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ABSTRACT

In many applications, measured sensor data is meaningful only when the location of sen-

sors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both

location estimation and location detection problems are considered.

In location estimation problems, sensor nodes at known locations, called anchors, trans-

mit signals to sensor nodes at unknown locations, called nodes, and use these transmissions to

estimate the location of the nodes. Specifically, the location estimation in the presence of fading

channels using time of arrival (TOA) measurements with narrowband communication signals is

considered. Meanwhile, the Cramer-Rao lower bound (CRLB) for localization error under differ-

ent assumptions is derived. Also, maximum likelihood estimators (MLEs) under these assumptions

are derived.

In large WSNs, distributed location estimation algorithms are more efficient than central-

ized algorithms. A sequential localization scheme, which is one of distributed location estima-

tion algorithms, is considered. Also, different localization methods, such as TOA, received signal

strength (RSS), time difference of arrival (TDOA), direction of arrival (DOA), and large aper-

ture array (LAA) are compared under different signal-to-noise ratio (SNR) conditions. Simulation

results show that DOA is the preferred scheme at the low SNR regime and the LAA localization

algorithm provides better performance for network discovery at high SNRs. Meanwhile, the CRLB

for the localization error using the TOA method is also derived.

A distributed location detection scheme, which allows each anchor to make a decision as

to whether a node is active or not is proposed. Once an anchor makes a decision, a bit is transmitted

to a fusion center (FC). The fusion center combines all the decisions and uses a design parameter

K to make the final decision. Three scenarios are considered in this dissertation. Firstly, loca-

tion detection at a known location is considered. Secondly, detecting a node in a known region is

considered. Thirdly, location detection in the presence of fading is considered. The optimal thresh-

olds are derived and the total probability of false alarm and detection under different scenarios are

derived.
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Chapter 1

INTRODUCTION

1.1 Wireless Sensor Networks

A sensor node is usually a low size, weight and power (SWAP) device with an antenna, a CPU,

an expansion connector, a power switch, a radio, and is powered by battery. Figure 1.1 shows an

example of a sensor node. A sensor network, which consists of multiple sensor nodes, is a group

of specialized transducers with a communications infrastructure intended to monitor and record

conditions at diverse locations. It can be used to monitor quantities such as location, temperature,

humidity, pressure, among others [1–3], and can be either wired or wireless depending on the con-

nection between sensor nodes. In a wired sensor network, two sensor nodes are connected through

a wire. In a wireless sensor network (WSN), sensor nodes communicate with each other through

agreed protocols. Therefore, comparing wired sensor networks with WSNs, wired sensor networks

are more secure and faster than wireless sensor networks in data transfer speed [4]. However, they

lack flexibility. Meanwhile, the implementation of a wired sensor network is more expensive than

a WSN due to the cost of wires, connectors and labor. Also, a large wired sensor network is more

difficult to manage than a WSN. On the other hand, WSNs are more flexible and power efficient

than wired sensor networks [2].

A WSN can be either fully connected, in which case all sensor nodes communicate with

each other, or partly connected, in which case one sensor node only communicates with its neigh-

bors. In a fully connected WSN, sensor nodes exchange information by transmitting and receiving

signals from all other nodes. On the other hand, in a partly connected WSN, each sensor node

collects limited information. Therefore, a fully connected WSN benefits from a global network

knowledge and provides more accurate results than a partly connected WSN, but costs more in

terms of energy and bandwidth. A WSN can be either homogeneous or heterogeneous [5]. In a

homogeneous network, all sensor nodes are identical in terms of battery life, communication range,

and hardware complexity. On the other hand, in heterogeneous networks, sensor nodes have differ-

ent communication ranges and functions. Generally speaking, the algorithms which are designed

for homogeneous networks are not suitable for heterogeneous networks.
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Figure 1.1: An Example of Sensor Nodes.

The sensor node is developed by Genetlab and has been used for intrusion detection in border and

facility surveillance systems [6].

Comparing to traditional devices, the greatest advantages of WSNs are improved robust-

ness and scalability [3]. In general, WSNs have energy advantage compared to other devices since

sensors are small, have low power cost and detection advantage since a more dense sensor field im-

proves the odds of detecting a signal source within the range. Although the main driving forces for

WSNs are fault tolerance, energy gain and spatial capacity gain, WSNs have bandwidth limits [10].

Meanwhile, due to mobile applications, one of the most important constraints on sensor nodes is

the low power consumption requirements [2]. Therefore, sensor network protocols must focus pri-

marily on power conservation. Also, to make sure the nodes work efficiently, these nodes must

operate in high volumetric densities, have low production cost and be dispensable, be autonomous

and operate unattended and be adaptive to the environment [2, 11, 12].

1.2 Applications of WSNs

WSNs are deployed in both civilian and military applications. Figure 1.2 shows some applications

of WSNs, such as security surveillance [13], health and wellness [14], smart home [15], fire pro-

2



Figure 1.2: Some Applications of WSNs.

WSNs are deployed in a) health and wellness [7], b) smart home [8], c) fire protection, d) military

tracking [9], and e) security surveillance applications.

tection in forest [16], and tracking [17]. Reference [18] gives a general literature review on the ap-

plications of WSNs, which includes military applications, indoor monitoring, outdoor monitoring

and robotics. Meanwhile, reference [19] discusses the applications in automobiles. Applications in

the area of human health, medical care, and emergency rescue are found in reference [20]. In [21],

the authors discuss WSNs applications in weather and disaster alarm systems. In [22], WSNs are

applied in air pollution monitoring systems. Mobile wireless sensor networks (MWSNs) has raised

attention in recent years. For example, in [23], cell phones are used for mobile localization as

shown in Figure 1.3.

1.3 Localization in WSNs

In many applications, measured sensor data are meaningful only when the location of sensors is ac-

curately known. Nowadays, the most widely used technique for localization purpose is the Global

Positioning System (GPS), which was developed in 1973 to overcome the limitations of previous

3



Figure 1.3: Mobile WSNs Apply in Localization.

By sending acoustic signals among anchors and the device at unknown location, the location can

be estimated.

navigation systems [24, 25] and it has been used for both military and industry purposes. GPS

offers 3D localization based on direct line-of-sight(LOS) with at least four satellites, providing an

accuracy up to three meters. However, GPS has some limitations [26–28]. First of all, GPS cannot

be implemented under harsh environments. For example, in the presence of dense forests, moun-

tains or other obstacles that block the LOS from GPS satellite, GPS cannot work. Second, GPS

cannot be implemented under the indoor environment. Third, while the cost for GPS equipment has

been dropping over the years, it is still not suited for mass-produced cheap sensor boards, phones

and even PDAs. On the other hand,the Federal Communications Commission (FCC) in the US

has required wireless providers to locate mobile users within 10 meters for 911 calls [29]. There-

4



Figure 1.4: An Example of Cooperative WSNs.

Here d12 d13 and d23 are the distances between nodes.

fore, the accurate estimation of position should be performed even in challenging environments.

To overcome GPS limitations, researchers have developed fully GPS-free techniques for locating

nodes as well as techniques where few nodes, commonly called anchors, use GPS to determine

their location and, by broadcasting it, help other nodes in calculating their own position without

using GPS. Therefore, the problem of location estimation using WSNs is formulated. To localize a

node, several reference nodes, termed anchors with known locations are used to localize nodes with

unknown locations. Localization in WSNs has been used in many applications, such as inventory

tracking, forest fire tracking, home automation and patient monitoring [30]. When both anchors

and other nodes communicate with the node that needs to be localized, a sensor network is called a

cooperative WSN. In general, WSNs can be classified as cooperative and non-cooperative WSNs.

The concept of cooperative WSNs relies on direct communication between nodes, which means

nodes can communicate with each other and in localization problems, a node can estimate its loca-

5



Figure 1.5: An Example of non-Cooperative WSNs.

Here node 1 communicates with anchor 3, 4 and 5. Node 2 communicates with anchor 6, 7, and 8.

Nodes do not communicate with each other.

tion by sending or receiving signals from other nodes [31]. On the other hand, in non-cooperative

WSNs, no communications take place between nodes. Nodes can only communicate with anchors

and estimate their locations through anchors. Figure 1.4 shows an example of cooperative WSNs.

In the figure, node 1, 2 and 3 communicate with each other, which indicates that distance mea-

surements d12, d13, and d23 are available, and the network is a cooperative WSN because nodes

communicates with each other. Figure 1.5 shows an example of non-cooperative WSNs. In the fig-

ure, the link between node 1 and node 2 is not present. Therefore, the network is a non-cooperative

WSN.

1.4 Classifications of Localization Algorithms

Localization algorithms can be classified in three categories. Figure 1.6 shows the classifications

of localization algorithms. According to the computational capability at each anchor, localization

6



Figure 1.6: Classifications of Localization Algorithms.

algorithms can be classified as centralized and distributed algorithms. For centralized algorithms,

as shown in Figure 1.7, a fusion center (FC) is used to collect all information from sensor nodes

and is responsible for a majority of the computations. For distributed algorithms, as shown in

Figure 1.8, each sensor node exchanges information with its neighbor or a group of sensor nodes,

and computes or estimates parameters locally. A FC is optional, and if it exists, is used to collect

computed or estimated parameters from each sensor node. Centralized algorithms require more en-

ergy than distributed algorithms due to transmissions between sensor nodes and a FC. On the other

hand, centralized algorithms provide more accurate results compared to distributed algorithms.

However, in large WSNs, efficient utilization of energy is crucial for large area and long distance

communications. In order to implement centralized algorithms more efficiently in large WSNs,
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Figure 1.7: Flow Chart for Centralized Algorithms.

Sensor nodes collect measurements, then the measured data are passed to a FC. The fusicon center

is in charge of computing parameters of interest.

Figure 1.8: Flow Chart for Distributed Algorithms.

The measured data are used for computation at each sensor node. A FC is optional.

many researchers focus on developing energy efficient protocol for WSNs [32, 33]. Comparing a

distributed system with a centralized system, a distributed system is inherently more robust than a

centralized system, such as less possible of link failures. Distributed algorithms are also far more

scalable in practical deployment and may be the only way to achieve the large scales needed for

some applications.
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Figure 1.9: Flow Chart of Range-based Localization.

According to the dependency of range measurements, the localization schemes can be clas-

sified as range-based approaches and range-free approaches. In range-based localization scheme,

location related parameters are firstly measured. Figure 1.9 shows the flow chart of the range-based

localization approach. Commonly used range-based techniques include time of arrival (TOA) [34],

received signal strength (RSS) [35], time difference of arrival (TDOA) [36], direction of arrival

(DOA) [37], large aperture array (LAA) [38] or other hybrid techniques [39]. The TOA technique

is one of the most popular techniques used for localization. Here, the time delay from the transmit-

ting node to the receiving node is measured, which can be either one-way transmission or two-way

transmission. For the one-way transmission, the time synchronization between the transmitter and

the receiver is required [31, 36]. For the two-way transmission, there is no need for time synchro-

nization between the transmitter and the receiver, and the actual transmitting time is half of the

measured time. However, the two-way transmission scheme requires more energy and bandwidth

compares to the one-way transmission, and has limitations in large WSNs. In contrast to TOA,
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TDOA measures the difference between arrival times at the receiving nodes which removes the

need for synchronization between the transmitter and receiver [40, 41]. However, this technique is

known to suffer if there is insufficient bandwidth. In RSS, a path loss model is used to estimate

location on power loss measurements [42]. This is a simple and cheap technique to implement

but suffers from problems in the presence of channel impairments such as multipath and frequency

flat fading. The DOA approach employs small aperture arrays at each sensor node to estimate the

direction of the transmitted source. This method uses spatial diversity more optimally to achieve

a better localization performance and does not require nodes to be synchronized but has increased

hardware and processing requirements. Finally, in the LAA approach, nodes used for localization

are aggregated to form an array system [38]. This approach is robust to frequency flat fading and

may be extended to overcome co-channel interference. On the other hand, range-free algorithms

include neighborhood and hop counting techniques. The commonly used anchor-free localization

algorithms includes DV-hop [43], in which each node counts the minimum hop number to the

neighbors, and estimate the distance by multiplying the number of hops with the averaged dis-

tance between two hops. Range-based algorithms have higher accuracy compared to range-free,

but require additional hardware.

According to the number of anchors that is used to localize a node, the localization algo-

rithms can be classified as anchor-based algorithms and anchor-free algorithms. In anchor-based

algorithms, several reference nodes, termed anchors with known locations are used to localize

nodes with unknown locations. In this scheme, the accuracy of the estimation highly depends on

the number of anchors and the performance is improved when more anchors are added to the net-

work. In the anchor-free scheme, there is no anchor node with perfectly known location. Nodes

communicates with each other to estimate relative locations instead of computing absolute loca-

tions [44]. Comparing the anchor-based scheme with the anchor-free scheme, the anchor-based

scheme provides more accurate results than the anchor-free scheme. However, since GPS receivers

are expensive, to obtain the accurate anchor locations, the hardware cost for the anchor-based

scheme is much higher than the anchor-free scheme.
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Figure 1.10: An Example of Locating Nodes Using the Sequential Algorithm.

Black nodes are at known or previously estimated locations. Transmitting node 5 is localizaed

using nodes 1, 2, 3 and 4. Once a white node is localized, it becomes an anchor to localize other

neighbour white nodes [38].

1.5 Sequential Localization in WSNs

WSN discovery may be performed in a centralized or distributed manner [34]. In the centralized

approach, all the measurements are transmitted to a FC to estimate unknown locations. The main

drawback of this approach is that anchors must be within the coverage area of all nodes which will

lead to an undesirably large cost in power. On the other hand, distributed sensor networks allow

nodes only communicates with small portion of neighbors. Therefore, distributed algorithms are

more power efficient. One of the distributed localization algorithms, which is called sequential

localization algorithm [38], attempts to overcome the limited power in WSNs by allowing nodes

which have previously been localized to be used to localize other nodes [45]. Figure 1.10 shows an

example of locating nodes using sequential algorithm. In the figure, black nodes are at known or

previously estimated locations. The node 5 is localized using node 1, 2, 3 and 4 only. Once more

nodes are localized, they become anchors to localize neighbor white nodes. The main drawback
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of this approach is that localization errors will propagate through the network during the iterative

localization process. This is because it is assumed that the estimated locations of the nodes are

the actual locations. However, due to the errors associated in localizing the nodes, this may not

be the case. This makes the order in which nodes are localized markedly important as well as

the localization algorithm used. In [45], the performance of TOA, TDOA, RSS, DOA and LAA

localization algorithms using the sequential localization approach are compared.

1.6 Estimators for Localization

After location related parameters are estimated, the location can be computed using the measured

parameters. To compute the node location, many algorithms have been proposed in the literature.

If the data is known to be described well by a particular statistical model, then the maximum like-

lihood estimator (MLE) can be derived and implemented [34]. Since MLE can asymptotically

achieve the Cramer-Rao lower bound (CRLB), it is the optimal estimator. However, there are some

difficulties with this approach. Firstly, it is possible that the maximization search may find a local

maxima not a global maxima. Secondly, if the measurements are obtained from the assumed model,

the results are no longer guaranteed to be optimal. Thirdly, in a large WSN, finding a global max-

ima is computationally intense, which makes the computation much slower than other approaches.

Therefore, to overcome the difficulties, other approaches have been applied. One way to prevent

local maxima is to formulate the location estimation as a convex optimization problem [46]. Con-

vex constraints are presented that can be used to require a sensor’s location estimate to be within a

radius r from a second sensor. In [47], the linear programming using a “taxi metric” is suggested

to provide a quick means to obtain rough localization estimates. More general constrains can be

considered if semidefinite programming (SDP) techniques are used [48]. In [49] a distributed SDP-

based localization algorithm was presented to simplify the complexity of computation.

1.7 Location Detection in WSNs

In some applications, such as in a surveillance network, the accuracy of the nodes’s reading is

crucial. Once any node behaves abnormal, the location of the node with abnormal activity needs

to be localized. To detect the malicious node, many researchers work on designing algorithms and
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protocols. In the literature, researches have been working on designing algorithms and protocols

to detect abnormal nodes. Reference [50] proposed detecting malicious nodes through detection of

malicious message transmission in a network. In [51] studies a distributed node detection protocol.

