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ABSTRACT 

Constraint relaxation by definition means that certain security, operational, or fi-

nancial constraints are allowed to be violated in the energy market model for a predeter-

mined penalty price. System operators utilize this mechanism in an effort to impose a 

price-cap on shadow prices throughout the market. In addition, constraint relaxations can 

serve as corrective approximations that help in reducing the occurrence of infeasible or 

extreme solutions in the day-ahead markets. This work aims to capture the impact con-

straint relaxations have on system operational security. Moreover, this analysis also pro-

vides a better understanding of the correlation between DC market models and AC real-

time systems and analyzes how relaxations in market models propagate to real-time sys-

tems. This information can be used not only to assess the criticality of constraint relaxa-

tions, but also as a basis for determining penalty prices more accurately. 

Constraint relaxations practice was replicated in this work using a test case and a 

real-life large-scale system, while capturing both energy market aspects and AC real-time 

system performance. System performance investigation included static and dynamic se-

curity analysis for base-case and post-contingency operating conditions. PJM peak hour 

loads were dynamically modelled in order to capture delayed voltage recovery and sus-

tained depressed voltage profiles as a result of reactive power deficiency caused by con-

straint relaxations. Moreover, impacts of constraint relaxations on operational system se-

curity were investigated when risk based penalty prices are used. Transmission lines in 

the PJM system were categorized according to their risk index and each category was as-

signed a different penalty price accordingly in order to avoid real-time overloads on high 

risk lines. 
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This work also extends the investigation of constraint relaxations to post-

contingency relaxations, where emergency limits are allowed to be relaxed in energy 

market models. Various scenarios were investigated to capture and compare between the 

impacts of base-case and post-contingency relaxations on real-time system performance, 

including the presence of both relaxations simultaneously. The effect of penalty prices on 

the number and magnitude of relaxations was investigated as well. 
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1. INTRODUCTION 

1.1 Research Motivation 

Electric power system operation is a challenging task that requires system opera-

tors to satisfy several objectives while abiding to multiple constraints and limitations. 

Some of these objectives are even conflicting in nature; for instance, economic objectives 

push towards full utilization of the power system resources and infrastructure, which in 

turn results in stressed operating conditions. On the other hand, power system reliability 

and security become a matter of concern under such stressed operating conditions. There-

fore, system operators are continuously solving optimization problems through their en-

ergy management systems (EMS) to ensure an economical and secure operation. Mainly, 

these models allocate resources by determining which generating units are dispatched and 

the amount of power produced by each generating unit, without violating the system se-

curity limits. These optimization problems are referred to as security constrained unit 

commitment (SCUC) and security constrained economic dispatch (SCED) respectively 

[1]-[2]. 

Market models used for resources allocation use several approximations to repre-

sent the AC power system as a linear DC system. Furthermore, the resultant DC system is 

also subjected to additional approximations; for instance, power transfer distribution fac-

tors (PTDFs) below a certain threshold are neglected to reduce the optimization problems 

size and complexity [3]. These approximations are required to obtain near-optimal results 

in reasonable time and with acceptable computational effort. Considering this approxi-

mate nature of the system representation, system operators tend, on some occasions, to 
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relax certain constraints by defining them as soft limits with a violation penalty price in-

stead of enforcing them as hard limits. This indicates that certain limits are allowed to be 

violated for a predefined penalty price in the energy market models. These violations are 

referred to as constraint relaxations.  Constraint relaxations are beneficial for avoiding 

infeasible solutions caused by the several approximations in the market models, as well 

as an effective mechanism to limit the market clearing prices as will be explained in the 

succeeding chapters [3]-[4]. 

This work aims to investigate and identify the critical constraint relaxation prac-

tices utilized by system operators and their impacts on system performance and energy 

markets efficiency. System performance in this context consists of the system reliability, 

security, and stability, as will be explained in Chapter 4. It is therefore necessary to ex-

amine how these constraint relaxations are reflected in real-time and their effect on sys-

tem operating conditions. Moreover, capturing the impact of constraint relaxations on 

system performance and energy markets provides a consistent and realistic basis for 

choosing the proper values for penalty prices associated with constraint relaxations. Pen-

alty prices determination is a critical aspect of constraint relaxations mechanism as they 

have a direct impact on the number and magnitude of relaxations. Currently, the impacts 

these constraint relaxations have on the market efficiency and system performance are 

not considered in determining the related penalty prices. System operators merely choose 

relatively high penalty prices that are sufficient to ensure that relaxations are infrequent 

and short-lived.  

By utilizing different test cases, including a real-life large-scale system, and in-

vestigating the impact of constraint relaxations on the system base-case and post-
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contingency operation conditions (static and dynamic behavior), this work captures how 

constraint relaxations in energy market models are translated into violations in real-time 

AC system. It also investigates post-contingency constraint relaxations (emergency lim-

its) and compares their impact on markets and system performance with base-case relaxa-

tions. Capturing and quantifying the risk associated with various constraint relaxations 

provides system operators with valuable insight on the real effects of these relaxations, 

which is crucial in determining realistic and consistent penalty prices in order to control 

the frequency and magnitude of these relaxations accordingly. 

1.2 Literature Survey: Constraint Relaxations 

Limited research has been done in the area of constraint relaxations, especially 

their effect on real-time system performance. System operators provide brief descriptions 

of constraint relaxations practices in their published operation manuals without providing 

the bases for choosing their penalty prices or the effect of these relaxations on energy 

markets and system operating conditions. 

The California Independent System Operator (CAISO), for instance, states that 

the fundamental market design principle for their model is to rely as far as possible on 

submitted economic bids to clear the market and determine the settlements. However, it 

has been observed that in some instances depending solely on economic bids, does not 

yield a complete and feasible solution. In such cases, certain adjustments that are referred 

to as “uneconomic adjustments” are made in order to obtain a feasible solution. Relaxa-

tion of constraints is considered as one of the uneconomic adjustments. The forward and 

day-ahead, market solution process at CAISO is split into two parts, scheduling run and, 
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pricing run. When solved, the scheduling run determines the dispatch schedule for the 

for-ward, day-ahead, market. Penalty prices related to constraint relaxations are assigned 

extreme high values in order to make these relaxations as few and infrequent as possible. 

The scheduling run solution, which may include some relaxations, is fed into the pricing 

run process in order to determine the settlements for the day-ahead market. Constraint 

relaxations are also allowed through the pricing run process. However, penalty prices are 

set to lower values compared to the scheduling run. Usually, penalty prices through the 

pricing run are set to few multiples of the related bid cap. For example, the CAISO penal-

ty price for a transmission relaxation slack variable is currently set to three times the bid 

cap. Penalty prices are agreed upon by the operator along with their stakeholders and are 

approved by the utility commission [5]-[6]. 

Similar practices are adopted by other operators such as the Electric Reliability 

Council of Texas (ERCOT), Southwest Power Pool (SPP), Midcontinent Independent 

System Operator (MISO), and New York Independent System Operator (NYISO) [7]-

[12]. Instead of using a fixed flat penalty price, ERCOT, for instance, proposes the use of 

a stepwise penalty price function. The use of a stepwise penalty price function with a var-

iable step width is also proposed by [13]. This multi-step approach gives the market 

model more flexibility to determine a penalty structure that offers a better compromise 

between keeping the price excursions down while, at the same time, limiting the number 

and magnitude of violations. 

As for the effect of constraint relaxations on system security, there is no previous 

work in literature that investigates the direct impacts of energy market models constraint 

relaxations have on system reliability, stability, and dynamics. Some efforts have been 
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directed to examine the long-term physical impacts of violating the thermal limits on the 

transmission lines aluminum conductors. These studies focus on the physical aspects of 

aluminum-conductor steel-reinforced (ACSR) lines such as loss of strength and sagging 

[14]-[17]. 

1.3 Literature Survey: Power System Security 

Electric power system security has been widely studied in literature and several 

definitions have been proposed. Since the early framework proposed by Dy Liacco [18], 

up to recent online dynamic security assessment (DSA) tools included in sophisticated 

energy management systems, the core concept of power system security has been regard-

ed as the ability of the system to operate within acceptable and safe operating conditions 

following an imminent disturbance, without the need of load shedding, generation rejec-

tion, or direct human intervention [18]-[24]. The North American Electric Reliability 

Corporation (NERC) defines power system security as the degree of risk in the power 

system’s ability to withstand sudden disturbances such as short circuit faults or the loss of 

major components, without interruption of customer service [21]. The International Elec-

trotechnical Commission (IEC) defines power system security as the ability of an electric 

power system to operate in such a way that credible events do not give rise to: loss of 

load, stresses of system components beyond their ratings, bus voltages or system fre-

quency outside tolerances, instability, voltage collapse, or cascading sequences [25]. In 

[24] power system security is simply defined as the art and science of the “survival” of 

power systems and, in order to ensure their survival, power systems are operated within 

certain power transfer limits, commonly referred to as security limits. 
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Although power system security has been studied for decades, it is still considered 

as a pressing topic with growing importance in the electric power engineering industry. 

This paramount importance security has stems from its direct impact on power systems 

planning, operation, and economics. For instance, planners must ensure system security 

in their expansion and interconnection studies, which is usually a key element in deter-

mining the required infrastructure investments [20]. On the other hand, real-time opera-

tors must also closely monitor the system and take necessary actions to ensure secure op-

erating conditions. Generation re-dispatch, utilizing generation reserves, and reactive 

power controls are examples of real-time actions that operators usually take to control 

lines power flow and voltage magnitudes to ensure secure operating conditions. There-

fore, power system security has a direct impact on capital and operational costs, and larg-

er security margins will cost a higher price as a result of underutilizing the system com-

ponents [19], [20]. On the other hand, power system economics and profit, especially in 

deregulated power systems, are among the main objectives of power system owners and 

operators, therefore, a trade-off between security margins and associated costs has to be 

made. This trade-off between security margins and cost is represented in the form of an 

optimization problem which solution would ensure operating the system within the secu-

rity region, while the associated costs are minimized. For instance, security constrained 

unit commitment usually involves producing the most economic dispatch of generating 

units while imposing the operational and security constraints [26]. A more detailed dis-

cussion of secure unit commitment is provided in Section 2.5 of this dissertation. It 

should be noted that power system security and economics should not be viewed as con-

flicting objectives since operating the system outside the security region can result in cat-
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astrophic consequences, such as blackouts or equipment damage that are extremely cost-

ly.     

The relatively recent transformation in the way power systems are structured and 

operated has imposed new challenges in the field of power system security. Regulated 

and vertically integrated power systems tended to be more predictable and simpler to op-

erate compared to regulated and open market power system structures [27]-[29]. The in-

tegrated planning and operation of generation, transmission, and distribution systems 

conducted by monopolies, such as government bodies and public utilities. This ensured 

that the entire system was scaled appropriately and consistently to meet load growth, 

thereby limiting overloading and extreme operating conditions that may lead to system 

disturbances [20]. However, reduced operation predictability and stressed operating con-

ditions are not exclusive results of power system restructuring. There are several other 

factors in literature that are attributed to making power system security a more challeng-

ing issue in modern power systems. Examples on such factors are: the aging of transmis-

sion infrastructure and the lack of new transmission facilities, large numbers of distribut-

ed generation such as renewable resources and their added uncertainty in dispatch levels, 

and the trend towards multi-area interconnections, which may result in cascading events 

when information and data are not communicated properly between neighboring inter-

connected areas [20].    

In order to be able to assess the system operational security accurately, operators 

need to conduct steady state and transient studies to evaluate operating conditions for dif-

ferent states of operation, as well as the security of the paths the system takes between 

those states [19]. The computations needed to accurately assess the security of a single 
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defined system condition are technically rigorous and require considerable effort. To 

date, power systems are usually operated based on the margins obtained by offline stud-

ies, which are usually based on deterministic and conservative assumptions, by which all 

planned conditions and contingencies have to be examined even though most would nev-

er actually occur [19]-[20], [27]-[28], [30]. Therefore, online DSA that is run in real-time 

(or near real-time) would provide operators with more accurate and realistic assessment 

of system security. When the actual operating margins are known, the system can be op-

erated in more optimal conditions to increase revenue while sustaining system security. 

Moreover, online DSA would provide operators with early indications of pending trouble 

and provide the opportunity to take remedial actions as a result of largely eliminating the 

uncertainty embedded in offline analysis using forecasted conditions. For instance, one of 

the recommendations (Recommendation 22) in the U.S. – Canada Power System Outage 

Task Force’s final report on the 2003 blackout, states that better real-time tools for opera-

tors and reliability coordinators should be evaluated and adopted [31]. 

Several online DSA schemes and methods can be found in literature, which main-

ly focus on minimizing the time needed to run DSA for large systems in order to be used 

in real-time frame. These efforts have been focused on significantly reducing the number 

of considered contingencies and, on the computational methods used to evaluate system 

security, especially system transient stability. For instance, risk-based DSA schemes have 

been proposed in [27]-[28], [30], where the probability and impact of contingent events 

are used to filter and rank critical contingencies. Therefore, contingencies likelihood and 

severity are condensed into indices that reflect probabilistic risk. In [28], the probabilistic 

factors considered include the probability of: fault occurrence, fault type, fault location, 
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fault clearing time, successful automatic reclosing, fault impedance, and the output of 

power generators. The impact (or cost) implications used to calculate the total risk are 

based on several direct and indirect financial costs including equipment replacement, re-

pair and startup, customer interruption, and social and political costs [28]. Depending on 

the system size under consideration, full simulation methods, such as full power flow so-

lution, time-domain simulation for transient stability, and eigenvalue analysis for small 

signal stability analysis may not be suitable for real-time DSA. Therefore, approximate 

methods have been proposed. For instance, trajectory sensitivity analysis is proposed by 

[32]-[33] for transient stability assessment to avoid numerically solving the large number 

of nonlinear differential and algebraic equations in a full time-domain simulation. In [24] 

and [29], energy-based approximation methods are proposed, where the transient stability 

is evaluated based on the energy acquired at a particular time, which is computed using 

transient energy functions. Data-driven methods such as decision trees and intelligent 

system algorithms have also been widely researched. Data-driven methods utilize offline 

dynamic security database to provide rapid real-time security assessment and preventive 

control guidelines based on real-time measurements [34]-[36]. It should be noted that 

DSA results accuracy and credibility depend largely on the validity of the measurements 

and models used. For instance, the Western Electricity Coordinating Council (WECC) 

initiated a generator testing requirement and dynamic model validation program follow-

ing failure of simulations to reproduce events that occurred in the summer of 1996 in the 

Western Interconnection [37]-[38]. 
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1.4 Dissertation Organization 

This dissertation is divided into six chapters. Chapter 2 presents a general theoret-

ical background for the optimization problems and stability topics related to this work. 

DC power flow is introduced and explained along with its use in unit commitment prob-

lems. Two different AC optimization tools that were used in this work and their function-

ality are explained as well. A brief discussion on Benders’ decomposition is provided 

since it was used in this work to relax post-contingency constraints. An overview of volt-

age stability and dynamic load modeling are discussed as well. Chapter 3 provides some 

detailed discussion on constraint relaxations mechanism and the motives system opera-

tors have for applying such practice. Chapter 4 presents and explains the system studies 

performed on the test cases and the results achieved. System studies conducted include 

static and dynamic base-case and post-contingency analysis. Voltage stability analysis 

using dynamic load models and risk based penalty price relaxations results are also in-

cluded in Chapter 4. Impacts of post-contingency constraint (emergency limits) relaxa-

tions on real-time system performance and energy markets are investigated in Chapter 5. 

Conclusions are presented in Chapter 6.  
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2. THEORETICAL BACKGROUND 

2.1 Introduction 

This chapter provides a brief theoretical overview of the optimization problems, 

stability analysis, and dynamic load modeling, which were utilized in this work. A Direct 

Current Optimal Power Flow (DCOPF) algorithm is presented in the first section along 

with the various approximations it incorporates. The ACOPF general formulation and 

solution process is also presented. PSS/E Preventive Security Optimal Power Flow 

(PSCOPF) tool was utilized in this work to attain an AC N-1 secure solution. A descrip-

tion of the PSCOPF algorithm structure and solution procedure is provided next. A gen-

eral SCUC formulation is also presented and explained. Benders’ decomposition tech-

nique is also introduced in this chapter as it was utilized throughout this work to allow 

post-contingency constraint relaxations. 

This chapter also provides a theoretical overview of various types of system sta-

bility aspects. More detailed discussion on voltage stability is provided herein since test 

cases with constraint relaxations have significantly more voltage violations compared to 

non-relaxed cases. Dynamic load modeling overview is also included in this chapter for 

its significant impact on voltage stability analysis and results. 

2.2 Direct Current Optimal Power Flow – DCOPF 

DCOPF is widely used by system operators in energy market models in order to 

determine the generators real power dispatch levels and, statuses in unit commitment 

problems [1], [39]-[40]. A DC power flow is used as an approximation to the actual AC 
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power flow to simplify the optimization problem and utilize the linear nature of the DC 

power flow. This approximation provides acceptable results for the day-ahead market 

processes while significantly reducing the time and computing resources required to 

solve large-scale optimization problems. The DC power flow approximation is based on 

the following assumptions [39], [40]: 

 Neglecting the reactive power – voltage (Q-V) component of the regular AC 

power flow. This results in a completely linear, non-iterative, power flow algo-

rithm. However, this approximation implies that DC power flow is only good for 

calculating real power flows on transmission lines and transformers and does not 

provide any information about the reactive power flows or the voltage profiles. 

 All voltages throughout the system are assumed to have an absolute magnitude 

of 1.0 p.u. This approximation makes the real power flow independent of voltage 

magnitudes and, therefore, the real power flow is only affected by branches im-

pedances and voltage angles. 

 Nonlinear thermal losses are neglected by neglecting branch resistances. 

 The difference between voltage angles is assumed to be small enough to use the 

small angle trigonometric approximation: (cos(𝜃𝑖 − 𝜃𝑗) ≈ 1), (sin(𝜃𝑖 − 𝜃𝑗) ≈

(𝜃𝑖 − 𝜃𝑗)). 

It should be noted here that these approximations are not necessarily found in all DC 

power flow formulations. Some of these approximations may not be used in order to 

achieve a more accurate and realistic solution. For instance, if real power losses are 

known, these losses can be incorporated in the DC model by adding them to the system 

loads. 
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Therefore, a basic lossless DCOPF can be formulated using the DC power flow 

equations as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑔𝑃𝑔

𝑔

 (2.1) 

𝑃𝑘 =
1

𝑥𝑘
(𝜃𝑖 − 𝜃𝑗)∀𝑘 (2.2) 

𝑃𝑖 = ∑ 𝑃𝑗

𝑁

𝑗

∀𝑖, 𝑗 (2.3) 

−𝑃𝑘
𝑚𝑎𝑥 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑚𝑎𝑥∀𝑘 (2.4) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔 ≤ 𝑃𝑔

𝑚𝑎𝑥∀𝑔 (2.5) 

where, i and j are any two buses in the network connected together with at least one 

branch k. Equation (2.1) is the objective function to be minimized, which is in this case 

the total production cost of all generating units. Equations (2.2) and (2.3) are the DC 

power flow and power node balance respectively. Equations (2.4) and (2.5) represent the 

operation limits and ratings of the branches and generating units respectively. More de-

tailed discussion on security limits and constraints will be provided in the security con-

strained unit commitment section. 

2.3 Alternating Current Optimal Power Flow – ACOPF 

The Alternating Current Optimal Power Flow (ACOPF) is a large-scale nonlinear 

optimization problem that has the following general form: 

 

 



14 

 

𝑜𝑏𝑗.    min
𝑥

𝑓(𝒙) 

𝑠. 𝑡.    𝒉(𝒙) = 0 

𝒙𝒎𝒊𝒏 ≤ 𝒈(𝒙) ≤ 𝒙𝒎𝒂𝒙 

(2.6) 

The optimization problem shown in (2.6) consists of an objective function f(x) that is to 

be minimized. In practice, this objective function is usually the total generation cost, 

which includes other operational costs, such as: startup and shutdown costs. The optimi-

zation process is subject to equality and inequality constraints. Equality constraints h(x) 

(column vector) in ACOPF include power flow equations, such as bus-power mismatch. 

Inequality constraints g(x) are the steady state security constraints, such as transmission 

lines thermal limits and voltage limits, where x is a column vector of power system vari-

ables. 

