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ABSTRACT

Vectorization is an important process in the fields of graphics and image processing.

In computer-aided design (CAD), drawings are scanned, vectorized and written as

CAD files in a process called paper-to-CAD conversion or drawing conversion. In ge-

ographic information systems (GIS), satellite or aerial images are vectorized to create

maps. In graphic design and photography, raster graphics can be vectorized for easier

usage and resizing. Vector arts are popular as online contents. Vectorization takes

raster images, point clouds, or a series of scattered data samples in space, outputs

graphic elements of various types including points, lines, curves, polygons, parametric

curves and surface patches. The vectorized representations consist of a different set

of components and elements from that of the inputs. The change of representation

is the key difference between vectorization and practices such as smoothing and fil-

tering. Compared to the inputs, the vector outputs provide higher order of control

and attributes such as smoothness. Their curvatures or gradients at the points are

scale invariant and they are more robust data sources for downstream applications

and analysis. This dissertation explores and broadens the scope of vectorization in

various contexts. I propose a novel vectorization algorithm on raster images along

with several new applications for vectorization mechanism in processing and analysing

both 2D and 3D data sets. The main components of the research are: using vectoriza-

tion in generating 3D models from 2D floor plans; a novel raster image vectorization

methods and its applications in computer vision, image processing, and animation;

and vectorization in visualizing and information extraction in 3D laser scan data. I

also apply vectorization analysis towards human body scans and rock surface scans

to show insights otherwise difficult to obtain.
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Chapter 1

INTRODUCTION

Vectorization is one of the most important processes in the fields of graphics and

image processing. It refers to different approaches/processes in different contexts.

In computer-aided design (CAD), drawings are scanned, vectorized and written as

CAD files in a process called paper-to-CAD conversion or drawing conversion. In

geographic information systems (GIS), satellite or aerial images are vectorized to

create maps. In graphic design and photography, raster graphics can be vectorized

for easier editing and resizing. Vector arts are popular as online content that can be

scaled without losing aesthetic quality. The input to vectorization can be a raster

image, a point cloud, or a series of scattered data samples in space, while the output

can be graphic elements of various types including points, lines, curves, polygons,

parametric curves and surface patches. Despite the absence of a formal definition, we

can grasp the common essence of the vectorization process. We formalize vectorization

as a process that converts a raster and discrete data source to a piecewise continuous

approximation that is both scalable and abstract (the vectorized representation). The

vectorized representation consists of a different set of components and elements from

that of the input. The change of data representation is the key difference between

vectorization and practices such as smoothing and filtering. Compared to the input,

the vector output is of higher order of smoothness; the vector output’s curvatures

or gradients at places are scale invariant and they are more robust data sources for

downstream applications and analysis. Sharp creases and discontinuity in the feature

domain of image input are carefully dealt with using some modern approaches.
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In this dissertation, we explore and broaden the scope of vectorization in various

contexts. We present a novel vectorization algorithm on raster images along with

several new applications for vectorization in processing and analyzing both 2D and 3D

data sets. The main components of the research are: using vectorization in generating

3D models from 2D floor plans (chapter 2); a novel raster image vectorization method

and its applications in computer vision, image processing, and animation (chapter 3);

and vectorization for visualizing and information extraction from 3D laser scan data,

specifically human body scans (chapter 4). We start with a review of the prior art

and applications of vectorization below.

1.1 Prior Art

Below, we briefly review the progress and applications of vectorization research

in various contexts, including vectorizing monochrome images, color images, and 3D

data (curve samples, range images, and scanned surfaces).

1.1.1 Monochrome Images

Vectorization is widely used to extract lines, curve sections, polygon shapes,

even texts from monotone raster images, such as scanned line drawings (Hilaire and

Tombre, 2006), engineering or mechanical drawings or documents (Su et al., 2006;

Xia, 2002), and maps. The vector graphics primitives in the output helps applications

such as document analysis and understanding, graphics recognition, typeset design,

and data indexing in geographic information systems.

In font design, an outline font (or a stroke font (Hill and Kelley, 2001)) is a set

of character shapes that are described as line and curve sections. Outline fonts are

2



more flexible, scalable, and storage efficient than raster fonts (or bitmapped fonts

which store shapes as a pattern of binary values on a rectangular grid). Many al-

gorithms have been proposed to convert raster fonts to stroke fonts, see (Wong and

Ip, 2000; Hersch and Betrisey, 1991). 2D Engineering drawings, such as architectural

or mechanical blue prints, consist of mostly lines and curves. Vectorization is an

important process towards understanding scanned engineering drawings and docu-

ments (Nagy, 2000; Song et al., 2002; Hilaire and Tombre, 2006; Noris et al., 2013).

Most of monochrome image vectorization methods fall into two families: thinning

base methods (Tombre et al., 1999), and non-thinning methods (Song et al., 2002).

In chapter 2, we further elaborate on this topic and present a deep dive of state

of art in this area with a particular popular application. The work in chapter 2 has

been published, (Yin et al., 2009b).

1.1.2 Color Images

The graphics community has seen a shift of focus from processing monotone im-

ages to vectorizing color images, such as cartoon figures (Zhang et al., 2009) and

photographs (Sun et al., 2007; Olsen and Gooch, 2011; Orzan et al., 2013). We

summarize the prior art in categories of the graphics primitives they use. Many of

the proposed methods in the literature incorporate triangle meshes in their process.

RaveGrid (Swaminarayan and Prasad, 2006) converts a raster image to a scalable

vector image comprised of polygons whose boundaries conform to the edges in the

image using constrained Delaunay triangulation. Adaptive triangulations (Demaret

et al., 2006) construct a linear spline over a Delaunay triangulation of a small set of

significant pixels in the raster input. Ardeco (Lecot and Lévy, 2006) partitions the

3



raster image into many regions using saliency adapted triangulation, each filled with

constant color, a linear or circular gradient, where all boundaries are represented by

cubic splines. Object-based image editing (Barrett and Cheney, 2002) uses an irreg-

ular, texture-mapped triangular mesh to vectorize the input into editable primitives.

Because the vectorization is object based, users can easily manipulate the content.

There are methods that are based on other graphics primitives. Object-based

vectorization (Price and Barrett, 2006) introduces a hierarchical approach that seg-

ments a quad-mesh using recursive graph cut algorithm. Each object or sub-object

is represented by a regular mesh with Bezier patches. Gradient meshes, widely used

in commercial software such as Adobe Illustrator (Adobe, 2015) and Corel Corel-

Draw (Corel, 2015), in general map the raster contents to regular parametric quad-

surfaces with color, position and color gradient. Sun et al. (Sun et al., 2007) propose

an energy minimization solution to fitting a grid of topologically planar rectangular

Ferguson patches with mesh-lines to raster images. The boundaries of these patches

consist of one or more cubic Bezier splines. Lai et al. (Lai et al., 2009a) build a

parameterization for sample pixels and use slit mapping on the parameter domain to

construct a gradient mesh containing holes. Liao et al. (Liao et al., 2012) introduce

a new vector image representation based on piecewise smooth subdivision surfaces.

Orzan et al. (Orzan et al., 2013) propose Diffusion curve, as an extension of Bezier

spline with color gradient defined on either side. They use this technique to create

vector art, as well as converting existing imagery through tracing. A common draw-

back of gradient meshes is that they often consist of large amount of patches and are

hard to edit.

Diffusion curves (Orzan et al., 2008) represent smoothly-shaded images by fitting

feature edges with different colors and gradients on each side by solving Poisson
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equations. Jeschke et al. (2009) proposed a faster Laplacian solver for the Poisson

equations that can be used to boost the fitting efficiency. Xia et al. (2009) first

decomposes the image into triangle patches with curved boundaries that follows the

feature edges in the image, then fits a vector based representation of the image using

Bezier curves and thin-plate splines.

1.1.3 3D Data - Curves and Surfaces

Vectorization can be applied to scattered point sets of any dimension. A key

part of thinning based vectorization algorithms, in 2D or 3D case, is skeletonization.

Skeletonization is often used as a shape descriptor in indexing and segmenting 3D

models and scanned meshes, e.g. (Sundar et al., 2003; Zhou and Toga, 2002). Fitting

triangle meshes with parametric surfaces as in (Krishnamurthy and Levoy, 1996; Park

et al., 1999) can be seen as the analogue of converting raster images to vector images

in 3D.

Vectorization in analyzing 3D data: We explore the possibility of applying

vectorization to 3D laser scans. Both human body scans and rock surface scans are

used in our research. We identify at least two ways that vectorization can be applied.

First, a series of data samples can be extracted and projected to 2D planes as the

input for fitting a parametric curve. Second, the core of thinning-based vectorization

algorithms can be employed to find the medial axes of input shapes. These medial

axes can be used to classify the appearance patterns of these shapes.

In chapter 4, we develop a system for fast evaluation of body scan quality. The

system includes steps of data registration, normalization, segmentation, roughness

5



analysis, and automatic landmark finding. In order to correctly identify critical land-

marks, the first type of vectorization is used to extract human head profiles.

In addition, we have collaborated with geologists from JPL on processing and

analyzing 3D laser scans of rock surfaces. In the pursuit of the relationship between

ventifact textures and their resident physical and chemical environment, we have

developed a system to visualize and measure the surface dents/grooves present in laser

scans of rocks. The joint work is published in the journal of Geomorphology (Bridges

et al., 2010), showing the value of vectorization across domains.

1.2 Intellectual Merits and Contributions

This cumulative work presents the following original contributions:

3D building model authoring from 2D floor plans: We propose a common

framework for analyzing information presented in 2D floor plans as well as generating

3D models accordingly. It is a summarization based on a comprehensive survey of

existing algorithms and systems in academia as well as industry. Our work provides

a common ground for understanding and evaluating systems and algorithms in this

field. This work is published at (Yin et al., 2009b).

Novel image vectorization and its applications: We propose a new param-

eterization based vectorization algorithm for generating vector images from raster

images. First, we propose an image parameterization scheme (chapter 3) that takes a

raster image and produces two outputs: a base mesh i.e. a triangular mesh with low

vertex count and a globally smooth parameterization that associates each original

pixel with a point on the base mesh using barycentric coordinates. We propose a

6



novel quadric error metrics (QEM) to improve the quality of the base mesh. We treat

pixels that are associated with the same base mesh face as a cluster; the boundaries

between neighboring clusters follow the prominent feature curves in the input. The

base mesh and parameterization representation can benefit applications such as im-

age segmentation and multi-resolution image warping. This work is published at (Yin

et al., 2011)
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Chapter 2

STATE OF THE ART - DEEP DIVE INTO 3D BUILDING MODEL

AUTHORING FROM 2D FLOOR PLANS

Automatically generating 3D building models from 2D architectural drawings has

many useful applications in the architecture engineering and construction community.

In this chapter, we survey building model authoring from paper and CAD-based

architectural drawings. Our novel contribution is that we propose a common pipeline

for such systems; we also summarize and evaluate various algorithms for each step

of the pipeline. This work has been published in IEEE Computer Graphics and

Applications (Yin et al., 2009b). Our paper has been cited by over 90 publications

to date.

