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ABSTRACT  

   

Watanabe, Náñez, and Sasaki (2001) introduced a phenomenon they named “task-

irrelevant perceptual learning” in which near-threshold stimuli that are not essential to a 

given task can be associatively learned when consistently and concurrently paired with 

the focal task.  The present study employs a visual paired-shapes recognition task, using 

colored polygon targets as salient attended focal stimuli, with the goal of comparing the 

increases in perceptual sensitivity observed when near-threshold stimuli are temporally 

paired in varying manners with focal targets.  Experiment 1 separated and compared the 

target-acquisition and target-recognition phases and revealed that sensitivity improved 

most when the near-threshold motion stimuli were paired with the focal target-acquisition 

phase.  The parameters of sensitivity improvement were motion detection, critical flicker 

fusion threshold (CFFT), and letter-orientation decoding.  Experiment 2 tested perceptual 

learning of near-threshold stimuli when they were offset from the focal stimuli 

presentation by ±350 ms.  Performance improvements in motion detection, CFFT, and 

decoding were significantly greater for the group in which near-threshold motion was 

presented after the focal target.  Experiment 3 showed that participants with reading 

difficulties who were exposed to focal target-acquisition training improved in sensitivity 

in all visual measures.  Experiment 4 tested whether near-threshold stimulus learning 

occurred cross-modally with auditory stimuli and served as an active control for the first, 

second, and third experiments.  Here, a tone was paired with all focal stimuli, but the tone 

was 1 Hz higher or lower when paired with the targeted focal stimuli associated with 

recognition.  In Experiment 4, there was no improvement in visual sensitivity, but there 

was significant improvement in tone discrimination.  Thus, this study, as a whole, 
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confirms that pairing near-threshold stimuli with focal stimuli can improve performance 

in just tone discrimination, or in motion detection, CFFT, and letter decoding.   Findings 

further support the thesis that the act of trying to remember a focal target also elicited 

greater associative learning of correlated near-threshold stimulus than the act of 

recognizing a target.  Finally, these findings support that we have developed a visual 

learning paradigm that may potentially mitigate some of the visual deficits that are often 

experienced by the reading disabled. 
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Introduction 

A fundamental concern in neuroscience is how the adult brain adapts to salient 

environmental changes without over-responding to the relentless stream of trivial 

information to which observers are exposed.  In 1980, Stephan Grossberg argued that any 

neurally-based learning system would need to mediate what he termed the noise-

saturation dilemma.  The current study explores the possibility that this dilemma would 

be mitigated if a neuro-modulator system exists that requires concentration to elicit 

plasticity.  If this notion is true, we should be able to observe the effects of the neuro-

modulator system by using particular behavioral measures incorporated into a precisely 

designed experiment. 

High-level perceptual processing has been shown to exhibit extensive plasticity, 

especially for implicit learning (Jiménez & Méndez, 2001),  such as priming (Tipper & 

Cranston, 1985; Wiggs & Martin, 1998) and contextual learning (Adini, Sagi, & 

Tsodyks, 2002; Olson & Chun, 2001).  In contrast, the early sensory systems traditionally 

have been thought to exhibit plasticity primarily during early development and to a much 

lesser extent in adults (Marr, 1982).  This view has been supported by studies of critical 

period development which have shown that the occurrence of gross plasticity in early 

sensory areas is restricted to brief periods occurring shortly after birth (Wiesel & Hubel, 

1965).  These findings support the thesis that the low-level sensory systems principally 

process primitive sensory features such as visual orientation, spatial frequency, and local 

motion.  One proposed solution to the noise-saturation dilemma in adults is that a given 

organism has a rigid, low-level, neural architecture with significant plasticity occurring 

only at the higher-level processing systems. 
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The notion that low-level sensory systems are stable and not subject to change has 

been challenged by studies of perceptual learning (Ahissar & Hochstein, 1997; Dosher & 

Lu, 1998; Glenberg et al., 2010; Morikawa & McBeath, 1992) which show that with 

repeated exposure or training, even adult sensory systems can exhibit improvement in 

perceptual abilities.  Moreover, psychophysical studies of visual plasticity have 

demonstrated that perceptual thresholds can be improved with a very high degree of 

specificity with respect to the visual sensory features orientation  (Fiorentini & Berardi, 

1980; Li, Thier, & Wehrhahn, 2000), ocularity (Fahle, Edelman, & Poggio, 1995), 

motion direction (Ball & Sekuler, 1981; Watanabe et al., 2001), and retinotopic location 

(Fiorentini & Berardi, 1980).  The extreme task specificity provides evidence that the 

plasticity in these sensory cortical areas must include very low-level stages of processing  

(Crist, Kapadia, Westheimer, & Gilbert, 1997), although this does not exclude the 

possible contributions from higher-level neural systems (Ahissar & Hochstein, 1997; 

Dosher & Lu, 1998).  

Sensory plasticity of basic, low-level, sensory features has been confirmed by 

studies of electrophysiology in animals and functional imaging in humans.  Specifically,  

vision research using single-cell recordings has confirmed activity of cells changes in the 

early visual cortex of monkeys (Gilbert, Sigman, & Crist, 2001; Schoups, Vogels, Qian, 

& Orban, 2001; Yang & Maunsell, 2004; Zohary, Shadlen, & Newsome, 1994).  In 

addition, magnetic resonance studies documented neural change in the V1 area of 

humans (Furmanski, Schluppeck, & Engel, 2004; Schwartz, Maquet, & Frith, 2002) and 

in the primate homologue to the MT/V5 (Vaina, Soloviev, Bienfang, & Cowey, 2000), 

while at the same time confirming a correlation of neural change with perceptual 
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learning.  Plasticity of early processing areas has also been observed with other 

modalities such as audition (Bao, Chan, & Merzenich, 2001; Kilgard & Merzenich, 

1998), somato-sensation (Dinse, Ragert, Pleger, Schwenkreis, & Tegenthoff, 2003; Kaas, 

Merzenich, & Killackey, 1983), and with motor functions (Li, Padoa-Schioppa, & Bizzi, 

2001; Pascual-Leone, Bartres-Faz, & Keenan, 1999).  These findings are consistent with 

neural plasticity in the primary cortical areas for these modalities. 

In 2001, Watanabe, Náñez, and Sasaki demonstrated that associative perceptual 

learning can occur as a result of a participant’s exposure to the pairing of a salient focal 

visual target with a near-threshold stimulus, designed to be unattended (i.e., awareness of 

the stimulus is not essential in order to accurately perform the focal task).  This work 

supports the theory that sensory plasticity to the near-threshold signal occurs as a result of 

associative reinforcement that is a byproduct of the intended reinforced learning of the 

focal task.  The neural activity associated with the non-essential task is inadvertently 

reinforced along with the neural activity associated with the paired focal stimulus on 

which the participant is concentrating (Watanabe et al., 2002).  This reinforcement 

system is likely mediated by neuro-modulators such as acetylcholine, noradrenalin, and 

dopamine, that are widely released throughout the whole brain during task-specific 

concentration and have been implicated in neural plasticity (Arnsten, 1997;  Dalley et al., 

2001; Schultz, 2000).  When a participant concentrates on a focal task-target, the 

increased neuro-modulators support and strengthen all neurons that are active, including 

those that are responding to the near-threshold stimuli, resulting in plasticity in neurons 

associated with both focal and dim, non-essential stimuli that are active at the moment of 

concentration.  Thus, visual neurons that are responsive to dim, or very weak, but 
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associated stimuli show improved sensitivity simply because they were reinforced 

concurrently with the occurrence of a salient focal perceptual task that required 

concentration.  

Interestingly, Tsushima, Seitz, and Watanabe (2008) found that plasticity to 

associated, non-essential, near-threshold stimuli only occurs when such stimuli are dim.  

