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ABSTRACT 

Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), 

is involved in many basic chemical and biological processes. Studying their charge 

transport properties can help developing DNA based electronic devices with many 

tunable functionalities. This thesis investigates the electric properties of double-stranded 

DNA, DNA G-quadruplex and dsDNA with modified base. 

First, double-stranded DNA with alternating GC sequence and stacked GC 

sequence were measured with respect to length. The resistance of DNA sequences 

increases linearly with length, indicating a hopping transport mechanism. However, for 

DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear 

length dependence, indicating a partial coherent transport. The result is supported by the 

finding of delocalization of the highest occupied molecular orbitals of Guanines from 

theoretical simulation and by fitting based on the Büttiker’s theory. 

Then, a DNA G4-duplex structures with a G-quadruplex as the core and DNA 

duplexes as the arms were studied. Similar conductance values were observed by varying 

the linker positions, thus a charge splitter is developed. The conductance of the DNA G-

tetrads structures was found to be sensitive to the π-stacking at the interface between the 

G-quadruplex and DNA duplexes by observing a higher conductance value when one 

duplex was removed and a polyethylene glycol (PEG) linker was added into the interface. 

This was further supported by molecular dynamic simulations. 

Finally, a double-stranded DNA with one of the bases replaced by an 

anthraquinone group was studied via electrochemical STM break junction technique. 
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Anthraquinone can be reversibly switched into the oxidized state or reduced state, to give 

a low conductance or high conductance respectively. Furthermore, the thermodynamics 

and kinetics properties of the switching were systematically studied. Theoretical 

simulation shows that the difference between the two states is due to a difference in the 

energy alignment with neighboring Guanine bases. 
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CHAPTER 1 

INTRODUCTION TO MOLECULAR ELECTRONICS 

1.1 Introduction 

The investigations of electrical junctions, in which small molecular assemblies or 

single molecule act as conductors connecting conventional electrical components like 

metals, is named the field of molecular electronics
1
. The field was originated from a 

seminal paper published by Aviram and Ratner in which they proposed a single 

molecular rectifier
2
. The field of molecular electronics started to develop rapidly in the 

past two decades, mainly due to the advances in organic synthesis, the invention of 

scanning probe microscopes (SPM) and the developments of nanofabrication technique. 

A lot of experimental methods have been developed to study the electric properties of 

single molecule or small molecular assemblies. These include mercury drop junction
3-5

, 

crossed-wire junction
6-8

, conducting probe Atomic Force Microscopy (CP-AFM) 

junction
9-11

, Scanning Tunneling Microscopy (STM) break junction
12-14

, Mechanical-

controlled break junction (MCBJ)
15-17

 and several other experimental methods
18-21

. 

Combining solid state physics, organic chemistry, biophysics and engineering, the field 

of molecular electronics is seeking to understand and build up electronic devices on a 

molecular scale. 

 Exploring the charge transport mechanism is one of the basic tasks for researchers 

in the field of molecular electronics. By studying length dependence, temperature 

dependence, solvent dependence and current-voltage (I-V) characteristics of conductance 

value for different molecules with various chemical structures, people are trying to seek 
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for and understand new charge transport mechanism. To date, it is widely accepted that 

non-resonant tunneling is responsible for charge transport for relatively shorter 

molecules
22-24

, while for longer molecules, incoherent hopping transport starts to 

dominate
25-28

. Besides these, new charge transport mechanism is also being discovered in 

recent years. Understanding the charge transport mechanism is important for 

understanding the charge transport/transfer involved in many biological processes and 

electronics devices. 

 The next step after understanding the charge transport is to build up electronic 

devices based on molecules
29

. To date, many attempts have been made to build up single 

molecular devices with different functionalities such as diodes
30-33

, transistors
34-36

 and 

switches
37-44

. In addition to those devices mimicking the conventional silicone based 

electronic devices, researchers are also studying the interplay between the mechanical, 

thermoelectric, magnetic, optic properties and electric properties and developing single 

molecular sensors. Realizing these device applications is the ultimate goal for the field of 

molecular electronics. 

 This thesis will focus on the study of charge transport through DNA, an important 

biomolecule which stores our gene information. First, an introduction on the background 

and research methods of molecular electronics will be given. Then, by studying dsDNA 

molecules with different length and sequences, a new charge transport mechanism will be 

discussed. Then the following two sections will introduce DNA based single molecular 

electronic device. One section will introduce a DNA G-quadruplex based single 

molecular charge splitter. The other section will introduce an electrochemical gate-
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controlled single molecular switching behavior based on modified dsDNA. Finally, a 

summary of the three works will be made and comments on the limitations and 

implications of these works, and on future research directions will be given. 

1.2 Charge transport theory 

 Understanding the charge transport mechanism is the most fundamental task in 

the field of molecular electronics. Like the field of mechanics including classic 

mechanics and quantum mechanics, the charge transport theory also falls into classic 

regime and quantum regime. This section will introduce the charge transport behaviors of 

molecular systems in the two main regimes. 

1.2.1 Characteristic length 

When an electron transports through a system, there are two important 

characteristic lengths involved. The first characteristic length is the momentum relaxation 

length Lm. It indicates the distance the electron can transfer in a system before colliding 

with impurities or defects. It can also be affected by the scattering of an electron with a 

phonon. The second characteristic length is the phase relaxation length Lϕ. The phase 

information makes the electron behave like a wave, thus Lϕ indicates the distance an 

electron can transfer before losing its coherence as a wave. 

1.2.2 Ballistic regime (L<< Lm and Lϕ) and Landauer formula 

In this regime, the behavior of an electron is described as a wave in the quantum 

mechanics. Considering a simple 1-dimension (1D) case where a molecule is bridged in 

between two electrodes (Figure 1.1a), charge transport only occurs through the lowest 
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unoccupied molecular orbital (LUMO) of the molecule represented by the barrier in 

between the Fermi levels of the two electrodes (Figure 1.1b).  

The net current from the left electrode to the right electrode IL given by: 

       
0

,L g LI e v k T k f E k n k dk


    , Equation 1.1 

Here vg is the electron group velocity, T(k) is the transmission probability, f(E) is the 

Fermi-Dirac distribution function, μL is the chemical potential of the left electrode, n(k) is 

the density of states and  
1

2
2

L
n k dk dk

L 
 . If one uses energy space instead of the k 

space, Equation 1.1 becomes: 

     

   

0

0

2 1
,

2

2
,

L g L

g

L

I e v k T k f E k dE
hv

e
T E f E dE

h










   







, Equation 1.2 

The net current I is given by: 

     
0

2
, ,L R L R

e
I I I T E f E f E dE

h
 



      , Equation 1.3 

Under a small bias voltage and kBT is much smaller than the Fermi energy, one has: 

   
 

 
,

, ,L R

f E
f E f E eV e E

E


   


    


, Equation 1.4 

Therefore, from Equation (1.3), the conductance of the molecule can be expressed as: 
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 
22

f

e
G T E

h
 , Equation 1.5 

Where Ef is the Fermi level of the two electrodes. Equation 1.5 is one of the most 

ubiquitous Equations in the field of molecular electronics and also named as the 

Landauer formula. 
22

77.48
e

S
h

 is called conductance quantum and denoted by G0. If 

there are multiple transport channels in a molecular system, Equation (1.5) becomes: 

 
2

,

2
ij f

i j

e
G T E

h
  , Equation 1.6 

 

Figure 1.1: Charge transport through a molecule and Laudauer formula. (a) A molecule is 

bridged between two electrodes. (b) A small bias voltage Vbias is applied. Electron will go 

through the LUMO level of the molecule from the Fermi level of the left electrode to the 

Fermi level of the right electrode, thus generating current. 

1.2.3 Non-Equilibrium Green’s Function Formalism (NEGF) and superexchange model 
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To calculate the transmission probability in the Landauer formula, one can use the 

NEGF approach. The transmission probability can be related to the T operator where the 

molecular energy level acts as a barrier
45

. 

     
22

, ,

4ij lr l r

i j l r

T E T E E E E      , Equation 1.7 

Where El and Er is the energy level of left electrode and right electrode respectively. Tlr is 

the T operator, expressed by: 

 lrT V VG E V  , Equation 1.8 

The first term represents the direct transport from the left electrode to the right electrode, 

which can be neglected if the current transporting through the molecule dominates the 

total current. V is the coupling between the molecule and electrode. G(E) is the Green 

Function given by: 

 
1

G E
E H i


  

, Equation 1.9 

Where H is the Hamiltonian of the whole system and Γ
-1

 is the lifetime matrix of the 

molecule. 

A more realistic case is that the two electrodes will be separated by N bridges 

states (N=1, 2, 3…N, Figure 2a). In this case, the superexchange model is found to be a 

good approximation to describe it. There are two assumptions in this model: 1. The 

energy of those N bridge states is far away from the Fermi level of the two electrodes. 2. 

The coupling only exists between the two neighboring states (tight-binding model) and it 
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is much smaller than the energy difference between the bridge states and Fermi level. 

Thus in Equation (1.6), the molecular conduction can be expressed as: 

 
2

1 1

L R

N N fG G E   , Equation 1.10 

Where 1

L is the coupling between the left electrode and first bridge state, 
R

N  is the 

coupling between the right electrode and the N bridge state. The Green function is given 

by: 

 
     

1
, 11,2

1

21 1

N
j j

N f

j f jf f N N

VV
G E

E EE E E E E E







     

 , Equation 1.11 

Where  1 E and  N E are the associated shift in the energy level when the 1 or N 

state couples with the electrode respectively. Ej (j=1,2…N) is the energy of the j state and 

Vj,j+1 (j=1,2…N-1)  is the coupling between the j state and j+1 state. 

If one further neglects  1 E and  N E . Ej (j=1,2…N) and Vj,j+1 (j=1,2…N-1) 

are all the same constant denoted by EB and VB respectively. Equation (1.10) predicts that 

the molecular conductance G: 

2

2
exp ln

N

f B dB

f B B

E EV
G Na e

E E a V


    

              

, Equation 1.12 

Where a is the length of each repeating unit (one bridge state). Thus in the superexchange 

model, the molecular conductance has an exponential decay with respect to the molecular 

length d. This dependence has been observed in many molecule systems with different β, 

also named the decay constant (Figure 2b). 
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Figure 1.2: Coherent tunneling transport and superexchange model. (a) Superechange 

model where two electrodes are separated by N states. Only coupling between 

neighboring states is considered. (b) Length dependence of conductance for alkane
46

, 

oligopeptide
47

, carotenoid
48

 and oligothiophene
49

 system. All of them exhibit an 

exponential decay with different decay constant β, indicating tunneling transport 

mechanism. 

1.2.4 Classic regime (L>> Lm >> Lϕ) and incoherent hopping transport. 

When the number of bridge states N gets large, the time scale that an electron 

require to transport through the system gets longer. The electron can interact with the 

molecular vibration, thus losing its coherence and becoming totally incoherent
1
. Here I 

first consider a simple case with two scattering events. The transmission probability is 

denoted as T1 and T2. If one neglects any interference effect, i. e. the electron loses its 

phase information, then the total transmission probability T12 would be: 
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12 1 2

1 1 1

T T T
  , Equation 1.13 

Thus the resistance value (inverse of the conductance) will be a linear combination of the 

two resistance values: 

12 1 2R R R  , Equation 1.14 

When N scattering events exist, the resistance will have a linear dependence on the N (or 

the length). 

cR R N  , Equation 1.15 

Where Rc is the contact resistance and α is the unit resistance. This linear dependence has 

been observed for many different kinds of long molecular wire, e.g. 

oligophenyleneimine
26

 (Figure 1.3a). 

 

Figure 1.3: The resistance value of OPI molecular wire and sequential hopping transport 

mechanism. (a) The resistance of OPI molecular wire versus molecular length. A large β 

value was found for shorter OPI molecules and a small β value was found for longer OPI 
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molecules. Resistance of longer OPT molecules has a linear dependence on length
26

. 

Reprinted with permission from ref. [
26

]. (b) A sequential hopping model with N hopping 

sites, where the electron starts from left electrode, hops onto each of the individual 

hopping sites and reaches the right electrode. 

1.2.5 Thermally activated incoherent hopping transport and steady-state flux method 

One of the explanations for the linear dependence on length is called thermally 

activated incoherent hopping transport. The electron has to overcome activation energy to 

hop onto the next hopping site. This sequential hopping model was developed from the 

classic Donor-Bridge-Acceptor system and successfully explained the linear dependence 

of the resistance on molecular length
50

. Considering a N bridge sites system, where the 

charge transfer still only occurs in between two neighboring sites, one uses ki,j to 

represent the charge transfer rate from the i site to the j site (Figure 1.3b).0 state and N+1 

state represent the left and right electrode respectively. Pi is the charge density on the i 

state. Under the assumption of steady-state, i.e. all the states reach an equilibrium, the 

master Equations of this system can be written as: 

 

 

 

 

1
1,0 1,2 1 0,1 0 2,1 2

2
2,1 2,3 1 1,2 1 3,2 3

1
1, 2 1, 1 2, 1 2 , 1

, 1 , 1 1, 1

0

0

...

0

0

N
N N N N N N N N N N N

N
N N N N N N N N

dP
k k P k P k P

dt

dP
k k P k P k P

dt

dP
k k P k P k P

dt

dP
k k P k P

dt


       

   

     

     

     

    

, Equation 1.16 
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 Notice that kN+1,N is neglected here. The electron transfer rate of the whole system k0,N+1 

can be expressed as: 

, 1

0, 1

0

N N N

N

k P
k

P



  , Equation 1.17 

If all the charge transfer rates between the N bridge sites are the same and denoted as k, 

by solving the linear Equations (1.16) one has: 

 0,1 1,0

0, 1

, 1 1,0

/

/ / 1
N

N N

k k k
k

k k k k N





  

, Equation 1.18 

Therefore, the total resistance of the system can be expressed: 

   

1 1

, 1 1,0 / /1

2 2

1
a B a BN N E k T E k T

f f

k k N
R e k e

e E e E 

 

 
 

  , Equation 1.19 

Where Ea is the activation originated from
1,0/

0,1

a BE k T
k

e
k

 . ρ(EF) is the density of states at 

the Fermi level. This model explained the linear dependence of the total resistance value 

on the molecular length (or N). Meanwhile, it also gives a physical meaning to the 

activation energy Ea, indicating that the hopping process is temperature-dependent and 

the activation energy comes from the energy gap between the Fermi level of the 

electrodes and the energy level of the hopping sites. 

1.3 Scanning Tunneling Microscopy (STM) break junction technique 
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Invented in 1981, the STM was used to image a conductive surface at the atomic 

level. The atomic resolution of STM is based on the quantum tunneling, where the 

tunneling current has an exponential dependence with respect to the distance, given by: 

0

LI I e  , Equation 1.20 

Here I0 depends on the electron density at the Fermi level and bias voltage. β is the decay 

constant of the medium. L is the distance. The STM system can precisely measure the 

current and distance information at the same time. If one applies this to the field of 

molecular electronics, then a question will come out: what will the current-distance trace 

look like if there is a molecule bridging between the two electrodes?  

 

Figure 1.4: Scanning Tunneling Microscopy break junction (STM-BJ) technique. (a)-(d) 

Current-distance trace collections during the STM break junction technique. The Au 

surface was modified with octanedithiol molecule. Reprinted with permission from ref. 

[
51

]. (e) Representative current-distance trace when bipyridine molecule bridges in 



13 
 

 

 

between two Au electrodes
12

. Plateaus indicate the formation of a molecular junction. (f) 

Conductance histogram of bipyridine molecule
12

, showing multiple peaks. The lowest 

peak is attributed to the conductance of a single molecule. The higher peaks are all 

integral multiple of the lowest conductance that are attributed to multiple molecules 

bridging between the two electrodes. Reprinted with permission from ref. [
12

]. 

In 2003, Tao and co-workers invented the STM break junction technique
12

 and 

answered the question. In their approach the Au surface was immersed in the solution of 

the molecules (Figure 1.4a). Then the tip was repeatedly brought into and out of contact 

with a gold to create Au–Molecule–Au junctions (Figure 1.4b). During the pulling 

process (Figure 1.4c) the current was recorded versus distance, and a step in the current 

indicated the formation of a molecule bridged between the substrate and tip electrodes 

(Figure 1.4e). Further pulling will cause the breakdown of the molecular junction (Figure 

1.4d) and the current will drop abruptly. Thousands of current–distance traces were 

collected and projected onto the conductance scale, from which a conductance histogram 

was constructed (Figure 1.4f). The conductance histogram sometimes will give multiple 

peaks. The conductance at the lowest peak is attributed to the conductance of a single 

molecule and the other peaks are due to multiple molecules bridging in-between.  

In the past decade, the STM break junction technique has been widely used in the 

field of molecular electronics by several groups around the world. Since it relies on a 

statistical study of single molecule, it has been proved to be a robust and valuable 

technique in the field of molecular electronics. Moreover, due to the flexibility of the 

STM system, a lot of controllable physical parameters can be easily introduced into the 
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experiments, e.g. voltage, light, force and gate voltage. Thus it provides a way to study 

the interplay between mechanical, thermoelectric, optic, chemical properties and the 

electric properties. Additionally, the STM can not only be performed in ultra-high 

vacuum but also in air and some other low-conductivity solvents. By coating the STM tip 

with Apeizon wax, the STM can be used in water, which is essentially the medium for all 

biological systems. These make STM break junction technique an excellent tool to carry 

out single molecule study. 

