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ABSTRACT  
   
Concurrency bugs are one of the most notorious software bugs and are very difficult to manifest. 

Significant work has been done on detection of atomicity violations bugs for high performance 

systems but there is not much work related to detect these bugs for embedded systems. Although 

criteria to claim existence of bugs remains same, approach changes a bit for embedded systems. 

The main focus of this research is to develop a systemic methodology to address the issue from 

embedded systems perspective. A framework is developed which predicts the access interleaving 

patterns that may violate atomicity using memory references of shared variables and provides 

support to force and analyze these schedules for any output change, system fault or change in 

execution path. 
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CHAPTER 1 

INTRODUCTION 

Concurrency bugs in multi-threaded software are among the most difficult to handle. They are 

difficult to manifest as they require specific interleaving to get triggered. The consequences of this 

kind of bugs are events like Northeast Blackout and NASDAQ glitch. Reliability in real time 

embedded systems is the most important thing. A glitch in auto-pilot system is not affordable. 

Programmer may fail to foresee any particular interleaving due to huge number of possible thread 

interleaving. The unexpected system resets of Mars pathfinder were result of failure to notice one 

such possible interleaving while testing. Hence, proper testing methodology for manifestation of 

concurrency bugs in multi-threaded software becomes one of the most important aspect of 

development process. The stress testing for a large multi-threaded program may take days to 

execute application with all possible interleaving patterns. Hence, fast testing method which can 

predict the access interleaving pattern that can manifest a particular concurrency bug using the 

properties of that bug is necessary. 

Serializability or Atomicity guarantees non-interference from other threads while executing a block 

of code. This means other threads cannot access or change shared data while a single thread is 

inside atomic block working on shared data. A programmer uses synchronization locks to make a 

block of code atomic. But sometimes due to improper use of locks or due to abstraction programmer 

does not get expected atomicity. As shown in Figure 1(a), the programmer intends to read available 

data from buffer on the basis of Available_Buffer_Size. Read and write of Available_Buffer_Size 

variable should have been atomic. If programmer uses locks as shown in figure 1(a) and (b), then 

interleaving shown in figure 1(a) will execute properly, but the interleaving shown in figure 1(b) is a 

clear atomicity violation as value of Read_Length used by Read_Buffer_Data() in thread 1 is a stale 

value of Available_Buffer_Size. These type of programming errors may lead to program crash, 

invalid output generation or change in execution flow of thread. Concurrency bugs characteristic 

study [1] shows atomicity violation bugs are one of most common bugs apart from data race and 
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Figure 1(a): Code example with 
interleaving giving no error 

deadlock bugs. The example shown in Figure 1 is very simple but due to abstraction of functions 

or methods it really becomes difficult for programmer to guess.  

 

 

 

 

 

 

 

A framework is constructed using systematic approach to expose atomicity violation bugs in 

software for embedded systems. Following are the contributions made by this approach. 

1) Although, there are many framework available to expose these bugs, the framework 

developed tries to address issue from embedded system’s perspective. Execution replay 

mechanism is adopted which records synchronization events with minimum perturbation 

during test run of application and then use profiling tool to record memory references in 

replayed run. 

2) The framework provides heuristics based on code semantics using which programmer can 

filter out significant number of predicted access interleaving patterns that can violate 

atomicity. 

3) The framework provides a forced execution of each predicted access interleaving pattern 

which enforces the pattern. This is helpful in analyzing the impact of atomicity violation in 

terms of output or execution path change. 

 

Figure 1(b): Code example with 
interleaving giving error 
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CHAPTER 2 

RELATED WORK 

CHESS [8] provides an efficient stress testing for a multi-threaded software. The framework records 

synchronization events using wrappers and generates a Happen-Before graph. On the basis of this 

graph all possible interleaving patterns are tested. The number of possible interleaving is still 

relatively very high and takes huge amount of time to cover all cases. 

AtomFuzzer [11] checks two consecutive access of shared variables for specific access pattern of 

shared variable in same thread and halts thread execution before second access to check if any 

other thread accesses the shared variable. The method is simple and efficient but bug is only 

detected when it manifests for a particular interleaving during test runs. 

Another run time bug detection mechanism is explained by Ruirui, Erik and Edward in [10]. The 

work introduces concept of Order sensitive critical sections which is defined as pair of critical 

section that can lead to non-deterministic shared memory state depending on the order in which 

they execute [10]. It also keeps track of restrictions from all synchronization operations by checking 

if there is any direct or indirect strong ordering between two critical sections. For e.g. if there is 

barrier event between two critical section then one of the critical section has to happen before 

another. 

Recently, good work has been done to expose violation bugs using predictive approach. In this 

approach, schedules are predicted using memory references of shared variable and scheduling 

patterns of threads during test run. Liqiang and Scott in their work [12] explains different methods 

which uses predictive approach to detect atomicity violations. It presents two types of methods. 

The first one uses Lipton’s reduction theory and the other one uses a Block based algorithm. 