In other applications, the node location is known to all anchors, but whether the node is active or not

is unknown. In many applications such as detecting fire in buildings, each node is placed inside a

room, and the location is known to all anchors. Anchors detect an event based on whether the node

is transmitting. In the absence of transmission, each anchor receives only noise. In the presence

of the node, each anchor receives signal with noise. Therefore, location detection in WSNs is

formulated as a binary hypothesis testing problem, and Neyman-Pearson lemma [52] is applied to

solve the problem.

1.7.1 Location Detection versus Location Estimation in WSNs

Comparing with the estimation formulation, the detection formulation is different from the estima-

tion formulation in the following aspects. First of all, in detection problems, the goal is to detect the

activity or silence of a node or multiple nodes at known locations; however, in estimation problems,

the goal is to estimate the location of a node or multiple nodes, which are at unknown locations.

Secondly, to estimate the location of a node, multiple anchors are needed in order to avoid ambi-

guity. For example, when using range-based methods, a minimum of two anchors are needed for

one dimension (1-D), and three anchors are needed for two dimensions (2-D). On the other hand,

to detect a node, each anchor can make a local decision on whether the node is active or not by

correlating the received signal with the transmitted signal and then comparing with a threshold.

The final decision can be made by exchanging this data with other anchors and a FC. Therefore,

the detection problem can be solved by using a distributed implementation based on exchange of

bits between anchors and a FC. Thirdly, the performance analysis is different. In the estimation

formulation, the variance of the location estimation error is used as a performance metric, whereas

for detection, metrics such as the probability of false alarm and the probability of detection are

used [52] [53].
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1.8 Motivation of the Dissertation

Both location estimation and detection problems have been studied in the literature. Many re-

searchers have discussed the method of location estimation using WSNs [31, 34, 40], and different

performance analysis bounds have been proposed, for example, reference [31] derived the CRLB

on the estimation error by using TOA and RSS measurements, and reference [54] studied the posi-

tion error bound in which the nuisance parameters were considered. However, none of the existing

work considered fading scenario. Although some work has considered fading environments for

TOA measurements [55, 56], the CRLB of location estimation by considering fading coefficients

as random unknown parameters has not been derived. The accuracy of measurements is highly

affected by the bandwidth, therefore, wide band or ultra wide band (UWB) signals are often used

for localization [27]. However, in some applications, localization needs to be done with the nar-

rowband signals that are also used for communications. When the bandwidth of the transmitted

signal is limited, the performance is affected by multipath fading and noise. Therefore, localization

in the presence of fading needs to be studied.

In other applications, such as fire protection in a building, one node is placed inside each

room, whose location is known to all anchors. If a fire actives a node in any room, the active

node at this known location needs to be detected. In the absence of transmission from a node,

each anchor only receives noise, and in the presence of transmission from a node, each anchor

receives signal plus noise. Therefore, location detection is needed to decide whether a node is

active or not. In this case, the problem of location detection using WSNs is formulated. In the

literature, location detection in WSNs has been studied in [57], which discretizes the problem to

obtain an N-ary hypothesis testing problem. However, the performance depends on the grid size.

In [58], a centralized sensor network with unknown fading coefficients has been studied. Although

centralized methods may give a better performance, it is costly in large WSNs. None of these

works have studied location detection using distributed methods, also none of these works consider

fading environments with explicit incorporation of the fading distribution in deriving the threshold

for location detection. Therefore, distributed location detection problems in the absence of fading
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and in the presence of fading need to be studied.

1.9 Contributions and Organization of the Dissertation

In this section, contributions and organization of the dissertation are provided.

In Chapter 2, localization methods and algorithms are revisited, and performance analysis

metrics for both location estimation and detection are discussed.

In Chapter 3 and Chapter 4, location estimation is studied. Specifically, in Chapter 3, the

problem of location estimation in the presence of fading is proposed. The followings are the main

contributions in this chapter.

• In the location estimation problem, we assume narrow band communication signals are trans-

mitted between a node and anchors, and we derive the CRLBs in the presence of fading

scenarios for both 1-D and 2-D with TOA measurements. Specifically, the Nakagami fading

with different knowledge at each anchor is considered.

– Firstly, the fading coefficients are assumed to be known at each anchor. In this case,

the CRLB depends on the fading coefficients.

– Secondly, the phase of the fading coefficients are assumed to be known but unknown

amplitude. Specifically, we assume the amplitude of the fading coefficients are Nak-

agami distributed. In this case, the CRLB can be derived by integrating the fading

effect.

– Thirdly, no CSI is available at any anchor. In this case, a non-coherent detector is

applied to extract both in-phase and channel components. The CRLB depends on both

the phase and the amplitude of the fading coefficients.

• Finally, the MLEs under difference fading scenarios are derived and compared with the MLE

in the absence of fading.

In Chapter 4, a sequential localization algorithm is applied and different localization meth-

ods are compared under different SNR conditions. Also, to characteristic the error propagation in
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the sequential localization algorithm, CRLBs for the TOA measurement in the absence and in the

presence of fading are derived.

In Chapter 5 and Chapter 6, a distributed location detection scheme is proposed. In Chapter

5, detecting a node at a point and in a region are studied. The followings are the main contributions

in Chapter 6.

• The location detection in the presence of fading is considered. Specifically, The Rayleigh

fading with different knowledge at each anchor is considered.

• Firstly, The fading coefficients are assumed to be known at each anchor. Secondly, the phase

of the fading coefficients are assumed to be unknown but known amplitude. Thirdly, no

CSI is available at any anchor. The knowledge of the fading coefficients affects finding the

optimal threshold.

Chapter 7 summarizes the dissertation and conclusions are made.



Chapter 2

LOCALIZATION IN WSNs

Localization in WSNs is needed in both civilization and military. To localize a node, several

reference nodes, termed anchors with known locations are used to localize nodes with unknown

locations. In this chapter, existing localization algorithms are revisited. Following that, the Fisher

information and the CRLB, which provide a benchmark on the performance of location estimation

are reviewed. For location detection, the Neyman-Pearson detector is applied to find the threshold

and the corresponding detection probability and false alarm probability.

2.1 Range-based Localization Algorithms

According to the dependency of range measurements, the localization schemes can be classified

as range-based approaches and range-free approaches. In this section, some classical range-based

localization algorithms are revisited. To determine the node location, two different location estima-

tion schemes can be performed, which are direct positioning determination method [59], in which

case the location estimation is performed directly from the transmitted signals, and the two-step

localization scheme [30] as shown in Figure 2.1, in which case the location related parameters that

are firstly extracted and the location estimation is performed based on the extracted parameters.

Although the two-step localization scheme is suboptimal, it can significant lower complexity than

the direct approach. Therefore, the two-step localization method is the common technique in most

localization systems.

In the two-step localization system, location related parameters need to be measured. In

Figure 2.1: Two-step Localization Method.
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range-based approaches, distant related measurements, such as TOA, RSS and TDOA, and angle

related measurements, such as DOA are collected. Also, some hybrid measurements, such as LAA,

which measures distance and angle simultaneously are investigated [34, 35, 60–62].

TOA measures the transmitting time between a node and an anchor. The measurement

can be either one way or two way mode [63]. In the one way transmission scheme, a signal is

transmitted from an anchor to a node, and the node estimates its location based on the transmis-

sion time. It is more efficient than two way transmission in large WSNs, but the synchronization

between anchors and nodes is crucial. In the two way transmission scheme, a signal is transmitted

from an anchor to a node, and the node transmits the signal back immediately after it receives the

signal. The one way transmission time is half of the measured time. The two way transmission

scheme consumes more time and energy but does not need the time synchronization. In Figure 2.2,

the node location is estimated using the TOA measurement. In the absence of noise, the node is

located in the intersection of three circles with radius d1, d2 and d3 respectively. However, in the

presence of noise, the estimation error occurs. For a given bandwidth and SNR, the time delay

estimate can only achieve a certain accuracy. The CRLB provides a lower bound on the variance of

the TOA estimate in a multipath free channel. Define τ̂ as the time delay estimate, B is the signal

bandwidth, and f0 is the center frequency which is much higher than the bandwidth B, and Ts is the

signal duration in seconds, the CRLB is given as

var(τ̂)≥
1

8π2BTs f 2
0 SNR

. (2.1)

From (2.1) one can see that in the absence of multiple signals, the accuracy of the arrival time is

limited by additive noise [34]. But in multipath channels, TOA based range errors can be much

greater than those caused by additive noise alone. Therefore, TOA measurements suffer from two

problems, early arriving multipath and attenuated LOS.

To overcome the time synchronization error in the TOA measurement, the TDOA based

localization techniques can be applied. The key concept of the TDOA measurement is to determine

the location of the source by evaluating the difference in arrival time of the signal at spatially

separated sensor nodes. For each pair of anchors, as shown in Figure (2.3), the node is located in

the hyperbola of anchor 1 and anchor 2. The hyperbola is the set of points at a constant distance
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Figure 2.2: The TOA Measurement.

In the absence of the noise, the estimate of the node location is at the intersection point of three

circles which have the radius d1, d2 and d3 respectively.

difference from two foci. Here the distance difference is defined as c∆t, where c is the speed

of propagation, and ∆t = |d1 − d2|. The intersection point of multiple hyperbola is the estimated

location of the node as shown in Figure 2.4. Since TDOA is taking the time difference between

arriving signals, it does not depend on the clock bias. Therefore, the synchronization between

nodes and anchors is not needed. However, same as the TOA measurement, TDOA also suffers

from multipath and noise, especially in the low SNR regime.

Another commonly used localization measurement is called received signal strength. In

RSS, the measured received power at the node transmitted by an anchor, which is defined as P is

used to estimate the distance d. The path loss formula is given as [34]

P(dBm) = P0(dBm)−10α log10(d/d0) , (2.2)

here P0 is the reference power at reference distance d0, α is the pathloss component. RSS can

be measured using simple circuits, but has limited accuracy due to the difficulty measuring the
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Figure 2.3: The Node is Located on the Hyperbola.

appropriate path loss model. Multipath signals and shadowing are two major sources of environ-

ment dependence in the measured RSS [34]. Multiple signals with different amplitudes and phases

arrive at the receiver, and these signals add constructively or destructively as a function of the fre-

quency, causing frequency-selective fading. To deal with the frequency-selective fading, one can

use a spread-spectrum method that average the received power over a wide range of frequencies.

In the absence of fading, shadowing becomes the major source of error, such as the attenuation of

a signal due to obstructions that a signal must pass through or diffract around on the path between

the transmitter and receiver.

Besides measure distance related parameters, nodes can also be localized using angle re-

lated measurements. The DOA measurement determines the direction of a node by measuring the

propagation direction of the signal between a node and an anchor [64]. In Figure 2.5, θ1 is the

angle between the node and anchor 1, and θ2 is the angle between the node and anchor 2. Also, the

orientation, which is defined as a fixed direction against which AOAs are measured, is the North.

Therefore, the DOA measurement corresponding to anchor 1 and the node restricts the location of
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Figure 2.4: The TDOA Measurements.

In the absence of noise, the node is located at the intersection of three hyperbolas.

the node along a ray starting at anchor 1. Similarly, the node is also located along the ray which

starts at anchor 2. The estimate of the node location is at the joint point of two rays. In general, the

node is located at the intersection of all rays when two or more non-collinear anchors are available.

Since it is not likely that all anchors are placed with known orientation, when the orientation at

any anchor is unknown, the problem is more complicated than the case when the orientation at all

anchors is the same.

Since different localization techniques have different disadvantages, in order to overcome

different downfalls, one common way is to mix different localization approaches simultaneously.

Reference [62] studies a hybrid localization technique, which is called large aperture array. The

LAA technique is an array processing technique that measures direction and distance related in-

formation. The measurements are jointly used to localize transmitting nodes by forming a large

aperture array of nodes. Figure 2.6 shows an example of locating a node location using the LAA

measurement. In this example, the location of the node is estimated by using 3 anchors as an array
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Figure 2.5: The DOA Measurement.

Here, the orientation is the North.

of large aperture of known geometry. The eigenvalue of the covariance matrix corresponding to a

specified reference point is proportional to the distance between the node and that reference point.

By repeatedly selecting reference point for the covariance matrix, the position of the node can be

estimated as the intersection point of three circular loci. In [38], the LAA technique is proved

that it leads to improve localization accuracy. In addition, in [45], the LAA technique is compared

with conventional techniques using the sequential localization algorithm, and the simulation results

show that the LAA technique outperforms all other conventional techniques in high SNR regimes.

2.2 Range-free Localization Algorithms

Although range-based localization algorithms provide high accuracy on location estimation, they

are costly in terms of hardware. In order to overcome this issue, researchers have developed range-

free methods. Comparing the range-based localization algorithms with the range-free localization

algorithms, instead of measuring location related parameters, range-free methods counts the num-

22



Figure 2.6: The LAA Measurement.

Each anchor measures both distance and angles between the node and the anchor.

ber of hops or using the area information to estimate distance to neighbors in order to estimate

locations. One of the most commonly used anchor-free techniques, DV-hop, allows each node

counts the minimum number of hops between itself and an anchor. The number of hops is mul-

tiplied by the averaged distance between two hops to estimate the distance. Figure 2.7 shows the

flow chart of the DV-hop algorithm. Firstly, Each anchor broadcasts its location and the initial hop-

count value initialized to one. Each node counts the number of hops from itself to an anchor, and

only save the one with minimum number of hops to each anchor. Secondly, each anchor estimates

an average size for one hop by exchanging information with another anchor, and broadcasts the

average size to other nodes. Thirdly, the distance between the node an anchor can be estimated by

multiplying the hop size with the minimum number of hops.
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Figure 2.7: The Flowchart of DV-hop Algorithm.

2.3 Calculating the Coordinate of Node Locations

After distance or angle related measurements are collected at each anchor, unknown locations

are estimated using either centralized or distributed algorithms. In a centralized algorithm, the

collected measurements at each anchor are transmitted to a fusion center prior to calculate. On

the other hand, in a distributed algorithm, each anchor estimate unknown locations and share the

estimates with their neighbors. In general, centralized algorithms are more likely to provide more

accurate location estimates than distributed algorithms. However, centralized algorithms suffer
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from computing complexity and are not feasible to be implemented in large WSNs. In centralized

algorithms, if the measured data is known to be described well by a particular statistical model,

then the maximum likelihood estimator (MLE) can be derived and implemented [31] [65]. One

reason that these estimators are used is that their variance asymptotically approaches the lower

bound given by the CRLB. However, there are two difficulties with this approach. Firstly, MLE

suffers from local maxima. It is possible that the maximization search may not find the global

maxima unless the initialed value is close to the true location. Secondly, MLE depends on the actual

model. If measurements deviate from the assumed model, the results are no longer guaranteed to be

optimal. One way to prevent local maxima is to formulate the localization as a convex optimization

problem [46–49].

There are two big motivations for developing distributed localization algorithms. First,

for some applications, there is no FC (or none with enough computational power) is available to

handle the calculations. Second, when a large network of sensors must forward all measurement

data to a single central processor, there is a communication bottleneck and higher energy drain at

and near the central processor. To overcome this issue, distributed localization algorithms, such as

sequential localization scheme, can be applied. In the sequential estimation approach, only a small

number of anchors is needed at the initial stage, and the anchors are used to localize nodes within

a certain range. Once the nodes are localized, they become anchors and are used to localize other

nodes. Therefore, the number of anchors increases after each node is localized. Table 2.1 gives the

detail for the sequential algorithms. Since anchors only are used to localize nodes within its range,

this approach is more power efficient comparing to centralized methods. However, the sequential

location estimation has some drawbacks. Firstly, the localization errors will propagate through the

network during the iterative localization process. This is because it is assumed that the estimated

locations of the nodes are the actual locations. Secondly, the order in which nodes are localized

is markedly important and affects the localization accuracy. Therefore, the estimates for the nodes

that are localized later may not satisfy the error tolerance. Thirdly, since anchors only communicate

with nodes within the range, it is possible that one node or multiple nodes is not localized within

any of the anchor’s range. In that case, the node will not be successfully localized.
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Initialization

Step 1: Initially there are M anchors and N nodes.

Each anchor can communicate with a node within a range D.

Step 2: Set k = 1.

Algorithm

For the ith undiscovered node that transmits within

a coverage range D, repeat the following steps until

all the node locations have been estimated:

Step 1: Find the number of nodes at known or

estimated locations Mset within the coverage range.

Step 2: If Mset ≥ Mmin

Then Using TOA/RSS/TDOA/LAA to measure the data.