2.1 Introduction

Using 3D building models is extremely helpful throughout the architecture engi-

neering and construction (AEC) lifecycle. Such models let designers and architects

virtually walk through a project to get a more intuitive perspective on their work.

They can also check a design’s validity by running computer simulations of energy,

lighting, acoustics, fire, and other characteristics and thereby modify or adjust de-

signs as needed before construction begins. 3D building models also have far-reaching

applications beyond AEC, such as real estate, virtual city tours, and video gaming.

However, manually creating a polygonal 3D model of a set of floor plans is nontrivial

and requires skill and time.
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Researchers and CAD developers have been trying to automate and accelerate

conversion of 2D drawings into 3D models, but doing so is difficult for several reasons.

Foremost among these is the input form, which greatly determines how complicated

it will be to extrude a model from architectural drawings. Some systems use digital

copies of computer-drawn architectural drawings; others scan paper floor plans as

input. Since paper plans still dominate the architectural workflow, any system that

claims to be an end-to-end solution must process raster images.

Although existing solutions share a common pipeline, they often choose different

algorithms for various processing. We review the research on automatic generation of

3D building models from both paper and CAD-based architectural drawings. Besides

comparing the systems’ robustness and efficiency, we suggest improvements and offer

a brief review of industry products.

2.2 Architectural Floor Plans

Most drawings take the form of floor plans, which portray an orthographic top-

down projection of each building level using standardized symbolic representations of

the structure’s architectural elements. Other kinds of drawings - such as longitudinal-

section drawings, elevation drawings, and reflective ceiling plans - work with floor

plans to form a complete building specification.

Floor plans have various levels of detail. The most punctilious and intricate floor

plans are detailed workplans or construction structure drawings (CSDs). CSDs are

used exclusively by design engineers and construction managers and often show in-

ternal steel bars, the concrete structure for columns, beams and walls, and pipe and

ductwork layouts. Tong Lu and his colleagues designed a system that constructs a

9



detailed building model from computer-drawn CSDs (Lu et al., 2005). There are re-

cent interests in generating 3D building based on synthetic artificial layouts (Merrell

et al., 2010); generating 3D building models from other data sources, such as elevation

drawings (Hou et al., 2012), 3D point clouds (Budroni and Boehm, 2010), and 3D

scans (Remondino, 2011). However, to our knowledge, very few research has aimed

at interpreting raster images of CSDs.

The most widely distributed form of floor plans lack detailed construction infor-

mation. Still, they manage to cover the building’s complete layout, which is sufficient

to build a model for most applications. Whether these less-detailed floor plans are

hand drawn or computer produced, many systems accept them as legitimate input.

However, such floor plans use varying graphic symbols, which is a major drawback.

Figure 2.1: Different ways to draw a wall with a window and a door. The variable
graphic symbols pose challenges for automatically converting 2D drawings into 3D
models

Figure 2.1 shows examples of common styles for walls, windows, and doors. In-

stead of being constrained to a particular standard, a drawing’s purpose (and the

designer’s artistic motivation) determines what components will be shown and how

they will look. This creates a major challenge in analyzing and interpreting an image

floor plan, and makes a certain amount of human intervention unavoidable.

2.3 General System Overview

Figure 2.2 shows an example input and the desired output from an automated

3D building model system. We categorize existing systems according to the kind of
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Figure 2.2: The input (left) and output (right) of a system that converts 2D archi-
tectural floor plans to 3D computer graphics models. Systems that accept floor plans
images as input must rely on image processing and pattern recognition techniques to
distinguish between graphical symbols, wall lines, dimensions, and so on.

input they use. CAD documents, such as Data Exchange Format (DXF) and Auto-

CAD Drawing (DWG) files, preserve drawing information as 2D geometric primitives,

grouping the architectural components together by type and giving them unique la-

bels. This layered structure of CAD files makes recognition trivial.

In contrast, when a system takes a raster image of a floor plan as input, there’s no

obvious distinction between graphical symbols, wall lines, dimensions, scales, textual

content, and leading lines (that is, the straight lines that lead to measurement or

text). So, to decipher the information needed for extrusion, the system must rely on

image processing and pattern recognition techniques.

Figure 2.3 shows the basic model extrusion steps, and figure 2.4 shows an ideal

solution’s two-phased operational pipeline. Most actual systems differ slightly from

this model. However, by combining different system ideas, our common framework

can help developers structure and compare existing solutions. As we discuss later,

systems generally differ in the choice of algorithms or the task execution order.
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(a) Original floorplan. (b) Denoising and text

removal.

(c) Symbol recognition

and 2D geometry cre-

ation.

(d) Extruded 3D model.

Figure 2.3: Critical steps in 3D model extrusion. The system takes as input (a) an
original floor plan. It then uses algorithms for (b) denoising and text removal and (c)
symbol recognition and 2D geometry creation. Finally, it extrudes a 3D model (d).
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Figure 2.4: The pipeline for a complete solution. This idealized pipeline combines
ideas from various systems to create a framework that can help developers structure
their own solutions or compare existing solutions.
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Besides general characteristics, most systems also share common shortcomings.

The biggest is the lack of generality. Pattern recognizers are typically constrained to

a small set of predefined symbols. Also, current systems don’t exploit information

embedded in text strings, which could be a valuable cue to the building’s spatial

structure and topology. Most systems also neglect the “finishing touches”. To offer

a better visual appearance, for example, a system could either procedurally gener-

ate indoor and facade textures or automatically derive them from photographs. In

addition, systems fail to appropriately orient the architectural elements’ placement

in the 3D model. Finally, several systems use imperfect algorithms, thus requiring

substantial user assistance in some steps. Systems need more accurate, efficient, and

automated algorithms, especially for the pipeline’s first phase.

2.3.1 Converting Floor Plan CAD files

Systems using CAD-based floor plans don’t have the overhead or ambiguities

related to image processing and pattern recognition; they focus more on 3D model

extrusion. University of California, Berkeley researchers Rick Lewis and Carlo Séquin

introduced a system that semi-automatically creates detailed 3D polygonal building

models using floor plans created in AutoCAD (Lewis and Séquin, 1998). The system

groups architectural symbols into dedicated layers in standard DXF files. Although

this simplifies the recognition algorithm’s task, the geometry typically suffers from

errors and ambiguities, especially at the joint regions. The system deals with geomet-

ric flaws by correcting disjoint and overlapping edges. During the extrusion phase,

it collects the topology of spaces and portals and thereby guarantees proper polygon

orientation. After it has modeled each floor, the system stacks the floors to form the

complete model. With embedded topology, designers can use the resulting models
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for various applications, such as smoke propagation simulation. The system is highly

automated but requires user assistance to correct geometry flaws.

Clifford So and his colleagues at the Hong Kong University of Science and Technol-

ogy (HKUST) view the model conversion problem in the Virtual Reality context (So

et al., 1998). Architecture and urban design are a significant market for VR tech-

niques, so automating model generation is extremely beneficial. After observing con-

ventional manual model reconstruction, the authors identified its three major tasks:

wall extrusion, object mapping, and ceiling and floor construction. They then incor-

porated automated approaches to each, including automatic wall polygon extrusion,

generating and placing customized templates of random orientation and size, and

advancing front triangulation. This greatly reduces processing time.

However, this approach still requires considerable manual effort: users must mark-

up wall lines, specify architectural objects, and assign the objects to individual trans-

formation matrices. Consequently, for the system to perform adequately, the input

file must contain fully established semantic information and be error free.

With the Building Model Generation (BMG) project (Teller, 2001), Massachusetts

Institute of Technology researchers set out to fully automate construction of a realistic

MIT campus model. The project’s pipeline is similar to that of the UC Berkeley

system but attaches an extra process to automatically position and orient building

models using a map for guidance.

Lu and his colleagues at China’s Nanjing University developed systems to con-

struct models from computer-drawn CSDs (Lu et al., 2005) and vectorized floor

plans (Lu et al., 2007). Unlike a computer-produced drawing, a vector image contains
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geometric primitives without labels to indicate their types, making symbol recogni-

tion much more difficult. As in the HKUST project, this system also differentiates

the walls from other architectural components. It detects parallel line-segment pairs

as walls and removes them from the drawing. It recognizes the remaining primi-

tives as different symbols by finding feature matches with predefined patterns. Each

pattern contains a target symbol’s graphical primitives and corresponding geometric

constraints, as well as integrated information about its context in the drawing (envi-

ronment). During recognition, the system orders pattern constraints by their priority

level and checks them one at a time. It removes corresponding primitives from the

drawing immediately after satisfying all of a pattern’s constraints. The system pays

significant attention to a building model’s structural details. The processes are highly

automated once the user imports all the patterns. However, the system’s robustness

is highly sensitive to input quality.

Converting Floor Plan Images

CAD tools are a relatively recent development in architectural history. Many drawings

are still done on paper and saved as scanned images. Such images can’t be input in the

systems we just described. Before model extrusion, scanned images must be converted

to properly structured CAD documents or something semantically equivalent. Doing

this manually is labor intensive and time consuming, even with a moderate number

of plans.

Philippe Dosch and his colleagues at France’s Lorraine Laboratory of Research in

Information Technology and Its Applications (Loria) proposed a complete solution for

analyzing raster images and generating 3D models (Dosch et al., 2000). The system

contains three major steps.
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1. During image processing and feature extraction, the system vectorizes input

raster images as sets of polylines and arcs. It supports large images through

integrated tiling and merging processes.

2. During 2D modeling, the system uses constraint networks (Ah-Soon and Tombre,

2001) to recognize vector elements as architectural symbols and integrates them

into a description of the building layout.

3. During 3D modeling, the system separately extrudes a 3D model of each floor

and assembles them to form the entire building.

This system addresses almost all pipeline issues. It recognizes one of the largest

symbol sets of all the studied systems and demonstrates maturity and robustness in

steps such as image processing and model extrusion. The system requires moder-

ate human assistance; some intervention remains unavoidable for steps such as arc

detection in vectorization and symbol recognition.

At the Chinese University of Hong Kong (CUHK), Siu-Hang Or and his colleagues

developed a system to solve a slightly simplified problem that considers only walls,

doors, and windows (Or et al., 2005). The overall execution flow is similar to the Loria

system but emphasizes 3D-model extrusion. CUHK’s system distinguishes walls as

inner structures from building outlines, which it uses to match neighboring floors. (In

contrast, the Loria system uses intrusion structures, such as elevator wells, to guide

matching.) During vectorization, the system extracts outlines of black pixels in the

raster image and matches them with walls of various shapes. It identifies symbols

by matching vector-primitive groups to patterns consisting of sequences of geometric

characteristics (constraints).
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Although using a simple symbol recognizer simplifies the system, it limits its

flexibility and applicability. Recognition quality relies heavily on the vectorization

algorithm’s robustness. To improve performance, the developers introduced a raster

image denoising process. Before extruding the 3D model, the system identifies rooms

as enclosed spaces, which provides useful information for downstream analysis and

applications.

System Comparison

Tables 2.1, 2.2, and 2.3 summarize the systems and their processes and relates them

to figure 2.4’s pipeline. As the tables show, each system comprises a unique set of

processes. Combining them offers a complete pipeline that covers all aspects of model

generation from floor plans.