1.4 Gate-controlled molecular junction 

 Two-terminal devices are most likely to be seen in the field of molecular 

electronics, but three-terminal devices are highly desired because traditional silicone-

based electronics relies heavily on the three-terminal devices. Three main types of gating 

methods, the back gate
52, 53

, electrochemical gate
14, 34, 38, 54

 and chemical gate
55-58

 have 

been developed to mimic the gate voltage in silicone-based electronics. Among them, 

electrochemical gate can be easily realized by inserting an extra reference electrode in a 

conductive environment (e.g. aqueous solution, ionic liquid). The large gate field created 

by the electrochemical potential allows electrochemists to control the energy levels on the 

molecules, thus affecting the energy alignment between the molecules and electrodes.  

 By using the electrochemical gate as the third terminal, researchers have 

developed single molecular transistor and single molecular switch. Diez-Perez et al.
34

 

reported the n-type field effect transistor behavior for coronene molecule. The molecular 

conductance can be enhanced up to two orders of magnitude higher when a negative gate 

voltage was applied. More interestingly, people observed different experimental results 
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when studying redox molecules. For example, Osorio et al.
36

 observed a peak at the redox 

potential when measuring the conductance of a bipyridinium molecule under different 

gate voltages (Figure 1.5a). The molecule will have the highest conductance when gate 

potential is at its redox potential, and this can be explained by the two-step hopping 

model
59

. However, Baghernejad et al.
38

 observed some quite different results. In this 

work, they were able to show that the conductance of an anthraquinone-based molecule 

was switched between two states at different potential voltages (Figure 1.5b). They 

obtained a lower conductance when the gate voltage is above the redox potential and a 

higher conductance when the gate voltage is below the redox potential. An abrupt change 

was observed when the gate voltage is at the redox potential. The inconsistent here is 

possibly due to the reason that the two-step hopping model cannot be applied to a redox 

system which has two electrons transfer involved, since it requires too much energy to 

make two electrons hop onto one molecular orbital at the same time. 

 

Figure 1.5: Electrochemical gate-controlled STM-BJ experiments on redox molecules. (a) 

Conductance of 1,1′-bis(6-(acetylthio)hexyl)-4,4′-bipyridinium hexafluorophosphate 

molecule under different gate voltage. The conductance reaches maximum at the redox 

potential. The difference between aqueous and ionic liquid is the difference in the so-

called gating efficiency
36

. Reprinted with permission from ref. [
36

]. (b) Conductance of an 
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anthraquinone based molecule under different gate voltage. The conductance changes 

abruptly at the redox potential. Black line is the cyclic voltammogram. Circular dots are 

the conductance value data points. Reprinted with permission ref. [
38

]. 

1.5 Charge transport/transfer in DNA 

Charge transport/transfer in DNA has been extensively studied by photochemical 

methods and electrochemical methods. It was widely accepted that charge transport 

through short DNA is coherent tunneling while for long DNA, it is sequential hopping. 

This behave is similar to some other organic conjugated molecules. The transition from 

tunneling to hopping has been observed by many groups using various methods. Giese et 

al.
60

 reported the transition from tunneling to hopping at the distance of 3 base pairs for 

AT base pair. In this work they used the photolysis of 4’-acylated nucleotide to generate a 

radical cation. The radical cation propagated through the bridge consisting of AT base 

pairs. Finally they measured the oxidized damaged product with respect to the length of 

the AT base pairs to indicate the charge transfer efficiency. 

One of the most widely used photochemical method is developed by Prof. 

Federick D. Lewis and Prof. Michael R. Wasielewski in 1997
61, 62

. In this approach they 

modified the two ends of DNA with a hole donor and a hole acceptor group respectively 

while the double helical structure still remains (Figure 1.6). A time-resolved fluorescence 

spectroscopy was used to monitor the intensity at 575 nm and 525 nm to characterize the 

donor and acceptor species with the hole respectively. A charge transfer rate constant can 

be extracted by plotting the intensity vs. time. In a later work, they were also able to 
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observe a transition from tunneling to hopping transport at 3 AT base pairs distance
63

, 

consistent with Giese et al.’s work
60

. 

 

Figure 1.6: Photochemistry study on DNA charge transport. (a) Structures of DNA with 

hole donor and hole acceptor. (b) Transition absorption spectroscopy recorded from 1ps 

to 6 ns. The peak around 575 nm is due to the Sa excited state with a hole. The peak 

around 525 nm is due to the Sd with a hole. By plotting the intensity ratio A575nm/A525nm 

vs. time, one can extract the charge transfer rate constant. (c) Charge transfer rate 

constant is plotted vs. the number of n in Figure 1.6a. The square represents the data in 

Lewis et al.’s work
63

 and the circle represents the data in Giese et al.’s work
60

. Reprinted 

with permission from ref. [
63

]. 

Another major platform that has been effectively used is the electrochemical 

methods developed by Prof. Jacqueline K. Barton
64, 65

. Typically a thiol-modified dsDNA 

will be immobilized onto a Au surface. A redox group (anthraquinone, methylene blue or 

nile blue) will be modified into the DNA sequence and intercalate in between the base 

pairs (Figure 1.7). The redox group will be spaced by the DNA sequence from the Au 

electrode. Thus by measuring the cyclic voltammograms under different sweeping rate 

and applying Laviron analysis
66

, one can obtain the charge transfer rate constant.  
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Figure 1.7: Electrochemistry study of DNA charge transport via cyclic voltammograms. 

DNA was immobilized onto the Au surface via thiol groups. The methylene blue (MB) 

was intercalated into the dsDNA. By measuring the peak separation (in mV) in the 

cathodic and anodic peak of the cyclic voltammograms under different sweeping rates 

and applying the Laviron analysis
66

, one can obtain the charge transfer rate constant. 

Reprinted with permission from ref. [
67

]. 

It is worth to mention that both photochemical and electrochemical methods 

measure the charge transfer rate constant, but the results have orders of magnitude 

difference. This is probably due to the reason that the charge transfer rate constant was 

measured under excited state of DNA in photochemical methods, but ground state for 

electrochemical methods
65

. 

Chemists prefer to use chemical groups and characterization technique to study 

the charge transfer/transport in DNA, but physicists and engineers want to use a more 

direct way. That is direct measurements of charge transport by bridging two electrodes 

with DNA molecules. In this method, a bias voltage will be applied and the current will 
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be recorded to obtain the conductance value (or resistance value) of the DNA molecules. 

For example, Porath et al. bridged the DNA molecules in between the Au surface and a 

Au nanoparticle, and then utilized conductive AFM to directly obtained the current-

voltage (I-V) characteristic
68

. Xu et al.
69

 also reported STM break junction measurements 

on dsDNA modified with thiol linker. In this work, they found out that charge transport 

through GC base pair is sequential hopping while for AT base pair (up to 4 base pairs), it 

is coherent tunneling (Figure 1.8).  

 

Figure 1.8: STM-BJ study on charge transport through DNA. (a) STM break junction 

measurements of dsDNA with thiol terminated group. The dsDNA bridges between two 

Au electrodes. A bias voltage was applied and the current was recorded to obtain the 

conductance. (b) Conductance of (GC)n dsDNA vs 1/length. The linear trend indicates a 

sequential hopping transport mechanism. (c) Natural logarithm of GCGC(AT)mGCGC 

dsDNA conductance vs length (total number of base pairs). The exponential dependence 

of the conductance on length indicates a coherent tunneling transport mechanism. 

Reprinted with permission from ref. [
69

]. 

 Besides these experimental methods, charge transport through DNA has also been 

studied by theoretical models
70-72

 and computational simulations
73-75

. Jortner et al.
71
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proposed that charge transport through GC base pairs is mainly through hopping between 

neighboring Guanine or Adenine bases (Figure 1.9a). Renaud et al.
73

 found that the 

charge transport is coherent tunneling for short AT base pairs (less than 3), but incoherent 

hopping for longer AT base pairs (Figure 1.9b). Their calculations results successfully 

explained the photochemical results by Lewis et al.
63

 Combining these experimental and 

theoretical results, it is reasonable to conclude that charge transport through shorter DNA 

sequences with AT base pairs is coherent tunneling while for longer DNA sequences with 

AT base pairs and GC base pairs, the transport will be hopping dominated. 

 

Figure 1.9: Theory on charge transport through DNA. (a) It is predicted that DNA charge 

transport is hopping through neighboring Guanine or Adenine bases. Reprinted with 

permission from ref[
71

]. (b) According to the computational simulations, the charge 

transport for AT base pairs exhibits a transition from tunneling regime to hopping regime, 

consistent with experimental results
63

. Reprinted with permission from re[
73

].  
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CHAPTER 2 

INTERMEDIATE TUNNELING-HOPPING REGIME IN DNA CHARGE 

TRANSPORT 

Adapted with permission from Limin Xiang, Julio L. Palma, Christopher Bruot, 

Vladimiro Mujica, Mark A. Ratner & Nongjian Tao*. “Intermediate tunneling–hopping 

regime in DNA charge transport” Nature Chem. 2015, 7, 221-226. Copyright 2015 

Nature Publish Group. 

2.1 Introduction 

Charge transport and charge transfer processes in double helical DNA have 

received many interests over the past two decades since it is relevant to the oxidative 

damage of DNA, which is critical to the viability of all living organisms
76, 77

. The 

observation of long-range charge transport in DNA
78, 79

 and advances in construction of 

DNA nanostructures
80

 have stimulated the interest in exploring DNA as building blocks 

for nano devices applications. Understanding the charge transport through DNA is both 

important to the understanding of DNA oxidation in biological system and building up 

electronic devices based on DNA. 

Charge transport in DNA have been studied by many experimental methods
60, 61, 

64, 69, 78, 81-84
, theoretical models

70-72
 and computer simulations

72, 73, 85, 86
. It is widely 

accepted that charge transport through DNA is coherent tunneling for shorter DNA 

molecules, but sequential hopping for longer DNA molecules
87

. In the tunneling regime, 

the resistance will increase exponentially with respect to the length
70

, while in the 
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hopping regime, resistance value has a linear dependence on length
71

. This linear trend is 

because that the hole starts to treat each purine base (Adenine or Guanine) as a hopping 

site. However, Renaud et al. showed that strong electronic coupling between the π-

electrons of neighboring base pairs can lead to delocalization of the holes among several 

base pairs in dsDNA
18

, potentially can induce coherence in the transport. 

 In this chapter, a new charge transport mechanism was found for dsDNA. I found 

the evidence of an intermediate regime where coherent and incoherent processes coexist 

by measuring the resistance in DNA bridged between two electrodes with respect to the 

DNA sequence and length. The resistance of DNA generally increases linearly with 

length, indicating an incoherent hopping. But for DNA sequences with stacked guanine-

cytosine base pairs, a periodic oscillation was found to superimpose on the linear 

dependence, indicating a partial coherent transport. The result is further supported by the 

finding of strong delocalization of the highest occupied molecular orbitals (HOMOs) of 

GC from theoretical simulation and modeled based on Büttiker’s theory of coherent 

correction on hopping transport. 

2.2 Experimental methods 

All the DNA samples were purchased from Bio-Synthesis Inc. (HPLC purified 

with certificate of analysis via Mass Spectroscopy). Na2HPO4∙2H2O  (for HPLC, ≥98.5%) 

and NaH2PO4 (for HPLC, ≥99.0%) were purchased from Fluka, and Mg(OAc)2 (ACS 

reagent, 99.5%-102%) was purchased from Sigma-Aldrich. All the reagents were used 

without further purification. Multigene Mini Thermal Cycler (Model: TC-050-18) was 

used to anneal DNA solution samples. Phosphate buffer (pH = 7.0) was prepared by 

dissolving Na2HPO4∙2H2O (198 mg), NaH2PO4 (133 mg) and Mg(OAc)2 (47 mg) in 10 
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mL D.I. water. dsDNA solution was prepared by mixing 90 µL PBS buffer with 10 µL of 

100 µM ssDNA solution (dissolved in deionized water) and annealed by varying 

temperature from 80 °C to 8 °C at the rate of 4 min/°C, and then kept at 4 °C. The 

annealing process for longer strand DNA (n ≥ 6) is: 5 min at 95 °C, cooling from 90 °C 

to 76 °C at the rate of 5 min/°C, further cooling from 76 °C to 26 °C at the rate of 15 

min/°C, holding at 25 °C for 30 mins, then kept at 4 °C. This step-wise process helped 

prevent the formation of ssDNA hairpin structures. See further details in Figure 2.7 and 

Figure 2.8. All the other experiment setups can be found in previous reports
69

.  

I carried out the measurements in a 2.5 µM dsDNA solution. 50 µL phosphate 

buffer was added into the sample holder. A small bias voltage (10 mV to 30 mV) was 

applied between the gold tip and the gold substrate in a STM break junction setup. 

Exponential decay in the current-distance traces was observed in the phosphate buffer in 

the absence of DNA molecules (see the black traces in Figure 2.1b). However, after 

adding 5-µM dsDNA solution steps appear in the current-distance traces (see the red 

traces in Figure 2.1b). I collected a large number of current-distance traces (~5000) in 

each experiment, and constructed conductance histograms with an algorithm described 

previously
48

. The algorithm counted only the traces showing counts exceeding a preset 

threshold in the histograms (Figure 2.1c). For each sequence, the measurement was 

repeated 3-4 times on different days. In addition to pure phosphate buffer, measurement 

in ssDNA solution was also carried out as a further control experiment. The absence of 

steps in the current-distance traces in ssDNA indicates no hairpin formation in the 

samples. 
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Figure 2.1: Conductance measurements of dsDNA using STM-BJ. (a) The DNA 

sequences measured in this work. Amine modified T base was used as the terminated 

group. Two series of sequences: alternating and stacked sequences were measured. (b) 

Individual current-distance traces of A(CG)5T (red lines which have plateau features) in 

aqeuous solution, and control experimets performed in the absence of DNA molecules 

(black lines with exponential decay). (c) Conductance histograms of A(CG)5T and 

AC5G5T. The red and blue lines indicate the peak position, which is attributed to the 

conductance of single DNA duplex. 

Quantum chemical calculations were performed to obtain orbital energies at 

equilibrium (zero bias) of the dsDNA sequences at the INDO/S level with a minimal 

basis set, which has been shown to be a reliable method for the description of electronic 

coupling between base pairs of DNA
49,50

. Electronic coupling calculations were 

performed under the two-state model
51

 framework and the systems were set at the 

conformation of canonical B-DNA and only the base pairs were considered while the 

backbone was removed. Two neighboring stacked base pairs and approximated the donor 

and acceptor states by the HOMO orbitals of each Watson-Crick base pair in the present 
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of the neighboring base pair and Hamiltonian in the basis of atomic orbitals were used to 

obtain the coupling coefficient.  

2.3 The linear trend for alternating sequences 

I first studied the DNA sequence 5’-A(CG)nT-3’ with n = 3, 4, 5, 6 and 7. Note 

that all the DNA sequences are self-complementary, so one dsDNA will consist of two 

ssDNA sequences. I carried out the STM-BJ experiments and measure their resistance 

values with respect to the number of n (or the length). A linear trend was found for this 

series of sequences (Figure 2.1a), consistent with Xu et al.’s work
69

. This is because that 

the charge transport mechanism is mainly sequential hopping
25, 88

. In this model, the hole 

will treat each of the Guanine base as one hopping site and hop through the whole 

sequence. This is further supported by the molecular orbital spatial distribution 

calculations (Figure 2.1b). The calculated HOMO of each Guanine will mainly localized 

on one Guanine, thus the hole has to hop onto each of the Guanine before it reaches the 

right electrode.  

 

Figure 2.2: The linear trend for the alternating sequences. (a) The resistance value of 

alternating sequences has a linear dependence on the number of n (or length). (b) The 

sequential hopping transport mechanism is responsible for the transport. The hole starts 
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from left electrode, hops onto each of the Guanine base and then reaches the right 

electrode. The HOMO level of each Guanine will mainly localize on each Guanine. 

In the hopping transport mechanism, the resistance of the DNA molecule is 

proportional to the inverse of the hole transport rate, kET, given by
89

 
,
 

where e is the elementary charge and ρ(Ef) is the density of states at the Fermi level. 

According to a sequential hopping model based on the steady-state flux method, the 

resistance is described by
50, 89

, 

   
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f f
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R e k e
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 
 

  , Equation 2.1 

where kL, kR and k are the hole transfer rate constants from left electrode to the first G of 

the DNA, from the last G of the DNA to the right electrode and between adjacent 

hopping sites, respectively, Ea is the activation energy, kB is the Boltzmann constant, and 

T is temperature. The first term of Equation 2.1 represents the electrode-molecule contact 

resistance, and the second term in Equation 2.1 describes the efficiency of hole hopping 

along DNA. By fitting the length dependence of resistance with Equation 2.1, the slopes 

for the alternating is 0.56±0.05 MΩ. 