Else Move to Step 4.

Step 3: Estimate the location of the node

using localization algorithms.

Step 4: M = M+1, i = i+1, and k = k+1.

Refinement

Step 1: For the kth localization iteration,

set i = 1 and

repeat the Algorithm using all localized node location estimates

from previous iterations until k = K.

Table 2.1: The Sequential Localization Algorithms.

Here, i is the node index, and i = 1,2, . . . ,N; k is the iteration index, and k = 1,2, . . . ,K; Mset is the

number of anchors or previously localized nodes that is used to localize the ith node, and Mmin is

the minimum number of anchors that is required for each measurement to avoid ambiguity. For

the TOA measurement, Mmin = 3, for the RSS, Mmin = 3, and for LAA, Mmin = 2.

Distributed algorithms for cooperative localization generally fall into one of the two cate-

gories. Firstly, network multilateration. In this case, each node estimates its multihop range to the

nearest reference nodes. These ranges can be estimated via the shortest path between the sensor

and anchors. Note that finding the shortest path is readily distributed across the network. When

each sensor has multiple range estimates to known positions, its coordinates are calculated locally

via multilateration [66]. Secondly, successive refinement. In this case, the algorithms try to find

the optimum of a global cost function, e.g., least squares (LS) , weighted least squares (WLS) [67],

or maximum likelihood (ML). Each sensor estimates its location and then transmits that assertion

to its neighbors [68]. Neighbors must then recalculate their location and transmit again until con-

verge. Typically, better statistical performance is achieved by successive refinement compared to

network multilateration, but convergence issues must be addressed. Bayesian networks provide
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another distributed successive refinement method to estimate the probability density of sensor net-

work parameters. These methods are particularly promising for sensor localization-each sensor

sores a conditional density on its own coordinates, based on its measurements.

2.4 Review of Some Existing Approaches

Once the distance measurements are available, node location can be estimated using different ap-

proaches. In this section, some existing approaches, for example, non linear least squares (NLS),

linear least squares (LLS), projection onto convex sets (POCS), and projection onto rings (POR)

are revisited. Consider a 2-D network with N +M sensor nodes. Suppose that N nodes are placed

at positions zi ∈R2, i = 1, . . .N, and the remaining M nodes are anchors. Suppose that anchors are

able to estimate distances to the nodes with the following observation:

d̂i j = di j +ni j, j = 1, . . . ,M, i = 1, . . . ,N, (2.3)

where di j = ∥zi − z j∥ is the Euclidean distance between zi and z j and ni j is the measurement error.

We assume the measurement errors are independent and identically distributed (i.i.d).

2.4.1 Nonlinear Least Squares

The nonlinear least squares location estimate based on the range measurement can be found as the

solution to the non-convex optimization problem

ẑi = arg min
zi∈R2

N

∑
i=1

∑
j=1,...,M

(d̂i j −di j)
2, (2.4)

and the algorithm is given in Algorithm 1.

Algorithm 1 NLS

1. Initialization: choose arbitrary initial target position z0
i ∈ R2 for node i

2. for k=0 until convergence or predefined number of K do

3. Update:

ẑi = arg min
zi∈R2

∑
j∈M

(d̂i, j −∥zi − z j∥)2

4. End for

We note if ni j are identically distributed, zero-mean Gaussian random variables for all

j = 1, . . . ,M, the NLS estimate is also the maximum likelihood estimate [69]. Solving the NLS
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problems require minimizing a nonlinear and non-convex function, which can not be solved ana-

lytically. Therefore, numerical algorithms are applied to approximate NLS estimations. However,

numerical algorithms require intensive computation and require a good initialization, in order to

avoid minimization problem and obtain a closed form solution, location estimation problems can

be solved by using the linear least squares approach.

2.4.2 Linear Least Squares

Based on [30, 70], an alternative approach to the NLS estimation is the LLS approach. In a LLS

technique, a new measurement set is obtained from the measurements by certain operation that

result in linear relations.

Let d̂i j represents the distance estimate obtained from the ith TOA measurement, and M

represents the total number of anchors, we have:

d̂2
i j = (x j − xi)

2 +(y j − yi)
2, for j = 1, . . . ,M (2.5)

where each distance measurement is assumed to define a circle of uncertain region. Then one of

the equations in (2.5), say the rth one, is fixed and subtracted from all of the other equation. After

some manipulation, the following linear relation can be obtained:

Al = P (2.6)

where l = [x y]T ,

A = 2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 − xr y1 − yr

...
...

xr−1 − xr yr−1 − yr

xr+1 − xr yr+1 − yr

...
...

xM − xr yM − yr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.7)
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Figure 2.8: Projection onto Convex Sets

and

P = 2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d2
r −d2

1 − kr + k1

...

d2
r −d2

r−1 − kr + kr−1

d2
r −d2

r+1 − kr + kr+1

...

d2
r −d2

M − kr + kM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.8)

with k j = x2
j +y2

j and r being the selected reference node index that is used to obtain linear relations.

Therefore, the LLS solution can be obtained as

l̂ = (AT A)−1AT P (2.9)

Compared to the NLS estimator, it has low computational complexity. However, it is

suboptimal in general and the amount of its sub-optimality can be quantified in terms of the CRLB.

2.4.3 Projection onto Convex Sets

To solve NLS based problems using numerical approximations, a good initialization is required.

Projection onto convex sets algorithm can provide a good initialization and a estimate on a node
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location. POCS was originally introduced to solve convex feasibility problems [71]. POCS then

been applied to different problems in various fields, such as image restoration problem and radiation

therapy treatment planning. Reference [72] discusses the POCS in localization problems. In the

absence of measurement error, it is clear that node i, at location zi , can be found in the intersection

of a number of circles with radii di j and centers z j. For non-negative measurement errors, we can

relax circles to discs because a target definitely can be found inside the circles. We define the disc

Di j centered at z j as

Di j = {zi ∈ R
2 ∥zi − z j∥ ≤ d̂i j}, j = 1, . . . ,M (2.10)

Define an estimate of zi as a point in the intersection Di of the disc Di j

ẑi ∈ Di =
⋂

j=1,...,M

Di j (2.11)

Therefore, the positioning problem can be transformed to the following convex feasibility

problem:

find z = [z1, . . . ,zN ] such that zi ∈ Di, i = 1, . . . ,N. (2.12)

Algorithm 2 POCS

1. Initialization: choose arbitrary initial target position z0
i ∈ R2 for node i

2. for k>0 until convergence or predefined number of K do

3. Update:

zk+1
i = zk

i +λ i
k(PDi j(k)(z

k
i )− zk

i )

4. End for

In Algorithm 2, we have introduced PDi j(k), which is the orthogonal projection of z onto

set Di j. To find the projection of a point z ∈Rn onto a closed convex set Ω ⊆ Rn, we need to solve

an optimization problem:

PΩ(z) = arg min∥z−x∥ (2.13)

When Ω is a disc, there is a closed-form solution for the projection:

PDi j
(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z j +
z−zj

||z−z j || d̂i j ||z− zj||≥ d̂i j

z ∥z− z j∥ ≤ d̂i j

(2.14)
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Figure 2.9: Projection onto Rings

2.4.4 Projection onto Rings

In the case when the measurement noise is small, we can often improve POCS by replacing the

disc Di j with a ring defined as

Ri j = {x ∈ R
2 : d̂i j − εl ≤ dj(z)≤ d̂i j + εu}, j = 1, . . . ,M (2.15)

where εl + εu determines the width of the ring. The width is tuning parameter of the resulting

algorithm. The projection onto rings (POR) is computed as in Algorithm 3.

Algorithm 3 POR

1. Initialization: choose arbitrary initial target position z0
i ∈ R2 for node i

2. for k >0 until convergence or predefined number of K do

3. Update:

zk+1
i = zk

i +λ i
k(PRi j(k)(z

k
i )− zk

i )

4. End for

2.5 Performance Analysis on Location Estimation and Detection

In the previous section, the measurements that are used to estimate node locations are reviewed.

To evaluate the performance of different measurements, the Cramer-Rao lower bound (CRLB),

which provides a lower bound on the variance achievable by any unbiased location estimator, can
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be applied to evaluate the performance. An unbiased estimator is defined as that on the average

the estimator will yield to the true value of the unknown parameter. Since the parameter may in

general be anywhere in the interval a ≤ θ ≤ b, unbiasedness asserts that no matter what the true

value of θ , our estimator will yield it on the average. Mathematically, an estimator is unbiased if

E(θ̂) = θ . (2.16)

The CRLB provides a lower bound on the variance achievable by any unbiased location estimator.

Any unbiased estimator θ̂ must satisfy

cov(θ̂ )≥
{

E[−▽θ(▽θ log f (X|θ))T ]
}−1

, (2.17)

where f (X|θ) is the pdf of the observation X, var(θ̂ ) is the covariance of the estimator, and ▽θ

is the gradient operator w.r.t the vector θ . The Fisher Information of the unknown parameter θ is

defined as

Fθ = E[−▽θ (▽θ log f (X|θ))T ]. (2.18)

The CRLBs on the TOA and RSS measurement in the absence of fading have been derived

in [31]. To locate a node in a 1m by 1m square, the CRLBs on the TOA measurement and the RSS

measurement are shown in Figure 2.10 and Figure 2.11 respectively. From the figure one can see

that the CRLB depends on the node location. When the node is located in the center of the square,

the CRLB is the smallest in both cases.

In detection theory, Neyman-Pearson hypothesis testing techniques are frequently used.

Specially, in a binary hypothesis problem, suppose one hypothesis is called null hypothesis, states

that the observed data only contains noise, and is denoted as H0, another hypothesis, states that the

observed data contains both signal plus noise, and is denoted as H1, the Neyman-Pearson detector,

which is denoted as L(x) is defined as the ratio of the log likelihood function under two hypothesis,

which is given as

L(x) =
f (x;H1)

f (x;H0)
≶ γ . (2.19)

It is proved that the Neyman-Pearson detector is the optimal detector that maximizing the proba-

bility of detection (P̄D) while satisfying the constraint on the probability of false alarm (P̄FA). They
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Figure 2.10: The CRLB on the TOA Measurement When the Node is Locating Inside A 1m by 1m

Square.

Figure 2.11: The CRLB on the RSS Measurement When the Node is Locating Inside A 1m by 1m

Square.

Neyman-Pearson detector has been widely used in detection problems. When the prior distribution

is known, one can simply find the optimal threshold that satisfies constrains on P̄FA. When the prior

distribution is unknown, machine learning algorithms can be applied to train the measured data and

find the NP classifier [73, 74].
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2.6 Conclusions

In this chapter, both range-based and range-free algorithms are revisited. Also, distance related

measurements, such as TOA, TDOA and RSS, angle related measurements, such as DOA, and

hybrid measurements, such as LAA, are discussed in details. To overcome the limits in centralized

algorithms, a sequential location estimation scheme, which is one of distributed algorithms, is

reviewed. To compute the coordinate of node locations, many approaches can be applied. In this

chapter, the NLS, LLS, POCS, and POR approaches are reviewed.
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Chapter 3

LOCATION ESTIMATION IN THE PRESENCE OF FADING

In this chapter, we consider localization in the presence of fading. Several fading scenarios are

considered, and CRLBs are derived for both 1-D and two 2-D localization problems with TOA

measurements. Our results are compared with the CRLBs in the absence of fading that were derived

in [31]. The ML estimators under different fading scenarios are also derived.

3.1 System Model

Assume a non-cooperative WSN, in which nodes do not communicate with each other, with M

anchors and 1 node in Rn, where n = 1,2. In 1-D, the location of the ith anchor, pi = xi, and

the node, z = x are scalars. In 2-D, pi = [xi,yi]T and z = [x,y]T are vectors. Figure 3.1 shows

a sensor network with M = 3 anchors and 1 node. We assume the node communicates with all

anchors. The measured TOA between the node and the anchor located at pi, is defined as τ̂i. In

location estimation, each anchor transmits a modulated signal to a node, and the node transmits

back immediately after it receives the signal. The two way transmit time is measured by each

anchor, which can be halved to estimate the transmit time and distance. Define di = ||pi − z||2 as

the true distance between the node located at z and the anchor located at pi. In the absence of

fading, τ̂i is Gaussian distributed [75], and is given by

τ̂i ∼ N

(

di

c
,σ 2

)

, (3.1)

where c is the speed of propagation of signals in the free space, and σ 2 is the variance of the TOA

measurements [31]. We will assume throughout that {τ̂i}M
i=1 are independent.

Define hi = |hi|e jθi as the fading coefficient for the channel between the node and the ith

anchor, where |hi| and θi are the amplitude and phase of the fading coefficient respectively, and

i ∈ {1,2, . . . ,M}. In the presence of fading, the statistics of τ̂i is a function of hi. In this paper, we

consider the following scenarios: (a) hi is assumed to be known at each anchor; (b) θi is assumed to

be known at each anchor, but |hi| is an unknown random variable with a known prior distribution;

(c) No CSI (amplitude or phase) is available at any anchor. Although only 1-D and 2-D cases are
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Figure 3.1: The System Model of Location Estimation in WSNs.

Three anchors are present at positions p = [p1,p2,p3], and 1 node at the position z = [x,y]T .

Variables τ̂i, di and hi are the TOA measurement, distance and the channel fading coefficient

between the node and the ith anchor respectively, where τ̂i is the function of di and hi in the

presence of fading.

Figure 3.2: Coherent TOA Estimation Scheme.

considered, the results can be generalized to three dimension (3-D).

Consider a carrier modulated signal with carrier frequency fc transmitted on a fading chan-

nel for TOA estimation. When the received phase is known at each anchor, a coherent estimation

strategy, as shown in Figure 3.2 is applied to estimate the TOA. The received signal is given by

xi(t) = |hi|∑
n

s[n]g(t −nT − τi)cos(2π fct +θi), (3.2)
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Figure 3.3: non-Coherent TOA Estimation Scheme.

Figure 3.4: Alternate non-Coherent TOA Estimation Scheme.

is multiplied by cos(2π fct +θi) and then low pass filtered. The output of the low pass filter

vi(t) =
|hi|
2 ∑

n

s[n]g(t −nT − τi) (3.3)

is correlated with a regenerated template signal

si(t) =∑
n

s[n]g(t −nT − τ∗) (3.4)

with delay τ∗. The TOA is estimated by finding the maximum value of the output of the correlator.

When the phases are unknown, a non-coherent estimation strategy is needed. We will

consider non-coherent architectures that correlate with a base-band signal. Figure 3.3 and Figure

3.4 shows two such non-coherent estimation schemes. Figure 3.3 correlates the received signal

with a regenerated modulated signal and its 90 degree shifted regenerated signal. In this scheme,

the input of the correlator is the summation of the output of two low pass filters, which is

vi(t) =
1

2
(|hi|cos(θi)− |hi|sin(θi))∑

n

s[n]g(t −nT − τi). (3.5)

Similar to the coherent estimation scheme, vi(t) in (3.5) is correlated with the signal given in (3.4)

to estimate TOA. Another alternate non-coherent estimation scheme is shown in Figure 3.4. In this
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scheme, in-phase and quadrature components estimate TOA independently. Firstly, the received

signal xi(t), which is given in (3.2), is multiplied by cos (2π fct) and sin (2π fct) separately, and

then passed to two low pass filters. The output of the two low pass filters are given by

vi1(t) =
|hi|
2

cos(θi)∑
n

s[n]g(t −nT − τi), (3.6)

and

vi2(t) =
|hi|
2

sin(θi)∑
n

s[n]g(t −nT − τi). (3.7)

Then vi1(t), which contains the in-phase component, and vi2(t), which contains the quadrature

component, estimate TOA separately by correlating the signal with the regenerated signal that is

given in (3.4), and two TOA estimates on each branch are given as τ̂i1 and τ̂i2 respectively. The final

TOA estimate τ̂i can be computed by combing τ̂i1 and τ̂i2 using different combing methods. The

CRLB comparisons between these non-coherent estimation schemes will be compared in Section

3.5.

