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ABSTRACT 

 

Biomass synthesis is a competing factor in biological systems geared towards generation 

of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in 

this thesis, a widely generalizable, modular approach focused on decoupling biomass 

synthesis from the production of the phenylalanine in a genetically modified strain of E. 

coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) 

to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, 

and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a 

T1/TE terminator. The coding sequence corresponding to the target binding site for 

fourteen potentially growth-essential gene targets as well as non-essential lacZ was 

placed in the seed region of the of the sRNA scaffold and transformed into BW25113, 

effectively generating a unique strain for each gene target. The BW25113 strain 

corresponding to each gene target was screened in M9 minimal media; decreased optical 

density and elongated cell morphology changes were observed and quantified in all 

induced sRNA cases where growth-essential genes were targeted. Six of the strains 

targeting different aspects of cell division that effectively suppressed growth and resulted 

in increased cell size were then screened for viability and metabolic activity in a scaled-

up shaker flask experiment; all six strains were shown to be viable during stationary 

phase, and a metabolite analysis showed increased specific glucose consumption rates in 

induced strains, with unaffected specific glucose consumption rates in uninduced strains. 

The growth suppression, morphology and metabolic activity of the induced strains in 

BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, 
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and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was 

transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback 

resistant genes aroG and pheA overexpressed. Two induction times were explored during 

exponential phase, and while the optimal induction time was found to increase titer and 

yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as 

great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this 

may be a result of the cell filamentation.  
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1. INTRODUCTION, MOTIVATION, AND BACKGROUND  

1.1 The Current State of Chemical Processing 

Petroleum, natural gas and coal have traditionally played large roles in the chemical 

process industries, and they all have one thing in common – they are not renewable 

resources which will eventually be depleted. Adding to this, these three sectors combined 

generated 4.77 Gt of CO2 in the year 2004, with the entirety of the manufacturing 

industry generating 9.73 Gt of CO2 in that year.1 To put this a bit more into perspective, 

the entire manufacturing industry includes the sectors which are responsible for the 

generation of both electricity (3.59 Gt) and heat (0.29 Gt).1 While it is hard to 

conceptualize a cost competitive alternative to any major manufacturing process which is 

entirely renewable and generates less CO2 amongst other pollutants, certainly alternative 

approaches exist which may address the inevitable issues facing the manufacturing 

industry, and the chemical process industries in particular. Honing in in the chemical 

process industries, a subset of the manufacturing industries estimated to have generated 

3.3 Gt of CO2 in 2005, is perhaps one of the areas with most potential for alternative 

processes.2 Not only would an alternative route of synthesis have the potential to greatly 

diminish associated emissions, but it could also incorporate renewable feedstock, 

generate high yield and titer, making it potentially more lucrative in the long run; 

amongst the most popular of the alternative approaches taken to generate commodity and 

precious chemicals has been bacterial synthesis.3  

The potential of using bacteria as a biocatalyst is edified by considering the current 

means of synthesis for many commodity and specialty chemicals; not only does a route of 

biological synthesis offer a more sustainable means of generating a desired product that 
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need not be reliant on nonrenewable resources, these biological processes have also been 

shown to be effective on an industrial scale.3-4 As an example to elucidate the potential of 

industrial scale biological processes which may use a renewable feedstock, acetone may 

be taken into consideration; acetone has been one of the biggest commodity chemicals 

throughout the past decade, amassing an industry valued at $28 million per year.4 

Although now primarily synthesized through the cumene process, which uses petroleum 

distillates as a precursor, acetone was at one time primarily synthesized through the 

Weizmann process, which relied on the anaerobic fermentation of C. acetobutylicum; at 

the height of WWI, the Weizmann process even warranted the generation of 2,000 lb of 

acetone per week in one single plant, located in King’s Lynn, Great Britain.4 The 

Weizmann process was also sustainable, with another plant located in South Africa that 

produced acetone from a molasses feedstock until 1982.4 Unfortunately, as is the case 

with far too many biologically viable industrial scales routes of synthesis, the cumene 

process replaced the Weizmann process as the latter was only able to generate roughly 

0.1 kg of acetone per kg of feedstock, while the former was able to generate 0.45 kg of 

acetone per kg of cumene, as well as generating a significant amount of phenol as a 

lucrative by-product.4-5 Aside from just higher yields, the cumene process also has the 

inherent benefits of phenol co-generation while avoiding some of the trickiness of 

working with biological systems, like contamination; nonetheless, the Weizmann process 

shows that such large scale biological processes based on fermentation mechanisms have 

potential.5 Even with the Weizmann process, not all hope is lost; much recent research 

and development has gone into generating thorough economic profiles for anaerobic 

fermentation of C. acetobutylicum which consider the harvest of other fermentation 
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products such as ethanol and butanol, modifying the feedstock composition to incorporate 

cheap and abundant resources like wheat straw, and genetically modifying the bacteria 

through different approaches to produce greater yields and final concentrations of 

desireables.4,6 Appropriately engineering the factors which influence the productivity and 

yield of these biological processes, from operating conditions to gene expression, may 

once more make them competitive with the now-traditional routes of synthesis; a case 

study revisiting this anaerobic fermentation process with C. beijerinckii found production 

of acetone at a selling price of $1.30 per kg to be viable through rational engineering 

techniques, while market value throughout the past decade has hovered at the same 

levels.3,6,7,8 

1.2 The Potential for Bacteria in the Chemical Process Industries  

It takes much insight attained through thorough research and development to identify 

good candidates for industrial scale production with a biocatalyst however; as with any 

chemical reaction, thermodynamic and kinetic constraints must be taken into 

consideration.9 In a most fundamental sense, thermodynamics is important in determining 

if a reaction will favor the products or reactants, while kinetics determines how fast the 

reaction will achieve a steady state; together, these give a good measure for the energy 

associated with the system.10-11 One of the most convenient ways to measure the 

thermodynamics of a given reaction is through the Gibbs free energy, an intangible 

quantity which may be calculated through measureable physical quantities.11 Reactions 

with negative Gibbs free energy values are spontaneous, generating energy, while 

reactions with a positive Gibbs free energy value are non-spontaneous, requiring the 

input of energy.11 Therefore if a reaction has a negative Gibbs free energy, it will be 
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product favored; furthermore, in a biological system, if a given reaction has a positive 

Gibbs free energy then energy must be supplied by the cell. The more negative the Gibbs 

free energy is, the more spontaneous the reaction, and the more product favored it 

becomes; equilibrium constants are common indirect measures of the Gibbs free energy 

that give light to the relative ratio of the mole fraction of products relative to reactants.11 

The relationship between the total Gibbs free energy of a reaction G, the equilibrium 

constant K, and the mole fraction of a given species in the liquid phase xi is expressed 

below for the sake of clarity,11 

ln(𝐾𝐾) = −
∆G

(R ∗ T) 

𝐾𝐾 = 𝛱𝛱(𝑥𝑥𝑖𝑖 ∗ 𝛾𝛾𝑖𝑖)𝜈𝜈𝑖𝑖 

In the relationship above, the gas constant R, temperature T, activity coefficient, γi, and 

stoichiometric coefficient, νi are required; furthermore, this simplified version is only 

valid for low to moderate pressure.11 The Gibbs free energy is useful in genetic 

engineering as it may enable enhanced insight into competing reaction pathways. 

Assuming the reaction kinetics are equivalent, this relationship dictates the more 

spontaneous pathway will most likely generate more product.11 This example also 

reiterates a critical point - kinetics must be taken into account. If the kinetics are 

favorable enough, they may act as a driving force to help mitigate some thermodynamic 

constraints; this is particularly useful genetic engineering because in its essence, all 

genetic engineering approaches modify the thermodynamics and kinetics involved with 

different cellular processes. In a similar fashion to the way the previous example 

highlighted the importance of Gibbs free energy in a set of competing reactions, the 
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importance of kinetics may be brought to light by considering the two reactions again 

seen in Figure 1,  

 

Figure 1: The Gibbs Free Energy versus Reaction Coordinate for Two Arbitrary 
Reactions (Solid, Dashed). Reaction A is More Thermodynamically Favorable, Indicated 

by the Greater Overall Change in Gibbs Free Energy, but Less Kinetically Favorable, 
Indicated by the Larger Activation Energy. 

As seen above, there exist two reactions A and B, which may be represented by a solid 

line and a dashed line respectively; the two reactions both only have one intermediate 

formed during the overall reaction process, indicated by only one local maxima of Gibbs 

free energy, and this may be referred to as the activation energy for each reaction.11 By 

inspection, reaction A has a larger activation energy, as it has the obviously larger 

increase in Gibbs free energy near the start. Under a resource limited scenario, even 

though reaction A is more thermodynamically favorable, kinetic constrains reflected by a 

higher activation energy may result in reaction B using a greater majority of the 

resources.11,12 These are important considerations to take into account when considering 

the sophisticated reaction pathways that make up biological processes; in the context of 

biological systems, thermodynamics and kinetics may be finely tuned to express a desired 

phenotype.12  
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1.3 E. coli as a Candidate for Biosynthesis Applications  

Although C. acetobutylicum was used to make a point in regards to the industrial 

feasibility of biological processes, amongst the most studied bacterial organisms is E. 

coli; with a rich history of pioneering breakthroughs in synthetic biology, different strains 

of E. coli have been shown capable of synthesizing diverse classes of molecules ranging 

from free fatty acids to phenolic compounds which may be used as fuels, specialty 

chemicals, and precursors.13,14 It is worth noting that quite frequently these natural 

pathways are limited by the genes and enzymes native to the host strain, so synthetic 

components to enhance, repress and block native gene expression, or even enable foreign 

gene expression may be incorporated through various genetic engineering 

techniques.3,12,15 Genetic engineering coupled with advances in synthetic biology enable 

these enhancements such as the construction of synthetic pathways, but pathways do not 

have to be completely synthetic – they may branch from an existing pathway as will be 

discussed in Figure 2.3,12,16,17 E. coli is a popular candidate in genetic engineering because 

there is so much known about it – it has a relatively fast growth rate compared to other 

bacteria, it may be grown in a broad range of conditions and it is also found in humans; 

E. coli was also the organism where cloning was observed for the first time, and one of 

the first organisms to have its genome completely sequenced.18,19  With this in mind, 

using bacteria like E. coli seems like a viable solution to the growing problem associated 

with non-renewable resources; just insert a pathway for a desired product, if necessary, 

and fine-tune the thermodynamics and kinetics of the process. Unfortunately, genetic 

engineering is not that easy; there are an unquantifiable number of different strains of E. 

coli alone, each with their own profits and conflicts, with endless numbers of approaches 
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and techniques taken to achieve the perfect balance of kinetics and thermodynamics. As 

an example to show the complexity of metabolic engineering in a real biological system, 

consider the synthesis of phenol from glucose via an extension of the shikimate pathway 

in E. coli as seen below in Figure 2,17,20 

 

Figure 2: Three Synthetic Pathways for the Generation of Phenol from Chorismate 
During Fermentation in E. coli.17 

In the figure above, there are three synthetically engineered pathways which branch from 

the shikimate pathway that may potentially be inserted into E. coli; from a 

thermodynamic standpoint, the first pathway might be the least favorable as it has the 

highest Gibbs free energy, but considering the kinetics of the enzymes involved in each 

step of the reaction cascade, this might not be the case.17 Some enzymes may have higher 

activities, resulting in a scenario analogous to before, where kinetics have a greater 

influence than the thermodynamics. In any case, it is clear that genetic engineering 

coupled with advances in biosynthesis have unleashed a whole new world of target 

chemicals which may be synthesized using biocatalysts.  
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1.4 Metabolic Engineering: Applied Biosynthesis  

In essence, while it is certain that the sustainable technology of industrial scale biological 

synthesis exists, it is also clear that an optimization of the associated operating costs is 

necessary if this is to be cost competitive; even in the revisited case of the C. beijerinckii, 

unless the process is able to bring acetone to market significantly below $1.30 per kg, 

there is no incentive for the main producers of this chemical to invest in such a change.6  

Nonetheless, within the realm of bioengineering, approaches oriented at bringing the 

price point down by addressing factors associated with the viability of the cell have 

garnered much attention; the rational engineering of cellular systems with the ultimate 

goal of expressing a desired metabolic phenotype is one prominent means of fine tuning 

the balance between thermodynamics and kinetics.9,12,21 In essence, this is the underlying 

principle of metabolic engineering and is focused on the optimization of both intracellular 

and extracellular factors; it is worth noting metabolic engineering is not limited only to 

genetic and other intracellular approaches but rather any factor which may induce a given 

desired metabolic phenotype, such as environmental factors.9,12,21,22 Often times the 

ultimate goal is to increase the productivity and final concentration of a target chemical 

when considering the use of biocatalysts in conjunction with metabolic engineering, 

though metabolic engineering also has other uses; for example, metabolic engineering 

may be used to build switchboards and circuits to act as sensors for particular 

environmental markers.23,24  

1.5 Extracellular Factors in Metabolic Engineering  

As mentioned, there are a lot of factors at play when considering metabolic engineering 

and these factors may either be extracellular or intracellular. One of the most prominent 
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extracellular factors in metabolic engineering is the presence of oxygen; in the case of C. 

acetobutylicum, anaerobic fermentation was used to achieve the industrial scale synthesis 

of acetone, but quite often biosynthesis with E. coli operates under aerobic conditions.4,16 

Though it is worth noting E. coli can still undergo respiration and fermentation under 

anaerobic conditions, growth conditions are much different relative to aerobic conditions; 

in general, less ATP is generated per mole of feedstock in anaerobic conditions, resulting 

in severely reduced cell densities, and reduced productivities.25 As the lack of oxygen 

makes it difficult for cell growth, even though productivities are lower relative to aerobic 

systems, yields may approach values close to their theoretical limits because less of the 

ATP is used on biomass synthesis – this leaves more ATP for the production of the target 

chemical.12, 26 While anaerobic growth conditions have their own profits, some cell 

products require a relatively large amount of energy to produce, relating back to the 

analogies discussed in Figure 1 and Figure 2.12 For such target chemicals, production is 

often tied with growth meaning a large amount of biomass must be generated for the co-

generation of a significant quantity of a desirable.12 Other products are also synthesized 

in close relation to cell growth, calling for aerobic conditions in order to be viable.27 To 

mitigate the conflicts of aerobic conditions which may be required for the biosynthesis of 

particular chemicals, diverse approaches in metabolic engineering have been explored to 

decouple growth from production.24,28,29,30 A few metabolic engineering approaches 

aimed at decoupling growth from production will be briefly discussed before presenting 

the central idea of the thesis, which will examine an intracellular approach using 

synthetic small RNA to silence growth essential genes; this approach may be applied to a 

diverse class of target chemicals, enabling the continuation of biosynthesis without 
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biomass accumulation.24 This is advantageous in both the case of the chemicals which 

need large amounts of energy for production and those tied with growth as this allows 

control of biomass formation, and therefore the optimization of titer and yield.  

Nutrient limitation through the use of minimal media feedstock is a popular extracellular 

approach aimed at preventing excess biomass accumulation; in particular, controlling the 

levels of carbon, nitrogen and phosphorous supplied to the cell system may warrant the 

fine tuning of growth and productivity.31,32 Cells need nitrogen and phosphorous for 

reproduction, so tuning the concentrations of these may warrant reallocation of the 

energy in the cell towards production of a desirable.33 A popular way of achieving this is 

through the use of specialized nutrient broths which serve as media to grow the cell 

system in; nutrient limitation in the form of minimal media broth is also applicable for 

gauging efficacy in industrial scale processes as reducing the constituents of the media 

may result in significant savings, though a challenge presented by special growth medias 

used for nutrient limitation are non-traditional culturing protocols introducing more 

potential for mistakes.34 For example, on top of more sophisticated formulas, minimal 

media may require specialized preparation if it is comprised of light or temperature 

sensitive components, or specialized growth if it is not pH buffered.  

Another extracellular metabolic engineering approach geared at stopping biomass 

synthesis is the use of bacteriostatic additives which may disrupt a number of different 

cell mechanisms that warrant the cell to carry out regular metabolic functions but inhibit 

growth; suitable targets for bacteriostatic additives may be genes associated with DNA 

synthesis, protein synthesis, cell wall synthesis, and the cell division process.22, 33,35 
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Bacteriostatic additives may inhibit growth by acting on a particular gene to result in the 

buildup of a rate-limiting intermediate; the known gene targets of bacteriostatic additives 

also offer a convenient phenotypic comparison to gene silencing based approaches.35 

Unfortunately, scalability issues associated with the use of bacteriostatic additives such as 

strains developing a resistance and cost prohibition make other techniques more attractive 

options. Aside from nutrient limitation and bacteriostatic additives, there are other 

extracellular factors which may influence the metabolism of the cell and may also be 

optimized for biosynthesis, but do not show much potential in regards to decoupling 

growth and from production – factors such as temperature, pH, and aeration may be 

optimized, but are relatively standard depending on the viability of the bacteria.33,22  

1.6 Intracellular Factors in Metabolic Engineering  

Extracellular factors and optimization techniques play a critical role in metabolic 

optimization of bioprocesses and have shown potential to contribute in the separation of 

biomass synthesis and target chemical production, and their successes are only 

compounded when considering approaches taken in metabolic engineering on an 

intracellular, genetic level. Though as is the case with many extracellular factors, many 

genetic oriented metabolic engineering approaches have not been aimed at the decoupling 

of biomass production from synthesis of a target product because the methods of gene 

manipulation are not dynamic in nature, so reducing the activity of genes essential for 

growth would result in poor overall cell performance. Nonetheless, approaches such as 

over-expressing genes responsible for the production of rate-limiting intermediates or 

knocking out genes associated with competing pathways have seen great success in 

increasing overall efficiency of bioprocesses; just as with the extracellular factors 
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discussed above, these approaches offer the potential to be compounded with a dynamic 

genetic approach that turns off biomass synthesis.36,37 As an example of how intracellular 

approaches are useful in metabolic engineering, consider the production of phenylalanine 

which is an essential amino acid. Though not dynamic in nature and does not decouple 

growth from production, without traditional intracellular approaches, significant 

concentrations of phenylalanine in E. coli may not be achieved; consider the pathway 

below which illustrates the production of phenylalanine from glucose, both in green, in E. 

coli,  

 

Figure 3: Pathway Showing Production of Phenylalanine from Glucose 

Considering E. coli does not natively make high levels of phenylalanine, a strain was 

engineered by overexpressing the feedback resistant genes aroG and pheA, seen in red, 

which lead to significant increases in phenylalanine production. Overexpressing these 

genes reduced the flux of the intermediates to alternate pathways; for example, when 

overexpressing pheA more chorismate is used to generate prephenate than before. Just 

overexpressing these two genes can lead to phenylalanine concentrations of roughly 1.5 

grams per liter – so while it is an effective approach, it is worth noting that further 

optimization would be difficult without manipulating other parameters. Finding a 

“global” growth-switch to decouple biomass synthesis from production could enhance 

already existing techniques which focus on “local” pathways like over-expressing genes.  