2.3.1 ACOPF Problem Formulation 

One of the approaches used to solve the nonlinear system (2.6) is forming a La-

grangian scalar function by linearly combining the objective function and the equality 

constraints in the following form: 

𝐿(𝒙, 𝝀) = 𝑓(𝒙) + [𝝀]𝑇[𝒉(𝒙)] (2.7) 

where λ is a column vector of Lagrange multiplier variables. The Lagrangian formulation 

in (2.7) transforms the optimization problem into primal-dual problem since it consists of 

both, power system variable as well as Lagrange multipliers. The equality-constrained 

optimal solution is obtained by equating the Lagrangian function gradient to zero and 

solving for x and λ in what is known as Karush-Kuhn-Tucker (KKT) optimality condition 

[41]-[43]. Solving the KKT problem produces a set of optimally defined power system 
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variables x, along with the objective function sensitivities to changes in the constraints λ. 

The resultant OPF formulation is always nonlinear and nonconvex due to the presence of 

the power flow mismatch equations, hence, a global optimal solution cannot be guaran-

teed. However, since the DC optimal solutions generated by the market model are used as 

starting points to solve the ACOPF in this work, it can be assumed that the ACOPF pro-

vides satisfactory results to represent the AC real-time system operating conditions. The 

objective function itself can be nonlinear either by explicitly including nonlinear quanti-

ties such as power losses, or by implicitly introducing quadratic penalties. 

2.3.2 Inequality Constraints and Limits 

In order to impose inequality constraints, implicit objective terms that are ex-

pressed as a function of the constrained variable are formed. Hard limits are represented 

as objective terms that are asymptotic to the variables limits, known as barrier terms. Soft 

limits are represented as penalty objective terms that tend to grow in magnitude as the 

variable value departs further from its defined limits. Penalty terms can be modeled as 

linear or quadratic functions. The linear penalty for soft limit constraints is introduced in 

the objective function in the following form: 

∑ 𝜌𝑖 (max
𝑖

(0, 𝑥𝑖 − 𝑥𝑚𝑎𝑥,𝑖) − min
𝑖

(0, 𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖))

𝑁

𝑖=1

 (2.8) 

where: 

N: number of control variables subject to linear penalty 

xi: the present value of the i-th control variable 

xmin, xmax: minimum and maximum control values, respectively 
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ρi: linear penalty weight for the i-th control variable 

From (2.8), the penalty is zero whenever the control variable xi is within its feasi-

ble limits (xmin, xmax). However, a positive penalty term is introduced into the objective 

function that is directly proportional to the variable’s excursion from its defined limit. 

The penalty terms for soft limit constraints can also be represented in a quadratic form as: 

∑ 𝜌𝑖 (𝑥𝑖 −
(𝑥𝑚𝑖𝑛,𝑖 + 𝑥𝑚𝑎𝑥,𝑖)

2
)

2𝑁

𝑖=1

 (2.9) 

The quadratic penalty formulation represented by (2.9) imposes a penalty value on the 

objective function any time the control variable xi takes an excursion away from the mid-

point of its two limits. The quadratic growth in the penalty value tends to discourage 

large deviations and possibly infeasible excursions. 

Hard limit inequalities are modeled in the Lagrangian function, (2.7), as objec-

tive-like functions known as barrier functions. Barrier functions are continuous and as-

ymptotic to the control variable defined limits (xmin, xmax) and they ensure rigorous en-

forcement of the associated limits. The entire optimization problem is considered infeasi-

ble in the case any control variable xi violates the feasible region determined by the barri-

er functions. In PSS/E [41] the barrier functions have the following logarithmic represen-

tation: 

𝐵(𝒙) = −(10𝜇) ∑[log(𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖) + log(𝑥𝑚𝑎𝑥,𝑖 − 𝑥𝑖)]

𝑁

𝑖=1

 (2.10) 

where, μ is defined as the barrier parameter. The smaller the barrier parameter, the closer 

the control variables can approach their limits. Therefore, μ is assigned a relatively high 

value at the beginning of the optimization process, and then it is reduced systematically 
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during each iteration. This entire process is referred to as the interior point method (IPM) 

[41]-[43] since representing the barrier function as part of the objective function, ensures 

that the minimum of the combined objective function (f(x)+B(x)) is always inside the 

limits represented by (xmin, xmax). The augmented Lagrangian function has the following 

formulation: 

𝐿`(𝒙, 𝝀) = 𝑓(𝒙) + 𝐵(𝒙) + [𝝀]𝑇[𝒉(𝒙)] (2.11) 

2.3.3 The Solution Process 

Invoking the KKT optimality conditions to the augmented Lagrangian function in 

(2.11) results in the following: 

[
∇𝑥∇𝑥𝐿`(𝒙, 𝝀) ∇𝑥∇𝜆𝐿`(𝒙, 𝝀)

∇𝜆∇𝑥𝐿`(𝒙, 𝝀) ∇𝜆∇𝜆𝐿`(𝒙, 𝝀)
] [

∆𝒙
∆𝝀

] = [
−∇𝑥𝐿`(𝒙, 𝝀)

−∇𝜆𝐿`(𝒙, 𝝀)
] (2.12) 

The left-hand side KKT matrix is composed of four sub-matrices. The upper diagonal 

sub-matrix (∇𝑥∇𝑥𝐿`(𝒙, 𝝀)) is a second-order partial derivative square matrix, known as 

the Hessian matrix. The off-diagonal sub-matrices (∇𝑥∇𝜆𝐿`(𝒙, 𝝀) and ∇𝜆∇𝑥𝐿`(𝒙, 𝝀)) are 

the Jacobian matrix and its inverse respectively and, they are merely derivatives of the 

equality constraint equations in terms of the power system variables. The lower diagonal 

sub-matrix (∇𝜆∇𝜆𝐿`(𝒙, 𝝀)) is uniquely zero since the Lagrangian function is linear in λ. 

The right-hand side vector in (2.12) has a length equal to the summation of the number of 

power system variables and the number of equality constraints. The x-gradient term 

(−∇𝑥𝐿`(𝒙, 𝝀)) and λ-gradient term (−∇𝜆𝐿`(𝒙, 𝝀)) encourage x to move in a direction that 

minimizes the mismatch and the combined objective value, respectively. 
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The KKT system in (2.12) is solved iteratively using Newton’s method. Newton’s 

method solves a quadratic approximation to the nonlinear system starting from estimated 

values for x and λ. By solving the quadratic approximated combined objective function, 

the correction factor Δx is obtained. The value of this correction factor is driven by the 

right-hand side of (2.12). x and λ are updated with the correction factor as: 

                                                              𝒙𝑘 = 𝒙𝑘−1 + 𝛼∆𝒙 

                                                              𝝀𝑘 = 𝝀𝑘−1 + 𝛼∆𝒙 

(2.13) 

where, k denotes the present number of iteration and α is a deceleration (or scaling) factor 

(normally set to 1.0). 

The computed correction factor Δx when added to x from the previous iteration 

determines the new minimum of the quadratic equation. From this point on, a new quad-

ratic equation is developed and a new correction factor is computed. As the updated x 

approaches its nonlinear optimum, the minimum of the quadratic equation converges to 

the minimum of the nonlinear combined objective. In the case where the quadratic solu-

tion estimate for x is far from the optimum, the correction factor Δx may force some ele-

ments of x to violate their limits. In such cases, the deceleration factor α comes into play 

and its value is reduced in order to ensure that all system variables remain inside the lim-

its (xmin, xmax). In PSS/E [41] this iterative process is considered to have converged if the 

following criteria is satisfied: 

 Number of maximum allowed iterations is not exceeded 

 The power mismatch does not exceed a user-defined tolerance 

 The final value of the barrier parameter μ in Equation (2.10) is reached (default 

value for 10𝜇: 0.00001) 
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 The final iteration has a deceleration factor α equals to 1.0. 

2.4 Preventive Security Constrained Optimal Power Flow – PSCOPF 

Throughout this work it was desired to operate the test system under consideration 

at N-1 secure conditions. N-1 secure operating conditions imply that following a single 

contingency, the system does not suffer any type of voltage or flow violations. N-1 con-

tingency can be represented as the failure or unplanned outage of any element in the sys-

tem (transmission line, transformer or generating unit). Since no post-contingency ad-

justment or operator intervention is required, this type of operation security is considered 

as preventive security. Achieving N-1 preventive security conditions manually is a very 

tedious and inconsistent process and, even infeasible for large systems. For instance, se-

curing the system against a specific contingency might worsen the violations of another 

contingency or introduce new violations, even in the base-case. Therefore, the built-in 

PSCOPF tool in PSS/E was used in order to perform this task. 

2.4.1 PSCOPF Objective Function and Constraints 

PSCOPF is a special class of the OPF formulation that takes into consideration 

predefined security constrains and a set of critical contingencies. However, the PSCOPF 

objective function is not cost-related as in regular OPF problems. The objective of 

PSCOPF is to minimize the number and magnitude of adjustments of the system controls. 

These controls comprise of: 

 On-line and off-line generators power output and scheduled voltage 

 Transformers tap settings 
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 Switched shunts 

 Phase shifters 

 Load controls. 

The equality and inequality constraints for PSCOPF are very similar to the con-

straints in the regular OPF. However, since PSCOPF considers post-contingency condi-

tions as well as base-case conditions, it is possible to define a different set of operation 

limits as emergency limits. These emergency limits will only be enforced following the 

event of a contingency. PSCOPF constraints include: 

 Power balance equations for pre- and post-contingency cases 

 Operation limits for pre- and post-contingency cases 

 System controls limits. 

2.4.2 PSCOPF Objective Function and Constraints 

The PSCOPF iterative solution process can be split into two parts for each itera-

tion: 

a) Part-1: Identifying the set of critical contingencies and building the Benders’ cuts 

b) Part-2: Solving the master problem, determining the optimal settings of the vari-

ous controls. and updating the base-case. 

a) Part-1 

For large systems with a large number of contingencies to be considered, 

PSCOPF quickly becomes a large-scale nonlinear optimization problem. Solving this 

problem by imposing all post-contingency constraints simultaneously might not be feasi-

ble due to the limited computing resources available. In PSCOPF, Benders’ decomposi-
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tion is used to decompose the initial problem into several sub-problems that can be solved 

separately and iteratively. In Benders’ decomposition, the master problem is modeled us-

ing the base-case conditions while the cuts represent the different contingencies consid-

ered. In this identification process, PSCOPF also tries to choose the dominant contingen-

cy among a set of related contingencies. Therefore, securing the system against the most 

severe dominant contingency will ensure secure post-contingency conditions for other 

related less severe non-dominant contingencies. A more detailed discussion on Benders’ 

decomposition and the required characteristics of its sub-problems are provided in Sec-

tion 2.6. The flow chart in Figure 2.1 illustrates the steps of Part-1 of the PSCOPF pro-

cess [41]. 

 

Figure 2.1. PSCOPF Part-1 Flow Chart [41]. 
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b) Part-2 

In this part, Benders’ cuts for each violation associated with each contingency are 

created. In PSCOPF, Benders’ cuts are represented as linear constraints that are added to 

the master problem. Using the available controls and operation constraints along with 

Benders’ cuts, the master problem is built. The master problem is solved using successive 

linear programming (SLP) by which the required adjustments are determined and the 

base-case is updated. The AC power flow of the updated base-case is obtained and this 

new operating condition is used to test the predefined contingencies. If new violations 

appear under the new base-case operating conditions, the Benders’ cuts are updated and 

the whole process is repeated all over again. Otherwise, if all contingency sets are tested 

and no violations are reported, Part-2 of PSCOPF is terminated and the system is consid-

ered conforming to N-1 preventive security under the new base-case operating conditions. 

Figure 2.2 illustrates the steps of Part-2 of PSCOPF process [41]. 

2.5 Security Constrained Unit Commitment – SCUC 

Unit commitment (UC) is the process by which power system operators determine 

the status (committed or de-committed) and power production levels of generating units 

in their generation fleet. The main objective of unit commitment is to commit enough 

generation for a certain period of time to ensure that the load demand is met reliably and 

economically. Since reliability and economics are contradicting objectives in this prob-

lem, unit commitment is considered an optimization problem. Committing enough gener-

ating units to supply the load is a basic constraint in the unit commitment problem, how-

ever, it is not the only constraint. Several other security constraints could be added to this 
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problem in order to claim an optimal and secure solution. These constraints are related to 

the network model used to represent the real network, the capability and characteristics of 

the generating units, and to several other operational and security conditions. 

  

Figure 2.2. PSCOPF Part-2 Flow Chart [41]. 

 
Generate the 

Benders’ cuts

Build the 

master 

problem

Solve with SLP and 

adjust the system

Solve the power flow for one 

contingency in set

Violations?
Update the 

Benders’ cuts

Finish all 

contingencies in 

set?

Benders’ cuts 

updated?

YES

NO

END of Part-2

YES

YES

NO

NO



24 

 

When these security constraints are incorporated in the unit commitment problem, 

security constrained unit commitment model is formulated. Some of the commonly used 

security constraints are presented in the next subsection [39], [44]. 

2.5.1 Unit Commitment Security Constrains 

It should be noted at this point that the presented SCUC formulation is not unique. 

The model presented in this subsection was chosen to serve the purpose of this particular 

work. 

Objective function: 

The objective function of the SCUC problem can be written as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑔𝑃𝑔𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑆𝐷𝑤𝑔𝑡𝑡𝑔  (2.14) 

The objective of a SCUC problem is to minimize the overall cost incorporated in operat-

ing a set of generating units over a certain time frame. As (2.14) indicates, the total cost 

for this SCUC problem consists of active power production cost, no load cost, start-up, 

and shut-down costs respectively. 

Generators and branches limits 

As indicated in (2.5), each generating unit has minimum and maximum produc-

tion limits that must be satisfied for any committed unit. Similarly, (2.4) indicates that 

branches (transmission lines and transformers) also have thermal ratings that typically 

must not be exceeded. These constraints are presented respectively in the SCUC formula-

tion as: 

𝑢𝑔𝑡𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑡 + 𝑟𝑔𝑡

𝑆𝑃 ≤ 𝑢𝑔𝑡𝑃𝑔
𝑚𝑎𝑥 ∀𝑔, 𝑡 (2.15) 
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−𝑃𝑘
𝑚𝑎𝑥 ≤ 𝑃𝑘 ≤ 𝑃𝑘

𝑚𝑎𝑥  ∀𝑘 (2.16) 

Equation (2.15) enforces each generator production limits while accounting for spinning 

reserve allocation as will be explained in the following discussion. 

 

Spinning reserve 

Reserve in general (spinning and non-spinning) is required to ensure acceptable 

frequency response in the event of losing a portion of the generating units in any possible 

contingency event. Reserve allocation consists of the amount and location of reserve 

throughout the system to ensure that the required reserve could be utilized when needed 

through the available transmission capacity. The typical reserve amount is usually a per-

centage of the forecasted peak demand. The reserve could also be calculated to make-up 

for the loss of major heavily loaded generating units or, as a probability function of not 

having enough supply to meet the load. Usually such reserve rules are defined by region-

al reliability councils. The following formulas show how spinning reserve constraints are 

incorporated in the SCUC problem: 

𝑟𝑡
𝑟𝑒𝑞

≥ ∑ 0.07

𝑔

𝑑𝑛𝑡 

 ∀𝑔, 𝑡 (2.17) 

𝑃𝑔𝑡 + 𝑟𝑔𝑡
𝑆𝑃 ≤ 𝑟𝑡

𝑟𝑒𝑞
 

 ∀𝑔, 𝑡 (2.18) 

The constraint enforced by (2.17) states that the required total reserve over a cer-

tain time period should not be less than 7% of the total load for that time period [45]. 

Moreover, (2.18) ensures that the allocated reserve is sufficient to cover the loss of any 

single unit. The left side of the inequality in (2.18) combines the present production and 

the designated spinning reserve for that particular unit since both will be lost in the event 
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of losing that unit. In order to model spinning reserve availability more accurately, the 

ramp rate capability of each unit could also be considered. Ramp rate effect on spinning 

reserve availability is represented in the following constraint: 

𝑟𝑔𝑡
𝑆𝑃 ≤ 𝑅𝑔

𝐸𝑀𝑢𝑔𝑡 
∀𝑔, 𝑡 (2.19) 

Equation (2.19) states that the specified spinning reserve of any committed unit in 

the specified time period should not exceed the emergency ramp rate of that unit. The 

emergency ramp rate is the maximum increase in power generation a unit can produce in 

a short period of time. Usually the emergency ramp rate is specified over a 10 minute pe-

riod. The required total reserve is usually a combination of spinning and non-spinning 

reserve. Spinning reserve is the available generation from all committed and synchro-

nized generating units in the system, minus the load and losses being supplied. On the 

other hand, non-spinning reserve is typically assigned to fast start units. Fast start units 

are typically gas-turbine or hydro units that can be brought online and synchronized in 

relatively short time. Such fast start unit capacity can be included in the total required re-

serve as long as the time needed to bring them up to their full capacity is accounted for. 

Ramp rates 

Ramp rate constraints are considered as coupling constraints since they are im-

posed over consecutive time periods (usually over consecutive hours). Generating units, 

especially large nuclear units, have limited capability of changing their production levels 

within a certain time period. This limitation needs to be captured when solving the SCUC 

over several successive time periods. Ramp rates can be represented by the following 

constraints: 
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𝑢𝑔𝑡−1𝑅𝑔
𝐻𝑅 + 𝑣𝑔𝑡𝑅𝑔

𝑆𝑈 ≥ 𝑃𝑔𝑡 − 𝑃𝑔𝑡−1 
 ∀𝑔, 𝑡 (2.20) 

𝑢𝑔𝑡𝑅𝑔
𝐻𝑅 + 𝑤𝑔𝑡𝑅𝑔

𝑆𝐷 ≥ 𝑃𝑔𝑡−1 − 𝑃𝑔𝑡 
 ∀𝑔, 𝑡 (2.21) 

Equation (2.20) and (2.21) represent ramp-up and ramp-down constraints respectively, 

taking into account start-up and shut-down ramp rates. 

Minimum-up and minimum-down time 

Thermal units must have gradual temperature changes in both directions (when 

fired-up and turned-off). Therefore, once a thermal unit is brought online, it must stay 

online for a certain amount of time (minimum-up time). On the other hand, once a ther-

mal unit is turned off, it must stay off for a certain amount of time before being fired up 

again (minimum-down time). Minimum-up and minimum-down time constraints are also 

considered as coupling constraints since they link consecutive time periods together. 

Minimum-up and minimum-down time are represented in (2.22) and (2.23) respectively: 

∑ 𝑣𝑔𝑡

𝑡

𝑠=𝑡−𝑈𝑇𝑔+1

≤ 𝑢𝑔𝑡  ∀𝑔, 𝑡 (2.22) 

∑ 𝑤𝑔𝑡

𝑡

𝑠=𝑡−𝐷𝑇𝑔+1

≤ 1 − 𝑢𝑔𝑡 

 ∀𝑔, 𝑡 (2.23) 

 

Binary variables 

In unit commitment problems binary variables are used to indicate the status of 

generating units (ugt), startup variable (vgt), and shutdown variable (wgt). While the unit 

status variable (ugt) is enforced to be binary, the startup and shutdown variables are guar-

anteed to be binary through the following constraints: 
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𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡 − 𝑢𝑔𝑡−1 
 ∀𝑔, 𝑡 (2.24) 

𝑤𝑔𝑡 ≥ 𝑢𝑔𝑡−1 − 𝑢𝑔𝑡 
 ∀𝑔, 𝑡 (2.25) 

DC power flow 

The DC power flow and node balance equality constraints, Equation (2.2) and Equation 

(2.3) presented in Section (2.1) respectively, are also included in the used SCUC formula-

tion. 

2.6 Benders’ Decomposition 

Benders’ decomposition is one of the commonly used mathematical decomposi-

tion techniques in solving particular large-scale optimization problems. The main idea of 

Benders’ decomposition and other multistage optimization algorithms, is to partition the 

decision making process into several stages as opposed to the traditional approach of 

considering all variables and constraints simultaneously by solving a monolithic optimi-

zation problem. The decision making process usually consists of one or more optimiza-

tion problems along with feasibility checks. For optimization problems with the appropri-

ate structure, decomposition techniques usually reap significant computational benefits 

because typically the computation complexity growth of these large scale problems is not 

linear [46]. Moreover, Benders’ decomposition facilitates the use of parallel computing 

which in turn could provide flexibility and utilize available computing resources effi-

ciently [46]-[47]. However, Benders’ decomposition serves its purpose only for certain 

types of problems as will be explained in the forthcoming discussion. Benders’ decompo-
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sition is used in power systems decision problems such as security constraints unit com-

mitment and maintenance scheduling, as well as other applications [46], [48].     