Atomizer [9] predicts atomicity violations using Lipton’s theory of reduction. The block based 

algorithm determines whether atomicity violation is possible in memory trace obtained in observed 

run by permuting the order of events consistent with the synchronization events. AVIO [4], SVD [5], 

Atom Traccker [6], CTrigger [3], PENELOPE [2] and approach taken in this work use block based 

algorithm approach to predict access interleaving patterns that can violate atomicity. The work can 

be further classified into two groups.  



  4 

The first group infers all the information related to interleaving patterns and shared variable 

automatically from correct test runs and on the basis of this information schedules are predicted. 

AVIO [4], SVD [5] and AtomTracker [6] are the frameworks developed using this approach. These 

techniques infers atomic regions in threads on the basis of memory access and learns access 

interleaving pattern that programmer expects. The approach does not require any annotation by 

programmer. But there are few things to consider. The first one is classification of test run as 

"correct" run. The prediction algorithm is trained on the basis of test runs. As a result, there may be 

a huge number of false positives. Although, the process of inferring information is done offline, the 

prediction of schedules is more complex and computationally intensive. These techniques also 

constraints the atomic regions by certain factors like number of variable that are accessed and 

number instructions that they can execute per atomic region. 

The second group requires programmers to annotate information like synchronization events and 

shared variables. PENELOPE [2], CTrigger [3] and research in this thesis falls in this category. In 

this approach, events and references are observed in a single test run. Based on memory 

references of shared variables and events like barrier, semaphores, mutex and thread/create join, 

possible interleaving patterns that can violate atomicity are predicted. The difference among these 

processes is the efficiency and implementation of prediction algorithm.   

PENELOPE [2] generates schedules using locksets and acquisition histories. But the assumption 

of the algorithm that threads uses only locks to interact limits its practical use. CTrigger [3] stepwise 

generates a list of unserializable interleaving patterns. In first step, it generates a list of all 

interleaving patterns that can violate atomicity. In subsequent steps, the interleaving patterns are 

filtered to possible interleaving patterns using the ordering of synchronization events. Moreover, it 

can replay each pattern. 

The false positives are generated by methods of both groups because the intention of programmer 

cannot be predicted accurately. Hence, this approach gives programmer a set of interleaving 

patterns which framework thinks can violate atomicity. But the number of interleaving patterns is 

still relatively higher and it becomes difficult for programmer to go through each pattern. There may 

be some true atomicity violations in the program but it may produce nothing that concerns 
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programmer. ConMem [7] further filters the interleaving patterns on the basis severity of bug. It 

gives the patterns which can crash the program. CTrigger [3] can replay all interleaving pattern but 

does not provide enough support for analysis of these patterns. 

When we look from embedded system’s perspective it is very important to have an unperturbed 

execution to record correct behavior of program. Hence, a recorder with minimum overhead is a 

prime necessity for recording events. Binary Instrumentation for collecting trace during test runs 

and has significant overhead and may not give unperturbed execution of embedded software. Due 

to uncertainty of events in embedded systems, prediction on the basis of some test runs is not 

accurate.  

Chess [8] and Replay Debugger [15] uses wrapper methodology to record synchronization events 

and the later one even records inputs with minimum overhead. Both frameworks generates happen 

before relationship graph of events. Replay Debugger [15] also shows that both parallel program 

execution can be replayed on the basis of happen before relationship of synchronization events. A 

systemic approach to address the issue using execution replay of embedded software is very well 

explained by Yong Song in [16]. The same approach has been taken to expose atomicity violations 

in multithreaded embedded software. 

Along with prediction and enforcement of access interleaving patterns, the framework also 

compares execution path of different runs with original run. PIN Play [21] framework provides 

record and deterministic replay of multi-threaded software along with record of execution trace. The 

mechanism to reduce trace size using branch predictors is very well discussed in [19], [20] and 

[21]. 
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CHAPTER 3 

ATOMICITY VIOLATION BUGS 

Atomicity or Serializability, is a property for several concurrently executed actions, when their data 

manipulation effect is equivalent to that of serial execution of them [4]. There are many cases as 

discussed in earlier section where programmer expects atomicity but due to improper use of locks 

or too much of abstraction, the expected atomicity is not maintained. It should be noted that there 

is no data race (i.e. accesses to shared variable are atomic) but consecutive accesses that should 

have been in same atomic region or should have been made atomic using same lock event causes 

atomicity violation. In most of the cases, abstraction is the culprit in which programmer uses two 

different functions in same thread which accesses a shared variable using internal locks not known 

to programmer due to abstraction. As a result, there is a possibility of some remote thread 

accessing the variable in between these two functions. In this case, either the remote thread reads 

an intermediate value or corrupts the value by writing it. Hence, this may result into a different 

output or system faults even if there is no data race, no change in inputs or execution path. 

