) and (6.11) suggest that ρ in (6.9) can be approximated using the linear

mapping between σDi and σFi during the training process. ρ = 0.75 is used in Hardie et

al. [3]. It is worth indicating that both the peak value σ2
Di

and the decay of the spatially

varying auto-correlation model in (6.9) are affected by ρ .

Equation (6.9) is the key model to generate a proper weight matrix and to reconstruct

the HR image. Although RDD adapts to the variance of the HR coefficients in each lo-

cal observation window, still, this global assumption of the same ρ leads to an improper

modeling of the autocorrelation function, especially for edge regions. The reconstruction

quality of edge regions greatly affects the visual quality of the SR result due to the percep-

tual significance of these regions. The autocorrelation model of these edge regions differs

from those of non-edge regions. In order to better model the autocorrelation of edge re-

gions, edge detection is performed using a distributed Canny edge detector [39] that is

applied to the initial SR estimated results.

6.3.2 Distributed Detection of Edge Regions

The Canny edge detector is commonly used to detect edge pixels. The Canny edge de-

tector consists of gradient calculation, non-maximal expression, thresholds computation

and hysteresis thresholding. The high and low thresholds are computed using the gradient

magnitude cumulative distribution function (CDF) of the entire image. The utilization of
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(a) (b) (c) (d)

Figure 6.1: Comparison of the Traditional Canny and Distributed Canny Edge Detectors.
(a) Original Image. (b) Initial SR Result using AWF-SR [3]. (c) Traditional Canny Edge
Detection Result. (d) Distributed Canny Edge Detection Result.

Figure 6.2: Test images for Super-Resolution.

the entire image statistics bring the advantage of good edge detection, but also is not prac-

tical for large image sizes and does not support parallel processing. One simple solution is

to use the image statistics of local image windows instead of the entire image. However,

directly applying the original Canny at a local window level would fail since it leads to

excessive edges in the smooth region and loss of edges in the sharp region. A distributed

Canny edge detector was proposed in [39], by simultaneously computing thresholds for

each block, based on the block type and the local distribution of gradients. The image

blocks are classified as smooth, texture, hybrid and strong edge, based on the block clas-
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sification method of Su et al. [121]. Also, for each block type, the appropriate percentage

values which correspond to the high threshold and low threshold are selected differently.

Applying the distributed Canny edge detector brings several advantages to proposed

EE-SR algorithm: 1) The distributed Canny detector better adapts to the local image char-

acteristics than the original Canny edge detector; so some weak edges can be detected, as

shown in Fig. 6.1; 2) for the sake of computational cost, the proposed algorithm can be ap-

plied only to selected region of interest. When using the distributed Canny edge detector,

the proposed EE-SR algorithm can be applied in a locally adaptively manner.

6.3.3 Refined Estimate of Pixels in Edge Regions

The tuning parameter ρ plays an important role in the autocorrelation model of (6.9). It

is not ideal to use one single universal ρ for both edge regions and flat regions, even

after taking the variance of the local window into consideration. A higher ρ models a

relatively flat auto-correlation in the reconstructed SR image. It is adequate in flat regions

and removes most of the noise. However, it leads to a not-as-sharp reconstruction for the

edges. A lower ρ models a relatively sharp auto-correlation in the reconstructed SR image.

It suits edge regions well for a sharper reconstruction. However, it leads to a noisy result

for the flat regions. In [3], ρ = 0.75 is used no matter whether the considered region is

an edge region or a flat region. Although the variance of the local window is taken into

consideration, such fixed single value fails to produce a high reconstruction quality for

the edge regions. Here we keep the symmetric autocorrelation model of (6.9) but adapt

the ρ value based on the characteristics (edge or flat) of the considered region. We define

ρe as the ρ for the edge regions. In this work, ρe is set to 0.45 and is used to model the

autocorrelation function for edge regions.

6.4 Experimental Results

In this section, the performance of the proposed EE-SR algorithm is assessed using a set

of test images as shown in Fig. 6.2. A sequence of LR images is generated from a single
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(a) (b) (c) (d)

Figure 6.3: Comparison of SR Results. (a) Original HR Image. (b) SR Result Using Single
Frame Bi-cubic Interpolation. (c) SR Result Using AWF-SR [3]. (d) SR Result of the
Proposed EE-SR Algorithm.