Some processes, such as image denoising and topology construction, are mature

and effective; others are ineffective or not robust enough for fully automated exe-

cution. For systems using raster images, symbol recognition is a bottleneck. The

graphical symbols’ flexible nature and subtle shape differences make achieving sat-

isfactory precision difficult. For both system categories, correcting geometry flaws

without human intervention also remains difficult. An optimal approach would inte-

grate complementary systems and employ more recent and advanced algorithms in

some of the key pipeline processes.

To build an ideal system, we must synthesize various processes. To that end,

we now introduce the existing systems’ algorithms for the two main pipeline phases,

image parsing and 3D model extrusion, and briefly explore other choices.
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Table 2.1: Comparison of Systems in Phase I Image Parsing

Processes Berkeley HKUST Nanjing LORIA CUHK

Tiling Automatic

Noise Re-

moval

Not specified Semi-

automatic

with

filtering

and manual

intervention

Text Extrac-

tion

Pixel-based Statistical

techniques

Vectorization Skeleton-

ization and

polygon

approximation

Outline

extraction

Symbol

Recog.

Automatically

collected

from Data

Exchange

Format

(DXF)

layers

Manually

collected

A sequence

of

geometric

and other

constraints

A constraint

network

A sequence

of

geometric

constraints

2.4 Image Parsing and Drawing Analysis

This phase aims to analyze an input raster floor plan and extract the layout infor-

mation it represents. In other words, the goal is to parse the floor plan’s architectural

semantics. As table 2.4 shows, this phase features several major challenges.

To analyze and parse image floor plans, systems rely on graphical document anal-

ysis. This typically involves two major steps: cleaning and graphical-symbol recog-
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Table 2.2: Comparison of Systems in Phase II 3D extrusion

Processes Berkeley HKUST Nanjing LORIA CUHK

Clean-Up Automatic Manual Manual

3D transfor-

mation

Semi-

automatic

Portals /

Contour /

Topology

Automatic Manual Automatic Automatic

Outline Automatic Manual Automatic Automatic

Triangulation Polygon

based

Advancing

front

Assembly Can

handle

different

size floors

Uses

intrusion

structures

to match

adjacent

floors

Table 2.3: Comparison of Systems Overall Evaluation

Processes Berkeley HKUST Nanjing LORIA CUHK

Automation High Low High High High

Robustness High High Medium High Medium

nition (also known as graphics recognition). Cleaning aims to remove noise and

unnecessary information from the image to improve graphics recognition quality. In

graphical-symbol recognition, the system groups neighboring pixels and interprets

them as instances of graphical symbols. The system collects and organizes each rec-

ognized symbol’s location, orientation, and scale information.

As an outcome of floor plan analysis, designers expect an object-orientated geo-

metrical description of the floor’s architectural layout. Floor plans differ from other
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Table 2.4: Summary of Challenges in the First Phase

Step Issues

Noise Re-

moval

The leading lines of notations could be easily confused with wall lines.

The background might contain a grid or decorative pattern.

Text Ex-

traction

Text font, size, and orientation may vary.

Text and graphical symbols may share pixels (overlapping, touching).

Many algorithms classify dashed lines (commonly used in the staircase symbol) as

text.

Vector Most algorithms recover only lines and arcs. Free-form curves continue to be a

challenge.

Noise greatly affects the result.

Vectorization may give bad results at junction points.

Symbol

Recogni-

tion

The symbols may not comply with the standards.

There may be a large pool of symbols, and differences between two symbols could

be subtle.

graphical documents in several ways. One is the presence of lines that represent walls;

such lines can be large spans, be straight or curved, and have varied shapes. Another

difference is the presence of highly localized architectural symbols composed mostly

of simple geometric primitives. Typically, graphics recognition would incorporate

vectorization to deal with this type of input. In all the systems, the overall analysis

process starts with cleaning (including noise removal and text extraction), followed

by vectorization and recognition.

Noise Removal

One of the most common types of noise in scanned images is sampling noise intro-

duced by digital scanning. This is a well-studied problem in image processing, and

researchers have proposed many algorithms to solve it.
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However, in floor plan analysis, noise has a broader definition. In addition to scan

noise, designers consider all pixels that lack information directly useful for model

generation as noise. Examples include annotation leading lines; dimension lines;

furniture and hardware symbols, such as for tubs and chairs; and, in some cases,

decorative patterns in the background. Designers also consider text strings as noise,

although they typically use dedicated algorithms to deal with them.

Sometimes, there’s a fine line between noise and useful pixels, and segmentation

remains an unsolved problem in floor plan image analysis. The Loria system (Dosch

et al., 2000) uses morphological filtering to segment an image into thick lines against

thin lines. This approach assumes that background patterns and dimension leading

lines differ from useful lines in thickness and style. Other researchers also make this

assumption (Or et al., 2005), putting a threshold on the input that preserves only

thick construction lines. For all such systems, however, human intervention in this

step is unavoidable.

2.4.1 Text Extraction

The ideal algorithm should be not only efficient but also independent of the text

font, size, and orientation and should require minimal human intervention. Text

intermingled with the geometric shapes poses additional challenges in terms of sep-

aration and extraction. Researchers have studied text separation in detail. Most of

the resulting algorithms fall into two families. Structure-based (or curvature-based)

algorithms focus on the structural differences between graphical symbols and char-

acters. These algorithms are inspired by the idea that a character is always more

structurally complex than a graphical symbol. By separating all linear shapes - us-

ing approaches such as directional morphological filtering (Luo and Kasturi, 1998) or
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distance transform (Kaneko, 1992) - these algorithms separate graphics content from

characters.

The second algorithm family is pixel based (Fletcher and Kasturi, 1988; Tombre

et al., 2002). For example, Lloyd Fletcher and Rangachar Kasturi presented an

algorithm (Fletcher and Kasturi, 1988) that researchers have used in various document

analysis systems, either directly or by adjusting input characteristics. The algorithm

first collects black pixels (eight connected pixels) and encloses their circumscribing

rectangles as a single connected component. Next, it filters connected components

through several metrics to be either rejected or accepted as part of text strings.

(Attributes include size, black-pixel density, ratio of dimension, area, and position

within the image.)

For complex drawings, pixel-based algorithms are more stable than structure-

based algorithms. Pixel-based algorithms work extremely well when text and graphics

don’t touch or overlap. However, they will likely classify dashed lines as characters.

Because dashed lines often denote staircases and hidden structures, postprocessing

must reclaim them as graphical symbols.

In their system, the Loria researchers implemented the algorithm (Fletcher and

Kasturi, 1988) with a postprocessing step for dashed lines. They later made the

algorithm more suitable for graphics-rich documents (Tombre et al., 2002). Their

improvements included a postprocessing step that uses local segmentation of the

distance skeleton to retrieve text components that touch graphics.

Systems typically fail to adequately exploit the text layer because adding this

functionality makes the system more complex. However, text string size, location,

and orientation can provide important clues about a building’s structure even when
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the semantic meanings are unknown. For example, the label patio for a part could

be very informative about the space that part represents in the drawing.

Graphics Recognition

Once the system separates text from graphics, it must extract the pixels’ embed-

ded architectural information and organize the pixels into a complete object-based

geometrical description of the building layout.

A drawing contains two major kinds of information:

• structural information, represented by walls, and

• local architectural components (or accessories), represented as parameterized

instances of standard templates.

Architectural design is essentially a partition of space, and walls define the build-

ing’s spatial structure. Walls are therefore better preserved as geometric polylines

for the extrusion step. This is one reason all systems incorporate vectorization and

work on geometric primitives rather than perform symbol recognition based directly

on pixels.

Vectorization: This process, also called raster-to-vector conversion, transforms

image pixels to the geometric primitives they represent. Theoretically analyzing a

vectorization algorithm is nontrivial. Such an algorithm’s most important criteria

are efficiency, robustness, and accuracy.

Traditional line-drawing vectorization includes the following two steps (Hilaire

and Tombre, 2006):
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1. The raster-to-chain step converts the raster bitmap to a set of pixel chains.

2. The chain-to-segment step transforms the set of pixel chains to polylines or arcs.

After each step, various post-processes are needed to fix joint errors. However,

most vectorization algorithms find only line segments and circular arcs. Algorithms

for more complex curves are rare.

For the first step, systems typically use three groups of algorithms: paramet-

ric model fitting, contour tracking, and skeletonization (Hilaire and Tombre, 2006).

Parametric model fitting uses a Hough transform to detect lines in the image. This

method’s disadvantage is huge memory consumption and the lack of generality.

Contour tracking works especially well for simple floor plans. Instead of dealing

with black pixels, this algorithm searches the contour of white pixels and identifies

connected regions as rooms on the basis of the assumption that, in floor plans, white

spaces are partitioned by black wall lines. This method doesn’t work when the struc-

ture gets complicated; it’s also sensitive to noise.

Skeletonization finds a curve’s bones, or skeleton, by thinning or by searching

for its medial axis (Wenyin and Dori, 1998). Thinning-based algorithms iteratively

peel off boundary pixels until only a one-pixel-wide skeleton remains (Lam et al.,

1992). However, these algorithms can give bad results at intersections, especially

when distortions exist. Also, they aren’t very efficient because they visit each pixel

multiple times. Typical medial-axis-based algorithms include pixel tracking (Dori and

Liu, 2002) and run-graph-based algorithms (Roseborough et al., 1995). Medial-axis-

based algorithms treat a line with thickness as a solid shape, with the medial axis as
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its skeleton. The medial axis of a 2D polygonal shape is defined as the locus of the

centers of all inscribed spheres of maximal radius.

Vectorization’s second step segments point chains into sets of lines, polylines, and

circular arcs by using polygonal approximation or estimating the curvature to find

the critical points.

Loria’s system (Dosch et al., 2000) uses a skeletonization technique for vectoriza-

tion’s first step and polygonal approximation for the second step. Similar to contour

tracking, the CUHK system tracks the contour of black pixels and organizes them

into blocks of walls and symbols.

Symbol recognition: This process is at the core of graphical document analysis.

The ideal graphic symbol recognizer (GSR) is efficient, robust, independent of context,

and immune to affine transformation. Several existing methods work well in particular

areas and offer a satisfactory performance overall.

Most GSRs are either vector based (oriented toward structure) or pixel based

(oriented toward statistics). Vector-based GSRs work on vectorized images com-

posed of primitives such as points, line segments, arcs, and circles. The GSR iden-

tifies a symbol by checking the structural characteristic of a group of neighboring

primitives. Vector-based approaches include region adjacency graphs (Lladoós et al.,

2001), graphical-knowledge-guided reasoning (Yan and Wenyin, 2003), constraint net-

works (Ah-Soon and Tombre, 2001), and deformable templates (Valveny and Mart́ı,

2003). Such approaches require good vectorization; their advantage is that they’re

affine invariant.

Pixel-based GSRs work directly on raster images, focusing on statistical fea-

tures of a symbol’s pixel formation. Pixel-based algorithms include plain binary
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images (Schürmann, 1996), living projection, and shape contexts (Belongie et al.,

2002). Because this approach doesn’t involve vectorization, it has higher precision

and accuracy than vector-based approaches, but its performance is vulnerable to scal-

ing and rotation. Su Yang has been working to merge the vector- and pixel-based

approaches (Yang, 2005).

