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ABSTRACT 

This study explores how early modern humans used stone tool technology to 

adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The 

MSA is associated with the earliest fossil evidence for modern humans and complex 

cultural behaviors during a time period of dramatic climate change. Human culture 

allows for the creation, use, and transmission of technological knowledge that can evolve 

with changing environmental conditions. Understanding the interactions between 

technology and the environment is essential to illuminating the role of culture during the 

origin of our species. This study is focused on understanding ancient tool use from the 

study of lithic edge damage patterns at archaeological assemblages in southern Africa by 

using image-based quantitative methods for analyzing stone tools. An extensive 

experimental program using replicated stone tools provides the comparative linkages 

between the archaeological artifacts and the tasks for which they were used. MSA 

foragers structured their tool use and discard behaviors on the landscape in several ways 

– by using and discarding hunting tools more frequently in the field rather than in 

caves/rockshelters, but similarly in coastal and interior contexts. This study provides 

evidence that during a significant microlithic technological shift seen in southern Africa 

at ~75,000 years ago, new technologies were developed alongside rather than replacing 

existing technologies. These results are compared with aspects of the European 

archaeological record at this time to identify features of early human technological 

behavior that may be unique to the evolutionary history of our species.    
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CHAPTER 1 – INTRODUCTION 

 

1.0 Introduction to the MSA 

This dissertation used experimental and archaeological data to analyze the 

technological behaviors early modern humans in the Middle Stone Age (MSA) 

incorporated into their cultural system, used to mitigate challenges imposed by a 

changing Pleistocene landscape, and discarded based on economic decisions. The MSA is 

a crucial time period during human evolution because it is associated with the earliest 

genetic and fossil evidence of modern humans (Tishkoff et al., 2007; Behar et al., 2008; 

Scheinfeldt et al., 2010). Therefore, the adaptations and environmental context during 

this time provide clues about how the ‘unique’ set of biological and cultural traits seen in 

Homo sapiens began (Henshilwood and Marean, 2003; Hill et al., 2009). 

Evidence for MSA technologies arguably appear 500 ka at Kathu Pan, South 

Africa (Porat et al., 2010; Wilkins and Chazan, 2012), and clearly after 300 ka, in the 

Kapthurin (McBrearty and Tryon, 2005; Tryon et al., 2005) and Gademotta (Sahle et al., 

2013; Sahle et al., 2014) formations in Kenya and Ethiopia, respectively. However, these 

early expressions of MSA technologies tend to lack evidence of complexity and symbolic 

behaviors found in later MSA sites. In contrast, excavations at MSA sites on the south 

coast of South Africa in the highly diverse Cape Floral Region (CFR) have demonstrated 

early evidence for symbolic behavior such as incised ochre (Henshilwood et al., 2009), 

shell beads (d'Errico et al., 2005), and incised ostrich eggshell (Texier et al., 2010), as 

well as advanced stone tool technologies such as early microlithic industries (Brown et 
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al., 2012; Porraz et al., 2013) and heat-treatment (Brown et al., 2009). It has been 

suggested that the unique suite of coastal and terrestrial plant and animal resources found 

in this area provided the necessary milieu for modern human behaviors to develop, or to 

become sufficiently prevalent to manifest archaeologically (Marean, 2010b). Recent 

genetic studies also favor a southern African origin for the modern human lineage 

(Schuster et al., 2010; Henn et al., 2011), which further highlights the role of this region 

in particular for the source population of modern humans. Yet, other than the production 

of certain artifact types, how MSA technology was being used across this diverse 

landscape is virtually unknown. The research presented here provided insight into how 

the technology of early modern humans across the Cape Floral landscape in the MSA 

allowed for population adaptation, survival, and to ultimately spread beyond Africa and 

across the world. 

The MSA was originally defined by the presence of prepared core technology and 

the production of facetted triangular stone points similar to Levallois points in the Middle 

Paleolithic of Europe (Goodwin and Van Riet Lowe, 1929). It is also defined by the 

absence of certain types of artifacts: the lack of bifacial Acheulean handaxes separate the 

earliest MSA from the Earlier Stone Age (ESA), and the lack of small thumbnail 

scrapers, bipolar technology, grindstone and certain organic tools (e.g., digging sticks, 

d’Errico et al., 2012) separate the MSA from the Later Stone Age (LSA). Prior to 

developments of dating methods that extend beyond the radiocarbon ceiling of ~45 ka, 

the timing and tempo of variability in the MSA was largely unanswerable (Shea, 2011a). 

Lithic technologies within MSA deposits that once seemed anomalously advanced were 

viewed as transitional to the LSA (e.g., the Howiesons Poort, Keller, 1973). Recent 
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advances in dating methods and improved excavation techniques are demonstrating 

dynamic behavioral changes during the African MSA record and blurring the contacts 

between Stone Age divisions. For instance, bifacial handaxes (ESA) are interstratified 

between prepared core industries (MSA) in the Kapthurin formation >280 ka (Tryon, 

2006). Blades and points (MSA) are present in deposits that have been dated to ~500 ka 

at Kathu Pan 1 assigned to the Fauresmith Industry, which also contains typical ESA 

bifacial handaxes (Underhill, 2011; Wilkins, 2013). Bipolar technology at Border Cave 

suggests the earliest LSA dates to  ~44-42 ka (Villa et al., 2012), a time when MSA 

assemblages still occur in other sites such as the “final MSA” at Sibudu Cave ~37 ka 

(Jacobs et al., 2007).  

Archaeologists have identified more complex and nuanced technological 

behaviors within the MSA than was previously known. Klasies River main site (KRM) 

provided the first long MSA archaeological sequence that served as the backbone for 

understanding MSA technology (Singer and Wymer, 1982; Wurz, 2002). At KRM and 

subsequent sites, not only does microlithic technology in the form of Howiesons Poort 

crescents and blades appear earlier than once believed (Jacobs et al., 2008), it is 

interstratified with more typical MSA points, blades, and prepared cores. To make sense 

of technological variability in the archaeological record of this time requires linking the 

temporal record of technological evolution with a spatial context of how tools were being 

made, used, and discarded across a changing landscape. This study asks the questions of: 

did human populations in the MSA structure their tool use behavior on the landscape, or 

were similar tools used for similar activities at both cave and open-air sites? Were tool 

use behaviors adapted to coastal and interior environments? Were stone tipped spears and 
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projectiles evident throughout the MSA on the south coast? What is the effect of post-

depositional processes on tool edge damage formation? This dissertation addressed MSA 

technological variability by identifying how taphonomic and behavioral damage formed 

on stone tools in a diverse temporal and spatial sample of MSA assemblages, thus 

pinpointing the technological adaptations of MSA populations. 

1.1 Inferring Technological Adaptations 

Until relatively recently all humans lived by foraging for wild plants and animals. 

Fundamental to the human foraging economy are the technologies and strategies used to 

acquire resources. Technology is learned from people in a cultural context, is taught 

within and across generations, and evolves through time via processes both akin to and 

different from natural selection (Richerson and Boyd, 2005). The predominant 

archaeological evidence for foraging technology are stone tools. Patterns of stone tool use 

and discard can reflect technological decisions, provide insight into how foragers 

prioritized limited currencies (i.e., time and energy, Torrence and Bailey, 1983), and 

document how technology changed through time. Although stone tools are the most 

common surviving artifact from most sites, drawing behavioral inferences from them is 

not straightforward. Lithic classification and description are frequently presented as 

behavior, and subjective naming conventions seem to imply behavioral justification (e.g., 

“handaxe”, “scraper”), but much less is known about stone tool function and variability 

than their nomenclature implies (Shea, 2011b).  

Use-wear analysis of stone tools has had some success in inferring lithic function, 

and therefore, behavior (Shea, 1992). Equifinality of edge damage morphology between 

behavioral and taphonomic processes create problems determining prehistoric stone tool 
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function (Shea and Klenck, 1993). Use-wear analyses are often subjective, and blind-tests 

have shown substantial inter-observer variation can exist (Odell and Odell-Vereecken, 

1980; Newcomer et al., 1986; Bamforth, 1988; Odell, 2004; Evans, 2014). The method 

used in this dissertation builds upon a more quantitative approach through analysis of 

assemblage distributions of edge damage. This approach was initiated by Bird et al. 

(2007) to look at the patterns of edge damage on a sample of points from Pinnacle Point 

Cave 13B (PP13B), South Africa, and then refined further by Schoville (2010) using the 

complete sample of MSA points from PP13B. In these studies, instances of edge damage 

scars along the edge are mapped onto the artifact images in GIS, and then aggregated by 

assemblage to create summary distributions. Bird et al. (2007) then analyzed the 

distribution using circular statistics around the average midline of the artifacts, whereas 

Schoville (2010) analyzed the distribution relative to the base and tip of each point. In 

both studies, the archaeological distributions were compared to a random, or uniform 

distribution of edge damage to argue that the edge damage was unlikely to be of 

taphonomic origin. Schoville and Brown (2010) advanced this methodology further by 

demonstrating how experimental populations of edge damage could be compared to 

archaeological samples in order to make more specific behavioral inferences. This 

dissertation built upon these studies by creating multiple experimental populations of 

stone tools that were subjected to controlled taphonomic and behavioral processes. A 

series of replicated stone tools were used for butchery, as spear-tipped armatures, 

exposed to water-born tumbling, and trampled by animals. Each tool was recorded before 

and after use in a GIS framework, and patterns of damage around the perimeter of tool 

edges summarized by frequency and distribution. These experimental patterns were then 
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quantitatively compared to archaeological stone tool edge damage and macrofractures 

using novel assemblage-scale statistical analyses that were developed in this dissertation. 

Much of our understanding of MSA behavior comes from assemblages excavated 

in cave or rockshelter environments. These contexts provide long chronological 

sequences that are more amenable to controlled dating methods, but also have limitations 

(Barton and Clark, 1993). Caves and rockshelters are discreet locations on the landscape, 

are generally not in direct association with resources, and are more frequently reoccupied 

compared to open-air sites (Binford, 1982). By nature of their geography, it is anticipated 

that caves will tend to reflect strategies where resources have to be brought in from 

elsewhere. Space within rockshelters is less constrained than in caves, which may allow 

for a greater diversity of activity areas – but also expose these sites to greater outside 

disturbance processes. Open-air sites can be extraction sites or camps depending on 

environment and local setting. Depending on local environmental context (such as sea-

caves close to shellfish), caves tend to be located further from resources than open 

extraction sites, and therefore exhibit a more exaggerated transport bias against low 

utility materials. In faunal studies, animal skulls are an example of a low utility material 

that are infrequently transported from kill to camp sites (Daly, 1969; O'Connell et al., 

1988; Marean et al., 1992; Schoville and Otárola-Castillo, 2014). In lithic studies, broken 

points (Holdaway, 1989; Kuhn, 1989; Shea, 1991) and nodule cortex (Brantingham, 

2006; Oestmo et al., 2014) are low utility materials less likely to be transported from kill 

to camp sites. To encapsulate variability in use, transport, and discard, it is necessary to 

gain an appreciation for the landscape scale spectrum of foraging behavior in the MSA 

(Kandel and Conard, 2012). 
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Behavioral ecological observations and models of foraging behavior have 

provided insight into how prehistoric human foragers may have structured their landscape 

tool-use behaviors. Ethnographically observed foraging groups base their mobility on the 

distribution of resources, whose access can be limited by geographic, environmental, 

social/territorial, and technological restrictions. When resources are distributed patchily, 

foragers are argued by some to have long-term residential habitation sites and frequent 

logistical, activity-oriented movements of smaller groups (Binford, 1980; Grove, 2009). 

Groups that do not move frequently are expected to supply habitation sites, in contrast to 

frequent movements of people to resources (1980). Whether groups move resources-to-

people, people-to-resources, or some combination of both, the spatial distribution of 

discarded tools will vary because transporting unreliable or exhausted tools after use is 

more costly (in time, energy, and risk) than discarding broken tools and retooling back at 

camp when foragers are ‘off the foraging clock’ (Oestmo et al., 2015). As will be 

discussed in Chapter 4, ethnographically observed foragers near coastal environments 

tend to (but not always) adapt their technologies and movements to exploit either coastal 

or interior environments, since each provides a unique suite of ecological resources that 

often require a toolkit, mobility strategy, and extensive foraging knowledge in order to 

effectively exploit. Therefore, studying prehistoric foraging technology in a coastal 

environment requires sampling both within caves and at open-air sites on the landscape, 

as well as from sites both near and distant from the coast. 

To provide insight into the hunting patterns, landscape use characteristics, and 

technological behaviors in the MSA of southern Africa across this ‘foraging spectrum’ 

(Kelly, 1995), this research had the following two goals. First was to create experimental 
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collections of stone tools with known behavioral and taphonomic edge damage patterns 

used to infer the processes behind archaeological lithic edge damage formation. The 

second goal was to analyze a cross-section of MSA archaeological sites in an area vital to 

modern human origins – the south coast of South Africa. This was achieved by analyzing 

points, blades, and flakes from five caves, PP13B, PP5-6, PP9, Nelson Bay (layers 6 and 

10), Die Kelders 1 (Layers 6-12), and two open-air sites - Vleesbaai, and Oyster Bay. 

Within the second goal, the object is to ascertain whether archaeological edge damage 

patterning is more consistent with experimental taphonomic or behavioral patterning. By 

accounting for taphonomic effects as best as possible, the purpose of the second goal is to 

examine behavioral differences in tool-use and discard across the south coast foraging 

contexts.   

The results of this dissertation indicate systematic behavioral patterning in land-

use strategies during the MSA. Caves and rockshelters were used in different ways on 

average than open-air sites. For instance, open-air sites tend to have tools that are more 

heavily damaged, and with a greater frequency of hunting armatures. Relationship to the 

coastline also had a strong influence on the observed edge damage patterning. For 

instance, occupations near the coast tended to be consistent with a greater diversity of 

processes of edge damage formation.  

This dissertation provided evidence for tool function in the MSA. Convergent 

MSA points are consistent with multi-functional, context contingent tool-use. Points were 

used as armature tips in some contexts, particularly at open-air sites and interior 

locations, and as knives in others. Dynamic temporal change in tool-use behaviors are 

indicated by the use of small, unretouched blades, in armatures during a limited period of 
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time when microlithic industries begin to appear in several South African MSA 

assemblages.  

Other results indicate that taphonomic edge damage in the MSA is quite common, 

and there appears to be an increasing amount of trampling damage in particular through 

time. This may be linked to rising population levels or longer occupation of sites on the 

landscape.  

Finally, differences between the South African MSA record studied here and 

Neandertal assemblages suggest that MSA foragers were using and discarded lithic 

armatures in very different ways, which has implications for the cultural system of 

innovating and transmitting technological knowledge in the MSA. The presence of 

hunting technology even when sites were occupied near the coast in the MSA may also 

have implications for sexual division of labor at this time. 

1.2 Dissertation Outline 

The organization of this dissertation is as follows. Chapter 2 provides an overview 

of the fossil evidence for modern human evolution and places the African Stone Age 

within this framework. Each archaeological assemblage studied in this dissertation is 

placed within this context. Chapter 3 provides a background to the environments of the 

Middle and Late Pleistocene of South Africa. This includes the ecology, geology, and 

paleoenvironments of the Cape Floral Region and the Agulhas Bank. Chapter 4 provides 

a theoretical orientation for the dissertation, including the research questions and 

hypotheses that are being tested. Chapter 5 explains the methodology used in this 

dissertation, including the design of experiments, edge damage recording procedures, 
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statistical analyses, and various considerations of tool morphology that must be taken into 

account (i.e., edge angle and tool asymmetry). Chapter 6 provides the results of the 

experiments and analyses. A discussion of the results with respect to the specific goals 

and hypotheses is provided in Chapter 7, with the final section summarizing and 

concluding this dissertation and proposing several hypotheses to be tested in future 

research. 
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CHAPTER 2 – BACKGROUND: HUMAN EVOLUTION AND THE AFRICAN 

STONE AGE 

 

2.0 Introduction 

This dissertation is focused on understanding patterns of stone tool edge damage 

formation relative to site context in the MSA in order to understand prehistoric behaviors 

and foraging technologies. During this time period, dramatic changes in the 

archaeological and fossil records suggest significant new adaptations and behaviors 

developed (Lahr and Foley, 1998; McBrearty and Brooks, 2000). Genetic and fossil 

evidence points to this time period as crucial for the appearance of the modern human 

lineage (Ingman et al., 2000; White et al., 2003; McDougall et al., 2005; Garrigan and 

Hammer, 2006). To place the questions addressed by this dissertation in broader 

biological evolutionary context, I will present a review of the relevant record for human 

origins. Additionally in this chapter context is given to the origins and development of 

modern humans in Africa and the record of technological change. To begin, a brief 

overview of the fossil evidence for modern human evolution beginning with Homo 

erectus, H. heidelbergensis, H. neanderthalensis, and finally H. sapiens is presented. The 

various models for modern human origins within Africa will be discussed, including a 

brief review of the genetic evidence and proposed lineage bottlenecks. The second 

section will present the evolution of technology in the Stone Age of Africa, including the 

origins and characteristics of the Earlier, Middle, and Later Stone Age. This section is 

concluded with a discussion of models for modern human origins in the Middle Stone 

Age. At the conclusion of this chapter, the foundation of human biological, cultural, and 
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genetic evolution will be established, so that more specific questions about the 

paleoenvironmental contexts can be explored and linked to the archaeological record with 

ethnographic and behavioral ecological models in the next chapter. 

2.1 Biological Evolution of later Homo 

 By ~1.5 ma Homo erectus has many features of the anatomically modern human 

body plan including increased brain size, retracted facial position, tall stature, and long 

distal limb proportions (Brown et al., 1985; Antón et al., 2014). These adaptations are 

often argued to be associated with a ‘grassland adaptation’ and an efficient gait in order 

to take advantage of the increasingly open environments of the Early Pleistocene (Cerling 

et al., 2011). H. erectus is the first hominin to migrate out of Africa, suggesting a 

mobility and capacity for behavioral flexibility in encountering novel environments not 

yet seen in hominin evolution. In addition to more open environments, H. erectus may 

have also been adapted to increasing climatic variability and aridity (Potts, 1998; Antón 

et al., 2014). The fossil record of the Middle and Late Pleistocene in Africa is limited, 

and although it is generally agreed that H. erectus evolved in Africa, the earliest fossils 

attributed to H. erectus are ~1.8 million years ago (ma) in Dmanisi, Georgia (Ferring et 

al., 2011). The five skulls from Dmanisi are highly variable, and some researchers have 

suggested that some earlier African Homo, particularly Homo rudolfensis and Homo 

habilis, be subsumed into a more variable H. erectus species definition (Lordkipanidze et 

al., 2013). 

The H. erectus morphology seems to have arisen as a mosaic over time rather 

than as a complete package (Antón et al., 2014). Cranially, facial and dental 

morphological reduction is present in the earlier specimens of H. erectus, while the major 
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increases in brain size occur more notably later (<800 ka; Anton 2014). The post-crania 

are similar to those of modern humans, but with notable differences, particularly in the 

pelvic girdle. This fact, coupled with a faster life-history compared to later H. sapiens as 

judged by dental development, suggests the modern human pattern of birthing patterns 

and life-history evolved later (Dean et al., 2001).  

Figure 1. Evolutionary relationships and technological innovations in Middle and 

Late Pleistocene Homo. Admixture from ancient lineages occurred in Africa (2%), 

in non-African European and Asian lineages (1-4%), and in Melanesians (4-6%). 