Their results indicate that features not related to the focal task are learned only when they 

are presented near-threshold, not when they are presented supra-threshold.  Tsushima 

argues that when a feature in the environment is noticeable and not essential to the task 

at-hand, an active suppression system inhibits the neural network’s response to the non-

salient feature.  The neural network can be reinforced and induce plasticity only when a 

stimulus that is non-essential to the task is near-threshold.  This notion is supported by 

recent research that found that the human pre-frontal cortex has a higher threshold for 

responding to supraliminal motion signals that are presented as distractors compared to 

the central dorsal visual system responding to dim, distracting, perceptual stimuli.  In 

essence, Tsushima contends that when motion is presented supraliminally and is not 

essential to the task, the area in the pre-frontal cortex which is involved in the inhibitory 

control of attention is likely impeding the area of the visual system known to be 

specialized in motion-direction processing (Knight, Staines, Swick, & Chao, 1999; 

Tsushima, Sasaki, & Watanabe, 2006). 

Seitz and Watanabe (2003) suggested that, similar to classical conditioning, these 

reinforcement signals occur as a result of a participant’s successful recognition of the 

serially presented task-targets and the awareness of performance levels.  By pairing a 

challenging, salient focal task with a perceptually dim, non-essential, near-threshold 
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stimulus during large numbers of trials, the near-threshold stimulus is inadvertently 

learned.  By having some long-term plasticity expressed in all neural systems, the 

learning of low-level perceptual features could occur but be limited to cases when it is 

reliably paired with performance of salient, focal, higher-level tasks.  

The current study seeks to expand our understanding of the relationship between a 

person’s concentration on a strong, focal stimuli and the associated learning of a weak, 

non-essential, near-threshold stimuli.  In a series of experiments, we examine the 

differences that occur in learning by varying the placement of near-threshold stimuli, 

comprised of dim motion gradients, in relation to the presentation of focal target stimuli.  

Experiment 1 tests associative learning when the non-essential, near-threshold stimuli is 

presented at the moment an associated focal target is initially observed and remembered 

(a condition that we labeled “target-acquisition”) versus at the moment when the focal 

target is later recognized in a serial string of distractors (a condition that is labeled 

“target-recognition”).  Experiment 2 tests the strength of learning the non-essential, near-

threshold motion when it is paired with the recognition of the focal target, but with a 

temporal offset either 350 ms before or 350 ms after the focal target.  Experiment 3 tests 

the effects of this learning paradigm on participants with reading difficulties, particularly 

with regard to their ability to decode letters following learning the near-threshold motion 

gradient stimuli.  Experiment 4 serves as an active control, with the same focal stimuli, 

but with nonessential, near-threshold stimuli of a different modality.  Instead of dim 

visual motion-gradients, the near-threshold stimuli consist of acoustic tones that are 

paired with the focal target stimuli at the time of target-recognition.  
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Four measures were used to assess learned changes in perceptual sensitivity as an 

effect of the associative perceptual learning paradigm.  First, motion-gradient sensitivity 

was included because most of the previous research in associated, near-threshold stimulus 

learning (or “task-irrelevant” learning) used motion-detection changes to assess the 

effectiveness of the paradigm; we, too, paired peripheral motion-gradients with the focal 

targets.  Second, critical flicker fusion threshold (CFFT) was used because it is well-

established as a measure of central dorsal stream visual processing (Holloway & 

McBeath, 2013; Leonards & Singer, 1997) and because low flicker threshold rates have 

been observed in reading disabled populations (Felmingham & Jakobson, 1995; Martin & 

Lovegrove, 1987).  Moreover, research has shown that flicker perception improves when 

participants are trained to better see motion (Seitz, Náñez, Holloway, & Watanabe, 2005; 

Seitz, Náñez, Holloway, & Watanabe, 2006).  Third, a psychophysical, non-linguistic 

measure of letter or shape decoding was used because this particular test has been shown 

to be highly correlated with real word and non-word decoding (Holloway, Náñez, & 

Seitz, 2013).  Finally, in Experiment 4, tone discrimination was used to assess whether an 

auditory signal could be used as the non-essential, near-threshold stimuli that is paired 

with a visual focal target, using the current perceptual learning paradigm.  Peripherally 

learned tone-discrimination thus served as an active different-modality control test 

compared to the peripherally learned motion-gradient conditions in the prior three 

experiments.  
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Experiment 1:  Target Acquisition versus Recognition 

An important question in perceptual learning research is:  How do our sensory 

systems know what to learn?  In other words, how does a sensory learning system process 

the relevance of information in a busy “real world” environment?  Given that plasticity 

can occur in early sensory systems, there must be some mechanism, or gate, that solves 

the noise-saturation dilemma other than a rigid, low-level architecture.  In particular, the 

early sensory system must have some means to control what aspects of the sensory 

environment are learned and what aspects are not.   

Although focused attention has been proposed to provide a type of gate that 

allows perceptual learning to occur (Ahissar & Hochstein, 1993), more recent research 

supports that perceptual learning also can occur without focal attention (Dinse et al., 

2003; Watanabe et al., 2001).  Attentional learning theories suggest that an active 

selection mechanism is typically necessary for learning (Nissen & Bullemer, 1987).  The 

theory states that what is “attended to” will be learned.  Accordingly, when near-

threshold stimuli are non-essential and do not appear to merit attention, they should not 

be learned.  While attention is clearly important for some types of learning, universally 

requiring it for all learning is incorrect since non-essential, unattended features can be 

learned in cases where they are paired with important, attended to focal targets.  

In 2003, Seitz and Watanabe suggested that the solution to this problem might be 

found in the conditioning mechanisms described by Pavlov (1927).  Their idea was that 

non-essential elements in the sensory environment will be learned if they are repeatedly 

reinforced due to being paired with the moment that a focal target is recognized and 

remembered.  In this way, an organism can efficiently adapt to the environment while 



  8 

protecting itself from the instability that would occur if all environmental stimuli were 

learned.  Consequently, they argue that a form of conditioning at the neuronal level and 

focused attention at a higher level work together to facilitate a type of adaptive low-level 

plasticity.  Thus, it is through repeated reinforcement that the visual system, directed by 

prior knowledge that focuses attention, parses out what is important in the environment, 

thereby leading to learning only the information that is consistently available and 

correlated with salient information.  In short, Seitz and Watanabe suggest that the 

mechanisms that are utilized in attention are actually the same as those that drive 

conditioning.  They argue that the term “attention” is not consistently defined and is 

inconsistently applied between studies.  Rather, they propose a more perfunctory view of 

attention in which the learning systems that support attention are more closely related to 

conditioning, and they suggest that researchers could employ their associative learning 

framework to better understand low-level perceptual learning.  

Research by Watanabe et al. (2001) has shown that the act of identifying a target 

among a serial string of distractors creates a moment of recognition that is concurrent 

with the acquisition of the target (Watanabe et al., 2001).  In their original learning 

paradigm, two off-color (slightly lighter or darker shades of grey) letters are nested 

among distractors in a string of eight letters.  The participants were required to remember 

and report the off-color letters and ignore the distractors.  However, within this structure, 

two active gateways are functioning at once:  The recognition that the off-color letter is 

the target; and the concentration exerted to remember the letter, so it can be correctly 

reported after the series has been completed.   
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More specifically, when participants see an off-color letter in a string of 

distractors, they recognize that the letter is off-color - this is target recognition.  Then, 

they must remember the specific letter in order to report that letter when the string ends - 

this is target acquisition.  The temporal occurrence of the acquisition-recognition event 

paired with the non-essential, near-threshold stimulus increases perceptual sensitivity to 

the latter.  The present study tests the effect of pairing non-essential, near-threshold 

stimuli with either the acquisition of a focal target or the recognition of the focal target in 

a serial string of distractors. 