Analysis of access interleaving patterns of two threads and code semantics are useful to detect 

atomicity violations. The strategy is simple. If we define two consecutive access to a shared variable 

by same thread as P(previous)  and C(current) and access to same shared variable by a remote 

thread as R(remote), then access order {P, R, C} (P and C are interleaved by R) can be called a 

atomicity violation. Not all access patterns can be classified as atomicity violations for e.g. access 

pattern {P: Read, R: Read, C: Read} because the result will be same even if the access pattern is 

{P, C, R}. Hence, on the basis of this logic, four unserializable access patterns out of eight possible 

access patterns can be classified as probable atomicity violations. These access patterns are 

shown in figure 2. 

Each patterns are justified with examples below: 

1) {P: Read, R: Write, C: Read} - Two reads will have different value of same shared variable 

due to intermediate update by remote thread. The real world bug can be found in Apache 

server code shown in figure 3(a) 

2) {P: Write, R: Write, C: Read} - The local read gets a corrupted value due to intermediate 
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Figure 3(c): Violation 
bug in Mozilla code 

write by a remote thread. The real world bug can be found in Mozilla code shown in figure 

3(c). 

3) {P: Read, R: Write, C: Write} - The local write intending to update the value read in previous 

access updates a dirty value. This is the most common atomicity violation access pattern. 

Even example shown in the introduction in figure 1 is a violation due this type of access 

interleaving pattern. 

4) {P: Write, R: Read, C: Write} - Remote thread read an intermediate result. The real world 

bug can be found in MYSQL code in figure 3(b). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2: Unserializable access interleaving patterns 

Figure 3(a): Violation bug 
in apache server code 

Figure 3(b): Violation 
bug in MYSQL code 
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The classification by the above scheme will give all possible cases with many false positives, as 

intention of programmer to access a variable consecutively in same thread cannot be predicted 

accurately. The list can be further filtered by looking at code semantics. One of the important thing 

that should be considered is the distance between two consecutive accesses. This is based on 

simple assumption that if programmer expects atomicity in two consecutive accesses then there 

should not be more instructions executed between two accesses. The distance of remote access 

is also useful parameter to further filter out more patterns. Hence, making probability of atomicity 

violating access pattern extremely low. This filter will work for high performance system but will not 

work for embedded systems given randomness of external events which may make any 

interleaving possible. Other semantics includes identifying access of a shared variable in a loop by 

local thread. In this case, programmer access same atomic region twice but this may get reported 

as bug. 

All these optimizations can be easily applied once all feasible access patterns are available. But 

the process of obtaining feasible access pattern is easier said than done and this is where happen 

before relationship analysis enters into the picture. Suppose all shared variables are statically 

defined then it is possible to come up with list of access interleaving patterns that may violate 

atomicity. But it is very difficult to come up with “feasible” patterns because it is very difficult to 

predict order of synchronization events statically. The classification of interleaving pattern as 

feasible becomes very easy with happen before relationship graph. Hence, a single execution 

recording synchronization events dynamically to build happen before relationship graph and 

memory accesses to find accesses to shared variable makes things very simple and fast. The next 

section covers dynamic analysis of multi-threaded software. 
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CHAPTER 4 

DYNAMIC ANALYSIS OF MULTI-THREADED EMBEDDED SOFTWARE 

Dynamic debugging especially debugging on the basis of execution trace has become vital part of 

software debugging process. A single threaded program can be easily analyzed and replayed by 

maintaining same total order of events in the program i.e. the executed instructions. The only thing 

that can change execution of single threaded programs are branch instructions. Hence, program 

can be easily replayed by recording Program Counter (instructions) and inputs to the program. In 

this way developer is able to see what actually happened. Many important things like memory 

references, stack pointers and return pointers can be recorded in the trace and analyzed later in 

the replay. The size of trace generated is very high and there are various optimizations that can be 

done to decrease the trace size. 

Partial order of events comes into picture in a multi-threaded software. The partial order of events 

in multi-threaded program is order in which events of different threads interacts among the each 

other using synchronization objects. Partial order can be determined by recording events used by 

threads for interaction. The partial order of multi-threaded program depends on events like creation 

of new threads, inter-process communication among threads for signaling or to access a shared 

variable. Hence, to replay a multi-threaded software one needs to maintain same total and partial 

order of events. 

Along with large amount of data generated, the performance penalty for recording trace for total 

order of events in execution of each thread is very high as one needs to stop current execution at 

every instruction (depending on granularity), record the trace and then continue execution. The 

performance penalty of recording partial order events depends on the methodology. If events are 

recorded using binary instrumentation (by using symbols for event calls) then the penalty is 

significantly high while the penalty is very low if events are recorded using wrappers of event 

functions. Hence, wrapper methodology is better to record partial order of events. 

 Unperturbed execution is a must requirement for embedded software. Hence, recording partial 

order and total order in single run is not a good idea. As shown in figure below, the process of 

recording trace can be divided in to two parts by first recording partial order and then enforcing 
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partial order to record total order. The total order will only change if there are different inputs or a 

different partial order. Hence, the original execution can be replayed by maintaining same inputs 

and partial order. The trace can be recorded in this replay run. 