2.4 Trend for stacked sequences: the smaller slope 

I first examine the structural difference by looking at the 3D structures of 

alternating sequence and stacked sequence with n=4. Figure 2.3 clearly shows the 

difference in the stacking of neighboring G bases in the two DNA sequences. In the 

alternating sequence, the nearest neighbor Gs do not overlap with each other, which is in 

 
1

2

ET FR e k E

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contrast to the stacked sequence, where the nearest neighbor Gs stack on top of each 

other, leading to a stronger electronic coupling between the adjacent G bases
90, 91

. This 

expectation is further confirmed by electronic coupling calculations based on INDO/S 

Hamiltonian. The coupling strength between neighboring Gs are 0.10 eV and 0.14 eV for 

alternating sequences and stacking sequences, respectively. The strong electronic 

coupling in the stacked G DNA indicates that holes may delocalize over several 

neighboring G bases, thus making the HOMO level higher
92

. 

 

Figure 2.3: The 3D structure view for alternating sequence and stacked sequence, 

showing a strong stacking interaction between neighboring Guanines in stacked sequence. 

 The stronger coupling strength in stacked sequence is supported by the 

experimental results. Figure 2.4a shows the resistance value of stacked sequences 

comparing to alternating sequences. The stacked and alternating sequences are different 

by the sequence order, but their charge transport properties are significantly different. 

First, the stacked G sequence is less resistive than that of the corresponding alternating 

sequence with the same length. This is consistent with calculations of the higher HOMO 

level for stacked sequences, which makes the resistance value lower (Figure 2.4b and 

2.4c). The finding is also consistent with results reported in literatures. For example, 

Saito et al.
93

 reported that GGG moiety was easier to oxidize than G based on a 
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photoinduced DNA cleavage measurement. Ratner et al.
94

 reported that the ionization 

potentials of GG and GGG were lower than G by 0.5 and 0.7 eV, respectively. Second, 

the overall resistance of stacked and alternating G sequences increases linearly with 

length, which is due to hopping transport
25, 88

, but the slope of stacked G DNA is smaller 

than that of the alternating sequences. In other words, the resistance of the stacked 

sequences depends on the length more weakly. Again, this is consistent with the 

calculations of higher coupling strength for neighboring Guanines in stacked sequences. 

 

Figure 2.4: Comparison of resistance value and HOMO levels for alternating and stacked 

sequences. (a) The resistance value for alternating sequences (black) and stacked 

sequences (blue). The periodic oscillation effect will be discussed later. (b) HOMO levels 

for alternating sequences with n = 3, 4, 5 and 6. (c) HOMO levels for stacked sequences 

with n=3, 4, 5 and 6. Stacked sequences have a higher HOMO level than that of 

alternating sequences. 

2.5 Trend for stacked sequences: the oscillation behavior 

The last striking observation in Figure 2.4a is the oscillation of resistance 

superimposed on the linear trend of resistance for the stacked G DNA sequences. Similar 

behaviors in the length dependence of resistance have been observed in coherent 

transport, in some systems such as 1D atomic wires
95

, and predicted for 1D conjugated 
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molecular systems involving strong overlap of π-electrons
96

. By assuming coherent 

resonant tunneling, the periodic oscillation has also been predicted for DNA molecules
85

. 

However, in those coherent transport systems, the overall resistance varies little with the 

length, which is in contrast to the observation here in stacked G DNA sequences. Another 

observation that is not predicted by the coherent transport model is that the oscillation 

effect diminishes with respect to the molecular length. 

The origin of the resistance oscillation in 1D metallic wires and conjugated 

molecular systems is the delocalization of electrons in the systems. Those electrons are 

reflected by the boundaries and form standing waves causing interference
95

. The 

molecular orbital spatial distribution calculations for stacked G sequences were 

performed and the occupied molecular orbitals are delocalized over 2-3 base pairs, and 

their energy levels are close to the Fermi level of the electrodes (Figure 2.5a). In another 

word, in contrast to the alternating sequences, where the hopping site is one G base, the 

hopping site in the stacked G sequences consists of 2-3 base pairs (Figure 2.5a). This 

delocalization domain has also been reported by Barton et al.
97

 for charge transfer 

through stacked A domains, and by Majima et al.
83

 for charge transfer in DNA sequences 

containing stacked GAG bases. The former reported a periodicity in the charger transfer 

yield vs. length, and the latter reported an oscillation effect depending on the location of 

the delocalization region (stacked GAG) in the sequence. The delocalization of holes 

over several bases suggests that the coherency of holes does not become fully washed out 

over a short distance, and the sequential hopping model must be corrected to include this 

coherent part. The conclusion is also consistent with the theory by Renaud et al.
73

 for 
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Poly(A)-Poly(T) DNA hairpins, and the analysis by Venkatramani et. al
98

 for peptide 

nucleic acids (PNA).  

The partially coherent and incoherent charge transport has been previously 

studied in semiconductor devices. In 1988, Büttiker
99

 developed a theory which includes 

a coherent correction to the completely incoherent charge transport in 1D systems. Here I 

apply the theory to the charge transport in stacked G DNA sequences (Figure 2.5a), and 

found that the total resistance of the DNA can be described as, 

, Equation 2.2 

where R0, is the contact resistance (including also the hopping rate between the two 

stacked G regions in the middle of the molecule), and the second term describes hopping 

transport with a coherent correction. In Equation 2.2, T is the transmission probability 

from one G to the adjacent G, 

 

, is the decay of coherence over distance, i.e. the 

coherence length, where v is the velocity of the carrier, τi is the inelastic scattering time, 

and w0 = 0.33 nm is the base pair distance in B-form DNA, , where m and 

E are the mass and energy of the holes. Note that Equation 2.2 is similar to Equation 2.1 

except for the denominator in the second term of Equation 2.2, which is the correction of 

the coherent transport
99

. The cosine function leads to the periodic oscillation in the length 

dependence of the resistance and the exponential decay function determines that the 

oscillation will diminish as the length increases. 
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Figure 2.5b shows the fit of the experimental data (blue) to the model (red) given 

by Equation 2.2. The contact resistance R0 was set to be 0.76 MΩ, which was obtained by 

extrapolating the plot of the resistance in Figure 2.2a to zero length. Several parameters 

can be obtained from the fitting. First, the resistance per GC base pair is 0.31±0.01 MΩ. 

The slope for the alternating is 0.56±0.05 MΩ, which gives a ratio of 1.8 between the two 

slopes. According to Marcus theory, the charge transfer rate is proportional to the square 

of the coupling. The square of the ratio of the electronic coupling strengths between the 

stacked and alternating sequences is about 1.4
2
 = 1.96, which is consistent with the 

observed ratio of the slopes. Second, the energy of the holes calculated from the fitting 

parameter C is 0.29±0.02 eV. Finally, iv  is 0.56±0.06 nm, which gives a coherence 

length of ~2 base pairs, consistent with other experimental work
60, 63

 and theoretical 

calculations
85, 100

 for charge transport through stacked A sequences. The experimental 

data can be accurately described with the Büttiker’s theory with reasonable physical 

parameters, which further supports the conclusion of partial coherent component in the 

hopping transport mechanism in the stacked G sequences.  

 



32 
 

 

 

Figure 2.5: Intermediate tunneling-hopping charge transport in stacked DNA sequences. 

(a) Top: Schematic illustration of intermediate tunneling-hopping transport mechanism in 

stacked sequences, where Tmulti_G is the transmission probability via the stacked G-

segments of the DNA including the coherent correction, TGG-st is the transmission 

probability between two adjacent stacked Guanines and TGG-al is the transmission 

probability between the two stacked G-segments. TGG-st and TGG-al have incoherent 

components only. Bottom: HOMO levels of C4G4 show the delocalization of the orbitals, 

in contrast to Figure 2.2, indicating that the coherent tunneling transport coexists with 

incoherent hopping transport through the stacked G-segments. Note: there is no 

delocalization between the fourth G and fifth G in the middle, like the Guanines in 

alternating sequences. (b) Experimental resistance (blue triangle) and prediction of the 

Büttiker theory (see Equation 2.2) of partial coherent charge transport (red circle on red 

line), indicating that the oscillation is caused by the coherent processes when holes 

transport through stacked G-segments. Error bars were the standard deviations calculated 

from 3-4 sets of experiments for each individual DNA sequence. 

2.6 Terminate groups for DNA sequences 

Finally I also compared out alternating sequences results with those DNA 

sequences reported by Xu et al. before
69
. Xu et al.’s DNA sequences have a thiol 

terminated group that is connected to the sugar ring while the DNA sequences have the 

amine terminated group that is connected to the T base (Figure 2.6a). The data show the 

contact via the DNA T base in this present work is 3-6 times more conductive than the 

sugar contact in Xu et al.’s work (Figure 2.6b). This observation supports that charge 
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transport in DNA is mainly through the π-stacking pathway of the base pairs but not the 

sugar backbone
101

. 

 

Figure 2.6: DNA sequences with thiol and amine terminated group. (a) Structures of Xu 

et al’s thiol terminated group and the amine terminated group in this present work. Thiol 

group was connected to the sugar ring while amine group was connected to the T base. (b) 

resistance value of Xu et al’s data (green) and the data in this present work (black) for 

alternating GC sequences. The DNA sequences in this present work is much more 

conductive than the DNA sequences in Xu et al.’s work. 

2.7 Other supporting data 

 To check the formation of the dsDNA, I performed nondenaturing polyacrylamide 

gel electrophoresis on all the dsDNA sequences I studied. The electrophoretic 

measurement was performed at 200 V, and 10°C for 3 hrs using 50 pmol of each sample 

and with 10% nondenaturing PAGE gels in 1×TAE Mg
2+

 buffer. The gels were 

subsequently stained with ethidium bromide (EB) and scanned in a Biorad Gel Doc XR+ 

system for sample visualization. DNA samples include 5’-A(CG)nT-3’ (n=3,4,5,6,7) and 
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5’-ACnGnT-3’ (n=3,4,5,6,7 and 8) sequences. These samples were annealed in two 

different ways. The first one involved ramping the temperature from 80 °C to 8 °C within 

4 hours (kept at a certain Celsius degree for 3 minutes and 20 seconds, then decrease the 

temperature by one Celsius degree), and then kept at 4 °C. The electrophoresis data show 

the formation of hairpin structures for some of the longer DNA molecules (Figure 2.7). 

The second annealing involves stepwise temperature changes: 1) annealing at 95 °C for 5 

min; 2) cooling from 90 °C to 76 °C at the rate of 1°C per 5 minutes; 3) further cooling 

from 75 °C to 26 °C at the rate of 1°C per 15 minutes; 4) then holding the temperature at 

25 °C for 30 mins, and finally 5) kept the sample at 4 °C. This sample annealing process 

did not produce any hairpin structures (Figure 2.8). 

The melting temperature can be accurately predicted on IDT (integrated DNA 

technologies) website (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/). 

The sequence with the lowest melting temperature is AC3G3T sequence, with a melting 

temperature of 50.9±1.4
 o

C under the buffer condition, much higher than the room 

temperature (22 
o
C). Therefore the dsDNA sequences are very stable in B-form and 

‘breathing’ or opening/closing of the strands won’t have any effect on the experimental 

results. 

http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
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Figure 2.7: Nondenaturing PAGE gel electrophoresis of dsDNA after a smooth annealing 

process. From 1 to 11 are A(CG)3T, AC3G3T, A(CG)4T, AC4G4T, A(CG)5T, AC5G5T, 

A(CG)6T, AC6G6T, A(CG)7T, AC7G7T, AC8G8T dsDNA sequences respectively. Hairpin 

bands with relative high gel mobility appear in long DNA molecules (from column 7 to 

column 11). 
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Figure 2.8: Nondenaturing PAGE gel of dsDNA after the programed annealing process. 

From 1 to 11 are A(CG)3T, AC3G3T, A(CG)4T, AC4G4T, A(CG)5T, AC5G5T, A(CG)6T, 

AC6G6T, A(CG)7T, AC7G7T, AC8G8T dsDNA respectively. Only a single band was 

showed for each of the sequences.  

For each of the dsDNA sequence, a conductance histogram was constructed from 

thousands of current-distance traces. A Gaussian fit was used to fit the conductance peak 

and the peak position was taken as the conductance value. See Figure 2.9 for all the 

conductance histograms. 
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Figure 2.9: Conductance histograms of alternating and stacked double helical DNA.  

To examine the robustness of the conductance measurements, the experiment for 

each DNA sequence was repeated three to four times. The results are presented as error 

bars in Figure 2.2, 2.4 and 2.5., and listed in Table 2.1, showing the reproducibility of the 

linear dependence and the oscillation behavior. The standard deviation was calculated by: 

 
2

1

1 N

i

i

x
N

 


  , where N is the number of sets, xi is the peak position in each 

individual set of experiment and μ is the peak position obtained by compiling all the 3-4 

histograms. Meanwhile it is worth to point out that the photo-induced electron transfer 
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study of stacked G sequences may also showed a weaker oscillation in the charge transfer 

rate
102

. 

Table 2.1: Conductance values for all sets of experiments from alternating A(CG)nT and 

stacked ACnGnT sequences. 

Sequences Exp.1 Exp.2 Exp.3 Exp.4 

A(CG)3T -2.17 -2.22 -2.17  

A(CG)4T -2.27 -2.31 -2.29 -2.27 

A(CG)5T -2.35 -2.36 -2.37  

A(CG)6T -2.42 -2.46 -2.45  

A(CG)7T -2.50 -2.52 -2.56  

AC3G3T -1.95 -2.00 -2.00  

AC4G4T -2.19 -2.18 -2.22 -2.20 

AC5G5T -2.10 -2.16 -2.13  

AC6G6T -2.29 -2.30 -2.22  

AC7G7T -2.30 -2.33 -2.31  

AC8G8T -2.35 -2.43 -2.44 -2.43 

 

 To check the robustness of the oscillation behavior, I also tried DNA sequences 

with thiol terminated group, same with the terminated group in Xu et al.’s work
69

. The 

oscillation behavior was also observed in the sequences with thiol terminated group, with 

a smaller amplitude (Figure 2.10). This is because in the DNA sequences with thiol 
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terminated group, the contact resistance R0 dominates the total resistance according to 

Equation 2.2.  

 

Figure 2.10: Resistance value of ACnGnT (n = 3,4,5,6) with thiol linker vs. number of CG. 

 To check the dependence of the resistance value on the bias voltage and bias 

polarity, I performed current-voltage (I-V) measurements on A(CG)4T and AC4G4T 

sequences. A linear and symmetry I-V was observed (Figure 2.11). Therefore, I 

concluded the resistance value of the dsDNA sequences does not depend on bias voltage 

or bias polarity. 
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Figure 2.11: Representative individual current-voltage (I-V) curve of A(CG)4T (left) and 

AC4G4T (right) sequences. Note: The bias voltage range is limited by the leakage current 

which is caused by the electrochemical reactions of the system. 

The electronic coupling strength in the calculations can be defined as: 

DA D AH H 
, Equation 2.3

 

where, φD and φA represent the diabatic wave functions of the donor and acceptor, 

respectively. Such states under the “two-state model” framework obtaining the diabatic 

molecular orbitals were approximated based on the block diagonalization of the adiabatic 

Hamiltonian of the whole system
103

 at the INDO/S level of theory. 

To better understand difference in the charge transport properties between the 

alternating and stacked G DNA sequences, the electronic structures of GCG (alternating) 

and G3 (stacked) segments were calculated. For the alternating segment, the HOMOs are 

mostly localized on a single G base and their energies are close to that of a GC base pair 

as shown in Figure 2.12. In contrast, the HOMOs of the G3 sequence are delocalized, and 

their energy levels split (Figure 2.13). These results indicate a strong electronic coupling 

between neighboring G bases in the stacked DNA sequences. The delocalization of the 

HOMOs of the stacked sequences challenges the traditional view of each base acting as a 

hopping site.  
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 Figure 2.12: HOMOs (top) and their energy levels (bottom) of one G-C base pair, and 

GCG sequence. The HOMOs of GCG are localized and almost degenerate.   
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Figure 2.13: HOMOs and their energy levels of the G-C base pair, and G3 sequence. The 

HOMOs of G3 are delocalized and their energy levels split, due to the strong electronic 

coupling strength.   

The spatial distribution for (CG)4 and C4G4 is shown in Figure 2.14. As seen on 

the left panel, the HOMOs of the alternating sequences are mostly localized in single G 

base pairs while the stacked sequences show substantial delocalization (right panel). The 

energy levels of the alternating sequences are quasi degenerate while the energy levels of 

stacked sequences present a higher degree of energy splitting, indicating a strong 

electronic coupling in the latter case. The delocalization of the energy orbitals and strong 

electronic coupling in the stacked G sequences support the intermediate coherent and 

incoherent charge transport. 
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Figure 2.14: HOMOs and energy levels of (CG)4 and C4G4.Top: Comparison of HOMOs 

between (CG)4(left) and C4G4(right). Bottom: Energy diagram of the HOMOs of the 
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alternating (left) and stacked (right) sequences. The energy levels outlined by the square 

correspond to the HOMOs shown in the top panel.  

 To examine the robustness of the fitting of experimental data to the Büttiker 

model, I have considered the possibility of a phase shift, , due to the interactions of the 

electron wave with the boundaries, and Equation 2.2 becomes, 

   
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, Equation 2.4

 

From the fitting, the unit resistance  
2

GG st

h

e T 

 = 0.32±0.01 MΩ, B = 0.56±0.07 nm
-1

, C = 

2.5±0.2 rad and Δϕ = -0.5±0.6 rad. The fitting quality, and major parameters, 
2

GG st

h

e T 

, B 

and C remain unchanged by including the phase shift, Δϕ, in the fitting (Figure 2.15). 