  13 
 
 

One dynamic genetic approach aimed at turning off biosynthesis is governing RNA 

polymerase using an inducible promoter; it was shown that using this technique cell 

growth could be arrested while the cell would remain a metabolically active platform.38 

While this approach even showed success at increasing glycerol production, the lack of 

modularity with respect to gene targets makes this approach tricky as the promoter of 

each desired gene must be replaced on the chromosome if different gene targets are to be 

explored to better fine tune the cell system.38 Another dynamically inducible method that 

can offer selection of genetic targets may not only warrant the exploration of growth 

essential genes on cell viability, but it would also introduce a novel metabolic 

engineering technique applicable to many scenarios even beyond metabolic engineering. 

One way of accomplishing this may be through the use of trans-encoded artificial small 

RNA (afsRNA), an mRNA regulator which acts through limited base pairing and may 

either inhibit translation of a particular gene, or degrade mRNA.39,40  

1.7 Small RNA in Bacteria  

With the discovery of riboswitches, sRNA, and CRISPR RNA, the role of RNA as 

regulators in cell systems has long been acknowledged; considering sRNA in particular, 

the emersion of trans-encoded sRNA in the past decade has unleashed much potential in 

synthetic biology.40,24 Prior to the emersion of trans-encoded sRNA, only cis-encoded 

sRNA was understood; cis-encoded sRNA have extensive homology with a target 

mRNA, around 75 nucleotides, and are located on the opposite DNA strand of the target 

RNA, while trans-encoded sRNA may be around 20 nucleotides and are located separate 

from the target mRNA.39,40 The general structure of trans-encoded sRNA may be seen 

below in Figure 3,39 
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Figure 4: A General Schematic of Trans-encoded sRNA Showing the Seed Region, One 
Potential Hfq Binding site, and the Transcription Terminator.39 

Trans-encoded sRNA is primarily comprised of the three regions seen above – the 

transcription terminator region, an Hfq binding site, and a seed region.39 Perhaps the most 

interesting of the three regions is the seed region; the seed region is the region which 

targets the translation initiation region of a desired mRNA through a homologous 

sequence of nucleotides.41,39 Studies on the seed region have shown that a seed region of 

around 22 nucleotides long with a binding energy of around -35 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑘𝑘

 generates the most 

stable sRNA-mRNA duplex.24,40 Just as interesting is the Hfq protein which binds to the 

Hfq site; in trans-encoded sRNA, it has been shown that Hfq greatly stabilizes sRNA-

mRNA duplex, while in cis-encoded sRNA the presence of Hfq was shown to decrease 

gene silencing effects.30,39,42 Seen below in Figure 4 is a diagram similar to that which 

was presented in Figure 1, bringing to light the importance of kinetics in an environment 

where the total energy change is equivalent, 
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Figure 5: A Diagram of the Reaction Energy versus Reaction Coordinate for the Binding 
of Trans-encoded sRNA and mRNA, Mediated through Hfq.42 

It may be seen in the figure above that the presence of Hfq as a chaperone to trans-

encoded sRNA promotes formation of a sRNA-mRNA duplex. Lastly, the terminator 

region of the sRNA should not be overlooked either; the terminator is indirectly 

responsible for stabilizing the sRNA-mRNA duplex just as much as the Hfq protein, as 

the terminator region has been shown to control stability of the Hfq protein binding to the 

secondary structure of the sRNA.43 In particular, the terminator on sRNA is a rho-

independent transcription terminator which inherently contains a poly(U) tail; it is this 

poly-U tail which has been shown essential for Hfq binding in trans-encoded sRNA, and 

may even be seen in the schematic sRNA in Figure 3.39, 43,42  

In summary, sRNA is a highly modular tool which may be exploited to target growth 

essential genes in order to decouple biomass accumulation and target chemical 

production; placing an appropriately designed afsRNA under a promoter to target a 

desired mRNA may be a robust way to target growth essential genes and increase 

productivity and yield for desirable chemicals. Furthermore, the ability to target a variety 

of different gene targets also makes afsRNA an attractive approach to explore in regards 
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to growth arrest; more than one sRNA may be placed on a plasmid, once more 

compounding the capabilities at hand. 

1.8 Research Aims  

In this thesis, synthetic trans-encoding sRNA using a scaffold based off of the naturally 

occurring MicC sRNA found in E. coli coupled with an additional terminator, the T1/TE 

terminator, and a promoter for anhydrous tetracycline are put on a plasmid with 

streptomycin resistance to first screen fourteen unique gene targets which may be 

potentially essential for growth based on mechanisms responsible for DNA synthesis, 

protein synthesis, cell wall synthesis, and the cell division process in the E. coli K-12 

strain BW25113; to further characterize the growth suppression capabilities of the sRNA 

approach, a known non-growth-essential gene, lacZ is also taken into consideration.24 

Identification of the most qualified sRNA-mediated gene targets, based on an analysis of 

optical density, morphology, cell viability and metabolic activity, was ultimately used as 

criteria when selecting the best gene targets to be further screened in a strain which 

produces phenylalanine. The effect of decoupling growth and production through various 

cellular mechanisms is assessed using the sRNA to determine the best time to stop 

growth during the exponential growth phase for an optimal productivity and titer. The 

efficacy of the sRNA as a means to suppress growth while leaving the rest of the 

metabolism unscathed is compared to common bacteriostatic additives which are known 

to target particular genes. The fourteen candidate genes and lacZ may be seen listed 

below in Table 1 along with their cellular function; it is also worth noting that fabB and 

fabH were simultaneously targeted as well considering the fatty acid biosynthesis 

pathway cannot be blocked by targeting fabH alone, for reasons discussed in the results, 
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Table 1: A List of the Gene Targets Investigated with sRNA 

sRNA Mediated Gene Target Cellular Function 

dnaE DNA Polymerase 

fabB Cell Wall Biosynthesis 

fabB + fabH  

fabD  

fabG  

fabH  

fabI  

folA DNA Synthesis 

folD  

folP  

lacZ Metabolize Lactose/x-gal   

murA Cell Wall Biosynthesis 

rplD Protein Synthesis 

rplP  

rpsD  

rpsE   
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2. MATERIALS AND METHODS 

2.1 Strains and Media  

While wild-type BW25113 was the primary background strain used in the duration of the 

study, many variants of this strain were generated such as the pSRNA variants and the 

pINT-GA variants; furthermore, other strains were used for the purposes of plasmid 

construction. All strains used in this study are listed below in Table 2 (Next Page) E. coli 

DH5-alpha was purchased from New England Biolabs (NEB) and was used for all 

cloning work and plasmid maintenance. E. coli BW25113 was obtained from the Coli 

Genetic Stock Center (CGSC) and served as the host organism for all experiments in this 

study. E. coli NST74 was obtained from the American Type Culture Collection (ATCC) 

and served as the source of the feedback resistant gene pheA101. Z. mobilis ZM4 was 

also sourced from the American Type Culture Collection (ATCC), and served as the 

source of the promoter for the pyruvate decarboxylase (PDC) gene. E. coli MG1655 

served as the source of the lacZ gene and was generated from D. R. Nielsen on behalf of 

A. Kato. E. coli strains were routinely cultured at 32ºC and 200 RPM in Luria-Bertani 

(LB) broth, supplemented with 100 milligram per liter streptomycin (for all pSRNA 

strains), 35 milligram per liter kanamycin (for all pINT-GA strains), 10 milligram per 

liter tetracycline (for tetracycline resistant BW25113), and/or 34 milligram per liter 

chloramphenicol as appropriate. To test for blue-white screening, morphology of 

antibiotic resistant strains, sRNA-mediated growth arrest, and phenylalanine production, 

relevant strains were cultured at 32ºC and 200 RPM in either LB, M9 minimal media, or 

M9M minimal media, each supplemented with relevant antibiotics as appropriate. A 

complete list of the media recipes may be found in APPENDIX D.   



  19 
 
 

Table 2: List of All Strain Names and a Description; 1DH5-alpha was Sourced from 
ThermoFisher, 2BW25113 was Sourced from CGSC, 3NST74 and ZM4 were Sourced 

from ATCC, and all else from This Study. 

Strains Description 

E. coli DH5-alpha1 
dlacZ Delta M15 Delta(lacZYA-argF) U169 recA1 endA1 hsdR17(rK-mK+) 
supE44 thi-1 gyrA96 relA1 

E. coli BW251132 
F-, DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-
rhaB)568, hsdR514 

E. coli NST743 aroH367, tyrR366, tna-2, lacY5, aroF394(fbr), malT384, pheA101(fbr), 
pheO352, aroG397(fbr) 

Z. mobilis ZM43 See References44 

E. coli MG1655 K-12 F– λ– ilvG– rfb-50 rph-1 

MG-lacZ E. coli MG1655 pSRNA-lacZ 
BW-cmp E. coli BW25113 pACYC-DUET 
BW-strep E. coli BW25113 pCDF-DUET 
BW-tet E. coli BW25113 pRK415 
BW-dnaE E. coli BW25113 pSRNA-dnaE 
BW-fabB E. coli BW25113 pSRNA-fabB 
BW-fabBH E. coli BW25113 pSRNA-fabBH 
BW-fabD E. coli BW25113 pSRNA-fabD 
BW-fabG E. coli BW25113 pSRNA-fabG 
BW-fabH E. coli BW25113 pSRNA-fabH 
BW-fabI E. coli BW25113 pSRNA-fabI 
BW-folA E. coli BW25113 pSRNA-folA 
BW-folD E. coli BW25113 pSRNA-folD 
BW-folP E. coli BW25113 pSRNA-folP 
BW-murA E. coli BW25113 pSRNA-murA 
BW-rplD E. coli BW25113 pSRNA-rplD 
BW-rplP E. coli BW25113 pSRNA-rplP 
BW-rpsD E. coli BW25113 pSRNA-rpsD 
BW-rpsE E. coli BW25113 pSRNA-rpsE 
pINT-GA E. coli BW25113 pINT-GA 
pINT-GA dnaE E. coli BW25113 pINT-GA pSRNA-dnaE 
pINT-GA fabD E. coli BW25113 pINT-GA pSRNA-fabD 
pINT-GA fabH E. coli BW25113 pINT-GA pSRNA-fabH 
pINT-GA folA E. coli BW25113 pINT-GA pSRNA-folA 
pINT-GA murA E. coli BW25113 pINT-GA pSRNA-murA 
pINT-GA rplD  E. coli BW25113 pINT-GA pSRNA-rplD 
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2.2 Plasmid Construction  

Many plasmids were also used in the course of this study, with some plasmids used only 

intermediately to further construct more complex plasmids; all final plasmids below, 

Table 3: A List of All Plasmids Used in This Study, Their Description and Source. 

Plasmid Description Source 

pKSV45 p15A ori, Ampr, tetR, Ptet 
Prather 
Lab (MIT) 

pACYC-DUET RK2 ori, Cmpr, lacI, PT7 Novagen 
pCDF-DUET cloDF13 ori, Strepr, lacI, PT7 Novagen 
pRK415 oriV, Tetr, Plac Novagen 
pSRNA cloDF13 ori, Strepr, tetR, Ptet This study 
pSRNA-dnaE dnaE target binding sequence inserted into pSRNA This study 
pSRNA-fabB fabB target binding sequence inserted into pSRNA This study 

pSRNA-fabBH fabB and fabH target binding sequence inserted 
into pSRNA This study 

pSRNA-fabD fabD target binding sequence inserted into pSRNA This study 
pSRNA-fabG fabG target binding sequence inserted into pSRNA This study 
pSRNA-fabH fabH target binding sequence inserted into pSRNA This study 
pSRNA-fabI fabI target binding sequence inserted into pSRNA This study 
pSRNA-folA folA target binding sequence inserted into pSRNA This study 
pSRNA-folD folD target binding sequence inserted into pSRNA This study 
pSRNA-folP folP target binding sequence inserted into pSRNA This study 
pSRNA-lacZ lacZ target binding sequence inserted into pSRNA  This study 
pSRNA-murA murA target binding sequence inserted into pSRNA This study 
pSRNA-rplD rplD target binding sequence inserted into pSRNA This study 
pSRNA-rplP rplP target binding sequence inserted into pSRNA This study 
pSRNA-rpsD rpsD target binding sequence inserted into pSRNA This study 
pSRNA-rpsE rpsE target binding sequence inserted into pSRNA This study 

pgRNA-bacteria ApaLI ori, Ampr, PAmpR 
Qi, et al. 
(2013)45 

pS3 pBR322 ori, Ampr, Plac 
Moore 
(1995) 

pINT-GA(fbr) 
ColE1 ori, Kanr PPDC (PDC Gene Promoter from Z. 
mobilis) aroG15 and pheA101 inserted into BglII and 
XhoI sites.   This study 
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Genomic DNA (gDNA) was prepared using the ZR Fungal/Bacterial DNA MiniPrep™ 

(Zymo Research) according to manufacturer protocols. DNA sequences were PCR 

amplified using a BioRad iCycler system with Q5® High-Fidelity DNA Polymerase 

(NEB) according to manufacturer protocols with custom designed DNA oligonucleotide 

primers (see Table A 1, Appendix B) synthesized by Integrated DNA Technologies 

(Coralville, IA). Amplified linear DNA was purified using the Zymo Research DNA 

Clean & Concentrator™ kit (Zymo Research). Purified DNA fragments and plasmids 

were digested using select restriction endonucleases (NEB) according to manufacturer 

protocols. Digested DNA fragments were separated using gel electrophoresis and purified 

using the Zymoclean™ Gel DNA Recovery kit (Zymo Research) and ligated with T4 

DNA Ligase (NEB) according to manufacturer protocols. Ligation reactions were 

transformed into chemically competent E. coli DH5-alpha and selected for by plating on 

LB solid agar containing antibiotics, as appropriate. Transformant pools were screened 

with the use of colony PCR and confirmed by DNA sequencing.  

Plasmid pKSV45 was a kind gift from Kristala Prather (MIT). 46 Plasmids pCDF-DUET, 

pACYC-DUET, and pRK415 were sourced from Novagen. To construct the pSRNA 

backbone vector, the Strepr-cloDF13 and tetR-Ptet cassettes were PCR amplified from 

pCDF-DUET and pKSV45, respectively, and combined with a custom synthesized sRNA 

scaffold component (GenScript) using circular polymerase extension cloning (CPEC) 

(see Appendix A for complete sequence).41,47 To construct each individual pSRNA vector 

for targeted growth arrest, custom DNA oligonucleotides were synthesized to include the 

target binding sequence unique to each respective gene target. Individual sRNA scaffold 

components were PCR amplified using said primers, and combined using CPEC resulting 
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in the construction of pSRNA-dnaE, pSRN-fabB, pSRNA-fabBH, pSRNA-fabD, 

pSRNA-fabG, pSRNA-fabH, pSRNA-fabI, pSRNA-folA, pSRNA-folD, pSRNA-folP, 

pSRNA-murA, pSRNA-rplD, pSRNA-rplP, pSRNA-rpsD, and pSRNA-rpsE (see 

Appendix B for target binding sequences).  

To ultimately construct pINT-GA, first the intermediate plasmid pINT-Ppdc was 

constructed (not listed in Table 3). To construct pINT-Ppdc, pgRNA-bacteria was 

digested with EcoRI and XhoI to obtain the origin of replication (ColE1) and antibiotic 

resistance (Kanr).45 Then, the promoter for the pyruvate decarboxylase gene (PDC) in Z. 

mobilis ZM4 was PCR amplified and ligated with the digested pgRNA. The plasmid 

pINT-Ppdc contained BglII and XhoI sites after the promoter to allow for BioBrick-like 

insertions. Next, aroG15 was amplified via PCR from pS3 and inserted into the BglII and 

XhoI sites to create pPDC-aroG(fbr). Finally, pheA101 was PCR amplified from the 

genome of NST74 and inserted into the BglII and XhoI sites of pPDC-aroG(fbr) to create 

pPDC-aroGpheA(fbr), otherwise known as pINT-GA(fbr) in this paper. 

2.3 Strain Construction 

E. coli BW25113 was individually transformed with all growth-related sRNA plasmids: 

pSRNA-dnaE, pSRNA-fabB, pSRNA-fabBH, pSRNA-fabD, pSRNA-fabG, pSRNA-

fabH, pSRNA-fabI, pSRNA-folA, pSRNA-folD, pSRNA-folP, pSRNA-murA, pSRNA-

rplD, pSRNA-rplP, pSRNA-rpsD, and pSRNA-rpsE. This resulted in the construction of 

the corresponding fifteen BW25113 strains: BW-dnaE, BW-fabB, BW-fabBH, BW- 

fabD, BW-fabG, BW-fabH, BW-fabI, BW-folA, BW-folD, BW-folP, BW-murA, BW-

rplD, BW-rplP, BW-rpsD, and BW-rpsE.  
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MG1655 was also individually transformed with the plasmid pSRNA-lacZ to target the 

lacZ gene, resulting in MG-lacZ.  

Additionally, to construct the chloramphenicol, streptomycin, and tetracycline resistant 

background BW25113 strains, BW25113 was individually transformed with the plasmids 

pCDF-DUET, pACYC-DUET and pRK415 respectively.  

Finally, to construct the BW25113 strains pINT-GA dnaE, pINT-GA fabD, pINT-GA 

fabH, pINT-GA folA, pINT-pINT murA, and pINT-GA rplD, E. coli BW25113 was co-

transformed with the plasmids pINT-GA(fbr) and pSRNA-dnaE, pSRNA-fabD, pSRNA-

fabH, pSRNA-folA, pSRNA-murA, and pSRNA-rplD, respectively.  