3.2 Fading Coefficients Are Known at Each Anchor

Assume hi is known at each anchor. Since both amplitude and phase are known, a coherent estima-

tion strategy is used for location estimation as in Figure 3.2. Conditioned on the fading coefficients,

the TOA measurement τ̂i in (3.1) is Gaussian distributed, and is given by

τ̂i ∼ N

(

di

c
,

σ 2

|hi|2

)

, (3.8)

where E
[

|hi|2
]

= 1. In this case, the CRLB can be expressed as a function of the fading coefficients,

with analysis very similar to the case with only additive white Gaussian noise (AWGN) [31]:

CRLB1-D =
c2σ 2

∑M
i=1 |hi|2

. (3.9)

Recall that the CRLB in 1-D in the absence of fading [31] is a special case of (3.9) with |hi| = 1,

and is given as

CRLBAWGN
1-D =

c2σ 2

M
. (3.10)

Similarly, we can also calculate the CRLB where the fading coefficients are known at each an-

chor in 2-D. Note that in 2-D, the CRLB depends on the geometry of the network, and it is more

38



complicated than the 1-D case. However, a similar conclusion as the 1-D case that when |hi| = 1,

CRLB2-D = CRLBAWGN
2-D , can be reached when compared with the AWGN case in [31].

3.3 Effect of Unknown Fading Amplitude

When the amplitude of fading coefficients is unknown at any anchor, we will show that the presence

of fading always degrades the CRLB. To show this, we use the modified CRLB (MCRLB) [76],

which is defined as

MCRLB = tr
(

(

−ET,h
[

∇2
zln f (T|h,z)

])−1
)

, (3.11)

where ∇2
z is the Hessian operator, tr (A) is the trace of the matrix A, h = [|h1|, |h2|, . . . , |hM |] con-

tains the amplitude of the fading coefficients, T = [τ̂1, τ̂2, . . . , τ̂M] contains all TOA measurements,

and z is the location of the node. In one dimension, using (3.8), (3.11) can be calculated as

MCRLB1-D =
c2σ 2

∑M
i=1 E [|hi|2]

. (3.12)

Since E
[

|hi|2
]

= 1, (3.12) can be simplified as MCRLB1-D = c2σ 2/M = CRLBAWGN
1-D , and the

MCRLB for the localization error equals to the AWGN case in (3.10), which is also seen in (3.9)

with |hi| = 1. Since the MCRLB is known to be a lower bound on the CRLB in the presence of

fading [76], we can conclude that the presence of fading will always degrade the performance for

any fading amplitude distribution. For the MCRLB in 2-D, the derivation is very similar as 1-D,

and it turns out the MCRLB in 2-D is the same as the CRLB of the 2-D AWGN case as well. The

details are omitted for brevity.

3.4 Unknown Fading Amplitude: Nakagami Fading

Having seen that fading degrades the performance, we quantify this degradation in the Nakagami

envelope case. We assume that fading does not change during the TOA measurements, the phases of

the fading coefficients are known at each anchor, and the amplitudes |hi| are Nakagami distributed,

corresponding to a Gamma distributed |hi|2. Since the phase is known, the coherent estimation

strategy which is used in Section 3.2 can be applied. The TOA measurements τ̂i are assumed to be

i.i.d., and conditioned on the fading coefficients satisfy (3.8), where the fading power is Gamma
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distributed and given by [77]:

f|hi|2(x) = mmxm−1Γ(m)−1exp(−mx), (3.13)

where 1
2 ≤ m < ∞ is the Nakagami fading parameter, and as before, E

[

|hi|2
]

= 1. When m = 1
2 ,

the envelope |hi| is one-sided Gaussian distributed; when m = 1, |hi| is Rayleigh distributed; and as

m → ∞, the channel exhibits no fading corresponding to an AWGN channel.

The unconditional distribution of τ̂i can be calculated by using the total probability theo-

rem:

fτ̂i
(τ̂i|z) =

∫ ∞

0
f
(

τ̂i

∣

∣

∣
|hi|2,z

)

f|hi|2(x)dx. (3.14)

By substituting (3.8) and (3.13) into (3.14), and using [78, p.310] we obtain

fτ̂i
(τ̂i|z) =

mm(m− 1
2 )!

√
2πσ 2Γ(m)

(

1
2σ2 (τ̂i − di

c )
2 +m

)(m+ 1
2 )
. (3.15)

For convenience, let l(τ̂i|z) = ln fτ̂i
(τ̂i|z) be the log likelihood function of each TOA mea-

surement. Due to the independence of the TOA measurements, we define l(T|z) = ∑M
i=1 ln fτ̂i

(τ̂i|z).

The CRLB can be expressed as [52]

CRLB(z) = tr
(

F−1
z

)

, (3.16)

where Fz = −ET

[

∇2
zl(T|z)

]

is the Fisher information matrix (FIM). We can calculate the ( j,k)

element of Fz, denoted by [Fz] jk

[Fz] jk =

⎧

⎪

⎨

⎪

⎩

∑M
i=1 Eτ̂i

[

(

∂ l(τ̂i|z)
∂z j

)2
]

j = k

−Eτ̂i

[

∂ 2l(τ̂i|z)
∂z j∂zk

]

j ̸= k

. (3.17)

In 1-D, the location of the node is a scalar z = x, the distance between the node and

the ith anchor is di = ||xi − x||2 = |xi − x|, and Fz is a scalar. Using Fz = ∑M
i=1 Eτ̂i

[

(

∂ l(τ̂i|x)
∂x

)2
]

,

Eτ̂i

[

(

∂ l(τ̂i|x)
∂x

)2
]

can be calculated using (3.15) as

Eτ̂i

[

(

∂ l(τ̂i|x)
∂x

)2
]

=
mm(m− 1

2)!(m+ 1
2)

2

Γ(m)
√

2πc2σ 5
X(di), (3.18)

40



where

X(di) =

∫ ∞

0

(τ̂i − di

c
)2

(

1
2σ2 (τ̂i − di

c )
2 +m

)
5
2+m

dτ̂i. (3.19)

Unlike the AWGN case, the Fisher information depends on di through X(di) in (3.19). However,

using [78, p.292], it is possible to express it as

X(di)≤
√

2σ 3Γ(3
2)Γ(m+1)

m1+mΓ(m+ 5
2)

+

(

di

c

)2

(

1
2σ2 (

di

c )
2 +m

)
5
2+m

. (3.20)

Since the second term in (3.20) is small, it is clear that X(di) can be approximated by the first term,

and therefore approximately independent of di. The exact CRLB in the presence of Nakagami

fading in 1-D can be expressed as

CRLB1-D(z) =
Γ(m)

√
2πc2σ 5

mm(m− 1
2)!(m+ 1

2 )
2 ∑M

i=1 X(di)
, (3.21)

with an approximation as

CRLB1-D(z) ≈
2c2σ 2Γ

(

m+ 5
2

)

(

m− 1
2

)

!
(

m+ 1
2

)2

1

M
. (3.22)

The approximation of the loss due to fading can be expressed as

CRLB1-D(z)

CRLBAWGN
1-D

≈ k =

√
πΓ(m+ 5

2)

Γ(3
2)(m+ 1

2)
2
(

m− 1
2

)

!
, (3.23)

where we recall from (3.10) that CRLBAWGN
1-D = c2σ 2/M. As m → ∞, the second term in (3.20)

goes to 0 and k in (3.23) goes to 1 so that the CRLB in the presence of fading converges to the

AWGN case.

When m = 1, the fading is Rayleigh distributed, and the exact CRLB in (3.21) is simplified

as

CRLB1-D(z) =
8
√

2c2σ 5

9∑M
i=1 X(di)

. (3.24)

To simplify even further, we use the first term of (3.20) because di

c ≈ 0 and set m = 1 to obtain

CRLB1-D =
σ 2c2

M

10

3
. (3.25)

This shows that the loss in SNR due to Rayleigh fading is a factor of k = 10
3 which is about 5dB,

compared to the AWGN case.

41



In 2-D, the distance between the node and the ith anchor is di =
√

(xi − x)2 +(yi − y)2.

Letting Y (m) = mm(m− 1
2)!(m+ 1

2)
2
[

Γ(m)
√

2πσ 3
]−1

. The FIM is

Fz =
Y (m)

c2σ 2

M

∑
i=1

X(di)

⎡

⎢

⎣

(xi−x)2

d2
i

(yi−y)(xi−x)
d2

i

(yi−y)(xi−x)
d2

i

(yi−y)2

d2
i

⎤

⎥

⎦
. (3.26)

The CRLB on the variance of the localization error in 2-D is

CRLB2-D(z) = tr
(

F−1
z

)

. (3.27)

The FIM in the absence of fading for the 2-D case is given in [31], and can be written the

same as (3.26) except without the Y (m) and X(di) terms. Comparing (3.27) with the CRLB in the

absence of fading in [31], both CRLBs in 2-D depend on the true location of the node. When di

c
≈ 0,

similar to the 1-D case, X(di) in (3.20) can be simplified. After simplifications and substituting into

(3.27), we see that the CRLB in the presence of fading is also a factor of k higher than the AWGN

counterpart, i.e. when m = 1, k = 10
3 in both 1-D and 2-D. Further, as m → ∞, the CRLB in 2-D

converges to the AWGN case.

Extension To Multiple Nodes Case

When N nodes exist in a WSN, Fz becomes a N ×N matrix, and the diagonal elements in (3.17) is

summed from i = 1 to i = M+N−1. Using the approximation of X(di) in (3.20), after simplifica-

tions, in 1-D, the CRLB for the ith node is the (i, i) element of F−1
z , which is given by

CRLB1-D(zi)≈
2c2σ 2Γ

(

m+ 5
2

)

(

m− 1
2

)

!
(

m+ 1
2

)2

M+1

M (N +M)
. (3.28)

We can prove that in cooperative WSNs, the ratio of location estimation in the presence of fading

and in the absence of fading keeps the same.

ML Estimator in the Presence of Nakagami Fading

The ML estimator for location estimation in the presence of fading is denoted as

ẑ = argmax
z

M

∏
i=1

fτ̂i
(τ̂i|z). (3.29)

Substituting (3.15) into (3.29), we have

ẑ = argmin
z

M

∑
i=1

ln

(

1

2σ 2m

(

τ̂i −
di

c

)2

+1

)

, (3.30)
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where di = ||pi − z||2.

In the absence of fading, the ML estimator which is derived in [31] is

ẑ = argmin
z

M

∑
i=1

(

τ̂i −
di

c

)2

, (3.31)

which is different from (3.30). Since ln(1+ x)≈ x for small x, it is straightforward to see that if m

is large, (3.30) and (3.31) are approximately the same.

3.5 No CSI Available at Anchors

In the previous sections, we assumed that the phases of the fading coefficients are known at each an-

chor. When there is no CSI (phase or amplitude) available at any anchor, a non-coherent estimator

is applied. Since the optimal non-coherent estimator is hard to implement, one of the suboptimal

non-coherent estimators as shown in Figure 3.3 and Figure 3.4 can be applied. When the non-

coherent estimator in Figure 3.3 is applied, using (3.5) and [75, p.233], conditioned on amplitudes

and phases of the fading coefficients, the pdf of the TOA measurements is Gaussian with mean and

variance given by

τ̂i ∼ N

(

di

c
,

σ 2

|hi|2 (1− sin(2θi))

)

. (3.32)

As in Section 3.4, we assume that |hi|2 is Gamma distributed. In addition, we assume θi is uni-

formly distributed over [0,2π), and is independent of |hi|2. We can calculate the unconditional

distribution of τ̂i by integrating the effect of |hi|2 and θi, which is given by

fτ̂i
(τ̂i|z) =

∫ 2π

0

∫ ∞

0
f
(

τ̂i

∣

∣

∣

(

|hi|2,θi

)

,z
)

f|hi|2(x) f (θi)dxdθi. (3.33)

where f (θi) =
1

2π , θi ∈ [0,2π), and f|hi|2(x) is given in (3.13). After simplifications,

fτ̂i
(τ̂i|z) =

2σmm
(

m− 1
2

)

!m
1
2−m

Γ(m)π
3
2

(

(

τ̂i − di

c

)2
+mσ 2

) × 2F1

⎛

⎜

⎝
1,1−m,

3

2
;

(

τ̂i − di

c

)2

(

τ̂i − di

c

)2
+mσ 2

⎞

⎟

⎠
, (3.34)

where 2F1(a,b,c;z) is the hypergeometric function [78], defined as

2F1(a,b,c;z) =
∞

∑
n=0

(a)n (b)n

(c)n

zn

n!
, (3.35)

and (a)n is a Pochhammer symbol, which is defined as (a)n = a(a+1) . . . (a+n−1) for n > 1,

and (a)0 = 1.
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When the amplitude of the fading coefficients is Rayleigh distributed, which means m = 1,

(3.34) can be simplified as

fτ̂i
(τ̂i|z) =

σ

π

(

σ 2 +
(

τ̂i − di

c

)2
) , (3.36)

which interestingly is the Cauchy distribution with a scale factor σ , and median di

c
.

Using (3.17), in 1-D, the Fisher information can be expressed as

Fz =
4

c2σ 5π

M

∑
i=1

Y (di) , (3.37)

where

Y (di) =

∫ ∞

0

(

τ̂i −
di

c

)2

⎛

⎜

⎝
1+

(

τ̂i − di

c

)2

σ 2

⎞

⎟

⎠

−3

dτ̂i. (3.38)

Similar to X(di) in (3.19) and (3.20), it is possible to express Y (di) as

Y (di)≤
σ 3π

16
+

(

di

c

)2

⎛

⎜

⎝
1+

(

di

c

)2

σ 2

⎞

⎟

⎠

−3

. (3.39)

Since the second term in (3.39) is small, it is clear that Y (di) can be approximated by using the first

term, which is independent of di. Therefore, (3.37) can be simplified as

Fz
∼=

M

4c2σ 2
. (3.40)

The CRLB in 1-D when no CSI is available is

CRLB1-D
∼=

4c2σ 2

M
. (3.41)

Recalling (3.25), we see that when no CSI is available at any anchor, the loss in SNR is a factor

of k = 4, which is about 6dB. To calculate the CRLB in 2-D we can use (3.17) to calculate the

elements of the FIM. Similar to the 1-D case, the loss in SNR compared to the AWGN case is also

6dB.

When the non-coherent estimator in Figure 3.4 is applied, conditioned on the amplitudes

and phase of the fading coefficients, the distribution of τ̂i1 and τ̂i2 can be obtained using [75, p.233],

(3.6) and (3.7) as

τ̂i1 ∼ N

(

di

c
,

σ 2

|hi|2 cos2 (θi)

)

, (3.42)
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and

τ̂i2 ∼ N

(

di

c
,

σ 2

|hi|2 sin2 (θi)

)

. (3.43)

Since θi is uniformly distributed, cos2(θi) and sin2(θi) have the same distribution. Therefore we

will focus on τ̂i1. Using the formula cos2 x = 1
2 (1− cos2x), and the fact that 1

2 (1− cos2x) has

the same distribution as 1
2 (1− sin2x), comparing (3.42) with (3.32) one can see that the variance

of (3.42) is twice of (3.32). Therefore, the CRLB when the quadrature component is extracted

is 2 times higher than the CRLB when the previous non-coherent estimation scheme is applied.

Also, since the unconditional distribution of τ̂i1 is the same as τ̂i2, the CRLB when the in-phase

component is extracted is the same as the CRLB when the quadrature component is extracted. If

the average is taken between τ̂i1 and τ̂i2, the final CRLB is the same as the previous non-coherent

estimation scheme, which is given in (3.41).

Even though the noncoherent architectures in Figure 3.3 and Figure 3.4 have the same

performance, the two schemes have advantages and disadvantages. On the one hand, when there is

some prior information on the TOA measurement, the scheme shown in Figure 3.4 is more flexible

when combing the two estimates, and therefore can give a better performance. For example, if a

range for the TOA measurement is known, between τ̂i1 and τ̂i2, the one within the range can be

chosen as the final τ̂i. On the other hand, the scheme shown in Figure 3.3 is less complex than the

scheme shown in Figure 3.4, since the latter scheme requires two correlators.

ML Estimator When No CSI is Available At Anchors

When no CSI is available at any anchor, assuming m = 1 and using (3.29) and (3.36), the ML

estimator for the location estimate is given by

ẑ = argmin
z

M

∑
i=1

ln

[

1

σ 2

(

τ̂i −
di

c

)2

+1

]

. (3.44)

Consider a comparison of (3.44) with (3.30), which is the ML estimator for the case with known

phase and Nakagami envelope. Setting m = 1 in (3.30) we see that the only difference between

these two ML estimators is a factor of 2 multiplying σ 2. If we write (3.44) as a function of

T = [τ̂1, τ̂2, . . . , τ̂M] and σ 2 as ẑ = g
(

T,σ 2
)

, then ẑ in (3.30) can be expressed as ẑ = g
(

T,2σ 2
)

.