 

Figure 2.15: Fitting to Equation 2.4 (the Büttiker model with a phase shift associated with 

the reflection of electron waves at the boundaries of the molecular junction). 
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 I also performed the fitting by regarding the contact resistance as an unknown 

parameter (Figure 2.16). From the fitting, the unit resistance  
2

GG st

h

e T 

 = 0.35±0.03 MΩ, 

B = 0.53±0.05 nm, and C = 2.38±0.05 rad, which are similar to the parameters with fixed 

R0. The parameters obtained from the fitting almost remain the same, which further 

indicate the robustness of the fitting. 

 

Figure 2.16: Fitting to the Büttiker model with the contact resistance as a fitting 

parameter (rather than fixed as assumed in Figure 2.5). 

2.8 Conclusions and perspectives 

In this chapter I studied charge transport in dsDNA with alternating G and stacked 

G sequences
104

. In the former case, the resistance increases linearly with the number of 

base pairs (length) that can be described with the hopping model, in which each G base 

acting as a hopping site. In the latter case, the overall resistance follows the linear 

dependence but there is a periodic oscillation superimposed on the linear dependence, 

indicating coherent corrected hopping regime of charge transport. Then by calculations I 
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revealed that the HOMOs in the stacked G are delocalized over several G bases, which 

supports the observation of the partially coherent tunneling and incoherent hopping 

charge transport mechanism. The experimental resistance vs. length dependence for 

stacked sequences can be modeled based on the Büttiker’s theory.  

The present work used a phenomenological description which involves partial 

coherence
104

, but the studies do not establish the specific physical origins of the 

coherence, nor do they provide testable molecular designs that might be used to 

manipulate the coherence. Collaborating with Prof. David N. Beratan’s group, we 

establish a first-principle theory and enable the engineering of molecular assemblies that 

support extended coherent transport, and these principles are tested in DNA structures. 

The theory found that orbital symmetry (even or odd number of Guanines) controls the 

resistance oscillation in the resistance of DNA, and that weakening the interaction 

between two stacked-G segments can enhance the oscillation. This work will be 

published and discussed elsewhere. 
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CHAPTER 3 

SELF-ASSEMBLING CHARGE SPLITTER AND CHARGE TRANSPORT 

JUNCTIONS BASED ON GUANINE QUADRUPLEXES 

The work in this chapter is contributed by my collaborators Ruojie Sha, Chaoren Liu, 

Alexander Balaeff, David N. Beratan, Nongjian Tao, Nadrian C. Seeman and me. 

3.1 Introduction 

 The studies of double-stranded DNA have produced a molecular-level 

understanding of charge transfer and transport mechanisms in these biological 

macromolecules
62, 68, 72, 73, 87

. Yet, the dream of self-assembling circuitry at the nanoscale 

demands junction structures that can gate charge flow
29, 105

. It is widely accepted that 

current in DNA flows down the stack of nucleotide base pairs
87, 101

, and current flowing 

through different helixes in DNA double crossover (DX) molecules does not interfere 

with each other despite the crossovers in the backbone
106

. To design a current splitter or 

combiner with DNA, a diverging splitting route of base stacking is necessary. One of the 

approaches is splitting one double-stranded DNA into two double-stranded DNA to form 

a “Y” shape three-way junction (Figure 3.1a) by Young et al.
107

, though the charge 

transport efficiency is small compared to duplex DNA due to the weak base stacking at 

the crossing. To keep a strong base stacking, one possible way is to use extending 

guanine quadruplex (G4) with duplexes (Figure 3.1b) proposed by Venczel and Sen
108

. In 

this design, the charge injected from different duplexes merges in G4 and exits to two 
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other duplexes, thus providing a prototype for the charge splitter and charge combiner. A 

photochemical study of these G4 junctions achieved charge splitting to different duplexes 

when the junctions were stabilized by counter-ions K
+
 and Sr

2+
. However, the charge 

transfer to different directions is measured by measuring the guanine oxidation on duplex 

branches, which is different from a steady charge flowing in electronic devices
109

. 

 

Figure 3.1: Two possible designs to realize a charge splitter based on DNA. (a). A “Y”-

shape three-ways junction constructed from double stranded DNA. Photochemical study 

indicates charge can transfer from Sa to Sb locating at different ends (one as shown in the 

picture and another is replacing the Y. Reprinted with permission from ref. [
107

]. (b). 

Another possible design of charge splitter using the G-quadruplex structure with 

extending duplexes as the arms. Reprinted with permission from ref. [
108

]. 

 In this chapter, I investigate the charge transport properties of two series of G4-

duplexes junctions based on the structure of extending G-quadruplex with duplexes using 

Scanning Tunneling Microscopy break junction technique and computational simulations. 

By connecting one duplex to one electrode and varying the duplex which connects to the 

other electrode (denoted as L1-2 and L1-4, see Figure 3.2a), I found their conductance 
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values are nearly the same, indicating charge can go through two different pathways. 

However, the conductance of these G4-duplex junctions is much smaller than that of 

DNA duplex with the same sequence. Molecular dynamics simulations suggest that the 

lower conductance is mainly due to the weak base stacking at one G4-duplex interface 

which is caused by duplex backbone repulsion and geometrical mismatch between G4 

and duplexes. By removing one duplex arm and adding a flexible linker between the G4 

and duplex, the conductance of the modified G4-duplex can reach up to the conductance 

level of duplex. Molecular dynamics simulations reveal a recovered G4-duplex base 

stacking in the modified junctions, supporting the experimental findings. The studies 

suggest charge-combining and charge-splitting structures, and further confirm the 

importance of base stacking in charge transport through DNA structures, which will be 

helpful towards building up single molecular devices based on DNA in the future.  

3.2 Methods 

Synthesis of DNA strands. All DNA strands were synthesized on an Applied 

Biosystems 394 DNA synthesizer, removed from the support, and deprotected using 

routine phosphoramidite procedures.All DNA strands have been purified by denaturing 

polyacrylamide gel electrophoresis. 

Assembly of G4-duplex. G4-duplex was annealed using the following annealing 

protocol: 5 minutes at 95 °C, 1 hour at 65 °C, 16 hours at 37 °C, 4 hours at room 

temperature in 100 mM Na2HPO4, 100 mM KH2PO4, 10 mM Mg Acetate, pH ~7.5 at 5 

μM final DNA concentration. G4-duplex were then purified by native PAGE on a 

temperature-controlled unit maintained at 20 °C. Bands were visualized by UV 
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shadowing, cut out and electro-eluted in 100 mM Na2HPO4, 100 mM KH2PO4, 10 mM 

Mg Acetate, pH ~7.5 inside 3500 MWCO dialysis membrane on a horizontal 

electrophoresis unit. After the electro-elution, the solutions of G4-duplex were 

concentrated by using Millipore Amicon Ultra-0.5 Centrifugal Filter Units (NMWL 

3,000) and a native gel was run to check the purity of those purified G4-duplex. 

Conductance measurement. I carried out the measurements in a 1 µM DNA 

solution at room temperature (22 °C). 50 µL phosphate buffer (same with the one used in 

assembly of G4) was added into the sample holder. A small bias voltage (varying from 10 

mV to 100 mV, positive or negative) was applied between the gold tip and the gold 

substrate in the STM break junction measurement (Figure 3.2a). Exponential decay in the 

current-displacement (I-d) traces was observed in the phosphate buffer in the absence of 

DNA molecules. However, once 10 µL DNA solution of 5 μM was added, plateaus 

would be observed in the I-d traces. I collected a large number of I-d traces (~4000) in 

each experiment, and constructed conductance histograms with an algorithm described 

previously
110

. The algorithm counted only the traces showing counts exceeding a preset 

threshold in the histograms. For each sequence, the measurement was repeated at least 3 

times to obtain the standard deviation. Control experiment with buffer solution was also 

performed under the same condition with no peaks revealed in the histogram. 

Molecular Dynamics Simulation. A 6-layer anti-parallel G quadruplex is built 

from the crystal structure of PDB:2AVH. Four DNA duplexes d(ACCG), d(CGAC), 

d(GCGA) and d(AGTG) are obtained from model.it. The attachment of duplex to the G4-

duplex is optimized with respect to the stacking distance and helical parameters. The 
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prepared G4 junctions are solvated in a 90Å×90Å×90Å water box with >15 Å padding 

water layer between nucleic acids and box boundary. Counter-ions of 200 Na
+
, 100 K

+
, 

10 Mg
2+

 and 268 Cl
-
 are added in the solvent, which were also used in synthesis and 

measurements. 5 of the K
+
 ions are put along the axis of the 6-layer G4 to stabilize to 

structure. After the solvated G4-junctions are minimized, the water molecules and 

counter-ions are equilibrated for 2 ns in room temperature. To avoid being trapped at the 

initial structure, the systems undergo a MD annealing, where several bonds between 

strands are applied to hold composition in high temperature. During the annealing, the 

systems are heated up to 90 °C for 0.5 ns and the temperature is gradually lowered to 

40 °C in 0.5 ns, followed by 0.5 ns running in 40 °C and 0.5ns running in 25 °C. This 

annealing procedure repeats 3 times. The annealed structures will be equilibrated for 5ns 

at room temperature (25 °C) before production run. 

Quantum Calculations. The quantum simulation of nucleic acids is conducted 

with ZINDO method in Gaussian 09. Since the charge transport in DNA is mediated by 

bases, backbones and solvents are not included in the calculation. The dangling bonds are 

passivated with hydrogen atoms.  

NEFG Methods (Laudauer approach). In the Landauer formulism, the 

conductance is given by Equation 3.1.  

 ( )  
 

 
∫ ( )    ( )    ( )   , Equation 3.1 

The    and    are Fermi functions for  the left and right contacts.  ( ) is the transmission 

coefficient  ( )              and  ( )  
 

(          )
, where   is the Fock matrix 
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of the molecule and   , the self energy matrix, is the energy shift (real part) and 

broadening (imaginary part) induced by coupling to the electrodes. Here, energy shifting 

is not considered in the weak coupling limit. The broadening matrix       (     

    
 ) is equal to the imaginary part of the self energy matrix. In the atomic basis set, the 

broadening matrix      are a diagonal matrix with non-zero values at nitrogen and carbon 

s and p orbitals (ingredient of G HOMO) of the guanines at the input and output sites of 

the G4-duplex. Because the charge interchanges between G4-duplex and duplexes are 

mediated mostly by guanines, transmission energy (Fermi energy) is approximated by the 

average site energies of individual guanines.  

3.3 Sequences design 

The first series of G4-duplex is shown in Figure 3.2b. They were denoted as 

“conformation”-“serial code”-“number of G4 layer”-“linker position”. The structure 

enforces the antiparallel or parallel conformation in terms of the G4 backbone, denoted as 

“Anti” or “Para” respectively. The number of G4 layers varies from 5 to 6. The first 

series of G4-duplex is non-modified and the second series of G4-duplex is modified, 

denoted as “N” and “M” respectively. Finally, the positions of the two linkers connecting 

to the electrodes can be strand 1&2 or strand 1&4, denoted as L1-2 or L1-4 respectively. 

As an example, Anti-N5-L1-2 means Antiparallel Non-modified G4-duplex with 5 layers 

of G4 and Linker positions at strand 1&2. Note that the double helices above the G4 

layers are paired differently from those below the G4 layers, allowing a two-fold axis of 

symmetry perpendicular to the G4 helix axis. To avoid the assembly of the mixture of 

duplex DNA configurations resulting from this symmetry, I have chosen DNA sequences 
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with Watson-Crick base pairing partners above the tetrad that differ from the pairing 

partners below it. The amino groups were attached to the T base for surface binding to 

Au electrodes
104

. Sequences of L1-2 differ from L1-4 by exchanging the two duplexes at 

the bottom end of the G4 to keep the sequence involved in the transport pathway the 

same, although there may be detailed conformational differences between the pathways 

because of structural asymmetry of the G4-duplex. Finally, the corresponding dsDNA 

with the same sequence as the control experiment is shown in Figure 3.2c. 

 

Figure 3.2: Experimental setup, structure and sequence design of non-modified G4-

duplex DNA and the corresponding DNA duplex. (a). Conductance measurement via 

STM break junction technique. G4-duplex DNA bridges between the Au tip and Au 
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substrate via the amino group on modified T base. See text for more details on the 

measurements. (b). L1-2 (left) and L1-4 (right) G4-duplex with 5 or 6 layers of G4. The 

Guanines form hydrogen bonds with its neighboring Guanines and the whole structure is 

stabilized by the K
+
. By inserting two 3’ to 3’ linkages at the top two duplexes (blue line) 

and two 5’ to 5’ linkages (red line) at the bottom two duplexes, one can obtain parallel 

conformation (bottom) instead of the antiparallel conformation (top) for the G-

quadruplex in the G4-duplex structures. (c). DNA duplex with 5 GC or 6 GC base pairs 

instead of the G4 layers in the G4-duplex structure. Arrows indicate the direction of the 

backbone from 5’ to 3’. Black dashed lines indicate hydrogen bonds. Gold triangles 

indicate the binding points of Au electrodes. 

 The purity of the G4-duplex samples was checked by 10% native PAGE gel. As 

seen from Figure 3.3 to 3.6, all the G4-duplex samples exhibit a single band at around 40 

bp, comparing to the duplex band at around 20 bp. These indicate the formation of the 

desired G4-duplex samples. 
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Figure 3.3: Gel of Anti conformation non-modified G4-duplex. 10% native PAGE was 

run at 20 °C in 100 mM Na2HPO4, 100 mM KH2PO4, 10 mM Mg Acetate, pH ~7.5. Lane 

1 contains the DNA molecular weight marker. Lane 2 contains Anti-N6-L1-4 G4-duplex 

structure. Lane 3 contains Anti-N6-L1-2 G4-duplex structure. Lane 4 contains Anti-N5-

L1-4 G4-duplex structure. Lane 5 contains Anti-N5-L1-2 G4-duplex structure. Lane 6 

contains ds-N6 double-stranded DNA. 

 

Figure 3.4: Gel of Anti conformation modified G4-duplex. 10% native PAGE was run at 

20 °C in 100 mM Na2HPO4, 100 mM KH2PO4, 10 mM Mg Acetate, pH ~7.5. Lane 1 

contains the DNA molecular weight marker. Lane 2 and lane 3 are other designs with 

unstable G4-duplex structures which are not used in this work. Lane 4 contains Anti-M6-

L1-4 G4-duplex structure. Lane 5 contains Anti-M6-L1-2 G4-duplex structure. 
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Figure 3.5: Gel of Anti or Para conformation modified G4-duplex. 10% native PAGE 

was run at 20 °C in 100 mM Na2HPO4, 100 mM KH2PO4, 10 mM Mg Acetate, pH ~7.5. 

Lane 1 contains the DNA molecular weight marker. Lane 2 contains Anti-M5-L1-2 G4-

duplex structure. Lane 3 contains Anti-M5-L1-4 G4-duplex structure. Lane 4 contains 

Para-M6-L1-2 G4-duplex structure. Lane 5 contains Para-M6-L1-4 G4-duplex structure. 

Lane 6 contains ds-M6 double-stranded DNA. Lane 7 contains ds-M5 double-stranded 

DNA. Lane 8 contains the DNA molecular weight marker. 
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Figure 3.6: Gel of Para conformation modified G4-duplex. 10% native PAGE was run at 

20 °C in 100 mM Na2HPO4, 100 mM KH2PO4, 10 mM Mg Acetate, pH ~7.5. Lane 1 

contains the DNA molecular weight marker. Lane 2 contains Para-M5-L1-4 G4-duplex 

structure. Lane 3 contains Para-M5-L1-2 G4-duplex structure. 

3.4 Conductance measurements 

I carried out conductance measurements using STM-BJ technique (Figure 3.7a)
12

. 

The amino modified T was employed as the linker group, which has been shown to be an 

efficient linker
104

. The Au tip was coated with a wax insulation layer, which reduced the 

ionic leakage current below 1 pA
69

. Phosphate buffer with K
+
 ion was added onto the Au 

surface. The tip was then pushed towards and retracted from the Au substrate repetitively. 

During the retracting process, the current was recorded vs. distance (I-d) and a smooth 

exponential decay trace indicates a clean Au surface (black trace in Figure 3.7b). Then 5 

uM of G4-duplex solution was added and the experiments were repeated again. I-d traces 
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with plateau features signal the formation of Au-DNA-Au molecular junction (blue trace 

in Figure 3.7b). Thousands of I-d traces were collected for each DNA sample, from 

which a conductance histogram was constructed (Figure 3.7c). The peak in the 

histograms was fitted with a Gaussian distribution where the peak position was taken as 

the most probable conductance of a single Au-DNA-Au molecular junction. Each G4-

duplex was measured at least three times to obtain the experimental error in the 

conductance value. 

 

Figure 3.7: Measurement of charge transport in G4-duplexes junctions and dsDNA. (a). 

DNA molecules connected to two electrodes via the amino group on T base. (b). 