HR image. For example, the original 512× 512 HR image is used to generate 16 LR

images of 128×128. The original HR image is shifted according to given motion vectors

at various directions and values. Then the shifted images are blurred by an averaging 4×4

filter to model sensor integrations and are down-sampled by 4 in both directions. Additive

Gaussian noise is then added to represent random errors and sensor noise. Two different

noise variances are used, including σ2
n = 100 and σ2

n = 30.

As shown in Fig. 6.3, the edge region of our proposed EE-SR algorithm is slightly

sharper and more detailed through edge region refined estimation. Tables 6.1 and 6.2

present the performance of the proposed EE-SR algorithm for σ2
n = 30 and 100, respec-

tively, in addition to comparison with existing methods using multiple quality metrics.

From Tables 6.1 and 6.2, it can be clearly seen that the proposed algorithm results in the
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Table 6.1: Objective Quality Comparison of SR Results (Noise Variance = 30).

PSNR SSIM CPBD
Bi- AWF EE- Bi- AWF EE- Bi- AWF EE-
cubic [3] SR cubic [3] SR cubic [3] SR

ISOchart a 17.13 20.54 21.32 0.8033 0.9166 0.9227 0.1190 0.4839 0.5267
ISOchart b 15.89 18.99 19.73 0.7767 0.9024 0.9101 0.1399 0.4689 0.5319
aerialCrop 23.17 26.77 27.21 0.6001 0.7956 0.8131 0.0667 0.1822 0.2826
buildings 19.70 22.45 22.92 0.5133 0.6882 0.7100 0.0707 0.2310 0.3120
cameraman 22.23 25.12 25.57 0.6584 0.8055 0.8127 0.0928 0.3863 0.4654
character 17.47 20.49 21.05 0.7567 0.8822 0.8927 0.1013 0.4044 0.4741
clock 24.28 28.01 28.37 0.7562 0.8990 0.9001 0.1996 0.2380 0.3115
reso chart 18.03 21.93 22.71 0.7633 0.8881 0.8949 0.1215 0.4244 0.4562
sandiego 20.36 22.50 22.92 0.4177 0.6304 0.6683 0.0589 0.2169 0.3169
text 13.75 17.95 18.87 0.5929 0.8427 0.8681 0.0844 0.4929 0.5459

Table 6.2: Objective Quality Comparison of SR Results (Noise Variance = 100).

PSNR SSIM CPBD
Bi- AWF EE- Bi- AWF EE- Bi- AWF EE-
cubic [3] SR cubic [3] SR cubic [3] SR

ISOchart a 17.01 20.14 20.85 0.7465 0.9065 0.9100 0.1607 0.4822 0.5233
ISOchart b 15.79 18.72 19.42 0.7111 0.8935 0.8995 0.1421 0.4339 0.4991
aerialCrop 22.55 25.85 26.19 0.5452 0.7453 0.7657 0.0633 0.1541 0.2655
buildings 19.41 22.05 22.40 0.4789 0.6587 0.6766 0.0631 0.2014 0.2917
cameraman 21.76 24.71 25.03 0.5662 0.7826 0.7850 0.0923 0.3440 0.4615
character 17.34 20.16 20.70 0.7021 0.8699 0.8799 0.1122 0.3758 0.4604
clock 23.51 27.42 27.59 0.6461 0.8826 0.8801 0.0682 0.2290 0.3200
reso chart 17.88 21.67 22.34 0.7093 0.8723 0.8763 0.1185 0.4141 0.4492
sandiego 20.03 21.97 22.34 0.3941 0.5794 0.6205 0.0571 0.1568 0.2704
text 13.70 17.54 18.50 0.5609 0.8237 0.8512 0.0930 0.4770 0.5448

best performance in terms of all the metrics including PSNR and the more perceptually

motivated ones such as SSIM [47] and CPBD [5]. The increase in SSIM shows that the

SR result of the proposed algorithm achieves a better reconstruction quality. In addition,

higher CPBD shows that the SR result of the proposed EE-SR algorithm achieves a sharper

reconstructed results for edge regions.
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Figure 6.4: Subjective Test Interface.