By ~600 ka, H. erectus disappears from the fossil record (but may have survived 

genetically in the Denisovan lineage, (Reich et al., 2010)) and a new species, H. 

heidelbergensis appears (Figure 1). While the Middle Pleistocene taxonomy is 

notoriously “muddled” (Stringer, 2012b), many researchers advocate a single diverse 

species may have existed across the Old World between ~800-400 ka. This species has a 

mixture of features too modern to be H. erectus, but too archaic to be H. sapiens, and 
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some researchers refer to these Middle Pleistocene fossils simply as “archaic Homo 

sapiens” in order to bypass the taxonomic ambiguity at this time (Lieberman et al., 2002), 

though the phenotypic diversity and vast geographic spread makes this contentious. For 

instance, H. heidelbergensis has larger cranial capacity than H. erectus (Stringer, 2012a), 

but more facial projection and brow ridges than H. sapiens (Lieberman et al., 2002). The 

skull from Bodo in Ethiopia has been dated to ~600 ka (Kalb et al., 1980; Rightmire, 

1996:23), and contains many facial features similar to later H. sapiens (Rightmire, 1996). 

European H. heidelbergensis are similar to the African samples, but with more post-

cranial robusticity, and some features that foreshadow derived morphology of the 

Neandertal lineage are evident, especially at the site of Atapuerca, Spain, possibly 

suggesting an early form of Neandertals (Stringer, 2012b).  

H. heidelbergensis is likely the last common ancestor of three populations: 

Neandertals in Western Europe, Denisovans in Eastern Europe, and modern humans in 

Africa (Stringer, 2012b). The Denisovan population is largely inferred from genetic 

evidence, as the fossil record of the Denisovans is virtually unknown except for a ~40 ka 

tooth and finger bone from southern Siberia. The genetic record suggests a divergence of 

the Denisovan population from H. heidelbergensis ~780 ka (Krause et al., 2010; Meyer et 

al., 2014). However, the genetic record also suggests that this population survived as a 

breeding population, and much later interbred with modern humans spreading out of 

Africa much later, ~50 ka (Figure 1), as evidenced by the ~5% contribution of Denisovan 

genes to the populations east of the Wallace line, including the Philippines, Australia and 

New Guinea (Reich et al., 2010). 



15 

 

The Neandertal fossil record is much more complete. The Neandertal body form 

appears to be adapted to cold climates. Their limb proportions – specifically shortened 

forelimbs and distal legs, overall stout stature, widened nasal structure, and thick 

musculature point to cold environment adaptations (Schrenk et al., 2009). Overall, bones 

are thick with evidence for heavy musculature, similar to H. erectus. The earliest fossils 

with traits suggestive of H. neanderthalensis apomorphies come from the Spanish site of 

Atapuerca, however the earliest “fully” Neandertal specimens don’t appear until ~200 ka 

from Biache, France and Ehringsdor-Wimar, Germany (Hublin, 2009). Genetic evidence 

suggests that the Neandertal and modern human lineages split ~400 ka (Endicott et al., 

2010; Krause et al., 2010; Fu et al., 2013) and the Neandertal and Denisovan lineages 

split ~200 ka (Scally and Durbin, 2012). However, the genetic evidence suggests that 

individual non-Africans retain 1-4% Neandertal DNA, which indicates some amount of 

interbreeding (Green et al., 2010) as modern humans left Africa and colonized Eurasia. 

Using more sophisticated AMS radiocarbon dating techniques and a large sample of 

Middle Paleolithic sites (including Gibraltar), Higham et al. (2014) suggests a widespread 

extinction of Neandertal populations throughout Europe by 40 ka. 

2.2 Modern Human Biological Origins 

The fossil record of early modern humans is sparse, known largely from East 

Africa. An incomplete near-modern, or ‘archaic modern human’ skull from Florisbad, 

South Africa dates to 259 ±35 ka using a combination of ESR/OSL techniques (Grün et 

al., 1996), but the taxonomic affinity is debated and considered transitional between H. 

heidelbergensis and H. sapiens. The earliest fossils considered fully anatomically modern 

H. sapiens are the ~195 ka skull from Omo Kibish 1 (Aubert et al., 2012), Ethiopia and 
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the ~160 ka skull from Herto Bouri, Middle Awash, Ethiopia (White et al., 2003). Fossils 

from Jebel Irhoud, Morocco have modern human morphology and life-history 

characteristics from tooth development studies, and are dated by U-Series/ESR to 160 ± 

16 ka (Smith et al., 2007:SOM). This suggests that the modern human body plan and 

developmental life-history characteristics were widespread by ~160 ka, and likely prior to 

190 ka. Modern human fossils then occur in the Levant by ~115 ka at Skhul and Qafzeh 

(Stringer, 2003), suggesting range expansion and contraction events prior to the final 

push out-of-Africa (~60 ka). In southern Africa, the few human fossil remains from 

Klasies River have been dated to ~90 ka (Grün and Stringer, 1991), and although have 

some robust features, are usually assigned to modern H. sapiens.  

As a result of genetic, archaeological, and paleoanthropological data accumulated 

over the past 25 years, the debate over modern human origins often characterized as 

‘multi-regionalism’ vs. ‘out-of-Africa’ is largely settled with most evidence strongly 

favoring the Out-of-Africa model (Mellars, 2007). This opens a new realm of research 

questions about the timing, tempo, and location of modern human origins in Africa. Did a 

single population give rise to all modern humans? Since the modern human genome 

includes 50% of the Neandertal genome, does a ‘mosaic’ pattern of modern behaviors 

and biological features accruing at different places and times better explain the origins of 

modern humans? Depending on the mutation rate, or ‘genetic clock’, traditional models 

situate this origin at ~150-200 ka, but newer mutation rates have suggested an age closer 

to ~300 ka (Scally and Durbin, 2012). If the traditional rate is accepted (Fu et al., 2013; 

Green and Shapiro, 2013), then the last common ancestor of all modern humans emerged 

during the penultimate glaciation (MIS6, 191-123 ka). Some parts of this glacial are 
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similar in severity as the Last Glacial Maxima (LGM, ~21 ka), but lasted much longer.  

MIS6 is generally considered colder and more arid in Africa (Lahr and Foley, 1998), 

though the empirical record is sparse. There are only a handful of archaeological sites in 

Africa that date to this time period, which in itself is considered a sign of the severity of 

MIS6 for human populations (Barham and Mitchell, 2008; Marean, 2010a).  

Many genetic studies have suggested a population bottleneck in the late Middle 

Pleistocene close to the estimated origin point of the modern human lineage (Marth et al., 

2003; Manica et al., 2007). This bottleneck is in addition to a Late Pleistocene bottleneck 

event considered the final movement of humans out of Africa across Eurasia (Lahr and 

Foley, 1998). There are two models for human population bottlenecks during the late 

Middle Pleistocene to explain the reduced genetic variation. The “Founder model” argues 

for a single progenitor population of modern humans that survived this bottleneck event 

(Fagundes et al., 2007). This population then subsequently spread across Africa, but there 

were likely still pockets of archaic populations and through hybridization some 

introgression of genetic material occurred (~2%, Hammer et al., 2011). The location of 

this progenitor population has been argued to be North Africa (Smith et al., 2007; Dibble 

et al., 2013), East Africa (Lahr and Foley, 1998), southern Africa (Marean, 2010b; Henn 

et al., 2011), or Central/West Africa (Cruciani et al., 2011; Mendez et al., 2013; Rito et 

al., 2013). Alternatively, the “Fragmentation model” explains the Middle Pleistocene 

bottleneck as multiple, much smaller populations that became fragmented into isolated 

refugia with little to no gene flow (Sjödin et al., 2012). Each population would have 

reduced genetic variability, such that when the populations expanded the total genetic 

diversity was still reduced compared to the prior population.  
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2.3 Stone Age Technology and Behavior 

 Concurrent with biological change during the Middle and Late Pleistocene fossil 

and genetic record of human evolution, are changes in the technology and behaviors that 

can be inferred from the archaeological record. There is no simple 1-to-1 relationship 

between species and technology. There are clear trends in the archaeological record of 

increasing technological and behavioral complexity through time. However, this is not a 

linear pattern, and substantial variation occurs. The following section presents an 

overview of the archaeological record during the Pleistocene, and places technological 

developments within an evolutionary context. 

 The tripartite Stone Age nomenclature (Earlier, Middle, Later) for classifying 

archaeological sites based on lithic typology in Africa was both based on the European 

Paleolithic system (Lower, Middle, Upper), and used to recognize distinctions in the 

African record (Goodwin and Van Riet Lowe, 1929). The Stone Age covers at least 2.6 

million years, from Oldowan and Acheulean up until the onset of the Iron Age. This 

system has its limitations, especially with the transitions between industries, but is still in 

use today because it effectively distinguishes the vast majority of sites into units that 

share many similarities and are from similar time periods. Clark’s (1969) technological 

“modes” attempt to unify the Paleolithic and Stone Age systems into five stages. Mode 1 

is fairly simple pebble cores and flake tools, generally synonymous with the Oldowan. 

Mode 2 contains large, bifacially worked cores and flakes, typified by the Acheulian 

Industry. Mode 3 tools are flakes, points, and blades struck from prepared cores. Mode 4 

technology is characterized by punch-struck blades, retouched into reoccurring forms. 

Mode 5 consists of microlithic tools, heavily retouched geometric forms often fitting into 
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composite tools. As originally conceived, the modes were seen as a technological 

progression through time based on the European record. Subsequent research, largely in 

Africa but also in Eurasia and Australia, have shown that substantial variation exists, 

especially in what would generally be thought of as Mode 3 sequences. Shea (2013) 

attempts to account for this variability by expanding the modes to nine categories, Modes 

A through I, based on method of production (percussion, fracture, and abrasion) and by 

organization of production (non-hierarchical cores, retouched flakes, and hierarchical 

cores). In Shea’s scheme, the modes can be combined in order to evaluate behavioral 

variability across large-scale, evolutionary histories.  

 For this dissertation, the Stone Age nomenclature will be maintained, largely 

because the focus is not understanding change in how stone tools were produced, but in 

how stone tools were used and discarded on the landscape. Although imprecise, the Stone 

Age system also accounts for time and includes variability in lithic technologies without 

making assumptions about the nature of the assemblages. 

2.3.1 Earlier Stone Age 

Until recently, the Earlier Stone Age (ESA) begins with Oldowan technology and 

the production of flakes generally associated with the first appearance of the genus 

Homo. However, the earliest Oldowan tools were recovered from Gona, Ethiopia, dating 

to 2.6 ma (Semaw et al., 1997) and associated with Australopithecus garhi (Asfaw et al., 

1999). Recently discovered stone tools from the 3.3 ma Lomekwi 3 site in West Turkana 

shows substantial differences with traditional Oldowan tools, including bipolar and 

‘passive hammer’ manufacturing with large anvils (Harmand et al., 2015). The discovery 

of bones from Dikika, Ethiopia at 3.4 ma with surface modification attributed to stone 
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tools suggests an industry of informal tool-use prior to the Oldowan (McPherron et al., 

2010), however these tools have not yet been discovered and may be difficult to 

differentiate from naturally occurring stone fragments on the landscape (McPherron et 

al., 2011). Oldowan assemblages tend to be made from sources near to the site (<10 km), 

but some preference for stone with better fracture properties is evident from 

conglomerates in the Kanjera Formation located 10-13km away (Braun et al., 2008a). 

Given the evidence from Dikika, and later Oldowan assemblages containing processing 

marks such as Bouri (2.5 ma, de Heinzelin et al., 1999) and the 1.85 ma FLK Zinj fauna 

(Blumenschine, 1995; Dominguez-Rodrigo, 1997; Deino, 2012), Oldowan tools were at 

least occasionally used for cutting meat and breaking open bones for marrow extraction. 

The weathered state of the tools generally do not allow for use-wear analyses, but a study 

by Lemorini et al. (2014) from Kanjera South, Kenya, has suggested processing of plant 

material such as underground storage organs, grassy stems, and wood occurred on some 

Oldowan tools. The study by Lemorini et al. (2014) included a blind test of eight used 

flakes, and five of those were successfully identified to worked material (63%), which 

indicates room for significant improvement in the use-wear methodology (see section 

4.2.2). 

Following the Oldowan is the Acheulean Industry that consists of large bifacial 

tools and cores including handaxes, cleavers, and picks. The earliest Acheulean occurs by 

1.75 ma at both Konso, Ethiopia (Beyene et al., 2013) and Kokiselei 4, Kenya (Lepre et 

al., 2011). It’s not clear how or where Acheulean technology developed. After 1.4 ma, 

Acheulean technology is associated with H. erectus, but both Oldowan and Acheulean 

artifacts occur together at the earliest Acheulean sites in East Africa. Additionally, the 
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earliest stone tool assemblages outside of Africa considered to be associated with early 

Homo erectus, Dmanisi at 1.85 ma (Ferring et al., 2011) and Java at ~1.49 ma (Morwood 

et al., 2003), do not have Acheulean technology.  

The characteristic tool-type of the Acheulean is the bifacially flaked “hand-axe”. 

Some debate exists over whether the hand-axe itself was the intended product, or if the 

final shape on some was an unintended consequence of bifacial knapping to produce 

flakes (McPherron, 2000; Davidson, 2002). Use-wear on handaxes have shown that many 

were used for wood cutting-scraping purposes or butchery (Keeley, 1980; Dominguez-

Rodrigo et al., 2001), but flakes from Acheulean sites were also used for a variety of 

purposes (Barkai et al., 2010; Agam et al., 2014). It seems likely that handaxes were used 

as both a tool in itself, and as a core to produce smaller useable flakes in some situations. 

Acheulean technology is associated with the earliest evidence for controlled use 

of fire. The earliest claims for archaeological evidence of fire are from open-air sites in 

East Africa at ~1.5 ma (Gowlett et al., 1981; Bellomo, 1994) and are not widely accepted 

(Pickering, 2012). More recently, using sophisticated micromorphology and infrared 

microspectroscopy techniques, Berna et al. (2012) argue for in situ fire features at 1.0 ma 

inside Wonderwerk Cave, South Africa. The earliest widely accepted evidence for 

controlled fire are the clusters of burned artifacts, seeds, and wood along an ancient lake 

at the site of Gesher Benot Ya’aqov, Israel at ~800 ka suggestive of in situ hearth features 

(Goren-Inbar et al., 2004). After 400 ka, evidence for controlled use of fire appears to be 

more widespread, and is evident in the Levant (Mercier et al., 1995; Karkanas et al., 

2007) and Eurasia (Rolland, 2004; Roebroeks and Villa, 2011). The lack of fire evidence 

associated with the earliest colonization of high-latitudes by H. erectus and H. 
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heidelbergensis is not intuitive (Roebroeks and Villa, 2011), and it has been argued by 

Sandgathe et al. (2011) that Neandertals did not consistently maintain fire technology. 

Sandgathe et al. (2011) suggest that, in fact, Neandertals “lost” fire during the coldest 

periods when fire would be most beneficial, speculating that the cultural information to 

make fire was lost due to population size decline during harsh climates. The origins and 

frequency of habitual fire use is critical in our understanding of modern human origins 

because of fire’s link to cooking, protection from climate, disease, and predators, and 

social organization and extending social interaction time (Wiessner, 2014); which all 

arguably have implications for brain size, life-history development, and group structure 

(Wrangham et al., 1999; Carmody and Wrangham, 2009; Wrangham, 2009). 

Additionally, fire is a pre-requisite for a suite of engineering innovations that occur later, 

such as mechanical alteration of stone ~70 ka (Brown et al., 2009), clay for ceramics ~20 

ka (Wu et al., 2012), and eventually metallurgy ~5 ka (e.g., Greenfield, 2000). 

The earliest evidence for the technological transition from Acheulean to prepared-

core and point dominated MSA assemblages comes from Fauresmith levels at Kathu Pan 

1 (KP1), South Africa (Porat et al., 2010) and in the Kapthurin Formation, Kenya (Tryon, 

2006). At both sites, handaxes persist into prepared-core levels, and the nature of the 

transition is not well understood (Underhill, 2011). In fact, large core-tools similar to the 

ESA may occur throughout the Stone Age sequence. Unfortunately, no fossil material is 

present at these sites, but they are often thought to be associated with H. heidelbergensis 

(Porat et al., 2010). At KP1, unifacial and unretouched points are consistent with use as 

hafted spear-tips (also see Chapter 5 and 6), and the development of hafting at this time 

presents a major technological advance over prior industries (Wilkins et al., 2012). 
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The first wide-spread industry following the Acheulean are the heavy duty artifact 

assemblages associated with the Sangoan. The type site for the Sangoan Industry is at 

Sango Bay, Uganda (Wayland and Smith, 1923). The Sango Bay site is mainly a surface 

collection and unlikely to provide dates or clear stratigraphic associations. Artifacts 

associated with the Sangoan tend to be large core scrapers, core axes, and picks. At other 

sites such as Kalambo Falls, Zambia the Sangoan clearly falls above Acheulean levels 

and below light-duty MSA levels suggesting that the Sangoan may be a valid industry 

and not an artifact of poor excavation or preservation. In East Africa, the Acheulean-

Sangoan transition is unclear. Acheulean hand-axes occur in levels above and below 

Sangoan occupations at Sai Island, Sudan (Van Peer et al., 2003) and in the Kapthurin 

Formation (Tryon and McBrearty, 2002). The age of the Sangoan is uncertain, but may 

be ~284 ka as indicated from the Kapthurin Formation (Tryon and McBrearty, 2002) or 

~254 ka as indicated from Bete I, Ivory Coast (Liubin and Guede, 2000, as cited in 

Barham and Mitchell 2008). If the Sai Island material is considered Sangoan as Van Peer, 

et al. (2003) suggest, then their ages of 220-180 ka may indicate the Sangoan persisted 

from ~284 – 180 ka, and overlaps with some late occurrences of Acheulean technology. 

Stratigraphically above the Sangoan at Kalambo Falls is the Lupemban Industry 

which has widespread occurrences in central Africa (Clark, 2001b). The fossiles 

directeurs of the Lupemban are well-flaked, bifacial, lanceolate Lupemban points, often 

occurring alongside heavy-duty tools suggestive of the Sangoan. Well-dated Lupemban 

sites are rare, and the only absolute date comes from Twin Rivers, Zambia which puts the 

Lupemban roughly at 265-170 ka based on U-series dating of a flowstone above 

archaeological strata (Barham, 2002). However, the association of the flowstone with the 
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archaeological material at Twin Rivers has been challenged (Herries, 2011). The only 

other Lupemban-like assemblage that has been dated is Sai Island, which was OSL dated 

to 152±10 ka at the base of “Lupemban-related Nubian Complex” (Van Peer et al., 2003; 

Herries, 2011). 

2.3.2 Middle Stone Age 

The MSA is defined based on the presence of prepared core technologies, lack of 

bifacial handaxes, and high frequency of pointed flakes and blades. In the original 

technological description of the MSA by Goodwin and Van Riet Lowe  (1929) 

emphasized the production of triangular points specifically. Little standardization in core 

reduction is evident through the MSA, but radial, centripetal, and informal cores are 

common (McBrearty and Brooks, 2000; Brown, 2011). The earliest widely recognized 

MSA sites come from deposits in the Kapthurin formation, Kenya, which are >278 ka 

and consist of prepared cores, blades, and frequent points, but no bifacial handaxes 

(Tryon et al., 2005). Overall, the MSA is more variable than prior industries, and the 

meaning of this variability may suggest the beginnings of cultural differentiation. Clark 

(1988) identified regional expressions of cultural traits that are more homogenous within 

regions than between regions that may indicate unification of adaptive behavioral 

systems within the MSA. As Clark (1982) notes, “[MSA] traditions show that there is a 

greater degree of continuity between stratified assemblages at a single site or within a 

limited locality through time than can be observed between contemporary assemblages 

from different geographical regions (p.256).” Without a comparative, quantitative 

analysis of assemblages analyzed using modern techniques, Clark’s assertion is difficult 

to evaluate. However, if true, it suggests that MSA populations may have been adapting 
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to local conditions – flora, fauna, raw-materials, water availability – for long periods of 

time in similar ways. McBrearty and Brooks (2000:Figure 5) illustrate the regionally 

discrete entities in the African MSA based on point typologies that may support the 

notion of regional identities that persisted through time. Wilkins (2010) argues that such 

active stylistic expressions as regional point styles may symbolize social relationships 

within groups, a pattern not seen in prior technological traditions. In contrast, while 

Neandertals exhibit similar Mode 3 technology (Clark, 1977a; Foley and Lahr, 1997), 

there is little evidence for regionally discrete behavioral or cultural entities during the 

Middle Paleolithic. 