Because (as we discussed earlier) all existing systems use vectors as GSR input,

they implement GSRs using structural approaches. The Loria project uses constraint

networks, which view a symbol as a set of constraints that the vectorized image’s

primitives must fulfill. This approach uses a network to model the features and

constraints, and propagates vectorized floor plan segments through the network to

search for terminal symbols. CUHK’s system adopts a similar, but simpler, approach

that uses a sequence of geometric constraints as symbol patterns. Systems could use

both raster and vector copies of a given floor plan and use both approaches to increase

recognition precision.

The International Association on Pattern Recognition’s Workshop on Graphics

Recognition has held several international symbol recognition contests. The different

algorithms submitted to these workshops and how they performed under various con-

ditions are reported in (Valveny and Dosch, 2004; Dosch and Valveny, 2006; Valveny

et al., 2008).

Tiling and Merging

A drawing’s size can also create issues. Sometimes, the image file might be pro-

hibitively large. Although users can overcome this obstacle by reducing the image’s

scale, such downsampling can cause information loss. This is where tiling comes in
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handy. Tiling tessellates the original input into smaller parts, processes them indi-

vidually, and merges them back together.

Dosch and his colleagues, for example, split the original image into partially over-

lapping tiles, carefully selecting the width of overlapping zones to achieve maximum

performance (Dosch et al., 2000). After vectorization, they merge the tiles by match-

ing the vector content in neighboring tiles. This highly automated procedure requires

minimal user interaction and reportedly has a low error rate.

2.5 3D Model Extrusion

The input to the pipeline’s model extrusion phase can be either a geometric and

component-wise building layout description from the image-parsing phase or a well-

organized CAD document with a dedicated layer for each symbol type. The goal is

to automatically create a 3D building model in the form of a polygonal mesh.

Model extrusion entails six major challenges:

• The extrusion should consistently orient facet normals.

• Creating details of architectural entities relies heavily on empirical assumptions.

Any template library that tries to cover all styles and designs will inevitably be

huge and have potentially conflicting architectural styles.

• Assembling multiple building levels to form a complete building can be problem-

atic because individual floor plans might use different scales and orientations.

• The search for exterior outlines can be complicated if the exterior walls have

projecting objects (such as balconies).
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• The selected approach must accommodate buildings with unconventional de-

signs.

• Extrusion can be complicated when buildings have multiple stories. If two

adjacent floors have different footprints, one floor might be exposed. To avoid

gaps, the model must incorporate additional polygons.

Figure 2.5 illustrates some of these challenges.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: Challenges in model extrusion. Models with inconsistent normals are
unacceptable for many applications. Shown in (a) is the rendering result of a model
with correct normals using ambient occlusion technique. (e) Ambient occlusion on
a model whose normals are not consistent. (b) A low quality triangulation of a
cross-shaped building outline with too many slim triangles. A smarter tessellation
would use convex polygon with high edge count. (f) The same shape tessellated by a
constrained Delaunay triangulation. Polygons in (b) and (f) have the same number of
triangles; however, (f) has much better quality with respect to the shape of triangles.
Ambiguity is introduced by a projection object (c) or a penetrating structure, such
as an atrium or lobby (g). Modern architectures place higher demands on system
flexibility and intelligence. Two examples of unconventional designs are shown. (d)
This is the new headquarters of China Central Television (courtesy of the Office for
Metropolitan Architecture). (h) Shows the complex inner structure of National Center
for the Performing Arts in Beijing (image courtesy of the Artists Rights Society.)
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Figure 2.6: Possible connectivity errors & correction of vectorization. (left) three
common errors and (right) the correct joints using coerce-to-grid algorithm.

2.5.1 Error Cleanup

Both vectorized, hand-drawn images and computer-sketched drawings suffer from

disjointed lines, overlapping vertices, and false intersections. Before working with

polygons, designers must launch certain operations to clean up geometry errors. They

can do this cleanup manually or by using algorithms such as coerce-to-grid (Lewis

and Séquin, 1998), which puts a uniform grid with optimized spacing over the floor

plan and snaps vertices to their nearest grid points (Figure 2.6).

Extrusion

A complete 3D building model has three major assemblies: walls, architectural com-

ponents, and floors and ceilings. Extrusion should handle each assembly differently

according to its unique characteristics and the specific application needs.

Walls form the building’s structural framework. Generating a section of 3D wall

from its 2D projection is fairly easy. However, figuring out the normals is not trivial.
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(a) Outline & contour search algorithm

(b) Block modeling algorithm

Figure 2.7: Illustration of two wall extrusion algorithms: (a) outline and contour
search and (b) block modeling. Two algorithms produce output models of different
quality, and users might prefer one style over the other. Contour search is more
topologically sound; block modeling is straightforward and runs quickly.

There are several ways to solve this problem. One way is contour searching, which is

a guided traversal of wall vertices with sealed portals. This process is essentially the

same as determining facets in a 2D mesh represented by a half-edge data structure.

Contour searching can not only help identify facet normals and the building outline

(that is, the mesh boundary) but also provide an object-orientated building repre-

sentation in terms of rooms and open spaces. Such knowledge can greatly accelerate

propagation simulation and potentially visible sets. Figure 2.7 compares a contour

search operation with a simpler solution that decomposes walls into segments and

extrudes them as separated wall blocks.
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Designers generally view architectural components - such as doors, windows, and

staircases - as model accessories. The most intuitive way to deal with them is to

define a standard template for each entity class and provide parameters to specify and

customize instances. These include shape parameters, such as height and width, and a

transformation matrix that transforms the object from the object coordinate system

to the world coordinate system. If the application focuses solely on the building’s

structure and space arrangement, it might ignore the architectural components.

Ceilings and floors are important model parts that link different levels together.

The first step in dealing with them is to find each level’s exterior outline. Typi-

cally, this outline consists of walls. However, objects such as balconies can create

ambiguities.

Also, many buildings have concave polygon outlines. The modeler’s job is to

deliver a tessellated model comprising a set of convex shapes. Depending on the

application’s requirements, designers can use a sophisticated algorithm, such as con-

strained Delaunay triangulation, or a naive greedy approach. However, for quality

purposes, long, thin triangles should always be avoided.

After tessellation, the floor and ceiling from neighboring levels should fit each

other. The process gets complicated when they differ in scale or orientation. In some

cases, neighboring levels’ exterior outlines don’t have the same shape, which makes

model assembly more difficult. In such cases, users should be able to select several

pivots to perform registration. This will let them coherently line up different levels

into a whole model.

In the final step, users assign materials and attach textures to make the interior

and the facade more persuasive and aesthetically appealing. The system can generate

materials and textures procedurally or extract them from image sources.
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2.6 Commercial Software

Besides the research prototypes, there are many commercial software packages for

generating 3D building models. In the AEC industry, software packages fall into three

families: full-fledged architectural design packages, general-purpose CAD tools, and

plug-ins. None of them combine great efficiency with high automation, so finding a

complete problem solution is an ongoing quest.

2.6.1 Product Overview

Instead of using geometric primitives - such as points, vectors, and polygons - as

building blocks, modern AEC software uses the building-information-modeling (BIM)

paradigm (Ibrahim and Krawczyk, 2003; Succar, 2009). BIM is a 3D, object-oriented,

AEC-specific CAD technique. It covers geometry, spatial relationships, geographic

information, and building component quantities and properties. BIM represents a

building project as a combination of its parts. To assemble a design, BIM software

users select a predefined component template and place it in the drafting window.

BIM software systems include Autodesk’s Revit Architecture (Autodesk, 2015),

ArchiCAD (GraphiSoft, 2015), and Architectural Desktop (ADT; formerly Autodesk

Architectural). PlanTracer (CSoft, 2015), an architectural desktop plug-in, claims

to be the first product to deal with raster image floor plans. With user assistance,

PlanTracer converts 2D floor plans into intelligent objects, such as rooms, walls, and

windows.

Almost all modern CAD software generates 3D models. Typically, such software

stores architectural information - such as walls, windows, doors, and staircases -
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as customized architectural components. Because different software products define

standard templates or paradigms for architectural entities in unique ways, system

compatibility is fairly low.

Product Evaluation

We evaluated several commercial software packages for their strengths and weak-

nesses. We selected products for evaluation on the basis of completeness, usability,

and product quality.

The PlanTracer plug-in runs with ADT and automatically converts vector draw-

ings or raster images to ADT projects. It can also work semi-automatically, letting

users select a region of interest to guide symbol recognition. PlanTracer carries out

the pipeline’s first phase. Using PlanTracer’s output, ADT employs BIM to extrude

a 3D model. Because PlanTracer requires in-depth knowledge of ADT, its learning

curve is steep. Also, PlanTracer’s geospatial integration is cumbersome.

Google SketchUp (Google, 2015) is a simple, efficient 3D modeling program with

an intuitive, friendly interface for 3D-model design. Users can draw outlines in a 2D

sketchpad and then use a push/pull tool to extrude corresponding 3D volumes and

geometries. SketchUp can also export Keyhole Markup Language files for Google

Earth, and users can place their building models in Google Earth with accurate geo-

referencing. Although SketchUp can quickly create a building’s outside shell, using

it to extrude a building model of a detailed interior structure is manually intensive.

Autodesk Revit is a popular architectural-design-and-modeling tool with full BIM

support. Revit lets users design projects using drag-and-place tools with parametric
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components. Users can create their own object templates or use the tool’s well-

designed architectural component families. Revit is specifically for architectural pur-

poses and covers every aspect of AEC workflow. The tool’s bidirectional associativity

lets users freely change their designs and then propagate such changes throughout

the model. Revit creates a 3D project view and an exportable mesh model. However,

Revit can’t automatically create a 3D model from a raster image floor plan.

2.7 Conclusions

Only a few systems fully address the problem of generating 3D building models

from 2D architectural drawings, and even they aren’t completely automated. Vec-

torization and symbol recognition remain the open issues. Both tasks still require

significant manual intervention and will continue to do so as long as architectural

representations contain ambiguities or inconsistencies.

For buildings with complex shapes, the conversion is also complex; such shapes

might include nonplanar and angled walls. Reconstruction therefore requires elab-

orate help from regular users or expert designers. However, we do foresee vertical

solutions developed to address the needs of specific applications, including homeland

security, interactive Web, commercial architecture, and real estate.
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Chapter 3

A NOVEL QEM FOR RASTER IMAGE PARAMETERIZATION

Vector images have become increasingly important for their many advantages over

raster images. They are compact, scalable, editable, and easy to animate. More online

content is in vector graphics; vector-based GUIs are also used in latest operating

systems, such as windows 10. Vector graphics is usually represented by points, lines,

curves, polygons, or parametric surface patches (Sun et al., 2007). In this section,

we propose a vectorization algorithm that converts a raster image to a base triangle

mesh (as its vectorized representation) and a globally smooth parameterization that

maps each pixel of the raster image to a point on the surface of the base mesh. Our

method deals with pixel patches of arbitrary shapes and topology. We show the usage

of our method in applications such as image segmentation and image warping. This

work was published in Computer Graphics Forum (Yin et al., 2011) and was invited

to be orally presented at 2012 Eurographics conference.