This indicates that the ML estimator with no CSI needs 3dB higher SNR to use the exact same

location estimator as the ML estimator which knows the phases. Note that this does not mean that
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the performance of (3.30) and (3.44) are 3dB apart, since the distribution of T in the two cases is

different.

Interestingly, comparing the pdf of the TOA measurements with phase information, given

in (3.15), with the pdf of TOA measurements with no CSI information, given by (3.36), one can see

that setting m = 1
2 in (3.15) is identical to (3.36) when m = 1. Recalling that m = 1

2 represents the

worst Nakagami fading scenario, we conclude that with phase information, the coherent estimation

with m = 1
2 (worse fading) has identical pdf and performance as the non-coherent estimation with

m = 1, i.e. under a better fading scenario.

3.6 Extension to Cooperative Location Estimation in the Presence of Fading

In the previous sections, we only considered a sensor network with 1 node and M anchors. How-

ever, the results can be extended to a cooperative location estimation problem. In this section, we

consider a sensor network with N nodes and M anchors, and we assume all nodes communicate

with each other. When the fading coefficients are random with Nakagami distributed amplitude, in

1-D, Eτ̂i

[

(

∂ l(τ̂i|z)
∂z j

)2
]

is given in (3.18), however, [Fz] jk is given as

[Fz] jk =

⎧

⎪

⎨

⎪

⎩

∑M+N−1
i=1 Eτ̂i

[

(

∂ l(τ̂i|z)
∂z j

)2
]

j = k

−Eτ̂i

[

∂ 2l(τ̂i|z)
∂z j∂zk

]

j ̸= k

(3.45)

Comparing (3.45) with (3.17), due to the cooperation between nodes, when j = k, each node re-

ceives information from other nodes as well. Therefore, when j = k, (3.45) contains M +N − 1

terms. Using the first term of X(di) in (3.20), and after simplification, we have

Eτ̂i

[

(

∂ l(τ̂i|z)
∂z j

)2
]

=
Γ
(

m+ 1
2

)

!
(

m+ 1
2

)2

2Γ
(

m+ 5
2

)

c2σ 2
. (3.46)

The CRLB for the ith node is the (i, i) element of F−1
z , which is given by

CRLB1-D(zi) =
2Γ
(

m+ 5
2

)

c2σ 2

mΓ
(

m+ 1
2

)(

m+ 1
2

)2

M+1

M (N +M)
. (3.47)

When m= 1, the ratio between the cooperative location estimation in (3.47) and the non-cooperative

location estimation in (3.25) is r = (M+1)/(N +M). Since N ≥ 1 in a cooperative network, (3.47)

is always equal or smaller than (3.25), which proves that cooperation between nodes gives a lower

CRLB. In 2-D, the similar conclusion can be reached.
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Figure 3.5: CRLBs Comparison Between the non-Fading and the Rayleigh Fading Case.

4 anchors are located in the corners of a 1m×1m square. The variance of noise is σ = 1
c .

When no CSI is available at each anchor, with the assumption that the amplitude of fading

coefficients is Rayleigh distributed, the pdf of the TOA measurements is given in (3.36). Therefore

in 1-D, the CRLB of the ith node in a cooperative WSN with N nodes and M anchors is

CRLB1-D(zi) =
1

4c2σ 2

M+1

M(N +M)
, (3.48)

for which the ratio between the cooperative and the non-cooperative is still r. Therefore, we can

conclude that cooperation between nodes results in a lower CRLB.

3.7 Simulation Results

Consider a sensor network with four anchors in the corner of a square, and one node within the

square. The fading is Rayleigh distributed. In Figure 3.5 the area of the square is 1m× 1m. We

observe that the loss due to fading is about 2.5 everywhere within the square.

Figure 3.6 shows the loss due to fading as a function of the Nakagami m parameter. As

expected, the loss decreases with increasing m and converges to 1.

In Figure 3.7 we consider a 1m×1m square, 4 anchors are in the corners, and 1 node is in

the middle of the square. We compare estimators (3.30) and (3.31) both in the presence of fading

by plotting the normalized SNR (with respect to c2) vs. the variance of localization error in Figure
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As m increases, k decreases. When m ≥ 15, k = 0dB, which indicates that the CRLB when the

fading exists converges to the AWGN case.
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Figure 3.7: ML Estimators Comparison.

3.7. We observe that the fading ML estimator (3.30) performs better than the AWGN ML estimator

(3.31) in the presence of fading.

Figure 3.8 shows the CRLB comparison in 1-D between the AWGN case and the presence

of Rayleigh fading. From the fading one can see that in the high SNR regime, to maintain the same

variance of localization error, CRLB in the presence of Rayleigh fading needs about 5dB more

power than the AWGN case.
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Figure 3.8: CRLB Comparison When SNR is Large.

3.8 Conclusions

In this chapter, we derived CRLBs in the presence of fading under TOA measurements. Fading co-

efficients are first considered as random parameters with a prior Nakagami distribution, the CRLB

is derived by averaging out the effect of fading. Also, by comparing the CRLB in the presence of

Rayleigh fading and the AWGN case, it is shown in both 1-D and 2-D, the loss in performance

due to Rayleigh fading with known phase is about 5dB compared to the case with no fading. Un-

known phase causes an additional 1dB loss. Also, the CRLB in the presence of fading converges to

the AWGN case as the fading parameter increases. Meanwhile, the ML estimator in the presence

of fading is derived, and is different than the ML estimator for the AWGN case. Secondly, the

MCRLB is derived when the prior fading distribution is not known at the estimator. In this case,

the MCRLB is the same as the CRLB in the absence of fading, proving that fading always leads to

loss in performance.
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Chapter 4

SEQUENTIAL LOCATION ESTIMATION

In large WSNs, centralized localization algorithms, which require anchors transmit measurements

to a fusion center, are hard to implement. On the other hand, distributed algorithms, such as the

sequential localization algorithm, are more power efficient. However, the localization errors will

propagate through the network during the iterative localization process. This is because it is as-

sumed that the estimated locations of nodes are the actual locations. In this chapter, the TOA,

TDOA, RSS, DOA and LAA localization algorithms will be expressed as the solution to a set of

linear equations. Following this, the performance of a sequential network discovery process when

using these different localization algorithms will be compared under different SNR regimes. Also,

since the errors will propagate through the network, it is important to study the error characteristics

of the sequential localization. Specifically, the CRLB, which provides a performance benchmark

for the sequential localization scheme by using the TOA measurement is studied in this chapter.

In addition, we consider the sequential localization scheme using the TOA measurement in the ab-

sence and in the presence of fading respectively. The sequential localization scheme is compared

with the non-sequential localization scheme in [31], and the SNR loss due to the sequential local-

ization scheme is derived. Meanwhile, for the sequential localization scheme, the CRLB when the

fading is absent case is compared with the fading is present case, and the SNR loss due to fading is

derived.

4.1 Performance Comparison of Localization Techniques for Sequential Location Estimation

Consider a homogeneous wireless sensor network with a large number of nodes at random unknown

locations in R2 space. Assume that a small number of anchors at known locations are included in

this network. Specifically, we assume the initial number of anchors is M, and the initial number

of nodes is N, where N ≫ M. Each node or anchor has a circular coverage area with radius r,

and operates at the frequency Fc. The cartesian coordinate of the ith node is denoted by zi. The

locations of all nodes at unknown locations using different localization algorithms. Each algorithm

requires a different minimum number of anchors or previously localized nodes for localization to
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take place. In R2 space, for DOA, Mmin = 2, for TOA, TDOA and RSS, Mmin = 3 and for LAA,

Mmin = 4.

The sequential location estimation process used in this chapter is described in [38] and may

be summarized as follows: Initially, one node transmits at an unknown location in the coverage

area of the anchor nodes. If Mmin nodes (anchors or the previously localized nodes) are within the

coverage area of the node then the node location is estimated. If more than Mmin nodes are available,

all the available nodes will be used for localization. Otherwise this node is skipped. Following

this, another node transmits and the process continues with more nodes at estimated locations

being available to perform localization of other nodes. Once localization has been attempted at all

nodes, the process is repeated from the beginning, a total of K times. This gives an opportunity

for skipped nodes to be revisited in the hope that more nodes in the vicinity of the troublesome

nodes will now be at estimated locations to meet the Mmin node requirement. In addition, nodes

whose locations were successfully estimated may be gradually refined using data fusion techniques

(including simple schemes such as averaging).

As errors in the sequential localization algorithm propagate during the estimation process,

the choice of the first nodes becomes significantly important. As the anchors will be more likely

within the limited coverage area of the closest transmitting nodes, these closest nodes will be

localized first. Multiple location estimates are needed to diminish the effect of localization order

and noise.

We define z as the location of a node that needs to be localized, the location of the node

may be estimated from measurements from a set of anchors, which are located at p1,p2, · · · ,pM,

by solving the following set of linear equations:

Hz = b, (4.1)

where the matrix H and the vector b are dependent upon the geometry of the receiving anchors with

respect to the transmitting node as well as metrics constructed from the data that nodes receive.

Hence, (4.1) provides a unified notation allowing solutions to different localization approaches
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in the literature to be found. Table 4.1 shows the structure of H and b for a selection of common

localization algorithms in R2 space. For the TOA approach, τ̂i represents the estimated propagation

time of the line-of-sight (LOS) signal between the node (at z) and the ith anchor. For the TDOA

approach, τ̂i1 is the time difference from when the LOS signal arrives at the 1st anchor to when it

arrives at the ith anchor. For the RSS approach, d̂2
i is the estimated distance between the ith anchor

and the node. For the DOA approach, θi and ρi represent the angle and range associated with the

ith array which has an array reference point at pi. The angles are estimated using a DOA algorithm

(eg. MUSIC [79]), and the ranges to the source may be easily inferred via the sine rule using these

estimated directions of arrival and the locations of the array reference points. For example, the

triangle p1, p2 and p3,

ρ1 =
∥p2 −p1∥sin(π −θ2 +ψ12)

sin(θ2 −θ1)
, (4.2)

ρ2 =
∥p2 −p1∥sin(θ1 −ψ12)

sin(θ2 −θ1)
, (4.3)

where ψ12 is the known angle between the first and second array reference points. Finally, for

the LAA approach, z from (4.1) is a 4 element evector with the final element equal to ∥z∥2 and

K ∈ R(M−1)×1 is constructed by rotating the array reference point [34, 38, 61] with reference to

a global reference point set at the origin. Note that this is the only approach which uses sensors

collectively as a single array system [38].

4.1.1 Simulation Results

Consider a two-dimensional 600m×600m sensor field as shown in Figure 4.5. Assume M = 4

anchors denoted by blue triangles are placed at known locations in the centre of the field. These

anchors are surrounded by 200 sensor nodes denoted by green circles placed randomly at unknown

locations following a two dimensional uniform distribution. All nodes transmit at a frequency of

Fc = 2.45GHz. Each node has a transmission range of r = 100m and transmits L = 100 snapshots

of sinusoid signals. A propagation constant of a = 4 exists in the simulation environment and it is

assumed that their is no flat frequency fading or multipath. Localization of each transmitting node is

attempted K = 200 times, after which if no location estimate was made it is declared undiscovered.
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TOA

H = [p2 −p1,p3 −p1, · · · ,pM −p1]
T

∈ R(M−1)×2

b = 1
2

⎡

⎢

⎢

⎢

⎣

∥p2∥2 −∥p1∥2 − c2
(

τ̂2
2 − τ̂2

1

)

∥p3∥2 −∥p1∥2 − c2
(

τ̂2
3 − τ̂2

10

)

...

∥pM∥2 −∥p1∥2 − c2
(

τ̂2
M − τ̂2

1

)

⎤

⎥

⎥

⎥

⎦

∈ R(M−1)×1

TDOA

H = [p2 −p1,p3 −p1, · · · ,pM −p1]
T

∈ R(M−1)×2

b = 1
2

⎡

⎢

⎢

⎢

⎣

∥p2∥2 −∥p1∥2 − c2
(

τ̂2
21 + 2τ̂1 · τ̂21

)

∥p3∥2 −∥p1∥2 − c2
(

τ̂2
31 + 2τ̂1 · τ̂31

)

...

∥pM∥2 −∥p1∥2 − c2
(

τ̂2
M1 + 2τ̂1 · τ̂M1

)

⎤

⎥

⎥

⎥

⎦

∈ R(M−1)×1

RSS

H = [p2 −p1,p3 −p1, · · · ,pM −p1]
T

∈ R(M−1)×2

b = 1
2

⎡

⎢

⎢

⎢

⎣

∥p2∥2 −∥p1∥2 −
(

d̂2
2 − d̂2

1

)

∥p3∥2 −∥p1∥2 −
(

d̂2
3 − d̂2

1

)

...

∥pM∥2 −∥p1∥2 −
(

d̂2
M − d̂2

1

)

⎤

⎥

⎥

⎥

⎦

∈ R(M−1)×1

DOA
H = p1 ⊗ I2

∈ R2M×2

b =

⎡

⎢

⎢

⎢

⎣

p1 +ρ1 · [cosθ1,sinθ1]
T

p2 +ρ2 · [cosθ2,sinθ2]
T

...

pM +ρM · [cosθM,sinθM]T

⎤

⎥

⎥

⎥

⎦

∈ R2M×1

LAA

H =

[

2
(

1M−1pT
1 − [p2,p3, · · · ,pM]T

)

(

1M−1 −K
2
)

]

∈ R(M−1)×2

b =

[

∥p1∥2 1M−1 −
[

∥p2∥2 ,∥p3∥2 , · · · ,∥pM∥2
]T
]

∈ R(M−1)×1

Table 4.1: Linear Equations for Node Localization Using TOA, TDOA, RSS, DOA and LAA

techniques in R2 Space.

(see Equation 4.1 and Figures 4.1 - 4.4).

53



Figure 4.1: TOA/TDOA Based Localization of A Node Located at z Using M Anchors at Locations

p1,p2, . . . ,pM.

In Figure 4.5, the results of the sequential discovery process using LAA localization is shown.

Estimated locations are represented using red crosses. Two of the nodes remain undiscovered

because there are not enough nodes in their coverage range for localization.

Figure 4.6 shows the performance of TOA, TDOA, RSS, DOA and LAA techniques.

RMSE values are plotted for different values of SNR× L. From the figure one can see that for

all techniques, average RMSE decreases as SNR×L increases. This is expected as noise reduces

and more data is available to produce more statistically efficient metrics. When SNR×L is below

70dB, DOA has the best performance. However, when the SNR×L is greater than 70dB, LAA ex-

ceeds its performance. Note that the TOA and TDOA schemes are markedly poor due to bandwidth

limitations. While the performance of the RSS regime is good in this simulation environment, un-

der scenarios with more complex channel effects, performance will be rapidly degraded.
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Figure 4.2: RSS Based Localization of A Node Located at z Using M Anchors at Locations

p1,p2, . . . ,pM.

4.2 CRLB for Sequential Localization in the Absence of Fading

In the previous section, different measurements are compared under different SNR regimes. Since

the errors will propagate through the network, it is important to study the error characteristics of

the sequential localization theoretically. Therefore, the CRLB is adopted in this section to evaluate

the performance of sequential localization. Specifically, the TOA measurement is applied to the

sequential localization algorithm.

We assume a sequential localization scheme, in which only one node is localized at a time.

After a node is localized, it becomes an anchor and is used to localize other nodes. Therefore, the

number of the anchors increases by 1 at each step. At the last step, the last node communicates

with all anchors and the previously localized nodes. Figure 4.7 shows the system model of the

sequential localization scheme. In this WSN, there is a total of M anchors and N nodes. At the first

step, to localize node 1, all anchors make measurements between anchors and node 1. Once node

1 is localized, it becomes an anchor. At the second step, to localize node 2, all anchors and node
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Figure 4.3: DOA Based Localization of A Node Located at z Using M Arrays with Local Geome-

tries p1,p2, . . . ,pM and DOAs θ1,θ2, . . . ,θM .

1 make measurements. Therefore, an additional measurement is used to estimate the location of

node 2. We assume the TOA measurement is used to estimate node locations.