The first component of Benders’ decomposition is the master problem. The mas-

ter problem is usually an optimization problem that could be of various types, such as: 

linear programing (LP), mixed integer programming (MIP) or nonlinear programming 

(NL). Depending on the structure of the decomposition the master problem evaluates a 

lower bound solution by solving for all variables or for a subset of variables. The master 

problem therefore has fewer constraints or variables or both. The solution is then fixed 

and passed to the sub-problems to check its feasibility and optimality in case sub-

optimization problems are present [47]. 

In a feasibility sub-problem the initial solution is checked against additional con-

straints. The goal of the feasibility check is to ensure that for the generated master prob-

lem solution, there exists a feasible solution for the sub-problem. In the event of infeasi-

bility, the dual information is used to introduce additional constraints on the master prob-

lem to ensure feasibility in the next iteration. These additional constraints are called 

Benders’ feasibility cuts. Therefore, sub-problems in Benders’ decomposition are re-

quired to be convex problems in order to ensure that the generated cuts create a new fea-

sibility region for the master problem that would remove the related violations in the next 

iteration [46]. The feasibility check is performed by introducing slack variables to relax 

the coupling constraints. The problem is considered feasible only if the summation of 

these slack variables is zero. After passing the feasibility check the sub-optimization 

problems evaluate the upper limit solution and modify the master problem through opti-

mality Benders’ cuts if the gap between the lower and upper limits exceeds a predefined 
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value. Typically this entire process is performed iteratively until a feasible solution with-

in a desired optimality gap is obtained. It should be noted here that the application and 

structure of the problem dictate whether both feasibility and sub-optimization slave prob-

lems are required or just one of them. Moreover, depending on the relationship between 

sub-problems, decomposition can be either time (sequential) or functional based [46].  

Benders’ decomposition efficiency and, even viability, rely on the ability to dis-

tinguish the variables and their separability in order to form the master and slave prob-

lems. An efficient and successful decomposition synthesizes Benders’ cuts that rule out a 

large class of trial values in the master problem. This is critical because Benders’ cuts add 

additional constraints to the master problem at each iteration. Therefore, adding an exces-

sive number of additional constraints would increase the size of the master problem to the 

point where the decomposition loses its purpose or even makes the problem more com-

plicated. Hence, Benders’ decomposition efficiency relies on the localization of variables, 

i.e. the ability to separate the variables among the constraints in a way that generates sub-

problems with strong intra-coupling and weak inter-coupling correlation [49]. 

2.7 Voltage Stability 

This section provides a brief overview of power system stability in general as it is 

the basic building block in assessing system security and reliability. For the purpose of 

this study, a detailed discussion on voltage stability is provided herein since test cases 

with constraint relaxations have significantly more voltage violations compared to non-

relaxed cases. Power system stability can be classified into three main categories accord-

ing to their physical nature [50]: 
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 Rotor angle stability: this type of stability is related to the ability to maintain or 

restore equilibrium between mechanical torque and electric torque in synchronous 

machines following a disturbance. Consequently, instability in this regard refers 

to growing deviation or oscillation of one machine with respect to other machines, 

resulting in loss of synchronism. 

 Voltage stability: the ability of a power system to maintain steady and acceptable 

voltages at all buses in the system under normal operating conditions after being 

subjected to a disturbance. 

 Frequency stability: refers to system ability to maintain or restore its frequency 

within an acceptable range following a major disturbance. Frequency stability is 

related to the equilibrium between generation and load throughout the system. 

Frequency instability usually appears as sustained or growing frequency swings 

resulting is generation and/or load loss. 

Disturbances could be large, such as major transmission lines faults, generating 

units tripping, loss of major components, or small, such as a gradual change in load. 

Voltage instability occurs when one bus or more in the system suffers from progressive 

and uncontrolled change in the voltage magnitude, usually in the form of voltage de-

crease. Voltage instability can cause prolonged periods of voltage depression conditions 

(brown-out), or even a voltage collapse and blackout, depending on the available reactive 

power and load dynamics. Although voltage instability is essentially a local phenomenon, 

voltage collapse, which is more complex than simple voltage instability and is usually the 

result of a sequence of events, is a condition that affects large areas of the system [51]. 
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Rotor angle stability had been the primary aspect of stability studies for decades. 

However, recent events of abnormal voltage magnitudes and voltage collapse incidents in 

some large interconnected power systems have sparked an interest in the voltage stability 

phenomenon [52]-[53]. Rotor stability was believed to be responsible for voltage instabil-

ity conditions. This case is true since a gradual loss of synchronism between two groups 

of machines as their rotor angles approach or exceed 180° would result in very low volt-

ages at intermediate points in the network. However, this is not the case if the disturbance 

was close to load centers and the voltage depression was rather caused by reactive power 

deficiency and/or load dynamics. Therefore, voltage instability may occur when rotor 

stability is not an issue. Actually, sustained voltage instability conditions can cause rotor 

instability. 

Several recent factors and operating conditions have also caused the voltage in-

stability problem to become more prevalent, such as [54]-[55]: 

 Power systems in general and specifically transmission lines tend to be operated 

under more stressed conditions. These stressed operating conditions are not only 

due to continuous and significant load growth, but also because of major changes 

and restructuring of energy markets, as well as unconventional practices such as 

constraint relaxations. Stressed transmission lines have less capability of deliver-

ing reactive power to demanding load centers because of the high reactive power 

losses. Transmission lines (especially long ones) with a relatively large voltage 

angle difference between sending and receiving ends also have limited capability 

of reactive power delivery. 
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 High rates of induction and single phase motor penetration, especially those used 

in air conditioning systems, heat pumps and refrigeration. These motors are 

known as low inertia machines. As a result they have fast response to disturbances 

and can decelerate or even stall rapidly. Voltage instability issues are directly af-

fected by dynamic behavior of motors. 

 Excessive reliance on shunt connected capacitor banks for reactive power com-

pensation. In heavily shunt capacitor compensated systems, the voltage regulation 

tends to be poor. Another disadvantage for shunt capacitors is that the reactive 

power support they provide is directly proportional to the square of the voltage. 

Therefore, at low voltages when the reactive power support is most needed, the 

VAr output of the capacitor banks drops. 

 High penetration of electronic loads which have significant discontinuous re-

sponse to variations in voltage magnitude. 

 The use of HVDC tie lines to transfer large amounts of electric power. The con-

vertors associated with these lines consume significant amounts of reactive pow-

er. 

2.7.1 Voltage Stability Classification 

It is useful to classify voltage stability into subclasses in order to better under-

stand system behavior under voltage instability conditions. Classification also helps 

choosing the right analytical strategies depending on the nature of phenomenon of inter-

est. Voltage stability is classified here according to the magnitude of the disturbance af-

fecting the system into two subclasses: 
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 Small disturbance voltage stability: also called small-signal or steady state voltage 

stability. This type of voltage stability is related to small and possibly gradual per-

turbations in the system, such as small changes in the load. Small-signal stability 

is determined by the characteristics of load and continuous and discrete controls at 

a specific instant of time. A criterion for this type of voltage stability is that at a 

given operating condition, for every bus in the system, the bus voltage magnitude 

increases as the injected reactive power at the same bus is increased. When ana-

lyzing small disturbance voltage stability, usually either midterm (10 seconds to 

few minutes) or long-term (few minutes to tens of minutes) studies are performed 

[50]-[51]. 

 Large disturbance voltage stability: also called transient voltage stability. Large 

disturbance here refers to major changes in operating conditions. These changes 

could be major faults on transmission lines, generating units tripping, transmis-

sion lines tripping, or other large disturbances. The transient voltage stability is 

determined by the load characteristics, continuous and discrete controls, as well as 

the protection systems. However, in order to capture the nonlinear dynamic inter-

actions between the different system components and their effect on transient 

voltage stability, a dynamic time domain analysis should be performed. This type 

of analysis is referred to as short-term voltage stability analysis (typically 0 to 10 

seconds). A criterion for large disturbance voltage stability is that following a 

large disturbance and after the actions of system control devices, voltages at all 

buses reach acceptable steady state levels [50]-[51]. 
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2.7.2 Voltage Stability Analysis 

From the previous discussion, it is apparent that each type of voltage stability has 

its own characteristics and nature, therefore, each type has to be approached and analyzed 

using the appropriate analytical tool. In general, voltage stability problems are studied 

using two approaches [50], [55]: 

 Static analysis  

 Time domain dynamic analysis. 

Static analysis studies are used for steady state voltage stability problems initiated 

by small disturbances. The system dynamics affecting voltage stability in the event of 

small disturbances are usually quite slow and much of the problem can be effectively 

analyzed using the static approaches that examine the viability of a specific operating 

point of the power system. Power flow is used for this type of study, where snapshots are 

captured from different system conditions at certain time instants. At each of these time 

frames, system dynamic equations are linearized, and time derivatives of the state varia-

bles are assumed to be zero, while state variables take their numerical values at that time 

instant. Therefore, the resultant system equations are simple algebraic equations that can 

be solved using power flow simulation. Static analysis can be performed faster than dy-

namic simulations and need fewer modeling details. However, with the presence of fast 

acting components such as motors and solid state devices (such as HVDC convertors), 

the dynamic effect and the interactions between controllers and protection systems must 

be included in the voltage stability analysis to capture the actual behavior of the system. 
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Steady state static studies are not only useful in the determination of the voltage 

stability of a given operating condition, but they also provide information about the prox-

imity of these conditions to voltage instability as well as voltage sensitivity. Static analy-

sis has been solved by different approaches [50], [56]: 

Q/V sensitivity analysis: The linearized region provided by power flow analysis 

around a given point is used to indicate the relation sensitivity between the voltage and 

reactive power. This sensitivity is described by the elements of the Jacobian matrix. The 

power equations (polar form) for any node i can be written as, 

𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖 = 𝑉𝑖𝐼𝑖
∗                                                     (2.25) 

where, 𝑆𝑖, 𝑃𝑖 , 𝑄𝑖 are the complex, real, and reactive power injections at bus i respectively. 

The term 𝑉𝑖 is the bus voltage, and 𝐼𝑖
∗ is the conjugate current injected at bus i. 

Power flow equations (real form) of bus i with respect to the rest of the system are writ-

ten as, 

𝑃𝑖 = 𝑉𝑖 ∑ (𝐺𝑖𝑚𝑉𝑚𝑐𝑜𝑠𝜃𝑖𝑚 + 𝐵𝑖𝑚𝑉𝑚𝑠𝑖𝑛𝜃𝑖𝑚)𝑛
𝑚=1                                   (2.26) 

𝑄𝑖 = 𝑉𝑖 ∑ (𝐺𝑖𝑚𝑉𝑚𝑠𝑖𝑛𝜃𝑖𝑚 − 𝐵𝑖𝑚𝑉𝑚𝑐𝑜𝑠𝜃𝑖𝑚)𝑛
𝑚=1                                   (2.27) 

where, G and B are the real and imaginary parts of the admittance matrix, respectively. 

𝜃𝑖𝑚 is the voltage angle difference between buses i and m. The Jacobian matrix is used to 

achieve the following linearized form, 

[
∆𝑃
∆𝑄

] = [
𝐽𝑃𝜃 𝐽𝑃𝑉

𝐽𝑄𝜃 𝐽𝑄𝑉
] [

∆𝜃
∆𝑉

]                                                 (2.28) 

where, ∆𝑃, ∆𝑄, ∆𝜃, ∆𝑉 are the incremental changes is bus real power, reactive power in-

jection, voltage angle, and voltage magnitude, respectively. Although system stability is 
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affected by real power, it is possible to keep P constant in order to evaluate the sensitivity 

only between the reactive power and voltage magnitude. Therefore, by setting ∆𝑃 = 0, 

∆𝑄 = 𝐽𝑅∆𝑉                                      (2.29) 

where, 𝐽𝑅 is the reduced Jacobian matrix of the system and can be written as, 

𝐽𝑅 = [𝐽𝑄𝑉−𝐽𝑄𝜃𝐽𝑃𝜃
−1𝐽𝑃𝑉].           (2.30) 

The Q/V sensitivity at a bus represents the slope of the Q/V curve at a given operating 

point. A positive value for the sensitivity indicates stable conditions. The larger the sensi-

tivity index, the closer the operating point is to instability. The value of infinity represents 

stability limit or the critical point. Negative values for sensitivity indicate unstable condi-

tions, with very small negative values representing highly unstable conditions. 

Q/V modal analysis: This analysis approach has the advantage of providing the 

mechanism of instability at the critical point. The eigenvalues and eigenvectors of the re-

duced Jacobian matrix are evaluated and used to indicate voltage stability. Positive ei-

genvalues represent stable voltage conditions, and the smaller the magnitude, the closer 

the relevant modal voltage is to being unstable. Compared to Q/V sensitivity analysis, 

Q/V modal analysis is more capable of identifying the critical voltage stability areas and 

elements that participate in each mode once the system reaches the critical voltage stabil-

ity point; hence, Q/V modal analysis can describe the mechanism of voltage instability. 

Q/V sensitivity analysis is not able to identify individual voltage collapse modes; instead 

it only provides information regarding the combined effects of all modes of voltage-

reactive power variations. 

Q/V curve analysis: Q/V curves show the relationship between the reactive power 

support at a certain bus and the voltage of that same bus. For large power systems these 



38 

 

curves are obtained by a series of power flow simulations. A fictitious synchronous con-

denser with unlimited reactive power capability is placed at the test bus and the voltage 

magnitude is varied through the simulation [57]. Q/V curves are useful in determining the 

amount of reactive power needed to be injected at a certain bus in order to obtain a de-

sired voltage level. Therefore, these curves can be used for both voltage stability indica-

tion purposes and shunt compensation sizing. However, it should be noted that Q/V 

curves are only valid for steady state analysis [51]. It should also be noted that power 

flow equations tend to diverge around the voltage stability critical point; therefore, spe-

cial techniques have to be used to overcome the divergence problem, such as continuation 

power flow. 

Dynamic analysis provides the most accurate results for voltage stability phenom-

enon using time domain simulations which capture the real dynamic nature of the system 

without any approximations. Nonlinear dynamic simulation is, therefore, very useful and 

effective for short term voltage stability studies and fast voltage collapse situations fol-

lowing large disturbances. However, as a price for this accuracy, dynamic simulations are 

more complicated than static studies since the overall system equations include first-order 

differential equations that have to be solved as well as the regular algebraic equations. 

Solving these equations requires significant computational capacity and is relatively time 

consuming. The accuracy of dynamic simulation results depends mainly on the models 

used; therefore, system components have to be modeled in detail and with high accuracy. 

The set of system differential equations can be expressed as follows [50]-[51], 

�̇� = 𝑓(𝑥, 𝑉)           (2.31) 

and the set of algebraic equations as, 
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𝐼(𝑥, 𝑉) = 𝑌𝑁𝑉            (2.32) 

where x: state vector of the system, V: bus voltage vector, current injection vector, YN: 

bus admittance matrix and (𝑥𝑜 , 𝑉0) are the initial conditions. 

Although no expression for time appears explicitly in the previous equations, YN 

is a function of both voltage and time since certain time varying components such as 

transformer tap changes, phase shift angle controls, and topology are included in it. Also, 

the relation between I and x can be a function of time. Numerical integration alongside 

power flow analysis is usually used to solve the nonlinear dynamic equations in the time 

domain. 

2.8 Load Modeling 

Loads in transient stability studies are generally defined as active power consum-

ing devices connected to the network at bulk power delivery points. These devices are 

formed by aggregating a large number of load components and representing them as a 

single entity [58]-[59]. A load model is a mathematical representation that takes the volt-

age and possibly frequency as inputs and gives the load active and reactive power con-

sumption as its output [60]. In traditional power flow and steady state analysis studies, a 

single mathematical model that describes the behavior of these load components is as-

signed for each load aggregation. This grid-level approach has greatly reduced the com-

plexity associated with representing load in power system studies and made it possible to 

perform these computer studies within reasonable time and with acceptable accuracy 

[61]. 
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However, with the growing complexity of load behavior as a result of introducing 

new and more sophisticated load components, such as: solid state electronic devices, dis-

charge lighting, control and protection technologies, and motors, the grid-level represen-

tation approach previously mentioned appears to be missing out a significant amount of 

important details for the sake of simplifying the behavior of large number of different 

load devices into one single mathematical model. This negative aspect has started to sur-

face in the form of inconsistencies between simulation results using these simplified load 

models and the actual (measured) behavior of the system for certain events. The shortfall 

of simple load models is even more evident when delayed voltage recovery events and 

sustained depressed voltage magnitudes are investigated [58], [62]-[64]. 

As computer-based dynamic simulations have become an essential tool used by 

power system operators for planning purposes and to ensure operational security, the 

need for a different load representation that would provide more accurate results has be-

come more pressing [65]. This concern is magnified by the fact that power systems oper-

ating conditions are also changing and moving towards the edge of operational stability 

margins in order to satisfy the growing demand and to maximize profits [60]. Therefore, 

accurate DSA studies are needed to avoid possible costly outages and/or damages.              

  Despite the research conducted in the field of load modeling and the improve-

ments achieved, it is still considered a challenging and non-trivial problem due to the na-

ture of loads which can be described by the following [58], [60],[62]: 

 A large number of load components with highly diverse characteristics and be-

havior. 
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 Load composition and magnitude are constantly changing with time. The scope 

of time change here is within day, week, and season. This introduces a statistical 

characteristic for actual loads which makes it difficult to represent using deter-

ministic methods. 

 Lack of data describing the load since most of the load is located at the customer 

side which makes it inaccessible to electric utilities. 

 Lack of dynamic measurements, because artificial disturbances initiated by utili-

ties such as changing transformers tap settings, are too small to reveal the dis-

continuous nature of load behavior. On the other hand, uncontrolled large dis-

turbances could take place outside the loading conditions of interest. 

 In the distribution system, loads are connected with a myriad of continuous and 

discrete control and protection devices, which affect the load behavior signifi-

cantly under voltage and/or frequency disturbances. 

2.8.1 Load Model Requirements 

Before proceeding to the development of new load models, the requirements ex-

pected from these models should be determined. These requirements are extracted from 

the need for results with high accuracy levels for simulations and DSA studies. A suc-

cessful and effective load model should be able to [60]-[61]: 

 Capture and reproduce the behavior of aggregated load components when sub-

jected to practical variations in system voltage and/or frequency with an ac-

ceptable accuracy. This includes the ability of representing events such as: 
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voltage recovery delays, voltage collapse, and oscillations in transient and 

steady state time frame. 

 Represent rotating loads (motors) dynamically, which makes it capable of cap-

turing motor stalling conditions and their impact on voltage recovery. It should 

also capture the sensitivities of motor real and reactive power requirements 

with respect to applied voltage. 

 Represent the effect of components lost in the lumped loads such as: thermal 

protection devices, under-voltage contactors, distribution transformers and 

feeders, and shunt capacitors. 

However, the load model should not be overly complex or cause simulations to become a 

computational burden. The model should also be physically based, which makes it possi-

ble to derive the load model and modify it using information which is relatively easily 

obtained [60]. 

2.8.2 Static Composite Load Model 

More than one single static load model is needed to describe the behavior of load 

aggregation. This is due to the fact that different load components with different charac-

teristics were embodied into a single entity [58]-[59], [66]. Static composite load model 

was developed to represent the complex relation between power and voltage magnitude 

through an algebraic relation that combines the three different static load models (con-

stant impedance Z, constant current I, constant power P); hence, it is sometimes called 

ZIP model. 
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A polynomial equation is usually used to represent the composite static load mod-

el as: 

𝑃 = 𝑃0 (𝑃1 (𝑉
𝑉0

⁄ )
2

+ 𝑃2 (𝑉
𝑉0

⁄ ) + 𝑃3) (1 + 𝑎𝑝𝑓∆𝑓) (2.33) 

𝑄 = 𝑄0 (𝑄1 (𝑉
𝑉0

⁄ )
2

+ 𝑄2 (𝑉
𝑉0

⁄ ) + 𝑄3) (1 + 𝑎𝑞𝑓∆𝑓) (2.34) 

where 𝑉0 is the rated (or initial) voltage, 𝑃0 and 𝑄0 are the active and reactive power con-

sumed at 𝑉0, respectively. 𝑃1, 𝑃2, and 𝑃3 are coefficients that specify the portions of load 

that are represented as constant impedance, constant current, and constant power respec-

tively. The summation of these coefficients equals one. 𝑄1, 𝑄2, and 𝑄3 are the corre-

sponding reactive power coefficients. It can be noticed that a frequency dependency line-

ar term has been added to both equations to capture frequency change effect on power 

consumption response. ∆𝑓 is the deviation in frequency from nominal value, 𝑎𝑝𝑓 and 𝑎𝑞𝑓 

are the frequency sensitivity of active and reactive power, respectively. 