3.1 Introduction

Geometry and image processing have had a mutual influence resulting in many

trends, terms, and methodologies shared by both communities. Parameterization is

a term used by both, however, it refers to completely different practices in the two

domains. Mesh parameterization (Hormann et al., 2008) maps a 3D geometry to a

more managable base domain, usually in a plane. Image parameterization (Kukar

and Šajn, 2009) mostly refers to the extraction of feature parameters from images.
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In this paper, we propose a method that does two things simultaneously. It con-

verts a raster image to a coarse triangle mesh, called a base mesh, that captures the

structure of the image content; it also maps each pixel in the original image to a point

on the base mesh resulting in a non-trivial globally continuous parameterization, that

is represented in terms of the barycentric coordinates of base mesh faces. This pa-

rameterization is constructed through repeated conformal remapping; it meets the

C0 continuity condition numerically at based mesh edges. The parameterization is

of high visual quality as shown in figure 3.1 (fourth row; detailed discussion about

the figure is in section 3.3.4). Such a conversion of a raster image into a base mesh

plus parameterization can be useful for many applications such as segmentation, im-

age retargeting, multi-resolution editing with arbitrary topologies, edge preserving

smoothing, compression, etc. The goal of the algorithm is to produce a base mesh

with per-pixel association such that (a) the reconstruction color error is small, and,

(b) the quality of the resulting triangulation is high. The algorithm, combines non-

planar mesh parameterization (Lee et al., 1998) and quadric error metrics (Hoppe,

1999), converts all pixels in the image to a dense triangle mesh and performs error-

bound simplification jointly considering geometry and color. The eliminated vertices

are projected on an existing facet and forms a non-trivial globally continuous param-

eterization. The implementation is iterative and stops when it reaches a prescribed

error threshold. The algorithm is feature sensitive i.e. salient feature edges in the

images are preserved where possible and it takes color into account thereby producing

a better quality triangulation compared to existing methods. The parameterization

associates a set of pixels to a face in the base mesh; the boundaries of those patches

follow the curvilinear features in the image. Our scheme is conducive to arbitrary

topology (for example the input can be cut outs of irregular shape from images) and

can be extended to higher dimensional feature spaces.
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Contributions: First, we propose a new quadric error metric, a modified formula

of (Hoppe, 1999) with geometry error computed using a special case of the general

form in (Garland and Zhou, 2005), for converting raster images into a triangle mesh

that takes shape and color distortion into consideration. Second, we produce a non-

trivial globally continuous parameterization for each pixel in the original image. This

parameterization enables us to perform segmentation and image editing. The algo-

rithm runs in O(N logN) time; N being the number of pixels in the image. The

metric is flexible and allows the user to tune the algorithm to be more (or less) sen-

sitive to color features by independently changing the weights for the geometry and

color parameters. Figure 3.1 shows an example of our algorithm and its comparison

to that of (Hoppe, 1999).

3.2 Prior Art

Mesh Parameterization was introduced for triangle meshes for mapping tex-

tures onto surfaces, normal mapping, morphing, remeshing, mesh editing, compres-

sion, etc. See (Hormann et al., 2008) for a survey. It is a mapping from a higher

dimensional surface (3D surface for example) to a base parameter domain, which can

be planar, spherical or a simplicial complex (Hormann et al., 2008). A well known

global parameterization method on non-planar parameter domain was proposed by

Lee et al. (Lee et al., 1998). Their multiresolution adaptive parameterization of sur-

faces (MAPS) algorithm utilizes a simplicial complex as the domain. MAPS produces

globally smooth parameterization by iteratively collapsing vertices and performing

conformal mapping. MAPS is useful for remeshing, texture mapping and geometry

morphing. However, MAPS cannot be applied to images directly because its priority

computation is not extensible to pixels with color features. Lee (Lee, 2000) replaces
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Figure 3.1: Sample results from top down: original images of Lena and Mandrill.
Second and third rows represent base meshes using Hoppe’s and our method respec-
tively; base meshes have 1300(Lena) and 1960 (Mandrill) faces. The fourth row shows
the reconstruction by interpolating the color using our parameterization. There is no
visible discontinuity across the base mesh faces. It qualitatively shows that our pa-
rameterization is globally continuous and has small distortion in the feature space.
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the error metric in MAPS with quadric error metric of geometric distortion to fit

subdivision surfaces to triangle meshes. The MAPS parameterization is considered

globally smooth for its continuity across the patches. Higher order of parametric

continuity is achieved in Khodakovsky et al. (Khodakovsky et al., 2003) through re-

laxation using a set of transition functions. However, for parameterization of higher

dimensional data, like in our case, such smoothness is unnecessary and hard to achieve

without introducing large amount of distortion.

Mesh Simplification was first proposed to produce levels of detail by subse-

quently removing elements from a complex object (Luebke, 2001). Most early sim-

plification algorithms focused on the geometry aspect of the mesh and tried to mini-

mize the volume shrinkage. Many algorithms adapt quadrics (Garland and Heckbert,

1997) to approximate the error. Cohen et al. (Cohen et al., 1998) proposed a method

to preserve the appearance during simplification by maintaining the texture coordi-

nates of original vertices. Garland and Heckbert (Garland and Heckbert, 1997) and

Hoppe (Hoppe, 1999) extended the quadric error metrics (QEM) to incorporate ver-

tex attributes such as color and texture coordinates. Garland and Heckbert (Garland

and Heckbert, 1997) concatenate the feature components to the 3D geometry to form

a high dimensional space and consider distances to the tangent hyperplanes. Garland

and Zhou (Garland and Zhou, 2005) generalize that formula to any dimension and

distance to any hyperplanes. Hoppe (Hoppe, 1999) distinguishes the feature com-

ponents from the geometric ones and utilizes the geometric correspondence of the

feature to compute the feature error. The feature error is computed with respect to

the interpolated value at the projection in the geometry domain.

Existing QEMs are not ideal for images. QEMs are mostly defined as a summation

of a spatial quadric that measures volume shrinkage and a color quadric. Since the
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spatial domain of a raster image is planar, the volume shrinkage during simplifying an

image mesh is zero everywhere except along the boundaries. These metrics (Garland

and Heckbert, 1997; Hoppe, 1999) numerically reduce to color quadrics when applied

to images. They are overly sensitive to noise in images of natural scenes and produce

a suboptimal triangulation. To accommodate the specific demands, we adopt the

methodology of Hoppe’s and substitute its geometry error with one that penalizes

moves in all directions, a special case of the general form in (Garland and Zhou,

2005). similar idea was used in iso-surface simplification (Attali et al., 2005).

Image Triangulation and Parameterization: Lai et al. (Lai et al., 2009b) con-

vert raster images into vector images of similar appearance called gradient meshes. A

key step of their algorithm can be considered as an analog of remeshing in images. In

their parameterization step, a set of pixels is triangulated using constrained Delau-

nay triangulation. The resulting mesh is mapped to a planar parameter domain with

slits (Lai et al., 2009b) using only the geometry information. The parameterization is

later adjusted to take into account the color information. The mapping is explicitly

established for selected samples; it does not guarantee consistent and smooth param-

eter values for all pixels, e.g. at the ends of a slit. Unlike their scheme, our proposed

scheme considers both geometry and color information simultaneously and produces

globally continuous parameter values for all pixels.

Many methods (Xia et al., 2009; Ren et al., 2005; Lee et al., 2006; Lecot and Lévy,

2006; Wang et al., 2006) generate meshes from images. Xia et al. (Xia et al., 2009)

apply a local edge detector to find the curvilinear image feature which is later used to

establish separate triangle meshes of pixel and subpixels for each color channel, called

channel meshes. These meshes are simplified using a simple error metric that mea-

sures the maximum error in each channel mesh. Ren et al. (Ren et al., 2005) complete
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the curvilinear features in the input image by establishing a constrained Delaunay

triangulation on the set of contours found by a local edge detector. The ARDECO

method (Lecot and Lévy, 2006) fits a set of regions delimited by cubic splines to a

raster image. Each region is filled with a constant color or a gradient (linear or circu-

lar) to generate a vectorized version of the raster input. Lee et al. (Lee et al., 2006)

apply progressive meshes method proposed in (Hoppe, 1996) to images and build a

hierarchy of simplified meshes. Wang et al. (2006) construct the neighborhood graph

of pixels with only pixel chroma values, and form an appearance manifold. Unlike

our proposed methods, many of these triangulation methods require the detection of

curvilinear features in the image as input and they do not keep track of the relation-

ship between the resulting mesh and image pixels; hence they are not able to perform

pixel related operations such as segmentation and editing. Because we introduce a

location-preserving term in our metric, our base mesh is better suited for a variety of

applications such as finite element analysis.

3.3 Multi-resolution Image Parameterization

Our algorithm performs simplification and parameterization simultaneously. In

this section we describe the two procedures in detail and evaluate their performance.

3.3.1 Simplification

A raster image is converted to an initial dense triangular mesh; each pixel is

represented by a vertex and the quad-grids are triangulated using one of the two

diagonals. The diagonal chosen minimizes the color differences between two end

points. Notations are adopted from (Hoppe, 1999; Lee et al., 1998). We denote a
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triangular mesh as a pair (P ,K), where P is a set of N regular indices of vertices;

while the topology is represented as an abstract simplicial complex K, set of singles

(vertices), couples (edges), and triples (facets) of indices in P . Each index i ∈ P

is realized as a 5 dimensional point vi = (pi, si)
T = (xi, yi, Li, ui, vi)

T ∈ R5 with

1 ≤ i ≤ N , where p represents the geometry components, s represents the attribute

components, and N is the number of vertices in the mesh. We confine the attributes

to color in this paper. We follow the discussion in (Comaniciu and Meer, 2002) and

choose L∗u∗v∗ for its ability to approximate perceptual color distances with Euclidean

distances. More on choosing color spaces can be found in (Comaniciu and Meer, 1997).

Two vertices i and j are neighbors if (i, j) ∈ K. The 1-ring neighborhood of a vertex

i, N (i) is the set of vertices that are neighbors to i. For more discussion, see (Spanier,

1994).

We choose edge collapse as our basic operation in simplification. We prioritize the

edges based on approximated error introduced by collapsing them; the approximation

scheme is elaborated in the next subsection. The algorithm uses a bi-directional

priority queue to manage, query and update the edges based on their associated error

values. It picks the edge with the minimal error value at the start of each iteration as

well as updates the error value of the edges affected by the edge collapse operation.