Assume each node communicates with all anchors and previously localized nodes. De-

fine the TOA measurement between the ith node and the jth node or anchor as τ̂i j, where i =

{1,2, . . . ,N}, j = {1,2, . . . ,N,N + 1, . . . ,N + M}, and i ̸= j. Also, τ̂i j is Gaussian distributed

with [31], and is given by

τ̂i j ∼ N

(

di j

c
,σ 2

)

, (4.4)

where c is the speed of propagation of signals in the free space, di

c
is the true distance between the

ith node and the jth node or anchor, and σ 2 is the variance of the TOA measurements. Therefore,

the log likelihood function between the ith node and the jth node or anchor can be written as

l(τ̂i j|z) = log
1√

2πσ 2
−

(

τ̂i j −
||zi−z j ||2

c

)2

2σ 2
, (4.5)

here zi is the location of the ith node, z j is the location of the jth node or anchor, and i ̸= j. Define

56



Figure 4.4: LAA Based Localization of A Node Located at z Using M Anchors at Known Locations

p1,p2, . . . ,pM and AOAs θ1,θ2, . . . ,θM.

Here rci
and pc j

denote the radius and center of the jth circular locus which may be used to

estimate the node location.

Fz as the N ×N FIM, and each element is given as

[Fz]i j =

⎧

⎪

⎨

⎪

⎩

∑M
k=1 Eτ̂ik

[

(

∂ l(τ̂ik |zk)
∂zi

)2
]

+∑i−1
k=1 Eτ̂ik

[

(

∂ l(τ̂ik |zk)
∂zk

)2
]

j = i

−Eτ̂i j

[

∂ 2l(τ̂i j |zi)
∂zi∂z j

]

j ̸= i

(4.6)

In (4.6), when j = i, the first term is the Fisher information from all anchors, and the second term is

the Fisher information from all i−1 localized nodes. Recall that for the non-sequential localization

scheme, when nodes communicate with all other nodes, the summation limit in the second term is

from k = 1 to N −1.

In 1-D, the location of a node or anchor z = x, which is a scalar. The expectation of the

second derivative of (4.5) gives Eτ̂i j

[

(

∂ l(τ̂i j |zi)
∂zi

)2
]

= 1
c2σ2 . Therefore, the Fisher information matrix
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Figure 4.5: Sequential Discovery Using LAA Technique.

Each node having a coverage of r = 100m and SNR = 30dB; K = 200. Green circles represent

actual node locations, blue triangles represent anchor nodes at known locations, and red crosses

represent location estimates. All but nodes 201 and 202 are localized. Location uncertainties can

be seen more predominantly at the edges of the network.

is

Fz =
1

c2σ 2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M −1 . . . . . . −1

−1 M+1 −1 . . . −1

... . . .
. . .

...
...

−1 −1 . . . . . . M+N −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.7)

Define σ 2
xi

as the variance of the ith node location, using Sherman-Morrison formula, σ 2
xi

satisfies

the following inequality, which is given by

σ 2
xi
≥ c2σ 2

(

1

M+ i
+

1

1−∑N
i=0

1
M+i

1

(M+ i)2

)

. (4.8)

Note that the right hand side of the inequality is the CRLB on the variance of the ith estimated node

location. Since the last node communicates with all previously localized node and anchors, we are

more interested in the last node. Define CRLB(xN) as the CRLB on the variance of the last node

location, we can derive the CRLB as

CRLB(xN) = c2σ 2 1

(M+N)2

⎛

⎝M+N +
1

1+ Γ′(1+M)
Γ(1+M) −

Γ′(1+M+N)
Γ(1+M+N)

⎞

⎠ . (4.9)
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Figure 4.6: Performance Comparison of Different Localization Techniques for Network Discovery.

System parameters are r = 100m; L = 100; K = 200. Average RMSE is plotted vs. SNR×L.

Figure 4.7: System Model of the 1-D Sequential Localization Scheme.

here Γ′(·) is the derivative with respect to Γ, and
Γ′(x)
Γ(x) = φ(x), which is defined as polygamma

function. When N >> M, (4.9) can be simplified as

CRLB(xN)≈
1

N2

(

N +
1

M+1
M

−φ(N)

)

=
1

N
. (4.10)

Therefore, the sequential localization CRLB goes to 0 as 1
N

. Recall that when non-sequential

localization scheme is applied, when N >> M,

CRLB(xN)≈
1

MN
, (4.11)
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therefore, the ratio between the sequential localization CRLB and the non-sequential localization

CRLB is

k =
CRLB

Sequential
1-D

CRLBAWGN
1-D

=
1

M
, (4.12)

which indicates that the non-sequential localization CRLB goes to 0 is M times faster than the

sequential localization CRLB.

In 2-D, Fz is given as

Fz =

⎡

⎢

⎣

Fxx Fxy

FT
xy Fyy

⎤

⎥

⎦
, (4.13)

where Fxx, Fxy and Fyy are N ×N matrix. Each element of Fz is given as

[Fxx]i j =

⎧

⎪

⎨

⎪

⎩

1
c2σ2

(

∑M
k=1

(xk−xi)
2

d2
ik

+∑i−1
k=1

(xk−xi)
2

d2
ik

)

j = i

− 1
c2σ2

(xi−x j)
2

d2
i j

j ̸= i
(4.14)

[Fxy]i j =

⎧

⎪

⎨

⎪

⎩

1
c2σ2

(

∑M
k=1

(xk−xi)(yk−yi)
d2

ik

+∑i−1
k=1

(xk−xi)(yk−yi)
d2

ik

)

j = i

− 1
c2σ2

(xi−x j)(yk−yi)

d2
i j

j ̸= i
(4.15)

[Fyy]i j =

⎧

⎪

⎨

⎪

⎩

1
c2σ2

(

∑M
k=1

(yk−yi)
2

d2
ik

+∑i−1
k=1

(yk−yi)
2

d2
ik

)

j = i

− 1
c2σ2

(yi−y j)
2

d2
i j

j ̸= i
(4.16)

The CRLB can be computed using

CRLB(z) = (Fz)
−1. (4.17)

4.3 CRLB for Sequential Localization in the Presence of Nakagami Fading

Similar to section 4.2, we assume there are M anchors and N nodes. When Nakagami fading exists,

the pdf of TOA measurements is given as [80]

fτ̂ii
(τ̂i j|z) =

mm(m− 1
2 )!

√
2πσ 2Γ(m)

(

1
2σ2 (τ̂i j − di

c
)2 +m

)(m+ 1
2 )
, (4.18)

here m is the Nakagami fading parameter. The CRLB in 1-D and 2-D can be derived using the

similar approach. The ratio between sequential location estimation in the presence of Nakagami

60



fading and sequential location estimation in the absence of fading is given as

CRLB
Sequential Fading
1-D

CRLB
Sequential
1-D

≈ k =

√
πΓ(m+ 5

2 )

Γ(3
2)(m+ 1

2)
2
(

m− 1
2

)

!
. (4.19)

When m = 1, the fading is Rayleigh distributed, and the ratio is

k =
10

3
. (4.20)

Similarly, we can derive the ratio in 2-D, which is the same as in (4.20).

Recall from Chapter 3 that in the non-sequential approach, the ratio between the CRLB in

the presence of Nakagami fading and the absence of fading equals to k, which indicates that in both

non-sequential and sequential localization approaches, the SNR loss due to fading is always about

5dB.

4.3.1 Simulation Results

In the simulation, we compare the sequential CRLB with the non-sequential CRLB in [31]. First,

we assume inside a 10 by 10 square, there are four anchors located at each corner of the square.

The node that has the minimum summed distance to 4 anchors is localized first, followed by the

node has further summed distance, and the node has the furthest summed distance to anchors is

localized at the last step. Figure 4.8 shows the CRLBs comparison between the sequential and

non-sequential localization scheme using the TOA method. From the figure one can see that the

non-sequential scheme always outperforms the sequential localization scheme for all nodes. Also,

as the number of localized nodes increases, the normalized CRLB decreases. In Figure 4.9, we

compare the CRLB when the total number of nodes N = 10 and N = 100 cases, and the CRLB for

the first 10 localized nodes are plotted. From the figure one can see that when the number of nodes

increases, the CRLB decreases.

4.4 Conclusions

In this chapter, we proposed a sequential localization scheme, and studied the CRLB for the se-

quential localization scheme in the absence and in the presence of fading. We derived the ratio

between the sequential localization scheme and the non-sequential localization scheme. Also, we
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Figure 4.8: Comparisons Between the Sequential CRLB with the Non-sequential CRLB when

N = 10 Nodes Located Inside a 10×10 Square.
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Figure 4.9: Comparisons Between the Sequential CRLB with the Sequential CRLB When N = 10

Nodes and N = 100 Nodes Located Inside a 10×10 Square.

compared the CRLBs of the sequential localization in the absence and in the presence of fading,

and the result shows that the SNR loss due to fading is also 5dB, which is the same as the non-

sequential localization scheme.
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Chapter 5

DISTRIBUTED LOCATION DETECTION

Localization problems can be classified as location estimation and location detection problems. In

the estimation formulation, one or more nodes at unknown locations transmit signals to anchors,

and anchors make distance related measurements, such as TOA and RSS, or angle related measure-

ments, such as AOA to locate the node [31, 81]. In Chapter 3 we have considered the case that the

location of the node is unknown. However, in some applications, the node location is known to all

anchors, but whether the node is active or not is unknown. In many applications such as detecting

fire in buildings, each node is placed inside a room, and the location is known to all anchors. An-

chors detect an event based on whether the node is transmitting. In location detection, the goal is

to determine the presence or absence of a node in a known location, or more generally an unknown

location in a known region. More so than location estimation, the detection problem lends itself

to distributed implementation based on exchange of bits between the anchors and a fusion center.

Moreover, in some cases, location detection needs fewer anchors to detect the node location than

estimation. If a node is present at a known location, anchors or a fusion center declare that the

node exists based on certain decision rules. On the other hand, if a node is at an unknown location,

detection of the node location can be formulated as a composite hypothesis testing problem, in

which case estimation theory can be applied to find the maximum likelihood estimates (MLE) of

unknown parameters [53].

In this chapter, we propose a distributed location detection scheme and two scenarios are

considered. Firstly, a distributed location detection scheme is proposed where one node, when

present, is at a known location. In this scheme, each anchor makes its own decision on whether the

node is present at a given location, and transmits the decision by sending a binary bit to a fusion

center. The fusion center decides if the node is present based on certain decision rules. Secondly,

a distributed location detection scheme is proposed where one node, when present, is at a known

region. In this scheme, the node can be located anywhere inside a region. Specifically, we consider

a circle with known radius. In both scenarios, a fusion center is used to gather all binary bits from

anchors, which is different from the centralized methods in the way that the fusion center only
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collects binary data sent by each anchor rather than the actual measurements made by anchors.

This scheme also has benefits in terms of power and time efficiency.

5.1 Distributed Location Detection at A Point

Consider a sensor network with M anchors and one node. The location of the node is known.

Therefore, the true time delay between the node and the ith anchor, which is denoted as ni is

known. Anchors make distance related measurements between the node and anchors. Each anchor

makes N i.i.d measurements, and correlates the received signal with the transmitted signal, then the

measured time delay can be found by the first peak of the correlation. To detect the node, a binary

hypothesis testing problem at each anchor can be formulated with the hypothesis H0 and H1, where

xi[n] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωi[n] under H0

si[n−ni]+ωi[n] under H1

. (5.1)

Here si[n] is the deterministic transmitted signal and its total energy is ε =∑N−1
n=0 s2

i [n] is normalized;

n = 0,1, . . . ,N − 1, a total of N i.i.d measurements are made, and ωi[n] is additive Gaussian noise

with zero mean and variance σ 2. If the ith anchor detects the node, it will transmit a bit “1” to the

fusion center. Otherwise a bit “0” will be transmitted. After the fusion center receives M bits, it

counts the number of “1”s and “0”s. The fusion center needs at least K anchors to send bit “1” to

declare the node present.

From (5.1), we can calculate the probability of false alarm Pi
FA and the probability of

detection Pi
D at the ith anchor. Define f (x;H0) is the probability density function (pdf) of x at the

ith anchor under H0, where x = [xi[1],xi[2], . . . ,xi[N]]. Also, define f (x;H1) as the pdf of xi at the

ith anchor under H1. Let Li(x) be the likelihood ratio between the two probabilities f (x;H1) and

f (x;H0) at the ith anchor. Since the N measurements are i.i.d:

Li(x) =
f (x;H1)

f (x;H0)
=

(

2πσ 2
)−N

exp
[

− 1
2σ2 ∑N−1

n=0 (xi[n]− si[n−ni])
2
]

(2πσ 2)−N
exp
[

− 1
2σ2 ∑N−1

n=0 (xi[n])
2
] ≶ γi. (5.2)

Define Ti(x) = lnLi(x), based on the Neyman-Pearson theorem [53], the ith anchor decides H1
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if Li(x) > γi and otherwise decides H0, where γi is a threshold. Taking log of Li(x), and after

simplification, Pi
FA and Pi

D can be calculated as

Pi
FA = P{Ti(x) > γ ′i ; H0}= Q

⎛

⎝

γ ′i
√

σ2

N

⎞

⎠ ,

and

Pi
D = P{Ti(x)> γ ′i ; H1}= Q

⎛

⎝

γ ′i − ε
√

σ2

N

⎞

⎠ ,

where Ti(x) =
1
N ∑N−1

n=0 xi[n] and γ ′i =
σ2

Nε lnγi +
ε
2 .

After a decision is made at each anchor, it transmits a “1” or “0” to a fusion center. The

fusion center needs at least K “1”s to decide the node is active, where K is a predetermined design

parameter. Therefore, the total probability of false alarm P̄T
FA and the total probability of detection

P̄T
D are given by

P̄T
FA =

M

∑
m=K

(

M

m

)

(

Pi
FA

)m (
1−Pi

FA

)M−m
, (5.3)

and

P̄T
D =

M

∑
m=K

(

M

m

)

(

Pi
D

)m (
1−Pi

D

)M−m
. (5.4)

5.1.1 Simulation Results

We consider a sensor network with 4 anchors in each corner of a 1m by 1m square, and one node

is in the center of the square, when present. The Neyman-Pearson detector is used to detect the

presence of the node. Each anchor makes its own decision and a bit “1” or “0” will be transmitted

to a fusion center. The fusion center counts the number of “1”s. If the total number of “1”s is

greater than or equal to K, then the fusion center will declare the node exists. For the simulation,

we set N = 5 and σ = 1 for all simulations, and Monte Carlo simulations were performed.

Figure 5.1.1 and Figure 5.1.1 show the ROC curves for different K values, and all figures

are shown on a log-log scale. Figure 5.1.1 shows the entire plot with P̄T
FA and P̄T

D ranging from 0 to

1. In order to see the results clearly, we have zoomed into the figure for low P̄T
FA values as seen in

Figure 5.1.1. We observe that K = 4 performs the best and K = 1 has the worst performance for
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Figure 5.1: The Complete ROC Curve.

a low fixed P̄T
FA. However, in Figure 5.1.1, as P̄T

FA increases, the system is more tolerant to type I

errors. We can see that K = 4 is no longer the best choice for a fixed P̄T
FA. From Figure 5.1.1 we

can conclude that the choice of K depends on P̄T
FA and P̄T

D. If the P̄T
FA is small enough then K = 4

can be selected. However, for a higher P̄T
FA, K = 4 is not a good choice.

5.2 Distributed Location Detection in A Region

In the previous section, we have considered detecting a node at a known location. In this section,

instead of a known location, we consider the case that detecting a node in a known region. To

formulate the problem, we consider a WSN with M anchors and 1 node. The anchors are outside

of a known region, and the node, if actively transmitting, is inside of the region. In the absence

of the transmission, each anchor receives pure noise. In the presence of the transmission, each

anchor receives signal plus noise. Two distance related measurements are considered. Firstly, the

TOA method is used to detect a node in a region. When the TOA method is applied, a correlator is

used to extract the time delay, therefore, in the presence of transmission, the estimated distance is

extracted. Secondly, the RSS method is applied to detect the node. For the RSS method, the power

of the received signal is measured. For both cases, we assume the region is a circle, which is shown
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Figure 5.2: ROC Curve When P̄FA is Low.

Figure 5.3: System Model for Location Detection in A Circle.

One anchor is located outside a circle with radius r, and one node is located inside of the circle

with uniform distribution.

in Figure 5.3. The circle has the radius r, and one node is uniformly distributed inside the circle.