The polynomial model has limited flexibility in representing highly voltage sensi-

tive and nonlinear loads. For example the reactive power of discharge lighting is propor-

tional to voltage to the power four [67]. Therefore, an exponential model which provides 

more flexibility can be used. The exponential composite static model is represented as: 

𝑃 = 𝑃0 (𝑃1 (𝑉
𝑉0

⁄ )
𝑃𝑒1

+ 𝑃2 (𝑉
𝑉0

⁄ )
𝑃𝑒2

+ 𝑃3) (1 + 𝑎𝑝𝑓∆𝑓) (2.35) 

𝑄 = 𝑄0 (𝑄1 (𝑉
𝑉0

⁄ )
𝑄𝑒1

+ 𝑄2 (𝑉
𝑉0

⁄ )
𝑄𝑒2

+ 𝑄3) (1 + 𝑎𝑞𝑓∆𝑓) (2.36) 

where, Pe and Qe are the active and reactive power exponential coefficients, respectively. 
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2.8.3 Motor Modeling 

Rotating loads, which consist of all different types of motors, are mainly respon-

sible for the dynamic behavior loads exhibit during transients. Static models, however, 

are not able to capture these dynamics due to the high nonlinearity and discontinuity in 

motors behavior under depressed voltage levels. Motors can constitute around 72% of the 

total load [68], especially in areas with summer load peak where air conditioners (A/C) 

are intensively used. Most of the industrial load is also comprised of large motors. In ex-

treme cases, industrial motor loads can represent around 98% of the total load [69]. 

Therefore, with such high motor load penetration, motors dynamic behavior becomes 

very significant and important to capture in transient studies, especially in short term 

voltage stability analysis. Voltage recovery delay, or even collapse, following a fault is 

directly related to decelerating and stalling motors as will be explained next. Three phase 

induction motors and single phase A/C motors, which are discussed here, are the most 

commonly used motors, and have the largest impact over voltage stability [59], [63]. 

In steady state operation, the motor electrical torque is equal to the mechanical 

torque of the mechanical load connected to it. However, under voltage disturbance (usu-

ally depressed voltage magnitude due to a fault) the generated electrical torque is reduced 

depending on the voltage magnitude, since the electrical torque is proportional to the 

voltage squared. This state of non-equilibrium between electrical and mechanical torque 

will cause the motor to decelerate. The deceleration rate depends on the applied voltage 

level and on the mechanical load characteristics. Mechanical load torque can be either 

speed dependent, like fans and pumps, or constant, like reciprocating and rotary compres-

sors. Naturally, constant load torque will cause higher deceleration rate. During decelera-
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tion the slip will proportionally increase causing the motor to draw high current at low 

power factor. The increased consumption of reactive power is responsible for delaying 

the voltage recovery and can even result in a voltage collapse. If the fault is not cleared 

promptly, and there is not enough reactive power, motors will decelerate till they stall. 

The key factors in determining a motor active and reactive power response to voltage var-

iations are the inertia (motor and load shaft inertia) and rotor flux time constant [58]. 

Therefore, small motors with low inertia values, such as single phase A/C motors, tend to 

decelerate and stall faster than large motors. 

The dominant power consuming part of the single phase A/C units is the com-

pressor motor, which consumes up to 87% of the total unit consumption [62]. Therefore, 

this type of motors have to be modeled and considered in transient stability studies, espe-

cially in areas that have summer load peaks. Single phase A/C motors are prone to stall 

because of their low inertia and the mechanical characteristics of the compressor they 

drive [64], [70]; therefore, they are directly responsible for the delayed voltage recovery 

phenomenon. Under stall conditions (i.e. slip=100%) motors draw very high current with 

a very low power factor. Stall current magnitude is only determined by motors rated 

locked-rotor current and the applied voltage. In some cases this current can be as high as 

8.5 p.u. for residential A/C motors [70]. Under reduced voltage conditions the electrical 

torque will start to drop down causing the motor to decelerate. The motor will continue to 

decelerate until it is unable to overcome the pressure applied by the compressor, at this 

point the motor stalls. Usually single phase A/C motors stall if the voltage falls to be-

tween 50 – 65 % of nominal voltage for more than 3 cycles [71]. Stalling voltage depends 
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on other factors, such as: ambient temperature and humidity. Figure 2.3 shows the reac-

tive power consumption of a stalled A/C motor. 

 

Figure 2.3. Reactive Power Consumption of a Stalled Single Phase Induction A/C Motor. 

Stalled A/C motors can in some cases re-accelerate if the voltage recovers to a 

certain level (roughly above 70%). However, re-accelerating after stall condition depends 

on the type of compressor connected to the motor. Single phase A/C motors are also 

equipped with under-voltage and thermal relays which should be included in the model as 

they significantly affect the dynamic behavior of these motors. Thermal relays usually 

operate in response to the high current drawn during stall conditions. The time required 

for thermal relays to operate depends on the drawn current. Thermal tripping could hap-

pen for an individual unit or for a whole feeder that is supplying many stalled motors. 

Under-voltage protection contactors operate faster than thermal ones; under-voltage con-



47 

 

tactors open almost instantaneously at low voltages (35 – 45 %), and can reclose at volt-

ages above 50% [62].          

The characteristics of single phase A/C motors discussed above have significant 

impact on short term voltage stability analysis and must be included in the model. The 

controls and protection schemes should also be included in the load model since they 

control tripping and reconnecting the units. Laboratory tests and offline simulations have 

proved that conventional three phase induction motor model is not adequate to capture 

the dynamic response of single phase A/C motors [61], especially the stalling conditions. 

However, the steady state behavior of both motors is very similar and a three phase in-

duction motor can be suitable to capture the behavior of single phase A/C motor in steady 

state conditions. To include the stalling conditions, a fictitious shunt component is con-

nected in parallel with the motor to replace it with the locked-rotor impedance represent-

ing a constant impedance model. This approach is called “hybrid performance based 

modeling” [71]. 

2.8.4 Composite Load Model Structure 

The WECC developed an interim composite load model that was used for plan-

ning and operation studies in early 2002 [62]. This model was represented by 80% of 

load as static, and 20% as induction motor load. This interim model was unable to repre-

sent delayed voltage recovery events following a major transmission fault. Simulations 

using this interim model indicated instantaneous voltage recovery contrary to the real 

recorded event. Therefore, WECC formed a load modeling task force (LMTF) to improve 
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the interim model and develop a more accurate and comprehensive one.  The LMTF 

acknowledged the following factors in the improved composite load model: 

 The electrical distance between the point where the load is connected in simula-

tions (usually transmission or sub-transmission level) and the point where the 

physical load is connected (distribution level). Therefore, the improved model 

should include the network components such as: feeders and transformers im-

pedance, shunt devices, protection, and transformer taps. 

 Single phase A/C motors have significant impact on voltage stability and should 

be included in the new model explicitly since the induction motor model is not 

adequate to represent their characteristics. This will allow the new composite 

model to capture the dynamic behavior of these motors such as: decelerating, 

stalling, and tripping. 

 Induction motors vary widely in characteristics depending on size, number of 

phases and mechanical torque they drive. Therefore, the new model should dif-

ferentiate between the different types of induction motors. This provides more 

flexibility and accuracy in representing motor loads. 

Figure 2.4 shows LMTF proposed composite load model. 
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Figure 2.4. LMTF Proposed Composite Load Model 
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3. CONSTRAINT RELAXATIONS 

3.1 Overview 

System operators use energy market models to perform several procedures that 

are required to ensure that the energy demand in their control areas is satisfied reliably 

and economically. Security constrained unit commitment (SCUC), security constrained 

economic dispatch (SCED), and reliability unit commitment (RUC) are examples of these 

procedures. The electric power network is represented in these energy market models as a 

linear approximate DC system. This approximation is required in order to solve the opti-

mization problems associated with the energy market operations without incurring pro-

hibitive processing times and complexity. The constraint relaxation process, which is de-

fined as allowing certain constraints in the optimization problem to be violated for a set 

penalty price, is considered as a type of approximation. Similar to other approximations, 

operators use constraint relaxation mechanisms to achieve various gains, such as: facili-

tating the optimization solution and controlling locational marginal prices (LMPs) [72]. 

An analytical illustration of how constraint relaxations are incorporated in the optimiza-

tion problem and their direct effect on LMPs is presented in this chapter. Further discus-

sion on the potential benefits achieved by employing constraint relaxation mechanism is 

presented as well. 

3.2 Effect of Constraint Relaxations on LMPs 

One of the major motivations system operators have for applying constraint relax-

ations is the direct impact this mechanism has over LMPs. Previously, market models 
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were designed to use bid caps as the only means for limiting the LMPs throughout the 

system. Bid caps are the maximum prices independent power producers (IPPs) are al-

lowed to bid for their offered supply in the day-ahead market. However, the LMPs which 

are used to determine the different payments made to generators are not limited by bid 

caps. The following general optimization example illustrates the effect constraint relaxa-

tions have on the duals (LMPs) of the primary problem [73]. 

𝑚𝑖𝑛 𝑐1𝑥1 + 𝑐2𝑥2 
s.t. 

𝑎11𝑥1 + 𝑎12𝑥2 ≥ 𝑏1     (𝜆1) 

𝑎21𝑥1 + 𝑎22𝑥2 ≥ 𝑏2     (𝜆2) 

𝑥1 ≥ 0 

𝑥2 ≥ 0 

𝑚𝑎𝑥 𝑏1𝜆1 + 𝑏2𝜆2 
s.t. 

𝑎11𝜆1 + 𝑎21𝜆2 ≤ 𝑐1     (𝑥1) 

𝑎12𝜆1 + 𝑎22𝜆2 ≤ 𝑐2     (𝑥2) 

𝜆1 ≥ 0 

𝜆2 ≥ 0 

(3.1) 

 

The optimization problem represented by (3.1) represents the standard primal 

problem and its corresponding dual formulation for a general optimization problem 

where no constraint relaxations are allowed. The constraints in this representation can be 

relaxed by introducing the slack variables s1 and s2. The relaxed optimization problem 

and its dual formulation are presented in the following set of equations: 

𝑚𝑖𝑛 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑃1𝑠1 + 𝑃2𝑠2 
s.t. 

𝑎11𝑥1 + 𝑎12𝑥2 ≥ 𝑏1 − 𝑠1     (𝜆1) 

𝑎21𝑥1 + 𝑎22𝑥2 ≥ 𝑏2 − 𝑠2     (𝜆2) 

𝑥1 ≥ 0 

𝑥2 ≥ 0 

𝑠1 ≥ 0 

𝑠2 ≥ 0 

𝑚𝑎𝑥 𝑏1𝜆1 + 𝑏2𝜆2 
s.t. 

𝑎11𝜆1 + 𝑎21𝜆2 ≤ 𝑐1     (𝑥1) 

𝑎12𝜆1 + 𝑎22𝜆2 ≤ 𝑐2     (𝑥2) 

𝜆1 ≤ 𝑃1 (𝑠1) 

𝜆2 ≤ 𝑃2 (𝑠2) 

𝜆1 ≥ 0 

𝜆2 ≥ 0 

(3.2) 

 

Since there is a penalty price associated with each constraint violation, the penalty 

prices P1 and P2 are added to the objective function in order to limit the value and dura-

tion of these violations. When comparing the structure of non-relaxed and relaxed formu-
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lations in (3.1) and (3.2) respectively, it can be observed that the dual variables λ1 and λ2 

in the non-relaxed system have only a lower limit and can theoretically grow to any val-

ue. On the other hand, the dual variables in the relaxed formulation have upper bounds 

that are equal to the penalty prices. Therefore, it can be concluded that the upper limit of 

the dual variables (LMPs) can be directly enforced by relaxing the optimization problem 

constraints (node-balance) and defining the corresponding penalty prices. It should be 

noted here that different types of constraints could be relaxed including those variables 

that cannot be physically relaxed, such as node-balance. Such physically unrealizable re-

laxations are expected to serve the purpose of relaxation in the market model, while ap-

pearing as different types of violations in the physical system or disappearing as a result 

of the various approximations in the model. 

3.3 Constraint Relaxation Motivations 

In addition to controlling LMPs, system operators utilize a constraint relaxation 

mechanism as a measure to ensure that their market models produce acceptable and fea-

sible solutions. Attaining a feasible solution with good results can be a matter of concern 

because of the various approximations introduced in the energy market models. In such 

cases, constraint relaxations can be considered as corrective approximations that are re-

quired to avoid infeasibility or unrealistic solution values. Furthermore, the relatively 

high penalty price values associated with constraint relaxations imply substantial gains in 

social welfare in the event of a slight constraint violation. This is the result of introducing 

a significantly high penalty price for each constraint violation regardless of the magnitude 

of that violation.  
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4. METHODOLOGY AND RESULTS 

4.1 Introduction 

Constraint relaxations, by definition, mean that certain security, operational, or fi-

nancial constraints are allowed to be violated in the energy market models for a pre-

determined penalty price. Some of these relaxations are physically unrealizable, such as 

the node balance constraints. Other relaxations, however, are physically achievable, such 

as branches thermal limits and, therefore, could appear in the AC real-time system as ac-

tual violations. Even physically unrealizable relaxations could appear in the real-time sys-

tem as violations in other forms since these relaxations are a form of approximation. 

Therefore, in order to assess the true risk associated with allowing certain constraints to 

be relaxed, the impact of these relaxations on real-time system performance was investi-

gated. Capturing the impact of constraint relaxations on real-time system performance 

provides operators with a better understanding on how relaxations in the energy market 

models are translated into physical violations. This information can be used not only to 

assess the criticality of constraint relaxations, but also as a basis for determining penalty 

prices more accurately. In this chapter power system performance criteria are presented 

and defined. The methodology of the analysis conducted is discussed, followed by the 

results. 

4.2 Power System Performance Definition 

Power system performance is defined by the following concepts: 
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 Reliability: NERC defines power system reliability as: “the degree to which the 

performance of the elements of that system results in power being delivered to 

consumers within accepted standards and in the amount desired. The degree of re-

liability may be measured by the frequency, duration, and magnitude of adverse 

effects on consumer service” [74]. Hence, power system reliability can be regard-

ed as the probability of satisfactory operation over an extended time period. 

 Security: power system security is related to the robustness of the system follow-

ing imminent disturbances (contingencies). NERC defines power system security 

as the degree of risk in the power system ability to withstand sudden disturbances 

such as short circuit faults or the loss of major components, without interruption 

of customer service. Security, therefore, depends on the system operating condi-

tions as well as the probability of contingent events [21]. 

 Stability: power system stability can be defined as “the ability of an electric pow-

er system, for a given initial operating condition, to regain a state of operating 

equilibrium after being subjected to a physical disturbance, with most system var-

iables bounded so that practically the entire system remains intact” [21]. Power 

system stability depends on the severity and the physical nature of contingent 

events as well as the system operating conditions. 

Power system performance aspects (reliability, security, and stability) are interre-

lated as all of them refer to system robustness and satisfactory operation. For instance, a 

power system cannot be considered reliable if it is insecure and it cannot be considered 

secure if it is unstable. Hence, reliability is the overall objective in power system plan-

ning and operation because it spans long period of time and comprises all other aspects. 
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The distinction between power system security and stability is that security is more gen-

eral, as it factors in the probability of contingent events. Power system security also ac-

counts for contingencies that are not classified as stability events, such as equipment fail-

ure or sabotage. Power system security also considers post-contingency operating condi-

tions, such that a system could be stable following a contingency but insecure due to 

post-contingency overloads or voltage violations. 

4.3 Power System Performance Analysis and Results 

In this section, a detailed description of the test cases used to conduct this work is 

provided. Also the analysis methodology used to investigate the impact of constraint re-

laxations on real-time system overall operational security along with the results are pre-

sented. 

4.3.1 Test Case Description 

In order to capture the direct effect of constraint relaxations on system security 

and reliability as well as on related energy market aspects, the constraint relaxations pro-

cess practiced by system operators was replicated using two test cases: the RTS-96 test 

case [75] and the PJM system. The RTS-96 test case was chosen for this part of the anal-

ysis because of the significant number of generators in this test case, which provide a 

suitable platform for studies related to this type of work such as security constrained unit 

commitment, security constrained economic dispatch and optimal power flow (ACOPF 

and PSCOPF). The RTS-96 test case is comprised of three identical areas where each ar-
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ea is connected to the other two areas (ring configuration). Table 4.1 shows the overall 

RTS-96 test case components. 

Table 4.1. RTS-96 System Components. 

Component Number 

Areas 3 

Buses 73 

Generators 99 

Shunts 3 

Lines 104 

Transformers 16 

Load Aggregations 51 

Max. Load (MW) 9405 
 

The PJM test case is a large-scale real-life system. PJM provided hourly detailed 

power flow and dynamic data for one week in July 2013. The provided data includes PJM 

control areas as well as the neighboring areas. Representing neighboring areas is required 

in this type of analysis in order to capture the power transfers between PJM control areas 

and other areas, as well as the dynamics of neighboring areas that could affect PJM con-

trol areas. PJM also provided their market data for that week, which was used in this 

work to obtain market solutions based on realistic and practical bidding data. Table 4.2 

lists the overall components of PJM control areas as well as the neighboring areas. It 

should be noted here that the topology of the PJM test case changes from one time period 

to another. 

For each test case, market SCUC solutions were obtained and used as starting 

points to represent the AC real-time system. This process was conducted twice, once with 

no constraint relaxations and another time allowing certain constraints to be relaxed. This 

approach facilitated the comparison between the two different scenarios while ensuring 

high consistency between them. PSS/E ACOPF [41] was used to obtain a base-case AC 
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feasible solution that is as close as possible to the market solution. Therefore, the same 

economic data and constraints used in the energy market models were used in ACOPF. 

Running ACOPF provided an accurate and consistent transition from the dispatch sched-

ules generated by the DC market models to an AC feasible solution. Losses were distrib-

uted in an economic manner rather than being picked up by the slack bus. Other controls, 

such as scheduled voltages, transformers tap settings, and switched shunts, were adjusted 

optimally as well. 

Table 4.2. PJM System Components (Peak Hour). 

Component PJM Neighboring areas 

Areas 24 24 

Buses 10150 5128 

Generators 1682 1185 

Shunts 810 786 

Lines 8653 5899 

Transformers 4201 1999 

Load Aggregations 8101 3764 

Max. Load (MW)  144340 134974 

 

The output of the ACOPF is a base-case AC feasible system. However, this is not 

always the case because some cases needed out-of-market corrections to overcome AC 

infeasibility. Usually AC infeasibilities are voltage related since voltage and reactive 

power are not represented in DC energy market models. In order to achieve AC feasibil-

ity with the least number of out-of-market corrections, a limited number of generators 

were turned on in areas that were causing infeasibility. It should be noted that more out-

of-market corrections were needed for cases with constraint relaxations. This can be ex-

plained by the lower number of committed generating units compared to cases with no 

constraint relaxations that resulted in less reactive power availability. In order to assess 
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the impact of constraint relaxations on overall system performance, several static and 

time-domain studies were conducted, as will be presented in the following discussion. 

4.3.2 Static Analysis and Results (RTS-96) 

Since the goal here is to capture the impacts of constraint relaxations on real-time 

system performance, constraint relaxations that are physically realizable were allowed to 

appear as actual violations in the AC system. This approach also ensured that the cases 

with relaxed constraints have the least amount of out-of-market corrections and are as 

close as possible to market SCUC solutions. However, for cases that do not have con-

straint relaxations, PSS/E ACOPF and PSCOPF were both used to obtain AC feasible 

base-case and post-contingency solutions, which resulted in feasible and N-1 secure cases 

that were used as benchmarks to compare with corresponding cases with relaxed con-

straints. 

Several modifications were made to the RTS-96 test case throughout this work. 

Some modifications such as increasing the original loads by 10%, de-rating the transmis-

sion lines thermal capacity by 10%, and tripping the HVDC line were made in order to 

stress the system and, therefore, obtain appropriate constraint relaxations. Other modifi-

cations consisted of enabling transformers tap setting adjustments and adding switched 

shunts in order to introduce more control capabilities within the system that will be used 

in the succeeding steps to ensure a secure base-case and N-1 operating conditions. 