2.4 Protocol for Seed Preparation 

All seeds were inoculated in LB broth, and appropriate antibiotics were added using a 

working concentration of 1 microliter of antibiotics per milliliter of culture and any other 

relevant additives such as x-gal in the case of lacZ gene expression; a final concentration 

of 10 milligrams per liter, 100 milligrams per liter, 34 milligrams per liter, and 35 

milligrams per liter were achieved for tetracycline, streptomycin, chloramphenicol, and 

kanamycin respectively, for relevant antibiotic resistant strains. Seeds for background 

strain BW25113 were prepared from a frozen stock by using a sterile pipette tip to 

introduce a visible amount of bacteria into LB. Seeds for the everything else, which 

contained plasmids, were generated from freshly transformed plates by selecting one 

bacterial colony and introducing it into LB, with appropriate antibiotics added to screen 

for colonies expressing antibiotic resistance. Seeds were incubated in a an automatic 

shaking incubator (Innova 44, New Brunswick Scientific) at 200 RPM and 32 °C for 

approximately twelve hours before use.  
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2.5 Screening Candidate Gene Targets for sRNA-Mediated Growth Arrest 

To investigate potential gene targets for sRNA-mediated growth arrest, relevant strains 

were cultured in LB using 24 or 48 well plates (CytoOne, USA Scientific) with a working 

volume of one milliliter and one half milliliter, respectively. Overnight seed cultures, 

prepared as above, were used to inoculate well plates (1% v/v inoculum) supplemented 

with antibiotics, as appropriate. Well plates incubated in a microplate reader (Multiskan 

Spectrum, Thermo Scientific) for 36 hours at 480 rpm and 32 °C. During the 36 hour 

incubation period, well plate cultures were induced when reaching an optical density at 

600 nm (OD600) of ~0.4, by the addition of 1 mg/mL anhydrous tetracycline (aTc) to 

achieve a concentration of 0.5 μg of aTc per mL of culture. Well plate incubation then 

resumed. In the specific case of MG1655-lacZ and in addition to the relevant antibiotics 

to screen for transformants, 2 microliters per milliliter of 20 milligram per milliliter x-gal 

was added to achieve a concentration of 0.04 milligrams per milliliter for gene 

expression; it is also worth noting that these variants were induced at the start of the 

experiment. 

2.6 Assaying Cell Morphology and Viability 

To investigate the effects of sRNA-mediated growth arrest on cell morphology, relevant 

strains were cultured in M9 minimal media in 24 or 48 well plates (CytoOne, USA 

Scientific) for ~36 hours and imaged using a Zeiss AxioObserver D1 inverted microscope 

(Carl Zeiss MicroImaging Inc.).  To investigate the effects of sRNA-mediated growth 

arrest on cell viability, relevant strains were cultured once more in M9 media, but in a 

shake flask environment. Then before imaging, staining using the LIVE/DEAD BacLight 

Bacteria Viability Kit (Molecular Probes) according to manufacturer protocol was 



  25 
 
 

performed at the 42 hour mark. As before, cells were observed using a Zeiss 

AxioObserver D1 inverted microscope (Carl Zeiss MicroImaging Inc.). Sample 

preparation for microscopy analyses consisted of transferring cells (5 microliters) to 25 x 

75 mm glass microscope slides (Santa Cruz Biotechnology), and cover slipping with 18 x 

18 mm glass cover slips (Santa Cruz Biotechnology); the shaker flask experiments 

reached much higher cell densities, so in this case cells were diluted for imaging 

purposes. Microscope images were post-processed and analyzed using ImageJ software, 

where a cell size distribution was generated using the built-in particle analysis tool (see 

Appendix E for protocol).48,49   

2.7 Metabolic Analysis of Contents in Shake Flask Cultures 

Overnight seed cultures were used to inoculate (1% v/v inoculum) 50 mL M9 minimal 

media, containing 20 grams per liter of glucose and appropriate antibiotics. Strains were 

cultured in 250 mL baffled shake flasks at 32ºC and shook at 200 RPM; at an OD600 ~3.0, 

25 microliters of 1 milligram per milliliter aTc was added. Culturing then resumed under 

the same conditions for a total of 72 hours, with periodic sampling for OD600 

measurements and metabolite and catabolite analysis via HPLC, as described below. The 

pH was determined using Hydrion test strips with a range of detection from 4.5 to 7.5 

(Micro Essential Lab) and manually maintained at 6.8 by periodic addition of 0.4 gram 

per milliliter K2HPO4 (Sigma-Aldrich). 

2.8 HPLC Settings for Metabolic Analysis  

Culture samples were first centrifuged at 11,000g for 3 minutes followed by subsequent 

supernatant transfer to glass HPLC vials; all samples were diluted 1:2 with 1 N HCl prior 
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to analysis. Metabolite analysis was performed using a Hewlett Packard 1100 series 

HPLC system. Separation of phenylalanine was achieved using a reverse-phase Hypersil 

Gold aQ C18 column (4.6 x 150 mm; Thermo Fisher) operated at 45ºC with a constant 

flow rate of 0.8 milliliters per minute consisting of 85% 5 mM H2SO4 and 15% 

acetonitrile. The eluent was monitored using a diode array detector (DAD) set at 215 nm. 

Glucose analysis was performed using the same HPLC system equipped with a RID 

detector and an Aminex HPX-87H column (BioRAD, Hercules, CA) operated at 35ºC, 

eluted with a constant flow rate of 0.55 milliliters per minute consisting of 5 mM H2SO4. 

External calibrations were developed and used to quantify each metabolite of interest.  
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3. RESULTS  

3.1 Optical Density Screening Results in BW25113 Strain  

After constructing the BW25113 strain and its variants, initial screening was performed 

in LB broth using a plate reader assay. A list of the names for all the strains used for this 

screening process may be seen in Appendix C, while Appendix F shows the OD600 versus 

time data for the screening process in LB. After gauging the response of the dynamic 

optical density data in LB, the candidates were analyzed in M9 minimal media; the initial 

LB screening served as indication that should the strains not grow in M9 media, it is the 

result of a missing essential nutrient which may be found in LB.  

The proceeding figures detail the results of the plate reader assay in M9 media for all 

BW25113 pSRNA variants. In the screening process, anhydrous tetracycline was added 

to achieve a final concentration of 0.5 micrograms per milliliter, at an OD600 of 

approximately 0.4 to induce the sRNA plasmid early on in the exponential growth phase 

to activate expression; this concentration of anhydrous tetracycline used was shown 

effective to activate gene expression while not influencing the OD600 behavior of 

background strain BW25113 without the sRNA plasmid, as seen in Panel A of Figure 5 

below.  
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Figure 6: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (Induced, Red) at an OD600 of 0.4 for BW25113 (Control, Black) and 

pSRNA Variants (Uninduced, Blue) Grown in M9. BW25113, top left; BW-rplD, top 
right; BW-fabB, bottom left; BW-fabD, bottom right. 

As seen in the figure above, fabB was not an effective gene target relative to fabD and 

rplD; while the addition of aTc apparently slowed the exponential growth phase in all 

cases seen above, growth seems to pick back up in the case of fabB and reach the OD600 

of the uninduced and background strain. The growth does not appear to ever reach the 

final value of the control strains in the case of rplD or fabD, though it is interesting to 

note the increased OD600 of the uninduced wild type strain in the case of the fabD gene 

target. In all cases seen in Figure 5 above, the uninduced strain has a similar growth 

profile to the background strain, except in the case of fabB, where the uninduced pSRNA 

variant appears to experience a slight lag in reaching exponential growth phase, but 

otherwise remains the same. It is also worth noting in Figure 5 above that all the strains 

above appeared to grow at the same rate during exponential growth phase and have a 
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similar lag phase. The figure below shows other interesting data, the results of the plate 

reader assay for the fabI, fabG, folA, and folD gene targets, 

 

Figure 7: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (I; Induced, Red) at an OD600 of 0.4 for BW25113 (C; Control, Black) and 
pSRNA Variants (U; Uninduced, Blue) Grown in M9. BW-fabI, top left; BW-fabG, top 

right; BW-folA, bottom left; BW-folD, bottom right. 

In the figure seen above, the induced fabI and fabG pSRNA variants never seem to 

experience an immediate cease in growth like the folA and folD variants; furthermore, the 

induced fabG strain in particular does not appear to have significantly diminished the 

OD600. While all four variants above had relatively similar lag phases, the folA and folD 

strains had a fast exponential growth phase indicating they might be good to consider for 

a scale-up application as they may be cultured with greater predictability. Seen below in 

Figure 7 is the relationship for the gene targets folP, murA, rpsD, and rplP, 
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Figure 8: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (Induced, Red) at an OD600 of 0.4 for BW25113 (Control, Black) and 

pSRNA Variants (Uninduced, Blue) Grown in M9. BW-folP, top left; BW-murA, top 
right; BW-rpsD, bottom left; BW-rplP, bottom right. 

In the figure seen above, it appears that both folP and rpsD did not have a significant 

reduction on the OD600 relative to the background strain; the murA strain resulted in a 

lower OD600 relative to the background strain, but it is interesting to note that neither 

murA nor rplP had the same immediate cease in growth that folA, folD and even, to a 

degree, folP appeared to show above. All four strains had similar lag phases and growth 

rates during the exponential growth phase; once more it is worth noting the slight overall 

lag associated with the uninduced pSRNA variants, though it does not result in a 

diminished optical density it is consistent across many cases. This could be due to the 

streptomycin resistance putting a burden on the cells, which is further investigated. In 

Figure 8 seen below, the final four gene targets, rpsE, fabBH, dnaE, and fabH are 

explored, 
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Figure 9: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (Induced, Red) at an OD600 of 0.4 for BW25113 (Control, Black) and 

pSRNA Variants (Uninduced, Blue) Grown in M9. BW-rpsE, top left; BW-fabBH, top 
right; BW-dnaE, bottom left; BW-fabH, bottom right. 

In the figure above, the first thing to note is once more the shift in growth associated with 

the uninduced pSRNA variant, as was the trend in many cases before. Another thing to 

consider is the similar lag phases and productivity during exponential growth phase, as 

was also a trend seen in earlier pictures. However, the targets fabBH, dnaE, and fabH 

appeared to do a considerable job at stopping growth. The gene target rpsE performed 

relatively well compared to other gene targets such as rpsD and folP as seen in Figure 7. 

Finally, in Figure 9 below, a summary of the OD600 relative to the uninduced background 

strain at the final time point for the induced and uninduced pSRNA variants may be taken 

into consideration, 
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Figure 10: A Comparison of the OD600 Relative to the Uninduced Background Strain 
BW25113 for the Induced and Uninduced pSRNA Variants. 

The bar graph seen above warrants comparison of the large number of candidates in a 

fashion where general trends may be easier to visualize. The black bars seen in the graph 

above represent the uninduced wild-type BW25113 and the respective uninduced pSRNA 

variants, which more or less are within 20% of the uninduced background strain; the 

striped bars represent the induced pSRNA variants, and in the case of these candidates 

there is a diverse response though in general it is clear that growth is suppressed. Some 

candidates such as fabB, fabG, folP, and rpsD did not appear to significantly diminish 

growth, while others such as fabI, folD, and rpsE were more effective, but had interesting 

morphology as will be seen below. The six candidates chosen for phase two of this study 

had effective growth inhibition and interesting morphology changes; these candidates are 

dnaE, fabD, fabH, folA, murA, and rplD. It is interesting to note that all of the genes 

targeted were shown to be essential for viability with the exception of fabH; thoughts on 

potential reasons for the performance observed is summarized in the discussion section.  
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3.2 Morphology Screening Results in BW25113 Strain 

Following each plate reader experiment that occurred in the M9 minimal media using the 

BW25113 pSRNA variants, each well plate was imaged on slides using a microscope; a 

relative size distribution of the cell sizes using the ImageJ automatic particle analysis tool 

was performed to quantify the changes in morphology for each strain (protocol found in 

Appendix E). The images below represent small sections of a larger image which was 

captured at this same resolution; a cut-out essentially, for the purposes of visualization. A 

scaled down version of the larger image would render the cells undistinguishable from 

the background. Seen below in Figure 10 are the morphology results for the background 

strain, in Panel A, and the first three pSNA variants targeting the genes dnaE, fabB, and 

fabBH, as seen in Panels B, C, and D respectively.  

 

Figure 11: Microscopy Images Showing morphology of Uninduced (Left) and Induced 
(Right) Cells for BW25113 pSRNA Variants Grown in M9 at the Final Time Point from 

the Plate Reader Assay; Panel A: BW25113, Panel B: BW-dnaE, Panel C: BW-fabB, 
Panel D: BW-fabBH. 
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It is clear in the case of Panel A from inspection by the naked eye that the morphology of 

the induced cells is not significantly different from that of the uninduced background 

strain when comparing to the changes in morphology observed in panels B, C, and D. In 

the latter panels, the morphology changes are a more evident after induction; the cells 

have a more rod-like, longer profile resulting in a larger size which is visible to the naked 

eye, indicating filamentation occurred to some degree. A similar trend follows suit for the 

rest of the induced strains that have the pSRNA plasmid, indicating the increase in size 

may be a result of anhydrous tetracycline activating the promoter for the afsRNA, or 

possibly the streptomycin resistance; quantifying the relative size change and looking at 

this in combination with the optical density results may elucidate a correlation between 

growth inhibition and increased cell size.  

 

Figure 12: Microscopy Images Showing morphology of Uninduced (Left) and Induced 
(Right) Cells for BW25113 pSRNA Variants Grown in M9 at the Final Time Point from 

the Plate Reader Assay; Panel E: BW-fabD, Panel F: BW-fabG, Panel G: BW-fabH, 
Panel H: BW-fabI. 
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Seen above in Figure 11 are the microscopy pictures for the candidates fabD, fabG, fabH, 

and fabI; it appears in all four cases that the uninduced variants appear to have the same 

smaller morphology as the background strain, indicating the presence of the plasmid may 

not affect the size of the cell when uninduced. The induced variants however show the 

same longer, rod-like morphology seen before. The same may be true for the cases of 

folA, folD, folP, and murA seen below in Figure 12, 

 

Figure 13: Microscopy Images Showing morphology of Uninduced (Left) and Induced 
(Right) Cells for BW25113 pSRNA Variants Grown in M9 at the Final Time Point from 
the Plate Reader Assay; Panel I: BW-folA, Panel J: BW-folD, Panel K: BW-folP, Panel 

L: BW-murA. 

As noted, there is a trend in the morphology between the induced and uninduced variants, 

but this trend is hard to quantify with the naked eye and requires quantification to 

investigate the relationship between the degree of growth suppression and the degree of 

size. While the suppression of growth using the afsRNA seems to go along with an 

increase in cell size, and uninduced afsRNA results in cell sizes equivalent to the 

background strain, the images show that strains in which growth was not significantly 
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suppressed, relative to the uninduced background strain and the uninduced corresponding 

pSRNA variant, still experienced some degree of size increase. While this indicates 

another potential application for the afsRNA – to control cell size without affecting 

optical density and see how the resulting filamentation affects nutrient flux to the cell – 

the degree to which this is possible is outside the scope of this investigation and was not 

further pursued. Nonetheless, as was the case in the figures above, the same morphology 

differences in the induced and uninduced pSRNA variants may be seen below in Figure 

13, 

 

Figure 14: Microscopy Images Showing Morphology of Uninduced (Left) and Induced 
(Right) Cells for BW25113 pSRNA Variants Grown in M9 at the Final Time Point from 

the Plate Reader Assay; Panel M: BW-rplD, Panel N: BW-rplP, Panel O: BW-rpsD, 
Panel P: BW-rpsE. 

In summary, the microscopy pictures show clear changes in morphology after the aTc-

inducible promoter was activated; these morphology changes were quantified using 

ImageJ to determine if activation of the plasmid containing the afsRNA resulted in 

changes to cell morphology. Quantifying these changes in cell morphology enables them 
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to be compared to the changes in optical density to discern important trends in the data. It 

is worth reiterating the protocol used to quantify morphology changes may be found in 

appendix E. The bar graph shown below in Figure 14 represents a similar metric to that 

shown in Figure 9, wherein the relative size change compared to the uninduced 

background strain BW25113 is taken into consideration. This once more allows a nice 

way to summarize the general results for the large number of candidates, 

 

Figure 15: Relative Cell Size for the BW25113 pSRNA Variants With and Without 
Anhydrous Tetracycline Induction; Cells Cultured in M9 Media. 

The morphology changes for most of the pSRNA variants are very robust, indicating for 

cases like folP and fabB that even when optical density was relatively unaffected, 

morphology was still changed. Nonetheless, the uninduced variants for the most part have 

similar cell size relative to the uninduced background strain, while the induced 

background strain shares a nearly identical size with this strain. This filamentation seen in 

the induced variants indicates there might be stress on the cells, and could be a result of 
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the cells trying to increase nutrient flux to mitigate for the suppressed vital gene function; 

the slight filamentation seen in some of the uninduced variants may also suggest that the 

plasmid based approach is stressful to the cell as well. In order to establish a candidate 

selection process for the second phase of this study while also further analyzing the 

relationship between the optical density and cell size, a scatter plot was generated for the 

induced variants which may be seen in Figure 15 below,  

 

Figure 16: A Scatter Plot Illustrating the Relative Size versus the Relative OD for 
Induced pSRNA Variants at the Final Time Point of the Plate Reader Assay 

The figure above shows interesting results as it is now easier to visualize the robust 

morphology changes associated with the induced pSRNA variants, but it also shows the 

large distribution in relative OD600 change. This could imply that even when growth is 

not suppressed, the afsRNA or streptomycin resistance on the plasmid still results in an 

increased cell size; the lack of growth suppression could indicate the gene being targeted 

is not growth essential. This could also mean that when transcription of the targeted gene 
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is inhibited using the afsRNA, it puts a burden on the cell that may be overcome by 

increasing nutrient flux by increasing cell size. As a final possibility, activation of the 

anhydrous tetracycline promoter or streptomycin resistance on the plasmid may 

contribute to the increased cell size independent of the functionality of the sRNA scaffold 

on the plasmid, but this is unlikely because different changes in cell size were seen 

depending on each of the genes being targeted, and targeting different genes requires 

changing the seed region of the sRNA scaffold implying that the gene being targeted by 

the sRNA, at least to some degree, has an effect on the cell size. While any background 

changes in cell size associated with simply activating the aTc promoter would be 

unavoidable using the plasmid-based system at hand, detecting if this is a contributing 

factor may be possible by constructing a strain without the sRNA scaffold but still 

containing the promoter and terminator and gauging the effect on cell size after induction. 

Integrating the plasmid onto the chromosome where it would not need any promoter or 

antibiotic resistance may eliminate any background increases in the cell size. 