To collapse an edge, we merge the two end points to one point, assign to it a new set

of features (position as well as color), and remove appropriate faces and edges during

the process. One collapse removes one vertex, at most two faces, and at most three

edges. We coarsen the initial mesh through a sequence of edge collapsing operations

until a certain error threshold is reached. The resulting mesh is called the base mesh.
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3.3.2 Novel Quadric Error Metric

Many cost metrics have been proposed to measure the error caused by removing

elements from a mesh. Most metrics approximate volume shrinkage by computing

the sum of a set of squared distances. In (Hoppe, 1996), these squared distances

are computed over a set of sample points on the original mesh to the approximating

mesh; in (Lindstrom and Turk, 1998; Garland and Heckbert, 1997; Hoppe, 1999) the

distances are computed from a target vertex to a set of planes spanned by its neigh-

borhood. The latter metric can be compactly represented as a quadric (Garland and

Heckbert, 1997; Hoppe, 1999). Beside geometric error, quadric error metrics (Garland

and Heckbert, 1997; Hoppe, 1999) incorporate the attribute errors. Vertex attributes

can be of arbitrary dimension such as color channels.

Neither (Hoppe, 1999) nor (Garland and Heckbert, 1997) is ideal in the image

mesh scenario as we stated in the previous section. We choose to follow Hoppe’s

metric definition (Hoppe, 1999) for its accuracy, efficient memory usage, and explicit

separation between the geometry and the attributes domain. Based on this, we

propose a novel flattened quadric error metric to deal with 5 dimensional image

meshes that have flat geometry domain. Instead of volume distortion, we measure

the amount of vertex movement because it better captures the shape distortion on a

planar mesh.

Each face f of the original mesh defines a quadric as the sum (Hoppe, 1999):

Qf (v = (p, s)T) = Qf
p(v) +

m∑
j=1

Qf
sj

(v)

Where Qf
p(v) represents the geometric error while Qf

sj
(v) represents the attribute

error for any of the m attribute channels. We use the definition of attribute error
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in (Hoppe, 1999), however we define the geometry quadric to be the squared dis-

tance from p to the geometric centroid t = (xt, yt)
T ∈ R2 of f . Hoppe’s definition

measures the distance between a 3D point and the plane defined by f . It is always

zero for meshes with planar geometry domain. At places where color varies subtly,

such as noisy textures or the background, decimation driven by this error will hap-

pen in random order and produce triangles of suboptimal quality (see figure 3.7 in

section 3.3.4). By replacing Qf
p with an isotropic spherical quadric, we penalize sharp

shape variation. Our geometric quadric vTAv + bTv + c is as follows:

Qf
p = (A,b, c) = (

 I
. . . 0

. . .

. . . 0
. . . . . . 0

. . .

 ,

 −t

0

 , tT t)

where the line divisors mark the first 2 rows/columns. Summing all quadrics together

yields Qf = (A,b, c) =

(



I +
∑

jgjg
T
j −g1. . .−gm

−gT1
... I

−gTm


,



−t +
∑

jdjgj

−d1
...

−dm


, tTt +

∑
j

d2j)

Where dj (offsets) and gj, j ∈ 1...m (gradients) follow the definitions in (Hoppe, 1999).

Each vertex v of the original mesh is assigned the sum of quadrics on its adjacent

faces weighted by face area (Hoppe, 1999): Qv(v) =
∑
v∈f

area(f) ·Qf (v) Each edge e

is assigned a quadric that is the sum of vertex quadrics of its two endpoints. The

new vertex introduced by edge collapse (after two vertices are removed) is assigned

the position and attribute that minimizes the edge quadric (the minimizer). The

minimum value of the quadric is defined as the error for edges. We use SVD to find
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the minimizer. In singular cases we choose the minimizer among the midpoint and the

two endpoints. To validate the claim that our metric approximates the distortion of

the image similar to human perception, we visualize the frequency of each pixel visited

by the edge collapse operator (see figure 3.2). A pixel is counted as being visited once

when its corresponding vertex either appears as an endpoint of a collapsing edge or

requires re-projection (described in section 3.3.3) because it was previously projected

onto the neighborhood of the collapsing edge. We expect higher visit counts in areas

of near constant color and low visit counts where color changes rapidly. Figure 3.2

shows grayscale coded visit maps (the less visited the brighter) for example images.

This visually validates that our design of the quadric is a good approximation of the

shape and color distortion, and it reflects the local color gradient in the image.

3.3.3 Parameterization

One of our main contributions is that we construct a globally continuous parame-

terization for image pixels. The input image is a 5D 2-manifold and we seek an almost

isometric parameterization. We construct the parameterization as a mapping from a

pixel (vertex v in the initial mesh) to a point in a base mesh face v′ = αvi+βvj+γvk,

where (i, j, k) is the point’s resident face in the base mesh, and α, β, and γ are its

barycentric coordinates. This mapping is constructed and maintained through pro-

jection along with the simplification as shown in figure 3.3.

During the process of projection, 5D neighborhoods are flattened to 2D. We use

the same conformal map, zα, as in (Lee et al., 1998). The angles and distances are

computed among 5D vectors using inner products. The discrete conformal mappings

minimize angle distortion. Such angle based flattening also preserves relative areas

of the triangles within a neighborhood.
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(a) Original (b) Visit map

Figure 3.2: Visit maps of images of natural scenes Martin et al. (2001) reveal the
underlying structure in the images and visually validate our metric.

There are two scenarios in the process of parameterization, initial projection and

reprojection. Initial projection happens when collapsing an edge, e = (i, j) ∈ K, and

there is no point previously projected into any of the adjacent facets of its endpoints.

In this case, we establish a bijection between both its endpoints, vi and vj, to points

in some remaining faces after collapsing. This is achieved by flattening the one-ring

neighborhood N (i) and N (j) of each endpoint, re-triangulating the region in 2D, and

finding the resident face as well as the barycentric coordinates. When flattening N (i),

we substitute the geometry and color of vj with the minimizer of the edge quadric;

the reverse situation is treated analogously. The new vertex created after collapsing

by merging vi and vj is placed at the minimizer.
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In case there are vertices previously projected into these neighborhoods, we need

to update their parameterization, i.e. reproject their resident faces and barycentric

coordinates (figure 3.3). In the figure, the endpoints vi and vj are blue; the minimizer,

i.e. the new vertex after collapsing, is red. The small dots represent the vertices

that were previously projected. If there are projected vertices in faces in the shared

region, N (i) ∩ N (j), we need to first reproject them (figure 3.3 a). To do so, we

flatten the shared region using the minimizer as the pivot (figure 3.3 b). Figure 3.3

b shows the white region in the thumbnail figure over the incoming arrow from a.

It shows the region after been flattened in 2D and the dashed line originating from

the pivot indicates one of the local coordinate frame directions. We use the previous

parameterization to find the 2D projections for all projected vertices in this region.

New parameterization is computed based on the updated triangulation (figure 3.3

c). In the next step we split the shared region into two disjoint neighborhoods (split

figure 3.3 d into e and f along the red edges). We again use conformal maps on both

neighborhoods and update the parameterization for the projected vertices in them

the same way as described above (figure 3.3 (e, g) and (f, h)). Figure 3.3 e and f

show the flattened neighborhoods and the frame directions (dashed lines). When the

procedure is complete, all previously projected vertices as well as the endpoints have a

new parameterization in the simplified mesh. However, the new vertex is not directly

associated with any pixel, hence it is flagged and is not projected in the future.

3.3.4 Results and Discussion

Our scheme works with the whole image (figure 3.4) as well as an image cut-out of

arbitrary shape and topology (figure 3.5). Figure 3.5 b-d show multiresolution base

meshes created using different error thresholds. There are many ways to visualize and
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Figure 3.3: Illustration of steps of our algorithm showing edge collapse and vertex
projection. See the text for details.

evaluate the parameterization. We interpolate the parameters in figure 3.1 (bottom

row) to qualitatively assess the smoothness of the parameterization.

We also consider pixels that are projected to the same base mesh face as forming

one patch/cluster. The boundaries of these patches are shown in figure 3.5 e and

f. During parameterization, different weights can be assigned to spatial and feature

domains. Figure 3.5 e and f compare the patch boundaries when different color

weights are used. The difference is elaborated later in this section.

Running Time: The proposed algorithm runs in amortized O(N logN) time,

where N is the number of pixels in the input image. The initial mesh has a constant

ratio between the number of edges and vertices, so N can be considered as the num-

ber of edges in asymptotic analysis. The process stops when a user specified error

threshold is reached. For each edge, we query and update the priority queue using

O(logN) time. The calculation of the quadric minimizer takes constant time to solve
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Figure 3.4: Top row shows the original images of Zebra and Bell peppers. Middle
row is the base mesh and bottom row is the base mesh rendered with OpenGL shading
resulting in images close to the original. The base meshes for the two images were
created with an optimization for color distortion to preserve the features, black and
white stripes in the Zebra and pepper boundaries in the Bell peppers.

a linear system with fixed dimension. To update the parameterization, we map all

the vertices in the neighborhood to new facets. If the maximum cluster size, i.e. the

number of pixels mapped to a face in the base mesh is specified by the user, this

operation is also constant. Hence, the algorithm runs in O(N logN) time. When the

maximum cluster size is not fixed, we have amortized O(N logN) time complexity as

the time spent on the priority queue decreases. We use CGAL library (cga, 2015) in

our implementation. Detail run time statistics are presented in table 3.1. A set of

square images are tested; the stopping error is the same for all images in our experi-

ment. The computer used has the following configuration: Intel Xeon 3.33GHz; 4GB

RAM; NVIDIA Quadro FX 3700; Win 7 64b. We use SVD as our least squares solver
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(a) Original (b) Resolution 1 (c) Resolution 2 (d) Resolution 3

(e) parameterization

1

(f) Parameterization

2

Figure 3.5: Shell image. (a) original cut out. (b) - (d) show base meshes at different
resolutions. (e) and (f) are parameterizations (patch view) of the same base mesh
(d). The patch shapes are noticeably different when different weights are applied
for projection. (e) both the shell and the man image place zero weight on the color
domain and produces trivial parameterization that provides no more information than
the base mesh; (f) places a higher weight on the feature domain hence its boundaries
are aligned with color features in the original image, making its clustering useful.

in our research implementation for its ability to cope with singularities; Time statis-

tics using LU decomposition is also presented in table 3.1. During the process, an

edge collapse operation is retracted if it introduces degenerated elements in geometry

and/or parameter domain.
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Resolution Collapsing Projection

SVD LU Time

32 0.198 0.105 0.098

64 0.915 0.631 0.753

128 4.71 2.32 3.43

256 18.8 10.78 14.7

512 102.6 42.38 70.3

Table 3.1: Performance Statistics Measured in Seconds.

Reconstruction Color Error: Recall that one of our aims is to produce a pa-

rameterized base mesh with a low reconstruction error in the color space. Therefore

our analysis creates base meshes at varying resolutions and compares the reconstruc-

tion color error and the quality of triangulation against that of Hoppe’s. We measure

the accuracy quantitatively by evaluating RMS error in color values between the

original and the reconstructed images. We compare our reconstruction error with

the simplified meshes produced using our implementation of Hoppe’s metric (Hoppe,

1999) (we replaced its original RGB color space to L∗u∗v∗). We show images of Lena

and the Mandrill and the corresponding error plots in figure 3.1 and figure 3.6 respec-

tively comparing ours with the base mesh produced using Hoppe’s metric (Hoppe,

1999). The topmost row in figure 3.1 shows the original images; the second row

shows Hoppe’s base meshes while the third row shows ours. Gouraud shading is used

in these images. The bottom row is generated as follows. Our parameterization maps

each pixel to a point on the base mesh. Let us assume pixel (0, 0) is mapped to a

base mesh face (i,j,k) with barycentric coordinates (α, β, γ(1 − α − β)). We then

assign to pixel (0, 0) a new interpolated color of αci + βcj + γck. ci, cj and ck are the

colors of the base mesh vertices respectively. This enables us to compute the RMS
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color error for our parameterization. In the RMS error plots (figure 3.6) the blue and

the red belong to Hoppe’s and ours respectively (second and third row respectively

in figure 1). These are very close, with ours consistently better at most resolutions.