Representative current-displacement traces (current has been converted to conductance) 

of Anti-N5-L1-4 G4-duplex junctions (blue lines) in aqeuous solution showing plateau 

features in the traces, and control experimets performed in the absence of DNA 

molecules showing exponential decay (black lines). (c). Conductance histograms of Anti-

N5-L1-4 G4-duplex junctions constructed from thousands of individual traces, then fitted 

by a Gaussian distribution function, where the peak position (blue line) indicates the 

conductance of the molecule. The noise level is due to the lower limit of the current 
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amplified in the STM scanner, which can also been seen in control experiment in buffer 

solution below. 

 

Figure 3.8: Histogram of phosphate buffer solution as a control experiment. No peaks are 

revealed. The noise level is due to the lower limit of the current amplified in the STM 

scanner. 

 Figure 3.9 (also in Table 3.2, for conductance histograms see Figure 3.10 to 

Figure 3.12) shows the conductance of Anti conformation (black points), Para 

conformation (red points) and double-stranded DNA (blue points), from which I can 

draw two conclusions. First, the conductance values of L1-2 and L1-4 are nearly the same, 

regardless of the Anti or Para conformation and number of G4 layers. This indicates the 

charge transport efficiency along the two different pathways is almost identical to each 

other. Charge injected from one of the DNA duplexes on the top can be detected on the 

two DNA duplexes on the bottom with almost equal probabilities, thus a charge splitter 

can be built up. This conclusion is supported by the G4 conductance calculations (see 

below) and other reported theoretical calculations
111

. Second, comparing to the 
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conductance of dsDNA, all the G4-duplex have a much smaller conductance value (about 

one fifth). This is surprising as one would expect charge transport through G-quadruplex 

is more conductive than that through DNA duplex
111

. I will discuss each of them below. 

 

Figure 3.9: Conductance of non-modified G4-duplex in Anti and Para conformation and 

the duplex. The conductance of all the G4-duplex (red and black points) are all around 

5×10
-4

 G0 (see Table 3.2), which are much smaller than the conductance of dsDNA (blue 

points) with the same sequence. 
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Figure 3.10: Conductance histograms of non-modified antiparallel G4-duplex.  

 

Figure 3.11: Conductance histograms of non-modified parallel G4-duplex.  
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Figure 3.12: Structures and conductance histograms of double-stranded DNA as a 

comparison for non-modified G4-duplex. 

3.5 Three dimensional structure analysis 

 Molecular dynamics simulations were used to study their 3D structures. First, one 

layer of G4 from Anti conformation and Para conformation was extracted and compared 

with one GC base pair in DNA duplex. The distance between two strands in G4 and in 

duplex is found to be different. The distance between two strands for one GC base pair is 

17.5 Å (Figure 3.13c). The shape of a G4 layer in Anti conformation is a rectangle with a 

long side of 17.7 Å and a short side of 12.6 Å (Figure 3.13a), consistent with the results 

from the crystal structure PDB: 2AVH. The shape of a G4 layer in Para conformation is a 

square with each side of 16 Å (Figure 3.13b). A distance mismatch between duplexes and 

G4 strands was noticed, especially when a duplex is connected to the shorter side of the 

Anti G4. 
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Figure 3.13: The distance between two paired bases in Anti conformation G4-duplex, 

Para conformation G4-duplex and DNA duplex. (a) The average structure of a G-tetrad in 

anti-parallel G-quadruplex. (b) The average structure of a G-tetrad in parallel G-

quadruplex. (c) The average structure of a base pair in B-type DNA. Structures are 

averaged from a 1 ns molecular dynamics simulations.  

 The Guanine in the G4 layers can adopt anti- or syn- conformations, which differ 

by a rotation angle around the bond linking 1′-carbon on deoxyribose sugar and the N on 

the nucleobase (Figure 3.14a). All the Guanines will adopt anti- conformation in the Para 

conformation, but the Guanines in each strand of Anti conformation G4 will adopt anti- 

and syn- conformation alternatively (Figure 3.14b, c and d). For example, the six 

Guanines in one strand of Anti-N6-L1-4 can be anti-syn-anti-syn-anti-syn or syn-anti-

syn-anti-syn-anti (Figure 3.15a). Additionally, Anti- G4 has asymmetric side length, so 

there are four stereoisomers for Anti-N6-L1-4 (denoted as C1 to C4 in Figure 3.15a). 

Although strands in Para- G4 are symmetric, different directions of duplex minor grooves 
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and major grooves induce two stereoisomers for Para-N6-L1-4 (denoted as C1 to C2 in 

Figure 3.15b). 

 

Figure 3.14: The conformation of each Guanine base in the G4 layers. (a). Guanines in 

anti and syn positions.  (b). two stacking G-tetrads in parallel G quadruplex. (c). 5’anti-

syn3’ stacking G-tetrads in anti-parallel G quadruplex. (d). 5’syn-anti3’ stacking G-

tetrads in anti-parallel G quadruplex. Four straight arrowed lines indicate backbone 

directions. anti is in blue and syn is in red.  
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Figure 3.15: Different stereoisomers for Anti-N6 (and M6) and Para-N6 (and M6). (a). 

Possible conformation (C1-C4) for Anit-N6 (and M6) G4-duplexes. Green “S” and “L” 

indicate the shorter side and longer side of the G-quadruplex. The guanines in G-

quadruplex are colored red or green if they are in “syn” or “anti” positions respectively. 

Arrowed lines indicate the backbone directions. The other two backbones without 

arrowed lines run from the top to the bottom. Two duplexes on the top face each other 

with the minor grooves, while two duplexes at the bottom face each other with their 

major grooves. (b). Possible conformations (C1-C2) of Para-N6 (and M6) G4-duplexes. 

The guanines in G-quadruplex are colored green and they are in “anti” positions. 

Arrowed lines indicate the backbone directions. 3’-3’ linkers and 5’-5’ linkers are needed 

to connect backbones with the opposite directions. Red colored “minor groove” and 
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“major groove” mean two duplexes face each other on their minor groove and major 

groove side respectively. 

3.6 Electronic coupling and conductance calculations 

The conductance through the G-quadruplex with Landauer approach was 

examined. The conductance is averaged with 4000 snapshots, which are extracted from 

200 ns MD simulations of the G-tetrads. In the Laudauer calculation, electrodes couple 

with one G at the top layer and with another G at the bottom layer (see Figure 3.16 for 

Anti 6layers G4 as an example). The calculated conductance values when electrodes are 

connected to various positions are listed in Table 3.1. The conductance varies by less than 

4 times for different contact positions, agreeing with the conductance of 8-layer parallel 

G4 junctions
111

.  

 

Figure 3.16: 6-layer G tetrads with S2-5’/S4-3’ electrode attachment. Red and blue 

guanines are at “syn” and “anti” positions respectively. Black arrowed lines indicate the 

backbone directions. Four strands are indexed as S1-S4. 5’ and 3’ is the backbone ends. 

Two yellow triangles indicate the position of the electrode attachment. As shown is an 

example of S2-5’/S4-3’ attachment.  
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Table 3.1: The conductance of 6-layer G-tetrads in the middle of junction (see Figure 

3.16). The results are averaged from 4000 snapshots, which are extracted from 200 ns 

MD simulations. Unit is 10
-7

 G0. 

 S2-3’ S3-5’ S4-3’ S1-5’ 

S2-5’ 2.93 5.85 2.89 5.61 

S1-3’ 5.39 7.67 9.01 11.51 

 

I then look at the whole 3D structure of the G4-duplexes. Since I switch the strand 

paring of duplexes at the two ends of the junctions (in both Para and Anti junctions), two 

duplexes at one interface face each other with their major grooves, leaving enough room 

to accommodate backbones. However, two duplexes at another interface face each other 

with their minor grooves, where backbones collide and the negative charges on 

backbones push them apart. In the figures, the minor groove side is put on the top and 

major groove side is put on the bottom. This major/minor groove difference is supported 

by the observation in MD simulations that two duplexes at major groove side can stack 

well with G4 (in both Para and Anti junctions) but duplexes at minor groove side were 

bent, breaking the stacking (see Figure 3.17b and c).  

 To investigate the charge transport efficiency at the G4-duplex interfaces, the 

electronic coupling between two Guanines near the interfaces for Anti-N6-L1-4 and Para-

N6-L1-4 in C1 conformation (Figure 3.17a, 3.17b and 3.17c) is calculated, since purines 

are known to be the dominant mediators of the hole transport
71, 87

. G4 and duplex stack 

well at the bottom interface (facing with major grooves) and VRMS (root mean square 

coupling strength in the GG coupling, as indicated by the black arrow in Figure 3.17a) 
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are 0.19 eV and 0.07 eV for Anti-N6-L1-4 and Para-N6-L1-4 respectively, similar to the 

VRMS between nearest neighbor stacked GG in B-DNA (0.07eV). However, the stacking 

at the top interface (facing with minor grooves) is broken by backbone collision and G4-

duplex geometrical mismatch, complicating the structural and electronic environment. 

Some hydrogen bonds near the top interface are broken. Therefore the Guanine in duplex 

can couple with the same strand G in G4 (intra-strand pathway as indicated by the blue 

arrow in Figure 3.17a), or with the cross strand G in G4 (cross-strand pathway as 

indicated by the red arrow in Figure 3.17a). For both Anti and Para conformations, the 

VRMS in these pathways are within the range of 10
-5

~10
-3

 eV (see values in Figure 3.17b 

and Figure 3.17c), orders of magnitude smaller than GG couplings in duplexes. Therefore, 

a much smaller conductance for G4-duplexes comparing to DNA duplex is expected. 

These results support the experimental findings and the structural analysis above. 

 

Figure 3.17: Molecular dynamics simulations and coupling strength for non-modified 

G4-duplex junctions in Anti and Para conformations. (a). The sequence of non-modified 

G4-duplex junctions. The blue arrow and red arrow indicate the intra-strand and cross-

strand GG coupling pathways at the top interface. The black arrow indicates the GG 

coupling pathway at the bottom interface. (b). A snapshot of the C1-conformational Anti-
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N6-L1-4 extracted from the production MD run. The G4-duplex stacking is broken and 

some hydrogen bonds around the top interface are disrupted (minor groove side). The 

hydrogen bonds and stacking remain well at the bottom interface (major groove side). 

VRMS is averaged from 25 ns MD simulations. The bases in G4 are colored yellow and 

the bases in duplexes are colored black. Blue lines are the backbones. (c). A snapshot of 

C1-conformational Para-N6-L1-4 extracted from the production MD run. The G4-duplex 

stacking at the top interface are disrupted (minor groove side). The stacking is well 

maintained at the bottom interface (major groove side). VRMS is averaged from 20 ns MD 

simulations.  

3.6 Measurements and simulations of modified G4-duplex structures 

 To recover the base stacking at the top interface and improve the conductance, the 

G4-duplex structures to obtain the second series of G4-duplex structures are modified. 

First, the duplex at the top interface that is not involved in the charge transport pathway is 

removed to solve the backbone repulsion problem (Blue in Figure 3.18a). Second, a 9-

atom polyethylene glycol (PEG) linker between G4 and duplex at the top interface is 

inserted (purple in Figure 3.18a) to release the possible geometrical mismatch. Notice 

that the sequence in the purple frame (Figure 3.18a) is exchanged to avoid the PEG being 

involved in the charge transport pathway, i.e. between two Guanines. Finally, the strand 2 

with strand 4, and also strand 1 with strand 3 are connected using a T loop consisting of 

four T bases to stabilize the structure. The second series of G4-duplex structures are 

shown in Figure 3.18b and corresponding double-stranded DNA is shown in Figure 3.18c. 
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Figure 3.18: The modification, structures and sequence design of modified G4-duplex 

junctions and the corresponding DNA duplex. (a). The modification on the G4-duplex 

takes three steps. Step 1: Remove one duplex at the top interface (shown in blue); Step 2: 

Insert a PEG linker at the top interface and exchange parts of the sequence (shown in 

purple frame); Step 3: Connect strand 2 with strand 4, and strand 1 with strand 3 using T 

loop consisting of four T bases (shown in red). (b). L1-2 (left) and L1-4 (right) G4-

duplex with 5 or 6 layers of G4 in Anti (top) and Para (bottom) conformation after the 

modification. (c). New DNA duplex with 5 GC or 6 GC base pairs instead of the G4 
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layers in the G4-duplex structure. Notice that the sequence changes accordingly with the 

change in the G4-duplex. Arrows indicate the direction of the backbone from 5’ to 3’. 

Black dashed lines indicate hydrogen bonds. Gold triangles indicate the binding points of 

Au electrodes. 

 I carried out conductance measurements and Figure 3.19a (also see Table 3.2, for 

conductance histograms see Figure 3.20 to Figure 3.22) shows the conductance of 

modified Anti conformation (black points), modified Para conformation (red points) and 

double-stranded DNA (blue points). The charge splitter-like behavior still remains, as one 

can see the conductance values of L1-2 and L1-4 are nearly the same, regardless of the 

number of G4 layers and the Anti or Para conformation. Meanwhile, the conductance 

values of G4-duplex all increase up to the level close to the conductance of duplex with 

the same sequence, indicating the base stacking at the interface is recovered or at least 

partially recovered after the modification.  

Molecular dynamics simulations and snapshots are shown in Figure 3.19c and 

Figure 3.19d for Anti-M6-L1-4 and Para-M6-L1-4 respectively. Notice that the stacking 

at the top interface is recovered by the structural modifications. Coupling calculations 

between the two G’s at the top interface (intra-strand pathway as indicated by the blue 

arrow in Figure 3.19b) shows that the Vrms is 0.13 eV and 0.09 eV for Anti-M6-L1-4 and 

Para-M6-L1-4 respectively, similar to the Vrms between nearest neighbor stacked 

guanines in B-DNA (0.07eV). The coupling strength calculations, together with the 

molecular dynamics simulations, approve that the modification recovers the base stacking 

at the top interface, thus increasing the conductance value up to 5-fold, and close to that 

of DNA duplex. Notice that T loops are not included in the MD simulations in Figure 
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3.19c and Figure 3.19d. Including T loops in the MD simulations does not affect the 

conclusions (Figure 3.23).  

 

Figure 3.19: Conductance, molecular dynamics simulations and coupling strength 

calculations for modified G4-duplex junctions in Anti and Para conformation. (a). 

Comparison of the conductance for the modified G4-duplex junctions and the dsDNA. 

The conductance of all the G4-duplex (red and black points) are all around 2.5×10
-3

 G0 

(see Table 3.2), close to the conductance of dsDNA (blue points) with the same sequence. 

Error is from the standard deviation of three to seven sets of experiments. (b). The 

sequence of modified G4-duplex (T loops and the PEG linker are not shown). The blue 
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arrow indicates the intra-strand pathway between the two Guanines at the top interface. 

GG coupling strength value Vrms is shown in Figure 3.19c and 3.19d. (c). A snapshot of 

the C1-conformational Anti-M6-L1-4 extracted from the production MD run. The base 

stacking and the base paring are maintained at the top interface, in contrast with the 

broken stacking and hydrogen bonds in Figure 3.17b. VRMS is averaged from 5 ns MD 

simulations. The bases in G4 are colored yellow while the bases in duplexes are colored 

black. PEG is colored red. Blue tubes are backbones. (d). A snapshot of the C1-

conformational Para-M6-L1-4 extracted from the production MD run. VRMS is averaged 

from 5 ns MD simulations. Base stacking and hydrogen bonds remain well at the top 

interface, in contrast with the broken ones in Figure 3.17c. 

 

Figure 3.20: Conductance histograms of modified antiparallel G4-duplex. 
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Figure 3.21: Conductance histograms of modified parallel G4-duplex. 

 

 

Figure 3.22: Structures and conductance histograms of double-stranded DNA as a 

comparison for modified G4-duplex. 
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Table 3.2: Conductance values for all the G4-duplexes and dsDNA. Error is from the 

standard deviation of three to seven sets of experiments. 