Nonetheless, there is a large cluster of candidates encompassing OD600 that ranges from 

75% to 90% of the uninduced background strain, but there are also targets like fabD 

which appear to have a significantly diminished OD600 with a larger cell size, and targets 

like fabB where the cell size is still significantly increased, but the OD600 is nearly the 

same as the uninduced background strain. Based on the optical density results seen in 

Figure 5 through Figure 8, coupled with the microscopy results summarized in Figure 14 

while taking into consideration the mechanism of action associated with each target gene, 

six candidates from this initial pool of sixteen were selected for progression. The six 
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candidates that are further explored in the following sections of the results are BW-dnaE, 

BW-fabD, BW-fabH, BW-folA, BW-murA, and BW-rplD. 

3.3 lacZ and Bacteriostatic Screening Results in BW25113 Strain 

To supplement the results above and gain more insight in regards to the underlying 

mechanism of the sRNA, the strain MG1655 was used to screen the ability of the pSRNA 

plasmid to suppress gene function without inhibiting growth as this strain contains the 

lacZ gene, which enables the cells to metabolize lactose; metabolizing an analogue 

compound of lactose, x-gal, results in the cells expressing a visibly blue phenotype. This 

sheds light on the efficiency of the inducible-sRNA system to block translation of a 

desired gene while also elucidating inherent side effects which may be growth-associated 

as only the metabolism of lactose should be inhibited when the sRNA system is induced 

and growth should otherwise not be affected. These inherent, growth-associated side 

effects that would be obvious in the case of targeting a gene like lacZ would otherwise be 

masked by targeting the growth-essential genes, as their primary purpose is to suppress 

growth anyways. Seen below are the results from the lacZ experiment in MG1655 in M9 

media,  
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Figure 17: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (Induced, Red) at an OD600 of 0 for MG1655 (Control, Black) and MG-lacZ 

Variants (Uninduced, Blue) Grown in M9. All Variants, Top Left; Only MG-lacZ 
Results, Top Right; Only MG1655 Results, Bottom Left; Uninduced Comparison, 

Bottom Right. 

It is interesting to note in the figure above the strong variation seen particularly in the 

MG1655 and MG1655-lacZ strain where x-gal was added – the variation in OD600 is 

likely due to the precipitation of the blue product associated with the metabolism of x-

gal. Nonetheless this experiment shows the sRNA does not appear to have much of a 

burden on genes which are not growth essential as there is a relatively unscathed growth 

profile for the induced pSRNA-lacZ variant, though it did keep the cells from turning 

blue.  

In the figure above it may also be seen in the MG1655 and MG-lacZ strain wherein no x-

gal or aTc was added that the strains have a relatively similar growth profile, and overall 

it appears the aTc did not have an effect on the background MG1655 strain at all.  
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Seen below are the resulting microscopy images; it is clear from inspection that the cells 

are all relatively the same size, 

 

Figure 18: Microscopy Images Showing Morphology of MG1655 (Top Row) and MG-
lacZ (Bottom Row) Grown Grown in M9 (Left), with the Addition of x-gal (Middle) and 
with the Addition of x-gal and aTc (Right), at the Final Time Point from the Plate Reader 

Assay. 

The images above show there is not much filamentation present in the induced cells, nor 

in the cells where x-gal was added. It also shows the presence of the pSRNA-lacZ 

plasmid did not result in filamentation as MG-lacZ without x-gal and aTc seemed to have 

a similar morphology as well. The cell sizes were quantified as seen below,  
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Figure 19: Relative Cell Size for the MG1655 pSRNA Variants With and Without x-gal 
and Anhydrous Tetracycline Induction; Cells Cultured in M9 Media. 

It is worth noting that the size difference is very small relative to the uninduced 

background strain for all variants; while the pSRNA-lacZ variant that was induced with 

x-gal and aTc seemed to have the largest change in size, it was not significant and the 

microscopy images show that it did not result in filamentation. This suggests the size 

differences seen were a result of the sRNA targeting growth essential genes. In a similar 

fashion as before, a scatterplot may be seen below in which the relative size and optical 

density are shown in the same graph, 
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Figure 20: A Scatter Plot Illustrating the Relative Size versus the Relative OD for the 
lacZ variants at the Final Time Point of the Plate Reader Assay. 

While this graph reinforces the tight data in which there does not seem to be much of an 

effect of the optical density as a result of targeting the non-growth essential gene lacZ it 

also supports the results from the first phase of the study wherein it was found that the 

filamentation does not have a significant effect on the optical density. It is worth 

considering in this case in particular that the filamentation was not significant in any of 

the cells and the growth was also not suppressed; this suggests the sRNA is responsible 

for growth suppression and that this is a result of targeting growth essential genes.  

To also gauge the inherent effect of the common bacteriostatic additives 

chloramphenicol, tetracycline, and streptomycin in regards to growth suppression and 

morphology, an experiment was conducted wherein these additives were used to suppress 

growth in wild-type BW25113 and the resulting morphology was quantified; in this 
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experiment, a BW25113 strain resistant to each of these bacteriostatic additives was also 

generated to gauge the inherent morphology changes associated with these additives even 

in a scenario where growth should not inhibited. This is insightful as the BW25113 

pSRNA variants all have streptomycin resistance and the pINT-GA pSRNA variants 

additionally have chloramphenicol resistance so it once again may show growth related 

side-effects associated with this plasmid based system; while it appears that the 

morphology of the BW25113 pSRNA variants is unaffected based on the results from the 

uninduced pSRNA variants relative to the uninduced background strain, it is insightful to 

see if this is also the case for chloramphenicol and tetracycline. Seen below is the 

resulting optical density response for the wild-type E. coli BW25113 strain with the 

bacteriostatic additives, and the relevant resistant variants,  

 

Figure 21: The Relationship between OD600 and Time after the Addition of 
Chloramphenicol (Top Left), Streptomycin (Top Right), and Tetracycline (Bottom Left) 
at an OD600 of 0.4 (Bacstat, Red) for BW25113 (Black, Control) and Resistant Strains 

(Blue) Grown in M9. 
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Though it may come as no surprise, the bacteriostatics effectively suppressed growth in 

the wild-type strain while not suppressing growth in the resistant strains. The growth 

suppression associated with the bacteriostatic additives takes effect much more rapidly 

than what was observed with the pSRNA approach, especially in the cases of 

streptomycin and chloramphenicol. In these cases, there is nearly no change in optical 

density once the cells are induced. The dynamic optical density data associated with the 

bacteriostatic resistant strains is also insightful; while there seems to be a delay 

associated with each resistant strain relative to the wild-type BW25113 strain, 

tetracycline has the smallest delay in growth while streptomycin has the largest delay in 

growth. The plasmid-based system used in the pSRNA approach relies on a streptomycin 

resistance, which may have further implications in scale-up approaches as there was a 

consistent lag seen in the growth of this strain relative to the background strain for many 

of the variants. This lag may be a result of the high concentration of streptomycin used in 

the plasmid selection process, 100 mg/L, but it may also be the result of the plasmid 

placing a burden on the cells. Nonetheless, also interesting is the resulting morphology 

from the aforementioned strains; in the microscopy pictures shown below, inspection 

with the naked eye reveals that all the cells appear to be of the same order of magnitude 

in terms of length scale, indicating that minimal filamentation occurs as a result of neither 

the bacteriostatic additives nor the plasmids providing resistance. Filamentation occurs as 

a result of stress on the cell amongst many reasons. Further inspection also reveals that 

chloramphenicol added to the wild-type BW25113 strain seemed to result in no 

morphology changes, with a consistent cell size. The streptomycin had a bit of 
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filamentation occurring, with a mix of cells that were small and large, but it is clear in the 

case of the tetracycline that consistent filamentation occurred.   

                                           

                                      

 

Figure 22: Microscopy Images Showing Morphology BW25113 and Relevant Resistant 
Strains with the Addition of Relevant Antibiotics, Grown in M9. Images Taken at the 

Final Time Point from the Plate Reader Assay.  

Inspecting the BW25113-cmp, BW25113-str, and BW25113-tet strains which contain 

plasmids for resistance to chloramphenicol, streptomycin and tetracycline respectively, it 
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is fairly hard to distinguish any differences in the average cell size relative to the wild-

type BW25113 strain. Seen below is an average cell size of all the cells, normalized to 

the cell size of the wild-type BW25113 strain, 

 

Figure 23: Relative Cell Size for BW25113 with Antibiotics and Antibiotic Resistant 
Strains; Cells Cultured in M9 Media. 

This relative cell size distribution, when coupled with the dynamic optical density data, 

elucidates interesting trends. The BW25113 wild-type strain with tetracycline added took 

the longest to stop growth, and it resulted in the most filamentation amongst the 

bacteriostatic additive based approach; furthermore, the streptomycin-resistant 

BW25113-strep strain also took the longest to reach stationary phase, and it had the most 

filamentation amongst the plasmid-based strains. The filamentation associated with the 

streptomycin resistance may be a contributing background factor in the filamentation 

seen in the BW25113 pSRNA variants. To further gauge the relationship between the 



  49 
 
 

optical density and the degree of filamentation, as was explored in the screening of the 

pSRNA system, an analogous scatterplot is presented in the figure below, 

 

Figure 24: A Scatter Plot Illustrating the Relative Size versus the Relative OD for the 
Bacteriostatic Well-Plate Experiment at the Final Time Point. 

In this figure it may be seen that there is once again no clear-cut relationship between the 

degree of growth suppression and the degree of filamentation from the data taken into 

consideration. While this does not suggest the filamentation does not influence the optical 

density measurements, because for the same quantity of cells, longer cells in theory may 

block more light, but this does suggest that the influence may not be straight-forward, or 

may be insignificant. The scatterplot is also useful as it shows the bacteriostatic resistant 

strains all have a similar final optical density relative to the control strain; furthermore, it 

shows that the bacteriostatics all had a very similar effect in growth suppression.  
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3.4 Viability and Metabolic Activity Screening Results in BW25113 Strain  

After selecting the most viable candidates from the first phase of the study based on 

optical density and relative cell size data, scale-up to a working volume of 50 mL for 

culturing the cells was achieved to analyze the cell viability and metabolic activity. 

Scaling up the working volume from microplates to flasks also sheds light on plasmid 

stability. As mentioned in Section 2.8, glucose concentration was analyzed via HPLC.  

Investigating the dynamic glucose consumption for each pSRNA variant may shed light 

into the mechanism by which resources are diverted after inhibiting growth through 

various growth essential gene targets. It is possible glucose consumption may decrease as 

the growth is inhibited, but it is not certain that this will lead to an increase in titer or 

productivity associated with a desirable product with an appropriate pathway 

engineering; it is also possible that glucose consumption may not decrease significantly 

when growth is inhibited, but it is also not certain that this will lead to decreased titer or 

productivity associated with a desirable product under appropriate engineered conditions. 

Ideally the variants should continue to consume glucose at an uninhibited rate after 

induction, mimicking the effect of bacteriostatic additives where only the optical density 

is suppressed but other metabolic functionality remains the same, but these possibilities 

demonstrate the need to characterize the pSRNA variants. Seen below is the data for the 

OD600 and the glucose consumption for the candidates discussed above. Each panel 

contains the strain mentioned in the title, both induced and uninduced; the uninduced 

variants are represented by closed circles and solid lines while the induced are 

represented by the opposite. The left axis represents the OD600, and the right axis 

represents the glucose concentration in grams per liter. The lines representing the OD600 
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are the ones which increase in all cases while the lines representing the glucose 

concentration are the ones which decrease in all cases.  

 

Figure 25: The Relationship between the OD600 (Left Axis), Glucose Concentration 
(Right Axis), and Time after the Addition of Anhydrous Tetracycline (Red) for the 

BW25113 Background Strain and Three pSRNA Variants Grown in M9 Media (Black). 
BW25113, Top Left; BW-dnaE, Top Right; BW-fabD, Bottom Left, BW-fabH, Bottom 

Right.  

As mentioned, the four panels above and the three panels below show the results from the 

50 mL flask cultures; in all cases the glucose concentration decreased with time, and the 

OD600 increased with time as would be expected. It may be seen in the case of the 

background strain that the anhydrous tetracycline had no effect on cells without the 

plasmid in regards to cell growth or metabolic activity; both the optical density and 

glucose consumption is unaffected. In the case of the other six BW25113 mutants, all 

were fairly effective at inhibiting growth in a reasonable amount of time – roughly five 

hours. The growth remained suppressed for the duration of the experiment as well, 

indicating a stable plasmid.  Furthermore, all induced pSRNA variants consumed all the 
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glucose in the time of the experiment, at the same rate as the uninduced background 

strain, resulting in an inherently increased metabolic activity on a cellular level; the 

uninduced pSRNA variants showed a similar metabolic activity to that of the background 

strains considering the similar final cell density and glucose concentration, and as a result 

had a very similar metabolic activity to the background strain.  

 

Figure 26: The Relationship between the OD600 (Left Axis), Glucose Concentration 
(Right Axis), and Time after the Addition of Anhydrous Tetracycline (Red) for Three 
pSRNA Variants (Black) Grown in M9 Media. BW-folA, Top Left; BW-murA, Top 

Right; BW-rplD, Bottom Left.  

To better put the data from the graphs into perspective, quantified below is the specific 

glucose consumption rate, typically in units of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
ℎ𝑟𝑟∗𝑘𝑘𝐶𝐶𝑊𝑊𝐸𝐸.𝑔𝑔𝑐𝑐𝑔𝑔𝑖𝑖

, for the each of the pSRNA 

variants normalized as a percentage relative to the specific glucose consumption of the 

uninduced background strain, wild-type BW25113. This metric gives insight into how 

much glucose each cell relatively consumes when uninduced and induced,  
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Figure 27: Relative Specific Glucose Consumption Rates ( 𝑔𝑔𝐺𝐺𝑔𝑔𝑔𝑔
ℎ𝑟𝑟∗𝑘𝑘𝐶𝐶𝑊𝑊𝐸𝐸.𝑔𝑔𝑐𝑐𝑔𝑔𝑖𝑖

) for the BW25113 
pSRNA Variants Strain at the Final Time Point in Shaker Flask. 

As illustrated graphically, in all cases the induced variants have a higher specific glucose 

consumption than their uninduced counter-parts and the background strain; in the case of 

BW-rplD, the smaller change than the other strains is an inherent result of the higher OD 

at the time of induction, translating to an inherently higher cell density. Though only 

marginally larger than the specific glucose consumption rate of the background strain, it 

is also worth noting the consistently increased specific glucose consumption rate 

associated with the uninduced pSRNA variants. This may be a result of the plasmid 

putting a burden on the cells, but more likely it may be the result of the uninduced 

variants still consuming all the glucose, but at marginally lower optical densities, 

considering the uninduced variants do not appear to affect the cell size. 

Supplementing the dynamic OD600 and glucose concentration data outlined above are 

microscopy pictures showing the morphology of the cells, overlaid with the fluorescent 
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image results from the viability assay, performed at a time of 42 hours. The viability stain 

tags metabolically viable cells as green, and tags non-viable cells as red; fluorescent 

emission may be detected using a blue light to excite the cells stained green, and a green 

light to detect those stained red. It is worth noting that in a similar fashion to the 

microscopy pictures displayed in Figures 10 through 13, these microscopy images are the 

same resolution as the original images taken by the microscope so the morphology of the 

cells may be seen; as a result, the panels above are small segments cropped from the 

much larger images taken by the microscope.     

 

Figure 28: Microscopy Pictures of the Cells Overlaid with Fluorescent Staining Images 
from the Viability Assay Kit Taken at the 42 Hr Mark. Green Staining Indicates Viable 

Cells, and Red Staining Indicates Non-Viable Cells. U Refers to Uninduced, and I Refers 
to Induced Variants of Each Strain. Top Left, BW25113; Bottom Left, BW-dnaE; Top 

Right, BW-fabD; Bottom Right, BW-fabH.  

In almost all cases seen in Figure Figure 252 and Figure 273, nearly every detectable cell 

was viable, and there were almost no detectable non-viable cells; any non-viable cells 

that were detected were included in the images to showcase their characteristics – non-

viable cells may be seen in panels 2I and 5I.     
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Figure 29: Microscopy Pictures of the Cells Overlaid with Fluorescent Staining Images 
from the Viability Assay Kit Taken at the 42 Hr Mark. Green Staining Indicates Viable 

Cells, and Red Staining Indicates Non-Viable Cells. U Refers to Uninduced, and I Refers 
to Induced Variants of Each Strain. Top Left, BW-folA; Bottom Left, BW-murA; Top 

Right, BW-rplD. 

It is also worth noting the morphology of the background strain and the pSRNA variants 

appears representative of the results on the plate reader scale, shown in Figure 14. To get 

a feel for how the metabolic activity in the pSRNA variants compares with common 

bacteriostatic additives that are known to suppress growth while otherwise having a 

minimal effect on metabolic activity, tetracycline, streptomycin, and chloramphenicol in 

concentrations of 10 milligrams per liter, 100 milligrams per liter and 34 milligrams per 

liter were added to the background strain BW25113 in a shaker flask environment. It is 

worth reiterating that BW25113 is a wild type strain and does not have any antibiotic 

resistance; the resulting optical density and dynamic glucose concentrations may be seen 

below in Figure 29,  
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Figure 30: The Relationship between the OD600 (Left Axis), Glucose Concentration 
(Right Axis), and Time after the Addition of Three Different Bacteriostatics – 

Tetracycline (Blue), Streptomycin (Red), and Chloramphenicol (Green). 

As noted, seen above is the dynamic response of the optical density and glucose 

concentration in a shaker flask environment for background strain BW25113 induced 

with three different bacteriostatic additives. While the data above shows the bacteriostatic 

additives seem to have a fast response in regards to growth suppression relative to the 

response of the sRNA-mediated approach, it appears that the metabolic activity was also 

affected relative to the induced pSRNA variants. Seen below is the specific glucose 

consumption rate for BW25113 with the addition of the three bacteriostatic additives, 

relative to the specific glucose consumption rate for wild-type BW25113.  
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Figure 31: Relative Specific glucose Consumption Rates ( 𝑔𝑔𝐺𝐺𝑔𝑔𝑔𝑔
ℎ𝑟𝑟∗𝑘𝑘𝐶𝐶𝑊𝑊𝐸𝐸.𝑔𝑔𝑐𝑐𝑔𝑔𝑖𝑖

) for Background 
Strain BW25113 with Bacteriostatic Additives at the Final Time Point in Shaker Flask. 

As mentioned, while the bacteriostatic additives were efficient at suppressing growth in a 

similar amount of time that it took with the sRNA-mediated approach, the specific 

glucose consumption rate did not appear to increase as significantly relative to the sRNA-

mediated approach. Referring back to Figure 29 above, this is likely a result of the fact 

that not all the glucose was consumed in the case of the strains with bacteriostatic 

additives. Especially in the case of chloramphenicol addition it appears that a significant 

amount of glucose was left over, indicating that metabolic activity was diminished; a 

result not observed with the sRNA approach.  