In order to do this, we modified the structure of the learning paradigm to separate 

the acquisition of the focal target from the recognition of it.  We predict that associative, 

“task-irrelevant” learning will occur in a visual paired-shapes recognition task, using 

colored polygon targets as salient, attended, focal stimuli.  We predict that, because of the 

focal concentration required, there will be associative learning of the non-essential, near-

threshold stimuli which consists of dim, background motion gradients with one off-

cardinal direction paired with the occurrence of the focal target shapes.  In addition, we 

predict that associative learning of the non-essential, near-threshold stimuli and 

performance on related psychophysical tests will be superior when the near-threshold 

stimuli are presented with the focal target stimulus as it is initially introduced (i.e., the 

target-acquisition condition) versus when it is presented later as a focally-targeted 

recognition stimulus (i.e., the target-recognition condition).  If true, this finding would 

support the contention that a neuro-modulation system requiring concentration to elicit 

plasticity could mitigate the noise-saturation dilemma.   
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Experiment 2:  Timing of Pairing with Motion Exposure 

Another unanswered question regarding “task-irrelevant” learning is the temporal 

relation of concentration and dim stimuli exposure.  Thus far, research in “task-

irrelevant” learning predominantly has used methodology that simultaneously pairs near-

threshold motion gradients with a target that is recognized and must be remembered 

(Seitz & Watanabe, 2003; Watanabe et al., 2001).  How the timing of this pairing affects 

plasticity has been largely unexplored.  More precisely, does the non-essential, near-

threshold stimulus need to be presented at exactly the moment of focal concentration, or 

does some level of neural flexibility exist that would allow for pairing to be temporally 

close, but not simultaneous to the concentration?  The limited research that has addressed 

this question expresses contradictory findings regarding the timing of reinforcement or 

stimulus exposure and plasticity. 

Killeen and Fetterman (1988) developed a behavior model of timing based on the 

concept that there are pulses from an internal pacemaker that prompt a neural transition 

from one behavioral state to another.  Their model suggests that each pulse from a 

pacemaker instigates a move from a current neural state to that of a new neural state, and 

that, in turn, affects behavior.  A few years later, the researchers confirmed their theory 

using pigeons (Fetterman & Killeen, 1995).  Essentially, Fetterman and Killeen’s 

experiment found that certain neural states were tied to behavioral states, and that 

experimentally-derived pacemaker activity in pigeons demonstrated that learning 

improved only if the pulses were paired between 300 ms and approximately four minutes 

after the behavior.  In the 1995 experiment, no pacemaker activity was paired less than 

300 ms after a behavior.  Similarly, Grondin  (2001) showed that a reinforcement paired 
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with targeted behavior in humans was most effective when the reinforcement followed 

the desired behavior by 300 ms to 600 ms; no reinforcement was presented less than 150 

ms after the behavior.  It should be mentioned that neither of these studies reported 

pairing any type of reinforcement before a desired behavior.   

Conversely, research in Spike-Timing-Dependent Plasticity (STDP), a form of 

Hebbian synaptic plasticity considered to be very temporally precise, has demonstrated 

that plasticity can be induced by creating isolated pre- and post-synaptic spikes in 

neurons (Bi & Poo, 1998; Gerstner, Kempter, van Hemmen, & Wagner, 1996; Markram, 

Lubke, Frotscher, & Sakmann, 1997; Sjöström, Turrigiano, & Nelson, 2001).  In most 

cases, plasticity occurred when repeated activation of synaptic spikes were activated 

within 10 ms before or 10 ms after synaptic potentiation (Abbott & Nelson, 2000).  

Indeed, Abbott and Nelson found that no plasticity occurred outside of this window of 10 

ms before to 10 ms after synaptic potentiation.   

Contrasting these findings generates a number of questions regarding the current 

study.  It appears that Fetterman and Killeen (1995) and Grondin (2001) are measuring 

something very different than the researchers investigating STDP.  The obvious 

difference is that the pacemaker experiments and human behavior studies are affecting 

neural networks, while the STDP studies are affecting single cells.  Although “task-

irrelevant” perceptual learning must affect neural networks, not single cells, and thus, it is 

unlike the STDP studies, it is also unlike behavioral research which uses overt 

reinforcement to affect behavior.     

The current study explores the question of how the timing of pairings may affect 

plasticity by pairing dim motion gradients 350 ms before target recognition and 350 ms 
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after target recognition.  If mechanisms involved with “task-irrelevant” learning are 

precise and similar to the STDP paradigm, motion training should have no effect because 

the dim motion gradients are presented well outside the 10 ms before to 10 ms after 

window.  Accordingly, no improvement in motion recognition should occur.  However, if 

the mechanisms involved with this kind of learning are flexible and are similar to the 

behavioral studies, then learning should occur.  Anticipating this will be the case, we 

predict that a pairing presented 350 ms after the recognition condition will show a more 

robust change in motion detection than a pairing presented 350 ms before the recognition 

condition.  
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Experiment 3:  Decoding, Flicker, and the Reading Disabled 

In 2005, Seitz et al. showed that “task-irrelevant” learning of near-threshold 

motion led to increased perception of flicker.  Critical flicker fusion thresholds (CFFT) or 

flicker perception have been shown to be significantly lower in people who have a 

reading disability (Livingstone, Rosen, Drislane, & Galaburda, 1991).  Research has 

implicated that the central dorsal stream, specifically the V3a to the MT, is at least 

partially responsible for one aspect of reading, namely word decoding (Holloway et al., 

2013; Merzenich et al., 1996).  Interestingly, this is the same region of the brain that is 

responsible for processing motion, contrast, and flicker (Maunsell, Nealey, & DePriest, 

1990).   

Cornelissen, Richardson, Mason, Fowler, and Stein (1995) demonstrated another 

magnocellular deficit that is present in dyslexics.  Specifically, they showed that 

dyslexics have impaired motion sensitivity even at high contrast and illumination levels.  

This result has been confirmed by research exploring elicited potentials (Livingstone et 

al., 1991) and functional magnetic resonance imaging (fMRI) (Eden et al., 1996).  The 

most convincing evidence however, is research showing that the post-mortem 

examination of the magnocellular layers of the lateral geniculate nucleus (LGN) in five 

dyslexic brains were disordered, and that the neurons themselves were over 20% smaller 

than in control brains (Livingstone et al.).  This evidence suggests that many dyslexics 

may have a fundamental impairment in their low-level visual processing. 

Recently, Gori, Seitz, Ronconi, Franceschini, and Facoetti (2015) demonstrated 

that motion training related to “task-irrelevant” perceptual learning radically improves the 

reading ability of Italian-speaking adults with dyslexia.  They concluded that motion 
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training not only elicited improvements in the magnocellular/dorsal (MD) pathway, but 

that it directly translated to better reading skills in Italian-speaking adults.  Interestingly, 

their training paradigm also increased both peripheral visual perception and a temporal 

aspect of visual attention in the dyslexics who participated.  However, the fact that Gori’s 

study was done within the context of the Italian language leaves certain questions 

unanswered.  Italian is a phonologically shallow language as compared to other 

languages, such as English.  Accordingly, it is possible that Gori’s results cannot be 

generalized to other languages.   

To test whether our version of this learning paradigm would improve decoding in 

English speakers with reading difficulties, we recruited eight participants who self-

identified as having difficulty reading.  Then, we exposed half of the subjects to the 

target-acquisition condition and half of them to the tone-training control condition.  In 

participants with reading disabilities, we predict that not only will training increase their 

motion sensitivity, but also that it will improve flicker perception (CFFT) and decoding.   

In the present study, we used a non-linguistic, psychophysical decoding measure because 

it is highly correlated to real word decoding, and because it is highly relevant to studying 

reading disabilities (Holloway et al., 2013). 
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Experiment 4:  Tone Discrimination and the Visual Learning Paradigm 

In order to be confident that no extraneous variables were affecting the results of 

this study, we needed to establish a control group who were exposed to the training 

paradigm without motion.  Moreover, it was decided that it would be preferable if the 

group was exposed to an active control that could train a different perceptual system.  