The plot in the green color is the RMS error of the images in the fourth row.
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Figure 3.6: RMS Reconstruction Error Plots. Ours closely follows Hoppe’s. The
green curves show the RMS error for the image generated based on our parameteri-
zation and performs exceedingly well in maintaining the original image information.

Triangulation Quality: Many applications need well-shaped, round triangles

in order to prevent them from running into numerical problems, e.g. numerical sim-

ulations based on FEM and image editing (Botsch et al., 2007). For this purpose,

round or isotropic triangles are needed, e.g., the ratio of the radius of the circumcircle

to the shortest edge should be as small as possible as well as the aspect ratio should

be close to one and average vertex valence should be close to six.

We compare our base meshes with Hoppe’s in figure 3.7. Our metric produces

base mesh with better triangulation at such regions due to the fact that drastic shape

distortion is penalized while Hoppe’s metric is affected only by color changes and

produces suboptimal triangulation at regions false features present. Unlike salient

and pronounced curvilinear features, these subtle color changes (false features) are

likely contribute to artifacts and random noise during image authoring. For the image
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shown in figure 3.7, the average valence of vertices in Hoppe’s output is 5.919 while

ours is 5.923. For edge ratios, our average is 1.69 versus 1.97 for Hoppe’s. Histograms

of the aspect ratios and radius ratios are plotted in figure 3.8. Based on these metrics,

it is clear that our algorithm creates better quality triangulation.

Figure 3.7: Visual comparison of the triangulation quality of Hoppe’s (top) and
ours (bottom). Red boxes show exploded view that both algorithms preserver edge
information while the green boxes show our algorithm generates better triangulation.
The original image is shown in figure 3.2.

Parameterization smoothness: The smoothness of our global parameteriza-

tion comes through in figure 3.1 and figure 3.6. We note that there are no visible

seams between neighboring patches and the overall color distortion is very small for

examples in figure 3.1. Such parameterization proves useful in propagating edits in

image warping (section 3.4.2).

The parameterization is adjustable. As we pointed out, different weights can be

placed on the color component during projection to produce parameterizations for

applications. When color component gets zero weight, the projection degenerates

to a trivial mapping using only the spatial information of the pixel (figure 3.5 e).
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Figure 3.8: Triangulation Quality Histograms.

Figure 3.5 e shows that the boundaries of the patches (defined at the beginning of

section 3.3.4) follow the edges of the base mesh. This trivial parameterization is

similar in concept with the texture mapping in (Cohen et al., 1998). When a proper

weight is used, the boundaries of these patches are curved and follow the salient

feature edges in the images (figure 3.5 f). This is useful as initial over-partition for

segmentation (section 3.4.1).

3.4 Applications

In this section, we demonstrate the use of our algorithm in a couple of image

processing and computer vision tasks.

3.4.1 Segmentation

Image segmentation divides the image into meaningful pixel regions at object

level (Busin et al., 2004; Comaniciu and Meer, 2002). We compute for each patch, S,
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Figure 3.9: Triangulation results (each row from left to right): original image, a
small portion of the simplified image using Hoppe’s and our metric respectively. All
three highlight the fact that our metric produces better triangulation.

defined in section 3.3.4 a weighted average pixel color c =
∑
k∈S

min(α, β, γ) · c(k), where

c(k) is the color of vertex k, while the weight, min(α, β, γ), indicates the importance

of a pixel within S. The inner most pixel has the weight of one third while the border

pixels have zero weight. The difference of weighted average colors is used to measure

the distance between two neighboring clusters. Pairs with distances smaller than a

threshold are merged.

Figure 3.10 shows a comparison of our result with mean shift (Comaniciu and

Meer, 2002) and Histogram multithresholding (Busin et al., 2004). Our method iden-

tifies the textured background pad as a whole while isolates the ring. More results

on natural scenes are shown in figure 3.11.
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The vision community has seen recently an increasing interest in over segmenta-

tion. Over segmentation decomposes an image into much smaller patches of pixels

of similar color compared to the objects found by segmentation. State-of-art over

segmentation algorithms, such as TurboPixels (Levinshtein et al., 2009), strive for

roughly round shaped patches of similar size with boundary pixels aligned with the

salient feature lines. These are desirable in applications such as bottom-up segmenta-

tion and segment-based stereo matching and reconstruction. With a lower threshold,

we produce over segmentation results with our clusters of pixels (figure 3.5f). The

lack of compactness in our method can be remedied by constraining the maximal

number of pixels in a patch in the simplification process. However, an extensive

investigation and evaluation in both fields is out of the scope of this paper and is

planned as future work.

(a) Input (b) Busin et al. (2004)

(c) EDISON (Comani-

ciu and Meer, 2002)

(d) Ours

Figure 3.10: Hand. Our method deals with the background better while at the same
time manages to isolate the finger nails.
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(a) Input (b) Result

Figure 3.11: Some more results of image segmentation (data from Martin et al.
(2001)).

3.4.2 Multiresolution Image Warping

The image editing and morphing problem has been tackled from multiple an-

gles in graphics and animation. The most popular approach is to construct a cage

over the target shape and deform the image content according to user applied rigid

transformations on the handles of the cage (its vertices and edges). Such algorithms

include As-Rigid-As-Possible Skeleton manipulation (Igarashi et al., 2005), moving

least squares based image manipulation (Schaefer et al., 2006), and bounded bihar-

monic weights (Jacobson et al., 2011).

Our approach combines the processes of fitting multi-resolution skeletons to the

target content (through feature aligned simplification at various resolutions) and as-

signing smooth localized weights to pixels (using tracked parameterization). At any
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given level, the user operates on the skeleton and the edits are transferred to the

pixels based on the parameterization to produce smooth and localized motions in the

image. When a user places an edit on a handle, the pixels that are projected in its

neighborhood get affected in proportion to their corresponding barycentric coordi-

nates. In figure 3.12 we show an image of a steering wheel that has been masked

out (and therefore the resulting base mesh has a genus > 0). The handle can be

stretched at the coarsest level (second row), however, deforming the handles (third

row) require a medium level base mesh and buffing up the spokes at the center of

the wheel requires an even higher level of resolution (fourth row). Editions are cir-

cled in red. Seamless transition between different resolutions allows a user to greatly

minimize pre and post processing and a cumbersome relationship modeling between

multiple resolutions. Our method handles content of arbitrary shapes and complex

topologies with high genus. Our method also copes well with raster texture details

as shown in figure 3.13 and 3.14.

3.5 Conclusions and Future Work

We proposed a method to convert raster images of arbitrary topology to a coarse

triangle mesh representation that has a low color reconstruction error, produces good

quality triangulation along with a non-trivial globally smooth parameterization for

each pixel in the original image that is useful in clustering, segmentation and editing.

We do this by developing a new quadric error metric suitable for color images that

is sensitive to both geometry and color. It allows for different weights to be assigned

to geometry and color, making it extremely flexible for a variety of applications. We

also present the concept of visit maps as a way to visually validate the metric. The

parameterization is useful in image segmentation and editing.
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For possible future work, one could improve our segmentation results by applying

ultra metric contour maps (Arbeláez et al., 2009) based on our parameterization

results and explore more applications that can benefit from our scheme, such as

dynamic interactive editing.

Since our work is published, alternative approaches have been proposed to address

similar research problems. (Liao et al., 2012) views one raster image as three meshes

with the same connectivity; each for one individual channel of the three-channel color

space. (Hu et al., 2013) introduces a compact, hierarchical representation describing

structural and appearance characteristics of image regions similar to ours. Their

approach tries to align graph nodes with image regions with coherent appearance,

similar to SuperPixels. (Sung et al., 2013) references our work and claims to have

employed a similar method in their image mesh simplification.
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(a) The original image and the mask used

to cut out the target content.

(b) Editing at a coarse level.

(c) Editing at a medium level.

(d) Editing at a finer level.

Figure 3.12: Steering wheel : an example of multi-resolution image warping using
our base mesh and parameterization. Changes made to the base meshes are circled
in red.
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(a) The original image and

the editing base mesh.

(b) Sample shape and color modifications.

(c) The control mesh for the shape modification and an ex-

ploded view of the color transition

Figure 3.13: Monkey : an example of editing.
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(a) Input (b) The ridge is lifted

(c) Based on (b) the body highlight is

shifted left

(d) The ridge is wriggled using a finer con-

trol

Figure 3.14: Spider Shell : an example of editing.
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Chapter 4

3D SCAN DATA VECTORIZATION AND ANALYSIS - HUMAN BODY SCANS

In this chapter, we broaden the use of vectorization in processing and analyzing

3D data. We consider point cloud or laser scan triangle meshes (Bernardini and

Rushmeier, 2002) as the analogue of raster images in 3D data, and we can treat

parametric curves and surface patches as the analogue of vectorized presentation. We

identify two ways to use vectorization in 3D settings. First, we can extract a series

of scattered data points and fit a parametric curve to them. Second, we can apply

vectorization methods, such as skeletonization and peeling, to patches of triangles. It

builds a vector representation of the shapes and makes applications such as pattern

learning possible. We have published our work in (Yin et al., 2009a) and (Yin et al.,

2010).

In this chapter, we present the Enhanced Anthropometric Rating System (EARS),

an integrated collection of tunable semi-automatic procedures to compute, visualize,

and evaluate the geometric information of a 3D human body scan. To the best of

our knowledge, EARS is the first complete system dedicated to fast evaluation and

analysis of the quality of a 3D human scan data. EARS is able to detect and remedy

scan flaws, perform fast anatomically guided segmentation, analyze the posture of

the scanned subject, evaluate the quality of the triangle surface, and provide real-

time feedback on the quality of a human body scan mesh. We have tested EARS

on a set of 100 female and 100 male subjects randomly drawn from the CEASER

database (Robinette et al., 2002). The total run time on one model is less than 30
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seconds. EARS shows strong robustness on a test data set of unusual poses. EARS

presents intuitive GUI and can also be run in command mode. It is compatible with

the Cyberware CyScan software (Cyberware, 2015) and is employed by the US Army

during their large scan anthropometric survey. Vectorization (of scattered samples)

is used to identify critical landmarks on head profiles in our system.

4.1 Introduction

The last two and half decades have seen an increasing engagement of 3D human

scans in Anthropometric research and studies. 3D scans fully preserve the body

shape measurements, and are the data-of-choice of large archives for analyzing human

physical dimensions and statistics, such as the well-known CEASER (Allen et al.,

2003; Robinette et al., 2002) project. Recently, a similar project was done in the U.S.