In southern Africa, the long sequence from Klasies River mouth (KRM) forms the 

backbone of the Late Pleistocene lithic typology (Singer and Wymer, 1982), and has 

often been used to link change in MSA cultural sequences to global climates (Volman, 

1981). The KRM assemblage was divided into five units, or stages. As described by 

Singer and Wymer (1982), the MSA stages I-IV are roughly similar – production of 

flakes, blades, and convergent points are common, retouch is infrequent, and local 

quartzite is the predominant raw material. MSA I is argued to have characteristic 

platform trimming (faceting) on elongated blades and thin flakes. MSA II appears to be 

targeted at point production, with the majority of cores by typologically point-cores, and 

fewer elongated blades than in MSA I. Points and point cores tend to become smaller 

through time (Singer and Wymer, 1982:62; Wurz, 2000:64).  

Above the MSA II is a major technological shift identified as the Howiesons 

Poort (HP) Industry. Notable in the HP is an increase in finer-grained silcrete and quartz 

raw-material relative to coarser grained quartzite (although quartzite is still dominant in 
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the KRM HP). The HP at KRM is characterized by the production of small blades, 

backed blades and segments, including crescents, trapezes, and triangles (Singer and 

Wymer, 1982). Wurz (2000) argues that the cores were designed to produce blades and 

blanks for the backed pieces, and that reduction is not appreciably different from the 

other MSA stages. At the type-site of the HP, the Howiesons Poort rockshelter in the 

Eastern Cape, unifacial retouched points are common (Deacon, 1995). A more 

pronounced raw-material shift is evident from other HP assemblages, including 

Diepkloof Rockshelter (Porraz et al., 2013), Pinnacle Point Cave 5-6 (Brown, 2011), and 

Rose Cottage Cave (Soriano et al., 2007). 

At KRM, above the HP are the MSA III and IV stages. MSA III is described as 

similar to MSA I in terms of elongate blade production including long serrated flake-

blades, but relatively few pointed flake-blades. However, the cores have more similarity 

with the HP layers than other MSA stages (Wurz, 2000). There is a small sample of MSA 

IV material, both from the original Singer and Wymer (1982) excavations in the 1960s 

and the Deacon (Deacon and Geleijnse, 1988) re-excavation in the 1980s. Fewer elongate 

flake-blades are present, but there is an increase in the pointed convergent flake-blades 

(Singer and Wymer, 1982). 

Temporal change in blade and flake size in MSA I-IV as noted by Wurz (2000) 

and Singer and Wymer (1982), may be idiosyncratic to KRM, rather than a regional 

pattern (Thompson et al., 2010). Differences in edge damage formation between stages 

are also noted, with the HP sample having the lowest frequency of damage and the MSA 

III blades having the highest (Wurz, 2000:85). However, this dissertation presents the 

first large-scale analysis of MSA edge damage formation through the MSA on the south 
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coast in order to address temporal and spatial variability, and also found an increase in 

edge damage occurrences in the HP at the sites analyzed (Chapter 7). 

Volman (1981) adapted and generalized this scheme to fit a larger set of MSA 

assemblages south of the Limpopo River. Recent excavations have indicated more 

complexity within the MSA sequence than previously recognized. In South Africa, the 

MSA stages are interrupted by at least two technological shifts. The HP, as previously 

mentioned, and the Still Bay (SB) Industry. The SB is known for the production of 

bifacial foliate points and bone tools (Henshilwood et al., 2009; Villa et al., 2009b). Until 

relatively recently, it was unclear whether the SB was securely MSA. But now, well-

excavated sites with in situ SB have shown that the SB is MSA and sits stratigraphically 

below the HP. Jacobs et al. (2008) provide single-grain OSL ages for both the HP and 

Still Bay, placing the HP at ~65-60 ka, and the SB from ~72-70 ka. These ages have been 

contested by an alternative dating program at Diepkloof rockshelter (Tribolo et al., 2009; 

Porraz et al., 2013) where both are considered to be much older and longer-lasting. 

Recent research from MSA sites has provided evidence of technological 

complexity and symbolic behaviors not present in earlier industries. Abstract engravings 

on ostrich eggshells from Diepkloof at ~65 ka provide evidence of both symbolic 

behavior, but also water storage containers that could enable human groups to live in arid 

areas where there is not daily access to water (Texier et al., 2010). Engraved ochre and a 

“paint-kit” discovered at Blombos Cave at ~100 ka is argued to be evidence for symbolic 

behavior such as body painting or cave rock art (Henshilwood et al., 2011). Similarly 

‘designed’ engravings on a shell from Java argued to be associated with Homo erectus, 

may push the evidence for such behaviors back to 430 ka, however it’s difficult to 
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evaluate the cognitive importance of a single engraving pattern. Numerous perforated 

shell-beads also recovered from Blombos point to clear personal ornamentation for the 

first time in the archaeological record at ~73 ka (d'Errico et al., 2005; Jacobs et al., 2013). 

2.3.3 Later Stone Age 

The Later Stone Age (LSA) is characterized as a transition to micro-blades and 

micro-core technology and occurs roughly synchronously across sub-Saharan Africa – at 

least in comparison to the ESA/MSA transition (Barham and Mitchell, 2008). In southern 

Africa, the earliest LSA is identified from Border Cave, South Africa and dates to ~44-42 

ka (Villa et al., 2012). The LSA attribution is based on an increase in bipolar technology 

from post-HP strata, and the presence of organic tools, ostrich eggshell beads, and 

grindstone tools observed in ethnographically known San groups (d’Errico et al., 2012). 

The first widespread LSA entity in southern Africa is the Robberg Industry, which dates 

from 22-11 ka (Kusimba, 2003). The Robberg is best known from Nelson Bay Cave 

where it is dated between 18-12 ka (Deacon, 1978). This industry is typified by 

unretouched bladelets and scrapers, often produced on quartz, quartzite, and occasionally 

silcrete. On the south coast, Robberg fauna suggest open-grassland hunting, including 

buffalo, hartebeest, and zebra (Klein, 1972), consistent with lowered sea-levels and a 

nearby grassy plain (as opposed to its current coastal setting). Following the Robberg, 

Oakhurst industries (Albany on the south coast, Kuruman in the Northern Cape, and 

Lockshoek in the Karoo) have been dated from 12-8 ka, and are known for being non-

microlithic and produced on coarse-grained raw-materials (Mitchell, 1997). Oakhurst 

industries are typified by large, quartzite, ‘duckbill’ scrapers, and sidestruck flakes. The 

Wilton Industry (Springbokoog Industry in the Northern Cape) dates from 8-4.5 ka 
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(Mitchell, 1997). Wilton sites contain a wide range of very small microlithic tools, 

including distinctive segments, backed pieces, scrapers, bone tools, and numerous ostrich 

eggshell beads (Deacon, 1972). The Wilton is predominately produced on fine-grained 

raw-material such as silcrete, chalcedony, and opaline. Sampson (1974) further divides 

the Wilton into Early, Classic, Post-classic, and Ceramic periods based on the overall 

structure of material culture present through time in the Wilton. 

2.4 Modern Human Behavior and the African Stone Age 

There is now a consensus that anatomically modern Homo sapiens evolved in 

Africa ~200 ka. What is not well understood is whether the apparent disconnect between 

the less-complex archaeological records of early modern humans (pre-100 ka) and the 

more complex record of later populations (<100 ka) represent differences in cognitive, 

social, and technological abilities between the two populations. This disconnect shifts the 

question of modernity from anatomy to behavior. Definitions of biological modernity are 

more straightforward than behavioral, but still fraught with issues (Stringer et al., 1997). 

Various approaches to defining behavioral modernity have been developed and debated 

using lines of evidence drawn from Paleolithic, MSA, and Australian archaeological 

assemblages. Prior to developments of dating methods which extend beyond the radio-

carbon ceiling at ~45 ka, the timing and tempo of variability in the MSA was largely 

unanswerable. Features that seemed anomalously advanced (e.g., SB pointed bifaces and 

HP microliths) were viewed as ‘transitional’ to LSA assemblages (Goodwin and Van Riet 

Lowe, 1929). Analyses often compared large discreet technologically based units such as 

the entirety of LSA and MSA sites. This approach masks tremendous variability, and 

recent dating methods and better excavation techniques are demonstrating dynamic 
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behavioral change during the African MSA record. These debates will be reviewed 

below, integrating the impact of recent dating chronologies with the developing record of 

MSA behavior. 

 Behavioral modernity consists of those behaviors which are unique to Homo 

sapiens (Henshilwood and Marean, 2003; Shea, 2011a). Ancestral ‘non-modern’ 

behaviors may have originated along the Hominin line from the last common ancestor 

with chimpanzees to an archaic population of ‘near-modern’ humans. However, there is 

little consensus about which traits derived uniquely in the lineage ending in Homo 

sapiens (Hill et al., 2009), and how those traits manifest archaeologically (Wadley, 

2003). The competence of MSA hunters compared to ethnographically observed foragers 

was the focus of intense debate historically. Klein (1989, 1999) has argued the division 

between modern and non-modern populations lay in the division between the MSA and 

LSA, which occurred towards the limits of radiocarbon dating at ~55-45 ka (Ambrose, 

1998; Bird et al., 2003). Archaeologically, later LSA sites are associated with rock-art 

and artifacts of clear iconic symbolism which do not appear in MSA assemblages 

(Wilkins, 2010). Extrapolating from these material differences, Klein (1989) approached 

the faunal records with this dichotomy in mind. The extensive faunal remains from 

excavations at KRM took on a particularly prominent role throughout these debates. 

Initial studies of fauna from KRM led to the interpretation that large and small fauna 

were regularly hunted by MSA foragers (Klein, 1989). However, based on species 

representation lists, fewer ‘dangerous’ taxa (Cape buffalo and bushpig), and the lack of 

fish and avian remains compared to LSA sites suggested to Klein MSA hunters were less 

adept. Binford’s reanalysis of the KRM fauna using skeletal element abundance profiles 
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relative to utility measures generated from his studies of Nunamiut hunting suggested 

that, not only were MSA foragers less capable hunters than modern foragers, but were 

only able to scavenge large bovids (Binford, 1984).  

Both interpretations have been subsequently critiqued on taphonomic, empirical, 

and theoretical grounds (Henshilwood and Marean, 2003). First, excavations from KRM 

were shown to be biased and only complete bones thought to be identifiable were saved 

(Turner, 1989). Taphonomic experiments by Marean and colleagues show that 

identification and quantification of shaft fragments represent original abundance of 

skeletal elements much more closely than epiphyses (Marean and Spencer, 1991; Bartram 

and Marean, 1999). Therefore, the element profiles used by Binford and Klein are 

essentially artifacts of excavation. Second, Faith (2008) demonstrated with larger samples 

of MSA and LSA sites (excluding KRM) indistinguishable frequencies of ‘dangerous’ 

prey in faunal assemblages. Third, there is no theoretical justification for arguing buffalo 

and bushpigs required ‘modern’ cognition any more than other large bodied prey, or that 

differences should not be expected to reflect ecological conditions which influence diet 

breadth rather than aspects of behavioral modernity (Henshilwood and Marean, 2003). 

Similar debates which played out in the Middle Paleolithic depended largely on the same 

method of analyzing skeletal element frequencies using epiphyses and complete bones to 

argue Neandertals scavenged their prey (c.f. Stiner, 2002;  with Pickering et al., 2003). 

More complete analyses indicate that, with shaft fragments included, Neandertals had 

early access to high utility prey items similar to foragers in the MSA (Marean and Kim, 

1998) and modern observed hunters (Marlowe, 2010). If behavioral modernity is 
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restricted to the suite of behaviors unique to Homo sapiens, then adeptness in hunting 

large, dangerous game is an ancestral condition. 

 Other approaches towards identifying the origins of behavioral modernity 

proceeded from accumulating lists of material evidence present in assemblages associated 

with anatomically modern humans and then looking for earlier traces of these traits 

(Klein, 1995:168). This trait-list approach has the advantage of producing clear 

archaeological expectations. Historically, behavioral modernity has been argued to be the 

suite of bone tools, objects of personal adornment, diverse and regionally distinct stone 

tool forms, and other artifacts which occur in the Upper Paleolithic and not the Middle 

Paleolithic – often referred to as the “Human Revolution” (Mellars and Stringer, 1989). 

Radiocarbon dating routinely placed this during OIS3, at the limits of radiocarbon dating. 

Archaeologists working in Africa and Australia struggled to fit their records of human 

behavior within this framework (McBrearty and Brooks, 2000; Henshilwood and Marean, 

2003; Wadley, 2003). Without reliable radiometric techniques past ~40 ka, it seemed that 

some MSA assemblages were affiliated with Upper Paleolithic, but produced infinite 

dates (Sampson, 1974). Australian assemblages were difficult to classify into Paleolithic 

categories, seemed to lack Upper Paleolithic-like material culture, yet consistently 

produced dates younger than 40 ka (Habgood and Franklin, 2008). The traditional 

formulation of the trait-list approach has been recognized to be biased towards 

technological adaptions in late Pleistocene Europe when anatomically modern humans 

appear (McBrearty and Brooks, 2000). Technologies outside such conditions would be 

unlikely to have been adaptive, and therefore there is little reason to anticipate material 

culture similarities even if they were produced by the same species.  
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Arguing against a human revolution scenario in Europe, but still relying largely 

on the trait-list approach, McBrearty and Brooks (2000) argue many of the traits on the 

traditional list have appearances earlier in the MSA than the ~40 ka ‘revolution’. 

Gradually accumulating evidence suggesting many traits such as bone tools from central 

Africa at ~90ka (Brooks et al., 1995), decorated eggshell in southern Africa by ~60 ka, 

(Texier et al., 2010), >100 km long distance raw material transport in East Africa by 60-

77 ka, (Clark et al., 1984), among other innovations had a deeper history and origin 

within Africa. Additionally, improved dating methods at sites across Africa suggests that 

modern behavioral innovations appeared in a mosaic fashion and context was critical for 

their outward expressions. Markers of modernity from trait lists are largely contingent, 

biased towards European adaptations, and have questionable theoretical underpinnings 

(Henshilwood and Marean, 2003). Most traits recognized are “neither universal nor 

eternal” (Nowell, 2010), and researchers need to hone in on what aspects of behavior are 

essential as well as how to recognize it archaeologically. 

 The debate about the timing and tempo of behavioral modernity has returned to 

identifying behavioral and cognitive differences unique to the human lineage. The closest 

to a consensus of what these traits are, may be in the realm of capacities for symbolic 

information transmission (but see Hill et al., 2009). Unlike the trait list approach, 

symbolic behavior is not easily identifiable archaeologically. Henshilwood and Marean 

(2003) argue that studies of behavioral modernity are better served by shifting focus to 

evidence for “continuity from presymbolic to symbolic material behavior (p.637)”. 

Recent discoveries, largely from the southern coast of South Africa, such as worked 

ochre at PP13B (~162 ka, OSL) have begun to close the gap between the temporal 



34 

 

appearance of anatomical and suspected behavioral modernity (Marean et al., 2007). 

However, evidence for use of ochre, often understood to be associated with symbolic 

activities, may be pushed back even further. Recent dates of Fauresmith industries at 

Kathu Pan (~540-470 ka,  Porat, et al. 2010) which contain ‘modern’ features such as 

worked ochre, blades, and unifacial points (Morris and Beaumont, 2004; Herries, 2011) 

would push behavioral modernity earlier than the earliest anatomical evidence (i.e., the 

“Earlier Upper Pleistocene model” sensu Henshilwood and Marean, 2003) . This would 

fit well with the evolutionary adage “behavioral change precedes anatomical change” 

(Washburn and Hamberg, 1965), but it may simply imply that a one-to-one relationship 

between ochre and symbolic behavior is not warranted (Wadley, 2005) or that infusing 

behavior with pigment enhanced signals is not reflecting the aspects of behavioral 

modernity researchers are interested in (Hill et al., 2009).  

To side-step such problems of identifying material correlates of symbolism and 

modernity, Shea (2011a) has attempted to reframe the entire question of modernity 

towards understanding human capacity for behavioral variability. Recent advances in 

dating archaeological and fossil material suggest that “capacities for behavioral 

variability underwriting behavioral modernity… are at least as old as the oldest skeletally 

modern H. sapiens [at 195 ka] (p. 6)”. Shea’s argument has advantages of not being 

based on any trait-list approach and not tied to arbitrary differences between MSA and 

LSA records. However, it’s not clear how variable human behavior must be to be 

considered ‘modern’, and the expression of behavioral variability may be just as 

contextual dependent as many of the traits in the trait-list approach. Exchanging one 

poorly defined term (“modernity”) for another (“behavioral variability”) is doubtful to 
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gain many converts (e.g., comments by Conard, Eren, Nowell and others in Shea 2011). 

As more late Middle Pleistocene assemblages are excavated and better dated, many of the 

traits thought to represent symbolic capacity and modernity will likely appear even 

earlier, forcing researchers to better understand paleoenvironmental and demographic 

contexts of their appearances. Relating derived behavioral traits to these conditions will 

enable a more complete understanding of uniquely human behavior as well as underlying 

capacities for behavioral plasticity.  

In contrast to the archaeological search for behavioral modernity, researchers 

approaching human origins from a biological perspective are working to identify aspects 

of “human uniqueness” that distinguish humans as dramatic outliers compared to all other 

living biological species (e.g., Bingham, 1999; Hill et al., 2009). Hill et al. (2009) argue 

that, “the capacity for cumulative culture, creation of social norms, ethnicity, and 

extensive cooperation between nonkin facilitated by prosocial emotions, along with life-

history shifts such as long juvenile period and long life span (p.196)” are fundamental to 

the human adaptation. Although Hill et al. argue that these behaviors are what 

“underlies” behavioral modernity, there is a significant difference between the two. 

Behavioral modernity concepts imply both a temporal component – something can’t be 

modern if there was nothing archaic before it – and a human component in that only 

modern behaviors are diagnostic of Homo sapiens (Chase, 2003). Human uniqueness 

concepts are more focused on empirical aspects connecting all modern human societies, 

without necessarily being connected to prehistoric populations or other hominin species. 

There is no a priori reason why Neandertals didn’t share many, or all, aspects of human 

uniqueness; whereas behavioral modernity is predicated on the assumption that there are 
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behaviors only associated with Homo sapiens but no other closely related species 

(Mellars, 2005). 

2.5 Conclusion 

 Modern humans evolved in Africa and the genetic and fossil records point to the 

time period between 200-150 ka. Archaeologically, this corresponds to the MSA, which 

begins at least by ~278 ka, and may have its origins much earlier in the Middle 

Pleistocene. Evidence for modern human behavior, either defined by symbolic material 

culture, complex technology, or adaptable foraging strategies are present on the south 

coast of South Africa by ~162 ka. This time period corresponds to a population 

bottleneck indicated by genetic data, which may suggest a progenitor population that 

survived on the south coast during this time. Understanding the environments and 

resources available to early human foragers in this region will enable a more complete 

picture of the modern human adaption to be developed. In the next chapter, the ecology, 

geology, and paleoenviornments of the Middle and Late Pleistocene on the south coast of 

South Africa will be presented. This will provide context for the questions of landscape 

variation in tool use and discard that this dissertation addresses.  
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CHAPTER 3 – BACKGROUND: MIDDLE AND LATE PLEISTOCENE 

ENVIORNMENTS IN SOUTH AFRICA 

 

3.0 Introduction 

 As discussed in chapter 2, both modern human anatomy and behavioral 

adaptations evolved during the Middle (781-126 ka) and Late (126-12 ka) Pleistocene in 

Africa. The genetic record suggests a population bottleneck likely occurred during the 

Middle Pleistocene (Fagundes et al., 2007), and that the Late Pleistocene population in 

southern Africa was likely on the lineage leading to all modern humans (Henn et al., 

2011; Oppenheimer, 2012), either as the main progenitor population (Founder model), or 

as one of a few reduced populations (Fragmentation model). This chapter provides the 

environmental context of modern human origins in southern Africa during the Middle 

and Late Pleistocene.  