The figure below from [16] summarizes the systematic methodology to dynamically analyze multi-

threaded software using execution replay. 

  

Figure 4: Dynamic Analysis with execution 
replay. Figure taken from [16] 
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CHAPTER 5 

FRAMEWORK 

A hybrid framework using both wrapper methodology and binary instrumentation is developed to 

expose atomicity violation bugs. The process of recording information is divided into two parts. A 

wrapper methodology ensures recording of partial order events among threads with minimum 

perturbation and other execution information like memory accesses to shared variables are 

recorded using binary instrumentation. 

The framework shown in figure 5 consists of three main phases as follow.  

1) Event Recording:  A low overhead recorder records synchronization and IO events and 

generates a happen before relationship graph of events. POSIX libraries APIs are wrapped 

using custom function keeping the interface same. Hence, user can use recorder without 

making much change to program. 

2) Code Analysis: The program is replayed on the basis of happen before relationship graph 

generated in previous phase. The replay of program is binary instrumented using 

developed Intel PIN tool to record the memory references of shared variables in critical 

sections. A binary happen before relationship matrix is also generated using graph which 

shows if there is any happen before relationship between any two events in graph. Order 

generator generates all feasible access interleaving pattern which may violate atomicity 

using memory references to shared variable by different threads and happen before 

relationship matrix. 

3) Error Analysis:  The application is executed for different execution orders under a controlled 

environment in which each access interleaving pattern generated in phase 2 is enforced. 

The execution trace of each run is collected using binary instrumentation to analyze 

whether there is any change in execution path, output or system fault due to possible 

violation. A branch prediction mechanism is used to collect trace to reduce trace size.   

Each block of framework is explained as follow. The code example shown in figure 6 will be 

used to explain each stage of framework. 
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Figure 5: Framework 

Figure 6: Example Code 
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Record-Replay  

As discussed earlier a low overhead recorder is an essential part of the framework to have an 

unperturbed execution of embedded software during test run. Happen before relations between 

events are captured by chains of immediate happen-before relations. Wrappers for POSIX events 

like semaphore, mutex, conditional wait and barriers substitutes the actual system calls. 

The inter thread and intra thread dependencies are recorded in the log file. Each thread and 

synchronization object used maintains a sequence of events. The thread sequence keeps track of 

order of events that happens in a particular thread while synchronization object sequence keeps 

track of order in which events access synchronization object.  

The partial order graph of one possible execution of the example code in figure 6 is shown in figure 

7. The red colored digits shows the global sequence of events. Sequence of events maintained by 

thread will capture happen before relationship of events in same thread. For e.g. Thread 1 and 

Thread 2 will maintain following sequence. 

Thread1_Sequence = {1, 5, 6, 7 8, 9, 10, 11}  Thread2_Sequence = {3, 4, 12, 13, 14, 15} 

One mutex object used also maintains a sequence of events accessing mutex. The mutex will 

maintain following sequence  

Mutex_Sequence = {5, 6, 8, 9, 10, 11, 12, 13, 14, 15} 

Each log entry maintains immediate happen before relationship. Log tuple for each event in log file 

is as follow.  

Log = < Event_Type, Tid, Thrd_Clk, Event_Index, Thread_Dependency_Event, 

Event_Dependency_Event, Event_Executed, File_Name, Line_Number> 

Where Event_Type is type of synchronization event for e.g. mutex_lock, sem_wait() etc, Tid is 

thread invoking the event, Thrd_Clk is the sequence number of event in the same thread, Event 

index is id of event of a specific type for e.g. if two mutex are used then Event_Index will be 

different for both of them (Hence, {Event_Type, Event_Index} gives the particular synchronization 

and communication object used by threads to interact among each other), 

Thread_Dependency_Event is the event in the same thread to which event is dependent, 

Event_Dependency_Event is the event with same Event_Index to which event is dependent, 
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Event_Executed shows whether event is executed, File_Name is the name of code file in which 

event is coded, Line_Number is line in code file where event is coded.  

 

 

 

  

Figure 7: Partial order graph for example shown in 
figure 6 created one possible execution 
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Table 1 shows the log file generated by recorder for example code given in figure 6. In the example 

given in figure 6, there are three threads. There are three types of events: thread create, barrier 

and mutex lock. There in total four synchronization objects: two thread create, one barrier and one 

mutex. It can be noticed that event index corresponding to each synchronization object is unique 

for a particular event type. Negative index is used to differentiate opposite actions. For e.g. Event 

index mutex_lock of mutex synchronization object is ‘1’ while mutex_unlock of same mutex 

synchronization object is ‘-1’. Thread Dependency and Event Dependency are the fields that 

captures immediate happen before relationships. Mutex event in thread 2 with global event ID 5 

depends on event 1 (thread created). Mutex event in thread 2 with Global event ID 8 has event 7 

as thread dependency and event 6 which mutex_unlock event as event dependency. Similarly 

Mutex_event in thread 3 with Global ID 12 has event 4 as thread dependency and event 11 which 

mutex_unlock event in thread 2 as event dependency.  