Marines and Army. The Ergonomics team at the Natick Soldier RDEC has conducted

a survey of Anthropometrics of the soldier of the 21st century. The survey helped

understand the impact of gender, ethnic and racial diversity on body morphology of

today’s armed forces. It also created a long term database for future applications, such

as clothing and equipment design and load bearing simulation. Quality is the primary

concern in building a database of digital scans. During data collection, various types

of flaws can result in low-quality scans (figure 4.1). These scans might be accidentally

admitted into the database, especially when there is a limited time for the human

operator to inspect the scan and make a decision to rescan the soldier, in our case

30 seconds. Besides, a human operator might give subjective and inconsistent score.

In an attempt to assist the human operator, we developed the EARS for RDEC, a

novel quality control tool that detects the error and flaws of an incoming scan in a

consistent way and provides a go/no-go recommendation in real time.
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Figure 4.1: Sample scan flaws: (a) (b) (e) shows missing area and void of different
degrees; (c) shows stitching problem when registering scan patches. (d) shows outliers
and (f) (g) shows abnormal rough surface caused by calibration.

The procedures in EARS are organized as a decision tree with five major levels

(figure 4.2). At the end of each stage, EARS answers a series of inquiries with binary

responses based on a set of thresholds predetermined from a learning data set; and

decides whether the scan data is acceptable for continue processing. The rest of

this section is organized according to these five stages. We discuss the key actions

and processes performed and the determining questions that are asked at each stage.

Vectorization is used in segmentation stage 4.4.

4.2 Preprocessing

In the stage of input preprocessing, EARS loads the .PLY file generated by the

scanner and performs a series of procedures and fixes. EARS stores the mesh using

CGAL half-edge data structure (cga, 2015), a representation that can obtain the adja-

cency information in near constant time. During loading, EARS fixes the topological

errors such as intruding facets, conflicting face normals, and outliers. EARS searches
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Figure 4.2: The Architecture of EARS’s Decision Tree.

for the largest connected component and establish it as the main body. Elements

outside the main body are discarded as background noises.

The questions that are asked are: 1. Are the numbers of elements (vertices,

edges, and faces) within reasonable range? 2. Are the numbers of deleted elements

reasonable? 3. Does the major connected component contain a significant majority

of the total facets? These questions determine whether the scan properly stitched.

If the answer of any of these questions is negative, the mesh is rejected from further

processing.
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4.3 Void Processing

Voids are internal loops formed by connected boundary edges. They are caused

generally by camera occlusion during scanning such as the crotch and armpit areas.

EARS collects information of the voids by detecting and filling them. This helps

us improve the quality of vectorization in later steps. EARS applies a novel greedy

advancing front algorithm with awareness of back-facing triangles to fill the voids.

Front-facing means that the facet has a consistent normal orientation with its vicinity.

The algorithm proceeds by adding one triangle to the void boundary at a time; at

each iterate, the algorithm chooses to add the facet that has the minimal maximal

inner angle among all front-facing candidates. This guarantees that the filled patch

is composed of triangles that are as equilateral as possible. The algorithm will only

produce back-facing facets when it runs out of front-facing candidates. EARS’s filling

algorithm runs faster than a dynamic programming filling algorithm (Liepa, 2003) and

has reasonably good quality.

The affected area of voids is computed as the total area of filled facets. Its ratio to

the whole main body area is also measured. The quality questions at this stage are:

1. Are the area and its ratio below predetermined thresholds? 2. Do we introduce

tolerable amount of back-facing triangles into the mesh? An input is rejected if any

of these questions are answered negative by EARS.

4.4 Body Scan Segmentation

EARS prepares its feedback in terms of body parts, such as “excessive void found

in upper inside of the left arm” to better guide the human operator. To achieve so,
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EARS performs mesh segmentation to identify the human body parts. Mesh segmen-

tation has received a lot of attention with many generic algorithms proposed (Attene

et al., 2006; Katz and Tal, 2003; Au et al., 2012). EARS’s segmentation procedure

focuses on the specific type of input and takes advantage of the human body shape.

The segmentation is composed of four steps.

First, Principle Component Analysis (PCA) is performed to align the models in

a consistent coordinate system.

Second, EARS performs fast anatomically guided segmentation. This procedure

makes cuts based on topology changes that are explained next. The algorithm in-

tersects the mesh with a series of planes perpendicular to the z axis spanning from

the top to the bottom; each of these planes forms one or many strips of connected

faces when they intersect with the main body. The algorithm cuts the mesh into two

parts whenever the number of strips (detected as connected components) changes.

The anatomically guided segmentation divides the model into the torso, arms, and

legs. This process has been the bottleneck of performance of EARS as it could to take

15-20 seconds if implemented naively. The costliest part of it is that each plane has

to search a large set of facets for intersections. EARS has introduced an optimization

by identifying the wave front i.e. the strip generated by the current cutting plane

(figure 4.3). The optimized algorithm keeps track of the wave front ; to form the next

one, it only needs to search for the facets that are immediately below the current wave

front. It is a localized search and stops when all the facets in consideration are below

the current cutting plane. The optimization has boosted the speed dramatically as

reducing the running time to 2-3 seconds, tested on a Lenovo T61P Laptop with Intel

Core 2 Duo 2.0 GHz, NVidia Quadro FX 579m, 2GB RAM, and x86 Windows Vista.
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Figure 4.3: A Sample Wave Front in Green.

Third, EARS divides the head and the torso based solely on geometry informa-

tion. EARS introduces a vectorization scheme that fit B-splines curves (Farin and

Farin, 2002) to point samples from the scan data. B-splines are chosen because they

have the minimal support with respect to a given degree, smoothness, and domain

partition. EARS collects the left-most and right-most points during anatomically

guided segmentation and forms two profiles by connecting them. These profiles are

then fitted with B-splines (figure 4.4). The fitted B-spline curves preserve the main

shape variance of the profiles without the scanned surface noise. From there, we have

developed two schemes to segment the head at two places that correspond to two

different Anthropometric features, the shoulder point and the chin point.

Shoulder point is defined as the most pronounced inflection point on the pro-

file B-spline. Figure 4.4 shows an example of the inflection points. Besides of the

shoulder point, there are other inflection points at either end of the curve. Based

on our experiments, we have crystallized a procedure to locate the shoulder point

consistently. We have chosen to use 20 control points in B-splines and run three con-
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Figure 4.4: B-Splines and Inflection Points. The Green and Red curves are the orig-
inal profiles; the blue curve is fitted B-spline; the golden balls represent the Inflection
points.

secutive Lowess smoothing (Cleveland, 1979) to the control polygons. The shoulder

point is the inflection point whose curvature changes from positive to negative after

the longest section of positive curvature. Sample results are shown in figure 4.5.

Figure 4.5: Shoulder Cuts Sample Results.

Chin point is also determined by fitting B-spline to the frontal profiles. Based

on our experiment, we again choose to use 20 control points. On the fitted B-spline of

the frontal profile, we first identify the longest retreating span. The point of the most

significant derivative in that span is marked as the chin point. This scheme is illus-

trated in figure 4.6. Our experiment shows an excellent alignment of the mathematic

models and the actual Anthropometric landmarks 4.7.
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Figure 4.6: Illustration of Chin Cut. Image (a) is the B-spline (blue); (b) is the
longest retreating span in red; (c) shows the chin point marked by yellow circle on
the curve.

Figure 4.7: Chin Cut of the Same Models as in Figure 4.5

Now that we have separated the torso and the extremities (tier-1) into body parts,

the last step is to decompose body parts into sub body parts (tier-2) as shown in

figure 4.8.

Torso is further decomposed into 8 sub-parts, 4 on each side. These are referred

to as (left/right) upper shoulder, lower shoulder, thorax, and abdomen from top to

bottom. Each extremity is further divided into 4 sub-parts: upper inside (darker

gray), lower inside (lighter gray), upper outside (lighter colors), and the lower outside

(darker colors). The division planes are constructed based on PCA axis of local body

part.
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Figure 4.8: Illustration of Tier-2 Segmentation.
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The quality questions asked at this stage are: 1. Is the number of body parts

equal to six? 2. Does each body patch have reasonable amount of elements? Meshes

with negative answers are rejected. The segmentation scheme proposed by EARS is

robust as tested on a set of abnormal poses provided by our collaborator (figure 4.9).

Figure 4.9: Results on Abnormal Poses.

4.5 Posture Analysis

The pose of the person being scanned affects the quality of the scan and may

result in incorrect measurements. The key to posture evaluation is to compute the

angles between the major axis of each body part and the z-axis. First, each body

part’s major axis is extracted using localized PCA; then the space angles between it

and the z-axis is computed and reported. EARS evaluates two angles: the front/back

and left/right.

EARS presents a novel visualization of the postures as a skeleton of the scanned

object. Similar effort can be found in (Menier et al., 2006). In this visualization,

we represent the centroids and ends of each body part with golden balls connected

with blue stick along their local major axis. The surface is rendered translucently
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using stencil buffer and alpha matting. Note that the head angle is computed using

the major axis of frontal profile rather than the complete head surface as shown in

figure 4.10.

Figure 4.10: Visualization of the complete process of segmentation and posture
analysis. (subject looking towards his left rather straight ahead; arm bent rather
than straight); From left to right, the original mesh, the mesh with voids filled,
segmentation front view, segmentation side view, three different views of posture
abstraction.

For each angle that EARS compute, there is an acceptable range. If angle falls

out of the range, the mesh is rejected.

4.6 Roughness

EARS evaluates the surface roughness based on a center-around operator on Bi-

quadratic curvature (Razdan and Bae, 2005). The regions with high roughness are

highlighted in red in figure 4.11.

The fairness is computed as statistic average and variance of triangle shape in-

dicator, edge length and area areas. These statistical measurements represent the

distribution of scan points.

The quality questions of this stage are: 1. Are the surface of side thigh or arm

smooth? Because these are the regions where abnormal rough patches appear most
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Figure 4.11: Rough Regions Highlighted in Red.

commonly appear. 2. Are the statistics of the scan points reasonable? EARS rejects

scan based on a set of predetermined thresholds.

4.7 Conclusions

EARS introduces fast void filling, novel human mesh segmentation and posture

visualization techniques. Based on a test set consisting 2000+ human scans, EARS

is able to perform the whole quality control sequence in an average of 10 seconds and

demonstrates strong robustness in case of bad poses. All EARS procedures can be

tuned for better performance with new thresholds and parameters.
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Chapter 5

CONCLUSIONS

In this dissertation, we present a series of related research projects that explore the

usage of vectorization in processing and analyzing 2D and 3D data sets. We present a

novel image vectorization method, which is an improvement over a previous popular

method. We have explained in detail how it works and demonstrated that it pro-

duces competitive results against existing approaches. We also investigated the use

of vectorization in other contexts and demonstrated novel results. Our work on image

segmentation can be further expanded to using quad meshes to deal with arbitrary

topology, and we hope it can inspire more research in this field.

All parts of the dissertation are published, respectively (Yin et al., 2009b) (Yin

et al., 2009a) (Yin et al., 2010) (Yin et al., 2011) (Bridges et al., 2010).
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