In this chapter, the geologic, ecological, and paleoenvironmental background of 

modern human origins in southern Africa will be presented. Specifically, this dissertation 

is focused on the south coast in part of the Cape Floral Region - an extremely ancient and 

speciose vegetation community with unique features for the populations of humans and 

animals that live in it. Emphasis will be placed on the Pinnacle Point isotopic curve 

developed by Bar-Matthews et al. (2010) that provides a high-resolution record of rainfall 

and vegetation on the south coast of South Africa from 90-53 ka. This region sits at the 

edge of a shallow coastal platform that is sensitive to sea-level changes. Fisher et al. 

(2010) relate this shifting ancient coastline to the ancient landscape, or paleoscape, of 

resources available to human populations during this time. The shifting coastline and 
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rainfall patterns influenced the structure and movement of animal communities, and a 

migration ecosystem may have existed on the coastal platform during periods of lowered 

sea-levels (Marean 2010). The coastline and vegetation also influenced the availability of 

stone for tool-making during this time - quartzite is locally abundant on cliffs, but also as 

cobbles when the coastline is in close proximity. Silcrete is also available as a stone tool 

making raw material, but requires heat-treating in order to improve its flaking qualities, 

and heat treatment requires an available source of burning fuel. These pieces are then 

assembled and the possibility that modern humans near the root of our lineage used the 

south coast’s resources as a refugia during periods of cooler and unstable climatic 

conditions will be discussed. This provides the paleoenvironmental context that MSA 

populations were living in and using technology to adapt to. At the end of this chapter, 

the sites and assemblages that were analyzed to answer questions about modern human 

behavioral and technological adaptions in this dissertation will be described and situated 

within the paleoenvironmental contexts for modern human origins.  

3.1 South Coast 

The environments of South Africa are broadly heterogeneous, and form several 

natural units based on physical separations between regions by mountain ranges, river 

systems, and coastlines (Figure 2). Marean, et al. (2014) note that the environment of the 

greater Cape Floral Region is “heterogeneous geologically” but that “its basic 

physiographic characteristics are uncomplicated.” The Cape Fold Mountains separate the 

arid Great Karoo from the coast by forming an L-shaped buttress parallel to the south and 

west. At the base of these mountains, a rolling coastal plain leads to the coastline, and 

continues underwater for up to 270 km south from Cape Agulhas. The focus here will be 
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on the south coast, which presents a unique suite of geology, climate, flora, and fauna for 

understanding MSA behavioral adaptations.  

3.1.1 Geology 

 The south coast geology provides the context for the interface of the human 

settlement system and their environment. In this section, an overview of the pertinent 

features of the continental geology formation will be addressed. Rather than a complete 

overview of the entire CFR geology, this overview will introduce key features unique to 

the south coast that have immediate bearing on where resources in the MSA were likely 

located and used. These features are the broad and flat Agulhas Bank that makes the 

southern coastline sensitive to sea-level fluctuations, the deposition of nutrient poor and 

rich soils that influence the distribution of plants, and therefore animals, the formation of 

sea-caves that provide concentrated loci of human behavior, and the availability of raw-

materials for stone tool manufacture. This brief overview is intended to provide general 

Figure 2. South coast geography. Rivers extrapolated from Compton (2011). 
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context, and the site-specific formation geology will be provided at the end of this 

chapter. 

The continental surface that forms modern-day South Africa is ancient and other 

than uplift, has been largely tectonically stable for the past 50 ma. The visible structure is 

causally linked to both the fusion of plates within the Gondwana supercontinent 500 ma, 

and the eventual breakup of the African and South American plates 150 ma (Figure 3). 

The Cape Supergroup of coarse sandstones and shales that form the dramatically exposed 

Cape Fold Belt accumulated in a rift valley (the Agulhas Sea) that formed between the 

African continent and the Falklands Plateau beginning around 450 ma (Cowling and 

Richardson, 1995). At first, the sea was shallow, and the sediments that accumulated 

were coarse sands that form the Table Mountain Group. As subsidence occurred, the 

seafloor lowered, and finer-grained shales were deposited as part of the Bokkeveld Group 

beginning 400 ma. As the Agulhas Sea filled up, increasingly coarser sediments were laid 

down 370 ma, forming the Witteberg Group, the youngest rocks of the Cape Supergroup. 

This 8 km thick stack of sediment was consolidated, and as the Falklands Plateau began 

to migrate north towards Africa ~280 ma, the Agulhas Sea was closed, and the Cape 

Supergroup experienced extensive deformation and folding (Newton et al., 2006).  

The interior Great Escarpment (Figure 2) formed under southern Gondwana ~180 

ma from a mantle plume, which formed an extensive inland swampy sea-floor that 

accumulated sediment as the Falklands Plateau eroded into the interior Karoo Sea, 

burying the Cape Supergroup in the process. During the breakup of Gondwana beginning 

140 ma, the southern Africa subcontinent was uplifted, and has experienced extensive 

erosion (>3 km of sheared sediment in areas) ever since (Lindeque et al., 2011). These 

Figure 3. Major geologic events forming modern southern Africa. A) the formation 

of the Agulhas Sea between the Falklands Plateau, and B) the breakup of 

Gondwanaland during the Cretaceaous. C) Eroded sediments off the Falklands 

Plateau accumulated in the Agulhas Sea. D) These consolidated sediments became 

the Cape Supergroup quartzitic sandstones and shales. E) The Falklands Plateau 

migrated north and west during the Permian period, and the Cape Supergroup was 

folded and deformed. F) Erosion sheared several km of sediment from the coastal 

mountain ranges, and the Falklands Plateau continued migrating west with South 

America. 
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eroded sediments were drained onto the coastal plane, and the walls of the uplifted 

Falklands Plateau eroded away from the coastline. In the southern and western Cape, this 

erosion and uplift uncovered and eroded the Cape Supergroup, leaving only the most 

resistant quartzitic sandstones as mountain ranges of the Cape Fold Belt, and shales of the 

Bokkeveld group in valley floors. In contrast to the recent volcanic and rifting activity in 

East Africa, the basic structure of the South African geography have been in place since 

the end of the Cretaceous 65 ma. 

3.1.1.1 Agulhas Bank 

The modern south coast is ~65 km on average from the Cape Fold Mountains 

(Volman, 1981), but adjacent in some areas (e.g., near Gordon’s Bay) and over 80 km 

elsewhere (e.g., near Cape Agulhas). Between the mountains and the coastline are coastal 

plains dissected by deep river valleys. This coastal plain extends offshore at a gradual 

slope, and during periods of lowered sea-levels the coastal plain extends beyond its 

current location. Even with relatively small sea-level drops, dramatic changes occur, as 

the currently submerged continental shelf becomes part of the terrestrial coastal plain 

(Fisher et al., 2010). During maximum glacial periods, some locations that today are on 

the coastline were more than 200 km from the nearest coast (Fisher et al., 2010). This 

underwater continental platform forms the Agulhas Bank, which is responsible for many 

of the unique ocean currents that exist off southern South Africa, including retroflection 

of warm Indian Ocean water against the cold Antarctic Circumpolar Current, and leakage 

into the Atlantic. This combination of cold polar water, plus heavy nutrient laden currents 

makes the south coast one of the most productive marine ecosystems in the world 

(Parkington, 1977). 
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3.1.1.2 Soils 

 The soils which occur in the southern Cape reflect their deep geologic history. 

Shales laid down in the Bokkeveld Group are present in the valleys where they were 

protected from erosion and form the most fertile and nutrient rich soils of the region. The 

surrounding quartzitic sandstones exposed on the hill tops and cliffs form nutrient poor 

soils. Limestones were deposited on shallow ocean floor adjacent to the Cape Fold Belt 

and on the Agulhas Plain during periods of high sea-stand, forming the Bredasdorp 

Formation. Mid and late Pleistocene lithified aeolianites are present as hardened, alkaline 

calcretes on hill and cliff tops and valley floors. Recent sand dunes cover extensive areas 

along the current coastline. Large dune structures are also visible in bathymetric data on 

the Agulhas bank, suggesting dune structures, aeolianites, and vleis (lakes) during glacial 

phases (Cawthra et al., 2014). The makeup of the soil topography has implications for the 

distribution of plants in the Cape Region, the animals that consume those plants, and the 

human populations that exploited these resources that will be discussed below.  

3.1.1.3 Sea caves 

Caves provide natural catchments for human behavioral traces because they are 

enclosed spaces that offer environmental protection. In this dissertation, the caves 

analyzed all formed due to erosion and dissolution by ocean wave action. This includes 

caves at Die Kelders, Pinnacle Point, and Nelson Bay Cave. Numerous other sea caves 

are present along the south coast which contain important archaeological sediments from 

MSA and LSA deposits. Erosion of Table Mountain sandstones (TMS) and Bokkeveld 

shales by the westerly flowing Agulhas Current produced a series of east-facing half-

moon bays between quartzitic and granitic headlands that approximate a log-spiral 
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pattern (Bremner, 1983). Until recently, it was thought that the paucity of ESA artifacts 

in caves on the south coast was due to the relatively recent age of the caves themselves. 

Multi-proxy research at Pinnacle Point has demonstrated that sea caves cut into fault 

breccias of dissected Skurweberg formation quartzites of the Table Mountain Group 

formed by at least 1.1 mya by a ~20m high-sea stand (Pickering et al., 2013). Similarly, 

Nelson Bay Cave was formed in breccias that formed between the contact of Table 

Mountain Group quartzite and younger Early Cretaceous Uitenhage series sandstones that 

were deposited in the Enon Formation from the erosion of the Karoo supergroup (Butzer, 

1973; Lubke and De Moor, 1998). The formation of Die Kelders caves at the contact 

between the Cape Supergroup and Bredarsdorp group due to dissolution (Tankard and 

Schweitzer, 1974; Marean et al., 2000b) may suggest an older cave system, however the 

elevation of DK1 at ~20m is consistent with the 1.1 ma high-sea stand that formed the 

Pinnacle Point caves and more precise elevation data on the DK1 cave system is needed  

to be certain (Marean, personal communication).  

3.1.1.4 Lithic Raw Materials 

 Raw materials for stone tool manufacture are an essential component of the 

foraging economy. As tools wear out, break, and are discarded, tools are repaired or 

constructed from collected geologic sources. Both primary (in situ) and secondary 

sources are available on the south coast for most raw materials. In the area around Die 

Kelders, Pinnacle Point, and Nelson Bay Cave, quartzites from the TMS are widely 

available on coastal cliffs and east-west trending outcrops (Volman, 1981). Quartz veins 

also occur within seams of TMS. A finer-grained quartzite is also available in the 

Uitenhage Group of sandstones which occur from the Robberg Peninsula to cliffs near 
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Pinnacle Point at Cape St. Blaize (Brown, 2011). Quartzite cobbles are available along 

modern coastal beaches and ancient raised beaches from periods of higher sea-level. 

Cobbles also occur abundantly in river gravels and conglomerates throughout the 

southern Cape (Minichillo, 2006). Secondary quartzite is often of higher quality because 

many of the internal structural flaws are broken by tidal wave action leaving nodules that 

are relatively homogenous in structure (Thompson and Marean, 2008). With fewer 

internal flaws, cobbles tend to be more predictable and efficient for knapping, particularly 

if attention is paid to the internal bedding structure of the cobbles (Brown, 2015). 

 Silcrete was commonly used by MSA tool makers throughout southern Africa, but 

is especially common near the south coast. Silcrete is a pedogenic stone formed over a 

large swath of the Western Cape following the breakup of Gondwana following the Late 

Cretaceous. Silcrete now occurs in primary context in many regions on the coastal plain 

(Roberts, 2003), but in larger outcrops ~120-300m asl (Brown, 2011) between Hermanus 

and Grahamstown (Roberts, 2003). Brown (2011) describes primary sources of silcrete as 

“globular”, “conglomerate”, or “massive”, with the massive units being the high-quality, 

finer-grained material. Although originally perceived of as “non-local” and “exotic” raw-

material by Singer and Wymer (1982) and Ambrose and Lorenz (1990), Minichillo 

(2006) showed that silcrete is widely available in secondary sources such as stream and 

river cobbles, beach cobbles, and alluvial beds associated with the Pleistocene-age Klein 

Brak Formation conglomerates. Minichillo (2006) suggests silcrete is a local raw-

material, but incurred higher search costs rather than transport distance costs to acquire. 

Adding to the investment required to utilize silcrete is the discovery that most silcrete 

was heat-treated prior to beginning flaking in the MSA (Brown et al., 2009). 
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3.1.2 Climate 

 The Cape region of South Africa is generally described as a temperate, dry-

summer, or Mediterranean climate (Peel et al., 2007). The south coast currently receives 

350-1000 mm of rain annually in a roughly bi-model pattern. Compared to other 

Mediterranean climate areas and the west coast, the south coast region does not 

experience regular and severe summer droughts, though summers can be hot and dry and 

wild fires are common (Cowling and Richardson, 1995). In terms of sites studied in this 

dissertation, the Pinnacle Point/Vleesbaai region receives the least precipitation (~450 

mm) and NBC receives the most (~900 mm) annual rainfall. The average daily 

temperatures of sites studied here is between 26º C and 7º C (AGIS, 2007), and there is 

very little variation across sites. Rainfall seasonality is predominantly winter on the west 

coast, grades into equal contribution on the south coast, and is predominantly summer 

rainfall in the Eastern Cape (Figure 4). Of the sites included in this dissertation, DK1 has 

Figure 4. Distribution of Cape Floral Region winter rainfall. Highly seasonal rainfall 

approaches 100% (blue) winter rain on the west coast, whereas equitable rainfall 

(yellow) falls on the south, and summer rainfall (orange) towards the east. 
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the highest winter rainfall percentage (68%), NBC has the lowest (49%), and Pinnacle 

Point (50%) and Oyster Bay (65%) fall in between (AGIS, 2007).  

In terms of variability, the south coast has the least seasonal rainfall in South 

Africa (Figure 5A) with a very low coefficient of variation in monthly precipitation and 

low temperature seasonality (Figure 5B). This stability makes the environment less 

variable relative to other regions in South Africa, such as in the interior and east coast. 

Coefficient of variation in rainfall and standard deviation in temperature have been used 

as proxies for predictability by other researchers as well (Cashdan, 1983; Baker, 2003). 

The predictable geology, precipitation, and temperature parameters have influenced the 

origins and evolution of one of the smallest yet most diverse vegetation regimes in the 

world, the Cape Floristic Region. 

Figure 5. (A) South African rainfall variability as measured by the coefficient 

of variation for monthly rainfall (B) and temperature variability measured as 

the monthly standard deviation. 
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3.1.3 Cape Floristic Region 

The south coast of South Africa is within the Cape Floristic Region (CFR), a 

phytogeographic area defined by the spatial extent of significant winter rainfall, strong 

influence of Cape Fold Mountain geology, and extremely high endemism of plant species 

and genera (Born et al., 2007). The CFR is sometimes called the South Western Cape, or 

the Cape Region (Bergh et al., 2014), and is differentiated from the Greater Cape 

Floristic Region by being more limited in its inclusion of succulents along the west coast 

and Namaqualand. Within the CFR is the Fynbos Biome, an ecogeographic region that 

excludes some of the vegetation types commonly found on the south coast such as thicket 

and renosterveld. In this dissertation, the CFR will be used to denote the similarities in 

climate, geography, and plant community structures along the southern and western 

Cape, and the affinities this region would have with the hypothesized environment that 

would have existed on the exposed Agulhas Bank during periods of lowered sea-level. 

There are five main vegetation components of the CFR. The foremost is the 

fynbos vegetation that grows largely on the nutrient-pour quartzite and limestone soils 

and contributes over 80% of the species to the CFR (Mucina and Rutherford, 2006). 

Fynbos requires summer drought, recurring fire climax, and low soil-nutrients, and is 

characterized by the presence of restioid plants – a community of shallow-root reeds that 

quickly absorb water. However, four other types of vegetation communities make up 

fynbos, including ericoid fynbos found in cool, moist environments; tall proteoid fynbos 

(>1.5 m) that prefer low lying areas with deep soils; dry fynbos found in low-water 

retaining soils; and grassy fynbos largely in the summer rainfall areas of the Eastern Cape 

consisting of sub-tropical grasses and shrubs. 
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The other vegetation types of the CFR include Renosterveld, which is typically 

found on higher nutrient quality shale soils from the Bokkeveld Formation in winter or 

bimodal rainfall zones. Renosterveld likely supported a range of gregarious ungulate taxa 

(possibly including Rhinoceros, Cowling and Richardson, 1995), but much of this 

vegetation was quickly supplanted by agriculture historically due to the higher nutrient 

quality of the soil it lived on. Renosterveld tends to occur in regions that receive 300-600 

mm of annual rainfall (Cowling and Richardson, 1995). Albany thicket (or subtropical 

thicket, thicket), is frequently found in fire protected areas with bimodal rainfall, which 

supports large browsing fauna (e.g., elephant, Potts et al., 2013). Thicket consists of 

dense, interlocking shrubs, typically in nutrient-rich soils, and between 300-800 mm of 

precipitation (Cowling and Richardson, 1995). Below 300 mm of rainfall, thicket 

transitions into succulent karoo. These thick, water-retaining plants with tough skins are 

sparse, and although found in winter-rainfall regions with low precipitation, are not prone 

to fire due to their sparse ground cover (Cowling and Richardson, 1995). Above 800 mm 

of precipitation, thicket transitions into afromontane forests. These forested plant 

communities require protection from fires, deep soils, and typically occur at elevations 

below 1000 m (Cowling and Richardson, 1995). Along the coast, thicket transitions into 

strandveld, generally located on alkaline sandy stabilized dune soils and limestones. The 

definition of strandveld is somewhat ambiguous (Bergh et al., 2014), as it has affinities 

with the succulent karoo in the north and thicket to the east. Bergh et al. (2014) suggest 

that strandveld may best be thought of as a coastal link between the succulent karoo and 

thicket in the CFR. 
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The south coast also sees a transition in the carbon-pathways found in the grasses 

that form the CFR. Specifically, fynbos grasses in the west are C3 pathway, while the 

grassy fynbos of the Eastern Cape are tropical C4 (Bar-Matthews et al., 2010). The 

summer-winter rainfall gradient shown in Figure 4 also corresponds to the overall 

distribution of carbon-pathways found in the grass communities – with C3 vegetation 

more common in the winter rainfall zones and tropical C4 grasses in the summer rainfall 

zones (Vogel et al., 1978). Currently near Pinnacle Point, C3 limestone fynbos occurs, but 

further inland C4 grasses occur in succulent karoo (although grasses are rare), and a mix 

of C3 and C4 can be found in thicket vegetation (Huntley et al., 2014) along the south 

coast. 

Historically, large herbivores avoided the nutrient poor sandstones, limestone, and 

sand fynbos regions. Mostly small bodied browsers and mixed-feeders (e.g., bushbuck, 

grysbok, duiker) would be able to take advantage of the low-nutrient plants in fynbos 

(Skead, 2011). In contrast, the extensive shrublands with grasses dominated by low 

asteraceous shrubs that form renosterveld and dry fynbos vegetation supported a higher 

biomass, and accordingly, a greater number of large grazing herbivores (Skead, 2011). 