Non-modified G4-duplex Modified G4-duplex 

Anti-N5-L1-2 (4.7± 0.2)×10
-4

 G0 Anti-M5-L1-2 (2.4± 0.3)×10
-3

 G0 

Anti-N5-L1-4 (4.6± 0.2)×10
-4

 G0 Anti-M5-L1-4 (2.6± 0.3)×10
-3

 G0 

Anti-N6-L1-2 (5.2± 0.4)×10
-4

 G0 Anti-M6-L1-2 (2.1± 0.2)×10
-3

 G0 

Anti-N6-L1-4 (4.0± 0.4)×10
-4

 G0 Anti-M6-L1-4 (2.0± 0.2)×10
-3

 G0 

Para-N5-L1-2 (4.0± 0.2)×10
-4

 G0 Para-M5-L1-2 (3.2± 0.4)×10
-3

 G0 

Para-N5-L1-4 (4.6± 0.2)×10
-4

 G0 Para-M5-L1-4 (3.4± 0.4)×10
-3

 G0 

Para-N6-L1-2 (3.7± 0.3)×10
-4

 G0 Para-M6-L1-2 (2.6± 0.4)×10
-3

 G0 

Para-N6-L1-4 (4.9± 0.2)×10
-4

 G0 Para-M6-L1-4 (2.6± 0.2)×10
-3

 G0 

DNA duplex DNA duplex 

ds-N5 (3.3± 0.3)×10
-3

 G0 ds-M5 (3.4± 0.3)×10
-3

 G0 

ds-N6 (2.8± 0.2)×10
-3

 G0 ds-M6 (3.0± 0.3)×10
-3

 G0 

 

In self-assembly of these modified G4-duplex junctions, the removed duplex can 

be in either minor groove side or major groove side. If the removed duplex is on the 

minor groove side (as in the MD simulations), the modification can effectively remove 

the backbone collision and obtain well-stacked G4-duplex junctions. However, if the 

duplex is removed from the major groove side, the two duplex at the minor groove side 

still cannot stack. Both of the possibilities can coexist in the molecules. Thermodynamics 

may favor the well-stacked G4-duplex junctions because stacking lowers the free energy.  
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To verify the necessity of the PEG linker, the Anti-M6-L1-2 and Para-M6-L1-4 

without the PEG linker is simulated. Notice that in the Anti conformation G4 without 

PEG linker, the base paring in the duplex (attached to the short side) breaks and form a 

zip-like structure. In Para conformation without the PEG linker, the duplex on the top 

interface can stack but the stacking distance is much longer than that in B-DNA. One 

expect these will cause a decrease in the coupling strength between the two G’s at the 

interface, thus lowering the conductance. Meanwhile, the two T loops are also necessary 

to keep the whole G4-duplex stable, as one do not get stable G4-duplex structures when 

removing the two T loops (Figure 3.24). To study the effect of the two T loops on the 

structure, molecular dynamics simulation on the G4-duplex structures with the two T 

loops is performed (Figure 3.23). Comparing to the G4-duplex structure without the two 

T loops, No obvious changes in the base stacking at the interface were seen, thus the two 

T loops will have limited impact on the charge transport. This is reasonable because the T 

loops are not involved in the charge transport pathway. The result is also confirmed by 

the conductance measurements for another type of T loop modification that only connects 

the strand 3 with 4 (Figure 3.25), as no obvious changes in the conductance in this new 

type of T loop modification were seen. 
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Figure 3.23: A snapshot of Anti-M6-L1-2 (C2 conformation) with T loops. One duplex at 

the top is removed. A 9-atom PEG linker (colored blue) is added at the G4-duplex 

interface to bridge the geometric mismatch between G4 and duplex. Thymine loops 

(colored red) are employed to connect the diagonal backbones. Bases in G4 are colored 

yellow and bases in duplexes are colored black. 
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Figure 3.24: Gel electrophoresis of modified G4-duplex without T loops in Anti 

conformation. 10% native PAGE was run at 20 °C in 100 mM Na2HPO4, 100 mM 

KH2PO4, 10 mM Mg Acetate, pH ~7.5. Lane 1 contains the DNA molecular weight 

marker. Lane 2 and lane 3 are other designs with unstable G4-duplex structures which are 

not used in this work. Lane 4 and lane 5 contains the G4-duplex without the two T loops. 

Their structures are shown on the right. The smear bands indicate their structures are not 

stable at 20 °C. Therefore the two T loops are necessary to stabilize the G4-duplex 

structure. 
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Figure 3.25: Structures and conductance histograms of modified G4-duplex with new 

type of T loop connecting strand 3&4. The conductance is similar to the modified G4-

duplex with two T loops, indicating the T loops do not have significant impact on the 

charge transport. 

3.7 Conclusions and perspectives. 

In this chapter, I demonstrated a single molecular junction based on extending 

Guanine quadruplex structure with duplexes (G4-duplex) that behaves like a charge 

splitter. Charge injected into one duplex on the top will come out from another two 

different duplexes on the bottom with nearly the same transport efficiency. Two series of 

G4-duplex were studied. The first series of G4-duplex structures have a much lower 

conductance value than that of DNA duplex. Molecular dynamics simulation and 

coupling strength calculations confirmed this is due to the weak base stacking at the 

interface between the G4 and duplex. By removing one duplex on the top and adding a 

PEG linker at the interface, the second series of G4-duplex that has almost the same 

conductance value with DNA duplex. Molecular dynamics simulation and coupling 

strength confirmed the recovery of the base stacking at the interface after the 
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modification. The work successfully constructed a three-terminal single molecular charge 

splitter based on DNA G-quadruplex with high transport efficiency, which will provide 

useful insights towards building up complicated network-like electronic devices. 

Most of previous study on DNA charge transport only focus on 1D structures with 

two terminals including dsDNA or DNA G-quadruplex
60, 63, 87, 104, 112

. From electric 

circuit point of view, using a two-terminal structure can only build up a linear structure. 

To construct a network structure, at least a three-terminal structure is highly desired, and 

this can be realized via the G4-duplex structure (Figure 3.26a). Constructing a network-

like structure based on DNA will provides useful insights into building up electronic 

circuits with arbitrary shape and size. On the other hand, G-quadruplex plays an 

important role in biological system. The formation of G-quadruplexes in telomeres can 

decrease the activity of the telomerase, an enzyme that is responsible for regulating the 

length of telomeres and involved in around 85% diseases of cancer. Using the G4-duplex 

junction constructed in this chapter to study the interactions between the enzyme and the 

G-quadruplex may also have some significant impacts on oncology (Figure 3.26b). 

 

Figure 3.26: Prospective for G4-duplex study in this chapter. (a). A linear structure 

compared with a tree structure. To construct a network-like structure, at least three 
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terminals are needed. (b). G-quadruplex can interact with an enzyme, which could induce 

some changes in the charge transport properties. 
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CHAPTER 4 

GATE-CONTROLLED CONDUCTANCE SWITCHING IN DNA 

The work in this chapter is contributed by my collaborators Julio L. Palma, Yueqi Li, 

Vladimiro Mujica, Mark A. Ratner, Nongjian Tao and me. 

4.1 Introductions 

An ultimate goal in the field of molecular electronics is to build up electronic 

device on molecular level
2, 23, 29

. To date, a number of molecular devices with different 

functionalities such as diodes
30-33

, transistors
34-36, 113

 and switches
37-41, 43, 44, 114-116

 have 

been demonstrated to mimic the traditional electronic components in circuits. Among 

them, precisely controlled conductance switching between two discrete states on a single 

molecular level has been achieved by an external stimulus such as light
40, 117

, force
39, 41

 

and bias voltage
115, 118

. For example, He et al. reported the conductance switching 

behavior of a diarylethene derivative based molecular junction under UV light
40

. Under 

the UV light, the molecule will undergo a ring-close reaction to form a larger conjugated 

structure through the whole backbone of the molecule, thus giving a higher conductance 

value. The reversible reaction (ring-open reaction) can occur when Vis light is given 

(Figure 4.1a). Moreno-García et al. reported a force-induced conductance switching 

behavior based on a molecular junction with C60 as the terminated group
39

. Two distinct 

conductance states were observed during the approaching/retracting process of the STM 

tip. The two states are attributed to the electron tunneling through one C60 terminated 

group and the fully extended molecule, respectively (Figure 4.1b). Although the 

conductance switching can be realized by many different ways of stimulus, this kind of 
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precisely controlled conductance switching is hard to be achieved by electrochemical 

gate control. That is because the conductance of molecule-mediated junctions will usually 

change continuously by tuning molecular orbital levels with respect to the Fermi level of 

the electrodes
36, 54, 59

. Moreover, there is a lack of kinetics study on the switching 

behavior under an external stimulus. Developing single molecular switches requires a 

systematic study and precisely controlled of single molecular conductance switching 

behavior. 

   

Figure 4.1: Conductance switching behavior induced by light and force. (a) A 

diarylethene derivative based molecular junction can be reversibly switched by UV light 

and Vis light, thus giving a higher conductance and low conductance respectively. 

Reprinted with permission from ref. [
40

]. (b) A molecular junction with C60 terminated 

group exhibits two different conductance states during the approaching/retracing process 
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of the STM tip, which is due to two different transport pathways. One is through a single 

C60 group. The other is through the whole extended molecule. Reprinted with permission 

from ref. [
39

]. 

DNA is a unique molecule because not only its role in living systems, but also its 

double helical structure with π-electron stacking of the base pairs that has inspired many 

to explore DNA as a molecular wire
60, 62, 69, 78, 81-84, 87

. In addition, recent advances have 

made it possible to design and synthesize DNA with programmable 3D nanostructures
80

, 

which have further stimulated efforts to study DNA as intriguing device building blocks. 

Extensive theoretical and experimental works have indeed established that long-range 

charge transport can occur along double helical DNA
62, 71, 73, 78, 79

. However, for an active 

electronic component, one wishes to switch DNA conductance between different states, 

which has not yet been demonstrated.  

In this chapter a molecular switch by replacing a DNA base in double helical 

DNA with a redox group will be presented. By controlling the electrochemical gate 

voltage, I reversibly switch the DNA conductance between two discrete levels via the 

redox group. The population of the reduced and oxidized states follows the Nernst 

Equation, and analysis of the conductance switching allows determination of the rate 

constants of the redox process at the single molecule level. Theoretical calculation shows 

that the conductance switching arises from a change in the molecular energy alignment 

associated with the redox state switching. 

4.2 Methods 
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Anthraquinone modified oligonucleotide was purchased from Alpha DNA (HPLC 

purified). All the other oligonucleotides were purchased from Integrated DNA 

Technologies (HPLC purified). One of the oligonucleotides (Figure 4.2) was modified 

with 3’-thiol C3 S-S and 5’-thiol C6 S-S in its protected form. The oligonucleotides were 

dissolved in 18.4 MΩ·cm deionized (DI) water to reach a concentration of 100 μM and 

stored at -20 °C. Sodium cacodylate trihydrate (≥ 98%), magnesium perchlorate (ACS 

reagent, and ≥ 98%) and cacodylic acid (≥98%) were purchased from SIGMA-Aldrich, 

and sodium perchlorate monohydrate (for HPLC, ≥99.0%) was purchased from Fluka. 

All the reagents were used without further purification. Multigene Mini Thermal Cycler 

(Model: TC-050-18) was used to anneal DNA solution samples. Cacodylate buffer (pH = 

7.0) was prepared by dissolving 21.4 mg sodium cacodylate trihydrate, 22.3 mg 

magnesium perchlorate, 196.6 mg Sodium perchlorate monohydrate and 2 mg cacodylic 

acid in 10 mL18.4 MΩ·cm DI water. The oligonucleotide with thiolate linkers was 

deprotected with dithiothreitol (DTT) solution for 1 hour, then transferred to a spin 

column (Roche Applied Science quick spin column sephadex G-25) and centrifuged to 

remove DTT and the protection group. The oligonucleotide was then mixed with the 

complementary strand with a stoichiometric ratio of 1:1 (calibrated by absorption 

intensity at 260 nm) and annealed by varying temperature from 80 °C to 8 °C at the rate 

of 4 min/°C, and then kept at 4 °C prior to measurements.  

Gold substrates were prepared by thermally evaporating ~160 nm of gold (99.999% 

purity, Alfa Aesar) onto freshly cleaved mica slides and annealed in ultra-high vacuum 

(10
-8

 torr) for 3 hours. Before each experiment, the gold substrate was flame annealed for 

1 min with a hydrogen flame. The STM tip was freshly cut from gold wire (99.95% 
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purity, Alfa Aesar) and coated with Apiezon wax to reduce the leakage current directly 

through aqueous solution.  

All measurements were carried out in cacodylate buffer at room temperature 

(22 °C). A small bias voltage was applied between the tip and substrate (5 mV, otherwise 

stated). As a control the STM break junction measurement was initially performed 

without DNA in cacodylate buffer, and the measured conductance histogram was found 

to featureless. Then 50 uL 5 uM double strand DNA was added to the buffer. A large 

number of current–distance traces (∼4,000) were recorded for each experiment, from 

which the conductance histogram was constructed with an algorithm described 

elsewhere
110

. To minimize noise, the algorithm counted only the traces showing counts 

exceeding a preset threshold in the histograms. For each double strand DNA, the 

measurement was repeated three times to estimate the experimental error. The 

electrochemical gate controlled measurements were performed under nitrogen 

atmosphere and the cacodylate buffer was purged by nitrogen (99.99% purity) for 30 min 

before use. The gate voltage was controlled by a biopotentiostat (Agilent). DNA was 

immobilized on the gold substrate by exposing the substrate in 10 uM DNA solution for 1 

hour, followed by rinsing with cacodylate buffer to remove non-bound DNA, and then 

filled with the buffer.  

Cyclic voltammetry was performed on the DNA modified gold substrate with a 

platinum wire as the counter electrode, a Ag/AgCl (in 1M KCl solution) as reference 

electrode using an Autolab potentiostat. Ten repeated potential cycles of cyclic 

voltammograms were obtained for each sample with a typical sweeping rate of 100 mV/s 
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(or otherwise stated. In addition to characterizing Aq-DNA immobilized on the gold 

substrate, cyclic voltammetry was performed before and after each STM break junction 

experiment to check the stability of the silver quasi reference electrode, and the 

difference in the redox potential of Aq-DNA was taken as the error in the gate voltages. 

Quantum chemical calculations to obtain energy and electronic couplings of the 

hopping sites were performed using molecular fragments, G-Aq-G:C and G-H2Aq-G:C. 

The systems were set up based on the canonical B-DNA structure and the 2KK5 of the 

Protein Data Bank (PDB), which is conformed by a similar structure than this one with a 

terminal purine DNA base followed by an anthraquinone
119

. The Hamiltonian is from a 

ZINDO/S calculation and divided it into their segments, which represent the hopping 

sites (G and Aq/H2Aq). The energy and electronic coupling is obtained using the HOMO 

wave function of the Guanine and the neighbor occupied orbitals of the Aq/H2Aq. These 

energy levels have been widely used as a reasonable approximation of the adiabatic wave 

function for the charge donor and acceptor
120

. 

4.3 Structure and characterization of modified DNA 

To switch DNA conductance, I replaced one of the regular DNA bases with 

anthraquinone (Aq), a redox group that can be reversibly oxidized and reduced (Figure 

4.2a). NMR and molecular dynamics analysis of a similar structure suggest that the Aq 

moiety stacks on the adjacent GC base pair, and the non-paired Guanine ring rests atop 

the Aq ring (Figure 4.2b)
119

. This conformation is highly stable as indicated by the 

melting temperature increasing effect after this modification
119, 121

. As a control 
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experiment I also studied DNA without the Aq moiety (Figure 4.2c). I refer the redox 

modified DNA as Aq-DNA, and unmodified DNA as u-DNA. 

 

Figure 4.2: Structure of Aq-DNA and u-DNA studied in this chapter. (a) Structure of Aq-

DNA. One of the base was replaced with anthraquinone. (b) 3D structure of a similar 

DNA structure with Aq intercalating between a non-paired Adenine and paired Cytosine 

base by NMR study. Reprinted with permission from ref. [
119

]. (c) Structure of u-DNA 

without the modification as the control experiment. 

 I first characterize the DNA samples via gel electrophoresis, UV-Vis 

spectroscopy, Circular Dichroism and melting temperature study. The electrophoretic 

measurement was performed at 200 V, and 22°C for 2.5 hrs using 50 pmol of each 

sample and with 8% nondenaturing PAGE gels in 1×TAE Mg
2+

 buffer. The gels were 

subsequently stained with ethidium bromide (EB) and scanned in a Biorad Gel Doc XR+ 

system for sample visualization. The DNA samples were annealed by ramping the 

temperature from 80 °C to 8 °C within 4 hours at the rate of one Celsius degree per 4 
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minutes, and then kept at 4 °C. Only a single band was observed for each of the 

sequences (Figure 4.3).  

 

Figure 4.3: Gel electrophoresis of G-DNA and u-DNA. Column 2 is u-DNA. Column 3 is 

Aq-NDA. Longer DNA sequences have slower mobility as indicated by column 1 for the 

DNA ladder sample (DNA mixture consisting of 10 bp-200 bp dsDNA in 10bp intervals, 

also referred to as DNA ruler). Aq-DNA has a slight slower mobility than u-DNA, due to 

the extra Aq moiety. 

 UV-Vis absorption spectra were collected on a Varian Cary 300 Bio UV 

spectrophotometer at room temperature. Both have strong absorption at 260 nm, which is 

a typical absorption peak for DNA. The Aq-DNA has a weak absorption at around 340 

nm, due to the anthraquinone n to π* transition absorption (Figure 4.4). The UV-Vis 

spectra confirmed the anthraquinone was successfully introduced into the DNA. 
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Figure 4.4: UV-Vis absorption spectra for Aq-DNA and u-DNA. 

 Melting temperature experiments were performed in a Varian Cary 300 Bio UV 

spectrophotometer with a Peltier thermal controller to determine melting temperature. 10 

uM dsDNA were prepared with cacodylate buffer and annealed as for STM-BJ 

measurements, then heated at a rate of 0.2 C/min from 20 C to 80 C with the absorbance at 

260 nm recorded in 60s intervals. Melting temperature was obtained by fitting the 

melting temperature curves to a two state thermodynamic model (Figure 4.5). The 

melting temperature of G-DNA (44 
o
C) is much higher than that of u-DNA (32 

o
C), 

indicating that the intercalation of Aq stabilizes the ending base pairs
119, 121

.  
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Figure 4.5: Melting temperature study via UV-Vis absorption for G-DNA and u-DNA. 

Circular dichroism spectra were collected on a Jasco (Easton, MD) J-815 

Spectropolarimeter from 320 nm to 220 nm with a scanning rate of 50 nm/min. The 

spectra were compiled by averaging the results from 5 scans, taken in cadodylate buffer 

solution at room temperature to replicate the environment during STM break junction 

experiments. The negative band at 245 nm, and positive band at around 265 nm indicates 

B-form structure for both Aq-DNA and u-DNA (Figure 4.6). 
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Figure 4.6: Circular dichroism study of Aq-DNA and u-DNA. 