Static analysis was used to investigate base-case and post-contingency line flows 

and bus voltage violations. Table 4.3 lists the market relaxations and their corresponding 

violations in the AC real-time system. It should be noted that the relaxed lines (line IDs 
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25, 65, and 104) shown in Table 4.3 are identical lines since the RTS-96 test case is com-

prised of three identical areas, and each one of them is in a different area. Those relaxed 

lines are major transmission lines that connect between several generating units and large 

load pockets. 

Table 4.3. RTS-96 AC Line Flow Violations. 

Time period Relaxed line ID 
DC flow % 

(market solution) 

AC flow % 

(real-time solution) 

7:00 
65 110.3% 116.9% 

104 104.5% 108.2% 

8:00 104 105.0% 111.0% 

22:00 25 103.2% 105.1% 

23:00 
65 108.3% 115.8% 

104 105.4% 110.8% 

 

From Table 4.3, it can be seen that all line flow relaxations in the market solution 

have appeared as actual flow violations in the AC real-time system. It can be also noticed 

that the AC violations are higher in magnitude than corresponding market relaxations. 

Discrepancies between DC and AC solutions are expected since the DC market solution 

is approximate. For instance, reactive power flow and thermal losses are not represented 

in the DC market model and, therefore, line flows are most likely to be higher in the AC 

system. However, this is not always the case. In large scale complicated cases, the rela-

tionship between DC and AC line flows cannot be deduced intuitively as will be shown 

in the PJM test case. 

Table 4.4 shows the number of voltage violations corresponding to the relaxed 

cases shown in Table 4.3. A bus voltage is considered in violation if it falls outside the 

tolerance range of 0.95 – 1.05 p.u. Table 4.4 also shows the number of committed genera-

tors for the relaxed cases and the corresponding non-relaxed cases. The number of addi-
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tional generators needed to make the non-relaxed market solution feasible and N-1 secure 

is also displayed; hence, no voltage violations are present. From Table 4.4 it can be seen 

that the cases (time periods) with more relaxations (hours 7:00 and 23:00) tend to have 

more voltage violations compared to cases with fewer relaxations. It can also be noticed 

that relaxed cases usually have fewer number of committed generators compared to cases 

with no relaxations, which explains voltage violations due to reactive power deficiency. It 

should be noted here that all voltage violations listed in Table 4.4 are low voltage viola-

tions. 

Table 4.4. RTS-96 Voltage Violations and Out-Of-Market Corrections. 

Time 

period 

Relaxed No relaxations 

Committed 

generators 

Voltage 

violations 

Committed generators 

(market) 

Added generators 

(out-of-market) 

7:00 56 6 58  4 

8:00 64 5 65  1 

22:00 63 2 63  0 

23:0 55 6 59  1 

 

From the results in Table 4.3 and Table 4.4, it is apparent that cases with relaxed 

constraints sustained both line flow and bus voltage violations in the base-case. The next 

and final step in RTS-96 static analysis is to investigate the impact of constraint relaxa-

tions on post-contingency line flow and bus voltage violations. The post-contingency op-

erating conditions were determined by running an exhaustive N-1 contingency analysis. 

Post-contingency analysis was conducted for cases with constraint relaxations and for 

their corresponding non-relaxed cases. Table 4.5 summarizes the post-contingency re-

sults. 
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Table 4.5. RTS-96 Post-Contingency Violations. 

Time 

period 

Relaxed 

Voltage 

violations 

Line flow 

violations 

Unsolved con-

tingencies 

7:00 62 13 9 

8:00 14 9 5 

22:00 26 7 1 

23:00 22 8 15 

 

For post-contingency analysis, the bus voltage tolerance range is 0.90 – 1.10 p.u. 

Also, line emergency thermal limits (Rate-C) were used. As can be seen in Table 4.5 

there are a significant number of post-contingency violations and, therefore, the relaxed 

cases are not secure without out-of-market corrections. Unsolved contingencies indicate 

that the power flow for some contingencies was not successfully solved, usually because 

of excessive reactive power mismatches. Consequently, there were additional violations 

that were not reported due to those unsolved contingencies. Additionally, special atten-

tion was given to the relaxed lines, i.e. the lines with AC line flow violations in the base-

case, since those lines were already overloaded. Table 4.6 shows the post-contingency 

power flow on those relaxed lines. 

Table 4.6. RTS-96 Post-Contingency Relaxed Lines Flows. 

Time 

period 

Relaxed line 

ID 

Post-contingency AC flow % 

Relaxed No relaxation 

7:00 
65 103.0% 98.7% 

104 115.6% 96.8% 

8:00 104 116.6% 94.5% 

22:00 25 109.5% 100% 

23:00 
65 103.2% 99.3% 

104 118.0% 99.9% 

 

Table 4.6 shows that the relaxed lines were vulnerable to high flow violations fol-

lowing certain contingencies. Similar to Table 4.5, emergency thermal limits are used in 
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Table 4.6, which also lists the flows on the same lines for cases with no relaxations. As 

expected, there were no post-contingency violations for those cases since they were N-1 

secured. 

4.3.3 Dynamic Analysis and Results (RTS-96) 

Following the RTS-96 test case static analysis, the dynamic behavior of the relaxed 

cases was investigated and compared to corresponding cases with no relaxations. The 

original RTS-96 dynamic data only consisted of classical machine models. Therefore, 

realistic and detailed dynamic data was created and used for this analysis. The detailed 

dynamic data included synchronous machine models, exciter models and governor mod-

els. Each generator size and type were considered throughout this dynamic modeling pro-

cess. Time periods 8:00 and 23:00 were chosen for this analysis since the post-

contingency line flow violations were the highest in those time periods as shown in Table 

4.6. The sequence of contingent events was started by placing a three-phase fault at one 

terminal of the line that corresponds to the contingency causing the relaxed lines to be 

overloaded. After 5 cycles the fault was cleared and the first line was tripped. After one 

second, the overloaded relaxed line was tripped. This sequence of events represents an N-

2 contingency. The same process was repeated for the non-relaxed cases and rotor angles 

of the most affected generators were plotted and compared. Figure 4.1 and Figure 4.2 

show the relative rotor angle plots for the relaxed and non-relaxed cases, respectively, for 

time period 8:00. 
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Figure 4.1. RTS-96 Rotor Angles – Time Period 8:00 (Relaxed). 

 

Figure 4.2. RTS-96 Rotor Angles – Time Period 8:00 (No Relaxations). 
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Figure 4.1 and Figure 4.2 show the relative rotor angle plots for generating units 42 and 

46, which were most affected by the imposed contingency. Despite the sustained oscilla-

tions in both cases, which indicate poor damping, it can be noticed that the oscillations in 

the relaxed case have higher magnitudes compared to the non-relaxed case. Although 

both cases are considered stable, the higher oscillations imply that the relaxed case is 

more prone to stability problems. The same analysis was conducted for time period 

23:00. Relative rotor angle plots are shown in Figure 4.3 and Figure 4.4 for the relaxed 

and non-relaxed cases respectively. 

 

Figure 4.3. RTS-96 Rotor Angels – Time Period 23:00 (Relaxed). 
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Figure 4.4. RTS-96 Rotor Angles – Time Period 23:00 (No Relaxations). 

Figure 4.3 and Figure 4.4 show the relative rotor angle plots for generating units 

40 and 43 were most affected by the imposed contingency. Similar to time period 8:00, 

higher oscillations were observed in the relaxed case compared to the non-relaxed case 

for time period 23:00. The higher oscillations are not an exclusive result of constraint re-

laxations from the proposed market solution. Out-of-market corrections that directly af-

fect operating conditions also have an impact on the dynamic behavior of the cases under 

study. 

It was also desired to investigate the dynamic voltage profiles of the relaxed cases 

following a large disturbance. A full N-1 contingency analysis was conducted for the re-

laxed cases in order to identify the contingencies causing the most severe post-

contingency voltage violations. Table 4.7 shows the contingencies resulting in the most 

severe voltage violations along with the post-contingency voltage and affected buses. 
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Table 4.7. RTS-96 Post-Contingency Voltage Violations. 

Time period Contingency ID 
Lowest voltage 

bus ID 
Voltage p.u. 

Voltage base 

kV 

7:00 57 207 0.74 138 

23:00 103 307 0.77 138 

 

For each time period listed in Table 4.7, time-domain dynamic analysis was con-

ducted to investigate the dynamic post-contingency voltage profiles. A three-phase fault 

was placed at one terminal of the lines corresponding to the contingencies shown i n Ta-

ble 4.7. After 5 cycles, the fault was cleared and the line was tripped, resulting in the 

post-contingency low voltage violations shown. The analysis was conducted for the cases 

with no relaxations as well in order to demonstrate the differences between the two sce-

narios. Figure 4.5 and Figure 4.6 show the voltage plots for the relaxed and non-relaxed 

cases respectively for time period 7:00. 

 

Figure 4.5. Bus ID 207 Voltage Profile – Time Period 7:00 (Relaxed). 
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Figure 4.6. Bus ID 207 Voltage Profile – Time Period 7:00 (No Relaxation). 

Figure 4.5 and Figure 4.6 show a significant difference in voltage magnitude be-

tween the relaxed and non-relaxed cases. It can be noticed that bus ID 207 had a base-

case low voltage violation in the relaxed case and it sustained an even lower voltage fol-

lowing the imposed contingency. On the other hand, there were no voltage violations in 

the non-relaxed case since it was N-1 secured. Figure 4.7 and Figure 4.8 show the voltage 

plots for the relaxed and non-relaxed cases, respectively, for time period 23:00. 
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Figure 4.7. Bus ID 307 Voltage Profile – Time Period 23:00 (Relaxed). 

 

Figure 4.8. Bus ID 307 Voltage Profile – Time Period 23:00 (No Relaxation). 



69 

 

Similar to time period 7:00, Figure 4.7 shows that the relaxed case for time period 

23:00 had a sustained depressed voltage profile following the imposed contingency with 

base-case low voltage violation as well. On the other hand, Figure 4.8 shows normal 

base-case and post-contingency voltage magnitudes for the non-relaxed case. The voltage 

plots presented in Figure 4.5 - Figure 4.8 indicate reactive power deficiency in the re-

laxed cases compared to cases with no relaxations for both time periods. This difference 

in reactive power availability is due to the larger number of committed generators in the 

non-relaxed cases as a result of the market solution as well as the out-of-market correc-

tions as shown in Table 4.4. 

4.3.4 Static Analysis and Results (PJM) 

PJM test case performance was investigated in a similar manner to RTS-96. How-

ever, due to the size and complexity of PJM test case and the lack of specialized com-

mercial tools, only two time periods (hours) were investigated. An off-peak and on-peak 

time periods were chosen to represent light and heavy load conditions respectively. Re-

laxed market SCUC solutions for those two time periods along with their corresponding 

non-relaxed cases were used as starting points to achieve an AC feasible solution. How-

ever, for the PJM test case out-of-market corrections were required for all cases (relaxed 

and non-relaxed) as a first step to obtain a successful power flow. Intensive out-of-market 

correction analyses using PSS/E ACOPF and PSCOPF were conducted on the non-

relaxed cases to achieve AC feasibility and N-1 security. On the other hand, limited out-

of-market corrections were applied to the relaxed cases in order to sustain the line relaxa-

tions in the real-time system and keep the final solution as close as possible to the market 
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solution. Table 4.8 lists the market relaxations and their corresponding violations in the 

AC real-time system. 

Table 4.8. PJM AC Line Flow Violations. 

Time period Line ID 
DC flow % 

(market solution) 

AC flow % 

(real-time solution) 

Off-peak 

878 159% 140% 

1464 252% 252% 

4605 106% 97% 

4649 102% 96% 

5020 103% 96% 

9048 No relaxation 101% 

9049 No relaxation 101% 

10519 117% 130% 

11115 109% 110% 

11255 129% 102% 

On-peak 

190 101% 92% 

878 210% 187% 

1464 148% 87% 

1703 101% 107% 

3460 No relaxation 106% 

5020 No relaxation 101% 

5590 No relaxation 102% 

6470 107% 99% 

7318 No relaxation 105% 

7557 108% 101% 

9965 105% 104% 

10519 118% 143% 

11001 101% 106% 

11049 No relaxation 106% 

11111 No relaxation 106% 

11255 109% 109% 

 

From Table 4.8, it can be seen that not all AC line flow violations were originated 

from the market solution as constraint relaxations and, equally, not all line relaxations in 

the market solution were realized as actual AC line flow violations in the real-time sys-

tem. This discrepancy between market solution and actual AC solution is expected since 

the DC market models contain several approximations, which include neglecting thermal 

losses and reactive power. For large-scale systems such as the PJM test case, the effect of 
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these approximations is more evident compared to small test systems such as RTS-96. 

However, Table 4.8 shows that AC line flow violations that are not associated with mar-

ket relaxations tend to have relatively small magnitudes compared to the lines that were 

relaxed in the market solution. It can also be noticed that line relaxations in the market 

models most likely will appear as AC flow violations in real-time. 

Table 4.9 shows the number of voltage violations in the relaxed cases shown in 

Table 4.8. A bus voltage is considered in violation if it falls outside the tolerance range of 

0.90 – 1.10 p.u. It also shows the number of committed generators for the relaxed cases 

and the corresponding non-relaxed cases. The number of additional generators needed to 

make the non-relaxed market solution feasible and N-1 secure is also displayed; hence, no 

voltage violations are present. 

Table 4.9. PJM Voltage Violations and Out-Of-Market Corrections. 

Time period 

Relaxed No relaxations 

Committed gen-

erators (market) 

Added 

generators 

Voltage 

violations 

Committed gen-

erators (market) 

Added 

generators 

Off-peak 1395 17 60 1445 63 

On-peak 1837 26 52 1935 84 

 

As shown in Table 4.9, 17 and 26 out-of-market generators had to be turned on in 

the relaxed off-peak and peak time periods, respectively, to attain a base-case AC feasible 

solution. Base-case voltage violations were found in both relaxed time periods. It should 

be noted here that most of the voltage violations in the off-peak case are high voltage vio-

lations. A greater number of generators had to be turned on in the non-relaxed off-peak 

and peak time periods (63 and 84 generators respectively) to attain AC feasible and N-1 

secure cases. Similar to the RTS-96 test case, the PJM relaxed solutions had fewer com-

mitted generators compared to their corresponding non-relaxed cases. 
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For N-1 contingency analysis, line flow violations, voltage violations, and un-

solved contingencies were reported in the relaxed cases. Table 4.10 presents the post-

contingency flows on the lines that had originally base-case flow violations. 

Table 4.10. PJM Post-Contingency Relaxed Lines Flows. 

Time period 
Relaxed line 

ID 

Post-contingency AC flow % 

Relaxed No relaxation 

Off-peak 

878 175% 100% 

1464 315% 98% 

10519 285% 100% 

11115 97% 38% 

11255 120% 42% 

On-peak 

878 234% 100% 

1703 102% 73% 

7557 104% 87% 

9965 86% 84% 

10519 380% 100% 

11001 115% 22% 

11255 140% 60% 

 

As can be seen from Table 4.10, relaxed lines had significant post-contingency 

flow violations. Table 4.10 also shows that there were no post-contingency flow viola-

tions in the non-relaxed cases, as they were N-1 secure. Therefore, relaxed lines with AC 

flow violations were more vulnerable to excessive post-contingency flow violations. It 

should be noted here that the N-1 analysis included lines that have a voltage base of 138 

kV and above. Moreover, post-contingency thermal ratings (Rate-C) were used to con-

duct the post-contingency analysis.  

In order to assess the reactive power sufficiency and availability, Q/V analysis 

was conducted. Q/V analysis provides an informative tool to compare reactive power 

availability between relaxed and non-relaxed cases and can also be used as a tool to esti-

mate the reactive power injection needed in order to obtain a local desired voltage level. 
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Therefore Q/V curves can be used for both voltage stability indication purposes, and 

shunt compensation sizing. A 13.8 kV bus that is directly connected to the 138 kV level 

through a transformer was chosen to conduct this analysis. This bus was chosen because 

it suffered from a significantly depressed voltage magnitude (around 0.82 p.u.). The 

PSS/E Q/V analysis tool places a fictitious synchronous condenser with unlimited reac-

tive power capability at the test bus, and the voltage magnitude is varied from 0.9 p.u. to 

1.1 p.u. in 0.02 p.u. steps. This process was applied to the base-case as well as to the N-1 

post-contingency operating conditions. The same analysis was conducted for cases with 

no relaxations. Figure 4.9 and Figure 4.10 show the base-case Q/V curves for relaxed and 

non-relaxed cases, respectively. 

 

Figure 4.9. Base-Case Q/V Curve (Relaxed). 
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Figure 4.10. Base-Case Q/V Curve (No Relaxation). 

As can be seen from Figure 4.9 and Figure 4.10, more reactive power was needed 

in the relaxed case to obtain the various voltage magnitudes at the test bus. Figure 4.9 

shows that around 138 MVAR were needed to obtain a 1.0 p.u. voltage in the relaxed 

case while in Figure 4.10, only 26 MVAR were needed to obtain the same voltage level 

in the case with no relaxations. This result clearly implies less reactive power availability 

in the relaxed case compared to the case with no relaxations, which makes the relaxed 

case more prone to voltage stability issues. Figure 4.11 and Figure 4.12 extend the Q/V 

analysis to post-contingency operating conditions in order to investigate the effect of re-

active power availability on the system following a contingency. 

Table 4.9 shows the number of voltage violations in the relaxed cases shown in 

Table 4.8. A bus voltage is considered in violation if it falls outside the tolerance range of 

0.90 – 1.10 p.u. It also shows the number of committed generators for the relaxed cases 

and the corresponding non-relaxed cases. The number of additional generators needed to 
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make the non-relaxed market solution feasible and N-1 secure is also displayed; hence, no 

voltage violations are present. 

 

Figure 4.11. Post-Contingency Q/V Curve (Relaxed). 

 

Figure 4.12. Post-Contingency Q/V Curve (No Relaxation). 
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4.3.5 Dynamic Analysis and Results (PJM) 

The test case provided by PJM included detailed dynamic models data that were 

used to investigate the dynamic behavior of the PJM test case. Similar to the static analy-

sis presented here, dynamic analysis was conducted on the relaxed cases and the corre-

sponding cases with no relaxations in order to show the impact of relaxations on system 

dynamics. Rotor angle stability following a large disturbance was first checked. A full N-

1 contingency analysis was conducted for the relaxed peak time period (on-peak hour) 

and the contingencies were ranked according to their severity and impact on the relaxed 

lines. The peak time period was chosen to conduct this type of analysis since it has more 

stressed operating conditions and is more likely to witness stability problems. The three 

most severe contingencies that appear in Table 4.10 were chosen for this analysis, as 

shown in Table 4.11. 

Table 4.11. PJM Post-Contingency Flow Highest Violations. 

Contingency ID  
Relaxed line 

affected ID 

Voltage 

base kV 

Post-contingency 

flow % 

710 878 230 234% 

4592 10519 500 380% 

5006 11255 138 140% 

 

It should be noted here that the contingencies shown in Table 4.11 are all single 

line loss events. A sequence of contingent events was initiated in order to exploit those 

contingencies and examine the system dynamic post-contingency response. A three-phase 

fault was first placed at one terminal of the lines corresponding to the contingencies 

shown in Table 4.11. After 5 cycles the fault was cleared and the line was tripped result-

ing in the post-contingency flows shown in Table 4.11. After 1 second the relaxed line 
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with the excessive post-contingency flow was tripped. Therefore, this series of events can 

be considered an N-2 contingency. The same contingencies were also applied to the cases 

with no relaxations and results were compared. Figure 4.13 and Figure 4.14 show the ro-

tor angle plots for the most affected generators for the relaxed and non-relaxed, respec-

tively, following contingency 710 (Table 4.11). It should be noted that all considered 

contingencies here represent transmission line outages. 

 

Figure 4.13. Rotor Angles Following Contingency 710 (Relaxed). 
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Figure 4.14. Rotor Angles Following Contingency 710 (No Relaxation). 

Figure 4.13 and Figure 4.14 show that the system is stable following the sequence 

of contingent events for relaxed and non-relaxed cases. However, it can be seen that the 

oscillations for rotor angles in the relaxed case are higher compared to the non-relaxed 

case. Moreover, the settling time is larger for the relaxed case. This indicates that alt-

hough both systems are stable, the relaxed case is closer to its stability margins and is 

more likely to suffer from stability related problems. Figure 4.15 – Figure 4.18 show the 

same analysis for contingencies 4592 and 5006. 
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Figure 4.15. Rotor Angels Following Contingency 4592 (Relaxed). 