Meanwhile, the minimum distance from an anchor to the region, which is denoted as dmin is also

known at each anchor. Each anchor makes its own detection on if the node is transmitting or not.

If the ith anchor detects the node, it will transmit a bit “1” to the fusion center. Otherwise a bit “0”

will be transmitted. After the fusion center receives M bits, it counts the number of “1”s and “0”s.

The fusion center needs at least K anchors to send bit “1” to declare the node present.
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5.2.1 Detecting A Node in A Region Using the TOA Method

We assume each anchor has the prior information on the distance measurements. Therefore, the

detection problem at the ith anchor can be formulated as

zi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωi under H0

di +ωi under H1

, (5.5)

where di is the true distance between the ith anchor and the node, ωi is the Gaussian noise with 0

mean and variance σ 2.

Since the location of the node is uniformly distributed inside a circle, we can write the pdf

of di as [82]

fdi
(x) =

2x

πr2
arccos

[

(

x2 +R2 − r2
)

2xR

]

, (5.6)

where R = r+dmin, and dmin ≤ x ≤ dmin +2r. Also, in [82], the jth moment of di is given by

E
[

d
j
i

]

= R j × 2F1

(

−
j

2
,−

j

2
,2;
( r

R

)2
)

, (5.7)

where 2F1 is the Gauss Hypergeometric function. From (5.7) one can calculate the mean and the

second moment of di, which are

E [di] = R× 2F1

(

−
1

2
,−

1

2
,2;
( r

R

)2
)

, (5.8)

and

E
[

d2
i

]

=
r2 +2R2

2R2
. (5.9)

From (5.8) and (5.9) we can calculate the variance of di as

σ 2
di
= E

[

d2
i

]

− (E [di])
2 =

r2 +2R2

2R2
−
(

R× 2F1

(

−
1

2
,−

1

2
,2,
( r

R

)2
))2

. (5.10)

Therefore, conditional on di, the Neyman-Pearson detector at the ith anchor can be formu-

lated as

L(zi) =
f (zi;H1)

f (zi;H0)
=

fdi
(x)∗ fωi

(x)

fωi
(zi)

≶ γi. (5.11)
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Here, fdi
(x)∗ fωi

(x) is the convolution between two pdfs, which is
∫ R−r

R+r fdi
(x) fωi

(z− x)dx. Also,

fωi
(x) is the pdf of the noise, which is denoted as fωi

(x) = 1√
2πσ2

exp
[

−x2

2σ2

]

.

According to (5.11), Pi
FA can be calculated as

Pi
FA =

∫ ∞

γi

fωi
(zi) = Q

( γi

σ

)

. (5.12)

For a given Pi
FA, the threshold can be calculated as

γi = σQ−1
(

Pi
FA

)

. (5.13)

The probability of detection can be calculated as

Pi
D =

∫ ∞

γi

∫ R+r

R−r

2x

πr2
arccos

[

x2 +R2 + r2

2xR

]

1√
2πσ 2

exp

[

−(zi − x)2

2σ 2

]

dxdzi (5.14)

However, (5.14) is not trackable. To make it more trackable, we assume di is Gaussian

distributed with the mean given in (5.8) and variance in (5.10). Therefore, under both H0 and H1, z

is Gaussian distributed, which is given as

zi ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
(

0,σ 2
)

under H0

N
(

µi,σ 2
i

)

under H1

, (5.15)

where µi = E [di], and σ 2
i = σ 2

di
+σ 2. The Neyman Pearson detector can be found as

L(zi) =
f (zi;H1)

f (zi;H0)
=

1√
2πσ2

1

exp
[

−(zi−µ1)
2

2σ2
1

]

1√
2πσ2

exp
[

−z2
i

2σ2

] ≶ γi. (5.16)

Define T (zi) = lnL(zi), after simplification, we have

L(zi) =

(

zi +
σ 2µi

σ 2
di

)2

≶ γ ′i , (5.17)

The detector in (5.17) is Chi square distributed under both hypothesis. Since under H0, z is Gaussian

distributed, we can calculate Pi
FA as

Pi
FA =

∫ ∞

γi

f (zi;H0) = Q
( γi

σ

)

. (5.18)

The threshold can be calculated by inverting (5.12), which is

γi = σQ−1
(

Pi
FA

)

. (5.19)
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Also, since under H1, z is Gaussian distributed, we can calculate Pi
D as

Pi
D = Q

(

γi −µi

σd

)

= Q

(

σQ−1
(

Pi
FA

)

−µi

σi

)

. (5.20)

After each anchor makes a decision, it transmits a “1” or “0” to a fusion center. Therefore,

similar to the previous sections, the total probability of the false alarm and the total probability of

detection can be calculated using (5.3) and (5.4) respectively.

5.2.1.1 Simulation Results

Figure 5.4 shows the ROC curves at the ith anchor under different r but with the same dmin. In one

case, we fix the radius of the circle to 1m. In another case, we fix the radius of the circle to 10m.

One can see that with larger radius, Pi
D converges faster.

Figure 5.5 shows the ROC curves at the ith anchor under different dmin but with the same

r, and r = 1. One can see that with smaller dmin, Pi
D converges faster.

Figure 5.6 we compare the original detector in (5.11) with the Gaussian approximation in

(5.17). We set the variance of the noise to 5 and 0.5 respectively. Under both high and low SNR

scenarios, the performance of the Gaussian approximated detector is very close to the original

detector, which indicates that the Gaussian approximation is a good substitution for the original

detector since it is more trackable.

Figure 5.7 shows the effect of the choice of the design parameter K when the original

detector is used. Figure 5.8 shows the effect of the choice of the design parameter K when the

Gaussian approximation is applied. Similar to the node detection at a known location case, there is

no optimal choice of K for all P̄T
FA.

5.2.2 Detecting A Node in A Region Using the RSS Method

In this section, we consider location detection using RSS method. Similar to the TOA approach,

we consider a WSN with M anchors and 1 node. The anchors are outside of a known region, and

the node, if actively transmitting, is inside of the region. In the absence of the transmission, each

anchor measures the power of pure noise. In the presence of the transmission, each anchor receives

the power of signal plus noise. Each anchor makes its own detection on if the node is transmitting
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Figure 5.4: ROC Curves at the ith Anchor Under Different Circle Radius.
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Figure 5.5: ROC Curves at the ith Anchor Under Different dmin.

or not. we assume one node is located inside a region, and M anchors are located outside of the

region. The detection problem at the ith anchor can be formulated as

zi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑N−1
n=0 ω2

i [n] under H0

∑N−1
n=0 (g(di)si[n−ni]+ωi[n])

2 under H1

, (5.21)
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Figure 5.7: ROC Curves Under Different Choices of K When Using (5.11).

where ωi is the Gaussian noise with 0 mean and variance σ 2, ni is the time delay, n is the sample

index, and N is the total samples is sent by the node. g(di) is a function of the true distance di, and

we assume g(di) =
1
d2

i
.

The pdf of di is given in (5.6), conditional on di, the Neyman-Pearson detector at the ith
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Figure 5.8: ROC Curves Under Different Choices of K When Using (5.17).

anchor can be formulated as

Li(z) =
f (zi;H1)

f (zi;H0)
=

∫ dmax

dmin
f (zi|x) fdi

(x)dx

1
2σ2Γ(m)

(

zi

2σ2

)N−1
exp
(

− zi

2σ2

)

≶ γi. (5.22)

Here,

f (zi|x) =
1

2σ 2

( zi

a2

)N−1
2

exp

(

−
zi +a2

2σ 2

)

IN−1

(
√

a2zi

σ 4

)

, (5.23)

where a is the non-central parameter, which is defined as a = g(di)
√

Nε; ε is the energy of the

signal, which is defined as ε = ∑N−1
n=0 s2

i [n]. Ib(·) is the modified Bessel function of the first kind.

The probability of false alarm and probability of detection at the ith anchor can be calcu-

lated as

Pi
FA =

∫ ∞

γ
f (zi;H0)dzi = exp

(

−
γ

2σ 2

)N−1

∑
k=0

( γ
2σ2

)k

Γ(k+1)
, (5.24)

and

Pi
D =

∫ ∞

γ
f (zi;H1)dzi =

∫ ∞

γ

∫ dmax

dmin

f (zi|x) fdi
(x)dxdzi. (5.25)

Since (5.25)is not trackable, similar to the TOA case, we can approximate g(di) as Gaussian distri-

bution. Recall the jth moment of di is given in (5.7), therefore the mean of g(di) is given as

E [g(di)] = E
[

d−2
i

]

= R−2
2F1

(

1,1,2;
( r

R

)2
)

. (5.26)
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The variance of g(di) is

var(d−2
i ) = R−4

(

2F1

(

2,2,2;
( r

R

)2
)

−
(

2F1

(

1,1,2;
( r

R

)2
))2

)

. (5.27)

By applying the Gaussian approximation, zi under H1 is non-central Chi square distributed with

N i.i.d Gaussian random variables. The mean of each random variable is given in (5.26) and the

variance is

σ 2
i = var(d−2

i )+σ 2, (5.28)

where var(d−2
i ) is given in (5.27).

Applying the Neyman-Pearson theorem, The detector at the ith anchor is

Li(zi) =

1
2σ2

i

(

zi

a2

)
N−1

2 exp
(

− zi+a2

2σ2
i

)

IN−1

(√

a2zi

σ4
i

)

1
2σ2Γ(m)

(

zi

2σ2

)N−1
exp
(

− zi

2σ2

)

≶ γi. (5.29)

After simplification, we have

Li(zi) = z
1−N

2
i exp

(

zi

(

1

2σ 2
−

1

2σ 2
i

))

IN−1

(
√

a2zi

σ 4
i

)

≶ γi. (5.30)

We found that Li(zi) is a monotonically decreasing function of zi. Therefore, we can use zi as the

detector. A new detector by using the Gaussian approximation can be found as

zi ≶ γ ′i , (5.31)

where γ ′i is not a function of the measured data.

5.2.2.1 Simulation Results

For the simulation, we set the number of samples N = 20, and the Monte Carlo simulations are per-

formed. In Figure 5.9, Figure 5.10 and Figure 5.11, we compare we compare the original detector

derived in (5.22) and the Gaussian approximation in (5.31) under different dmin, r, and SNR values

respectively. From Figure 5.9 one can see that as dmin decreases, the performance of Gaussian

approximation is much closer to the original detector. However, the original detector outperforms

the Gaussian approximation under both dmin values. From Figure 5.10, one can see that when

r decreases, the performance of Gaussian approximation is much closer to the original detector.

However, the original detector outperforms the Gaussian approximation under both r values. From
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Figure 5.10: ROC Curves at the ith Anchor Under Different r.

Figure 5.11, one can see that as SNR increases, the performance of Gaussian approximation is

much closer to the original detector. However, the original detector outperforms the Gaussian ap-

proximation under both SNR values. Therefore, we can conclude that the Gaussian approximation

is not a good approximation for the RSS method. Figure 5.12 shows the total probability of detec-
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Figure 5.12: ROC Curves at the ith Anchor Under Different Choice of K Using the RSS Method.

tion versus the total probability of false alarm under different choice of K. From the figure one can

see that similar to the TOA method, none of the choice of K always performs best among all the

range of the false alarm probability.
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5.3 Conclusions

In this chapter, we proposed a distributed location detection scheme in WSNs. The proposed

scheme is different from the the centralized location detection schemes because each anchor makes

its own decision of whether the node is present and transmits a binary bit to a fusion center. We

considered two schemes, one is detecting a node at a known location. Another one is locating a

node in a known region. In both schemes, each anchor makes its own decision and a fusion center

is used to collect binary bits from anchors. The fusion center needs at least K anchors to agree

that the node exists to detect the presence of the node. The proposed scheme is more power and

time efficient than centralized methods. Simulation results show that in both schemes the optimum

choice of K depends on the requirements of P̄FA and P̄D, and none of the K values outperform others

for all P̄FA.
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Chapter 6

DISTRIBUTED LOCATION DETECTION IN THE PRESENCE OF FADING

In the previous chapter, we have studied location detection in the absence of fading. In this chapter,

we consider a location detection problem in the presence of fading. Consider a sensor network

with M anchors and one node. In the absence of the node, each anchor receives only noise. In the

presence of the node, each anchor receives faded signal with noise. If the phases of the fading coef-

ficients are known at each anchor, a coherent detection scheme, needs only one phase-synchronized

matched filter, can be applied. In this case, the received signal is sampled and a total number of

N samples are extracted. Next, the N samples are correlated with the sampled transmitted signal

and compared with a threshold. If the phase is unknown at any anchor, a non-coherent detection

scheme is applied. In this case, two demodulators with 90 degree phase shift of each other are

needed. After two analog to digital converters, both real (in-phase) and imaginary (quadrature)

components of the signal are extracted, then both components are correlated with the generated

real and quadrature elements separately. By combining the power of the output of correlators (or

a synchronized single branch) and comparing with a threshold, a final decision is made at each

anchor. If an anchor detects the node, it transmits a bit “1” to the FC, otherwise it transmits a bit

“0”. The FC needs at least K anchors to declare the node exists at the given location, where K is a

design parameter.

To detect the node, a binary hypothesis testing problem at the ith anchor can be formulated

as

xi[n] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωi[n] under H0

hisi[n−ni]+ωi[n] under H1

. (6.1)

As before the fading coefficients, hi, are complex Gaussian random variables. Both real and imagi-

nary parts of hi have 0 mean and variance 1
2 , to satisfy E

[

|hi|2
]

= 1; ωi[n] is additive Gaussian noise

with 0 mean and variance σ 2; si[n] is the modulated deterministic transmitted signal and its total

energy E = ∑N−1
n=0 s2

i [n] is normalized; ni is the true time delay between the node and the ith anchor,

where i = 1,2, . . . ,M. The following three cases are considered in this work. (a) The fading coeffi-

cients are assumed to be known at each anchor. In this case, conditioned on the fading coefficients,
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xi[n] is Gaussian distributed under both H0 and H1; (b) Amplitudes of the fading coefficients are un-

known at any anchor but with a known prior distribution. In this case, the Neyman-Pearson detector

can be found by integrating the fading effect [53]; (c) No CSI is available at any anchor. In this

case, a non-coherent detection scheme which extracts both in-phase and quardrature components

is used.

6.1 Fading Coefficients Known at Anchors

When the fading coefficients are known at each anchor, the phases can be synchronized, and the

coherent detection scheme can be used. The hypothesis testing problem at each anchor can be

formulated as

xi[n] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωi[n] under H0

|hi|si[n−ni]+ωi[n] under H1

. (6.2)

Since hi is a zero-mean complex Gaussian random variable, |hi| is Rayleigh distributed. Con-

ditioned on |hi| and based on Neyman-Pearson theorem, the ith anchor detects the node if the

likelihood ratio Li (x) satisfies

Li (x) =

f

(

x

∣

∣

∣
|hi|;H1

)

f (x;H0)
≶ γi, (6.3)

for some threshold γi, which balances the false alarm and detection probabilities at each anchor.