To further gauge the metabolic activity of the cells, a fed-batch culture was grown using 

the BW25113 pSRNA-murA variant to determine if the induced cells remained 

metabolically active over a longer period; this may shed insight into the potential for the 



  58 
 
 

variants to convert resources into desirable products. The pSRNA-murA variant was 

chosen for its effective OD repression, good specific glucose consumption rate and vivid 

viability stain results. In the fed batch experiment, BW25113 and the pSRNA-murA 

variant were both grown in M9 minimal media; once more induction occurred in the mid-

exponential phase. This time however, a charge of the dextrose, ammonium chloride, 

magnesium sulfate and calcium chloride were added. The amount of dextrose fed, 0.5 

grams added to the 50 mL culture, is half of what was initially present in the fresh M9 

media; the amounts of ammonium chloride, 0.05 grams, magnesium sulfate, 0.1 mol, and 

calcium chloride, 0.005 mol, fed are equivalent to the amount originally in a fresh 50 mL 

flask of M9 media. The charge of nutrients was added to prolong the exponential phase, 

increasing the total cell density of the culture – this inherently means the feed must be 

added during exponential phase. Seen below are the resulting optical density and 

metabolite analyses for the fed batch experiment,  

 

Figure 32: The Relationship between the OD600 (Left Axis), Glucose Concentration 
(Right Axis), and Time after the Addition of Anhydrous Tetracycline (Red) to BW25113 

and BW-murA (Black) in the Fed-Batch Experiment.  
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As shown in the figure above, the feed was added at the 15 hour mark, during the later 

end of the exponential growth phase; this was added to bring the total concentration of 

glucose back to roughly 20 grams per liter. Seen in the graph on the left, it appears that 

the aTc-induced wild type BW25113 did not experience any significant change in either 

glucose consumption rate or in final optical density, but looking at the optical density and 

glucose consumption rate versus time in the graph on the right, it appears that the aTc-

induced pSRNA-murA variant never achieved the same final optical density as the 

uninduced variant, while still consuming glucose. These results parallel the results from 

the shaker-flask experiment seen above, while indicating that the induced sRNA variant 

is able to continue consuming glucose. Seen below is the specific glucose consumption 

rate of the wild-type BW25113 strain with the addition of aTc, and the pSRNA-murA 

variant, both induced and uninduced, relative to the uninduced wild-type BW25113 

strain, 

 

Figure 33: Relative Specific Glucose Consumption Rates ( 𝑔𝑔𝐺𝐺𝑔𝑔𝑔𝑔
ℎ𝑟𝑟∗𝑘𝑘𝐶𝐶𝑊𝑊𝐸𝐸.𝑔𝑔𝑐𝑐𝑔𝑔𝑖𝑖

) for the BW-murA 
Variant in a Fed Batch Environment. 
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As mentioned, the figure above shows the relative glucose consumption rate for the 

pSRNA-murA variant. While the addition of aTc did not seem to have any effect on the 

optical density or dynamic glucose concentration in the background BW25113 strain in 

the fed-batch environment, the induced pSRNA-murA variant did have an increased 

relative specific glucose consumption rate while its uninduced counterpart did not. In 

correspondence with the figure showing optical density and glucose concentration as a 

function of time, this is due to the fact that the induced sRNA variant continues to 

consume glucose even when growth is suppressed. Nonetheless, the increase in the 

specific glucose consumption rate in the fed-batch environment appears to be lower than 

the increase seen in the pSRNA-murA variant that was not fed, as shown in Figure 26; 

these results appear to be closer to the effect seen by the bacteriostatic additive 

suggesting in a long-term culture that the plasmid-based system may not be able to 

generate a consistent biosynthesis product. Though further discussed in the results 

section, this could be a result of the increased optical density seen in the fed-batch 

experiment. Nonetheless, these results indicate that the sRNA is effective at suppressing 

growth without having a significant effect on cell viability or metabolic activity, unlike 

the bacteriostatic additives.  

3.5 Phenylalanine Production Optimization in BW25113 pINT-GA and pSRNA Variants  

To supplement the results above which appear to show that the sRNA plasmid is effective 

at suppressing growth without affecting either the viability or metabolic activity of the 

cells, the sRNA plasmids corresponding to the same 6 gene candidates, dnaE, fabD, 

fabH, folA, murA, and rplD, were transformed into the phenylalanine overproducer 

BW25113 pINT-GA, which has a feedback resistant copy of the genes aroG and pheA 
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overexpressed as discussed further in the strain construction section of Materials And 

Methods. The capability of the pINT-GA strain coupled with the pSRNA plasmid to 

solely suppress growth was first screened in a plate reader experiment – the results of 

which may be seen below,  

 

Figure 34: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (Red) at an OD600 of 0.4 for pINT-GA pSRNA Variants (Blue) Grown in 

M9M. pINT-GA, top left; pINT-GA dnaE, top right; pINT-GA fabD, bottom left; pINT-
GA fabH, bottom right. 

As noted, seen in the figures above and below, the pINT-GA strain and the pSRNA 

variants were run in a plate reader assay to screen the efficacy of growth suppression in 

the induced strains; the first panel in the figure above shows that the concentration of 

anhydrous tetracycline slightly slows the growth in the exponential phase of the pINT-

GA strain which has no sRNA plasmid, and results in a marginally lowered optical 

density in the plate reader assay. While the effects of growth suppression are more robust 

in the strains with the sRNA plasmids, as expected, some of these strains ultimately 

reached an optical density close to the uninduced counterpart and the control strain, 

though it took much longer. Nonetheless, this indicates there may be interference 
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between using these two plasmids in conjunction with one another. While the dnaE 

variant very nearly reaches the uninduced optical density, fabD, folA and rplD seem to be 

rowing at a rate which could also reach the same optical density; nonetheless, in all four 

of these cases the exponential growth phase is significantly slowed down indicating the 

pSRNA plasmid is having some type of significant effect on targeting growth associated 

genes. These results differ from the observed behavior of the pSRNA variants in wild-

type BW25113, which did not contain the pINT-GA plasmid. Nonetheless, the fabH 

variant and the murA variant exhibit the best growth suppression of the pINT-GA 

pSRNA strains, though it is worth noting in both cases there seems to be a shift in the 

overall growth, with fabH being more drastic than murA.  
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Figure 35: The Relationship between OD600 and Time after the Addition of Anhydrous 
Tetracycline (Red) at an OD600 of 0.4 for pINT-GA pSRNA Variants (Blue) Grown in 
M9M. pINT-GA folA, top left; pINT-GA murA, top right; pINT-GA rplD, bottom left. 

Ultimately it appears as if the sRNA was more stable in the wild-type BW25113 strain 

than in the pINT-GA variant, as none of the growth suppression appeared to be as 

effective as it did in the background BW25113 strain. To gain further insight in regards to 

the morphology of the pINT-GA pSRNA strains which were screened in the plate reader 

experiment above, the cells at the final time point were imaged; these images may be 

seen below,   
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Figure 36: Microscopy Images Showing morphology of Uninduced (Left) and Induced 
(Right) Cells for pINT-GA pSRNA Variants Grown in M9M at the Final Time Point 
from the Plate Reader Assay; Panel 1: pINT-GA, Panel 2: pINT-GA dnaE, Panel 3: 

pINT-GA fabD, Panel 4: pINT-GA fabH. 

As mentioned, the images above and below show the morphology of the pINT-GA 

background strain (Panel 1), and the pSRNA variants (Panels 2-7), both uninduced and 

induced at the final time point of 37 hours. The first thing to notice in these images is that 

once more the induced pSRNA variants take on a much longer, rod-shaped morphology, 

which again may be a result of trying to increase nutrient flux into the cell. In the case of 

the pINT-GA pSRNA induced variants, the filamentation that occurred was much more 

robust than observed in the pSRNA variants in the wild-type BW25113 strain. 

Furthermore, there appears to be a less consistent cell size amongst the induced pINT-GA 

pSRNA variants, especially in the case of the fabD gene target which blocks fatty acid 

biosynthesis. In the wild-type BW25113 strain, all the induced cells appeared to be 

elongated, but in the pINT-GA variant, there was a mixture of some elongated cells and 

some cells close to the size of the background pINT-GA strain. While it may seem 

plausible that the similar final optical density of the background strain and the induced 
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and uninduced pSRNA variants in cases like fabD could be due to the different 

morphologies observed, suggesting not all of the cells were affected equally by the sRNA 

plasmid, the case of dnaE as seen in Figure 2 seems to refute this observation. In the case 

of dnaE in particular, the most elongated cell morphology was observed with the average 

cell roughly 300% bigger than the uninduced background strain, however even in this 

case the cells reach nearly the same final optical density as the uninduced counter-part 

and the background strain. Furthermore, in one of the cases with the best growth 

suppression, fabH, the morphology was only 200% of the background strain; 

furthermore, in this particular case, it appears that the uninduced fabH pSRNA variant 

had nearly the same morphology as the induced variant, even to the naked eye as seen in 

Panel 4. Nonetheless, it is also apparent in this image that the cell density of the induced 

variant is much less than the uninduced variant.    

 

 

Figure 37: Microscopy Images Showing morphology of Uninduced (Left) and Induced 
(Right) Cells for pINT-GA pSRNA Variants Grown in M9M at the Final Time Point 
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from the Plate Reader Assay; Panel 1: pINT-GA folA, Panel 2: pINT-GA murA, Panel 3: 
pINT-GA rplD. 

It is also interesting to examine in more detail the case of the gene target murA, which 

had effective optical density suppression as well as an increased cell size. This ultimately 

means there is no direct correlation to the enhanced cell size and effective optical density 

suppression; to summarize, dnaE had the largest morphology with ineffective growth 

suppression, while fabH and murA had effective growth suppression, but drastically 

different morphologies. This may indicate the morphology in the case of the pINT-GA 

strain is more sensitive to the selected gene target than in the case of wild-type 

BW25113. One final thing to note, and perhaps best visualized by the figure below which 

summarizes the cell size relative to the uninduced background strain, BW25113 pINT-

GA, is the increased cell size of all the uninduced pSRNA variants, even though the 

induced pINT-GA variant does not have a significantly increased cell size.  
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Figure 38: Relative Cell Size for the pINT-GA pSRNA Variants With and Without 
Anhydrous Tetracycline Induction; Cells Cultured in M9M Media. 

As expressed above, the morphology changes in the BW25113 pINT-GA pSRNA 

variants suggests this may be a result of the gene targeted, and may be unrelated to the 

growth suppression; this is supported by considering the two genes responsible for fatty 

acid biosynthesis, fabD and fabH, were also the two genes that resulted in the smallest 

morphology changes. While the results of the growth suppression in the pINT-GA strain 

do not look as effective as they did in the background BW25113 strain, and the 

morphology changes do not see to be consistent with the wild-type BW25113 strain, this 

could be a result of the plasmid-based approach rather than integrating everything onto 

the chromosome of BW25113. To once more investigate the relationship regarding the 

degree of filamentation, which may be represented by the relative size change, with 

respect to the degree of growth suppression, represented by the relative final optical 

density, a scatter plot was constructed which may be seen in the figure below, 
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Figure 39: A Scatter Plot Illustrating the Relative Size versus the Relative OD for the 
pINT-GA Well-Plate Experiment at the Final Time Point 

It appears in the figure above that there is not a clear relationship between any degree of 

filamentation resulting in any degree of growth suppression in either the induced variants 

or the uninduced variants. In the case of the uninduced variants this scatterplot makes it a 

bit easier to visualize that while the growth did not seem to be suppressed in any of the 

cases, they did seem to experience different degrees of filamentation. In the induced 

variants, growth was suppressed to different degrees, and while this has been shown to be 

a result of the gene targeted by the pSRNA system, once more it does not seem that there 

is any discernable background contribution in optical density due to filamentation. While 

this is not to say the filamentation is not having an influence on the optical density, more 

rigorous experiments are needed to further investigate this relationship to determine if it 

exists and to what degree.  
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Nonetheless, to examine the metabolic activity of the pINT-GA strain, the murA variant 

was once more selected based on its effective growth suppression and moderate 

morphology results. Using the pINT-GA pSRNA-murA strain, the dynamic optical 

density, glucose consumption rate, acetate production, and phenylalanine production was 

measured in the span of 70 hours, as summarized in the figures below, 

 

Figure 40: The Relationship between the OD600 (Left Axis), Glucose Concentration 
(Right Axis), and Time after the Addition of Anhydrous Tetracycline to pINT-GA (Left 

Graph) and the pINT-GA murA Variant (Right Graph) at Two Time Points (T1, Blue and 
T2, Red). 

The figure above illustrates the dynamic optical density and glucose concentration as a 

function of time; there are many things to note in the figure above, but perhaps the most 

obvious is first that the marginally slower growth seen in the induced background pINT-

GA strain in plate reader was not observed in the scaled-up shaker flask, and second that 

in all the cases the glucose is fully consumed in relatively the same amount of time. By 

the 50 hour mark, there appears to be no glucose left and the rate at which it was 

consumed is consistent across all strains. Another obvious thing to note is the increased 

optical density of all the strains, relative to the background BW25113 strain; these strains 

all grow to a higher optical density indicating the presence of the pINT-GA plasmid 

increases nutrient flux towards biomass synthesis. Even more interesting is the fact that 

the uninduced strain with two plasmids, pINT-GA murA, achieves a higher optical 
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density than the strain with one plasmid, pINT-GA, though in the plate reader screening 

experiment the murA variant did not achieve a higher optical density; this suggests that 

the effects of the pINT-GA plasmid is compounded by the sRNA plasmid in regards to 

reallocating resources to synthesizing more biomass. This is, unfortunately, the opposite 

of the ultimate goal. Also seen in the figure above, inducing pSRNA-murA variant at the 

two different time points during the exponential phase, first at the 14 hour mark and 

second at the 17 hour mark, did not seem to ultimately affect the final optical density, 

though it did appear to affect the final concentration of phenylalanine. The dynamic 

phenylalanine data may be seen below,  

 

Figure 41: The Relationship between Phenylalanine Production and Time After the 
Addition of Anhydrous Tetracycline to BW25113-pINT-GA (Left Graph) and the 

pSRNA-murA Variant (Right Graph) At Two Different Time Points (T1 Blue, T2 Red). 

The dynamic phenylalanine data is interesting because it shows that almost all of the 

phenylalanine produced was during the exponential phase, especially in the case of the 

pINT-GA murA variant. Examining the pINT-GA strain without the sRNA plasmid in 

more depth, it appears that both ultimately reach the same final concentration of 

phenylalanine. They appear to make it at the same rate as well, though paying notice to 

the insignificantly higher phenylalanine near the 35 hour mark, which appears to be 

consumed by the cells. This suggests that the aTc had no effect on the production of 
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phenylalanine in the background pINT-GA strain; in the case of the pSRNA-murA 

variant, the effect of the aTc is interesting. It appears in the uninduced strain that some of 

the phenylalanine was reuptaken by the cells, before ultimately being regenerated, and 

the same may be said but less pronounced with regards to the set induced at the first time 

point. However, the pSRNA-murA variant induced at the second time point did not 

appear to reuptake any phenylalanine, though it did appear to make most of the 

phenylalanine during the exponential phase, as was the case observed across the board. 

While the dynamic phenylalanine production data suggests phenylalanine production is 

tied closely to growth. While it is possible to generate a higher titer of phenylalanine by 

picking the right time point, as observed in case 2 where the final concentration is higher 

than the uninduced strain, it also suggests that the timing is very sensitive, as the first 

case generated less phenylalanine. Furthermore, the fact that all of the pSRNA variants 

did not generate as much phenylalanine as the background pINT-GA strain, the results 

suggest using there are conflicts with using this plasmid-based system, as it was also 

observed that the pSRNA variants had a higher optical density.  

In environmental conditions with excess glucose, glucose may be directly converted to 

acetate; monitoring the production of acetate serves as a good indication for the ability of 

the cell to convert glucose into the desired product but also a good indication of stress on 

the cell. Seen in the figure below is the dynamic acetate production, 
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Figure 42: The Relationship between Acetate Production and Time After the Addition of 
Anhydrous Tetracycline to BW25113-pINT-GA (Left Graph) and the pSRNA-murA 

Variant (Right Graph). 

Looking at the dynamic acetate production above, it is clear that the pSRNA variants do 

not make nearly as much acetate as the background pINT-GA strain; this has potential to 

be beneficial as it may reroute the excess glucose into phenylalanine, but unfortunately as 

summarized best in the figures below it would appear that the excess glucose, rather than 

being converted towards acetate or phenylalanine, is used towards biomass synthesis, 
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Figure 43: The Final Phenylalanine Concentration (Top Left), Gram of Phenylalanine per 
Gram of Glucose (Top Right), Gram of Phenylalanine per Gram of Cell Mass (Bottom 
Left), and Gram of Cell Mass per Gram of Glucose (Bottom Right) for the BW25113 

pINT-GA and pSRNA-murA Variant.  

The figures seen above indicate that, in general, the plasmid-based pSRNA approach was 

ineffective, and actually counterproductive, when coupled with the plasmid-based 

approach to overexpress the genes responsible for phenylalanine synthesis. In terms of 

final titer, the pINT-GA strain lacking the plasmid based pSRNA system performed best, 

and it was found that the pINT-GA murA variant induced at the second time point was 

the second best. The first time point of induction actually made less than the uninduced 

pSRNA variant. These results indicate the timing is very sensitive in regards to 

decoupling the production from growth, but it is possible – though plasmid compatibility 

or a plasmid based approach may be problematic. Looking next at the grams of 

phenylalanine per grams of glucose, it is also seen that the pINT-GA strain lacking the 

pSRNA system performed best; this indicates that the either more of the glucose was 
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used to make phenylalanine, or the phenylalanine was more efficiently made. 

Nonetheless, the same trend in regards to the pSRNA system that was seen in the case of 

titer is also seen in the case of phenylalanine yield with respect to glucose, wherein the 

second time point of induction performed best and the first time point of induction 

performed worst.  Further In terms of yield of phenylalanine with respect to cell mass 

however, the first time point of induction was shown to be a bit better than the uninduced 

variant, indicating there is some sort of increased metabolic activity at this induction time 

for less cells to be able to make the same total concentration of phenylalanine. The grams 

of cell mass per grams of glucose provide more insight into how the glucose is being 

used; it is seen that the pINT-GA lacking the plasmid based system seems to exhaust 

significantly less glucose making cell mass then the uninduced pSRNA variant, 

indicating there is an increased flux towards biosynthesis in the double-plasmid system. 