6.5 Subjective Quality Assessment

A subjective experiment is conducted to compare the SR results of the proposed EE-SR

algorithm and AWF-SR [3]. In the subjective quality assessment, seventeen human sub-

jects are asked to compare the sharpness and overall quality between the proposed EE-SR

algorithm and AWF-SR [3]. The subjective test interface is shown in Fig 6.4. The scores

given by observers are averaged to produce the Mean Opinion Score (MOS), including

MOS-sharpness and MOS-overall.

Source Image Content: Ten gray source images are used, and included natural images,

remote sensing images and OCR images. Two different noise variances are used includ-

ing σ2
n = 100 and σ2

n = 30. These test images and noise variance are the same as those

mentioned in Table 6.1 and Table 6.2. A total of different 20 image pairs are used in the

experiment. Each pair includes the result of the proposed EE-SR algorithm and the corre-
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sponding result of AWF-SR [3], with randomized order. Each image pair is repeated four

times.

Equipment and Display Configuration: The experiment was conducted using a 1920×

1080 23-inch LCD monitor (DELL Alienware 2310) with a 120 Hz refresh rate, at a dis-

tance of 24 inches. The room illumination was 500 lux.

Subjects: Seventeen subjects participated in the subjective testing. All subjects were

screened for visual acuity (20/20).

Test Methodology: We used a pair-wise methodology. Each pair includes the result of

the proposed EE-SR algorithm and the corresponding result of AWF-SR [3], with random-

ized order. Subjects were asked to judge their preference on image sharpness and image

overall quality, for each image pair, respectively. Subjects were asked to score the qual-

ity using a five-grade scale (Left Better, Left Slightly Better, Same, Right Slightly Better,

Right Better). Each subject was individually briefed about the goal of the experiment, and

given a demonstration of the interface and the procedure. The display order of the test

images was randomized each time for each subject.

Fig. 6.5 and Fig. 6.6 show the obtained MOS-sharpness and MOS-overall. The MOS

ranges from 0 to 5. A MOS larger than 3 indicates that the subjects preferred the proposed

EE-SR algorithm over AWF-SR [3], while a MOS smaller than 3 indicates otherwise.

Fig. 6.5 shows that the proposed EE-SR algorithm always generates sharper SR results

than AWF-SR [3]. This corresponds well with the CPBD [5] results in Table 6.1 and

Table 6.2. Fig. 6.6 shows that when it comes to overall quality, subjects preferred the

proposed EE-SR algorithm over AWF-SR [3] in three-quarters of the cases. The proposed

EE-SR algorithm always generates sharper SR results, however, it might introduce slightly

more reconstruction artifacts near edge regions as compared to AWF-SR [3], as shown in

Fig. 6.7. This is because that the initial SR results generated by AWF-SR [3] typically

have some ringing artifacts, which might be detected as edge in the edge detection. So

for these regions, ρe will be used as their local autocorrelation parameter. These lead
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Figure 6.5: MOS Sharpness for the Subjective Experiment of the SR Results. A Score
Value Greater than 3 Indicates That the Proposed EE-SR Algorithm Achieves in a Better
Perceived Sharpness than the Existing AWF-SR Method [3].

to slightly more reconstruction artifacts in EE-SR, when compared with AWF-SR [3].

The reconstruction artifacts are more obvious in high noise cases, as it can be seen from

Fig. 6.6.

6.6 Conclusion

This chapter presents an edge-enhanced SR (EE-SR) algorithm that adapts the autocorrela-

tion model to local image characteristics including edge regions and flat regions. First the

initial SR result is computed. After that, the SR result is refined in the edge regions using

an autocorrelation model whose parameter is adjusted for the edge regions. Experimental

results including image quality metrics and subjective scores are provided to demonstrate

the effectiveness of the proposed EE-SR algorithm.
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Figure 6.6: MOS Overall for the Subjective Experiment of the SR Results. A Score Value
Greater than 3 Indicates That the Proposed EE-SR Algorithm Achieves a Better Perceived
Visual Quality than the Existing AWF-SR Method [3].