Thicket provides high-quality habitats for many large bodied browsing animals, including 

elephants. The largest aggregations of migratory mammals historically occurred in the 

succulent karoo, where there are accounts of ‘trekbok’ migrations of springbok in search 

of water and forage over long distances (Skead, 2011). Using data from Marean et al. 

(2014) and Bar-Matthews et al. (2010), a summary table is provided in Table 1 indicating 

the general characteristics of each vegetation community.
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Table 1. Vegetation characteristics in the CFR, from Marean et al. (2014) and Bar-Matthews et al. (2010). 

Vegetation Community Soil Precip. Altitude Rainfall season 
Large animals (70 

kg+) 

Small animals (0-

70 kg) 

Fynbos Restioid 
Varied, 

shallow 

100-350 or 

1400-1600 
Variable Winter/Bimodal 

Low diversity and 

low density, non-

migratory, mostly 

browsing 

High diversity, 

low density, 

mostly browsing 

Fynbos Ericoid Quartzitic, 

acidic 

humic 

1500-2000 
1500-

2000 
Winter 

Fynbos Proteoid 
Quartzitic, 

deep 
600-1000 0-1000 Winter/Bimodal 

Fynbos Dry/Asteraceous 
Calcareous, 

shallow 
100-800 Variable Winter/Bimodal 

Fynbos Grassy Quartzites 

and Shale 
600-800 0-200 Summer 

Strandveld South Coast 

Aeolian 

Dune, 

varied 

200-500 0-200 Winter/Bimodal 

Low density, low 

diversity, mostly 

browsers 

high diversity, 

low density 

Renosterveld  Shale 250-600 0-200 Winter/Bimodal 

Moderate density 

and diversity, some 

grazing 

high diversity and 

moderate density 

Thicket Dune 

Calcretes 

and 

Aeolianites 

900-1500 0-200 Bimodal 

High density of 

browsers, diversity 

of very large taxa 

Moderate 

diversity, high 

density 

5
0
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Thicket Valley 
Fine-

grained soil 
300-650 0-200 Bimodal 

Thicket Arid 
Fine-

grained soil 
200-300 0-400 Bimodal 

Thicket Thicket 
Fine-

grained soil 
500-800 

400-

1000 
Bimodal 

Succulent 

Karoo 
 

Varied, 

shallow 
20-300 0-1500 Winter 

Low density and 

low diversity, 

migratory 

High diversity and 

high density 

5
1
 



 

52 

 

3.1.4 Agulhas Plain 

During phases of lowered sea-levels, the south coast expanded as the currently-

submerged continental platform, the Agulhas Bank, became a large terrestrial plain 

colonized by plants, animals, and human populations (Van Andel, 1989). South of 

Agulhas, this Plain would extend 270 km across, narrowing to <10 km near Cape Point 

and < 5km east of the Sunday’s River mouth. The geology of the Agulhas Bank largely 

reflects the inland-geology. Compton (2011) describes a series of barriers across the 

exposed Agulhas Plain that are extensions of the inland geology. Rocky cliffs and hilltops 

extend from the west near Cape Town, and this area would consist of a quartzitic 

sandstone coastal plain and ancient Cape Granites. Marean et al. (2014) argue the plain 

would be largely featureless due to coastal transgression plaining off the tops of 

topographic features. The bedrock geology consists of granites to the west, and 

sandstone, limestone, and shales moving east. During sea-level transgression and 

regression, erosion and drainage cutting would remove the softer material, leaving large 

rivers meandering through shallow valleys with alluvium cliffs and large dune cordons. 

Closer to the coastline, aeolianite barriers and cordon dunes visible in offshore seismic 

profiling indicate extensive dune fields that may have contained shallow lakes and river 

drainages (Cawthra et al., 2014). 

3.1.5 Paleoclimate and Paleoecology 

The earth’s climate has oscillated between cold glacial and warm interglacial 

periods since the end of the Miocene (5 mya). The off-center tilt of the earth’s axis 

(obliquity), the elliptical shape of its orbit (eccentricity), and shifting orbital axis 

(precession) produce a combined effect at regular time intervals, known as Milankovic 
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Cycles, which forces climatic changes 

(House et al., 1995). Figure 6 shows the 

Antarctic (EPICA) ice-core record of climate 

change for the last 240 ka (Augustin et al., 

2004). This period spans seven stages of 

glacial-interglacial fluctuations, but even 

within “glacial phases” (even numbered 

Marine Isotope Stages, or MIS) there is 

substantial variation and abrupt warming 

trends occur. MIS1 is the current warm, 

Holocene interglacial environment that the 

world has been in for the past 14 ka and is 

associated with the origins of domestication 

and agriculture. MIS2 includes the last 

glacial maximum (22.5 ka), but the cooling 

period began earlier, around 29 ka. MIS3 is a 

cool but stable period that began ~57 ka, and 

is the period when the earliest LSA sites 

occur, when modern humans spread across 

the globe to Australia, and when the 

extinction of Neandertals and possibly the Denisovans occurred (as discussed in Chapter 

2). MIS4 begins 71 ka and spans the duration of the Still Bay and HP industries. Global 

climate records indicate cool and highly variable temperature fluctuations during this 

Figure 6. Antarctic ice-core and 

Pinnacle Point speleothem curves. 
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time (Jouzel et al., 2007), and the onset may have been amplified by the eruption of the 

Toba super volcano in Indonesia (Zielinski et al., 1996). Reconstructions for southern 

Africa during MIS4 are frequently described as cooler and either drier (Klein, 1983) or 

wetter than today (Chase, 2010); however, few terrestrial paleoenvironmental proxy data 

exist from this time period (Marean et al., 2014). The warm and wet global conditions in 

the MIS5 interglacial began ~123 ka, when sea-levels were ~5m higher than today. A 

dramatic increase in the number of MSA archaeological sites occurs in MIS5, but it is not 

yet known if this is due to populations being forced to stay along the modern coastline (as 

opposed to out on the Agulhas Plain and now under water), prior occupations in low-

lying sea-caves being scoured out from the high-sea stand, or a true population increase. 

MIS6 began 195 ka and corresponds with the earliest fossil skeletons of modern humans 

in East Africa. MIS6 was particularly cold and long-lasting (Petit et al., 1999), which 

may explain the dearth of MSA sites prior to MIS5 (Lahr and Foley, 1998; Marean, 

2010b; c.f. Wurz, 2013), however many of these sites could now be submerged under the 

ocean. There is very little dated evidence of human occupation in the CFR between MIS6 

and the latest occupation by Acheulean-technology using hominins >500 ka. 

As has been discussed, the environment of the south coast CFR is highly varied, 

and includes mountains, valleys, and plains, and coastal and inland environments. The 

vegetation is intimately tied to the physical environment and the patterns of precipitation 

that are driven by ocean circulation (Bradshaw and Cowling, 2014). Climatic fluctuations 

during the Pleistocene magnified already heterogeneous environments by creating 

geographic barriers, coupled with variable rainfall and temperature changes (Carto et al., 

2009). The global climate record indicates that during glacial phases the African 
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continent tended to be cooler and largely drier, though it appears that much of the 

Western Cape was actually wetter than today (Adams and Faure, 1997; Chase and 

Meadows, 2007). The speleothem oxygen and carbon isotope curve at Pinnacle Point 

provides a continuous record of predominant vegetation regime (C3-C4) and season of 

rainfall (O18) from 90 ka – 53 ka (Bar-Matthews et al., 2010; unpublished). This record 

indicates that summer rain and C4 plants are positively linked with each other, but 

negatively correlated with global proxies of temperature. During cooler climates such as 

MIS4 and early MIS3, an increase in summer rainfall and an increased presence of C4 

grasses (although succulent karoo and thicket plants have C4 and CAM carbon pathways) 

occurred on the south coast (Marean et al., 2014). The presence of C4 vegetation on the 

south coast suggests an expansion from their current distribution largely in the Eastern 

Cape out onto the Agulhas Bank.  

The inferred C4 grassland on the exposed Agulhas Bank during glacial phases 

corresponds with Klein’s (1983) observations of numerous grazing taxa present in the 

fossil assemblages at Klasies River and Nelson Bay Cave during glacial phases, 

corroborated by the presence of Cape buffalo, wildebeest, and hartebeest at PP13B 

(Rector and Reed, 2010). Rector and Verrelli (2010) analyze the trophic composition of 

faunal assemblages on the west and south coasts and argue that there are no significant 

changes through glacial-interglacial phases in the proportions of grazers vs. browsers in 

the CFR from MIS6 to present. However, given biases in skeletal part transport, the 

skulls and mandibles of larger animals are less likely to be transported to the cave sites 

(Schoville and Otárola-Castillo, 2014) analyzed by Rector and Verrelli (2010). Since the 

majority of small, completely transported (size 2-3) prey are grazers (13/17, 76%), there 
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may be a methodological bias against detecting compositional change. Using the 

presence of indicator species such as springbok and wildebeest, Marean (2010b) argues a 

grassland and shrubland interface at the junction of the current quartzitic cliffs and the 

Paleo-Agulhas Plain around Pinnacle Point during glacial phases is likely. These taxa in 

particular are consistent with an extinct grazing ecosystem, possibly moving from the 

east during the summer to the west during the winter (Figure 9) to capture seasonal 

precipitation and plant growth (Marean, 2010b). 

3.2 South Coast in Context 

3.2.1 Cape Refugium 

 The Cape Floral Kingdom is unique among the six floristic kingdoms in the world 

for the high abundance of endemic plant species that occur in a very small area (Cowling 

and Richardson, 1995). High endemism and high diversity are characteristics of a 

biological refuge (Linder, 2001), and identifying Pleistocene refugia and conserving them 

is a concern of biologists worldwide (Mittermeier et al., 2011; Keppel et al., 2012). While 

the CFR has long been identified as a biodiversity ‘hotspot’, archaeology is providing 

evidence of the role the south coast has played for human populations during periods of 

climatic change (Marean, 2010a). The south coast presents a unique environment for 

human foraging. The warm, nutrient waters from the Agulhas current meet cold Atlantic 

upwelling to create the most productive coastline in Africa in terms of species diversity 

(the west coast has higher biomass). Shellfish, seals, fish, penguins, and whale wash-ups 

are available on the coastline – given the knowledge of when and how to exploit them 

(Marean, 2011). The diverse Fynbos Biome has an array of seasonably edible plants, 

including those with carbohydrate-rich underground storage organs. Marean (2010b) 
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argues this combination of geophytes and regularly accessible protein would provide a 

stable, reliable, and productive resource base for human populations on the south coast 

during the Middle Pleistocene. The evidence for the exploitation of shellfish from PP13B 

at 162 ka, a period of extreme aridity elsewhere in Africa (Lahr and Foley, 1998), 

suggests that humans had knowledge of how to exploit the intertidal regions. The 

complex archaeological record on the south coast shortly thereafter suggests that human 

populations had an expanded behavioral repertoire that included using ochre pigments 

(Henshilwood et al., 2009; Henshilwood et al., 2011), bone tools (Henshilwood et al., 

2001), shell beads (d'Errico et al., 2005), “beauty” shells (Jerardino and Marean, 2010), 

decorated ostrich eggshell and ostrich eggshell flasks (Texier et al., 2010), and stone 

heat-treatment technology (Brown et al., 2009). At PP13B, occupation intensity is related 

to the appearance of coastal use; when the coastline is near Pinnacle Point site intensity 

was greater than when it was further away (Marean, 2010b). This is supported by the 

record further inland at Boomplaas Cave (Klein, 1978; Faith, 2011b) where site 

occupation was sparse until after the LGM, suggesting humans were following the 

coastline out as sea-levels dropped. However, the lack of volumetric data coupled with 

radiometric dates from this time period makes this hypothesis difficult to test at present. 

Given the dynamic relationship between site occupation, sea-level, and the resources 

available to human foragers, controlling site context during MSA occupation is critical 

for understanding landscape scale human behavior. Therefore, the environmental and 

temporal context for each site studied in this dissertation will be presented in the 

following section. 
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3.3 Overview of MSA Study Sites 

 This dissertation is aimed at identifying and explaining patterns of behavioral and 

taphonomic tool edge damage in the southern African MSA. As has been discussed, this 

region has evidence for complex behavior, a rich archaeological record, and relative to 

most other areas in Africa, a well-studied paleoenvironmental context. The MSA 

assemblages studied for this dissertation (Figure 7) each contribute valuable context to 

our understanding of how MSA foragers structured their behaviors on the landscape, 

either through the site context sampled (coastal, interior, cave, open-air) or by the time 

period sampled (MIS 6 – 3). At sites where luminescence dating has occurred, only the 

approximate mean-age will be provided (e.g., “~95 ka”), but it should be noted that these 

are each associated with an error range not always included for brevity and clarity. For 

each assemblage, a single numerical value for the age is provided, but in many cases this 

is extremely speculative and is only provided here so that the assemblages can be placed 

in an approximate temporal order in later chapters. These ages should not be considered 

Figure 7. Location of sites analyzed in this dissertation and major vegetation 

biome relative to current coastline and LGM coastline. 
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the ‘true-age’, but are simply based on an age-model developed in this dissertation and 

subject to further refinement with additional dating and field work in the future. 

 

3.3.1 Pinnacle Point 

Pinnacle Point is located on the south coast of South Africa near the town of 

Mossel Bay (Figure 8). Kaplan (1997) surveyed the coastline along Pinnacle Point prior 

to the development of a golf course and identified 15 coastal caves and rockshelters with 

archaeological deposits. These caves are eroded into the quartzitic headland of the 

exposed Skurweberg formation of the Table Mountain Sandstone Group (Marean et al., 

2004). Recent multi-proxy dating methods have shown that the caves formed at least 1.1 

ma (Pickering et al., 2013). The caves were sequentially numbered from east to west, and 

excavations at three of these caves have recovered an extremely well-dated sequence of 

MSA occupation from 164-90 ka at PP13B, 90-50 ka at PP5-6, and two ephemeral 

occupations between 130 and 120 ka at PP9 (Matthews et al., 2011). Excavation methods 

are described elsewhere (Marean et al., 2004; Dibble et al., 2007), but the important 

aspects will be reiterated here. Excavation units are nested such that a “stratigraphic unit” 

(=StratUnit) composes the most discreet homogenous sedimentary lens, which are 

aggregated into “sub-aggregates” (=SubAgg) of similar composition, which are then 

grouped into “stratigraphic aggregates” (=StratAgg) of largely similar depositional 

geology. All visible artifacts are piece-plotted during excavation using a total station and 

a barcode scanner to record specimen number and provenience information. All 



 

60 

 

excavated material was wet-screened through a nested 10-3-1.0 mm sieve, and sorted in a 

nearby laboratory.  

Excavations at PP13B occurred in three areas (Marean et al., 2010), towards the 

front of the cave (Eastern Area), the back of the cave (Western Area), and ‘lightly 

cemented MSA’ (LC-MSA) deposits along the cave wall (see Marean et al., 2010:Fig 3 

for abbreviations). The Western Area contains deposits that date to three general 

occupation times based on single-grain OSL techniques (Jacobs, 2010): ~95 ka (LB/DB 

Sand 1-3), ~123 ka (LBG Sand Middle), and ~160 ka (LBG Sands 2-4). The Eastern area 

contains two slightly younger occupation deposits, ~95 ka (SB Sand) and ~110 ka 

(LRSpall). The LC-MSA contains two occupation deposits, the Upper LC-MSA dates to 

~120 ka, and the Lower LC-MSA which dates to ~162 ka. The excavations at PP13B 

were targeted in order to achieve a systematic sample of poorly preserved deposits, 

therefore overall sample sizes are relatively small. For purposes of this dissertation, these 

deposits were grouped into those which have been dated to MIS6 (191-130 ka, centered 

at ~160 ka) and those dated to MIS 5 (129-72, centered at ~95 ka). These same groupings 

were used by Thompson (2010b, a) for zooarchaeological analysis of the PP13B fauna, 

allowing for comparisons between edge damage and faunal exploitation to be made 

(Chapter 7). Very little systematic patterning is evident in the stone tools from PP13B – 

the production of large points, blades, and flakes on quartzite (79% of all tools), typically 

cobbles, is predominant (Thompson et al., 2010).  
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Figure 8. Location of Pinnacle Point Caves PP13B, PP9, and PP5-6 and Vleesbaai 

localities on the south coast of South Africa.  

Excavations at PP5-6 are still ongoing, but have documented a nearly continuous 

sequence of occupation ~14m in vertical thickness  that consists of 11 major StratAggs 

and over 300,000 individual plotted finds. PP5-6 has also been dated by more than 65 

single-grain OSL ages (Karkanas et al., 2015), which provides a detailed chronology of 

site occupation. As described by Karkanas et al. (2015), at the base of the assemblage is 

the nearly sterile YBS, which is an Aeolian dune that is likely equivalent to the dune that 

seals PP13B.  This transitions to the YBSR (~89 ka), a unique early silcrete dominant 

occupation. Above is the LBSR (~81 ka), a predominantly quartzite assemblage with 

occasional lenses of quartz or silcrete dominant raw materials. Just above the LBSR is the 

ALBS (~72 ka) and SADBS (~71 ka) where the earliest backed blades in the assemblage 

have been identified. Above these are the OBS 1 (~69 ka), the SGS (~64 ka), OBS 2 (~63 
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ka), and DBCS (~61 ka). The DBCS (and probably the OBS2 and SGS) are identified as 

the formal HP at PP5-6 (Wilkins et al., 2014), and the shape and size of the backed pieces 

are consistent with HP artifacts at other sites (Brown et al., 2012). Above these layers are 

the BCSR and RBSR with mean ages of 52 and 51 ka, respectively (Karkanas et al., 

2015). 

Cave PP9 was excavated in 2006 in two chambers, 9B, and 9C. The MSA 

occupation in PP9 seems to have been light, and the assemblage is small, possibly 

reflecting a few brief occupations. However, there are a fairly large number of points and 

blades compared to cores. Three OSL ages between 130 and 120 ka suggest an ~MIS5 

occupation (Matthews et al., 2011), but the ages are largely overlapping and Matthews et 

al. suspect the micromammal assemblage may straddle the boundary between MIS6 and 

MIS5. For the purposes of this dissertation, the youngest age will be used (~120 ka) 

because the overall sandy deposits and mammal remains are more suggestive of coastal 

occupation, but this should be considered as a minimum age for the occupation of PP9. 

3.3.2 Vleesbaai 

Vleesbaai (VB) is located west of Pinnacle Point on a half-moon bay between the 

Mossel Bay and Fransmanhoek headlands. VB contains a widespread series of red 

paleosols with surface exposures of MSA artifacts that have been researched by the 

SACP4 project since 2005. The sequence appears to span ~120-50 ka based on the 

formation of dune field and aeolianites that have been dated elsewhere (Bateman et al., 

2004) and thus provides a good sequence overlap to the PP sequence, and together the 

two provide a sample of cave/rockshelter and open-air locations close enough to be 

within the same daily foraging radius of a hunter-gatherer band (~7 km apart, Figure 8).  
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Extensive in-field artifact coding and edge damage analysis have documented three areas, 

A-C, of which two appear to have HP or earlier microlithic affiliations including four 

backed blades and a notched blade all on fine grained, heat-treated silcrete (Oestmo et al., 

2014). At least one of the paleosols has a preliminary OSL age of ~53 ka (Oestmo et al., 

2015), but the dating and sequence is still undergoing analysis. This age is consistent with 

the presence of the HP backed pieces, and will be used as a general estimate for the 

occupation of Vleesbaai in this dissertation. 