Unfortunately, even though a relatively similar amount of glucose made a relatively 

similar amount of cell mass between the pINT-GA strain lacking the pSRNA system and 

the induced pSRNA variants, this did not scale to equal amounts of phenylalanine being 

produced. This indicates that in this plasmid based approach, while the sRNA does seem 

to increase relative efficiency, this system in particular puts a burden on the cell which 

makes it generate less phenylalanine than it would have if the plasmid were not present in 

the first place, and it is clear that it is losing glucose to some other mechanism aside from 

biomass synthesis that is not present in the strain that does not contain both the pINT-GA 

plasmid and the pSRNA plasmid.  

In conclusion, while there is an interference between the two plasmids used in this 

particular case it still appears as if the pSRNA approach is effective at increasing the flux 
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of nutrients towards the production of phenylalanine, even considering how closely to 

growth phenylalanine production is tied. This proof-of-concept opens the door to further 

insight regarding more efficient ways to implement the afsRNA system generated with 

the purpose of metabolic engineering in mind.  
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4. DISCUSSION 

4.1 Optical Density and Morphology Screening Discussion in BW25113 Strain  

In the first phase of the experiment, the coding sequence corresponding to the target 

binding site for each of the potential gene targets was placed in the seed region of the 

modular synthetic afsRNA scaffold, which was then placed on a plasmid with the 

anhydrous tetracycline promoter and the T1/TE terminator as well as streptomycin 

resistance; this was effectively transformed into the background strain BW25113 and the 

OD600 and morphology of the cells were screened in nutrient rich LB media and M9 

minimal media. Screening in LB before moving to M9 media warrants insight into 

nutrient deficiencies; a strain which grows in LB but not M9 may lack essential nutrients, 

whereas a strain that does not grow even in LB may be experiencing other problems. 

Nonetheless, a concentration of 0.5 μg of aTc per mL of culture was used in this study as 

it showed effective expression of the sRNA plasmid without affecting any metabolic 

functionality of the background strains that did not have the aTc inducible promoter; in 

another study using an aTc inducible promoter, aTc concentrations ranging from 1 to 10 

ng per mL of culture were shown effective, a concentration orders of magnitude less than 

what is used in this study.50 This implies that it may be possible to improve the affinity of 

aTc to bind with the promoter resulting in less aTc necessary; on an industrial scale this 

may result in significant cost reduction.  

Aside from the growth essential genes which were targeted, an additional sRNA plasmid 

which targets the lacZ gene found on the chromosome of MG1655 to further characterize 

the underlying mechanism regarding how the sRNA suppresses growth. This was a useful 

experiment because cells which express the lacZ gene may consume x-galactose and as a 
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result may turn blue, but also because lacZ is a gene known to be unassociated with 

growth.51 This experiment ultimately shows that the suppression of growth observed in 

other strains is likely a result of inhibited gene translation, as the MG1655 variant which 

expressed the lacZ gene without the lacZ sRNA plasmid did turn blue after being fed x-

galactose, as expected. Furthermore, the MG1655 variant expressing the lacZ gene and 

containing the lacZ sRNA plasmid without the addition of aTc also turned blue in the 

presence of x-galactose, also expected because the psRNA was not induced and therefore 

should not disrupt translation. However, adding anhydrous tetracycline (aTc) to this 

variant, resulting in the expression of the lacZ sRNA plasmid, resulted in less blue cells 

with a relatively unscathed growth profile indicating it was successful at targeting the 

gene lacZ which is essential for the blue phenotype while not otherwise affecting 

metabolic activity of the cells. .  

These results suggest that the addition of the aTc warrants expression of the lacZ sRNA 

plasmid, resulting in inhibition of only the lacZ gene expression with no observable effect 

on growth. This result concludes that the seed region in the sRNA plasmid must be 

responsible for the effects observed, considering the only factor changed amongst the 

various strains is the coding sequence in this region. This then suggests that the relatively 

different optical density differences may be a direct reflection of the efficacy in which the 

sRNA was able to suppress growth by inhibiting the transcription of potentially growth 

essential genes; this was assumed to be the case and the response of each gene in regards 

to growth suppression was used to make the decision regarding which targets to 

transform into the phenylalanine overproducer, pINT-GA. Making sense of the 
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responses, the pathways corresponding to the genes of interest and how this might relate 

to the results observed is discussed below.   

To supplement this discussion, it is interesting to note the coupled changes in 

morphology that simultaneously occurred with the activation of the sRNA plasmid; while 

the induced background strain and all of the uninduced pSRNA variants did not show 

much of a size difference relative to the uninduced background strain, all of the induced 

variants with the exception of fabI showed relatively large increases in cell size. It is also 

worth noting fabI did not show good growth suppression either indicating it may have 

been ineffective at targeting growth, but also indicating the mechanism of action does not 

result in filamentation. The data from this experiment, summarized in Figure 15, suggests 

there is no significant, straight-forward correlation between background increases in 

optical density as a result of filamentation, though not to say this is not present. 

Considering the differences in the relative cell size, and once more considering the only 

thing changing is the seed region of the sRNA scaffold, the target gene once more must 

be directly responsible for the observed effect on cell size. One interesting trend to note is 

the observation that suppression of growth lead to an increase in cell size relative to the 

uninduced variants when the pSRNA targeted growth essential genes; perhaps targeting 

essential genes at a mid-exponential time point can cause an increase in cell size to 

possibly increase nutrient flux, as the change in cell size was only seen in the induction of 

essential genes and not so much in the lacZ experiment. This suggests that the pSRNA 

does not affect the background optical density, when induced and not targeting growth 

essential genes.  
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For example, in the case of the genes fabB and fabH, it was found that inhibiting fabB did 

not have much of an effect on OD suppression while blocking fabH significantly 

suppressed the optical density, as summarized in Figure 9. This is particularly interesting 

because fabB has been shown to be growth essential and blocks a critical step in the 

overall fatty acid biosynthesis I pathway, while fabH has been shown to be non-essential 

for growth, but this was only shown in knock-out strains and not in a strain that 

dynamically suppresses gene expression.52 Nonetheless, consider the interaction between 

fabB and fabH in the synthesis of an acetoacetyl-(acp) from acetyl-CoA, as summarized 

in the figure below,53 

 

Figure 44: The Synthesis of an acetoacetyl-(acp) from acetyl-CoA in the Fatty Acid 
Biosynthesis Pathway Manifesting the Redundancy of the Presence of fabB and fabH.53 

In the figure above, blocking fabB still warrants the formation of an acetoacetyl-(acp) 

from acetyl CoA as a route involving the fabH gene exist, and the same may be said in 

regards to inhibiting fabH (though in the case of fabB, it blocks a step later down the line 
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which there are no alternate pathways in which to circumnavigate).52 However, one 

possible explanation for the data observed, where fabH was shown a more effective gene 

target than fabB in regards to growth suppression, may be due to the fact that blocking 

fabH makes the process much more energetically intensive to overcome than blocking 

fabB, relating back to the concept of kinetics versus thermodynamics that was discussed 

in the introduction.  

The synthesis of an acetoaetyl-(acp) from acetyl-CoA without the fabB gene, but with the 

fabH gene, results in the formation of two intermediates – malonyl-CoA and a malonyl-

(acp). The same synthesis, but now blocking the fabH gene and keeping the fabB gene 

requires the synthesis of four intermediates – malonyl-CoA, a malonyl-(acp), an acetyl-

(acp), and acetoacetyl-(acp) synthase – and in the case of fabB inhibition, a malonyl-(acp) 

may be directly converted to an acetoacetyl-(acp), ending the process a step early.52 

Therefore it is possible that the burden put on the cell by blocking the fabH gene renders 

fatty acid biosynthesis not possible, likely because not enough acetoacetyl-acp is ever 

formed to carry the process forward. Considering this behavior was not seen in the 

knock-out strains generated in literature, the presence of growth of the pSRNA-fabB 

variant coupled with the effective suppression of growth in the pSRNA-fabH variant may 

be a result of the fact that this is different from a knock-out in the sense that it occurred at 

an optical density of ~0.4 and gave the cells time to grow and form intermediates. The 

increased optical density, resulting in an increase cell concentration, may have enabled 

build-up of intermediates which enabled the fabB variant to sustain while the fabH 

variant was not.  
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In any case, while the pathway governing the synthesis of an acetoacetyl-(acp) from 

acetyl-CoA warrants possible insight into the dynamic functionality of fabB and fabH and 

the general behavior of growth essential genes with dynamically suppressed expression, 

the corresponding morphology changes also offer an interesting take on things.52 It may 

be observed that in both the case of pSRNA-fabB and pSRNA-fabH induction resulted in 

filamentation. Although growth was not suppressed with respect to fabB, it was 

suppressed to fabH; one possible reason for filamentation is that the cell increases its 

surface area to increase the nutrient flux to mitigate for the diminished gene activity. In 

the case of targeting fabB, it is possible that by increasing its size the cell was able to 

uptake enough nutrients to maintain viability; this is not to rule out the possibility that 

inherent activation of the pSRNA plasmid, when acting on a valid gene, results in a 

general background increase in size, though this was not the case in the pSRNA-lacZ 

analysis.  

To further investigate the relationship between fabB and fabH and the stability of the 

pSRNA system at targeting more than one gene, a combination double-sRNA-scaffold 

plasmid strain was constructed, targeting both fabB and fabH, and referred to as fabBH; 

the results of this strain were nearly identical to the results observed in fabH in regards to 

both optical density and morphology, indicating effective suppression of growth. 

Construction of this strain would ensure that the literature-proven growth essential fabB 

gene would be targeted in addition to the fabH gene which was shown to suppress 

growth. However, when constructing the phenylalanine overproducer only the plasmid 

containing the fabH gene target was transformed into the cell as three plasmids puts 

significantly more of a burden on the cell than two plasmids. This is a trade-off as it has 
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been verified in literature that fabB is essential for viability and fabH is not, but the 

results observed in this investigation are opposite.   

Further examining the behavior of growth suppression observed for each of the pSRNA 

variants grown in M9 minimal media, dnaE was seen to suppress growth effectively, 

reaching stationary phase at the same time as the uninduced background strain, with the 

uninduced dnaE showing a relatively similar size and optical density as the background 

strain. Compared to the bacteriostatic additives, the pSRNA-dnaE variant took much 

longer to take effect, and it also had a much higher degree of filamentation. This may be 

indicative that the plasmid put a stress on the cell, and perhaps the cell attempted to 

mitigate for the lack of essentiality by increasing nutrient flux; if this were the case it may 

be plausible the filamentation occurred during the lag between induction and stationary 

phase – the “pseudo-exponential” phase seen after induction – wherein the cell increases 

in size to “fight the plasmid” and remain viable, but ultimately fails. If this is the case it 

would suggest that a faster-acting system, one with a comparable speed to the 

bacteriostatic additives, may leave cell morphology unchanged. Nonetheless, the viability 

results make sense as dnaE has been shown to be a growth essential gene and appears to 

have been successfully targeted with the plasmid-based sRNA system.52 The same 

conclusions can be said in regards to fabD, fabI, folA, murA, rplD, rplP, and rpsE – these 

are all growth essential gene that were shown to suppress growth when induced in the 

mid-exponential phase and these all resulted in an increased size. It may be assumed that 

the mechanism of action by which growth was suppressed for the aforementioned 

candidates is a result of a lack of functionality due to the inhibited translation of the target 

gene, as all of their uninduced variants did not show a suppressed optical density.  
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In the case of the pSRNA-fabD variant, since growth was not observed it is likely that the 

sRNA blocked the translation of the fabD gene which ultimately blocked the formation of 

a malonyl-(acp) from a malonyl-CoA; this step, as seen in Figure 43 above is essential for 

the formation of an aetoacetyl-(acp) and cannot be circumnavigated.52 Nonetheless, 

further examining the results of the fabD optical density data shown in Figure 5 there is 

still a delay for the suppression to fully take effect, and filamentation seems to be just as 

drastic as gene targets which are not associated with fatty acid biosynthesis. Once more 

this indicates that improving the response of the system to make it suppress growth more 

rapidly after induction may mitigate these morphology changes. This is a hard judgement 

to make though, as the other fatty-acid biosynthesis gene explored, fabI, seemed to be 

relatively ineffective at inhibiting growth, but also experienced the least filamentation out 

of everything. The lack of filamentation suggests the cell may not have been under as 

much stress as in the case where other genes were inhibited, but the lack of rapid growth 

suppression indicates the sRNA approach was also not as effective in regards to this gene 

target. Considering fabI has been shown to be a growth-essential gene, more work should 

be done in regards to this gene target to further explore its efficacy in an sRNA-mediated 

approach if it is found that this would be an optimal gene to inhibit for reasons of 

conflicting pathways with other genes explored in this study.52 Whereas fabD is only 

involved in one reaction, fabI is involved in 15 known reactions within E. coli, so in both 

cases it is possible that the build-up of intermediates in the time before induction 

occurred resulted in a while for the growth to be suppressed as first these intermediates 

had to be exhausted.52  
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However, it is interesting to note that, in general, the genes associated with fatty acid 

biosynthesis still resulted in an increased cell size; while it is possible that targeting the 

genes associated with fatty acid biosynthesis may not result in an increase in cell size as 

there are critical components missing to form a cell wall, this behavior was not observed. 

This is another indication that the pSRNA system could use some improvements in 

regard to its efficacy; finding a way to make the sRNA suppress growth with less of a 

delay would be a great starting point. This being said, the plasmid-based sRNA system 

does not appear to be leaky, considering the uninduced strains still had a relatively 

unaffected cell size and optical density.  

The gene folA, which was shown to suppress growth when targeted with the afsRNA, is 

also only involved in one reaction – catalyzing the final step of the dihydrofolate 

reduction reaction wherein tetrahydrofolate is formed. Although folA has been shown to 

be a gene essential for viability, the gene folM has been shown to contain the same 

enzymatic activity as folA and may be one reason there was a delay in the time of 

induction to the time growth was suppressed.52 Nonetheless, all variants considered, folA 

was shown to be a relatively successful gene target as the uninduced variant had no 

practical lag and reached a stationary phase with the same OD as the background wild-

type BW25113 strain. murA was an interesting gene target as it was shown not to be 

essential for viability in a knock-out strain grown in LB media, but grown in a modified, 

minimal version of LB media it was shown essential for growth; this suggests that it may 

be a good target for practical applications wherein a seed may be grown in an enriched 

media without fear of unintended growth suppression before transferring to a more 

minimal media where growth suppression has been shown to occur.52 The results of the 
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optical density data show that, like many of the other sRNA-mediated gene targets, there 

is a delay in the time of induction relative to when growth is actually suppressed. The 

growth does appear to be suppressed though it is worth noting that relative to the 

bacteriostatic additives there is quite a delay after induction time for this to occur. The 

delay in the uninduced pSRNA-murA variant may be due to the streptomycin resistance, 

as a similar delay was observed in the bacteriostatic additive experiment where a plasmid 

only containing streptomycin resistance was screened. Nonetheless, there was a notable 

size increase in the pSRNA-murA variant which is interesting as the murA gene is 

essential in the formation of the peptidoglycan layer in cells; this suggests there might not 

be totally efficient repression of the gene in cells, allowing it to still be expressed to some 

degree, resulting in filamentation.52,53 Ultimately murA was a relatively effective gene 

target for growth suppression.  

The genes rplD, rplP, and rpsE also showed relatively good growth suppression, as 

mentioned above, and they all target protein synthesis in the cell. The gene rplD codes 

for a ribosomal subunit protein on the 50S ribosome, the L4 site; the gene rplP is also on 

the 50S ribosome, but the L16 site.53 On the other hand, the gene rpsE is on the 30S 

ribosomal site, and codes for the S5 subunit protein; these three genes all had relatively 

good growth suppression, but with notably high delays. Their morphology was quite 

interesting, as they experienced significant filamentation but no more than the genes 

which targeted fatty acid biosynthesis, which was left unrestricted in this approach, 

though targeting protein synthesis inherent affect fatty acid biosynthesis. The uninduced 

variants for these gene targets did not experience any significant filamentation relative to 
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the background strain indicating good control of plasmid expression for these gene 

targets as they also had a similar final OD.  

In addition to fabB, the genes fabG, folP, and rpsD did not show significant growth 

suppression though they are listed as essential for viability in minimal media; this could 

be due to a multitude of reasons such as the target binding sequence being less than 

optimal, the plasmid being unstable, the build-up of intermediates, or even an increase in 

size skewing the optical density data, which assumes spherical cells.53 The binding 

energy and nucleotide length of each sequence were designed according to experimental 

evidence that showed the most effective blocking of translation for the target gene, so it is 

unlikely changing this would have any effect, but ways to increase plasmid stability and 

activity as well as increase the response of induction could shed much more insight into 

the efficacy of the plasmid based system.41  

In summary, the plate reader experiment showed that some growth-essential genes were 

not effective targets for the pSRNA system, such as fabB; the results also showed an 

increase in the size across the board for all of the induced pSRNA variants, which may 

have further implications in the efficacy of the system. The uninduced pSRNA variants 

showed the same phenotypes as the background strain in regards to optical density and 

morphology, and induction of the background strain did not show any significant 

differences which makes sense because it does not contain the pSRNA system. In the 

case of the fabB gene in particular, associated pathways were considered and a fabH 

construct was generated which did result in growth suppression; the fabBH construct was 

generated as an attempt to make the approach work better. Potential reasons for the lack 
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of growth suppression for relevant, essential gene targets could be plasmid instability 

wherein the plasmid may not have a strong binding affinity or may not work consistently, 

intermediate build-up rendering the cells to continue functioning for a period of time after 

induction, or filamentation which may increase nutrient flux, enabling cells to remain 

viable. Though the scatterplot in Figure 15 suggests there was no significant contribution 

in the optical density as a result of the filamentation, integrating the pSRNA plasmid 

containing each gene target onto the chromosome or also targeting genes responsible for 

filamentation may shed more insight into why these were ineffective at suppressing 

growth relative to the other gene targets. Nonetheless the screening results indicate a 

functional system for the suppression of growth using the afsRNA on a plasmid based 

system in a minimal media, capable of targeting multiple genes as observed in the fabBH 

construct, and also having minimal effect when left uninduced.  