 

Figure 4.16. Rotor Angles Following Contingency 4592 (No Relaxation). 
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Figure 4.17. Rotor Angles Following Contingency 5006 (Relaxed). 

 

Figure 4.18. Rotor Angles Following Contingency 5006 (No Relaxation). 
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The same dynamic response trend observed in contingency 710 was repeated in 

the other two contingencies. It can be seen from Figure 4.15 – Figure 4.18 that the magni-

tude of the oscillations and settling time were higher for relaxed cases compared to cases 

with no relaxations. However, this dynamic response is not an exclusive result of con-

straint relaxations. The particular operating conditions of the test cases are what deter-

mine the difference in post-contingency dynamic behavior between relaxed and non-

relaxed cases. Moreover, out-of-market corrections affect operating conditions and, there-

fore, will also affect the post-contingency dynamic behavior. 

A similar analysis was conducted to assess the dynamic post-contingency voltag-

es. A full N-1 contingency analysis was conducted for the same relaxed peak time period 

(on-peak hour) and the contingencies that caused post-contingency low voltages were 

ranked according to their severity. The three most severe contingencies are listed in Table 

4.12. 

Table 4.12. PJM Post-Contingency Lowest Voltages. 

Contingency no.  Lowest voltage bus ID Voltage p.u. Voltage base kV 

2427 546 0.82 138 

5471 436 0.83 138 

1941 1166 0.87 138 

 

For each contingency listed in Table 4.12, time-domain dynamic analysis was 

conducted to investigate the dynamic post-contingency voltage profiles. A three-phase 

fault was placed at one terminal of the lines corresponding to the contingencies shown in 

Table 4.12. After 5 cycles, the fault was cleared and the line was tripped, resulting in the 

post-contingency low voltage violations shown. The analysis was conducted for the case 

with no relaxations as well in order to point out the differences between the two scenari-
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os. Figure 4.19 and Figure 4.20 show the voltage plots of the most affected buses corre-

sponding to contingency 2427 for the relaxed and non-relaxed cases, respectively. 

 

Figure 4.19. Voltage Profiles Following Contingency 2427 (Relaxed). 
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Figure 4.20. Voltage Profiles Following Contingency 2427 (No Relaxation). 

Figure 4.19 indicates post-contingency voltage violation, as the voltage is 0.82 

p.u. as shown in Table 4.12 as well. On the other hand, Figure 4.20 shows that the volt-

age for the same bus following the same contingency in the non-relaxed case is approxi-

mately 0.9 p.u. This result is expected since the non-relaxed case is N-1 secure. The same 

analysis was conducted for the other two contingencies listed in Table 4.12. Figure 4.21 - 

Figure 4.24 show the corresponding voltage plots for relaxed and non-relaxed cases. 
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Figure 4.21. Voltage Profiles Following Contingency 5471 (Relaxed). 

 

Figure 4.22. Voltage Profiles Following Contingency 5471 (No Relaxation). 
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Figure 4.23. Voltage Profiles Following Contingency 1941 (Relaxed). 

 

Figure 4.24. Voltage Profiles Following Contingency 1941 (No Relaxation). 
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Figure 4.21 - Figure 4.24 show that in the relaxed cases the voltage sustained de-

pressed values (less than 0.9 p.u.) following certain severe contingencies. On the other 

hand, there were no post-contingency steady state voltage violations in the non-relaxed 

cases as the final voltage value was higher than 0.9 p.u. for all tested contingencies. The 

provided PJM dynamic models data does not include dynamic load models; thus, the 

voltage recovers instantaneously following the fault clearance. The depressed voltage 

magnitudes in the relaxed cases compared to the cases with no relaxations imply reactive 

power deficiency in those cases. The dynamic voltage analysis conducted here confirms 

the Q/V analysis results shown in the static analysis part. Reactive power deficiency in 

the relaxed case can be directly related to the relatively smaller number of committed 

generators compared to non-relaxed cases. Moreover, the non-relaxed cases were subject 

to intensive out-of-market corrections that resulted in increasing the number of commit-

ted generators. 

4.3.6 PJM Voltage Stability - Dynamic Load Models 

In order to achieve more accurate and realistic voltage stability analysis results, 

the loads in the PJM system were dynamically modeled. Figure 4.19 - Figure 4.24 show 

instantaneous voltage recovery as well as final voltage magnitudes that are identical to 

static results shown in Table 4.12, which is expected since static load models were used. 

Constant current and constant impedance models were used to represent the load active 

and reactive power parts, respectively. Dynamic models were used in this work to con-

duct further voltage stability analysis in order to investigate the impacts of reactive power 

deficiency caused by constraint relaxations on a real system that includes realistic dynam-



87 

 

ic loads such as the PJM system. Moreover, as discussed in Section 2.8, motor loads have 

significant impact on voltage stability, especially under low voltage conditions. 

A recent dynamic load modeling document released by PJM Planning Committee 

[76], was used to provide guidance on PJM dynamic load models requirements and the 

commercial models under consideration. According to [76], the main objective of dynam-

ic load modeling efforts is to capture the dynamic behavior of complex and induction mo-

tor loads during peak load hours. PSS/E complex load model (CLODxx) [41], is identi-

fied as a robust, commonly used, and adequate model to be used in the PJM system, 

while more detailed models can be added if necessary [76]. CLODxx model as shown in 

Figure 4.25 [41], is capable of modeling different motor sizes, discharge lighting, static 

loads (ZIP), as well as electrical distance parameters (feeder and transformer). 

 

Figure 4.25. PSS/E Complex Load Model (CLODxx) [41].  

The parameters of any dynamic load model, depend on the classes and composi-

tion of the load under consideration. Therefore, it is not uncommon for utilities and oper-

ators to use different parameters for different areas within their own system. Load data 
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from various operators indicate that motor loads can comprise around 50% the total load 

during peak load hours [77]-[79]. A mix of residential and commercial load classes was 

assumed in this work, as the load pockets are relatively small and distributed in the areas 

used for voltage stability analysis. Several time domain simulation were conducted to test 

different motor load penetration levels. However, it was noticed that in relaxed cases 

which have reactive power deficiency, loads with high motor penetration levels (50%) 

resulted in voltage collapse. Therefore, small motors and large motors were modeled as 

30% and 10% of total load, respectively. 

Same PJM voltage stability analysis, which was conducted previously, was re-

peated after dynamic load models were included. For each contingency listed in Table 

4.12, time-domain dynamic analysis was conducted to investigate the dynamic post-

contingency voltage profiles. A three-phase fault was placed at one terminal of the lines 

corresponding to the contingencies shown in Table 4.12. After 5 cycles, the fault was 

cleared and the line was tripped, resulting in the post-contingency low voltage violations 

shown. The analysis was conducted for the case with no relaxations as well in order to 

point out the differences between the two scenarios. Figure 4.26 and Figure 4.27 show 

the voltage plots of the most affected buses corresponding to contingency 2427 for the 

relaxed and non-relaxed cases, respectively. 
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Figure 4.26. Voltage Profiles Following Contingency 2427 (Relaxed). 

 

Figure 4.27. Voltage Profiles Following Contingency 2427 (No Relaxation). 
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As can be seen in Figure 4.26 - Figure 4.27, voltage recovery in relaxed and non-

relaxed scenarios was slightly delayed compared to the instantaneous voltage recovery 

shown previously. Moreover, it can be noticed that the final value of the voltage magni-

tude is lower as well especially, for the relaxed case. Although the static analysis showed 

a steady state voltage magnitude of 0.82 p.u. (shown in Table 4.12), the actual voltage 

magnitude is 0.78 p.u. when dynamic models are used, as shown in Figure 4.26. The de-

layed voltage recovery and depressed voltage magnitudes can be explained mainly as a 

result of motors stalling and increased reactive power consumption, which worsened the 

inherent reactive power deficiency conditions in the relaxed cases. The same analysis was 

conducted for the other two contingencies listed in Table 4.12. Figure 4.28 - Figure 4.31 

show the corresponding voltage plots for relaxed and non-relaxed cases. 

 

Figure 4.28. Voltage Profiles Following Contingency 5471 (Relaxed). 
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Figure 4.29. Voltage Profiles Following Contingency 5471 (No Relaxation). 

 

Figure 4.30. Voltage Profiles Following Contingency 1941 (Relaxed). 
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Figure 4.31. Voltage Profiles Following Contingency 1941 (No Relaxation). 

Figure 4.28 - Figure 4.31 show that capturing the load dynamics had a significant 

impact on voltage profiles following a major contingency. Even scenarios with no relaxa-

tions suffered a slight voltage recovery delay as well. However, voltage stability issues 

were more apparent and severe in relaxed cases. For instance, Figure 4.28 shows a pro-

longed voltage recovery and a final voltage magnitude of 0.75 p.u. although the static 

load model analysis indicated instantaneous voltage recovery and a final voltage magni-

tude of 0.83 p.u., as a result of capturing load dynamic behavior. These results also con-

firm the high nonlinearity of dynamic loads, which was exhibited through the substantial 

reactive power consumption caused by depressed voltage levels, which led into even 

lower voltage magnitudes. The voltage stability analysis results shown here emphasize 

the importance of capturing load dynamic behavior by utilizing the appropriate load 

models. Capturing load dynamic behavior becomes even more crucial when constraint 
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relaxations are allowed, as the reactive power deficiency associated with constraint relax-

ations can cause motor loads to decelerate and stall as a result of depressed voltage pro-

files. 

4.4 Risk Based Penalty Price Constraint Relaxations 

Throughout this work, constraint relaxations impacts on system performance were 

investigated using a single penalty price to allow relaxations in the DC SCUC model, 

which replicates operators practices related to constraint relaxations. For instance, the 

PJM original penalty price of 1000 $/MWh for line thermal limits was used. Therefore, 

all lines were subject to the same penalty price in the day-ahead market model, regardless 

of the severity of contingencies associated with each line. The static and dynamic security 

assessment conducted in this work revealed the adverse impacts of potential constraint 

relaxations on system performance are attributed to two major factors, number of com-

mitted generators and the overloading of major transmission lines. Naturally, heavily 

loaded transmission lines are expected to have higher impact on the system operational 

security when they are tripped as a result of a contingent event, which is usually initiated 

by a fault. Tripping a heavily loaded transmission line results in its original power flow 

being distributed on other routes, which can overload (and even trip) other lines in a cas-

cading sequence. Moreover, high voltage, high capacity transmission corridors consist of 

long transmission lines. As a result, they have higher probability of being exposed to con-

tingent events, compared to short lines. Therefore, long transmission lines that are heavi-

ly loaded should be distinguished in the constraint relaxation process in a manner that 
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prevents or limits relaxing those lines, as they impose high risk to system security when 

they are overloaded. 

4.4.1 High Risk Lines Identification 

In order to categorize the transmission lines according to their associated risk on 

system security, a risk index was defined as: 

𝑅𝑘𝑗 = 𝐹𝑘 × 𝑂𝐿𝑗
𝑛𝑜𝑟𝑚 ∀𝑘, 𝑗 (4.1) 

𝑂𝐿𝑗
𝑛𝑜𝑟𝑚 =

𝑂𝐿𝑗
𝑝𝑜𝑠𝑡

𝑂𝐿𝑀𝐴𝑋
𝑝𝑜𝑠𝑡      ∀𝑗 (4.2) 

where, 𝑅𝑘𝑗 is the risk index associated with line k outage and line j overload, 𝐹𝑘 is the 

frequency of an unplanned outage on line k. 𝐹𝑘 is expressed as the number of expected 

outage events in a given time period. 𝑂𝐿𝑗
𝑛𝑜𝑟𝑚 is the normalized post-contingency over-

load on line j, and 𝑂𝐿𝑗
𝑝𝑜𝑠𝑡

 and 𝑂𝐿𝑀𝐴𝑋
𝑝𝑜𝑠𝑡

 are the post-contingency overload on line j and the 

absolute maximum post-contingency overload for all contingencies, respectively, in 

MVA. Therefore, the risk index calculated by (4.1) incorporates both, the frequency 

(likelihood) of the occurrence of the contingency and, the impact of that contingency on 

system security. The maximum normalized post-contingency line overload was used in 

(4.1) as an indication of the impact or severity of a certain contingency, as high post-

contingency overloads are expected to result in additional unplanned line outages in a 

cascading sequence. 

The post-contingency operating conditions risk indices for the PJM peak hour 

were calculated in order to identify the events with high risk indices. A full N-1 contin-

gency analysis was conducted on the relaxed PJM peak hour to identify the contingencies 
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that result in post-contingency line overloads (exceed emergency line thermal ratings). 

The next step in the process of evaluating risk indices was to determine the outage fre-

quency of each line under consideration. The Canadian Electricity Association (CEA) 

2012 Annual Report [80] was used to provide statistical and probabilistic information on 

transmission equipment forced outages. The CEA report used is based on five years 

(2008 – 2012) of historical data provided by Canadian utilities and operators. The CEA 

report was chosen for this work because of its comprehensive content and availability. 

However, other resources that provide similar data for transmission forced outages can be 

used. In addition, the lengths of transmission lines under consideration had to be estimat-

ed since the statistics and data provided by the CEA report are normalized for 100 km of 

length. 

In order to estimate lines length, information such as lines impedance and conduc-

tor types and configurations used in the PJM system were utilized [81]. Table 4.13 shows 

a sample of contingencies and overloaded lines with the highest risk indices. Table 4.13 

shows that line length plays a key role in determining the risk index associated with that 

line since it increases the likelihood of outage occurrence. Moreover, the magnitude of 

the post-contingency overload also has a direct effect on the risk index as it represents the 

impact of an outage event. Table 4.13 also shows that the outage of the relaxed line (ID 

11001) results in two overloads with high risk indices. As can be seen in Table 4.8, this 

particular line was relaxed in the market solution and had an AC base-case overload of 

106% of its normal thermal rating. Therefore, it was desired to attain a relaxed market 

solution that avoids (or limits) the relaxation of lines that are associated with high risk 

index outages. 
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4.4.2 Risk Based SCUC Solution 

In order to incorporate the risk index information discussed in the previous sub-

section, three different penalty prices were defined in the DC SCUC algorithm instead of 

one. The penalty prices were defined in a manner that discourages the market model from 

relaxing lines that have high outage frequency, and the lines that have high outage im-

pact. The penalty prices were defined as: 

 High risk lines: this category includes transmission lines with thermal ratings 

greater than 999 MVA and, transmission lines which lengths are greater than 49 

miles. A penalty price of 1500 $/MWh for relaxing line thermal limits was as-

signed for this category. This category includes 18% of the total number of lines. 

 Medium risk lines: this category includes transmission lines with thermal ratings 

greater than 749 MVA and less than 1000 MVA and, transmission lines which 

lengths are greater than 9 miles and less than 50 miles. A penalty price of 1000 

$/MWh for relaxing line thermal limits (original penalty price) was assigned for 

this category. This category includes 35% of the total number of lines. 

 Low risk lines: all other lines are included in this category (thermal ratings less 

than 750 MVA and, lengths less than 10 miles). A penalty price of 500 $/MWh 

for relaxing line thermal limits was assigned for this category. This category in-

cludes 47% of the total number of lines. 

It should be noted that the filters used to create these risk groups are not unique, however, 

the risk indices analysis presented in the previous subsection provided valuable infor-

mation on the criteria of lines that are associated with high risk indices outages. For in-
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stance, the long lines with high outage frequency and the heavily loaded lines with high 

outage impact shown in Table 4.13 fell into the high risk lines group. Moreover, addi-

tional risk groups with various penalty prices could be created depending on the system 

under consideration. Table 4.14 presents relaxations for the SCUC solution with risk 

based penalty prices. Table 4.14 also lists the relaxations results for the SCUC solution 

with single penalty price for comparison purposes.  

Table 4.13. Risk Based Penalty Price Relaxations. 

Risk based penalty price 

Relaxed line ID Relaxation MW 
Line rating 

MVA 
Length mi Risk group 

190 2 553 4.3 Low 

1703 51 670 2.7 Low 

6470 8 115 45 Medium 

6590 7 155 4 Low 

7422 8 200 2 Low 

7928 5 192 37 Medium 

Single penalty price 

190 6 553 4.3 - 

1703 4 670 2.7 - 

6470 8 115 45 - 

7557 85 1009 18 - 

11001 2 128 171 - 

11255 14 158 27 - 

 

  Table 14.14 shows that none of the high risk group lines was relaxed. Out of a 

total of six relaxed lines, only two lines are considered as medium risk lines, while the 

rest are in the low risk lines group. On the other hand, when a single penalty price was 

used, two high risk lines were relaxed (line IDs: 7557 and 11001). Moreover, although 

around half of the lines in the system were considered as low risk lines and were assigned 

low penalty price, the total relaxations magnitude was reduced when risk based penalty 

prices were used. The total magnitude of relaxations, for all relaxed lines, when risk 
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based penalty prices were used is 81 MW, compared to a total of 119 MW of line relaxa-

tions when a single penalty price was used. This result denotes that heavily loaded and 

long transmission lines are more likely to be relaxed because of their ability to have a no-

ticeable impact on the SCUC solution and operating conditions. As a result, more gener-

ating units were committed in the risk based constraint relaxation SCUC solution as an 

alternative to relax high risk lines, as will be shown in the next subsection.  

4.4.3 Risk Based Constraint Relaxations AC Analysis 

In order to investigate the impacts of using risk based penalty prices on system 

performance, the market SCUC solution was used to solve an AC power flow. The same 

process explained in Section 4.4 was repeated to obtain an AC base-case solution. Out-

of-market corrections were applied in the form of committing additional generators in 

order to eliminate active and reactive power mismatches caused by thermal losses and 

reactive power deficiency. Table 4.15 shows the number of committed generators and 

voltage violations for the risk based penalty price scenario, compared to the single penal-

ty price and, non-relaxed solutions. It should be noted that the non-relaxed scenario pre-

sented in Table 4.15 is not N-1 secure in order to ensure comparison consistency with the 

other scenarios. 

Table 4.14. Committed Generators and Voltage Violations (Risk Based Relaxation). 

Risk based penalty price 

Committed generators (mar-

ket) 
Added generators Voltage violations 

1878 18 36 

Single penalty price 

1837 26 52 

No relaxation 

1935 12 6 
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Table 4.15 shows that fewer base-case voltage violations were reported in the risk 

based constraint relaxation solution as a result of the larger number of committed genera-

tors compared to single penalty price scenario. Fewer out-of-market generators were also 

required in the risk based penalty price case. Moreover, none of the high risk lines (long 

and high capacity lines) were relaxed when risk based penalty prices were used. There-

fore, it can be concluded that using risk based penalty prices can have a positive impact 

on the system operational security by increasing the number of committed generators 

and, limit overflow violations.  

4.5 Constraint Relaxations Impact on Energy Markets 

The next step in the analysis was capturing the economic impact of constraint re-

laxations on energy markets, such as generation total cost. Therefore, it was necessary to 

obtain a base-case and N-1 secure solutions for both scenarios (relaxed and non-relaxed) 

for the RTS-96 and PJM system. This approach ensures that cost of out-of-market correc-

tions performed to secure the system and remove violations introduced by constraint re-

laxations is captured. Fixing real-time base-case violations was performed using PSS/E 

ACOPF as it provides an economic and consistent transition from DC market solution to 

AC real-time system. On the other hand, achieving N-1 preventive security conditions 

manually is a very tedious and inconsistent process and even infeasible for large systems. 

For instance, securing the system against a specific contingency might worsen the viola-

tions of another contingency or introduce new violations, even in the base-case. There-

fore, PSS/E PSCOPF tool was utilized in order to solve these problems more efficiently. 
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In order to run ACOPF, the DC SCUC solution was used as a starting point. The 

same objective function (total generation cost), linear constraints, and generation cost 

curves used in the energy market SCUC solution were used. The RTS-96 test case cost 

curves were provided by [75] while real bidding data provided by PJM was used to create 

the cost curves for PJM system. In addition to linear constraints, the voltage and reactive 

power limits were defined and enforced. Base-case bus voltage tolerances of ±5% and 

±10% were enforced for the RTS-96 test case and PJM system respectively. A successful 

ACOPF run provided an AC feasible base-case with voltage magnitudes, lines MVA 

flows, and generators scheduled voltages within defined limits. However, ACOPF was 

not always capable of providing a feasible solution using the market SCUC solution, es-

pecially for PJM system. Therefore, additional units had to be committed to provide addi-

tional reactive power and alleviate line overloads as shown in Table 4.9. 