3.3.3 Die Kelders Cave 1 

Die Kelders Cave 1 (DK1) is located 160km southeast of Cape Town in the 

coastal town of Die Kelders. Excavations at DK1 were initiated by Schweitzer in the 

early 1970s targeting the extensive LSA deposits (e.g., Schweitzer, 1970, 1974). In the 

early 1990s, research resumed at the site under G. Avery, C. Marean, and F. Grine in 

order to expand the MSA artifact collection, explore the paleoenvironmental context of 

the cave sequence, and understand the geologic contexts. While the absolute dating of the 

full DK1 sequence is still not fully known, it is arguably close to 70 ± 10 ka (Feathers 

and Bush, 2000; Schwarcz and Rink, 2000). Grine et al. (1991) report the MSA lithic 

assemblage from the Schweitzer excavations and note a dramatic increase in the 

frequency of fine-grained raw materials (silcrete) in Layer 9-12, while also indicating that 

the assemblage is not typologically linked to the HP or SB. Subsequent analysis by 

Thackeray (2000) and Brown (1999) confirmed the raw-material shift from quartzite 

(layers 6-8) to high frequency silcrete layers (beginning in layers 9-11, but culminating in 

layer 12), and then back to quartzite predominant raw material in layers 13-15. Retouch 

at DK1 is low (less than 3.5%) and no backed tools have yet to be identified, even within 
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layer 12 (high silcrete layer). MSA layers 6 - 9 have abundant marine mammals and shell 

(in micromorphology), whereas Layers 10 - 16 have no evidence for marine shells and 

very few marine vertebrates, and may have been deposited during a period of lowered 

sea-level (Goldberg, 2000:Table 3; Klein and Cruz-Uribe, 2000). For the purposes of this 

dissertation, two occupation aggregates will be used for DK1 – layers 6-9 as a coastal 

occupation (~68 ka); and layers 10-16 as an interior occupation with a date centered 

within the ESR date (~75 ka). These age estimates are highly speculative and are subject 

to change, but serve as a starting point for this analysis. 

3.3.4 Nelson Bay Cave 

 Nelson Bay Cave (NBC) is located on the south side of the Robberg peninsula on 

the south coast of South Africa near Plettenburg Bay, and contains a well-studied LSA 

sequence, and an MSA component including HP and pre-HP MSA industries (Volman, 

1981). NBC was excavated by Inskeep in 1965 and by Klein between 1970-1971 (Klein, 

1972). The stratigraphy at Nelson Bay Cave was excavated in spits of 5-10 cm that 

followed natural stratigraphic bedding planes. The top of the MSA starts at a “crust”, and 

goes down to Level 10 (or “Spit 10”). The HP is reported by Volman to be in the crust 

through level 6, then level 7 is a mixture of HP and MSA II, level 8 is MSA II, and levels 

9 and 10 are MSA I. Volman (1981) reports a high frequency of quartzite throughout the 

sequence, with an increased proportion of silcrete, quartz, and chalcedony in the HP 

layers. The cores at NBC appear to be highly reduced, and there are fewer cortical flakes 

through the sequence than other MSA localities (Volman, 1981). Two layers were 

analyzed for edge damage in this dissertation – Layer 6 (HP) and Layer 10 (MSA I). As 

at DK1, the dating at NBC is approximate. The MSA component has not been dated, but 
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if the HP is analogous to the widespread dating efforts by Jacobs et al. (2008), the crust 

through Level 6 may date to ~65-60 ka. Although speculative, the high frequency of 

quartz in the PP5-6 SGS may have similarities with NBC Layer 6, placing the occupation 

at ~64 ka.  

Layer 10 analyzed in this dissertation is more difficult to place in temporal 

context. There are no faunal remains from the MSA layers to correlate with 

environmental context (Klein, 1972), and the ~10m height of the cave mouth (Deacon, 

1978) would make any deposit older than ~120 ka susceptible to being washed out during 

the MIS5e high sea-stand. The paucity of silcrete in Layer 10 may also imply that the 

occupation pre-dates the increase to silcrete noted at other south coast sites (e.g., at PP5-6 

and KRM). Therefore, the MSA deposit at NBC in layer 10 is likely constrained between 

~120-80 ka (a centered estimate of ~100 ka is used here). But again, these dates are 

highly speculative and only serve as a starting point in this analysis until additional work 

refines the ages. 

3.3.5 Oyster Bay 

 Oyster Bay (OB) is located 10 km west of St. Francis Bay on the south coast of 

South Africa. Artifacts and fossils on the surface of an exposed paleosol were collected 

by J. Brink and J. Binneman in 1993. The random sample of artifacts has been only 

briefly described, although the fossil coprolites and pollen have been published (Carrion 

et al., 2000). The site is suggested to be affiliated with the HP due to the presence of 

backed, crescent shaped blades (Carrion et al., 2000), but unifacial and bifacial points are 

also present (personal observation). Based on pollen (Stoebe/Elytropappus type), similar 

to grasslands surrounding Boomplaas cave (Cowling et al., 1997:73) and vertebrate 
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mammals (zebra and buffalo) located within the paleosol, the environment is 

reconstructed as being much more inland grassland than present – consistent with lower 

sea-levels during the HP. Given these observations, an age towards the beginning of the 

HP when sea-level was at its lowest (Fisher et al., 2010) is tentatively assigned to Oyster 

Bay (~65 ka), but again this is highly speculative and subject to future dating results. 

3.3.6 Inferring Site Context 

In this dissertation, a distinction of environmental context and proximity to 

available coastal and interior resources during site occupation is made so that variability 

in technological adaptations on the landscape may be understood (Table 3). As 

previously discussed, the seven sites studied in this dissertation are currently on the coast, 

but at  various points in the past were located more interior. Therefore, a distinction will 

be made between archaeological site occupation that was paleocoastal and paleointerior. 

The environments around paleocoastal sites will be assumed to be similar, but not 

identical to the modern neocoastal site context. For sites with secure OSL ages, the 

paleocoastline model developed by Fisher et al. (2010) will be used to classify site 
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context. Paleocoastal sites are those estimated to be located within the average modern 

hunter-gatherer daily foraging radius (~12 km) of the coastline (Marlowe, 2005). 

Paleointerior sites are positioned further than 12 km from the paleocoastline. For sites 

without secure OSL ages linked to a modeled paleocoastline distance, classifications are 

made based on the presence/absence of marine resources and the presence/absence of 

terrestrial mammals often found near coastlines or coastal vegetation.  

Figure 9. Schematic of the south coast landscape, (A) relating age with coastline, 

also see Table 3. (B) During interglacial periods, paleocoastal sites are within the 

foraging range of coastal resources and small terrestrial mammals. (C) During 

glacial phases, paleointerior caves allow foraging at the intersection of the migration 

ecosystem on the Agulhas Plain, as well as interior large mammals. Elevation 

change exaggerated to demonstrate effect of lowered sea-level, actual Agulhas plain 

would be flat. 
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It is anticipated that site context within the paleoscape during occupation will 

strongly influence the technological needs and therefore how tools were utilized and 

discarded on the landscape (Figure 9), but it must be stressed that the coastal/interior 

designation is a heuristic tool in order to evaluate the relationship between changing site 

context and stone tool use in the MSA. Unfortunately, there is not perfect agreement 

between the paleoscape coastline distance and the faunal assemblage (particularly 

shellfish) that would be expected. For instance, the SGS layer at PP5-6 has a mean OSL 

age of 64 ± 3 ka and a mean paleocoastline distance of 20.7 km, but the layer is named 

“shelly gray sand” due to the high amount of shell present, which is unexpected for a 

cave located that far from the coast. Similarly, taphonomic processes are known to have 

removed shell remains from archaeological deposits, particularly at DK1 (Goldberg, 

2000). This could lead to misassigned layers as interior contexts based on the perceived 

“absence” of shell remains. Despite these caveats, the paleocontext designations made in 

this dissertations serve as a starting point for the investigation of the influence of 

environment on MSA technology and landscape use. Future work refining the paleoscape 

coastline distance model as well as faunal and shellfish analyses of the analyzed 

assemblages will improve upon the analyses and results presented in this dissertation 

(Table 3).  

Paleocoastal assemblages on the south coast would have access to many of the 

plants and animals available around the site locations today, plus several additional 

extinct species. The percentage of main habitat types within 12 km of each site’s 

neocoastal context is shown in Table 2. The predominant vegetation around each site 

consists of fynbos vegetation, currently. Thicket only occurs around the open-air sites, 
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Vleesbaai (6.4%) and Oyster Bay (6.8%), while strandveld mainly occurs around the 

caves. Coastal protein resources such as shellfish, washed up seals and whales, would 

have been available at paleocoastal sites, however terrestrial animals would have been 

more limited to small bodied prey such as tortoises, dune mole-rats, and smaller 

ungulates such as grysbok and steenbok. 

Table 2. Terrestrial vegetation within 12km radius of sites in this study under 

modern conditions. 

Environment DK1 VB PP NBC OB 

Fynbos 52% 69% 56% 80% 38% 

Renosterveld - 17% 9% - 35% 

Thicket - 6% - - 7% 

Strandveld 44% 2% 30% - 17% 

Forest 2% - - 15% 1% 

Other 2% 6% 5% 4% 3% 

Ocean 45% 32% 34% 57% 26% 

The paleointerior site context, in contrast, would have a broad array of large bodied 

terrestrial fauna available nearby, but coastal resources would be less available. 

Thompson’s (2010a) analysis of the PP13B archaeological fauna noted that size 1 (4.5-20 

kg) (prey body size groupings from Bunn et al., 1988) ungulates are more common 

during MIS5 while size 5 (900+ kg) ungulates are more abundant in MIS6, consistent 

with this expectation. A similar pattern is shown from nearby Blombos Cave (Thompson 

and Henshilwood, 2011), where larger animals are brought in by humans during cooler 

climates, and many more size 1-2 ungulates during warmer periods. At DK1, layers 10/11 



 

70 

 

are inferred to be a paleointerior setting (Table 3), but there are a large number of size 1 

bovids. However, these were predominantly brought in by raptors (Marean et al., 2000a), 

and the human-accumulated component is actually focused on large prey (size 3-4) 

consistent with expectations. Ethnographic and archaeological studies of shellfish 

transport show that movement over 10 km is uncommon (Erlandson, 2001). Although 

size 2-3 taxa are transported nearly completely by modern hunter-gatherers in Tanzania 

(Monahan, 1998), there are none transported further than 6 km (Bunn et al., 1988; 

O'Connell et al., 1988, 1990; Bunn, 1993), and there is only a single observation of a few 

giraffe ribs being transported 14 km (Bunn et al., 1988). The inferred site context for each 

archaeological assemblage studied is presented in Table 3 at the end of this chapter. 

3.4 Conclusion 

 The south coast of South Africa provides a unique setting in order to investigate 

changes in how humans used technology on the landscape. The dynamic interplay of 

climate change, coastline fluctuation, diverse geology, unique vegetation, and changing 

animal communities in the Middle and Late Pleistocene CFR provide the background to 

this investigation. In the next chapter, the theoretical underpinnings of archaeological 

inquiry will be developed in order to link past human behavior with a static 

archaeological record. How foragers develop and use technology on the landscape has 

important implications for their ability to meet challenges and structure their economies. 

Within the paleoenvironmental background of the south coast CFR, the structure of 

human foraging adaptations can now be addressed. 

  



 

71 

 

Table 3. Paleo-context of assemblages used in this study.  Approximate mean age 

estimates and setting inferred from references cited in text (errors not included for 

simplicity). Assemblages in approximate stratigraphic order, but future work is 

needed to resolve relative stratigraphic positioning between sites; *denotes 

assemblage with disagreement between amount of shell and coastal assignment. 

Site/ Assemblage ~Age  MIS Industry km to Coast Setting 

PP5-6 RBSR 51 3 MSA 11.6 Interior 

PP5-6 BCSR 52 3 MSA 10.1 Interior 

Vleesbaai 60(?) 3 HP?  Interior 

PP5-6 DBCS 62 4 HP 17.2 Interior 

PP5-6 OBS2 63 4 HP? 17.3 Interior* 

NBC 6 64(?) 4 HP  Interior 

PP5-6 SGS 64.5 4 HP? 20.7 Interior* 

Oyster Bay 65(?) 4 HP  Interior 

DK1 6-9 68(?) 4 MSA  Coastal 

PP5-6 OBS1 69 4 Microlithic 20.5 Interior 

PP5-6 SADBS 71 4 Microlithic 15.1 Interior* 

PP5-6 ALBS 72 5a MSA 10.7 Interior* 

DK1 10-16 75(?) 5a MSA  Interior 

PP5-6 LBSR 81 5a MSA 1.1 Coastal 

PP13B MIS5 95 5c MSA 1.4 Coastal 

PP5-6 YBS 96 5c MSA 1.4 Coastal 

NBC 10 100(?) 5d MSA  Coastal 

PP9 120 5e MSA 0 Coastal 

PP13B MIS6 160 6 MSA 26.1 Interior* 
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CHAPTER 4 – THEORETICAL ORIENTATION  

 

4.0 Introduction 

 The previous chapters provided a background into the origin and evolution of the 

modern human lineage, as well as a context for MSA foragers on the south coast that may 

provide some of the earliest evidence for modern human population’s behavioral 

complexity. What follows in this chapter is the background that bridges the 

archaeological record with actualistic studies of how stone tools develop damage due to 

use, and broader theory about how human foraging populations make technological 

decisions. This chapter begins with a discussion of how Middle Range theory connects 

the past and present, and how it is applied through the remaining chapters of this 

dissertation. There are two levels of inference building being applied in this dissertation – 

the first are lower level causal chains following uniformitarian assumptions about how 

artifacts exposed to experimental process today can be used to infer behavior in the past. 

The second are higher level inferences about human behaviors at the landscape scale. 

Ethnographic observations and optimal foraging theory provide bridging arguments that 

connect patterns of tool use and discard on the landscape, with how foraging populations 

living on a dynamic south coast environment would structure their movements and use 

technology on the landscape to acquire resources. At the end of this chapter, the goals 

and hypotheses of this dissertation are presented, which combines the two levels of 

Middle Range inference to postulate about how modern human groups in the MSA were 

using technology to adapt to a dynamic environment on the south coast of South Africa. 
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4.1 Middle Range Theory 

 Theory is required to bridge the gap between how objects were used and 

discarded in the past and the observations about artifacts and their contexts archaeologists 

make in the present. Inferential chains based on uniformitarian assumptions and analogic 

reasoning are used to link experimental patterns generated from actualistic studies to past 

processes. Uniformitarianism is the assumption that the same natural laws and processes 

that operate now, were also operating in the past (Gould, 1965; Lyman, 1994). 

Uniformitarian assumptions help to limit the range of inference to only those processes 

that can be observed in the present, removing unlikely processes from the specter of 

possibility. Without uniformitarian assumptions, there are no constraints on interpretive 

possibility, and no system for evaluating the strength of bridging arguments.  

Actualistic research provides trace-agent linkages by making controlled 

observations of modern processes to infer how they operated in the past. Gifford-

Gonzalez (1991) developed an inferential model for understanding zooarchaeological 

taphonomic processes that is equally applicable to understanding edge wear formation on 

stone tools. In both cases (lithic artifacts and faunal assemblages), researchers are 

attempting to make sense of artifact patterning that could be due to taphonomic 

(trampling, turbation) or behavioral processes (cutting/cut-marks, spear-tips/human 

accumulation). According to Gifford-Gonzalez’s model, a trace is a visible attribute 

displayed on an artifact or ecofact – the archaeological patterning in need of explanation. 

The causal agency is the physical cause of the trace. The effector is the material that 

contacts and effects artifact modification. The actor is the source of external energy on 

the effector. The strength of this inferential chain is related to the direct observation 
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between trace and actor (Gifford-Gonzalez, 1991; Marean, 1995). The inferential link 

between archaeological trace and an actor is strengthened by either the distinctiveness of 

the linkage - only one actor produces the trace in question (Wylie, 1985); or in the ability 

to quantify the likelihood of the linkage such as a statistical assessment of likelihood or 

probability (Burnham and Anderson, 2002). In lithic use-wear research, the focus has 

been almost exclusively on finding distinctive linkages between trace and actor that can 

be shown to be diagnostic through blind-testing (Donahue, 1994; Evans, 2014). 

In archaeology, the process of constructing bridging arguments between past and 

present constitutes what Binford (1977, 1981) considered Middle Range Theory (MRT). 

MRT connects ideas about past processes (General Theory) with empirical observations 

made in the present. As Binford (1977) asks,  

“What meaning may we justifiably give to contemporary static facts regarding past 

dynamics? What conditions of dynamics, not available for observation, produce the 

forms and structures observable as static patterning in the archaeological record? In 

Figure 10. Flowchart of causal experimental chain between observed actors and 

resulting traces guiding Middle Range research. 
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approaching this problem, we must develop ideas and theories (middle-range theory) 

regarding the formation processes of the archaeological record. Only through an 

accurate understanding of such processes can we reliably give meaning to the facts 

that appear, from the past, in the contemporary era. (p.6)” 

Despite over 30 years of archaeological research, there is still a need for Middle Range 

research, ethnoarchaeological field work, and experimentation, and this dissertation 

bridges the gap between archaeological patterns of edge damage on stone tools, and the 

behaviors and processes which formed those patterns. 

A common issue in archaeology with inferring past processes, is that different 

actors can result in the same observed archaeological traces. This is known as 

equifinality. Archaeologists have many tools available for recognizing patterns, but fewer 

Middle Range tools for ascribing meaning to patterning. As Todd (1983) states, “Our 

ability to recognize patterning in the archaeological record far outstrips our present 

competence to give behavioral meaning to our observations – either at the site specific or 

general theoretical level (p. 9).” While additional actualistic research can provide insight 

on many lingering questions in archaeological research, they often point towards 

equifinality issues that had previously been unidentified. Identifying vague similarities 

between experimental and archaeological traces are insufficient, informed inferences 

about the archaeological record must take into account plausible explanations based on 

uniformitarian assumptions, and then make statements about the probability with which 

each may account for observed phenomenon.  

 In this dissertation, MRT is operating at two levels of inference in order to 

understand early modern human behaviors in the MSA. The lower-level inference falls 

within uniformitarian assumptions linking stone tool edge wear traces to prehistoric 
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effector and actors. To make these inferences, experimental assemblages of edge 

damaged artifacts exposed to known behavioral and taphonomic processes are compared 

to archaeological assemblages. It is assumed that stone tools today break in the same 

ways when stepped on, used as a spear tip, or as a butchery tool, as they always have in 

the past. Those processes that are statistically dissimilar to archaeological patterning can 

be removed from consideration, and interpretive focus placed on those patterns that do 

explain a significant amount of the variation in edge damage patterning. The higher level 

MRT inference falls within the realm of ethnoarchaeology and behavioral ecology, but 

also incorporates inferences from the lower level MRT. These higher level causal chains 

operate at the landscape scale of hunter-gatherers using and discarding stone tool 

technology, and attempting to understand MSA patterns of technological organization 

and foraging patterns. Ethnographic and ethnoarchaeological research are used in order to 

generalize about human behavior, and develop hypotheses about prehistoric behaviors 

that are tested.  

4.2 Middle Range Theory: Artifact Inference 

Experimental archaeology seeks to provide the Middle Range research that 

connects physical artifacts with past processes, using modern observable processes as 

analogs (Gifford-Gonzalez, 1991).Using experimental archaeology methods designed to 

develop and test hypotheses about artifact patterning have a long history in archaeology 

(Ascher, 1961; Semenov, 1964), and researchers of Pleistocene archaeological sites have 

often been at the forefront (Isaac, 1971; Toth and Schick, 1983; Frison, 1989). Since 

nearly every archaeological context is a palimpsest of site use to some degree (Foley, 

1981), Schiffer (1987) argues that inference must begin by identifying both cultural and 
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natural processes that formed the archaeological record. Experimental archaeology 

includes a wide array of approaches, including highly controlled laboratory and field 

experiments (Shea et al., 2001; Sisk and Shea, 2009; Iovita et al., 2014), and observations 

of actualistic and naturalistic studies (e.g. Blumenschine, 1988; Marean et al., 1992; 

Atici, 2006). The challenge for understanding prehistoric behavior using experimental 

archaeology is identifying which analogous processes are relevant to the past behavioral 

and taphonomic contexts, and what assumptions are being made about those processes 

(Domínguez-Rodrigo, 2008). 