Pitch discrimination is the ability to recognize that one tone is different from 

another by mentally establishing a relationship between a pitch and that of a recently 

heard tone.  Most experienced musicians are very adept at pitch discrimination, and it is 

considered to be a trainable aptitude (Pantev et al., 1998).  Moreover, Seitz et al. (2010) 

showed that auditory detection thresholds can be improved by pairing specific sounds 

with the task targets in a learning paradigm that presented near-threshold phonemes with 

an auditory perceptual task.   

Therefore, as an active control for these studies, we chose to train participants to 

better discriminate between tones with a learning paradigm that paired non-essential, 

near-threshold tonal differences with the paired-shapes recognition paradigm.  We predict 

that pairing a perceptually dim tone stimulus with target-recognition tasks will result in 

improvement of relative pitch perception but not motion detection, flicker perception, or 

decoding. 
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Summary 

In this study, we predict that associative learning of near-threshold stimuli will 

occur in a visual paired-shapes recognition task, using colored polygon targets as salient 

attended focal stimuli.   

In the first experiment, we pair near-threshold background motion gradients with 

salient, focal target shapes that the participant is asked to remember (i.e., the target-

acquisition condition).  We predict this pairing will elicit greater learning than pairing the 

near-threshold motion with the target as it repeats in a string of focal distractors (i.e., the 

target-recognition condition).   

In the second experiment, we predict that the target-recognition group will 

perform better than a group who experiences motion presented 350 ms before the target 

in a string of distractors.  We also predict that the group who experiences motion 

presented 350 ms after the target in the recognition paradigm will perform nearly as well 

as those in the target-recognition group.   

In the third experiment, we predict that participants with reading disabilities who 

are exposed to target-acquisition training will improve in motion perception, flicker 

processing, and letter decoding, and those reading disabled who are engaged in tone-

training will improve in tone discrimination but not motion processing, flicker 

perception, or decoding. 

The fourth experiment is an active control for the first three experiments where 

we paired a 400 Hz tone with the distractors and paired a 401 Hz tone with the target.  

Here, we predict that participants will improve in tone discrimination but not in motion 

perception, flicker processing, or letter decoding.   
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Method 

Participants 

Thirty participants were recruited from Arizona State University for this study, six 

in each of the five experimental conditions that comprised Experiments 1, 2, and 4.  An 

additional eight participants with self-reported reading difficulties were recruited and 

paid $75.00 each for their participation, resulting in a total of 38 participants for the 

entire project.  Subjects participated in ten 60 - 90 minute sessions over three weeks, no 

more than one session per day, with no testing or training occurring during the weekends.  

The 10 “session days” consisted of a 1-day pre-test phase in which a total of four tests 

were administered, followed by an 8-day exposure/training stage, and ultimately, a 1-day 

post-test phase in which the initial four tests were re-administered.  All participants 

reported good ocular health and had a best-corrected visual acuity (tested on-site) of 

20/40 or better (Snellen).  All experiments were run using custom software.  Participants 

viewed displays at a distance of approximately three feet.  Data collection and participant 

training occurred in a dim room wherein the ambient light level was maintained at 

approximately 4.7 cd/m
2
.  Additionally, all participants were naive as to the purpose of 

the study.  Informed consent was obtained from all participants, and this study conformed 

to the tenants of the Declaration of Helsinki (WMA General Assembly, 2008). 

General Procedure 

The perceptual learning paradigm, as described by Seitz and Watanabe (2003), 

served as the foundation for this study.  The experiment consisted of three phases:  Pre-

test; training; and post-test.  First, in the pre-test phase, each participant’s performance 

was evaluated for low-luminance motion perception, flicker perception, decoding ability, 
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and tone discrimination. The order of tests within each testing phase was randomized 

across subjects.  Second, in the training phase, participants completed eight sessions of a 

paired-shapes identification task.  Third, in the post-test phase, each participant’s 

performance was re-evaluated using the same four tests as those administered in the pre-

test phase.   

 

 

Figure 1.  Schematic of experimental procedure for all conditions. 
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During each of the 8 days of training, all subjects conducted a rapid serial visual 

presentation (RSVP) paired-shapes identification task.  A pair of target shapes appeared 

in a central circle for 2000 ms, followed by a sequence of eight paired shapes in which 

the target shapes recurred in 70% of trials, after which the participant reported whether 

the target shapes were among the sequence of pairs.  The paired-shapes presentation was 

500 ms temporally centered in a 1000 ms frame.  Percentage correct was assessed over 5 

blocks of 108 trials each for a total of 540 trials. 

 

Figure 2.  Schematic of training procedure for all conditions that presented dim stimulus 

with target-recognition. 

 

Testing Procedures 

Motion detection test. 

For motion testing, a subject’s performance was evaluated for four directions of 

motion (45º, 135º, 225º, 315º).  In the motion-perception test, a fixation point appeared 

for 300 ms, and then, a motion stimulus was presented for 500 ms.  Subjects were 

presented with 100% coherence motion at 10 randomly interleaved contrasts (0.12, 0.23, 

0.38, 0.49, 0.58, 0.69, 0.8, 0.94, 1.2, 1.8 cd/m
2
) and asked to use a mouse-click to choose 
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one of four arrows that corresponded to the direction of the motion stimulus.  Each 

direction was presented 20 times at each of the contrast levels, and thus, subjects 

completed 800 trials during each session.   

 

Figure 3.  Schematic of testing procedure for motion detection. 

 

Flicker perception test. 

 

Flicker fusion thresholds were assessed in Hertz with a Macular Pigment 

Densitometer, using the method of limits (the mean of three descending measures from a 

high speed of flicker to a low speed in which the participants reported when the stimulus 

begins to flicker and three ascending measures from a slow speed to a fast speed in which 

the participant reported when the flicker stops) with a 1-deg diameter green (543 nm) test 

field.   

Decoding test. 

The psychophysical test used in this experiment was non-linguistic and was more 

akin to novel shape-recognition than it was to reading.  However, it still required the 

visual system to assess the direction of the opening of a letter in a manner similar to word 

decoding, and it has been shown to strongly correlate with word and non-word decoding 

measures (Holloway et al., 2013).  This psychophysical, non-linguistic decoding measure 
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was obtained using a custom computer program that provided for Landolt C targets to be 

randomly presented in four cardinal orientations at 3-radial distances from a focus point 

(2.39, 4.77, and 7.95 degrees of visual angle), for eight cardinal and inter-cardinal 

compass points in a circular pattern.  It is important to note that although any given target 

was at one of the 3-radial distances from the focus point, the targets could be placed 

anywhere within 360
o
.  Therefore, this task required a participant’s attention to be placed 

in the entire space subtended by 4.77, 9.53, and 15.81 degrees of visual angle 

respectively.  A focus point was presented for 900 ms followed by a 100 ms Landolt C 

target.  Subjects responded by pressing the arrow key on the keyboard that matched the 

direction the target was facing.  Percentage correct was assessed over 5 blocks of 96 trials 

per block for a total of 480 trials per session. 
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Figure 4.  Schematic of testing procedure for decoding.  A single Landolt C was 

presented at one of 24 locations, at 3-radial distances from a focus point, for eight 

cardinal and inter-cardinal compass points in a circular pattern. 

 

Tone discrimination test. 

Tone discrimination testing consisted of the presentation of a baseline note that 

was then followed by a comparison note that was either the same note or one ranging 

from 4.32 to 21.51 cents higher or lower than the baseline note.  Participants were given a 

forced-choice option as to whether the second note was higher or lower than the first.  

Pitch discrimination trials were presented with the method of constant stimuli through a 

custom computer program.  Percentage correct was assessed over 5 blocks of 60 trials 

each for a total of 300 trials per session. 
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Training Procedures   

Motion training.  