4.4 Electrochemistry study of Aq-DNA modified Au substrate 

To switch the DNA conductance, I controlled the redox state of Aq-DNA by 

inserting a silver electrode into the solution (Figure 4.7a)
122, 123

. The silver electrode 

serves as an electrochemical gate, and the tip and substrate serve as source and drain 

electrodes. The gate voltage and the source-drain bias were controlled using the standard 

four-electrode electrochemical configuration with a platinum coil as an auxiliary 

electrode (not shown in Figure 4.7a) in addition to the tip, substrate and silver quasi-

reference electrodes. I first characterized redox-switching properties of Aq-DNA 

immobilized on the gold substrate with cyclic voltammetry, a widely used 

electrochemical technique that measures electrochemical current while linearly sweeping 

the substrate potential back and forth. The measured cyclic voltammograms show a peak 

in the forward potential sweep, and a negative peak in the reverse potential sweep (Figure 

4.7b), corresponding to reversible oxidation and reduction of the Aq group in Aq-DNA 

(Figure 4.7c). The redox potential of Aq-DNA, determined by taking the average of the 

oxidation and reduction peak potentials, is -0.46 V vs. Ag/AgCl reference. This finding is 

consistent with that reported for other anthraquinone DNA intercalation complexes
124, 125

. 

The separation between the oxidation and reduction peaks increases with potential 

sweeping rate (Figure 4.7d), and the peak magnitudes increase linearly with the sweep 

rate (Figure 4.7e), indicating that the Aq-DNA was immobilized on the gold substrate. 

From the areas of the oxidation and reduction peaks, I determined the Aq-DNA surface 
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coverage to be 1.48±0.03 pmol/cm
2
, a typical value for thiolate modified DNA molecules 

on gold electrodes
67

. 

 

Figure 4.7: Electrochemical characterization of Aq-DNA modified on Au substrate. (a) 

Illustration of the experiment, where the source and drain electrodes are the STM tip and 
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substrate, and EC gate is a silver electrode inserted in the solution. A DNA molecule 

modified with a redox group bridged between the source and drain electrodes via the 

thiolate linker groups. The source-drain bias (Vds), and the EC gate voltage (Vg) are 

controlled independently. (b) Cyclic voltammograms of Aq-DNA immobilized on gold 

substrate with potential sweeping rate varying from 0.01 (black line) to 0.1 V/s (green 

line) showing oxidation and reduction peaks. (c) Reversible redox reaction of the 

anthraquinone moiety involving two electrons in aqueous solution. (d) Separation 

between the oxidation and reduction peaks) vs. potential sweeping rate. (e) The cathodic 

peak current Ipc versus potential sweeping rate. The linear relation confirms that the redox 

peaks were due surface bound Aq-DNA molecules. 

4.5 Conductance histogram when EC gate voltage is off 

I measured the DNA conductance using an Scanning Tunneling Microscope 

(STM) break junction technique
12

. The technique used a gold tip coated with wax to 

minimize ionic conduction, and a gold substrate. The tip was repeatedly brought into and 

pulled out of contact with the substrate in a buffer solution containing the DNA 

molecules, during which the current between the tip and substrate was continuously 

monitored. Individual current vs. tip-substrate distance traces were recorded during the 

pulling process (Figure 4.8a) and a plateau in the current traces signaled the formation of 

a single gold-DNA-gold molecular junction
104

. Thousands of the current traces were 

collected, and used to construct a conductance histogram, where the peak position 

indicates the most probable conductance value of the DNA molecules.  
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I first measured the conductance of both Aq-DNA and u-DNA without applying 

electrochemical gate voltage, and found that the conductance values for Aq-DNA and u-

DNA were 4.0±0.2 × 10
-4

 G0 and 1.4±0.1 × 10
-3

 G0, respectively, where G0=7.748×10
-5

 S, 

which is the conductance quantum (Figure 4.8c). Control experiments in the buffer 

solution without DNA molecules (Figure 4.8b), and with single stranded DNA terminated 

with two thiolate linkers did not reveal peaks in the conductance histogram. The observed 

conductance difference between Aq-DNA and u-DNA indicates that the Aq moiety was 

intercalated into the base pairs in DNA, as shown in literature
119

 (Figure 4.2b). 

 

Figure 4.8: Conductance histogram when EC gate voltage is off. (a) Representative 

current–distance traces (current converted to conductance) of Aq-DNA (blue) and u-

DNA (red) in aqueous solution, showing plateaus originated from the formation of the 

DNA junctions. Control experiments performed in the absence of DNA molecules 

showing smooth exponential decay (black trace). (b) Conductance measurements in 

cacodylate buffer. No peaks in the conductance histogram detected within the 

conductance range, ruling out the possibility of solvent-based molecular junction 

formation. The noise level is due to the lower limit of the current amplified in the STM 

scanner. (c) Conductance histograms of Aq-DNA (in blue) and u-DNA (in red), showing 
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the difference in the conductance peaks. The peak was fitted with a Gaussian distribution 

and the peak position was taken as the conductance. 

 To examine the reproducibility of the conductance measurements in the 

conductance measurements when electrochemical gate voltage was off, the experiments 

for u-DNA and Aq-DNA were repeated three times, each consisting of ~3000 curves. 

The results were also listed in Table 4.1, showing the reproducibility of the conductance 

measurements. The experimental error was calculated by:  
2

1

1 N

i

i

x
N

 


  , where N 

is the number of sets, xi is the peak position in each individual set of experiment (on a 

logarithm scale) and μ is the peak position obtained by compiling all the 3 histograms. I 

used the fitting errors (Gaussian fitting) in each of the histograms at different gate 

voltages as the experimental errors
126

. The broad distribution (the width in the Gaussian 

fit) in the conductance histogram is not measurement error, rather than an inherent 

property of single molecule measurement originated from the variation in the molecule-

electrode contact coupling, and dependence of the conductance on the couplings
127, 128

.  

Table 4.1: Experimental errors for conductance measurements when EC gate voltage is 

off. 

 1
st
 time 2

nd
 time 3

rd
 time Result 

Aq-DNA -3.41 -3.41 -3.39 -3.40±0.01 

u-DNA -2.82 -2.83 -2.87 -2.85±0.02 

 

4.6 Conductance histogram when EC gate voltage is on 
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In the electrochemical gate controlled conductance measurement, the use of silver 

quasi reference electrode introduced variations in the actual applied gate voltages. To 

study the variations, I recorded the cyclic voltammograms for Aq-DNA modified Au 

surface for 3 hours (all the conductance measurements on the Au surface can be finished 

within 3 hours) in 10 minutes intervals. In Figure 4.9 I found the redox potential of Aq-

DNA shifted to the positive direction with time, from which I concluded that the 

reference potential shifted to the negative direction. This phenomenon is robust as one 

can see from the cyclic voltammograms before and after the EC-STM break junction 

conductance measurements. Hence, I used the differences in the redox potential as the 

errors in the gate voltages (Vg).  

 

Figure 4.9: Plot of the redox potential changes vs. time, where the red line is a guide to 

eyes. 

 After characterizing the conductance and redox property of Aq-DNA, I studied 

conductance switching of Aq-DNA by controlling the gate voltage. For simplicity, I 

quoted the gate voltage with respect to the redox potential of Aq-DNA, at which the 

chances of oxidation and reduction are equal. At each gate voltage, I performed repeated 

0 40 80 120 160 200
0.00

0.04

0.08

0.12

P
o

te
n

ti
a
l 
C

h
a
n

g
e
/V

Time/min

Ag wire as RE



98 
 

 

 

STM break junction measurement, and constructed a conductance histogram from 

thousands of individual conductance traces. When the gate voltage is well above 0 V, 

most Aq-DNA molecules are in the oxidized state and the conductance histogram shows 

a peak at 3.6×10
-4

 G0, which is the conductance of Aq-DNA in the oxidized state (top, 

Figure 4.10). Lowering the gate voltage towards 0 V, a second peak at a higher 

conductance value (3.0×10
-3

 G0) appears. I attribute the high conductance peak to Aq-

DNA in the reduced state. The high conductance peak increases in height while the low 

conductance peak decreases in height with decreasing the gate voltage, which is expected 

as increasing number of Aq-DNA became reduced. The high and low conductance peaks 

reach a similar height when the gate voltage ~0 V, corresponding to an equal number of 

Aq-DNA in the reduced and oxidized states (middle, Figure 4.10). Further decreasing the 

gate voltage below 0 V, the high conductance continues to increase while the low 

conductance peak decreases and eventually disappears as all the molecules becomes 

reduced (bottom, Figure 4.10). 
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Figure 4.10: Two discrete conductance states of Aq-DNA and their dependence on 

electrochemical gate voltage. (a) Conductance histograms of Aq-DNA with the gate 

voltage set above (0.085 V), at (-0.002 V) and below (-0.078 V) the redox potential, 

where the red curves are Gaussian fits to the conductance peaks. (b) Populations of Aq-

DNA in the oxidized (Aq) and reduced (H2Aq) states at the corresponding gate voltages. 

(c) Conductance values at different gate voltages showing two discrete conductance 

states, high (circled with magenta line) and low (circled with blue line) conductance 

states.  

The experiment described above shows that one could switch the DNA 

conductance between two levels by controlling the Aq redox state. Aq-DNA in the 

reduced state is nearly an order of magnitude more conductive than that in the oxidized 

state. Another interesting observation shown in Figure 4.10a is that despite the sensitive 

dependence of the peak heights in the conductance histograms with the gate voltage, the 

peak positions change little with the gate voltage. This observation indicates that the 

conductance of the oxidized and reduced Aq-DNA take two discrete values, and the gate 

voltage can only switch the conductance between the two values. The switching of 

conductance between two discrete levels is more clearly shown in the plot of conductance 

vs. gate voltages in Figure 4.11a. Previous studies of redox molecules typically show 

continuous changes of conductance with the gate voltage
36, 59, 129

. I will return to the 

mechanism of this discrete conductance switching in Aq-DNA later. 

To confirm that the gate switching is due to the Aq moiety rather than DNA, I 

carried out a control experiment with u-DNA, and did not observe any significant 
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changes in the conductance histogram over the same gate voltage range (Figure 4.11b). A 

previous study of gate dependent measurement of DNA conductance also failed to detect 

conductance switching in regular double helical DNA
130

. The control experiment shows 

that the two-level conductance switching was originated from the redox species Aq 

moiety.  

 

Figure 4.11: Gate dependence of the conductance for Aq-DNA (left) and u-DNA (right). 

(a) Low conductance values of Aq-DNA vs. gate voltages at gate voltage from 0.2 V to 

0.55 V. (b) Conductance of u-DNA vs. gate voltage (vs. silver wire quasi-reference 

electrode), where the red line is a guide to eyes. 

 The conductance histograms of Aq-DNA, u-DNA and the single-stranded DNA 

(Figure 4.2) with two thiol terminated groups under different gate voltages were shown 

from Figure 4.12 to Figure 4.17.  
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Figure 4.12: Cyclic voltammograms (CVs) before and after electrochemical gate 

controlled conductance measurements and conductance histograms of Aq-DNA. Note 

that the applied gate voltage was shown in each conductance histogram, where the label 
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(a, b, … or h) marks the corresponding CV in the first panel. The black and red curves 

are the CVs before and after the conductance measurement, respectively. The shifts in the 

redox peaks were taken as error bars in the gate voltages. The applied gate voltage is far 

away from the redox potential of Aq, thus only one peak was given in each of the 

conductance histograms. 

 

 
Figure 4.13: Cyclic voltammograms (CV) of Aq-DNA before and after electrochemical 

gate controlled conductance measurements and high and low conductance peaks in the 
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conductance histograms, where the red solid lines in the lower panel are Two-Gaussian 

fitting to the conductance peaks. The applied gate voltage is close to the redox potential 

of Aq, thus two peaks were given in each of the conductance histograms. 

 

 

Figure 4.14: Cyclic voltammograms (CVs) before and after electrochemical gate 

controlled conductance measurements and conductance histograms of Aq-DNA, where 

the bias voltages are shown in the conductance histograms. These show that the 

conductance of low and high conductance peak is not dependent on bias voltage or bias 

polarity. 
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Figure 4.15: Cyclic voltammograms (CVs) before and after electrochemical gate 

controlled conductance measurements and conductance histograms of Aq-DNA. The 

applied gate voltages were marked in the conductance histograms. There are no 

conductance peaks in the range from ~10
-5.5

 to ~10
-4

 G0. Note that the whole conductance 

range is from ~10
-5.5

 to ~10
-2.8

 G0, different from Figure 4.12 to 4.14. 
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Figure 4.16: Conductance histogram of u-DNA at different applied gate voltages and 

cyclic voltammograms (CV). Note that the CV does not show redox peaks. 

 

Figure 4.17: Conductance histograms of ssDNA with two thiolate linkers at different gate 

voltages and cyclic voltammogram (CV). Note that the CV does not show redox peaks. 

4.7 Peak areas in the conductance histogram with two conductance peaks 
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 I further analyzed the gate-voltage dependence of the peaks in the conductance 

histograms of Aq-DNA by calculating the peak areas at different gate voltage (Figure 

4.19a). This analysis allows us to determine the relative probability of Aq-DNA in the 

oxidized and reduced states at each gate voltage because the peak area S is expected to be 

proportional to the number of Aq-DNA in the corresponding states Γ. To confirm that 

there are only two conductance states, I checked the conductance ranging from 3.2×10
-6

 

to 2.5×10
-2

 G0 and did not detect any other conductance peaks (see Figure 4.15). Also, it 

is unlikely that more than one DNA molecule could bridge between the tip and substrate, 

due to repulsion between the negatively charged DNA. Thus I attribute each of the 

individual current-distance traces in the conductance histograms to one single DNA 

molecular junction. In this way, the peak area S in a conductance histogram can be 

expressed by
131

: 

, Equation 4.1 

where nj is the number of molecular junctions (traces that have plateau), L is the length of 

the plateau regime, or step length, f is the sampling frequency, v is the pulling rate in 

nm/s and U is the bin number in the conductance histogram. The step lengths L for the 

two conductance states are the same (see Figure 4.18), so the peak area S is proportional 

to the number of molecular junctions, nj. 

In STM break junction experiment, nj can be expressed as: 

jn N Y  , Equation 4.2 

j

Lf
S n

vU
 
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Where N is the total current-distance trace collected and Y is the chance of forming a 

molecular bridge during one current-distance trace. The oxidized state and reduced state 

were measured under the same circumstance (e.g. same solution, temperature, Au tip and 

substrate), and their structures only differ by the Aq moiety. Therefore, I conclude that 

the Y is proportional to the surface coverage of the species Γ. Thus ideally the peak area S 

is proportional to Γ. 

 

Figure 4.18: Step length histogram for Aq-DNA and u-DNA. (a). Step length is the 

distance over which a molecular junction can be stretched before breakdown, which 

corresponds to the length of the conductance plateau in the current-distance traces. (b)-(d). 
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Step length histograms for u-DNA, high conductance state of Aq-DNA and low 

conductance state of Aq-DNA. The peaks were fitted with a lognormal distribution and 

the mean values were taken as the step length. Errors were the fitting errors. 

The probability of oxidized Aq-DNA vs. the gate voltage shows a sigmoidal 

dependence (black points in Figure 4.19b). The result shown in Figure 4.19b was 

obtained from the statistical analysis of single molecule measurement, which can be 

compared with the cyclic voltammetry that measures a large number of DNA molecules. 

As shown in Figure 4.7, the cyclic voltammetry reveals oxidation and reduction peaks, 

and integration of the peak areas provides the amount of charge transfer (Q). Because the 

number of charge involved in the oxidation (reduction) of Aq-moiety is 2, I determined 

the percentage of the molecules in the oxidized state at different gate voltages
132

, and the 

result is plotted together with the single molecule data from the conductance histograms 

in Figure 4.19b (see Figure 4.13 for details). Note that forward (blue curve) and reverse 

(magenta curve) gate sweeping curves display hysteresis, but both have the sigmoidal 

shape. The hysteresis was due to that the charge transfer rate between the electrode and 

Aq moiety is comparable to the sweeping rate
59

. The data obtained from the single 

molecule measurement falls in between the forward and reverse gate sweeping curves. 

This is expected because each data point was measured by holding the gate at a fixed 

voltage, corresponding to an extremely slow scanning rate.  

The relative probability of Aq-DNA in the oxidized and reduced states at thermal 

equilibrium is expected to follow the Nernst Equation,  
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, Equation 4.3 

where E is the gate voltage and Eox/red is the redox potential of anthraquinone (gate 

voltage= E – Eox/red), n is the number of charge transfer per molecule, R is the universal 

gas constant, T is the temperature in K and F is the faraday constant. ox and red are the 

numbers of the DNA molecules in the oxidized and reduced states, which are 

proportional to the probabilities of oxidation and reduction, and can be determined from 

the areas of oxidized and reduced peaks (Sox and Sred) in the conductance histograms. 

Figure 4.19c plots log(Sox/Sred) vs. gate voltage (Vg), and fitting the data with Nernst 

Equation yields n=2.0±0.4 for n. This value is expected for anthraquinone, which is a 

prototypical reversible redox species with a two-electron transfer process. The agreement 

between the single molecule conductance measurement and the Nernst Equation provides 

further evidence that the observed conductance switching in Aq-DNA is controlled by the 

redox state of the Aq moiety. 