 

Global 
Event 

ID 
Event 
Type Tid 

Thread 
Clk 

Event 
Index 

Thread 
Dependency 

Event 
Dependency Executed Filename 

Line 
Number 

0 0 1 1 -1 -1 -1 1 Example.c 71 

1 0 2 2 1 -1 0 1 Example.c 71 

2 0 1 2 -2 0 0 1 Example.c 71 

3 0 3 3 2 -1 2 1 Example.c 71 

4 12 3 4 1 3 4 1 Example.c 0 

5 3 2 3 1 1 -1 1 Example.c 37 

6 3 2 4 -1 5 5 1 Example.c 39 

7 12 2 5 1 6 7 1 Example.c 0 

8 3 2 6 1 7 6 1 Example.c  44 

    9 3 2 7 -1 8 8 1 Example.c 46 

10 3 2 8 1 9 9 1 Example.c 48 

11 3 2 9 -1 10 10 1 Example.c 50 

12 3 3 10 1 4 11 1 Example.c 44 

13 3 3 11 -1 12 12 1 Example.c 46 

14 3 3 12 1 13 13 1 Example.c 48 

15 3 3 13 -1 14 14 1 Example.c 50 

 
Table 1: Log file generated by recorder 
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The replay of the program is done by enforcing the partial order shown in figure 7. Before executing 

any event, scheduler is invoked. The scheduler makes sure that all events that happen before 

current event are executed. This is done by traversing the graph backwards and executing all 

events that happened before the current event. After making sure all events are executed, 

scheduler will allow thread to continue. All events that happens before current event must be 

executed. This is done traversing the graph backwards and executing all events that happened 

before the current event. 
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Happen-before analysis 

Partial order graph is acyclic unidirectional graph having edge directed towards the node that 

happens latter. The partial order of events can be divided into strong and weak order for a single 

execution.  

The strong order is the bold black edge in figure 7 which needs to happen before in every possible 

scheduling pattern. For e.g. the barrier event (1) in thread 3 needs to happen before lock event (5) 

in thread 1 in every execution. Barrier, thread create/join and semaphore are taken as strong 

ordering events. It is assumed that semaphore is only used for signaling. 

The weak order is the bold red edge. It is one “possible” edge which may not be seen in every 

execution. The edge depends on scheduling of threads. The colored dashed edges shows the other 

possible edges that a partial order graph can have. Hence, events can be divided into strong 

ordering events and weak ordering events. Mutex is taken as weak ordering event.  

Adjacency matrix can be built using this graph. In constructing matrix the edges with strong order 

are only considered. Adjacency matrix for the example shown in figure 6 shown in figure 8(a).  

The Adjacency matrix is used to build Check_Happen_Before (event1, event2) function which 

returns happen before relationship between any two elements. The pseudo code for the function is 

shown in figure 9. 

 

 

 

 

 

 

  

 

Figure 8(a): Adjacency matrix created 
for example shown in figure 6 

Figure 8(b): Happen before matrix 
created for example shown in figure 6 
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If event 2 node can be reached from event 1 node or vice versa then there is happen before 

relationship between two events. The nodes are parallel if both nodes are not connected. The 

reachability from one event to another can be found using depth-first search. A happen-before 

relationship matrix as shown in figure 8(b) can be constructed using adjacency matrix during 

initialization of analysis program. Once matrix is computed, then computational complexity of 

checking happen before relationship in the later stage of program is O(1). However, complexity of 

constructing matrix is significantly high and memory complexity is O(n2), where n is number of 

events in partial order graph.  

 

 

 

 

 

 

 

 

 

 

Apart from memory and computational complexity, one of the major drawback is that user defined 

synchronization primitives will not be considered in happen before relationship. For e.g. as shown 

in figure 10 below, Splash 2 benchmarks implement barrier using pthread_conditional_wait() 

instead of directly using pthread_barrier_wait(). Hence, happen before analysis will fail to recognize 

the implementation as barrier.   