While the subject performed the shapes-identification tasks, 100% coherent 

motion stimuli were presented in a peripheral annulus.  Motion stimuli consisted of a 

dynamic array of 200 light grey dots (0.2 degree radius) on a grey background with each 

dot having a 3-frame lifetime for both the testing phase and the training phase.  Motion 

during the shapes-identification task was presented at 100% coherence with 0.23 cd/m
2
 

contrast, with each direction being presented for 300 ms.  The 0.23 cd/m
2
 contrast level 

was chosen because pilot studies indicated that this was the level at which subjects 

performed, on average, at chance in the contrast test and reported motion on less than 

30% of trials on the detection task.   
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Figure 5.  Schematic of training procedure for motion.  A pair of target shapes appeared 

in a central circle for 2000 ms, followed by a sequence of eight paired shapes in which 

the target shapes recurred in 70% of trials, after which the participant reported whether 

the target shapes were among the sequence of pairs.  Motion was presented either 

concurrently with the initial target shapes or in one of three presentation timings when the 

target shapes recurred. 

 

In the target-acquisition condition, one direction of motion was presented 

concurrently with each of the first shape-pairs that the participant needed to remember.  

The other three directions of motion were presented concurrently with the distractor 

shape-pairs.  In this condition, no motion was presented with the target shape-pair.   

In the target-recognition condition, one motion direction temporally overlapped 

each paired-shapes target as it repeated among the distractors, and the other three 

directions temporally overlapped the distractor shape-pairs.  In this condition, no motion 

was presented with the first paired shapes that the participant needed to remember.   
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Figure 6.  Schematic of motion-presentation timing for the training procedure where 

motion was paired concurrently with target recognition.   

 

In the 350 ms before target recognition condition, one motion direction was 

presented 350 ms before each of the paired-shapes target. 

 

Figure 7.  Schematic of motion-presentation timing for the training procedure where 

motion was presented 350 ms before target recognition. 
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In the 350 ms after target recognition condition, one motion direction was 

presented 350 ms after the paired-shapes target disappeared.   

 

Figure 8.  Schematic of motion-presentation timing for the training procedure where 

motion was presented 350 ms after target recognition. 

 

The paired direction for each condition was randomly chosen from the testing set 

for each subject.  

Tone discrimination training. 

Similar to the motion-recognition training paradigm, but with no motion 

presented at anytime, the tone-discrimination training task exposed participants to 401 Hz 

tones played concurrently with the paired-shapes targets in the recognition paradigm and 

400 Hz tones played concurrently with distractor shape-pairs. 
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Figure 9.  Schematic of tone presentation timing for the training procedure where tone 

was presented concurrently with target recognition. 

 

 

 

Figure 10.  Schematic of training procedure for tone.  A pair of target shapes appeared in 

a central circle for 2000 ms followed by a sequence of eight paired shapes in which the 

target shapes recurred in 70% of trials, after which the participant reported whether the 

target shapes were among the sequence of pairs.  The trained tone was presented 

concurrently with the target shapes when they repeated among distractors. 
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Data Analysis  

In light of the fact that three of the four measures used in this experiment had 

linear levels of difficulty built into their design, a simple analysis of the data would be 

insufficient.  The motion tests had 10 levels of contrast ranging from chance performance 

at the dimmest level to near ceiling at the brightest level.  The decoding measure 

displayed targets at three distances from a focus point with those presented furthest from 

the focus point being very difficult to see, and those presented near the focus point being 

much easier to see.  The tone discrimination test had five levels of difficulty ranging from 

tone presented only 1 Hz apart where performance is near chance to 5 Hz apart where 

performance is much better.  Given the linear nature of the testing protocols, a 

multivariate linear contrast analysis of variance was calculated for the motion, decoding, 

and tone measures, and they were Bonferroni corrected due to multiple comparisons.  

Independent t-tests were calculated to compare pre-test thresholds to post-test thresholds.  

Effect size was also reported.    
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Results 

 

Experiment 1 

Target-acquisition condition.  

Participants in the target-acquisition group who trained with near-threshold, non-

essential motion stimuli paired with the focal target that the participant was asked to 

remember demonstrated a significant and robust improvement in motion detection, F(1, 

5) = 264.93, p < 0.001, η
2 

= 0.981.  After 8 days of training, participants in this group 

experienced an improvement in motion detection from an overall mean of 50% correct in 

the pre-test to an overall mean of 77% correct in the post-test, showing, on average, a 

54% (=
     

  
) improvement in motion perception. 

 

Figure 11.  Motion detection accuracy for pre-tests and post-tests across 10 levels of 

contrast brightness in the target-acquisition condition. Error bars represent standard error. 
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The target-acquisition training also significantly improved a subject’s flicker 

perception or CFFT, t(5) = 5.23, p < 0.01, d = 2.49.  Participants increased their CFFT 

from an average of 19.79 Hz to an average of 22.46 Hz.  Thus, target-acquisition 

participants experienced, on average, a 14% (=
           

     
) improvement in their flicker 

perception. 

 

Figure 12.  Flicker perception thresholds for pre-tests and post-tests in the target- 

acquisition condition.  Error bars represent standard error. 
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Target-acquisition training also significantly improved subjects’ letter-decoding 

abilities, F(1,5) = 35.003, p < 0.01, η
2 

= 0.875, from a pre-test mean of 45% to a post-test 

mean of 61%.  Overall, participants demonstrated a 36% (=
     

  
) average improvement 

in their decoding performance. 

 

Figure 13.  Letter decoding accuracy for pre-tests and post-tests across three levels of 

distance from the focus point when motion was presented concurrently with target 

acquisition.  Error bars represent standard error.  
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In the target-acquisition condition, there was no significant improvement in 

participants’ tone discrimination, F(1,5) = 2.113, p = .206, η
2
 = .297.   

 

Figure 14.  Tone discrimination accuracy for pre-tests and post-tests across five levels of 

tone difference when motion was presented concurrently with target acquisition.  Error 

bars represent standard error, and the post-test trend line precisely overlays the pre-test 

trend line. 
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Target-recognition condition.  

Training where non-essential, dim motion stimuli was paired with focal target 

recognition produced a significant but less robust improvement in motion detection,    

F(1, 5) = 82.332, p < 0.001, η
2 

= 0.943.  Participants experienced an improvement in 

motion detection from an overall mean of 39% correct in the pre-test to an overall mean 

of 56% correct in the post-test, showing, on average, a 43% (=
     

  
)  improvement in 

motion perception. 

 

Figure 15.  Motion detection accuracy for pre-tests and post-tests across 10 levels of 

contrast brightness in the target-recognition condition.  Error bars represent standard 

error. 
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Target-recognition training also improved participants’ flicker perception,  

t(5) = 3.54, p < 0.05, d = 1.12, increasing their CFFT from an average of 18.8 Hz to an 

average of 21.05 Hz.  Thus target-recognition participants increased their flicker 

perception by an average of 12% (=
          

    
). 

 

Figure 16.  Flicker perception thresholds for pre-tests and post-tests in the target-

recognition condition.  Error bars represent standard error. 
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Decoding performance significantly improved in subjects who completed the 

target-recognition training, F(1,5) = 15.539, p < 0.05, η
2 

= 0.757, from a pre-test mean of 

40% to a post-test mean of 55%.  Similar to the target-acquisition group, the target-

recognition group demonstrated a 37% (=
     

  
) average improvement in decoding 

performance. 

 

Figure 17.  Decoding accuracy for pre-tests and post-tests across three levels of distance 

from the focus point when motion was presented concurrently with target recognition.  

Error bars represent standard error. 
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In the target-recognition condition, there was no significant improvement in tone 

discrimination, F(1,5) = 1.746, p = .244, η
2
 = .259. 