4.2 Bacteriostatic Additive Optical Density Screening Discussion in BW25113 Strains 

As noted, bacteriostatic additives were also explored in this investigation for their ability 

to suppress growth, as well as their effect on morphology, cell viability and metabolic 

activity. The bacteriostatics chloramphenicol (cmp), streptomycin (strep) and tetracycline 

(tet) were added to the background strain BW25113 in a well-plate experiment to first 

assess the effect on growth suppression and morphology. In addition to this, strains 

resistant to each of these bacteriostatic additives were also generated and tested in the 

well-plate experiment to gauge the effect of the plasmid on cell growth and morphology.  

The bacteriostatic chloramphenicol works by binding to the 23S RNA on the 50S subunit 

of the ribosome; the genes rplD and rplP also bind to the 50S subunit of the ribosome 
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though at different sites. In a sense, this bacteriostatic parallels the functionality of 

suppressing these genes. Tetracycline on the other hand binds to the 30S ribosomal site, 

paralleling the functionality of the genes rpsE and rpsD. Tetracycline also binds to the 

30S ribosomal site but targets a different subunit protein.  

In the case of the bacteriostatic additives, it was interesting to note that the streptomycin 

and chloramphenicol did not result in as much filamentation as the tetracycline. While the 

streptomycin appeared to have more filamentation than the chloramphenicol, the 

filamentation did not appear to be as homogenous throughout the sample as it did in the 

tetracycline and it did not appear to be as robust as in the pSRNA variants. Nonetheless, 

all three were effective at stopping growth in the cells and took action much faster than 

the pSRNA system. This sheds light that the delay in growth suppression in the pSRNA 

system is similar to the bacteriostatic system though, in the sense that perhaps both may 

be attributed to the filamentation wherein the cells may be trying to increase nutrient flux 

to counter the lack of essential gene function. Perhaps a higher degree of filamentation 

may be correlated with a longer pseudo-lag phase, though again looking at the scatterplot 

generated in Figure 23 it does not appear the filamentation has any effect on the 

background optical density data in either the strains with and without resistance to 

bacteriostatic additives. The filamentation still suggests that while the cells may be 

dividing, they may still be growing, which still results in nutrient flux being driven away 

from product synthesis. Nonetheless, the bacteriostatic resistant strains did not seem to 

show as much filamentation as the strains with the additives though the streptomycin 

resistant strain had a significant delay in growth which may be a contributing factor to the 

delay in growth observed in the pSRNA variants as they contain streptomycin resistance. 
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Investigating the bacteriostatic variants for further metabolic activity may shed light to 

their relative efficacy at decoupling growth from production.  

4.3 Viability and Metabolic Activity Screening Discussion in BW25113 Strains 

After the first phase of the study was completed, the optical density and morphology data 

was taken into consideration to select six gene candidates for further investigation in a 

scaled up, shaker flask environment to gauge the cell viability and metabolic activity 

again in BW25113. The six gene candidates, dnaE, fabD, fabH, folA, murA, and rplD, 

represent a diverse array of cellular functionalities associated with the growth process as 

discussed earlier, while also exhibiting efficient suppression of growth in the well plate 

environment. The gene dnaE is responsible in the catalysis of DNA polymerase activity; 

fabD and fabH are involved in cell wall synthesis, with fabD playing a similar role as 

fabB and fabH, as it is involved in the initiation step of fatty acid biosynthesis I as 

discussed above.53 The gene folA is responsible for DNA synthesis, particularly in 

catalyzing the reaction in the final step of the tetrahydrofolate synthesis pathway, and has 

been shown growth essential in knock-out strains; although not explored in this, the gene 

folM has been shown to catalyze the same reaction as folA but folM knockout studies 

have shown this gene is not growth essential.53 Similar to the fab-genes, murA also 

catalyzes cell wall biosynthesis, particularly the first step in the synthesis of the 

peptidoglycan layer in bacteria instead of fatty acid biosynthesis however.53 Finally, rplD 

is a ribosomal subunit protein, L4, and is involved with the synthesis of proteins.53  

Culturing the pSRNA variants containing the aforementioned gene targets in a flask 

environment and monitoring the succeeding viability and metabolic activity gave insight 
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into the redistribution of resources after cell growth was arrested; Figure 25 illustrates the 

dynamic optical density data after induction with aTc. In this figure it may be seen that 

the cells almost immediately suppress growth, with a faster response than observed in the 

well-plate experiment. Not only did the rise in optical density after induction seem 

smaller than it did in the well-plate experiment, the delay was also shorter indicating 

enhanced performance in the flask environment. Adding to this, the glucose was 

consumed in relatively the same amount of time for all of the variants, both induced and 

uninduced, indicating increased metabolic activity; the growth was suppressed for the full 

duration of the experiment – 70 hours. Figure 26 summarizes the specific glucose 

consumption rate relative to the uninduced background strain, a measure of the metabolic 

activity. Figure 26 contains a lot of information; the first thing to note is the unaffected 

specific glucose consumption rate associated with the induced background strain. In the 

first phase of the experiment it was shown that the concentration of anhydrous 

tetracycline used did not have any apparent effect on growth or morphology in the 

background strain, and the findings from this experiment indicate that the anhydrous 

tetracycline did not affect the metabolism of glucose in the background strain either; the 

cells also remained metabolically active as the induced pSRNA variants consumed more 

glucose per cell than the background strain and the uninduced variants; the increased 

metabolic activity seen with the induced pSRNA variants in the minimal media 

environment suggests that they would still be capable of generating phenylalanine after 

suppressing growth. While both the uninduced and induced variants consumed all the 

glucose, because there were less induced cells they had a higher metabolic activity.  
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These results suggest the plasmid based sRNA system is effective at decoupling growth 

from other metabolic processes in the cell, but to confirm the cells remained viable and 

still capable of generating phenylalanine, a viability assay was performed. Shown in 

Figure 27 and Figure 28, viable cells fluoresce green and non-viable cells fluoresce red; 

approximately 100% of the cells appeared to be viable. The few viable cells that were 

spotted amongst the samples were included and may be seen best in Panel 2I and 5I. The 

morphology did not appear to have an effect on the viability of the cells.  

To compare the metabolic activity of the bacteriostatic additives relative to the pSRNA 

system, in the same flask-environment chloramphenicol, streptomycin and tetracycline 

were added at an optical density of ~3.0, as seen in Figure 29. This figure illustrates that 

the bacteriostatic additives were effective at suppressing growth and acted just as fast as 

they did in the well-plate experiment, and just as fast as the pSRNA system did in the 

flask experiment. The growth suppression lasted the duration of the experiment, 80 hours, 

but it is interesting to note the amount of glucose consumed in either of the three cases 

was not as high as the background strain. This suggests that these bacteriostatics have an 

effect on the metabolic activity; considering these bacteriostatics all target 50S or 30S 

subunit of the ribosome, their metabolic activity may best be reflected by the pSRNA-

rplD variant which targets the L4 site of the 50S ribosome. In this variant, the specific 

glucose consumption rate as seen in Figure 26 was the lowest of all the induced pSRNA 

strains, though still higher than the background strain. Even taking this into 

consideration, the strains which received bacteriostatic additives still did not reach a 

specific glucose consumption rate that was as high. While this shows the bacteriostatics 

may be effective at suppressing growth, it shows there may be complications in 
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warranting the continuation of a bioproduct like phenylalanine which is closely tied to 

growth.  

To further investigate the influence of the pSRNA system on the metabolic activity of the 

cell, a fed-batch experiment was conducted wherein the pSRNA-murA variant was once 

more grown in a shaker flask environment, and a charge of nutrients, containing more 

glucose in particular, was added during the exponential phase. The nutrient charge was 

added during the exponential phase because there is an exogenous and endogenous 

accumulation of nucleobases when E. coli cells reach stationary phase that makes it 

unlikely for them to continue to consume nutrients and generate a substantial amount of 

product afterwards, so by targeting the exponential phase and then inducing the variants 

they may continue to consume nutrients while growth is stopped.54  

The dynamic optical density results of this experiment, seen in Figure 31, suggest that the 

cells are able to continue consuming the excess glucose in the fed batch environment. As 

shown before, this data also suggests the aTc has no effect on the metabolic activity of 

the background strain which does not contain the pSRNA system, and it also suggests 

that the pSRNA system has no effect on the metabolic activity of the cell when left 

uninduced. The resulting specific glucose consumption rates from this experiment are 

then summarized in Figure 32; the results suggest that the pSRNA-murA variant has a 

significantly higher glucose consumption rate, around 20% greater than the other strains. 

In the well plate experiment, the uninduced pSRNA-murA variant had a specific glucose 

consumption rate 10% greater than the background strain and the induced, 30%. These 

results are similar to the fed-batch experiment and support the observation that the 
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metabolic activity was not suppressed during the suppression of growth. A mor 

significant observation to note form this experiment, however, is the fact that the induced 

pSRNA-murA variant continued to consume all the glucose from the fed-batch 

experiment.  

4.4 Phenylalanine Production in BW25113 pINT-GA and pSRNA Variants Discussion 

In this final phase of the investigation, the efficacy of the pSRNA system towards 

decoupling growth from the production of phenylalanine, a product known to be tied 

closely to growth, is assessed.55 First the 6 gene targets which were further analyzed after 

the plate reader run, dnaE, fabD, fabH, folA, murA, and rplD were transformed into a 

BW25113 pINT-GA variant. As discussed in the Materials and Methods section, the 

pINT-GA variant produces phenylalanine because it has feedback resistant copies of the 

genes aroG and pheA overexpressed.  

In the plate reader experiment, well-plates were induced at an optical density of ~0.4 as 

before and the resulting dynamic optical density was measured. The results of the plate 

reader experiment were quite interesting and suggest there may be some plasmid 

interference occurring, as the combination of the two plasmids seems to result in worse 

efficiency than either single plasmid individually. Starting with the pINT-GA variant 

which lacks the pSRNA system, it appears as if the addition of aTc still had some effect 

on growth, resulting in a slightly depressed growth cycle after induction. While this effect 

was interesting on the optical density it appeared there was no significant effect in 

regards to cell morphology, suggesting this may not be a significant change in cell 

activity.  
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The pSRNA-dnaE variant appeared to have the worst growth suppression out of all those 

tested in the pINT-GA strain; in this strain it appears that induction resulted in a 

significant degree of activity related to growth suppression but it appears the cell was 

able to overcome these limitations and ultimately replicate, soon reaching a final density 

similar to the control strains. It is also worth noting that the induced dnaE variant 

contained highly elongated morphology that was consistent throughout, and this may be a 

contributing factor as to why there might be an increase in optical density, though the 

data from the murA variant, which also had surprisingly long morphology, suggests 

otherwise. Nonetheless, filamentation might suggest the cells are still directing this 

nutrient flux towards growth in the sense of increasing cell mass without cell division 

taking place. This is definitely an area of research which could shed more light regarding 

the underlying mechanisms of the system. The other gene targets all show relatively 

similar efficiency with regards to growth suppression with the exception of murA which 

appears to suppress growth the best. In the murA variant, the optical density appears to 

keep increasing steadily as it did with the other targets but the rate at which it increases is 

slower than all others suggesting it would not be able to reach the same cell density as the 

control strains, as nutrients may eventually limit this process and the cell may reach a 

point where it no longer may replicate. The morphology of the murA was interesting too; 

it appeared to have the second degree of filamentation, just behind the dnaE variant, but 

the optical density did not appear to increase as significantly suggesting filamentation 

may not have such a significant effect on optical density relative to the sheer number of 

cells, though it is likely a contributing factor to some degree.  
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Ultimately there were mixed morphology results that did not seem to have much of a 

correlation to the final optical density results though it is likely they did contribute to any 

background increases in optical density as summarized in the scatterplot generated in 

Figure 38. The significance of this interaction should be further investigated to more 

accurately gauge the cell mass in the culture, but taking this into consideration the results 

suggest it is possible that there is some interference between these two plasmids, with 

strains like dnaE showing worse growth suppression than it did in the BW25113 

background strain (seen in Figure 8). Testing the pSRNA system in a strain which has the 

genes to make phenylalanine on the chromosome, such as NST74, might shed more light 

into the efficacy of the growth suppression.  

For its efficient growth suppression and consistency from the first phase of the 

investigation, the BW25113 pINT-GA pSRNA-murA variant was chosen to run in a 

shaker-flask experiment wherein a metabolite analysis tracked the dynamic consumption 

of glucose as well as the production of acetate and phenylalanine. The results of the 

optical density from the shaker flak experiment may be seen in Figure 39 and suggest 

interesting phenomena.  

In the shaker flask experiment the first thing to note is that the uninduced pSRNA variant 

has a larger optical density than the background pINT-GA strain; in the plate-reader 

experiment the two strains essentially grew at the same rate. This suggests there may be 

an inherent increase in nutrient flux towards growth, where growth could be summarized 

by cell division and filamentation. In the case of the uninduced pSRNA variant where 

cell division is left uninhibited, the cells filament and also divide. The second thing to 
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note is that, while the aTc did not have any effect on the metabolic activity or cell 

viability of the background pINT-GA strain in the shaker-flask experiment, though it did 

appear to have an insignificant but present effect in the well-plate experiment, the aTc did 

seem to have an effect on the pSRNA-murA variant suggesting growth may have been 

decoupled from biomass synthesis. More interesting to note in the case of the pSRNA-

murA variant is not necessarily that the aTc had an effect on the growth, but that the two 

induction times ultimately resulted in the same final optical density. This suggests that 

the time of induction might not have as significant of an effect on the final optical density 

as one would have expected, but the implications of this on the phenylalanine production 

do not appear to have the same lack of sensitivity.  

Looking next at the pINT-GA and the pSRNA-murA variant in regards to glucose 

consumption in the uninduced and induced types, all of the strains appear to have 

consumed glucose in relatively the same amount of time suggesting that the pSRNA 

system does not appear to inhibit any metabolic activity even in the double-plasmid 

pINT-GA pSRNA system. This results in an inherently higher specific glucose 

consumption rate relative to the uninduced strains. While there is a lot of similarity 

amongst the strains, the phenylalanine production is a bit, most notably there is 

significantly less phenylalanine being produced in the pINT-GA pSRNA-murA variant 

than in the pINT-GA background variant. As shown in Figure 35, while there does appear 

to be a similarity in the sense that majority of the phenylalanine was made during the 

exponential growth phase with a bit of residual phenylalanine synthesized during 

stationary phase, further analysis reveals more interesting observations. In the pINT-GA 

background strain it seems as if not as much phenylalanine is generated during the 
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exponential phase as in the pSRNA-murA variants, capping out close to ~0.8 grams per 

liter versus ~1.0 grams per liter, but during stationary phase these cells seem much more 

active, effectively generating ~1.3 grams per liter versus the range of ~1.0 to ~0.8 grams 

per liter seen in the pSRNA-murA variant. In the pSRNA-murA variants, particularly the 

uninduced strain, there appears to be a depression in the phenylalanine concentration 

immediately after exponential phase where some of the phenylalanine appears to be 

reuptaken; while this appears to be regenerated near the end of the duration of the study it 

never reaches a level as high as the pSRNA-murA variant which was induced at the 

second time point, late in the exponential phase. The second time point of induction does 

not appear to experience any depression in phenylalanine concentration and continues to 

make a bit of phenylalanine for the duration of the study. Unfortunately the first time 

point of induction did not appear to be as good as either of the other two pSRNA-murA 

strains in regards to phenylalanine generation, not making any significant quantities of 

phenylalanine after the exponential phase. 

These results indicate that, while the pSRNA system was relatively effective at 

decoupling growth from the production of phenylalanine, it was not as effective as one 

might hope. Whereas in the optical density data the system seemed insensitive to 

induction point versus relative final cell density, as the two induction time points leveled 

off at the same final cell density, the results suggest the phenylalanine production is a bit 

more sensitive. By manipulating the time of induction to be just right, it was shown that 

the induced pSRNA variant beat the uninduced pSRNA variant, though it was not enough 

to out-perform the strain which lacked the pSRNA plasmid. Once more tightening the 
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degree to which filamentation occurs and making the pSRNA act faster after induction 

may be contributing factors to the room for improvement.  

Gauging the acetate production shed interesting observations as well; it was found that 

the presence of the pSRNA plasmid resulted in much less acetate production across the 

board relative to the pINT-GA strain without the pSRNA plasmid. As was the case with 

the phenylalanine production, much of the production of acetate was made during the 

exponential phase, but in both cases any acetate was reuptaken during the stationary 

phase. Coupling this with the results from the optical density and glucose consumption 

data suggests interesting possibilities. It may be possible that the acetate generated during 

the exponential phase in the pINT-GA strain, when reuptaken during the stationary phase, 

was responsible for the increase in phenylalanine which was observed; this increase 

during the stationary phase was not seen in the pSRNA variants, and the pSRNA variants 

also did not generate nearly as much acetate. As acetate is generated when glucose is 

being consumed too fast, this also supports the suggestion that the two-plasmid system 

may result in an interference which puts a burden on the cell which requires it to 

inherently consume more glucose to remain viable, leaving less for the production of both 

acetate and ultimately phenylalanine, though this is an interesting proposition because 

acetate is associated with suppressed cell growth.55 While acetate is generally used as an 

indication that the cell is under stress, consuming glucose too fast, in this case it might be 

desirable to see a build-up of acetate in the pINT-GA pSRNA variants as it might 

indicate there is free glucose which may be converted to a useful product; the degree of 

acetate production and if there is any correlation to the final titer of phenylalanine should 

be explored in more depth.  
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Nonetheless, the final metrics to gauge the performance of the pINT-GA strain with the 

pSRNA system may be summarized in Figure 42; seen in this figure, four metrics are 

generated – the final phenylalanine concentration, the grams of phenylalanine produced 

per grams of glucose consumed, the grams of phenylalanine produced per mass of cells, 

and the grams of cell mass produced per gram of glucose consumed. Ideally, decoupling 

growth from production would result in increases in grams of phenylalanine per grams of 

glucose and per grams of cell mass as well as a decrease in the amount of cell mass per 

grams of glucose. While there is a trend that suggests this may be occurring to some 

degree, it is only seen with respect to the second time point of induction and the increases 

do not succeed those of the pINT-GA strain lacking the pSRNA system entirely.  