  

 
Check_Happen_Before(event1, event2){ 

 If(Depth_First_Search(event1, event2)) 

 return event1->event2 

 else If(Depth_First_Search(event2, event21)) 

 return event2->event2 

 else return event1||event2 

} 

Figure 9: Pseudo code for Check Happen Before function 
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  define(BARRIER, `{ 

 unsigned long Error, Cycle; 

 int  Cancel, Temp; 

 Error = pthread_mutex_lock(&($1).mutex); 

 if (Error != 0) { 

  printf("Error while trying to get lock in barrier.\n"); 

  exit(-1); 

 } 

 Cycle = ($1).cycle; 

 if (++($1).counter != ($2)) { 

  pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &Cancel); 

  while (Cycle == ($1).cycle) { 

   Error = pthread_cond_wait(&($1).cv, &($1).mutex); 

   if (Error != 0) { 

    break; 

   }} 

  pthread_setcancelstate(Cancel, &Temp); 

 } else { 

  ($1).cycle = !($1).cycle; 

  ($1).counter = 0; 

  Error = pthread_cond_broadcast(&($1).cv); 

 } 

 pthread_mutex_unlock(&($1).mutex); 

}') 

Figure 10: User defined Barrier implementation for Splash 2 Benchmarks 
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Binary Instrumentation 

Intel PIN framework has been used for binary instrumentation.  PIN is a dynamic binary 

instrumentation framework that enables creation of dynamic program analysis tools. The framework 

allows to build custom profiling tools called PIN tools using available PIN APIs. Instrumentation is 

done at runtime using just-in-time compiler. Thus, it requires no recompiling of source code. It also 

provides support for multithreading. 

A PIN tool has been created which records memory reference to shared variables by each thread 

in the replay run of application based on happen before relationship captured by recorder. It records 

instruction pointer, memory location and operation for a particular reference. It is assumed that 

there is no data-race in the program. Hence, any access to shared variable is done using locks. 

Along with reference information, the information about the lock event using which the shared 

variable is referred is also recorded. The information like node number of event in partial order 

graph and event to which lock event is nested (if nested) is recorded. The tool also looks for 

functions symbols inserted in Replay library to specify range of recording. In this way, only the code 

executed in user application is recorded. For e.g. the memory access done in provided wrappers 

of replay library are not recorded. The memory references of user application are only recorded. 

Each reference in log is represented by the following tuple. 

Reference = <Operation, Instruction, Address, Thread_ID, Event Node, Nested_to> 

where Operation is read/write operation, Instruction is instruction pointer, Address is the memory 

location of variable, Thread_ID is thread accessing the variable, event node is the number of lock 

event in partial order graph, Nested_to is the event to which lock event is nested (if nested). 

PIN tool creates a new bucket whenever a new thread is created. All references to shared variable 

by a particular thread are stored in thread specific bucket.  

The thread buckets created for example shown in figure 6 are shown below in figure 12. As shown 

in buckets there are three references made by thread 2 and two references made by thread 3. The 

Memory address, instruction pointer and lock event node number for corresponding lock event 

number can also be noticed in tuple for each reference. 
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Thread 1 Bucket  

R 0x4013da 0x6091cc 2 5 0 

W 0x401428 0x6091cc 2 8 0 

R 0x401456 0x6091cc 2 10 0 

Thread 2 Bucket 

W 0x401428 0x6091cc 3 12 0 

R 0x401456 0x6091cc 3 14 0 

Figure 12: Thread buckets created for 
example in figure 6 

Figure 11: Overview of Binary 
Instrumentation tool 
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Order Generation 

The order generator uses happen before analysis in section 4.2 and thread buckets containing 

Memory references to generate access interleaving patterns that can violate atomicity. It looks for 

two consecutive memory reference by a thread in corresponding thread bucket. Once Previous and 

Current events are recognized for a particular reference, the generator looks for Remote event or 

memory reference for the same variable in other thread buckets. After getting {P, R, C} events, the 

generator checks whether the access interleaving is among the unserializable pattern and then 

checks the happen before relationships of {P, R} and {R, C}. If R does not happen before P, and C 

does not happen before R, then that particular interleaving is potential violation. The algorithm for 

order generator is described in figure 14. The results given by order generator for the example 

shown in figure 6 are shown in figure 13. Events in three event columns correspond to the events 

numbers in partial order graph shown in figure 7. The access inter-leavings predicted are events 

{5, 12, 8}, {8, 12, 10} and {12, 8, 14}. {8, 12, 10} and {12, 8, 14} are clear violations and are correctly 

predicted. But {5, 8, 12} is predicted because it satisfies {R, W, R} criteria and event 8 is parallel to 

event 12. This is a false positive. 

 

 

 

 
 
  

Address  
Thread 

Id Previous Operation Event Current Operation Event Remote_Thead Reomte Operation Event 

6091cc  2 P R 5 C R 8 3 R W 12 

6091cc  2 P W 8 C R 10 3 R W 12 

6091cc  3 P W 12 C R 14 2 R W 8 

Figure 13: Output given by Order Generator for example 
shown in figure 6 
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Order_Generator(){ 

 For(bucket = 0; bucket < Total_Buckets; bucket++){ 

  Get_P_C_events(i); 

  For( I = 0; I < Total_P_C_events; I++){ 

   For(bucketR = 0; bucketR < Total_Buckets; bucketR++){ 

    if(bucketR != bucket){ 

     Get_R_events(bucketR, Memory_Address_P_C); 

     For( J = 0; J < Total_R_events; J++){ 

     Check_access_interleavving criteria(P, R(J), P)     

check_happen_before(R(J), P) 

      If(R(J) -> P) break; 

      check_happen_before(C, R(J)) 

  If(C -> R(J)) break; 

      Print {P, R(J), C} 

}}}}}} 

Figure 14: Pseudo code for Order generator 
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Analysis 

The order generation part gives all possible access interleaving patterns that are potential atomicity 

violation. But there will be many false positives as programmer’s intention cannot be predicted 

accurately. The analysis part can be divided in to two parts. The first one is based on code 

semantics and second is based on execution with forced interleaving.  