 

Figure 18.  Tone discrimination accuracy for pre-tests and post-tests across five levels of 

tone difference when motion was presented concurrently with target recognition.  Error 

bars represent standard error, and the post-test trend line precisely overlays the pre-test 

trend line. 
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Comparison of the acquisition and recognition conditions. 

To directly assess the levels of improvement observed in the target-acquisition 

group and those observed in the target-recognition group, each participant’s pre-test 

scores were subtracted from his post-test scores for every condition.  Then, a multivariate 

regression analysis of variance was calculated, comparing the target-acquisition group 

with the target-recognition group.  Overall, the improvement seen in the target-

acquisition group was significantly greater than the improvement observed in the target-

recognition group, F(9, 90) = 5.586, p < .001, η
2 

= 0.313, with the target-acquisition 

group showing nearly a 27% base improvement between the pre-test and post-test as 

compared to a 17% base improvement observed in the target-recognition group.  

 

Figure 19.  Improvement in motion detection comparing the target-acquisition and  

target-recognition groups’ post-test minus pre-test performance levels across 10 levels   

of contrast brightness.  Error bars represent standard error. 
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Experiment 2 

Motion presented 350 ms before target-recognition condition. 

When non-essential, dim motion stimuli were presented 350 ms before the target 

in the focal target-recognition task, participants showed improvement in motion 

detection, F(1, 5) = 10.53, p < 0.01, η
2  

= 0.678, advancing from an overall mean of 44% 

correct in the pre-test to an overall mean of 54% correct in the post-test.  Specifically, 

they demonstrated an average improvement in motion detection of 23% (=
     

  
).    

 

Figure 20.  Motion detection accuracy for pre-tests and post-tests across 10 levels of 

contrast brightness when motion was presented 350 ms before target recognition.  Error 

bars represent standard error. 
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When non-essential, dim motion stimuli were presented 350 ms before the focal 

target, an increase was also observed in participants’ flicker perception, t(5) = 2.9,  

p < 0.05, d = 0.34, whereby their CFFT increased from an average of 20.28 Hz to an 

average of 21.31 Hz.  Thus, target-acquisition participants’ CFFT improved by an 

average of 5% (=
           

     
). 

 

Figure 21.  Flicker perception thresholds for pre-tests and post-tests when motion was 

presented 350 ms before target recognition.  Error bars represent standard error. 
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When non-essential, dim motion stimuli were presented 350 ms before the focal 

target, decoding performance was also significantly improved, F(1,5) = 27.770, p < 0.01, 

η
2 

= 0.820, from a pre-test mean of 45.15% to a post-test mean of 53.63%, with 

participants experiencing an average improvement of 18.7% (=
           

     
). 

 

Figure 22.  Decoding accuracy for pre-tests and post-tests across three levels of distance 

from the focus point when motion was presented 350 ms before target recognition.  Error 

bars represent standard error. 
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When non-essential, dim motion stimuli were presented 350 ms before focal 

target recognition, no significant improvement was observed for the tone-discrimination 

measures, F(1,5) = 3.827, p = .108, η
2
 = .434.   

 

Figure 23.  Tone discrimination accuracy for pre-tests and post-tests across five levels of 

tone difference when motion was presented 350 ms before target recognition.  Error bars 

represent standard error. 

 

  



  42 

Motion presented 350 ms after target-recognition condition.  

When non-essential, dim motion stimuli were presented 350 ms after the focal 

target in the target-recognition training sessions, participants showed improvement in 

motion detection very similar to that observed in the original target-recognition condition, 

F(1, 5) = 93.24, p < 0.001, η
2 

= 0.949, demonstrating an improvement in motion detection 

from an overall mean of 38% correct in the pre-test to an overall mean of 50% correct in 

the post-test, an improvement of 31% (=
     

  
) on average. 

 

Figure 24.  Motion detection accuracy for pre-tests and post-tests across 10 levels of 

contrast brightness when motion was presented 350 ms after target recognition.  Error 

bars represent standard error. 
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When non-essential, dim motion stimuli were presented 350 ms after the focal 

target, an increase was observed in participants’ flicker perception, t(5) = 3.68, p < 0.05, 

d = 1.79.  Specifically, their CFFT increased from an average of 19.38 Hz to an average 

of 21.57 Hz.  Thus, target-acquisition participants’ CFFT improved by an average of 11% 

(=
           

     
). 

 

Figure 25.  Flicker perception thresholds for pre-tests and post-tests when motion was 

presented 350 ms after target recognition.  Error bars represent standard error. 
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When non-essential, dim motion stimuli were presented 350 ms after the focal 

target, decoding performance was also significantly improved, F(1,5) = 20.066, p < 0.01, 

η
2 

= 0.801, from a pre-test mean of 46% to a post-test mean of 58%.  Similar to the 

target-acquisition group, decoding performance of participants in the 350 ms post-target 

presentation group improved by an average of 26% (=
     

  
). 

 

Figure 26.  Decoding accuracy for pre-tests and post-tests across three levels of distance 

from the focus point when motion was presented 350 ms after target recognition.  Error 

bars represent standard error. 
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When non-essential, dim motion stimuli were presented 350 ms after focal   

target- recognition, no significant difference was observed in tone discrimination,    

F(1,5) = 2.877, p = .151, η
2
 = .365. 

 

Figure 27.  Tone discrimination accuracy for pre-tests and post-tests across five levels of 

tone difference when motion was presented 350 ms after target recognition.  Error bars 

represent standard error. 
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Comparison of the 350 ms before and 350 ms after conditions. 

To directly assess the levels of improvement observed in the 350 ms before group 

and those observed in the 350 ms after group, each participant’s pre-test scores were 

subtracted from his post-test scores for every condition.  Then, a multivariate regression 

analysis of variance was calculated.  Overall, the improvement seen in the 350 ms after 

group was significantly greater than the improvement observed in the 350 ms before 

group, F(9, 90) = 5.09, p < .001, η
2 

= 0.295, with the 350 ms after group showing nearly a 

13% base improvement between the pre-test and post-test as compared to a 9% base 

improvement observed in the 350 ms before group.  

 

Figure 28.  Improvement in motion detection comparing the 350 ms before and 350 ms 

after groups’ post-test minus pre-test performance levels across 10 levels of contrast 

brightness.  Error bars represent standard error. 
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Experiment 3 

Reading disabled target-acquisition condition. 

Participants with reading difficulties who were trained with non-essential, dim 

motion stimuli paired with the focal target that the participant needed to remember 

showed significant improvement in motion detection, F(1, 3) = 24.53, p < 0.05,              

η
2 

= 0.891.  An improvement in motion detection from an overall mean of 38% correct in 

the pre-test to an overall mean of 47% correct in the post-test was observed, showing, on 

average, that these reading disabled participants experienced a 24% (=
     

  
)  

improvement in motion perception. 

 

Figure 29.  Reading disabled motion detection accuracy for pre-tests and post-tests across 

10 levels of contrast brightness when motion was presented concurrently with target 

acquisition.  Error bars represent standard error.  
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The reading disabled target-acquisition participants’ flicker perception levels were 

also significantly improved, t(3) = 10.65, p < 0.01, d = 2.67.  Participants experienced an 

increase in their CFFT from an average of 17.71 Hz to an average of 21.08 Hz.  Thus, 

participants with reading difficulties who had dim motion presented in conjunction with 

paired-shape targets that they were asked to remember improved their ability to see 

flicker by an average of 19% (=
           

     
). 

 

Figure 30.  Reading disabled flicker perception thresholds for pre-tests and post-tests in 

the target-acquisition condition.  Error bars represent standard error. 
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Remarkably, reading disabled subjects who engaged in target-acquisition   

training showed an extremely robust improvement in their decoding performance,    

F(1,3) = 54.247, p < 0.001, η
2 

= 0.948, from a pre-test mean of 37% to a post-test mean 

of 59%.  Overall, these participants improved by an average of 59% (=
     

  
) on decoding 

performance. 