After obtaining secure and optimal base-case operation conditions using ACOPF, 

the system had to be further secured against N-1 contingencies. The PSS/E built-in tool 

PSCOPF was used for this purpose through this work. The main advantage of using 

PSCOPF is its ability of considering off-line generators as one of the available controls. 

Therefore, PSCOPF has the ability of changing the dispatch schedules generated by the 

DC model in order to secure the system against any N-1 contingency. Since the starting 

point for PSCOPF is the ACOPF solution, it was desired to keep the generators statuses 

and dispatch levels as unchanged as possible. Therefore, lower weights were assigned to 

on-line and off-line generator controls in PSCOPF in order to change the optimal dis-

patch or turn on off-line generators only as a last resort. Therefore, PSCOPF attained N-1 

secure cases by utilizing the available controls in the following order: tap setting adjust-
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ments, switched shunts, on-line generators re-dispatch, and committing off-line genera-

tors as the last resort. Table 4.16 and Table 4.17 present generation total costs for RTS-96 

test case and PJM system respectively. The RTS-96 test case total costs include the total 

costs of the entire 24 time-periods while the PJM total costs are for the peak time-period 

(hour 16:00) considered in this analysis. As expected, total generation cost for the relaxed 

scenarios is less than total generation cost for the non-relaxed scenarios. It can also be 

noticed that the cost of preventive actions and corrections that ensure N-1 security was 

lower for the relaxed scenario compared to the non-relaxed scenario for RTS-96 test case 

while it was higher for PJM system. This discrepancy in results can be explained due to 

the complexity and large scale of PJM system that resulted in more real-time violations in 

the relaxed scenarios compared to RTS-96 test case. Additional detailed discussion on the 

impacts of constraint relaxations on energy markets can be found in [73], [82]. 

Table 4.15. Total Generation Cost Comparison (RTS-96). 

Settlement type Original SCUC $k N-1 secured $k Cost increase % 

Non-relaxed scenario 4,096 4,804 17% 

Relaxed scenario 4,071 4,558 12% 

 

Table 4.16. Total Generation Cost Comparison (PJM). 

Settlement type Original SCUC $k N-1 secured $k Cost increase % 

Non-relaxed scenario 16,649 22,529 35% 

Relaxed scenario 16,431 23,315 42% 

 

It should be noted that the PJM relaxed SCUC was solved with PJM’s real penalty prices 

of 1000 $/MWh and 2700 $/MWh for line limit and nodal relaxations respectively. The 

relaxed RTS-96 SCUC was solved using a line limit penalty price of $100/MWh.  
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5. POST-CONTINGENCY CONSTRAINT RELAXATIONS ANALYSIS AND 

RESULTS 

5.1 Introduction 

In this chapter, the investigation of constraint relaxations is extended to include 

post-contingency constraint relaxations. The purpose of this work is to investigate the 

impact of base-case and post-contingency constraint relaxations in energy market models 

on the real-time AC system performance and total generation costs. Although theoretical-

ly any constraint can be relaxed, only the thermal limits on the branches were considered 

in this study because these relaxations can be physically realized in the real-time system 

and have direct impact on security and reliability. Two types of constraint relaxations are 

considered in this study: 

 Base-case relaxations: where the normal, continuous thermal ratings (Rate-A) 

[75] are allowed to be relaxed 

 Post-contingency relaxations: where the relaxations are allowed for emergency 

thermal ratings (Rate-C) [75] following a contingency. 

In order to compare the impact of each type of these relaxations separately, as 

well as when both types are allowed simultaneously, four scenarios were investigated: 

 No relaxation allowed 

 Base-case relaxations only 

 Post-contingency relaxations only 

 Base-case and post-contingency relaxations allowed. 
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The results from DC and AC analysis for each scenario were used to investigate 

the impact of each relaxation type on system security and reliability. Moreover, different 

penalty prices were also used for each scenario in order to investigate the correlation be-

tween penalty prices and real-time violations for each type of constraint relaxation. Since 

constraint relaxations also affect the total production cost, a thorough comparison be-

tween production costs for each scenario and for different penalty prices was also con-

ducted. 

In order to capture the direct effect of constraint relaxations on system security 

and reliability, the IEEE RTS-96 test case (presented in Subsection 4.3.1) was utilized. 

The test case was represented in the DC market model to obtain the SCUC solutions, and 

it was represented in PSS/E as well to capture AC and nonlinear characteristics such as 

reactive power, voltage magnitude and angles, and thermal losses.  Different combina-

tions of base-case and post-contingency relaxations were investigated. The same analysis 

was conducted twice for each scenario, once for cases with constraint relaxations and an-

other time for cases that do not have any relaxations while ensuring analysis consistency. 

5.2 SCUC Model with Base-Case and Post-Contingency Relaxations 

Using Benders’ decomposition, the SCUC problem was split into two sub-

problems. The first part (master problem) is a regular base-case SCUC problem. Solving 

the master problem determines the status and dispatch of each generating unit. The base-

case SCUC solution is then passed on to the second sub-problem (slave problem) where 

post-contingency feasibility is checked. The slave problem generates feasibility cuts and 

passes them to the master problem for each infeasible contingency. These feasibility cuts 
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act as additional constraints in the master problem and therefore reduce the feasibility 

region for the next SCUC solution. This process is iterative and will continue till a SCUC 

solution that is feasible for all contingencies is achieved. 

The SCUC formulation is modified to allow both, base-case and post-contingency 

relaxations. Typically, relaxations are allowed by adding a slack variable to the constraint 

to be relaxed, and adding that slack multiplied by the penalty price to the objective func-

tion. Base-case relaxations were allowed in that manner since the objective function and 

relaxed constraints exist in the same sub-problem (master problem) as shown in Appen-

dix A, Equation A.1 and Equation  A.19. However, since the slave problem is merely a 

feasibility check for post-contingency conditions, the post-contingency relaxation deci-

sion cannot be made by the slave problem. Therefore, the slack variables were added to 

the feasibility cuts that are passed to the master problem as shown by Equation A.38 and 

Equation A.40. The post-contingency slack variables are also multiplied by the post-

contingency penalty price and added to the main objective function. The post-

contingency slack variables are sent back to the slave problem as fixed parameters in or-

der for the relaxed lines to pass the post-contingency feasibility check as shown in Equa-

tions A.27, A.28, A.35, and A.36. The complete SCUC formulations (master and slave 

sub-problems) are presented in Appendix A [83]. 

5.3 Market Model Results 

Using the security constrained unit commitment formulation presented in Section 

2.5, the day-ahead SCUC solutions (i.e. 24-hours solutions) were obtained for different 

scenarios. First, a non-relaxed SCUC solution was attained in order to be used as a 
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benchmark for both, total production costs and system performance. Two base-case re-

laxed SCUC solutions were then achieved using two different penalty prices of values 

$150/MWh and $180/MWh. For the sake of comparison, a SCUC solution with post-

contingency relaxation was performed using a penalty price of $150/MWh (identical to 

base-case relaxation scenario). However, it was noticed that there were fewer post-

contingency line relaxations -number and magnitude- compared to base-case relaxations. 

Therefore, another post-contingency SCUC solution was obtained using a penalty price 

of $30/MWh. Finally, a SCUC solution was obtained allowing both base-case and post-

contingency relaxations, using penalty prices of $150/MWh and $30/MWh for base-case 

and post-contingency respectively. The SCUC problem was formed in AMPL and solved 

using Gurobi solver with a MIP gap of 0.1%. Table 5.1 presents the different relaxations 

scenarios as well as line relaxations details (number and magnitude) over the 24 hours 

and the total production cost. 

Table 5.1. Relaxation Scenarios Summary. 

  

Base-case Post-contingency 

Base-case and 

Post-contingency 

Penalty 

price: 

180 

Penalty 

price: 

150 

Penalty 

price: 150 

Penalty 

price: 30 

Penalty price: 30 / 

150 

Total cost % 99.63% 99.09% 98.27% 97.87% 96.85% 

Number of re-

laxed lines 18 31 12 14 Base: 36 / Post: 22 

Max. relaxation 

magnitude  

9.5%     

(30 MW) 

16%     

(50 MW)  

2.2%       

(12.7 

MW) 

6%         

(33.5 

MW) 

Base: 14% (44 

MW) / Post: 6% 

(33.5 MW) 

 

As can be seen in Table 5.1 the total production cost dropped to 99.63% of the 

original (non-relaxed) case for base-case relaxations using a penalty price of $180/MWh. 
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This relaxation resulted in a total of 18 relaxations with the highest relaxation being 9.5% 

beyond the line normal thermal rating. Decreasing the base-case penalty price to 

$150/MWh resulted in reducing the total production cost to 99.09% of the non-relaxed 

price. However, this relatively small reduction in total production costs was accompanied 

by a significant increase in the number and magnitude of line relaxations. Decreasing the 

base-case penalty price to $150/MWh has caused the line relaxations (violations) to rise 

to 31 relaxations with the maximum value being 16% above the line thermal rating. The 

base-case penalty price was not decreased below $150/MWh because of the excessive 

and unrealistic relaxations that would appear at lower penalty prices. 

As for post-contingency relaxations, it can be noted from Table 5.1 that using a 

penalty price of $150/MWh caused total production cost to drop to 98.27% of the original 

price. This reduction was caused by relaxing the emergency thermal limits of 12 lines 

with a maximum violation of 2.2% beyond the line emergency thermal rating. Remarka-

bly, the post-contingency penalty factor could be significantly reduced allowing for fur-

ther reduction in total production costs without introducing unreasonable line flow viola-

tions. The total production cost was reduced to 97.87% of the original cost when a post-

contingency penalty price of $30/MWh was used. Using this relatively low penalty price 

resulted in 14 line relaxations with the highest violation being 6% beyond the emergency 

line thermal rating. 

Allowing both, base-case and post-contingency line relaxations together resulted 

in the lowest total production cost as well as the highest number and magnitude of line 

flow violations. The penalty prices used were $150/MWh and $30/MWh for base-case 

and post-contingency line relaxations, respectively. Using these penalty prices the total 
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production cost was reduced to 96.85% of the original cost. This reduction in cost was 

accompanied with 36 line flow relaxations in base-case with the highest relaxation being 

14% beyond line normal thermal limits, and 22 line flow relaxations in post-contingency 

with the highest relaxation being 6% beyond line emergency thermal limits. 

5.4 Base-Case AC Analysis 

In order to investigate the impacts of line relaxations in the DC market model on 

real-time steady state security and reliability, the SCUC solutions were used to obtain AC 

solutions using PSS/E. Therefore, the test case (RTS-96) was modeled in PSS/E using the 

same data used in the DC market model. Moreover, generators economic data and other 

constraints used to solve the SCUC were modeled in PSS/E in order to run ACOPF. Us-

ing ACOPF rather than just an AC power-flow provides several advantages, such as: 

 Distribute losses among committed units economically and consistently 

 Control reactive power generation to ensure acceptable voltage levels throughout 

the system 

 Identify infeasibilities in the system and quantify their sensitivities (severities) 

The different scenarios presented in Section 5.1 were simulated in PSS/E. The DC 

SCUC solution was used as a starting point for the ACOPF. Five different time periods 

(hours) were chosen for AC analysis. Those hours were chosen in a manner that guaran-

tees the inclusion of significant amount of line relaxations for both, base-case and post-

contingency scenarios. Those hours also comprise peak load, medium load, and light load 

hours. Table 5.2 summarizes the steady state line flow and voltage violations in the 

ACOPF solution for the different scenarios considered. From Table 5.2 it can be seen that 
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even with no relaxations there were voltage and line flow violations. These violations are 

expected because of the approximations incorporated in the DC market model. In order to 

remove those violations and attain a completely feasible AC case, additional units need to 

be turned on. In this work no additional units were turned on in order to keep the opera-

tion conditions as close as possible to market solution. 

Voltage and line flow violations are increased when constraint relaxations are al-

lowed. As can be seen from Table 5.2 almost all base-case relaxations were translated 

into line flow violation in the AC case. The only exception was time period 19 in which 

only one violation appeared in AC solution. This exception can be explained again by the 

existing approximations in the DC market solution which result in slightly different AC 

solution. This also proves that relaxations in the market model could be considered an-

other form of approximation and do not necessarily result in real-time violations all the 

time, provided that those relaxations are limited in number and magnitude. Table 5.2 also 

shows a noticeable increase in the number of voltage violations. These voltage violations 

are caused mainly by the fewer number of generators committed in the relaxed solution 

which resulted in less reactive power availability. 

As for post-contingency relaxations, none of the line relaxations from the market 

solution appeared in real-time. This shows that post-contingency line relaxations have no 

direct adverse effect on real-time line flows. However, voltage violations increased in 

real-time due to the reduced number of committed generators. 

When base-case and post-contingency relaxations are both allowed more real-

time line flow and voltage violations are observed.  
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Base-case relaxations directly affect line flow violations as well as voltage violations, 

while post-contingency relaxations have a major impact on voltage violations. Therefore, 

when base-case and post-contingency relaxations are both allowed, the real-time AC case 

would encounter line flow violations as well as depressed voltage levels caused by reac-

tive power deficiency. 

5.5 Post-Contingency AC Analysis 

In order to investigate the base-case and post-contingency relaxations impact on 

the system following a credible contingency event, a full-blown N-1 AC contingency 

analysis was run in PSS/E for each scenario shown in Section 5.1. The N-1 contingency 

analysis in this work included all branches (lines and transformers) as well as committed 

units. Following the loss of a unit the remaining units were re-dispatched according to 

their inertias. 

Table 5.3 presents the post-contingency performance of the various considered 

scenarios. It can be seen that the original case (non-relaxed) was not N-1 secure since 

there were several line flow and voltage violations caused by various contingencies. 

There were also non-converged contingencies which implies that the AC power-flow ei-

ther diverged or the maximum number of iterations was reached before reducing the 

mismatches to acceptable values for those contingencies. It should be noted here that N-1 

security could be achieved for this test case by committing additional units, re-

dispatching the system, and utilizing other control parameters such as tap settings and 

shunt devices. However, that is beyond the scope of this work as it is desired to keep the 

DC market solution as unchanged as possible. 
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Similar to AC base-case analysis, base-case and post-contingency relaxations 

have increased the number of real-time line flow and voltage violations. It should be not-

ed here that despite the decrease in the number of violations for some hours that does not 

imply better reliability or security conditions because it is always accompanied with an 

increase in the number of the unsolved (non-converged) cases. Therefore, this implies 

that violations actually became more severe causing more contingencies not to solve. It 

should also be noted from Table 5.3 that violations in their various forms are generally 

higher when base-case and post-contingency relaxations were allowed simultaneously. 

The significant degradation in post-contingency reliability performance when base-case 

and post-contingency relaxations are both allowed aroused concerns related to excessive 

line flow violations caused by violations from coinciding from both types of relaxations 

in a cascading like effect. Therefore, the lines that were relaxed in base-case and post-

contingency SCUC solution were identified and their real-time flows were monitored 

throughout the N-1 analysis. Table 5.4 shows those lines. 

As discussed in AC base-case analysis (Section 4.3), Table 5.4 shows that lines 

relaxed in the base-case SCUC solution are always violated in real-time. Table 5.4 also 

shows the flows on these lines following a contingency event. It can be seen that the vio-

lations on some lines have doubled following a contingency, such as line 114-116 in time 

period 11 and line 114-116 in time period 19 with real-time flow violations of 120% and 

117% of the lines emergency thermal limits respectively. This significant increase in line 

flow violations could easily fall beyond the acceptable relaxation limits and impose seri-

ous security problems especially if another contingency event occurs (N-1-1 or N-2). 
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Table 5.2. Flows on Lines Relaxed in Base-Case and Post-Contingency. 

Time period 11:00 

Line Base-case loading Post-contingency loading 

114-116 110% 120% 

214-216 101% 105% 

314-316 101% 109% 

Time period 19:00 

114-116 108% 117% 

214-216 102% 110% 

314-316 103% 95% 

Time period 22:00 

214-216 105% 106% 

314-316 101% 91% 
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6. CONCLUSIONS 

Constraint relaxation practices conducted by system operators have been re-

viewed and investigated in this research effort. In order to capture and quantify the effect 

of constraint relaxations on energy market efficiency and power system performance, a 

test case and real-life large-scale system were utilized to replicate the constraint relaxa-

tion practices conducted in practice. Realizing the precise and direct impact of relaxations 

provide a solid basis for decision makers for assessing the benefits and risks encountered 

with these practices. Assessing the associated benefits and risks constraints relaxations 

have on markets efficiency and operational security would also provide a sound basis for 

choosing appropriate values for the different penalty prices. 

In this work, assessing the impacts of market constraint relaxations on real-time 

system performance was desired. Capturing the impacts of constraint relaxations on static 

and dynamic operational security makes operators more aware of the risks and benefits 

associated with constraint relaxations. Throughout this work static and dynamic base-

case and post-contingency operating conditions were investigated to reveal any underly-

ing adverse effects of constraints relaxations that operators may not notice or be aware of 

during normal operating conditions. Moreover, this analysis also provides better under-

standing of the correlation between DC market models and AC real-time systems, as this 

work analyzes how relaxations in market models propagate to real-time systems. Two 

test cases were used to replicate operators practices related to constraint relaxations. The 

first test case is the RTS-96 system that was used to demonstrate the constraint relaxa-

tions mechanism and the methodology of analysis on a relatively small and simple sys-

tem. The second test case was a real-life large-scale system that represented PJM control 
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areas and their neighboring areas. PJM also provided the corresponding actual economic 

and dynamic data. 

Static steady state and dynamic time-domain analysis were conducted for both 

test cases twice, once for cases with relaxed constraints and another time for non-relaxed 

cases. This approach has provided a systematic and consistent approach to demonstrate 

the impacts of relaxations on a real-time system. SCUC market solutions were used as 

starting points to achieve base-case AC feasible solutions. PSS/E ACOPF was utilized to 

achieve AC feasible solutions, as it provides an accurate and consistent transition from 

the dispatch schedules generated by the DC market models to an AC feasible solution. 

Thermal losses were distributed in an economic manner rather than being picked up by 

the slack bus. Other controls, such as scheduled voltages, transformers tap settings, and 

switched shunts, were adjusted automatically as well. 

However, it was found that in some cases, out-of-market corrections were needed 

to achieve a successful and feasible ACOPF solution. Out-of-market corrections mainly 

consist of committing additional generators for voltage support purposes and/or lines 

overloading alleviation. It was noticed that more out-of-market corrections were needed 

for relaxed cases, which can be explained by the commitment of fewer generators in the 

relaxed cases in market solutions. For instance, PJM peak hour non-relaxed case has 

around 5.5% more generators (98 generators) than the relaxed case. It was also noticed 

that more out-of-market corrections were needed in the PJM test case compared to the 

RTS-96 case, as no out-of-market generations needed to be added to attain AC feasible 

solutions for the RTS-96 case, while 26 out-of-market generators were needed to solve 

the power flow for the PJM peak load hour. This can be explained by the effect of the 
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approximations inherent in market models, which became more evident in large-scale 

systems. It was also desired to attain N-1 security for the non-relaxed cases in order to be 

used as benchmarks for the corresponding relaxed cases. Attaining N-1 security required 

additional out-of-market corrections using PSS/E PSCOPF tool. In order to make the 

PJM system N-1 secure, a total of 84 and 63 additional out-of-market generators were 

committed in the load peak and off peak hours, respectively. 

Static analysis of both test cases revealed that line relaxations in market models 

have a high tendency of appearing as AC line flow violations in real-time systems. A to-

tal of 6 lines were relaxed in the RTS-96 and they were all translated into real-time viola-

tions in the AC solution. However, in the PJM test case, most of the market solution re-

laxations appeared as AC flow violations alongside line flow violations that did not orig-

inate from market models, which can be explained due to the various approximations 

used in market models. For instance, the PJM peak hour had 13 line flow violations, of 

which 10 violations were originated from the market solution as line relaxations. Howev-

er, flow violations that were not originated from the market solutions had relatively lower 

values. 

Static analysis has also revealed reactive power deficiency in the relaxed cases 

that was translated into wide-spread voltage violations. Relaxed cases sustained reactive 

power deficiency because fewer generators were committed in those cases in the original 

market solutions, as well as in the out-of-market corrections compared to non-relaxed 

cases. Q/V analysis was also conducted for the PJM test cases to confirm the reactive 

power problem and it was found that significantly greater amount of reactive power was 

needed to regulate the voltage in relaxed cases. For instance, the Q/V analysis revealed 
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that an amount of 138 MVAr was needed to achieve a voltage magnitude of 1.0 p.u. at a 

test bus in a weak area in the relaxed PJM system, while an amount of 26 MVAr was 

needed for the same bus and same voltage magnitude in the non-relaxed PJM system. 