Here, f
(

x
∣

∣

∣
|hi|;H1

)

is the probability density function (pdf) of the received signal conditioned on

|hi| under H1, and x = [xi[0],xi[1], . . . ,xi[N − 1]]T . Similarly, f (x;H0) is the pdf of the received

signal under H0. Under both H0 and H1, x is Gaussian distributed, given by

f (x;H0) =
1

(2πσ2)
N
2

exp

(

−
1

2σ2

N−1

∑
n=0

x2
i [n]

)

, (6.4)

and

f

(

x

∣

∣

∣
|hi|;H1

)

=
1

(

2πσ2
) N

2

exp

(

−
1

2σ2

N−1

∑
n=0

(xi[n]− |hi|si [n−ni])
2

)

. (6.5)

Taking the log of (6.3), and substituting (6.4) and (6.5) into (6.3), and simplifying, we have
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lnLi (x) =
N−1

∑
n=0

xi[n]si [n−ni]≶
σ 2 lnγi

|hi|
+

|hi|
2

. (6.6)

Define Ti (x) =
1
σ lnLi (x), so that (6.6) can be expressed as

Ti (x)≶ γ ′i (|hi|) , (6.7)

where

γ ′i (|hi|) =

√

σ 2

|hi|2
lnγi +

1

2

√

|hi|2
σ 2

(6.8)

is the threshold for the statistic Ti (x) and depends on both γi and |hi|. Note that conditioned on |hi|,

Ti (x) is Gaussian:

Ti (x)∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N (0,1) under H0

N

(

√

|hi|2
σ2 ,1

)

under H1

. (6.9)

The instantaneous probability of false alarm at the ith anchor Pi
FA is

Pi
FA = Q

(

γ ′i (|hi|)
)

, (6.10)

and the probability of detection at the ith anchor Pi
D is

Pi
D = Q

(

γ ′i (|hi|)−
√

|hi|2
σ 2

)

, (6.11)

both of which are functions of |hi|. The average false alarm probability P̄FA can be calculated by

averaging out the fading effect, which is given by

P̄FA = E
[

Pi
FA

]

=
∫ ∞

0
Q
(

γ ′i (|hi|)
)

f|hi|2 (x)dx, (6.12)

where the pdf of |hi|2 is given in (3.13). Similarly, the averaged P̄D can be calculated by

P̄D =
∫ ∞

0
Q

(

γ ′i (|hi|)−
√

|hi|2
σ 2

)

f|hi|2 (x)dx. (6.13)

After a decision is made at each anchor, it transmits a “1” or “0” to a fusion center. The

fusion center needs to receive at least K “1”s to decide the node is active, where K is a predeter-

mined design parameter. Therefore, the total probability of false alarm and the total probability of

detection are given by
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P̄T
FA =

M

∑
m=K

(

M

m

)

(P̄FA)
m (1− P̄FA)

M−m , (6.14)

and

P̄T
D =

M

∑
m=K

(

M

m

)

(P̄D)
m (1− P̄D)

M−m . (6.15)

Recall that the threshold γ ′i (|hi|) given in (6.7) depends on the random channel amplitude

|hi|. The question arises as to whether this choice is optimal in the sense of maximizing P̄D when

P̄FA ≤ α , where α is a constant. Now we want to prove that the threshold γ ′i (|hi|) in (6.8) has

the optimal dependence on |hi|. We do this by casting the threshold optimization problem as a

variational problem where the variable γ ′i (|hi|) is a function of the channel:

Theorem 1. Consider the following optimization problem

maximize P̄D =
∫ ∞

0 Q

(

γ ′i (|hi|)−
√

|hi|2
σ2

)

f|hi|2 (x)dx

subject to P̄FA =
∫ ∞

0 Q(γ ′i (|hi|)) f|hi|2 (x)dx ≤ α

,

where the variable function is γ ′i (|hi|). The optimal threshold function is given in (6.8).

Proof: To prove the Theorem, we express the Lagrangian as

∫ ∞

0
Q

(

γ ′i (|hi|)−
√

|hi|2
σ 2

)

f|hi|2 (x)dx+λ

(

∫ ∞

0
Q
(

γ ′i (|hi|)
)

f|hi|2 (x)dx−α

)

. (6.16)

Taking the derivative of (6.16) with respect to γ ′i , we have

∫ ∞

0

∂Q

(

γ ′i (|hi|)−
√

|hi|2
σ2

)

∂γ ′i (|hi|)
f|hi|2 (x)dx+λ

∫ ∞

0

∂Q(γ ′i (|hi|))
∂γ ′i (|hi|)

f|hi|2 (x)dx. (6.17)

Setting (6.17) to 0, applying the formula
dQ(x)

dx =− 1√
2π

exp
(

− x2

2

)

, and solving for γ ′i , we have

γ ′i (|hi|) = lnλ

√

σ 2

|hi|2
+

1

2

√

|hi|2
σ 2

. (6.18)

Setting λ = γ , (6.18) is equivalent to (6.8), which proves Theorem I.
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6.2 Fading Coefficients with Known Phase but Unknown Amplitude

Now assume that the amplitude of the fading are unknown at every anchor with a known distri-

bution. In this case, |hi| in (6.2) is unknown but with a known distribution. The Neyman-Pearson

detector at the ith anchor can be formulated as

Li (x) =
f (x;H1)

f (x;H0)
=

∫ ∞
0 f
(

x
∣

∣

∣
|hi|;H1

)

f|hi| (x)dx

f (x;H0)
≶ γi (6.19)

Defining Ti (x) =
1

σ2 ∑N−1
n=0 xi[n]si[n− ni] and assume |hi| is Rayleigh distributed, we can express

(6.19) as

Li = Ti exp

⎛

⎝

T 2
i

2
(

1+ 1
σ 2

)

⎞

⎠

⎛

⎝1−Q

⎛

⎝

Ti
√

1+ 1
σ 2

⎞

⎠

⎞

⎠≶ γ ′i , (6.20)

where

γ ′i =

(

γi − 1
(

1+ 1

σ2

)

)

(

1+ 1
σ2

)
3
2

√
2π

, (6.21)

and we drop the dependence of Li and Ti on x to emphasize their functional relationship.

We found that for all SNR values, Li is a monotonically increasing function of Ti. There-

fore, we can rewrite (6.20) as

Ti (x) =
N−1

∑
n=0

xi[n]si[n−ni]≶ γ ′′i , (6.22)

here γ ′′i is a constant, which is not a function of the measured data, and can be calculated numeri-

cally as we now explain. Since the distribution of Ti (x)∼ N (0,1), P̄FA can be calculated as

P̄FA = Q
(

γ ′′i
)

, (6.23)

where γ ′′i can be found by taking the inverse of (6.23).

Since under H1 shown in (6.9), conditioned on |hi|, the distribution of Ti (x)∼N

(

√

|hi|2
σ2 ,1

)

,

the detection probability Pi
D can be calculated as

Pi
D = Q

(

Q−1 (P̄FA)−
√

|hi|2
σ 2

)

. (6.24)

82



The averaged P̄D can be calculated using

P̄D =
∫ ∞

0
Q

(

Q−1 (P̄FA)−
√

|hi|
σ 2

)

f|hi|2 (x)dx, (6.25)

which is different from (6.13), since γ ′′i does not depend on |hi| anymore. Finally, the total proba-

bility of false alarm and detection can be calculated using (6.14).

Recalling that (6.6), is the detector for the case when hi is known to anchors. Comparing

it with (6.22), which is the detector for the case when |hi| is a random variable with Rayleigh

distribution, one can see that the detector for both cases rely on the same statistic Ti (x). However,

in (6.6) the threshold is a function of the fading coefficients, whereas in (6.22) the threshold is a

constant that only depends on the prescribed P̄FA. In Section 5.2.1.1 we will show (6.6) outperforms

(6.22) as expected. The closed form expression for P̄D in (6.25) is not tractable. However, when no

CSI is available at each anchor, we will have a closed form expression for P̄D as seen next.

6.3 No CSI is Available at Any Anchor

When the knowledge of CSI is not available at any anchor, a non-coherent detection scheme is

applied. The received bandpass signal is sampled and both in-phase and quadrature components of

the signal are extracted [83]. The problem statement can be formulated as

xi[n] =

⎧

⎪

⎨

⎪

⎩

ωi[n] underH0

hRis1i[n− ni]+ hIis2i[n− ni]+ωi[n] underH1

, (6.26)

where s1i[n] and s2i[n] are the sampled signal si[n] multiplied by cos(2π fcn) and sin(2π fcn) re-

spectively, and fc is the carrier frequency. ωi[n] = ωRi[n] +ωIi[n], which contains both in phase

and quadrature components. Similarly, hRi and hIi are the real and imaginary parts of the fading

coefficients respectively. We can rewrite the hypothesis testing problem in vector format as

xi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωi under H0

Sihi +ωi under H1

, (6.27)
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where xi = [xi[0],xi[1], . . . ,xi[N −1]]T , and Si, hi, and ωi are defined as

Si =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

s1i[−ni] s2i[−ni]

s1i[1−ni] s2i[1−ni]
...

...

s1i[N −1−ni] s2i[N −1−ni]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (6.28)

hi = [hRi hIi]
T (6.29)

and

ωi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ωRi[0]+ωIi[0]

ωRi[1]+ωIi[1]
...

ωRi[N −1]+ωIi[N −1]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.30)

The detector at the ith anchor can be computed by calculating the log likelihood ratio which

is a quadratic function of xi

Li (x) = xT
i SiS

T
i

(

SiS
T
i +σ 2I

)−1
xi ≶ γi, (6.31)

After simplifications, Li (x) can be expressed as

Li (x) =
1

N
xT

i SiS
T
i xi ≶ γi. (6.32)

The probability of false alarm and the probability of detection at the ith anchor can be

calculated as

P̄FA = Pr{Li (x)> γi;H0}

= exp
(

−
γi

12σ 2

)

. (6.33)

In addition, the averaged probability of detection P̄D can be expressed as a function of the P̄FA in

closed form:

P̄D = Pr{Li (x)> γi;H1}

= (P̄FA)
1

1+ N
4σ2 . (6.34)
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Figure 6.1: ROC Curves for Different Scenarios.

The overall P̄T
FA and P̄T

D can be calculated by substituting (6.33) and (6.34) into (6.14) and

(6.15).

6.3.1 The Choice of the Design Parameter K

As mentioned before, K is a predetermined design parameter which is used to fuse the binary

decisions from each anchor in the following manner. If K or more anchors detect a node, a final

detect decision is made. When K is large, which means the fusion center requires most of the

anchors to claim the node exists, both P̄T
FA and P̄T

D decrease. On the other hand, When K is small,

both P̄T
FA and P̄T

D increase. However, for a given total false alarm threshold P̄T
FA ≤ α , it appears that

there is an optimal value of K which maximizes P̄T
D. In Section 5.2.1.1 we will see the choice of K

under different values of P̄T
FA.

6.4 Simulation Results

In the location detection formulation, we consider a 1m×1m square, 4 anchors are at the corners,

and 1 node is in the middle of the square. The location of the node (when active) is known to all

anchors. Figure 6.1 shows the comparison between the AWGN case, fading coefficients are known

to the anchors, the amplitude of fading coefficients are unknown but with a prior distribution, and

the no CSI case. Here we fix the design parameter K = 1 for all cases so that a single anchor’s

detection is sufficient for the FC to detect the node. One can see from the figure that the AWGN
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Figure 6.2: ROC Curves When the Fading Coefficients are Known to All Anchors When SNR =
15dB.

case outperforms all other cases as we expected, followed by the fading coefficients are known to

anchors, the amplitude of fading coefficients are unknown but with a prior distribution, and no CSI

case gives the worst performance. Intuitively speaking, we expect higher probability of detection

when more information is available.

Figure 6.2 through Figure 6.4 show the ROC curves for different cases as K changes. From

the figures one can see that for small P̄T
FA, K = 4 performs best, however as P̄T

FA increases, K = 4 is

not a good choice. Therefore, none of the K values outperform others for all P̄T
FA.

Figure 6.5 shows P̄T
D vs. SNR when P̄T

FA = 10−1, K = 1 and the amplitude of fading is

Rayleigh distributed. From the figure one can see that to maintain the same P̄T
D = 0.85, the no CSI

case needs 21.5dB SNR, followed by the case when |hi| is unknown, which is about 19.6dB, and

|hi| is known needs the least amount of SNR, which is about 18.5dB. Therefore, the SNR loss due

to Rayleigh fading is about 2dB, and unknown phase causes an additional 1dB. However, one can

also see that as P̄T
D increases, the SNR losses decrease.

Figure 6.6 shows the ROC curve comparisons between (6.22) and (6.6) at the first anchor.
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Figure 6.3: ROC Curves When the Amplitude of the Fading Coefficients are Unknown to the

Anchors but with A Prior Distribution When SNR = 15dB.

From the figure we can see that by using the knowledge of the magnitude of the fading coefficients

to set the threshold in (6.6), the performance is better than the no CSI case (6.22).

6.5 Conclusions

In this chapter, we consider distributed location detection in the presence of fading. Each anchor

makes its own decision, and transmits the decision to a fusion center. The fusion center needs

K anchors to agree that the node exists to detect the presence of the node. Three scenarios are

considered, which includes the fading coefficients are known at anchors, the fading coefficients

with known phase but unknown amplitude, and no CSI is available at any anchor. The ROC curves

are plotted under different channel assumptions. From the plots we can see that the optimal K

depends on the requirements of P̄T
FA and P̄T

D, and none of the K values outperform others for all P̄T
FA.

Finally, the simulation results show that using the knowledge of the fading coefficients to choose

the threshold gives better performance.
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Figure 6.4: ROC Curves When No CSI is Available at Any Anchor When SNR = 15dB.
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Using the Channel Knowledge Gives a Better Performance.
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Chapter 7

CONCLUSIONS

In the preceding chapters, location estimation and detection problems were presented. In Chapter 2,

different localization methods were revisited. In general, distance and angle related measurements

are used to estimate the node location. Distance related measurements include TOA, RSS, and

TDOA. Angle related measurements include AOA. The LAA method, which uses both distance

and angle measurements, is one of hybrid localization methods. After measurements are made,

many algorithms can be applied to estimate the location. In Chapter 2, NLS, LLS, POCS, and POR

were reviewed.

In Chapter 3, a non-sequential localization scheme, which uses the TOA measurements

was considered when the Nakagami fading is present. The CRLBs for localization errors were de-

rived under different fading assumptions. Firstly, we considered the case where the phase is known

at each anchor. In this case, the CRLB depends on the amplitude of the fading coefficient. Sec-

ondly, the amplitude of fading coefficients is assumed to be Nakagami distributed. In this case, the

unconditional distribution of the TOA measurement can be calculated by using the total probability

theorem. Thirdly, we assume no CSI is available at any anchor. In addition, the amplitude and the

phase of fading coefficients are Nakagami distributed and uniformly distributed respectively. In

this case, we calculated the unconditional distribution of the TOA measurement by integrating the

effect of both amplitude and phase. The analytical results showed that the loss in performance due

to Rayleigh fading with known phase is about 5dB compared to the case with no fading. Unknown

phase caused an additional 1dB loss. Following this, the MLEs were also derived for different

fading scenarios.

In Chapter 4, a sequential localization scheme, in which the locations of nodes are sequen-

tially estimated, was applied to estimate node locations. The TOA, TDOA, RSS, DOA, and LAA

localization algorithms were expressed as the solution to a set of linear equations. Following this,

the performance of a sequential network localization process when using these different localiza-

tion algorithms were compared. The simulation results showed that the DOA method outperformed

90



in low SNR and the LAA method outperformed in high SNR. Next, the CRLB on the localization

error using the TOA method for the sequential localization scheme was studied. In the absent of

fading, the CRLB for the sequential localization scheme was compared with the CRLB for the

non-sequential localization scheme. The analytical results show that the non-sequential CRLB

converges to zero N times faster than the sequential scheme, where N is the total number of nodes

in the network. For the sequential localization scheme, the CRLB when the fading is present was

also compared to the CRLB when the fading is absent case. Interestingly, the loss due to Rayleigh

fading in both non-sequential and sequential schemes is the same, which is about 5dB.

In Chapter 5, a distributed location detection scheme was proposed. In the distributed

detection formulation, each anchor receives a noisy signal from a node at a known location or

within a known region. Each anchor makes a decision as to whether the node is active or not

and transmits a bit to a fusion center once a decision is made. The fusion center combines all the

decisions and uses a design parameter K to make the final detection. Two cases were considered in

this chapter. Firstly, locating a node at a known location was considered. Secondly, locating a node

in a known region was considered. In both cases, the simulation results showed that the choice of

the design parameter K depends on the total probability of false alarm, and none of the K values

outperformed others for all P̄T
FA. To locate a node in a known region, the simulation results showed

that the Gaussian approximation performs better when the TOA method was applied than the RSS

case.

In Chapter 6, distributed location detection at a known location when fading exists was

discussed. When the node is actively transmitting, each anchor receives a faded signal from the

node. Three scenarios were considered, which include the fading coefficients are known at anchors,

the fading coefficients with known phase but unknown amplitude, and no CSI is available at any

anchor. When the fading coefficients are known at anchors, the optimal threshold depends on

the fading coefficients. When the amplitude of the fading coefficients are random with Rayleigh

distribution, the optimal threshold can be found by integrating the fading effect. When no CSI is

available at any anchor, two non-coherent detection schemes can be applied and both in phase and

quadrature components of the fading coefficients are extracted. The simulation results showed that
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similar to the distributed location detection in the absence of fading case, none of the K values

outperformed others for all P̄T
FA.
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