 

Figure 4.19: Thermodynamic analysis of the two-level conductance switching. (a) 

Conductance histograms at different gate voltages (Vg), where the red lines are Gaussian 
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fits, from which the areas of the low (Sox) and high (Sred) conductance peaks are 

determined. (b) Percentage of Aq-DNA in the oxidized form vs. gate voltage obtained 

from the reduction (magenta curve) and oxidation (blue curve) peaks in the cyclic 

voltammograms with a sweeping rate of 0.1 V/s, and the high and low conductance peaks 

in the conductance histograms. Red dashed line is guide to eye. (c) Log(Sox/Sred) vs. gate 

voltages (Vg) and fitting of the data with the Nernst Equation (red line).  

 The magenta curve and blue curve were obtained by integrating the cathodic peak 

and anodic peak in the cyclic voltammogram of Aq-DNA modified Au substrate at a 

sweeping rate of 0.1 V/s. The calculation method is described in Figure 4.20. 

 

Figure 4.20: Percentage of the oxidized species (Aq) obtained by integrating the cathodic 

and anodic peaks in the cyclic voltammogram (CV) under 0.1 V/s sweeping rate. (a). 

Cyclic voltammogram obtained with 0.1 V/s sweeping rate, from which a cathodic peak 

and anodic peak were determined after baseline correction. Note: A silver wire was used 

as quasi-reference electrode to be consistent with the STM break junction experiments. 

The redox potential was determined by averaging the cathodic peak and anodic peak. (b). 

Cathodic peak in the CV. (c). Anodic peak in the CV. Note: The potential in b and c are 
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quoted with respect to the redox potential of anthraquinone. The areas of the cathodic and 

anodic peaks provide the number of molecules participated in the redox reaction.  

4.8 Conductance-time histogram and kinetics study 

The conductance histogram analysis described above provides averaged 

properties of single DNA conductance switching events. To further understand 

conductance switching in DNA, I also studied the individual conductance switching 

events by monitoring the DNA conductance (G) over time (t) at different gate voltages. I 

first detected a plateau regime in a conductance-distance trace (grey points Figure 4.21a) 

at a fixed gate voltage
110

, which corresponds to the formation of a DNA junction between 

the tip and substrate electrodes, and then froze the tip in position while recording the 

conductance (G) vs. time (t) for 0.1 s.  

Figure 4.21b shows four representative G-t curves at a gate voltage of 0±0.005 V, 

each starts when the conductance is at the high conductance level, or Aq-DNA in the 

reduced state. The four G-t curves illustrate three types of conductance changes over time. 

Type 1 (30-40% probability): The conductance fluctuates but does not change large 

enough to be attributed to the switching of the redox state within the 0.1 s time window 

(black curve). This type of small conductance fluctuations is commonly observed in 

single molecule junctions, which are attributed to the atomic scale rearrangement in the 

molecule-electrode contact
127, 128

. Type 2 (20%): The conductance drops abruptly to the 

noise level, signaling the breakdown of a molecular junction (red curve). This type is also 

a characteristic of single molecules junctions, arising from the finite lifetime in the 

molecule-electrode contact
133-135

. Type 3 (40%~50%): The conductance switches from 
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the high level to a lower level (blue curve), or switches back and forth between the high 

and low levels (magenta curve). The high level conductance is about an order of 

magnitude higher than the low level conductance.  This two-level conductance switching 

is a unique feature of Aq-DNA, which measures reversible switching of the molecule 

between oxidized and reduced states. To confirm this conclusion, I performed control 

experiment with u-DNA and did not observe Type 3 switching behaviors (Figure 4.28). 

To further analyze the two-level transient conductance switching, I constructed a 

2D G-t histogram for Type 1&3 conductance curves (Figure 4.21c). The 2D histogram 

reveals two distinct bands at the high and low conductance levels, which confirms the 

two-level switching of the Aq-DNA redox state discussed earlier. When the gate voltage 

is close to zero, one expects equal probabilities of finding Aq-DNA in the reduced and 

oxidized states. Figure 4.21d shows the conductance histogram at t = 0 and 0.1 s, which 

indeed shows that if the molecule starts at the high conductance level (reduced state), the 

probabilities of high (reduced state) and low (oxidized state) conductance levels equalizes 

over time. Similar results were observed when the molecule starts at the low conductance 

level (oxidized state) (Figure 4.27).  
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Figure 4.21: Individual conductance switching events and kinetic analysis of redox 

reactions in single DNA molecules. (a) Conductance vs. distance traces, each shows a 

plateau that corresponds to a DNA molecule bridged between the tip (source) and 

substrate (drain). The grey dots mark the locations where the tip was fixed in position, 

and conducting switching events vs. time were studied. (b) Three conductance switching 

behaviors: conductance stays at the high conductance level over the time window (black), 

conductance switches to the low conductance level and stays at that level (blue) and 

conductance switches back and forth between the two levels (magenta). Note that red 

trace shows that conductance drops to zero, due to the breakdown of the DNA junction. 

See text for more details. (c) 2D conductance (G) vs. time (t) histogram with the gate 

voltage (Vg) set at 0±0.005 V, showing two discrete conductance bands, and dependence 

on time. (d) Conductance histogram at t=0 and 0.1 s, showing transition from high 
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conductance state to a mixture of high and low conductance states. (e) Normalized peak 

area of the high conductance peak vs. time under different gate voltages, where the red 

dashed lines are the fitting of the curves with the rate Equation (Equation 4.6). 

 The 2D G-t histogram shown in Figure 4.21c describes the evolution of the high 

and low conductance states over time, from which I extracted kinetic constants of redox 

switching at the single molecule level. At a given time, I obtained a conductance 

histogram like the ones plotted in Figure 4.21d, which shows the histogram at t=0 and 0.1 

s. The peak area reflects the probabilities of the molecule in reduced and oxidized states 

at the given time. Figure 4.21e plots the normalized peak area of the high conductance 

state (reduced state) vs. time at different gate voltages. The peak area decays over time 

with a rate that depends on the gate voltage. The more positive is the gate voltage (Vg), 

the faster it decays, which is expected because the probability of Aq-DNA switching 

from the high conductance reduced state to the low conductance oxidized state increases 

with the gate voltage. This process can be described with a kinetic model
136

 that is used 

in electrochemical study of DNA charge transport
137, 138

, 

H2Aq              Aq + 2e
-
 + 2H

+
, Equation 4.4 

where kf and kb are forward and backward rate constants, respectively, which are related 

by 

, Equation 4.5 

where K is the equilibrium constant that depends on Vg according to Equation 4.3. The 

probability of Aq-DNA remaining in the reduced state, p can be expressed as 

ox red/ /f bk k K  
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Equation 4.6 

By fitting the decay curve at Vg = 0±0.005 V (black curve in Figure 4.21e) with Equation 

4.6, I found that kf = 9.8±0.3 s
-1

 and kb =10±1 s
-1

. These values are within the range of 

charge transfer rate constants obtained from electrochemistry study on DNA charge 

transfer
67, 125, 139

. Using these rate constants, I obtained ox/red with Equation 4.5, and 

substituting it into Equation 4.3 leads to Vg = 0±0.002 V, which is consistent with the 

actual applied gate voltage. I carried out the experiment at other gate voltages and found 

the fitted and actual gate voltages agree with each other (Figure 4.23 to Figure 4.26), 

which further confirms the kinetic model.  

 

Figure 4.22: Cyclic voltammograms at Vg = 0±5 mV (before and after the conductance 

measurements). The 2D G-t histogram is shown in Figure 4.21. 
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Figure 4.23: 2D conductance-time (G-t) histogram at Vg = -30±17 mV and cyclic 

voltammograms (before and after the conductance measurements). 

 

Figure 4.24: 2D conductance-time (G-t) histogram at Vg = -21±7 mV and cyclic 

voltammograms (before and after the conductance measurements). 
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Figure 4.25: 2D conductance-time (G-t) histogram at Vg = -13±8 mV and cyclic 

voltammograms (before and after the conductance measurements). 

 

Figure 4.26: 2D conductance-time (G-t) histogram at Vg = 9±10 mV and cyclic 

voltammograms (before and after the conductance measurements). 

By fitting the curves in Figure 4.21e (The peak area of the high conductance 

states versus time plot in the 2D G-t histograms) with Equation 4.6, I was able to obtain kf 

and kb. Combing these values with Equation 4.3, the fitted gate voltages can be 
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determined to compare with the applied gate voltages. Those values were listed in Table 

4.2. 

 

 

 

 

 

Table 4.2: kf and kb values, fitted gate voltages and the applied gate voltages from 2D G-t 

histograms. 

kf kb Fitted Vg/mV Applied Vg/mV 

8.49+0.30 4.0+0.9 9+3 9+10 

9.78+0.34 10.0+1.0 0+2 0+5 

5.65+0.38 15.3+2.2 -13+3 -13+8 

4.17+0.37 12.0+2.7 -13+4 -21+7 

2.09+0.58 16+9 -25+11 -30+17 
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Figure 4.27: 2D G-t histogram study started with the low conductance state of Aq-DNA. 

(a). cyclic voltammograms (before and after the conductance measurements). (b). 

Conductance-distance trace with plateau at low conductance was detected. Then the tip 

was fixed in position (grey points) and held for 0.1 s while the current was recorded. (c). 

Similar to Figure 4.21b, three major types of conductance-time (G-t) traces were 

observed (black, red and blue traces). A few of the traces have multiple switching events 

occurring (magenta trace). (d). 2D G-t histogram showing two bands. As the low 

conductance band fades away with time, and the high conductance starts to appear. (e). 

1D conductance histograms at t = 0 and t = 0.1 s, showing the switching from low 

conductance state to high conductance state. 
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Figure 4.28: 2D conductance-time (G-t) histogram at different gate voltages and cyclic 

voltammograms for u-DNA. (a). Cyclic voltammograms (before and after the 

conductance measurements) for u-DNA, showing no redox peaks. (b)-(f). 2D G-t 

histograms at Vg of -0.65 V, -0.60 V, -0.55 V, -0.50 V and -0.45 V, showing only one 

band, which is consistent with the conductance measurement at difference gate voltages 

in Figure 4.11b. 

4.9 Explanation of the conductance difference between the two states 

The above analysis shows that the kinetic model developed for redox reactions 

can describe the observed conducting switching in Aq-DNA. However, the kinetic model 

cannot explain why the conductance in the reduced state is much greater than that in the 

oxidized state. To understand the conductance difference between the two states, 

ZINDO/S theoretical calculations were carried out. Two molecular fragments, G-Aq-G:C 
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(oxidized state) and G-H2Aq-G:C (reduced state), were built based on the canonical B-

DNA structure and the 2KK5 of the Protein Data Bank (PDB)
119

. It is widely accepted 

that charge transport through DNA is hopping through the guanine HOMO
71, 79, 87

, so 

only on the Aq and H2Aq molecular levels that are the closest to the guanine HOMO 

level is considered. The calculation shows that the Aq HOMO and the H2Aq HOMO-1 

levels are the closest to the guanine HOMO level (Figure 4.29). Furthermore, the 

molecular orbitals of the Aq HOMO and H2Aq HOMO-1 have similar spatial 

distributions; both are mainly localized at the anthraquinone moiety. Finally, Aq and 

H2Aq have similar coupling strengths with neighboring guanine bases (Table 4.3), but 

their energy level alignments are different. The H2Aq HOMO-1 level is ~0.6 eV closer to 

the guanine HOMO levels compared to the Aq HOMO level. The closer energy level 

alignment explains the higher Aq-DNA conductance in the reduced state than that in the 

oxidized state.  The observation is consistent with other reported results
38, 113, 140-142

, 

which shows the conductance of anthraquinone in the reduced state is more conductive 

than that in the oxidized state.  
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Figure 4.29: Energy diagram for the charge transport and molecular orbital spatial 

distribution in oxidized state and reduced state. (a) For oxidized state, HOMO level of Aq 

is the closest to the HOMO levels of Guanine. Hole hops from the left Guanine (non-

paired) to Aq, then to the right Guanine (paired with C) as indicated by the red arrows. 

Molecular orbital spatial distribution indicates the HOMO level mainly localized on Aq. 

(b) For reduced state, HOMO-1 level of H2Aq is the closest to the HOMO levels of 

Guanine. Comparing to the oxidized state, the energy alignment between H2Aq and 

Guanines is better. Molecular orbital spatial distribution also indicates the HOMO-1 level 

mainly localized on H2Aq. The unit is eV for all the energy levels. 
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Table 4.3: Coupling strengths from the calculation (unit is eV). 

 HOMO of Aq HOMO of H2Aq HOMO-1 of H2Aq 

Non-paired Guanine 0.27 0.29 0.07 

Paired Guanine 0.06 0.13 0.16 

 

4.10 Conclusions and perspectives 

This chapter demonstrates one can introduce an active control to DNA 

conductance by modifying a base with a redox group, and switch the DNA conductance 

reversibly between two levels by oxidizing or reducing the redox group with an 

electrochemical gate. This strategy could be implemented in more sophisticated DNA 

nanostructures for active device building blocks. As the DNA conductance is an indicator 

of the molecule in the reduced or oxidized state, it is possible to study redox reaction 

kinetics at the single molecule level by monitoring the DNA conductance.   

The anthraquinone modification in this chapter can only be implemented at the 3’-

end or 5’-end of a DNA sequence, due to the limitation on the synthetic route. If 

modification can be applied into the internal strand of a DNA sequence, then multiple 

anthraquinone modifications can be introduced into a more complicated DNA structure. 

This could lead to more complicated logic controls (e.g. a “AND” control or a “OR” 

control) in DNA nanostructure. Moreover, many other redox active groups, such as 

methylene blue, nile blue and ferrocene can also be introduced into a DNA sequence, 
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which opens up the route towarding the study of multiple-switch controlled DNA 

molecular junction. By controlling the redox states of multiple groups, on may switch the 

electric properties of DNA between multiple states. Introducing redox active groups into 

DNA is an efficient strategy to realize the device application based on DNA, especially 

for building up three-terminal devices. 
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CHAPTER 5 

CONCLUSIONS AND PERSPECTIVES 

The central dogma of molecular biology
143

 tells us DNA is the most important 

and fundamental molecule in the biological system (Figure 5.1a). In the past two decades, 

people used different experimental methods and keep trying to understand the charge 

transport/transfer properties through DNA molecules, including this thesis. First, I 

introduce the field of molecular electronics and summarize the study of DNA charge 

transport/transfer using other experimental techniques. Then in the chapter 2 of this thesis, 

I studied two simple series of DNA sequences with alternating GC and stacked GC 

sequences respectively
104

. I found a new intermediate tunneling-hopping transport 

mechanism through stacked GC sequences. Coherence can exists over a distance of 2-3 

GC base pairs in DNA duplex. This helps us better understand the role of coherence in 

biological electron transfer process. In the chapter 3, I utilized the G-quadruplex structure 

and constructed a single molecular charge splitter based on DNA. By connecting DNA 

duplex to DNA G-quadruplex in different ways, I found the charge transport efficiency is 

sensitive to the stacking conformation at the connection point. A flexible connection 

(PEG linker) and less DNA duplexes will facilitate the transport efficiency. This helps us 

understand the basic principles when one starts to build up more sophisticated electronic 

devices based on complicated DNA nanostructures. In the chapter 4, I constructed a 

single molecular switch with precisely controlled two discrete states by modified one 
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DNA base with a redox group (anthraquinone) via electrochemical gate-controlled STM-

BJ technique. I systematically studied the thermodynamics and kinetics of this switching 

behavior. I hope this study can shed light on building up single molecular three-terminal 

devices based on DNA in the future. In sum, I think that charge transport/transfer process 

is the language which biomolecules (DNA, RNA and proteins) use to communicate 

between them. The studies not only aim to understanding those biological processes in 

our body, but also trying to learn from them to realize device application and make some 

changes to our society. 

The central dogma of molecular biology
143

 tells us that DNA means life, but 

something that it didn’t tell us is the role of water molecule. A lot of studies support that 

water plays an important role in the charge transport process in our human bodies
144-146

. 

Water molecule may directly gate the transport through DNA (Figure 5.1b). Moreover, 

scientists believe that “life origins from water”. During the searching for life in our 

universe, the first priority task is to find water. For example, a lot of studies have 

confirmed the existing of liquid water on Mars
147-150

, which could potentially lead to the 

finding of life. Comparing to DNA, RNA and protein, water molecule is much simpler 

but more difficult to study. Studying the charge transport/transfer through DNA, RNA 

and protein can be an important topic, but the study of water molecule can be another 

interesting topic as well. After its rapid developments in the past two decades, the field of 

molecular electronics is seeking to utilize its chemical and physical principles to solve the 

most frontier issues in the biological systems. 

 



127 
 

 

 

 

Figure 5.1: DNA in biological system and the water molecule. (a) The central dogma of 

molecular biology. DNA replicates to produce itself. DNA transcription generates RNA 

under the help of RNA polymerase. RNA translation generates protein in ribosome. 

Reprinted with permission from the website of “en.wikipedia”. (b) Water molecule 

surrounding DNA. Credit to George Foulsham, University of California, Santa Barbara. 
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