Static post-contingency analysis was also conducted and relaxed lines flows were moni-

tored. It was noticed that relaxed lines were more likely to violate their thermal emergen-

cy limits following certain critical contingencies since they were already overloaded in 

base-case. 

Dynamic time-domain analysis was also conducted to investigate the dynamic 

performance of relaxed cases compared to cases with no relaxation. Using N-1 analysis, 

the most severe contingencies were identified and ranked. A sequence of events repre-

senting N-2 contingencies was used to investigate the dynamic response of overloading 

and tripping relaxed lines. Relative rotor angles of the most affected generators were plot-

ted and compared. Rotor angle stability analysis revealed higher oscillations in relaxed 

cases with prolonged settling time compared to non-relaxed cases. This observation was 

more evident in the PJM test case, as it represents a large-scale system with realistic dy-

namic models. Although all tested contingencies were stable, higher oscillations indicate 

narrower stability margins and, therefore, higher vulnerability to stability related prob-

lems. Dynamic post-contingency voltage profiles were also investigated for both test cas-

es. Similar to stability studies, contingencies causing the most severe voltage violations 

were identified and ranked using N-1 analysis. Dynamic voltage analysis confirmed the 

static analysis results related to reactive power deficiency. It was noticed that relaxed 

cases sustained base-case and post-contingency depressed voltage levels compared to 

non-relaxed cases. Again, this is explained due to the fewer committed generators in the 
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relaxed case. Furthermore, more detailed voltage stability analysis was desired in order to 

capture the apparent reactive power deficiency issue in the relaxed cases. Therefore, 

loads in PJM peak load hour were modeled dynamically in order to reflect motors decel-

erating and stalling impact on voltage stability results. Using dynamic load models re-

sulted in observing significant voltage delay recovery and sustained low voltage magni-

tudes following a severe contingency. For instance, in one of the studied contingences 

(Figure 4.28), the bus voltage magnitude recovered to 0.75 p.u. after around 2 seconds 

although static load model analysis indicated instantaneous voltage recovery and a final 

voltage magnitude of 0.83 p.u. 

Security assessment conducted on the relaxed PJM system indicated that some 

high capacity transmission lines were relaxed in the market SCUC model and resulted in 

overloading those lines in the AC real-time solution. However, those high capacity lines 

tend to have severe impacts on the system security in the event of a fault or forced out-

age. Moreover, those lines are usually high voltage major transmission corridors that span 

long distances and should not be violated. Therefore, it was desired to design a risk based 

penalty price scheme that would avoid (or limit) relaxing high risk lines. Transmission 

lines were categorized in three distinctive groups depending on their risk indices. Risk 

indices were determined depending on the outage frequency (length of the lines) and, the 

impact on system operational security (post-contingency overloads) following a credible 

contingency. Increasing the penalty price for high capacity lines resulted in decreasing 

total relaxations magnitude. The total relaxations magnitude (for all relaxed lines) for the 

risk based penalty price scenario was 81 MW, while a total of 119 MW was reported for 

the traditional relaxed case. Therefore, more generating units were committed in the risk 
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based penalty price SCUC solution, compared to the traditional single penalty price sce-

nario. As a result, voltage violations were reduced because of the additional reactive 

power availability. Moreover, none of the high risk lines (long and high capacity lines) 

were relaxed when risk based penalty prices were used.       

This work has also investigated the effect of post-contingency constraint relaxa-

tions on system performance end energy markets utilizing the RTS-96 test case. The re-

sults presented in this work show that relaxations in energy market models have negative 

effects on real-time system performance in general since constraint relaxations are a form 

of violations in the market DC model. Base-case relaxations appeared consistently in re-

al-time system as line flow violations. Base-case relaxations are based on the continuous 

normal thermal ratings of lines, therefore, they appeared as continuous violations in the 

real-time system. Scenarios that were base-case relaxed also encountered voltage viola-

tions caused by the limited availability of reactive power as a result of committing fewer 

generating units in the relaxed cases. Base-case relaxations have slightly increased the 

social welfare as they resulted in lower total production costs. Using lower penalty prices 

for base-case violations resulted in lower production costs. However, lowering the base-

case penalty price below certain values resulted in unrealistic relaxations that would be 

translated into excessive violations. 

Post-contingency constraint relaxations on the other hand were based on the 

emergency thermal ratings of lines following a contingency. Therefore, post-contingency 

relaxations appear as line flow violations in real-time system only following the event of 

a certain contingency. Hence, post-contingency relaxations are much less likely to appear 

in the real-time system as line flow violations compared to base-case relaxations. How-



121 

 

ever, similar to base-case relaxations, voltage violations appeared in post-contingency 

relaxed cases because of reactive power deficiency. Post-contingency relaxations showed 

significant impact on lowering the total production costs. It was also possible to use much 

lower penalty prices (e.g. $30/MWh) without causing excessive violations because base-

case constraints had to be enforced all the time. 

Allowing base-case and post-contingency constraint relaxations simultaneously 

had the largest impact on real-time system performance. Line flow violations caused by 

base-case relaxations and voltage violations caused by both types of relaxations appeared 

in real-time system. Moreover, allowing both types of relaxations simultaneously could 

result in cascading violation events. This could happen when a single line is relaxed in 

base-case and post-contingency simultaneously. Therefore, that line could encounter 

large violations as a result of base-case and post-contingency relaxations overlapping at 

the same time following a specific contingency. A maximum line overload of 120% 

above the emergency thermal rate was reported when the same lines was relaxed in base-

case and post-contingency simultaneously. Allowing both types of relaxations had also 

the most significant effect on lowering the total production cost, as the total cost was re-

duced to 96.5% of the non-relaxed cost when base-case and post-contingency constraint 

relaxations were allowed simultaneously. Penalty prices should be chosen carefully in 

this scenario, especially base-case penalty price, to ensure that relaxations do not cause 

excessive real-time violations. 

While the risk analysis associated to line overloads was presented, a cost benefit 

analysis on the impacts on market surplus relative to the risk exposure should be com-

pleted. Such work will lead to more insight as to which lines should be penalized at high-
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er or lower prices along with what are the appropriate values for those prices. Such a 

framework would provide industry with a more comprehensive analysis of the impacts of 

constraint relaxations on not just operational security but market efficiency, which then 

enables determination on appropriate penalty prices. It is also important to extend such 

risk assessment and cost benefit analysis to additional constraint relaxation practices, like 

reserve requirement relaxation. Other important aspects of constraint relaxation practices 

include the duration of the relaxation. The impact of relaxing a thermal limit for 5 

minutes is not the same as the impact of relaxing the limit over 15 minutes; the thermal 

heating impact is not linear and, thus, it is important to account for such system opera-

tional security impacts when constructing the relaxation practices and penalty prices. Fi-

nally, further analysis and validation is needed. This thesis critiques and analyzes existing 

relaxation practices on actual PJM data; however, some data (e.g., load models) was lim-

ited. Additional analysis on a wider range of operating states and with complete system 

data would further improve the validation of the results and further provide quantifiable 

results regarding system specific impacts. With that said, the primary conclusions are, 

nonetheless, the same: constraint relaxations push system operations further to an ex-

treme and, thus, impair system operational security; with this thesis, there is now a path-

way to further analyze the tradeoffs of that risk exposure with the anticipated market ben-

efits.  
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Extensive Form N-1 Reliable Unit Commitment Formulation: [83] 

Min: ∑ (𝑐𝑔𝑃𝑔𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑃𝐹𝑀(𝑆𝑀
+ + 𝑆𝑀

−) + 𝑃𝐹𝑆(𝑆𝑁𝐾
− + 𝑆𝑁𝐾

+ + 𝑆𝑁𝐺
− +𝑔,𝑡

𝑆𝑁𝐺
+ ))  

A.1 

s.t.: 

 

Base-case modeling of generation 

 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡 ,                                                                                                           ∀𝑔, 𝑡  A.2 

𝑃𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡,                                                                                               ∀𝑔, 𝑡 A.3 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔,𝑡 ,                                                                                                     ∀𝑔, 𝑡 A.4 

∑ 𝑟𝑞𝑡
𝑞∈𝐺

≥ 𝑃𝑔𝑡 + 𝑟𝑔𝑡,                                                                                              ∀𝑔, 𝑡 A.5 

𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔𝑡,                                                            ∀𝑔, 𝑡 ≥ 2  A.6 

𝑃𝑔,𝑡−1 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑡 + 𝑅𝑔

𝑆𝐷(𝑣𝑔𝑡 − 𝑢𝑔𝑡 + 𝑢𝑔.𝑡−1),                                 ∀𝑔, 𝑡 ≥ 2  A.7 

𝑃𝑔1 − 𝑃𝑔,𝑇 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,𝑇 + 𝑅𝑔

𝑆𝑈𝑣𝑔1,                                                                               ∀𝑔  A.8 

𝑃𝑔,𝑇 − 𝑃𝑔1 ≤ 𝑅𝑔
ℎ𝑟𝑢𝑔,1 + 𝑅𝑔

𝑆𝐷(𝑣𝑔1 − 𝑢𝑔1 + 𝑢𝑔,𝑇),                                                  ∀𝑔  A.9 

∑ 𝑣𝑔,𝑞
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔𝑡,                                                                               ∀𝑔, 𝑡 ≥ 𝑈𝑇𝑔  A.10 

∑ 𝑣𝑔,𝑞
𝑇
𝑞=𝑇+𝑡−𝑈𝑇𝑔+1 + ∑ 𝑣𝑔,𝑞

𝑡
𝑞=1 ≤ 𝑢𝑔𝑡,                                            ∀𝑔, 𝑡 ≤ 𝑈𝑇𝑔 − 1  A.11 

∑ 𝑣𝑔,𝑞
𝑡+𝐷𝑇𝑔

𝑞=𝑡+1 ≤ 1 − 𝑢𝑔,𝑡 ,                                                                       ∀𝑔, 𝑡 ≤ 𝑇 − 𝐷𝑇𝑔   
A.12 

∑ 𝑣𝑔,𝑞
𝑡+𝐷𝑇𝑔−𝑇

𝑞=1 + ∑ 𝑣𝑔,𝑞
𝑇
𝑞=𝑡+1 ≤ 1 − 𝑢𝑔,𝑡 ,                                ∀𝑔, 𝑡 ≥ 𝑇 − 𝐷𝑇𝑔 + 1  A.13 
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𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1,                                                                                           ∀𝑔, 𝑡 ≥ 2  A.14 

𝑣𝑔1 ≥ 𝑢𝑔1 − 𝑢𝑔,𝑇 ,                                                                                                          ∀𝑔  A.15 

0 ≤ 𝑣𝑔𝑡 ≤ 1,                                                                                                               ∀𝑔, 𝑡  A.16 

𝑢𝑔𝑡 ∈ {0,1},                                                                                                                 ∀𝑔, 𝑡  A.17 

Base-case modeling of power flow  

𝑃𝑘𝑡 − 𝑏𝑘(𝜃𝑛𝑡 − 𝜃𝑚𝑡) = 0,                                                                                       ∀𝑘, 𝑡   A.18 

−(𝑆𝑀
− + 𝑃𝑘

𝑚𝑎𝑥) ≤  𝑃𝑘𝑡 ≤ (𝑆𝑀
+ + 𝑃𝑘

𝑚𝑎𝑥),                                                              ∀𝑘, 𝑡  A.19 

∑ 𝑃𝑔,𝑡𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘,𝑡𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘,𝑡𝑘∈𝛿−(𝑛) = 𝑑𝑛,𝑡,                                         ∀𝑛, 𝑡  A.20 

The formulation for each contingency and for each hour of the slave problem  

Min: 𝑠 A.21 

s.t.:  

For each line contingency ((∀ 𝑐 ∈ 𝑁𝑘)) in each hour (∀ 𝑡)  

−𝑃𝑔 + 𝑠(𝑅𝑔
10𝑢𝑔̅̅ ̅ − 𝑃�̅�) ≤ 𝑅𝑔

10𝑢𝑔̅̅ ̅ − 𝑃�̅�,                                                      ∀𝑔   (𝛼𝑔𝑐𝑡
− ) A.22 

𝑃𝑔 + 𝑠(𝑅𝑔
10𝑢𝑔̅̅ ̅ + 𝑃�̅�) ≤ 𝑅𝑔

10𝑢𝑔̅̅ ̅ + 𝑃�̅�,                                                         ∀𝑔  (𝛼𝑔𝑐𝑡
+ ) A.23 

−𝑃𝑔 + 𝑠(−𝑃𝑔
𝑚𝑖𝑛𝑢𝑔̅̅ ̅) ≤ −𝑃𝑔

𝑚𝑖𝑛𝑢𝑔̅̅ ̅,                                                             ∀𝑔  (𝜁𝑔𝑐𝑡
− ) A.24 
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𝑃𝑔 + 𝑠(𝑃𝑔
𝑚𝑎𝑥𝑢𝑔̅̅ ̅) ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔̅̅ ̅,                                                                      ∀𝑔     (𝜁𝑔𝑐𝑡
+ )  A.25 

𝑃𝑘 − 𝑁𝑐,𝑘
𝑘 𝑏𝑘(𝜃𝑛 − 𝜃𝑚) = 0,                                                                       ∀𝑘     (𝑠𝑘𝑐𝑡

𝑘 )  A.26 

−𝑃𝑘 ≤ 𝑁𝑐,𝑘
𝑘 (𝑆𝑁𝐾

−̅̅ ̅̅ ̅ + 𝑃𝑘
𝑚𝑎𝑥,𝑐)(1 − 𝑠),                                                        ∀𝑘     (𝐹𝑘𝑐𝑡

𝑘− ) A.27 

𝑃𝑘 ≤ 𝑁𝑐,𝑘
𝑘 (𝑆𝑁𝐾

+̅̅ ̅̅ ̅ + 𝑃𝑘
𝑚𝑎𝑥,𝑐)(1 − 𝑠),                                                           ∀𝑘     (𝐹𝑘𝑐𝑡

𝑘+ )  A.28 

∑ 𝑃𝑔𝑔∈𝑔(𝑛) + ∑ 𝑃𝑘𝑘∈𝛿+(𝑛) − ∑ 𝑃𝑘𝑘∈𝛿−(𝑛) + 𝑠(𝑑𝑛) = 𝑑𝑛,               ∀𝑛     (𝐿𝑀𝑃𝑛𝑐𝑡)   A.29 

For each generator contingency (∀ 𝑐 ∈ 𝑁𝑔) in each hour (∀ 𝑡)  

−𝑃𝑔 + 𝑠(𝑅𝑔
10𝑢𝑔̅̅ ̅ − 𝑁𝑐,𝑔

𝑔
𝑃�̅�) ≤ 𝑅𝑔

10𝑢𝑔̅̅ ̅ − 𝑁𝑐,𝑔
𝑔

𝑃�̅�,                                      ∀𝑔     (𝛽𝑔𝑐𝑡
− )  A.30 

𝑃𝑔 + 𝑠(𝑅𝑔
10𝑢𝑔̅̅ ̅ + 𝑁𝑐,𝑔

𝑔
𝑃�̅�) ≤ 𝑅𝑔

10𝑢𝑔̅̅ ̅ + 𝑁𝑐,𝑔
𝑔

𝑃�̅�,                                         ∀𝑔     (𝛽𝑔𝑐𝑡
+ )  A.31 

−𝑃𝑔 + 𝑠(−𝑃𝑔
𝑚𝑖𝑛𝑢𝑔̅̅ ̅𝑁𝑐,𝑔

𝑔
) ≤ −𝑃𝑔

𝑚𝑖𝑛𝑢𝑔̅̅ ̅𝑁𝑐,𝑔
𝑔

,                                             ∀𝑔     (𝛾𝑔𝑐𝑡
− )  A.32 

𝑃𝑔 + 𝑠(𝑃𝑔
𝑚𝑎𝑥𝑢𝑔̅̅ ̅𝑁𝑐,𝑔

𝑔
) ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔̅̅ ̅𝑁𝑐,𝑔
𝑔

,                                                      ∀𝑔     (𝛾𝑔𝑐𝑡
+ )  A.33 

𝑃𝑘 − 𝑏𝑘(𝜃𝑛 − 𝜃𝑚) = 0,                                                                               ∀𝑘     (𝑠𝑘𝑐𝑡
𝑔

)  A.34 

−𝑃𝑘 ≤ (𝑆𝑁𝐺
−̅̅ ̅̅ ̅ + 𝑃𝑘

𝑚𝑎𝑥,𝑐)(1 − 𝑠),                                                                ∀𝑘     (𝐹𝑘𝑐𝑡
𝑔−

) A.35 

 𝑃𝑘 ≤ (𝑆𝑁𝐺
+̅̅ ̅̅ ̅ + 𝑃𝑘

𝑚𝑎𝑥,𝑐)(1 − 𝑠),                                                                 ∀𝑘      (𝐹𝑘𝑐𝑡
𝑔+

) A.36 

The formulation of feasibility cuts for line contingency  

∑ (𝑅𝑔
10𝑢𝑔,𝑡 − 𝑃𝑔𝑡)𝛼𝑔𝑐𝑡

𝑟−
𝑔 + ∑ (𝑅𝑔

10𝑢𝑔,𝑡 + 𝑃𝑔,𝑡)𝛼𝑔𝑐𝑡
𝑟+

∀𝑔  + ∑ (−𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡)∀𝑔 𝜂𝑔𝑐𝑡

𝑟− +

∑ (𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡)𝜂𝑔𝑐𝑡

𝑟+
∀𝑔   

+𝐶𝑐,𝑡
𝑟 ≤ 0    ∀𝑟, 𝑐 ∈ 𝑁𝑘 , 𝑡 

A.37 
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Where  

𝐶𝑐,𝑡
𝑟 = ∑ (𝑁𝑐,𝑘

𝑘 (𝑆𝑁𝐾
− + 𝑃𝑘

𝑚𝑎𝑥,𝑐))𝐹𝑘𝑐𝑡
𝑟 𝑘−

∀𝑘 + ∑ (𝑁𝑐,𝑘
𝑘 (𝑆𝑁𝐾

+ + 𝑃𝑘
𝑚𝑎𝑥,𝑐))𝐹𝑘𝑐𝑡

𝑟 𝑘+
∀𝑘  +

∑ (𝑑𝑛,𝑡)𝐿𝑀𝑃𝑛𝑐𝑡
𝑟

∀𝑛                                                                                     ∀𝑟, 𝑐 ∈ 𝑁𝑘 , 𝑡 
A.38 

The formulation of feasibility cuts for generator contingency  

∑ (𝑅𝑔
10𝑢𝑔,𝑡 − 𝑁𝑐,𝑔

𝑔
𝑃𝑔𝑡)𝛽𝑔𝑐𝑡

𝑟−
∀𝑔 + ∑ (𝑅𝑔

10𝑢𝑔,𝑡 + 𝑁𝑐,𝑔
𝑔

𝑃𝑔,𝑡)𝛽𝑔𝑐𝑡
𝑟+

∀𝑔  +

∑ (−𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡𝑁𝑐,𝑔

𝑔
)𝛾𝑔𝑐𝑡

𝑟−
∀𝑔             

+ ∑ (𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡𝑁𝑐,𝑔

𝑔
)𝛾𝑔𝑐𝑡

𝑟+
∀𝑔  + 𝐶𝑐,𝑡

𝑟 ≤ 0                                                                                         

                                                                                                                         ∀𝑟, 𝑐 ∈ 𝑁𝑔, 𝑡 

A.39 

Where  

𝐶𝑐,𝑡
𝑟 = ∑ (𝑆𝑁𝐺

− + 𝑃𝑘
𝑚𝑎𝑥,𝑐)𝐹𝑘𝑐𝑡

𝑟 𝑔−
∀𝑘 + ∑ (𝑆𝑁𝐺

+ + 𝑃𝑘
𝑚𝑎𝑥,𝑐)𝐹𝑘𝑐𝑡

𝑟 𝑔+
∀𝑘  + ∑ (𝑑𝑛,𝑡)𝐿𝑀𝑃𝑛𝑐𝑡

𝑟
∀𝑛                                                                              

∀𝑟, 𝑐 ∈ 𝑁𝑔, 𝑡 
A.40 

 