4.2.1 Experimental Archaeology 

 As previously mentioned, Gifford-Gonzalez (1991) articulates the role of analogy 

in experimental archaeology as a series of nested inferences from the trace (such as an 

edge-wear scar), its immediate causal agent (butchery activity), the effector of the trace 

(hitting bone while cutting), the actor (stone-tool wielding hominin), and the behavioral 

and ecological context. Reid (1982) notes that there are an infinite number of 

combinations of such a hierarchy that could, in theory, contribute to an archaeological 

deposit (Schiffer, 1983). Experimental archaeology focuses the range of possibilities both 

by excluding processes that are unlikely, providing support for those that are more 

plausible, and by building the inferential chain between trace and actor. 

That some (or many) processes or combinations of processes do not necessarily 

produce patterns diagnostic of that combination is a problem of equifinality (Lyman, 

1987). Lyman (1987) proposes a more probabilistic method, based on which processes 

have the highest likelihood based on context, suggesting that “the development of criteria 

allowing an identification that is to some specifiable degree probable is difficult but is 
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nonetheless often how we operate (p.278, emphasis in original).” Developing inferential 

chains based on probabilistic determinations of likelihood provides linkages between 

trace and actor behavior that are grounded in a positivist scientific method. Observations 

in the archaeological record are difficult to explain using the scientific method, in part, 

because the tenant of ‘reproducibility’ requires repeated outcomes from the same process. 

Individuals acting in single moments in the past produced the material record and were 

subject to post-depositional histories unique to its own context. Due to lack of 

reproducibility, Aristotle suggests in Prior Analytics that there can be no “science of the 

individual”. Because science is in search of “universals”, it struggles to explain unique 

events (Larkin, 1971); therefore, since every archaeological observation is, in a sense, 

unique and non-replicable, universal patterns that are statistically discernable in 

aggregate have more inferential power than one-to-one comparison, and fall more 

securely within the scientific method. Generating assemblage-scale expectations for 

behavioral and taphonomic processes helps to identify the formational history acting on 

an assemblage by ascribing statistical confidence in the comparisons.  

 Experimental archaeology provides a method towards creating the MRT that 

“gives meaning to the facts that appear, from the past, in the contemporary era (Binford, 

1977).” Lithic analysts are particularly dependent on using experimental methods to 

create the causal chains that join wear trace observations with human behavior due to the 

lack of contemporary ethnography on human foragers using stone tools, but also because 

stone-tools break in reliable, law-like ways amenable to producing reliable predictions. 

However, inferring tool function involves a series of assumptions about past modes of 
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hafting, use, and taphonomy that makes it more controversial and difficult to generate 

confident inferences. 

4.2.2 Inferring Tool Function 

 Historically, making statements about prehistoric stone-tool function was 

subjective and speculative, based on artifact form and ethnographic analogy (e.g., Bordes, 

1961). Terms such as “scraper” and “hand-axe” suggest their potential uses, but much 

less is known about these artifacts actual functional histories than their nomenclature 

would imply (Shea, 2011b). To inform interpretations of artifact tool function, 

experimental studies of tool use and discard have developed along three main lines: use-

wear, indirect measures, and diagnostic impact fractures.  

Use-wear analysis identifies traces of microfractures, polishes, and residues that 

are argued to have been generated by use-action of certain configurations of tools (i.e., 

hafting presence, cutting action) being applied to different materials. Use-wear is 

commonly divided into “high power” approaches that use magnifications >100x, and 

“low power” techniques that rely on macroscopic traces and features visible at <25x. 

Lithic use-wear analysts create experimental collections of tools that consist of raw-

materials, hafting/prehension arrangements, and use-intensity that are deemed analogous 

to the time period and archaeological culture under investigation (Rots et al., 2011). Use-

wear analysts then use a combination of microscopic polishes, striations, “bright spots”, 

and edge scarring/dulling to infer the life history of a tool by comparison with 

observations from the experimental collection. Blind-tests are used to assess the accuracy 

of analyst functional history interpretations. This analogical approach emphasizes the size 

of the experimental assemblage, the experience and training of the analyst to generate 
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archaeological data of tool function (Rots and Plisson, 2014). Although the results of 

blind-tests have cast some doubt on aspects of functional interpretations (Newcomer et 

al., 1986; Wadley et al., 2004), some analysts have achieved high scores on blind-tests 

(Odell and Odell-Vereecken, 1980; Rots et al., 2006). The impact of post-depositional 

processes is not often explicitly addressed – flakes that appear weathered or rolled are 

excluded from analysis, as are flakes from “disturbed” contexts, but the assemblage 

patterning is rarely described and the criteria for establishing contextual integrity are 

rarely made explicit (Shea, 2011b). Taphonomic damage is often claimed to be ‘random’ 

(Tringham et al., 1974; Pryor, 1988), but statistical methods for differentiating patterned 

distributions are lacking. A critique of use-wear is provided in the next chapter, and an 

alternative methodology that accounts for the assemblage distribution of damage 

distribution is presented. 

Indirect measures are variables that suggest the feasibility of certain tools to have 

functioned for specific tasks. For instance, Shea (1998) uses differences in frequency of 

pointed lithic tools to infer hunting strategies (intercept and encounter hunting in steppe 

and woodland environments, respectively) at Levantine Mousterian sites. Other indirect 

measures such as tip-cross section area (TCSA) measure the size of the hole a ballistic 

armature would create on impact (Hughes, 1998). TCSA has been used to classify stone 

points as arrows, darts, or spears (Hughes, 1998), and have been used to look for the 

origins of projectile technology in Europe and Africa (Shea, 2006). The problem with an 

indirect measure of tool function is that it is only a statement of feasibility without 

demonstrating actual use (Sisk and Shea, 2011:2).  
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To demonstrate associations between tools and hunting, Lombard suggests the 

frequency of diagnostic impact fractures (DIFs; Figure 11) on pointed tools is positively 

correlated with the intensity and importance of prehistoric hunting (Lombard, 2005b). 

DIFs are macroscopic breaks that are argued to only form when tools are exposed to high 

longitudinal force at their tip (Fischer et al., 1984). DIFs are defined based on their 

initiation and termination characteristics as defined by the Ho committee (1979). Fischer 

et al. (1984) argue that step-terminating bending-initiating fractures, unifacial spin-offs 

>6mm, bifacial spin-offs, and impact burinations are “diagnostic” of impact. Villa et al. 

(2009b) argue that the frequency of impact fractures likely have more to do with site 

Figure 11. Fracture characteristics. A) Fractures initiate either with a cone, leaving 

a negative bulb of percussion where narrow force was applied, or in a bending 

initiation where broad force was applied. B) Fractures terminate differently given 

the amount of and direction of force. C) Fractures considered “diagnostic” of 

impact. 
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function rather than the importance of hunting. DIFs will be used in this dissertation since 

their frequency from behavioral and taphonomic processes may be useful indicators of 

hunting technology. 

Behavioral interpretations of how stone tools were used are complicated by the 

effects of post-depositional processes on the surface and edges of artifacts. Historically, 

taphonomy is concerned with the study of how an organism transitions from the 

“biosphere to the lithosphere” (Lyman, 1994), but has taken on a more general definition 

of how natural processes influence the burial of artifacts at multiple scales of observation 

(Barton et al., 2002). Stone tools are the most common surviving artifact from most 

Pleistocene archaeological contexts, and are subject to the same processes of burial as 

faunal remains. Trampling, turbation, and transport are common post-depositional 

processes influencing the preservation of stone tools and their edge modification (Dibble 

et al., 2006). Frequency of post-depositional tool damage formation is directly related to 

the degree of artifact disturbance. Shea and Klenck (1993:187) found increasing amounts 

of edge damage occurring on stone tools that were un-trampled, moderately trampled 

(15-30 minutes), and heavily trampled (45 minutes) . Pargeter (2011a) demonstrates 

increasing trampling intensity with cattle compared to human tramplers corresponds to an 

increase in the formation of lithic breaks that mimic DIFs.  

Since the extent of damage due to both behavioral and taphonomic processes is 

dependent on the duration of exposure to disturbance forces, patterning on less 

intensively trampled stone may be more ambiguous than heavily trampled tools 

(Bamforth, 1988: table 5). Trampling edge damage can produce small regions of 

randomly placed edge wear, or substantially alter edges depending on exposure to 
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disturbance processes. Morphologically, taphonomic edge damage is often described as 

elongated scars (Tringham et al., 1974) that are dispersed along flake edges (Gifford-

Gonzalez et al., 1985; Nielsen, 1991), but occasionally cluster similar to retouched tools 

(Flenniken and Haggarty, 1979; McBrearty et al., 1998) or hafted tools (Marreiros et al., 

2015). Shea and Klenck (1993) and Pryor (1988) found that trampling scars could be 

broad and clustered depending on the intensity of trampling and frequency of scars. Pryor 

(1988) shows that lithic artifacts trampled on sandy surfaces can produce short, broad, 

randomly placed scarring, whereas loamy surfaces can produce more elongated and 

clustered edge damage scars. Bird et al. (2007) argue that the collective result of 

taphonomic studies of edge damage is that right now it is “virtually impossible to 

determine whether sparse damage is due to trampling or use of individual artifacts.” 

Similarly, Akoshima (1987) concludes that with current methodologies, “a certain scar 

cannot be a definitive clue to functional determination and the features of flaking scars on 

the edge as a whole should be the unit of analysis and interpretation”.  

Given that patterns of edge modification that relate to the behavioral component 

of an assemblage’s formational history are of interest for addressing questions about 

human evolution, it is necessary to evaluate, account for, and ‘peel back’ (Marean and 

Bertino, 1994) the post-depositional component of lithic edge-damage formation. Post-

depositional processes are not uniform across time or space, and a methodology that can 

identify taphonomic patterning and temper behavioral inferences accordingly are needed. 

For instance, Pargeter (2011a) and Sano (2009) both have demonstrated independently 

that DIFs can occur on stone flakes exposed to trampling. Thus, even features termed 

“diagnostic”, are not fully indicative of a behavioral signature. However, the frequency 
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with which they occur can be consistent with certain assemblage-scale behavioral 

patterns (Figure 12). Less than 2% of tools exposed to trampling incurred a DIF, whereas 

>40% of experimental tools that are used as projectiles develop a DIF, and sites where 

hunting technology and site function are well known have shown systematic differences 

in the frequency of DIFs (Wilkins et al., 2012). For instance, points recovered from 

Holocene kill sites have nearly 43% DIFs, whereas residential sites only have ~15% DIFs 

on points that are known to have been used as arrows (Fischer et al., 1984; Villa et al., 

2009b; Sano, 2012). Accounting for taphonomic and behavioral wear patterning allows 

statements about prehistoric behaviors to be teased from site formation processes. 

 

 

Figure 12. Frequency of DIFs from four different processes and site contexts (using 

data from Wilkins, et al. 2012). 
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4.2.3 Lithic Variability 

Stone is a reductive commodity - cores are reduced to flakes, flakes reduced 

during use, and retouch reduces worn edges. The traditional archaeological approach to 

making sense of stone tool variability tends to be focused on the end of this reduction 

sequence by grouping the retouched portion of the tool assemblages into form-based 

categories. The assumption is that tool makers had a preconceived ‘mental template’ of 

the final artifact that archaeologists can detect and utilize to understand prehistoric 

behavior. This is exemplified by the myriad of scraper categories developed by Bordes 

for the French Paleolithic (Bordes, 1961). In his effort to make sense of Paleolithic 

variability, Bordes separated sites into culture-groups based on the relative frequencies of 

different types of scrapers. Sites with similar frequencies were argued to be from the 

same culture-groups. Binford and Binford (1969) challenged this approach by arguing 

that these differences in material culture were more likely tied to differences in ecological 

adaptations rather than cultural traditions. Even in the critique of Bordes approach, the 

underlying assumption that tool forms represent ‘real’ categories of deliberate and 

intentional shaping was never in question (e.g., Binford and Binford, 1969). 

Interpretations such as these stem from the ‘final artifact fallacy’ (Davidson, 

2002). Assuming that the stone tools found archaeologically were the initially intended 

size and shape of the manufacturer is almost certainly wrong because tools change 

throughout their life cycle (Barton, 1990). The life-history of a stone tool can see a 

number of transformations based on the needs of the user and the durability of the tool 

(Dibble, 1995; Barton et al., 1996).  Ethnographic observations of intentionally 

reworking an edge to produce a predetermined form occurs largely in the context of 
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hafting, and more often edge retouch can be attributed to resharpening (McCall, 2012). 

Decisions to either resharpen tools or produce flakes with fresh edges involve calculated 

tradeoffs in time investment, transport costs, and tool efficiency (Kuhn, 1995; 

Brantingham and Kuhn, 2001). When raw-material is abundant and transport costs are 

low, it may be more adaptive to have low curation and high frequencies of unretouched 

flakes and tools. Barton (1990), Holdaway and Douglass (2011) and others have shown 

that the reductive nature of tool resharpening means that highly retouched tools are more 

likely the unintended result of tool “life history” extension (Dibble, 1995; Riel-Salvatore 

and Barton, 2004). In other words, many retouched tool categories are more 

parsimoniously linked to flakes that have undergone varying numbers of sharpening 

events. From this perspective the relatively low frequency of retouch in many MSA 

assemblages represent a “fast” life-history with very few tools remaining in the toolkit to 

an “old-age” (i.e., to a stage where retouch frequency is high). 

4.2.4 Causal Chain of Inference Summary 

 Following Gifford-Gonzalez (1991), the chain of inference adopted in this 

dissertation follows the nested structure of trace, causal agent, effector, actor, and 

behavioral context (Figure 10). In the experimental studies, everything but the resulting 

trace is tightly controlled so that causal relationships between processes and patterns can 

be established. Rather than being directed at generating a wide diversity of tools being 

used for a wide variety of tasks, the emphasis is on understanding the probability of edge 

wear, and edge damage distributions. This results in generalizations about the 

relationship between process and pattern, rather than assertions about the generalizability 

of individual features on unique processes. 
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 This causal chain is illustrated in Figure 10 and Figure 13 for the behavioral 

context of field-dressing an animal with a quartzite butchery tool. In this example, the 

actual observations are made on the traces of edge damage on the tool edges. As will be 

explained in the next chapter, these observations are then aggregated, so that assemblage 

scale patterns of edge damage frequency and distribution across tool edges can be 

analyzed. These traces are due to the causal agent of the butchery action cutting meat, 

tendon, bone, and cartilage. The effector is the hafted stone tool used for the butchery 

tasks, and the butcher (Jeremiah Harris) was the actor. As in all the experiments 

performed in this dissertation, every step in the causal chain is fully documented with 

video, photos, or motion capture cameras (for the long-term trampling experiments) so 

Figure 13. Nested causal linkage in edge damage experiments. A) Applied to a 

butchery experiment. B) Nested structure of inference, from Gifford-Gonzalez 

(1991). 
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that there can be no question whether the trace is causally linked to the other parameters 

in the causal chain in each actualistic experiment. 

4.3 Middle Range Theory: Landscape Behavioral Inference 

 Understanding how humans use technology on the landscape requires higher level 

inference that do not necessarily fall under the umbrella of uniformitarian principles as 

previously outlined for the causal chain of artifact wear trace inference (c.f. Gould and 

Watson, 1982; Cameron, 1993). Archaeologists tend to rely on ethnographic analogy 

over explicit modeling in order to create inferences of prehistoric behavior (but see 

below). Establishing a causal chain for inferring prehistoric human foraging and social 

behavior is difficult to operationalize because cultural practices are unlikely to be 

uniformitarian in nature, and therefore referential reasoning is used to create a causal 

chain of inference (McCall, 2012). Referential reasoning identifies linkages between 

human behavioral variability within cultural systems and resulting patterns of material 

remains. These analogies tend to be broad generalizations about how human behavior 

produces material culture (Gould and Watson, 1982). Wylie (1980) suggests that the 

strength of such analogical argumentation is increased the more frequently it occurs, in 

the specificity of its occurrence, and the range of occurrences across time and space. In 

other words, ethnographic analogies are most useful when taken from situations as 

similar as possible to the archaeological question. However, the ethnographic present 

contains a small subset of the diversity of behaviors and activities present in the 

archaeological record. For example, Marean (1997) argues the dearth of ethnographic 

observations from tropical grasslands (where foragers were displaced by pastoralists by 

~4000 BP) has limited our ability to make statements about significant events in human 
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biological and behavioral evolution. Instead, Marean (1997) creates a comparative 

framework where the relevant ecological parameters driving human behavioral variability 

are identified, then finding ‘structural correlates’ between ecological variation and human 

behavior using macro-ecological methods (Hill, 2002), and constructing a conceptual 

model that is then tested with archaeological data. 

One avenue for making predictions about human behavioral variation and 

environmental context is human behavioral ecology, or HBE. HBE brings evolutionary 

mechanisms (natural selection) together with human behavior to create explicit models 

that can be tested with empirical datasets (Borgerhoff Mulder and Schacht, 2012). The 

underlying assumption in behavioral ecology, and evolutionary biology in general, is that 

natural selection has promoted cognitive decisions to be made in an optimizing way in a 

given environment (Smith and Winterhalder, 2006). The hypotheses generated from 

human behavioral ecology (HBE) modeling, including game-theory, optimization, and 

marginal value models, can be tested with empirical data obtained from ethnographic 

research. 

Modern hunter-gatherers are intimately tied to their environment and make 

decisions about how to spend their time based on perceived costs and benefits 

(O'Connell, 1995). In an evolutionary perspective, foraging seeks to optimize the amount 

of resources that may be acquired at the lowest cost possible (Stephens and Krebs, 1986). 

To maximize their return rate human foragers can also use and adjust their technology 

accordingly (Surovell, 2009). Constructing models of costs and benefits that relate to 

goals and behaviors of interest in prehistory produces predictions that can be compared to 
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empirical datasets. Models that fit archaeological datasets are supported, and those that 

do not fit suggests one or more of the model parameters (or assumptions) are falsified.  

In this dissertation, the broad patterns that relate how human populations move 

across the landscape while using, repairing, and discarding technology for acquiring 

resources are operationalized as a series of models, distilled from explicit HBE studies. 

Archaeological inferences are then made as a series of inferential steps starting with 

models of the ecological and environmental context prehistoric humans operated within 

and creating expectations for human behavior. These expectations can then be tested with 

the archaeological inferences from the artifact wear trace analysis. The result is a more 

holistic analysis of MSA behaviors across the landscape, rather than a laundry list of 

which tools were used for what task at each individual site. However, future modeling 

work can improve the specificity and accuracy of the parameters and hypotheses to be 

tested.  

4.3.1 Land-use Patterns 

 Technological organization is constrained by human land-use patterns in as much 

as there is a finite amount of material that can be carried by a forager, and decisions must 

be made about what is transported and what is discarded. Binford (1980) described land-

use systems along a continuum of mobility depending on how frequently co-residential 

groups change central-places (residential mobility) versus sending small task-specific 

groups out and returning (logistical mobility). Mobility patterns are related to the 

abundance and distribution of resources through time and across space (Kelly, 2013:79). 