In all metrics, the pINT-GA strain lacking the pSRNA system performs best – it makes 

the most phenylalanine, per gram of glucose and cell mass, and makes the lowest amount 

of cell mass per gram of glucose as well. It is worth noting that with respect to the grams 

of cell mass per grams of glucose, the two induced pSRNA variants are equivalent, and 

looking at the uninduced pSRNA strain it is apparent the pSRNA system is effective at 

decoupling growth, though it is also apparent it inherently directs more resources towards 

growth, which is likely a combination of filamentation and cell division. Nonetheless, 

there is not much of an observable difference in the grams of cell mass per grams of 

glucose with respect to the two induction times, a reflection of the optical density data 

showing they leveled out at the same cell density, which shows the sensitivity to 

induction may be a target for further investigation. With respect to the total amount of 

phenylalanine produced, it does not appear that the aTc has an effect on the strain which 

lacks the pSRNA system as one might expect. Though the strain lacking the pSRNA 
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system did generate more phenylalanine, again it appears that the pSRNA system was 

relatively efficient at directing nutrient flux away from growth and towards production of 

phenylalanine. Compared to the control, making ~10% more phenylalanine (1 gram per 

liter versus 0.9 gram per liter), even considering it had a suppressed OD600 (6.5 versus 

8.7). Ultimately this suggests there is more work that needs to be done in regards to 

upping the total phenylalanine generated. The grams of phenylalanine produced per 

grams of glucose, and grams of phenylalanine per grams of cell mass are again highest in 

the second induction time amongst the pSRNA-murA variants, suggesting that the system 

was efficient to some degree at decoupling growth from production, but it was not 

enough to offset the apparent interaction between the two plasmids which resulted in 

inherently less phenylalanine being generated. While the first time point of induction 

produced more phenylalanine per cell mass, when normalized to the amount of glucose it 

did not outperform the uninduced strain. This suggests that the timing of induction has a 

large influence on decoupling the growth from production – likely a reflection of the 

observation that the first time point of induction did not result in a lower cell density than 

the second time point of induction.  

Ultimately while the system was shown to be relatively effective at accomplishing the 

tricky feat of decoupling biomass synthesis from the production of phenylalanine, this 

investigation opens a lot of potential for improvements, such as focusing on increasing 

the performance and efficacy of the system, selecting other interesting biological systems 

to metabolically engineer using the pSRNA approach, and investigating other 

bioproducts which may benefit from this approach.  
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5. CONCLUSIONS 

5.1 Summary of Observations  

In conclusion, it was ultimately found that the plasmid-based afsRNA system was 

effective at inhibiting growth by blocking the translation of growth-essential genes, with 

different degrees of growth suppression and interesting morphology changes associated 

with each gene target; the system was also found to be relatively effective at redirecting 

nutrient flux towards the production of phenylalanine when targeting the gene murA. 

Cells remained more metabolically active than a comparison done with bacteriostatic 

additives, with a higher specific glucose consumption rate, but had a higher degree of 

fillamentation growth took longer to suppress in the well-plate experiment. While the 

resulting efficiencies may be an indication regarding the relative essentiality of each gene 

target, it may also be a reflection of the efficacy of the afsRNA approach. Nonetheless, 

the system was shown capable of targeting more than one gene at once, as it was 

demonstrated that two afsRNA scaffolds could be combined on the same plasmid without 

affecting efficiency of either (the fabBH construct performed as well as the fabB and 

fabH did, individually), and the system was shown to remain metabolically active in a 

fed-batch environment. It was also shown the pSRNA-murA plasmid was able to be co-

transformed with the pINT-GA plasmid, though in this case it is worth noting a bit of 

interference was observed which resulted in a diminished background performance. 

Although filamentation associated with the pSRNA variants was consistently observed 

across the board with some gene targets resulting in higher degrees of morphology 

changes than others, the double-plasmid pINT-GA pSRNA variants had the highest 

degree of fillamentation, suggesting this is a suitable area for further investigation.  
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Furthermore, in the strain where the plasmid pINT-GA was co-transformed with the 

pSRNA plasmid, the results showed the system was working but there was much room 

for improvement. While significant increases in both final titer and specific yields of 

phenylalanine were observed in the variant that was induced at the second time point, 

relative to the uninduced double-plasmid variant and the one induced at the first time 

point, these increases in efficiency did not outweigh the single-plasmid pINT-GA strain 

where the pSRNA plasmid was not present. There appeared to be a general background 

increase in nutrient flux away from phenylalanine production and towards growth in the 

strain which the pSRNA was not induced, relative to the strain without the pSRNA.  

Ultimately the system constructed was shown to work moderately well, addressing the 

tricky problem of decoupling biomass synthesis from growth; further improvements on 

this system may make it a formidable tool to use on an industrial scale as it is versatile 

and not limited to targeting one particular cell mechanism or one particular product 

pathway but rather may be used in a plethora of applications related to metabolic 

engineering considering there are still many improvements to be made.   

5.2 Suggestions and Future Aims  

Future research related to this project may extend in many directions with a lot of 

possible depth; in general, the most interesting candidates for future research may be the 

filamentation (particularly of the induced cells), the time it takes after induction for 

growth to stop, the effect of induction time, the relationship between acetate production 

and performance of the system, exploration of gene targets related to other aspects of 
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cellular processes that may be coupled with current candidates from this paper, and 

applications in different strains to name a few.  

The relationship filamentation has with many factors in this investigation is quite 

interesting; first, accounting for the filamentation to achieve more accurate cell density 

measurements may shed more light into the efficacy of the system, though the results 

from the pINT-GA plate reader experiment indicate this probably did not play as 

significant of a role as expected. This may require a calibration curve relating optical 

density to dry cell mass, for various degrees of fillamentation. Second, targeting genes 

associated with filamentation and coupling this with the growth-essential genes may 

increase the efficacy of the system and would be especially interesting to observe in the 

pINT-GA pSRNA double-plasmid scenario. It would also be interesting to explore other 

strategies at suppressing filamentation of the cells, in addition to suppressing cell division 

– such strategies may involve a synthetic oscillator switch, which may cycle the 

expression of the pSRNA plasmid so as to block growth essential genes long enough to 

prevent increases in cell density, but short enough to prevent the cell from filamenting.56 

Seeing if there is any relationship between the delay between induction time and growth 

suppression, and the final degree of filamentation might also be interesting, as well as 

acetate production and final degree of filamentation would be interesting a well – 

ultimately, characterizing the effect of filamentation on the overall performance of the 

system would shed a lot of light into the underlying mechanism of the plasmid-based 

afsRNA approach. Somewhat related to the degree of filamentation, it would also be 

interesting to further explore the effect of various induction times during the exponential 
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phase as the system did not have a sensitive response to this in regards to growth 

suppression but did appear to have a sensitive response to this in regards to phenylalanine 

production.  

Branching off of this, integrating the sRNA plasmid on chromosome may show cleaner 

results across the board as well. Furthermore, because the strain used to make 

phenylalanine was also plasmid-based, testing the pSRNA system in a strain like NST74 

in which the genes to make phenylalanine are on the chromosome would be an interesting 

comparison, as would the efficacy of bacteriostatics at making phenylalanine as it was 

found they are not as efficient at keeping metabolic activity unscathed. Other products 

would also be interesting to investigate in conjunction with the sRNA, even in other 

scenarios for example in which it may not be used to necessarily target growth essential 

genes but perhaps a step branching off to a competing pathway which could result in the 

build-up of a rate limiting intermediate product, in turn increasing the titer and yield of a 

desired pathway. Ultimately, the plasmid based sRNA approach was found to show a lot 

of potential, but like anything interesting the possibilities for further investigation are 

nearly endless; addressing some of the questions raised in this section may make this a 

formidable technique to be used on an industrial scale, as it may retrofit completely with 

existing technologies.  
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APPENDIX A  

sRNA NUCLEOTIDE SEQUENCE USED IN CONSTRUCTION OF PLASMID 
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TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACCTA
GGATGCTTAACCAGCTCGATAACCTGTTTCTGTTGGGCCATTGCATTGCCAC
TGATTTTCCAACATATAAAAAGACAAGCCCGAACAGTCGTCCGGGCTTTTTTT
CTCGAGCTCGAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT
GGGCCTTTCGTTTTATCTGTTTTTGTCGGTGAACGCTCTCTACTAGAGTCACAC
TGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA 

Figure 45: The Nucleotide Sequence Used to Construct the Modular Synthetic sRNA 
showing the Anhydrous Tetracycline Promoter Sequence (Italics), the Target Binding 

Sequence (Bold), the MicC sRNA Scaffold Sequence (Underlined), and the T1/TE 
Terminator Sequence (Normal). 
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APPENDIX B  

NUCLEOTIDE TARGET BINDING SEQUENCES OF THE SEED REGIONS USED 

IN afsRNA
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Table 4: Coding and Target Binding Sequences as well as Binding Energies for the 
Different Candidate Gene Targets 

nt   
sRNA 
gene 
targets 

Coding sequence (5' 
 3')   Target-binding 

sequence (5' -> 3')   
Binding 
energy 
(kcal/mol) 

23   dnaE   ATG TCT GAA CCA 
CGT TTC GTA CA 

TGT ACG AAA CGT 
GGT TCA GAC AT -38.7 

23   fabB   ATG AAA CGT GCA 
GTG ATT ACT GG 

CCA GTA ATC ACT 
GCA CGT TTC AT -38 

24   fabD   ATG ACG CAA TTT 
GCA TTT GTG TTC 

GAA CAC AAA TGC 
AAA TTG CGT CAT  -37.4 

24   fabG   ATG AAT TTT GAA 
GGA AAA ATC GCA 

TGC GAT TTT TCC 
TTC AAA ATT CAT  -34.1 

26   fabH   
ATG TAT ACG AAG 
ATT ATT GGT ACT 
GG 

CC AGT ACC AAT 
AAT CTT CGT ATA 
CAT  

-39.2 

23   fabI   ATG GGT TTT CTT 
TCC GGT AAG CG 

CGC TTA CCG GAA 
AGA AAA CCC AT -39 

20   folA   
ATG CGG CGA 
GTC CAG GGA 
GA 

  
TC TCC CTG 
GAC TCG CCG 
CAT  

  -41.9 

23   folD   ATG GCA GCA AAG 
ATT ATT GAC GG 

CCG TCA ATA ATC 
TTT GCT GCC AT -38 

23   folP   GTG CTC CGG GGT 
TTT TTC TTA TC 

GAT AAG AAA AAA 
CCC CGG AGC AC -39.4 

26  lacZ  
ATG ACC ATG ATT 
ACG GAT TCA CTG 
GC 

GC CAG TGA ATC 
CGT AAT CAT GGT 
CAT 

-34.8 

24   murA   ATG GAT AAA TTT 
CGT GTT CAG GGG 

CCC CTG AAC ACG 
AAA TTT ATC CAT  -38.9 

24   rplD   ATG GAA TTA GTA 
TTG AAA GAC GCG 

CGC GTC TTT CAA 
TAC TAA TTC CAT  -36.5 

24   rplP   ATG TTA CAA CCA 
AAG CGT ACA AAA  

TTT TGT ACG CTT 
TGG TTG TAA CAT  -35.8 

24   rpsD   ATG GCA AGA TAT 
TTG GGT CCT AAG 

CTT AGG ACC CAA 
ATA TCT TGC CAT  -39.5 

23   rpsE   ATG GCT CAC ATC 
GAA AAA CAA GC 

GCT TGT TTT TCG 
ATG TGA GCC AT -38.4 
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APPENDIX C 

LIST OF STRAINS AND VARIANTS USED IN THIS STUDY 
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Table 5: List of All Strain Names and a Description; 1DH5-alpha was sourced from 
ThermoFisher, 2BW25113 was sourced from CGSC, 3NST74 and ZM4 were sourced 

from ATCC, and all else from This Study 

Strains Description 

E. coli DH5-alpha1 
dlacZ Delta M15 Delta(lacZYA-argF) U169 recA1 endA1 hsdR17(rK-mK+) 
supE44 thi-1 gyrA96 relA1 

E. coli BW251132 
F-, DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-
rhaB)568, hsdR514 

E. coli NST743 aroH367, tyrR366, tna-2, lacY5, aroF394(fbr), malT384, pheA101(fbr), 
pheO352, aroG397(fbr) 

Z. mobilis ZM43 See References44 

E. coli MG1655 K-12 F– λ– ilvG– rfb-50 rph-1 

MG1655-lacZ E. coli MG1655 pSRNA-lacZ 
BW-cmp E. coli BW25113 pACYC-DUET 
BW-strep E. coli BW25113 pCDF-DUET 
BW-tet E. coli BW25113 pRK415 
BW-dnaE E. coli BW25113 pSRNA-dnaE 
BW-fabB E. coli BW25113 pSRNA-fabB 
BW-fabBH E. coli BW25113 pSRNA-fabBH 
BW-fabD E. coli BW25113 pSRNA-fabD 
BW-fabG E. coli BW25113 pSRNA-fabG 
BW-fabH E. coli BW25113 pSRNA-fabH 
BW-fabI E. coli BW25113 pSRNA-fabI 
BW-folA E. coli BW25113 pSRNA-folA 
BW-folD E. coli BW25113 pSRNA-folD 
BW-folP E. coli BW25113 pSRNA-folP 
BW-murA E. coli BW25113 pSRNA-murA 
BW-rplD E. coli BW25113 pSRNA-rplD 
BW-rplP E. coli BW25113 pSRNA-rplP 
BW-rpsD E. coli BW25113 pSRNA-rpsD 
BW-rpsE E. coli BW25113 pSRNA-rpsE 
pINT-GA E. coli BW25113 pINT-GA 
pINT-GA dnaE E. coli BW25113 pINT-GA pSRNA-dnaE 
pINT-GA fabD E. coli BW25113 pINT-GA pSRNA-fabD 
pINT-GA fabH E. coli BW25113 pINT-GA pSRNA-fabH 
pINT-GA folA E. coli BW25113 pINT-GA pSRNA-folA 
pINT-GA murA E. coli BW25113 pINT-GA pSRNA-murA 
pINT-GA rplD  E. coli BW25113 pINT-GA pSRNA-rplD 
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APPENDIX D 

ASSORTED MEDIA RECIPES 
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Miller’s LB contains 10 grams of tryptone, 5 grams of yeast extract, and 10 grams of 

sodium chloride per liter of solution; the Miller’s LB powder used in this study is pre-

formulated (Growcells).  

To generate a 50 milliliter shake flask of M9 minimal media, 100 microliters of 1M 

MgSO4 (Caroline Biological Supply Co.), 5 microliters of CaCl2 (Sigma Aldrich), 10 

milliliters of 5X M9 salts, 5 milliliters of 20% (w/v) glucose (Sigma Aldrich), and 35 

milliliters of deionized water. The 5X M9 salts are comprised of 64 grams of Na2HPO4 

(Santa Cruz), 15 grams of KH2PO4 (G Biosciences), 2.5 grams of NaCl (Sigma Aldrich), 

and 5 grams of NH4Cl (MP Biochemicals).  

M9M was comprised of 11.33 grams of Na2HPO4 heptahydrate, 3 grams of KH2PO4, 0.5 

grams of NaCl, 2 grams of NH2Cl for half a liter of a stock solution. To generate a 50 

milliliter flask, 25 milliliters of this solution were mixed with 20 milliliters of water, 5 

milliliters of 20% (w/v) glucose, 50 microliters of MgSO4 and 5 microliters of CaCl2.  
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APPENDIX E 

POST-PROCESSING METHODOLOGY FOR AUTOMATIC CELL SIZE 

DISTRIBUTION 
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As a demonstration of the post processing method used to determine the relativistic cell 

sizes, consider starting with the images below, which display the morphology of 

BW25113 pSRNA-folA when uninduced and induced,  

 

Figure 46: Microscopy Images of BW-folA Without the Addition of aTc (Left) and With 
the Addition of aTc (Right) 

Opening these images in the ImageJ program, a threshold may be applied to effectively 

convert them to black and white. From this point it is a bit clearer that the induced cells 

have a larger morphology, but hard to quantify, especially with background noise,  

 

Figure 47: Microscopy Images of BW-folA Without the Addition of aTc (Left) and With 
the Addition of aTc (Right) after a Threshold is Applied 

The images may then be duplicated, where a Gaussian blur filter may be applied to 

smooth out background noise and artifacts in the image. The original image with the 
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threshold applied may once more be subtracted from the Gaussian blurred image to 

reveal an image with less background noise. Applying a threshold on this image once 

more reduces the amount of noise present in the image.  

 

Figure 48: Microscopy Images of BW-folA Without the Addition of aTc (Left) and With 
the Addition of aTc (Right) after applying a Gaussian Blur, Subtracting this from the 

Original, and Once more applying a Threshold 

Finally, using the particle analysis tool built into ImageJ, clean results may be obtained 

for average particle size distribution,  

 

Figure 49: Results from the Particle Size Distribution Analysis Using ImageJ 

Results from this analysis in particular showed the induced cells were 2.18 times larger 

than the uninduced cells.  
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APPENDIX F 

SELECTED PLATE READER OD600 DATA FOR BW25113 AND STRAIN 

VARIANTS IN LB 
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Figure 50: Data Showing the Relationship between Optical Density and Time for Various 
Strains in LB, Induced with 0.5 Microliters of Anhydrous Tetracycline (aTc) per 

Milliliter of Culture, Relative to the Background Strain BW25113 without aTc and the 
Respective Uninduced Strain Variant. (Top Left, BW25113, no sRNA plasmid, with aTc; 

Top Right, BW-dnaE; Bottom Left, BW-fabB; Bottom Right, BW-fabBH). 

 

Figure 51: Data Showing the Relationship between Optical Density and Time for Various 
Strains in LB, Induced with 0.5 Microliters of Anhydrous Tetracycline (aTc) per 

Milliliter of Culture, Relative to the Background Strain BW25113 without aTc and the 
Respective Uninduced Strain Variant. (Top Left, BW-fabD; Top Right, BW-fabG; 

Bottom Left, BW-fabH; Bottom Right, BW-fabI). 
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Figure 52: Data Showing the Relationship between Optical Density and Time for Various 
Strains in LB, Induced with 0.5 Microliters of Anhydrous Tetracycline (aTc) per 

Milliliter of Culture, Relative to the Background Strain BW25113 without aTc and the 
Respective Uninduced Strain Variant. (Top Left, BW-folA; Top Right, BW-folD; Bottom 

Left, BW-folP; Bottom Right, BW-murA). 

 

Figure 53: Data Showing the Relationship between Optical Density and Time for Various 
Strains in LB, Induced with 0.5 Microliters of Anhydrous Tetracycline (aTc) per 

Milliliter of Culture, Relative to the Background Strain BW25113 without aTc and the 
Respective Uninduced Strain Variant. (Top Left, BW-rplD; Top Right, BW-rplP; Bottom 

Left, BW-rpsD; Bottom Right, BW-rpsE. 
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