The result shown in figure 13 gives good information about violations but does not give information 

about the location of present, current and remote events in the code, instruction pointers of these 

instructions, number of instructions in between present and current events. The analysis part 

provides heuristics using which the programmer can further filter the list given by order generator. 

These heuristics are based on the code semantics. 

The information like instruction pointer, line number in code and number instructions between 

present and current event are already recorded during binary instrumentation run and happen 

before analysis. Hence, giving access of this information to programmer along with violations can 

be significantly helpful to programmer. Following are some filters which a programmer can use this 

information. 

Loop: If instruction pointer for Previous and Current event are same then it can be referred as a 

loop.  

Local Distance: If there is huge number instruction in between Previous and Current event then 

there is high probability that they are not atomic.  

Code Debug: Using line number at which event is coded in the code, programmer can manually 

go and analyze events.  

One more optimization can also be applied. If user declares the test run as correct run then the 

access interleaving patterns that already exist in test run can be ignored. This is one step closer to 

the intension of programmer. 

In the second part of analysis, the access interleaving pattern is forced to analyze impact of violation 

in terms of output change, change in execution path and system crash. The user can either use 

final output or change in execution path to determine impact of violation. The shared variable 

affected by atomicity violation may affect internal state of the system or may change the execution 
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path of directly or indirectly related threads. In some embedded systems, where outputs may vary 

continuously, instead of directly looking at outputs the operations that generate output matters. For 

e.g. suppose invalid shared state of shared variable is used to configure operation parameters for 

some function. In this case, initial outputs generated may be same for both type of operations in a 

time bound testing and may not reflect wrong output while testing the system. Hence, recording 

execution path is one of the useful metric to measure impact of atomicity violation for embedded 

systems. However, it cannot be said that if there is no change in execution path then the output is 

correct. There can be a case where execution path is same but output is different. It depends on 

programmer's perspective and priority.  

The access pattern can be changed by changing order of mutex acquired in happen before 

relationship. This is not as simple as to just change event dependency. The happen before 

relationship needs to restructured in such a way that it is feasible and enforces the access pattern. 

There are two cases described below which we need to take care of.  

Case 1:  Remote event happens before Previous event (weak order) 

The process can be imagined as stopping the remote thread before executing Remote event till 

Previous event in local thread is executed and making sure that remote events grabs the lock 

before current event. To stop remote thread till Previous event is executed, all the nodes from 

Remote event which has happen before relationship {R -> nodes(i)} needs to be detached from the 

graph and remaining nodes in the graph should be connected till Previous event. The Remote event 

should be dependent on unlock event of Previous event and the next lock event should be 

dependent on Remote event. All nodes which were disconnected should be inserted between 

Previous event and later events. 

Case 2: Current event happens before Remote event (weak order) 

Similar process can be repeated for case two but in this case Current Thread is stopped and it 

waits for remote event to get executed. 

In both cases, once remote event is executed, all threads are set free. No particular order is 

maintained. This is done to analyze the behavior of program after enforcing the interleaving. 
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Execution Path Analysis 

The execution path of a sequential program is the order of execution of instructions which can be 

also defined as total order of the program. If total order of two different executions is same then it 

can be said that both executions has same execution path. The execution path of two different 

executions of same program can only be different if there are any control flow instructions in the 

program. Hence, if two different executions of same program, takes same branch in control flow 

instructions then both execution have same total order. 

User application is binary instrumented using a PIN tool which records the program counter of all 

branch instructions executed by each thread and stores them in corresponding thread buckets. An 

optimization is done by using branch predictor mechanism to reduce size of trace. A branch target 

buffer for each branch instruction is maintained by the tool. The execution trace is only recorded if 

there is a miss prediction.   

Two executions can be compared using the data given by PIN tool. Two separate execution traces 

are compared instruction by instruction. If both traces have same branch instructions taken then 

both execution have same total order.  

Each replay of enforced access interleaving pattern in binary instrumented using the PIN tool and 

execution trace generated by each execution in each schedule is compared with the execution of 

correct test run.  
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CHAPTER 6 

RESULTS 

The testing was done on Intel(R) Xeon(R) CPU E5520  @ 2.27GHz (8 Mb cache). Splash 2 

benchmarks and some standard applications converted from Java programs are used. The 

following table gives a little description about all benchmarks used and synchronization primitives 

they use. 