 

Figure 31.  Reading disabled decoding accuracy for pre-tests and post-tests across three 

levels of distance from the focus point when motion was presented concurrently with 

target acquisition.  Error bars represent standard error. 
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For the reading disabled in the target-acquisition condition, there was no 

significant improvement in tone discrimination, F(1,3) = 3.006, p = .144, η
2
 = .375.   

 

Figure 32.  Reading disabled tone discrimination accuracy for pre-tests and post-tests 

across five levels of tone difference when motion was presented with target acquisition.  

Error bars represent standard error. 
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Reading disabled tone-recognition condition. 

When reading disabled participants experienced non-essential, tone stimuli paired 

with the focal target-recognition task, there was no significant difference observed in: 

motion detection, F(1,3) = 8.176, p = .085, η
2
 = .732 (see Figure 33); flicker, t(3) = 0.418,     

p = 0.703 (see Figure 34); or decoding, F(1,3) = 4.158, p = .134, η
2
 = .581 (see Figure 

35).   

 

Figure 33.  Reading disabled motion detection accuracy for pre-tests and post-tests across 

10 levels of contrast brightness when tone was presented concurrently with target 

recognition.  Error bars represent standard error. 
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Figure 34.  Reading disabled flicker perception thresholds for pre-tests and post-tests 

when tone was presented concurrently with target recognition.  Error bars represent 

standard error. 
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Figure 35.  Reading disabled decoding accuracy for pre-tests and post-tests across three 

levels of distance from the focus point when tone was presented concurrently with target 

recognition.  Error bars represent standard error. 
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On the contrary, reading disabled participants who experienced tone paired with 

the target-recognition task demonstrated a significant increase in tone discrimination, 

F(1, 3) = 47.958, p < 0.01, η
2 

= 0.941, from a pre-test mean of 64.62% to a post-test mean 

of 76.36%.  Indeed, these reading disabled participants improved their ability to 

discriminate tone by an average of 18.12% (=
           

     
). 

 

Figure 36.  Reading disabled tone discrimination accuracy for pre-tests and post-tests 

across five levels of tone difference when tone was presented concurrently with target 

recognition.  Error bars represent standard error. 
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Experiment 4 

Tone-discrimination condition (control).  

When non-reading-disabled participants readers had non-essential tone paired 

with the focal target-recognition task, there was no significant difference observed in: 

motion detection, F(1,5) = 3.164, p = .163, η
2
 = .432 (see Figure 37); flicker, t(5) = 1.03,            

p = 0.363 (see Figure 38); or decoding, F(1,3) = 4.336, p = .092, η
2
 = .464 (see Figure 

39).   

 

Figure 37.  Motion detection accuracy for pre-tests and post-tests across 10 levels of 

contrast brightness when tone was presented concurrently with target recognition.  Error 

bars represent standard error. 
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Figure 38.    Flicker perception thresholds for pre-tests and post-tests when tone was 

presented concurrently with target recognition.  Error bars represent standard error. 
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Figure 39.  Decoding accuracy for pre-tests and post-tests across three levels of distance 

from the focus point when tone was presented concurrently with target recognition.  Error 

bars represent standard error. 
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However, when non-reading-disabled participants experienced tone paired with 

the target-recognition task, they demonstrated a significant increase in tone 

discrimination, F(1, 5) = 33.09, p < 0.01, η
2 

= 0.869, from a pre-test mean of 62% to a 

post-test mean of 73%.  Specifically, these participants showed an average improvement 

of 18% (=
     

  
) in tone discrimination. 

 

Figure 40.  Tone discrimination accuracy for pre-tests and post-tests across five levels of 

tone difference when tone was presented concurrently with target recognition.  Error bars 

represent standard error. 
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Table 1 

Overall Relation across P-values and Effect Size 

 

  

Condition Motion Perception Flicker Perception Decoding Tone discrimination

Motion Paired with Acquisition

F(1,5) = 264.931           

p≈ 0.000016                

η2 = 0.981                 

54% Improvement

t(5) = 5.23                  

p≈ 0.006                       

d = 2.49                   

14% Improvement

F(1,5) = 35.003           

p≈ 0.002                      

η2 = 0.875                 

36% Improvement

NS

Motion Paired with Recognition

F(1,5) = 82.323           

p≈ 0.000272                

η2 = 0.943                 

43% Improvement

t(5) = 3.54                   

p≈ 0.0164                     

d = 1.12                    

12% Improvement

F(1,5) = 15.539           

p≈ 0.011                      

η2 = 0.757                 

37% Improvement

NS

Motion Paired 350 ms before Recognition

F(1,5) = 10.530           

p≈ 0.023                      

η2 = 0.678                 

23% Improvement

t(5) = 2.895                 

p≈ 0.0342                     

d = 0.34                       

5% Improvement

F(1,5) = 22.770           

p≈ 0.005                      

η2 = 0.820                 

18.7% Improvement

NS

Motion Paired 350 ms after Recognition

F(1,5) = 93.244           

p≈ 0.000202                 

η2 = 0.949                 

31% Improvement

t(5) = 3.68                   

p≈ 0.0203                     

d = 1.79                    

11% Improvement

F(1,5) = 20.066           

p≈ 0.007                      

η2 = 0.801                 

35.5% Improvement

NS

Reading Disabled Motion Paired with Acquisition

F(1,3) = 24.529           

p≈ 0.016                      

η2 = 0.891                 

24% Improvement

t(3) = 10.65               

p≈ 0.0077                     

d = 2.67                           

19% Improvement

F(1,3) = 54.247              

p≈ 0.005                      

η2 = 0.948                 

59% Improvement

NS

Reading Disabled Tone Paired with Recognition NS NS NS

F(1,3) = 47.958              

p≈ 0.006                         

η2 = 0.941                 

18.12% Improvement

Tone Paired with Recognition NS NS NS

F(1,5) = 33.088              

p≈ 0.002                            

η2 = 0.869                     

18% Improvement

Measures
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Discussion 

In the present study, we tested the process by which the “task-irrelevant” (or 

associated near-threshold stimulus) learning paradigm subserves neural plasticity.  We 

found that participants can learn from the modified learning paradigm that was created 

and employed for this study.  This paradigm consisted of a visual paired-shape 

recognition task, using colored polygon targets as salient attended stimuli.  In all of the 

motion-training groups, we observed sensitivity improvements in motion perception, 

flicker perception, and decoding, but not in tone discrimination.  In the tone-training 

control group, we did not observe any sensitivity improvements in motion detection, 

flicker perception, or decoding, but we did observe significant improvement in tone 

discrimination.   

Seitz and Watanabe (2003) proposed that during a cognitively demanding 

undertaking, neuro-modulators flood the brain, strengthening neural activity in a global 

manner.  This concept is supported by studies that show that the temporal pairing of 

sensory stimuli with electrical stimulation of areas causes the release of learning-related 

neuro-modulators, presumably resulting in an expanded cortical representation of neurons 

that respond to the paired stimuli (Bao et al., 2001; Kilgard & Merzenich, 1998).  In the 

current study, the increase in motion perception, flicker, decoding, and tone 

discrimination may be the result of neuro-modulators inadvertently strengthening neurons 

that are active, yet unrelated, to the paired-shapes recognition task.  These findings 

support the notion that the neural plasticity gating problem called the noise-saturation 

dilemma proposed by Grossberg (1980) can be solved by a neuro-modulator system that 

requires concentration to elicit plasticity at all levels of neural processing. 
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Experiment 1  

The current study supported our prediction that the target-acquisition group would 

experience greater improvement in motion perception than the target-recognition group.  