(a) (b) (c) (d)

Figure 6.7: Comparison of SR Results. (a) SR Result Using AWF-SR [3] (Noise Variance
= 30). (b) SR Result of the Proposed EE-SR Algorithm [3] (Noise Variance = 30). (c) SR
Result Using AWF-SR [3] (Noise Variance = 100). (d) SR Result of the Proposed EE-SR
Algorithm [3] (Noise Variance = 100).
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Chapter 7

CONCLUSION

This research work contributes to the area of image analysis with a focus on perceptual-

based locally adaptive noise and blur detection. This chapter summarizes the major con-

tributions of this work and presents possible applications in image restoration.

7.1 Contributions

This work proposes a novel no-reference objective image quality metric based on per-

ceptually weighted local noise. Furthermore, this work proposes an efficient perceptual

based spatially varying blur detection algorithm that is capable of detecting and quantify-

ing the level of spatially-varying blur. The main contributions of the presented work can

be summarized as follows:

• Full-reference image noisiness metric

It is of great importance to predict the relative amount of noise perceived in images with

different content. A full-reference (FR) image noisiness metric is proposed, which inte-

grates perceptually weighted local noise into a probability summation model. This pro-

posed full-reference metric can predict the perceptual noisiness in images with high accu-

racy.

• No-reference objective noisiness metric

In addition to the proposed full-reference image noisiness metric, a no-reference (NR) ob-

jective noisiness metric is derived based on local noise standard deviation, local perceptual

weighting, and probability summation. The experimental results show that the proposed

FR and NR metrics show better and more consistent performance across databases and

distortion types, when compared with several very recent FR and NR metrics.

• Perceptual-based spatially varying blur detection algorithm

A spatially varying blur detection (SVBD) algorithm that is capable of detecting and quan-

tifying the level of spatially-varying blur is proposed by integrating directional edge spread
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calculation, probability of blur detection (JNB) and local probability summation. The

proposed method generates a blur map indicating the relative amount of perceived local

blurriness. We compare our proposed method with six other state-of the-art blur detec-

tion methods. Experimental results show that the proposed method performs the best both

visually and quantitatively.

• Perceptually significant spatially varying blur detection algorithm

In order to detect the flat/near flat regions that do not contribute to perceivable blur, a

perceptual model based on the Just Noticeable Difference (JND) is further integrated in the

proposed blur detection algorithm to propose the perceptually significant spatially varying

blur detection (PS-SVBD) algorithm.

• Selective perceptual-based image deblurring frameworks

Two selective perceptual-based image deblurring frameworks are proposed by integrating

the proposed blur detection methods and existing deblurring algorithms. These selective

perceptual-based image deblurring frameworks are capable of achieving a good recon-

structed image quality for spatially-varying blurred images.

• Edge-enhanced super resolution

An Edge-Enhanced Super-Resolution (EE-SR) algorithm is proposed. Performance results

in terms of objective quality metrics and subjective scores are provided to demonstrate the

effectiveness of the proposed EE-SR algorithm.

7.2 Future Research

The work presented herein can be extended and optimized for different applications. Fu-

ture possible directions of the presented work include the following:

• Possible application of the color information for noise detection. The proposed noise

detection method only considers local gray-scale information. It doesn’t consider any

masking effect due to the color information in the local region. In addition, some noise

itself could have high variations in the color space. This color noise could be highly
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detectable in a color image, while being much less detectable in a gray-scale image.

• Possible application of the color information for blur detection. Similarly, the pro-

posed blur detection in here only considers local gray-scale information, while color in-

formation such as saturation could be a useful cue in human blur detection.

• Possible application of the blur detection for 3D scene reconstruction. The blur de-

tection result can be useful for 3D scene reconstruction, stereo matching and other depth-

based applications. For example, by using a single image, the proposed SVBD method

could compute which regions are in focus. By using multiple imagse each taken at a dif-

ferent focus distance, the proposed SVBD method could be further expanded for 3D scene

reconstruction applications, by using only a single camera.
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