 
Table 2: Benchmark Description 

Table 2 shows the comparison of execution time for normal run, replayed run and binary 

instrumented run of benchmarks to record memory trace. It can be clearly noticed that the execution 

time of binary instrumented code is significantly high and cannot guarantee unperturbed execution. 

Hence, this justifies the use of wrapper to record events instead of directly instrumenting the code. 

Benchmark Normal Execution(s) Replayed Execution(s) Memory Trace Record(s) 

Barnes 0.05 0.05 3.885 

FFT 0.03 0.03 0.84 

Lu 0.184 0.194 7.493 

Pbzip 0.112 0.141 3.288 

 
Table 3: Execution time comparison for normal, replayed and binary instrumented execution 

  

Test Program Description Synchronization Primitives 

 
FFT Splash 2 benchmark Lock and Barrier 

 
FFT with inserted 

bug 
An atomicity violation bug is inserted 

while work distribution  Lock and Barrier 

 
Lu Splash 2 benchmark Lock and Barrier 

Barnes Splash 2 benchmark 
 

Lock, Barrier and Conditional 

Pbzip Compression Tool 
 

Lock and Conditional 

Banking 

 
An example showing multiple threads 

trying to access one account Lock 

 
Load_Script 

 
An example which loads and compile 
script. It replicates Mozilla  atomicity 

violation bug Lock 
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Table 3 shows the predicted atomicity violation access interleaving patterns. Actual predicted 

atomicity violation schedules for Barnes and Pbzip are 21 and 54 respectively. But the access 

interleaving patterns which were already present in test run are not considered. Also these two 

benchmarks does not have any actual violations. The instruction pointers of {P, C} of each 

interleaving are same which suggests that there is a loop. Both Barnes and Pbzip implements a 

FIFO queue to assign work to worker threads. 

 
Table 4: Predicted Atomicity violation access interleaving patterns for each program 

The following table shows the result of replay after enforcing the access interleaving patterns shown 

in table 2. When 12 access interleaving patterns are replayed after enforcing those interleaving 

patterns the work allocation to thread is different from original program. Hence, the execution path 

and output are different from original one. All interleaving patterns for PBzip and Barnes does not 

give any change in result of the final program or any crash. The final output of balance in banking 

example is different from original execution. A NULL pointer reference resulting in to segmentation 

fault is encountered when access interleaving is enforced for Load_Script program. 

 

Test Program Threads 

Predicted Violating 
Access Interleaving 

Patterns Actual Violations 

FFT 4 0 0 

FFT with inserted bug 4 12 1 

Lu 4 0 0 

Barnes 2 11 0 

Pbzip 8 23 0 

Banking 4 12 1 

Load_Script 2 1 1 

Test Program Execution Change Output Change Crash Type 

FFT - - - - 

FFT with inserted bug YES YES NO {R, W, R} 

Lu - - - - 

Barnes - - - - 

Pbzip - - - - 

Banking NO YES NO {R, W, W} 

Load_Script YES - YES {W, R, W} 
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Table 5: Analysis of atomicity violation access pattern for each program 

Trace compression is done while recording using branch predictor mechanism. The following 

table shows the comparison of trace events if number of branch instructions recorded versus 

number missed branch instruction recorded. 

 

Benchmark Branch Conditions Missed Predictions Compression Ratio 

FFT 36885 5843 6.312681842 

Barnes 12452 773 16.10866753 

Lu 52997539 3077195 17.22267812 

PBZip 113858618 7254590 15.6947006 

 
 Table 6: Trace Size comparison while recording Branch conditions vs Missed Predictions 
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CHAPTER 7 

LIMITATIONS 

There are various limitations of this approach. All the assumptions that are taken to build the 

framework act as the limitations. It is assumed that there is no data race in application which means 

that application should be checked with some data race detector before running through the 

framework. Another assumption is that user will only use built-in synchronization primitives. The 

tool cannot identify any user defined synchronization primitive. The user defined synchronization 

primitive has to be added to the framework explicitly before running the application through 

framework. One of the most important drawback is that the framework only detects single variable 

atomicity violations. It does not work for multi variable atomicity violation or correlated variables. 

Consider the example shown in figure 15. The update of multiple variables cache->table and cache-

>empty should be atomic. The framework will not detect these type of bugs.  

 

 

Figure 15: Multi variable atomicity violation bug in 
Mozilla Code. Taken from [22] 



  31 

CHAPTER 8 

CONCLUSION 

This paper has presented a systematic approach to expose atomicity violation bugs in software for 

embedded systems using record-replay and binary instrumentation. The framework successfully 

predicts the feasible access interleaving patterns that can violate atomicity. The framework also 

explores the predicted access interleaving pattern by enforcing each access interleaving pattern 

and compares the execution trace of each enforced execution to see if there is change in execution 

flow due to potential violation. The framework also provides several information related to code 

semantics like number of instructions between two consecutive instructions, instruction pointer of 

memory reference and line number in code where reference is made by programmer. Using this 

information programmer can further prune out the predicted access interleaving patterns. 
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