Specifically, we showed that when near-threshold motion was paired with the target that 

participants were asked to remember, a significantly greater improvement in motion 

detection was observed as compared to a group who had dim, near-threshold motion 

paired with the target as it repeated in a series of distractors.  In addition, participants 

showed improvement in flicker perception and letter decoding; increases that were 

substantially equivalent in both the target-acquisition and target-recognition groups.  The 

effect sizes were greater in the target-acquisition condition, supporting the contention that 

the acquisition condition is a more efficient learning paradigm.  The implication is that 

although both recognition and acquisition play a role in the learning of near-threshold 

stimuli, acquisition plays a more important role in affecting plasticity.   

One weakness of this study is that the target-recognition group experienced the 

target repeating only 70% of the time.  This was necessary in order to keep the 

participants focused and engaged.  When the target repeated more often, participants 

realized that answering “yes” was correct most of the time, and they tended to let their 

attention drift and stopped putting forth much effort.  The byproduct of this design was 

that in the target-recognition condition, only 70% of the trials were available to expose 

participants to the dim stimuli.  Previous research has shown that fewer trials per session 

result in no difference in learning (Groth, 2013).  Although it is unlikely that the 

difference observed between the target-acquisition and the target-recognition groups is 
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due to fewer trials in the recognition condition, we cannot completely discount the 

possibility as a result of this study. 

Experiment 2  

The results of this study support the Killeen and Fetterman (1988) behavior model 

of timing.  Participants who had dim motion gradients presented 350 ms after target 

recognition showed greater performance improvement than those who had dim motion 

gradients presented 350 ms before target recognition.  This finding also makes sense in 

the context of concentration-induced neuro-modulator release described by Schultz 

(2000) and Dalley et al. (2001).  If dim motion is presented before a target is recognized, 

the neuro-modulator conditions that support neural plasticity are not present.  

Accordingly, the learning that was observed in the 350 ms before condition was likely 

due to the fact that the neurons that responded to the dim motion were still partially active 

and in a refractory stage of hyper-polarization.  However, in the 350 ms after condition, 

neuro-modulators responsible for inducing plasticity were likely still present and 

supporting the neurons that were responding to the dim motion.  This thesis is consistent 

with the results showing that the 350 ms after group performed similarly to the original 

target-recognition condition, whereas the 350 ms before group did not perform as well.   

Experiment 3  

This experiment found that participants with reading difficulties who experienced 

dim motion paired with the target shapes they were asked to remember improved their 

ability to see motion, perceive flicker, and decode.  These results support the findings of 

Gori et al. (2015) that demonstrated that motion training related to near-threshold 

perceptual learning radically improved the reading ability of adults with dyslexia.   
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There are a few salient differences between the current experiment and what was 

done by Gori and his team.  Following Seitz et al. (2006) and Holloway et al. (2013), 

Gori used the original “task-irrelevant” learning program that presented letters in a rapid 

serial presentation to test the affect of near-threshold learning on dyslexics.  In the 

original paradigm, two of eight letters were presented in a slightly lighter or darker shade 

of grey and were paired with near-threshold motion gradients.  Participants were required 

to recognize and then remember two letters, so that they could report them at the end of 

the series.  This rapid serial letter task is very tedious and is difficult for most people to 

maintain concentration.  Consequently, the task was modified for the current study such 

that letter identification was replaced with paired-shapes recognition, thereby making the 

learning task less tedious and burdensome.  Another distinction of this project is that it 

utilized English-speaking participants.  Gori’s study was performed within the context of 

the Italian language.  Italian is a phonologically shallow language as compared to other 

languages such as English.  Here, we show that reading disabled English speakers 

improved in a manner similar to that of the dyslexic Italian-speakers involved in the Gori 

study. 

All in all, these findings demonstrate that a psychophysical learning paradigm 

may be employed to mediate some effects of reading difficulties in adults, and it may 

well be an effective remediation for children, as well.  Keep in mind that the basic 

premise of near-threshold associative learning for motion training is that pairing dim 

motion gradients with concentration can improve sensitivity to motion, and that by 

strengthening motion sensitivity, other perceptual functions such as CFFT are improved 

as well.  It would be quite easy to nest this paradigm in an interactive video game that 
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would be enjoyable for a child.  Consequently, a real world application of these findings 

may be that a new, non-reading intervention for reading disabilities is possible. 

This unique approach might also provide an important insight into developmental 

reading disability.  It is possible that one of the issues involved in dyslexia is a deficit in 

central dorsal stream processing.  The dominant view in literature today is that 

developmental dyslexia is an impairment in the phonological awareness of a dyslexic 

(Peterson & Pennington, 2012).  Phonological awareness refers to one’s ability to 

perceive and manipulate the sounds of spoken words (Mattingly, 1972), and it involves 

not only discerning the sounds of speech (Goswami, 2002; Hornickel & Kraus, 2013; 

Tallal, 1980) but also explicitly acting upon them (Boets et al., 2013).  So, a deficit in 

phonological awareness would impair a person’s ability to map speech sounds onto the 

visual letters that they represent, thereby preventing fluent reading (Vellutino, Fletcher, 

Snowling, & Scanlon, 2004).   

However, near-threshold perceptual learning improves several abilities that are 

associated with the central dorsal pathway of the visual system (Gori et al., 2015; Seitz et 

al., 2005; Seitz et al., 2006).  This leads to the implication that the magnocellular-dorsal 

visual system is at least partially involved with reading disabilities (Boets et al., 2013; 

Galaburda & Livingstone, 1993; Gori, Cecchini, Bigoni, Molteni, & Facoetti, 2014; Gori 

& Facoetti, 2015; Holloway & McBeath, 2013; Kevan & Pammer, 2008; Kevan & 

Pammer, 2009; Menghini et al., 2010; Stein & Talcott, 1999; Tallal, 2004), and thus, it 

can be influenced by a perceptual learning paradigm.  Future research should explore this 

possibility more directly. 
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Experiment 4   

The fourth experiment was an active control for other conditions in which 

participants were exposed to dim motion gradients in conjunction with the training 

paradigm.  Here, we paired a 1 Hz (4.32 cents) different tone with the recognition task, 

while having a baseline tone presented with distractor targets.  These data show that the 

control participants did not improve in motion detection, flicker perception, or decoding, 

but they did improve in their ability to discriminate between tones.  This is also a novel 

finding in that although previous research has used the “task- irrelevant” learning 

paradigm to train auditory signals, they used an auditory task to train near-threshold 

auditory signals, while we used a visual paradigm to train an auditory signal. 

Take Home Message 

We separated the acquisition phase from the recognition phase of the 

identification process in a near-threshold learning paradigm and demonstrated that the 

concentration required to remember paired shapes promotes learning better than 

recognizing that the paired-shapes target has repeated.   

We varied the timing of the paring between the recognition and the background 

stimuli and found that motion presented after a target elicits plasticity better than motion 

presented before a target.  Lingering neuro-modulator states likely subserve neural 

activity following the recognition of a target and are not likely present when motion is 

presented before the target is recognized.  

Participants with reading difficulties experienced significantly improved 

sensitivity to motion, detection, flicker perception, and decoding.  These findings support 

the notion that children who have been identified as having a reading disability might 



  66 

have their symptoms mediated through a video game that has a version of this paradigm 

nested within it.   

Lastly, although sensitivity to tone discrimination was not observed in any 

condition where motion was presented in conjunction with a target, we were able to 

improve participants’ tone discrimination by pairing an auditory signal with a visual 

shapes-recognition task.   

Taken as a whole, this study confirms that pairing near-threshold stimuli with 

focal stimuli improved performance in just tone discrimination, or in motion detection, 

CFFT, and letter decoding; and that the act of trying to remember a focal target elicited 

greater associative learning of correlated near-threshold stimulus than the act of 

recognizing a target.  Indeed, these data suggest that we can now effectively design a 

visual learning paradigm similar to the one used in these experiments, incorporate it into 

an enjoyable video game, and, potentially, use it to mitigate some of the visual deficits 

that are often experienced by the reading disabled. 
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