When resources are clustered across space (patchy), hunter-gatherer groups tend to have 

long-term residential habitation sites and frequent logistical movements (Binford, 1980; 
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Grove, 2009). Schott (1986) argues that groups with fewer residential moves are able to 

have a larger, more diverse toolkit because ‘carrying costs’ constrain the number of tools 

that can be regularly moved. Binford (1980) called these groups “collectors”. In contrast, 

groups that frequently make residential moves by group members moving residential 

camps regularly to resources are called, “foragers”.  

Because the forager and collector models reflect the structure of activities on the 

landscape, they also provide insight into where tools are manufactured, used, and 

discarded. Following Kuhn’s (1989) formal mathematical model of tool provisioning, 

collectors tend to replace tools periodically based on loss of tool reliability during use 

(also see Bleed, 1986). Foragers tend to have continuous manufacture and replacement of 

tools, discarded when they are exhausted and no longer maintainable (Bleed, 1986). 

Under both systems, the spatial distribution of discarded tools will vary because 

transporting unreliable or exhausted tools after use is more costly (in time and energy) 

than discarding broken tools and retooling back at camp when groups are ‘off the 

foraging clock’ (Figure 14). 
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Figure 14. Characteristics of forager mobility and technological organization model 

based off Binford (1980) and others cited in text. Logistic node may appear more 

similar to forager mode. “Risk” refers to the probability of resource shortfall during 

foraging rounds, which may be higher when resource density is low and spaced far 

apart. 

Riel-Salvatore and Barton (2004; Barton and Riel-Salvatore, 2014) have argued 

that mobility strategies may be inferred archaeologically from assemblage analysis of 

stone tool retouch frequency and volumetric density. When sites are short-term 

occupations (forager mode), they tend to leave light densities of artifacts, whereas long 

term occupations (collector mode) leave more dense accumulations. An agent-based 

model illustrated that mobility and place provisioning have strong effects on the 

composition of the archaeological record (Barton and Riel-Salvatore, 2014). Although 

lacking in empirical ethnoarchaeological evidence due to the few modern hunter-

gatherers still using stone, this model is consistent with empirical archaeological evidence 
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from numerous sites in Europe (Riel-Salvatore et al., 2008), Australia (Holdaway et al., 

2010), Africa (McCall, 2007), and North America (Surovell, 2009).  Forager occupations 

with low artifact densities will also tend to be focused on conserving, or curating 

(Bamforth, 1986), stone rather than creating new flakes since raw materials are not being 

replenished during site occupation. As sites are occupied for longer periods, more effort 

may be expended in acquisition of raw material during foraging, and therefore stone is 

more disposable and used more expediently prior to discard.  

Odell (1996) presents a model of tool-use mobility whereby degree of 

sedentism/mobility is related to the diversity of tasks per tool, and the duration of use for 

each tool. As foraging groups become more sedentary, according to Odell’s model, their 

risk of resource shortfall increases, and groups will develop more highly specialized and 

curated tools – especially hafted tools – in order to increase returns. More mobile groups 

will encounter a greater diversity of activities, however, and therefore each tool will need 

to be used for a wider array of tasks. According to this model, each tool type will tend to 

serve more functions with increased mobility. Additionally, increased mobility should 

result in tools that have been utilized more intensively. When risk is high in sedentary 

camps, tools will be discarded well before they are exhausted in order to reduce risk of 

breakage at crucial times of need. 

Land use strategies also influence when and where the repair and discard of worn 

tools on the landscape. Andrefsky (2008) demonstrated how bifacial points with impact 

fractures were discarded depending on the distance to obsidian source in pre-house pit 

occupations in southeastern Oregon. Obsidian bifaces from sources greater than ~40 km 

had fewer impact fractures from projectile use than sources less than ~40 km. At quarry 
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sources, both local and non-local bifaces had the same frequency of impact fractures. 

Andrefsky argues this pattern reflects the land-use strategy of tool use, maintenance, and 

discard of foragers at this time.  

4.3.2 Toolkit Organization 

The technological organization of human foraging is defined by Nelson (1991) as, 

“the selection and integration of strategies for making, using, transporting, and discarding 

tools and the materials needed for their manufacture and maintenance. (p. 57).” These 

strategies directly influence when and where tools are manufactured, used, and discarded 

on the landscape. There are many facets to analyzing how foragers make technological 

organization decisions. One facet explores the complexity, or diversity of the toolkit. In 

Oswalt’s worldwide analysis of food getting technologies (1976), he demonstrates a 

strong pattern with foragers in colder climates having many more tool parts (techno-

units) than temperate and tropical foragers, but the influence of having pack animals 

(sled-dogs) may also contribute to this pattern. Oswalt shows that hunting more ‘mobile’ 

prey is also associated with higher degrees of technological complexity, and groups 

hunting aquatic animals require more complex toolkits than those hunting terrestrial 

animals. The worldwide patterns in technology Oswalt identified may be a result of 

multiple conflated factors that can be difficult to tease apart (Torrence, 1989; Bamforth 

and Bleed, 1997; Marlowe, 2005). Latitude correlates with many variables such as length 

of growing season, above ground biomass, and temperature, and researchers have tried to 

focus on those that may be most relevant (e.g., Binford, 2001).  

“Risk” of resource failure, has been suggested to play a role in increasing toolkit 

complexity (Torrence, 1989; Bousman, 2005). Extrinsic environmental variability (i.e., 
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rainfall and temperature variance) are often used as proxy measures for the probability of 

resource failure (Asseng et al., 2011; Buchanan et al., 2015). Increased risk of resource 

failure tends to result in a more complex toolkit that can increase the probability of 

successful foraging. Although some studies have found positive correlations between 

technological organization and resource failure (Collard et al., 2005; Read, 2008), the 

patterns seem to be most robust at macro-scales such as between tropical and temperate 

foragers. Collard et al. (2011) analyzed a single region of hunter-gatherers, the Pacific 

Northwest, between two habitats that may have had different degrees of resource failure 

risk (in terms of the variance of primary resource availability), the interior plateau and the 

coast, and found no evidence for significant differences in tool complexity or diversity. 

However, the nature of the resources being exploited may outweighed any difference in 

environmental risk that could be detected in this study because foragers that exploit 

marine animals tend to have more complex toolkits in general (Oswalt, 1976:101). A 

more recent analysis by Collard et al. (2013a) found that one proxy of resource failure 

risk (mean rainfall of the driest month) could explain technological complexity among 

hunter-gatherers in western North America better than population size, but most 

researchers seem to agree that there is a dynamic interplay between environmental and 

demographic factors influencing technological complexity (Collard et al., 2013b). It 

should also be noted that between-family food-sharing and storage are primary means of 

daily risk management among most foragers, but within family food-sharing is more 

common among farming economies (Winterhalder, 1990). Any impact of technological 

organization is most likely at larger scales of resource failure risk (annual, decadal, etc.), 

but this is also an area for further study. 
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Henrich’s (2004) model for explaining the loss of technological complexity in 

Tazmanian islanders beginning 8 ka addresses the issue of material culture complexity 

through a formal cultural evolution model. According to Henrich’s model, a sudden 

reduction in population size reduces the cultural knowledge in a population, much like 

genetic founders effect (such as the previously discussed argument for Neandertal loss of 

fire making ability). Without the surviving knowledge, some technological abilities are 

lost. At the other end of the spectrum, larger group-sizes allow for more innovators and 

increased cultural complexity (Derex et al., 2013). Shennan (2001) demonstrated the role 

large populations play in allowing innovative and adaptive technologies to reach fixation. 

Applying this model to the spread of modern humans into Europe, Powell et al. (2009) 

argue that the archaeological appearance of complex cultural traits associated with 

‘behavioral modernity’ is a function of population size. According to Powell et al., the 

appearance of complex material cultural with the arrival of modern humans in Europe 

can be explained better by demographic factors rather than evolved cognitive traits. More 

recently, Derex and Boyd (2015) show that the structure of populations strongly 

influence how likely they are to generate complex culture. Large, partially connected 

populations can generate more complex artifacts than individuals or small groups can. 

4.3.3 Foraging on the South Coast and Agulhas Plain 

As discussed in Chapter 3, resources are distributed on the south coast in a 

heterogeneous pattern of resource habitats. In this section, the land-use Middle Range 

theory that has been developed by researchers is combined with the specifics of the 

Middle and Late Pleistocene south coast environment to develop a model of MSA forager 

mobility patterns.  
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During warmer interglacial phases, the south coast was a rich but spatially 

restricted habitat containing rocky-intertidal shellfish, sandy beach shellfish, fynbos, 

renosterveld, strandveld, and thicket. All these habitats occur within 12 km of the 

coastline around the sites studied here, and have very different expectations for return 

rates of plants and animals (Marean et al., 2014). Hunter-gatherers living in less-patchy 

(more homogeneous) environments are often associated with ‘forager-mode’ foraging. 

Binford (1980) argues that “in relatively large or “homogenous” resource patches…the 

number of residential moves may be increased but the distances between them reduced 

(p. 5)”. In contrast, foraging in heterogeneous environments with clustered habitats 

distributed in space (as the south coast region likely was) may lead to more collector-

mode foraging, which tends to be associated with long-term camps, logistic foraging, and 

low curation toolkits which manifest archaeologically through low retouch, high density 

assemblages. During periods of lowered sea-level, the south coast geology doesn’t 

change but the addition of an Agulhas Plain intersecting the foraging range would have a 

dramatic influence on how hunter-gatherers would be expected to structure their mobility. 

Although some resource patchiness between geological boundaries would still be 

expected (i.e., shale would still be associated with renosterveld and limestone associated 

with fynbos assuming significant amounts of winter rainfall), the new featureless plain 

consisting of C4 grasslands would be much more homogenous, supporting large grazing 

ungulates. Tree species that are not regular components of fynbos vegetation but are 

common in thicket would also be more common and available. Importantly, there would 

be no highly reliable patches of shellfish or stranded marine mammals within the daily 

foraging radius of the paleointerior sites. Although it seems unlikely that the changes in 
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climatic “risks” of resource shortfalls would cause a switch to favor a complete forager-

mode strategy, the timing and spatial distribution of resources within a substantial portion 

of the foraging range would be expected to have a cascading effect on hunter-gatherer 

land-use strategies, such as increased residential movements, increased territory size, and 

increased occupation duration (Grove, 2009:Figure 3). 

It is expected that simply due to the difference in geographic proximity to coastal 

resources, prehistoric contexts will reflect different aspects of the MSA foraging system. 

Near coastal environments, modern foragers sometimes adapt either to coastal or 

terrestrial resources. This is observed in the greater Andaman Islands with the cultural 

separation of forest/coastal groups identified by Radcliffe-Brown (1948:30), as well as 

with Inuit groups that developed coastal/interior adaptations such as the Taremiut and 

Nunamiut, respectively (Murdock, 1969). LSA populations on the south coast of South 

Africa also appear to have followed a similar pattern – interior populations were adapted 

to acquiring interior resources year-round, while coastal populations adapted to acquiring 

coastal resources (Sealy and Van der Merwe, 1992; but see ; Sealy, 2006). Although 

some groups do trek between coastal and interior locations seasonally such as the Wik 

Monkan in Northern Australia, the activities they engage in are very different such that, 

“seeing these people at different seasons of the year would find them….with weapons 

and utensils differing so much in character, that if he were unaware of the seasonal 

influence on food supply…he would conclude that they were different groups (Thomson, 

1939).” It is expected that coastal and interior tool use and discard patterns reflect these 

different adaptations regardless of group or seasonality because of the vast difference in 
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exploitable resources, which provide insight into the landscape tool-use strategies of 

MSA populations on the south coast. 

Similarly, caves and open-air contexts are anticipated to reflect different aspects 

of the MSA foraging system due to differences in proximity to resources and associated 

costs in transport. Binford (1980:9) suggested that there are two basic types of spatial 

context for the discard of artifacts – one is the residential base, or the hub of subsistence 

activities; and the other are locations - a place where extractive tasks are carried out. 

Caves are discreet locations on the landscape, are generally not in direct association with 

resources, and are more frequently reoccupied compared to open-air sites (Binford, 

1982). It is anticipated that caves will tend to reflect strategies where resources have to be 

brought in from elsewhere. This is well known with respect to faunal studies, often 

referred to as the ‘schlepp effect’ (Perkins and Daly, 1968). Figure 15 shows the 

distribution of species by body size between open-air and cave sites combined from 82 

European Middle Paleolithic faunal assemblages. Open-air assemblages have high 

relative frequencies of large prey taxa such as mammoth and whooly rhino, whereas 

caves have higher relative frequencies of size 2 fauna. To understand foraging strategies 

requires sampling both ends of this site occupation and land-use continuum. 

Locations are deposited across the landscape. Binford (1980) argued that due to 

their ephemeral nature, locations tend to be less archaeologically visible, therefore what 

is considered an open-air “site” here may suggest redundant extraction sites or camps 

depending on environment and local setting. Although contextual, caves will tend to be 
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located further from resources. In the case of sea-caves, the productive inter-tidal 

resource zones may be located very nearby, however when sea-level goes down these 

resources will be located further away. As distance from resources increase a more 

exaggerated transport bias against low utility raw material (e.g., broken points) may be 

seen (Kuhn, 1994). Tools discarded in cave contexts will tend to either be towards the 

end of their use-life, or used very opportunistically if the cave is being regularly supplied 

with raw material (e.g., Will et al., 2013). Caves will have lower frequency of impact 

fractures because broken hunting tools are often discarded at locations such as kill-sites 

(e.g., Holdaway, 1989; Villa et al., 2009a; Wilkins et al., 2012:Fig. 2) and because a 

greater variety of activities take place at residential sites, of which hunting tools will be a 

smaller proportion. This context-dependent artifact discard was shown in Figure 12 

where projectile points from kill sites have a significantly higher frequency of impact 

fractures compared to residential sites. It should be noted from Figure 12 that not every 

Figure 15. Relative frequency of prey by body size at caves and open-air sites 

from European Middle Paleolithic assemblages. 
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broken projectile is discarded on landscape. This may be due to retooling tasks such as 

melting resin or untying broken spears/arrows occurring mainly at residential sites, as 

well as carcass transport that may unintentionally bring broken and dislodged points back 

to residential sites within carcass parts.  

Other foraging related tasks such as field dressing, especially of larger game, 

occurs in the field where viscera and internal organs are removed and disarticulation 

occurs. Field dressing is important in order to avoid meat spoilage, and to make carcasses 

more transportable. Tools used for these differing tasks are often expediently produced, 

and deposited after dulling or becoming clogged with fat and fur (Nilssen, 2000), and 

disarticulation activities results in more tool damage than defleshing (Braun et al., 

2008b).  

4.4 Technology and Modern Human Origins 

 Human foragers have occupied nearly every environment within a time frame of 

~50 ky after leaving Africa. The human niche is broad and includes an array of plants and 

animals captured using an array of extra-somatic adaptations. The ecological expectations 

of a human sized carnivore do not accurately predict the position human foragers fill at 

the top of the carnivore guild (Thompson, 2008). Hunting is vital to nearly all hunter-

gatherers for meat, but also for use as a commodity for prestige (Hawkes and Bliege Bird, 

2002; Speth, 2010), gift giving (Gurven et al., 2000; Patton, 2005), and other social 

activities rarely performed with items acquired from gathering (Hill and Hurtado, 1996; 

Bliege Bird, 1999). Technology used by modern humans for reliable hunting developed 

through cultural accumulation and transmission as part of the larger suite of stone tool 

manufacturing behaviors. The predominant archaeological evidence for technology at 
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MSA sites are lithic tools. Patterns of stone tool discard reflect technological decision 

making, and provide insight into how prehistoric foragers structured activities on the 

landscape. Technology is used to acquire resources; however these activities are rarely 

performed in a cave where much of the archaeological information for the MSA comes 

from. Therefore, understanding prehistoric activities requires linking stone tool patterning 

with predictions based on how more recent foragers use resources across the landscape. 

Kaplan et al. (2000) have argued that once hominins have regular access to large 

resource packages such as big game, a suite of life-history changes may be triggered such 

as increased juvenile dependency period, post-reproductive lifespan, and short inter-birth 

intervals. Some of the earliest evidence for technologically assisted hunting of large game 

may be from Boxgrove, England where a horse scapula with a large circular perforation 

indicates a sharpened wooden spear was used to dispatch game (Roberts and Parfitt, 

1999). The 2m long wooden artifacts recovered from Schöningen, Germany may have 

been spears used for hunting large game (Thieme, 1997). Hafted points in the MSA and 

Middle Paleolithic after around 300 kya were likely sometimes used as spear tips. In 

Africa, the earliest evidence for hafted hunting technology at 500,000 years ago was 

reported from Kathu Pan 1 in South Africa (Wilkins et al., 2012), suggesting a deeper 

antiquity to stone-tipped hunting equipment than what was previously thought.  

MSA points are often thought of as spear tips for hunting (Milo, 1998; McBrearty 

and Brooks, 2000). Analysis of the points from Sibudu Cave (Lombard, 2005a; Villa et 

al., 2009b), Blombos Cave (Lombard, 2007a), Rose Cottage Cave (Villa and Lenoir, 

2006), and Kathu Pan 1 (Wilkins et al., 2012) have emphasized the use of points as 

hunting implements. A piece of stone embedded in a cervical Pelorovis vertebra at KRM 



 

103 

 

from Cave 1 MSA levels would seem to support such an interpretation (Milo, 1998), 

although Marean and Assefa (1999)  have noted the unlikely position of the embedded 

stone as a hunting lesion, and suggest the stone was broken during butchery. O’Driscoll 

and Thompson (2014) have shown that embedded stone during butchery is unlikely, and 

suggest projectile impact damage is a more parsimonious explanation despite its unusual 

position, although Milo (1998) presents 17 other instances of embedded stone in KRM 

fauna where butchery was the inferred cause due to similarities with his own butchery 

experiments where stone became lodged in bone (1998:122). Others have noted pointed 

lithic forms likely served many functions in the MSA, as projectiles do ethnographically 

(Greaves, 1997), and analyses by Kuman at ≠Gi and Florisbad (1989), and Schoville at 

PP13B (2010) indicate points were often used and deposited from use as cutting tools. A 

technological shift is evident in HP assemblages, where the frequent production of 

microlithic blades, crescents, and notched blades imply composite tools and possibly 

some of the earliest evidence for bow and arrow technology (Clark, 1977b; Lombard and 

Phillipson, 2010; Brown et al., 2012). Abundant, large-bodied fauna from MSA 

archaeological sites implicate humans as the primary accumulator (Marean et al., 2000a; 

Thompson and Henshilwood, 2011), including many so-called ‘dangerous’ animals 

(Faith, 2008). Sites such as PP13B, and Florisbad where points have been analyzed and 

are argued to have not been used as armature tips still have large game (Brink, 1988; 

Thompson et al., 2010), presumably from active hunting (but see Wadley, 2010b). Given 

the antiquity of hafted hunting technology and the zooarchaeological evidence, the 

question is not whether MSA hominins had hunting tools, but what those tools were, how 
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they were used across the landscape, and how the technologies for acquiring resources 

were invented, maintained as cultural knowledge, and either evolved or lost through time.  

Modern humans on the south coast inherited the cognitive capabilities to create 

hafted hunting technology and rapid cultural ‘ratcheting’ and structuring of the landscape 

into residential, and logistical foraging groups based on the availability of resources 

implies a sophisticated system of foraging strategies. Since evidence for hafting and 

hunting technology has implications for how the cognitive behaviors attributed to MSA 

foragers, then factors that may influence the discard and archaeological visibility of 

hunting technology on the landscape needs to be understood. Strategies of technological 

organization that emphasize serial replacement of broken and worn tools leads to variable 

discard locations across the landscape rather than focused retooling events at residential 

camps. Basing our understanding of the evolution of technology solely from assemblages 

in caves or other highly visible archaeological deposits that tend to be from residential 

occupations may make certain innovations invisible by restricting the amount of 

behavioral variability being sampled. By incorporating a more complete sample of 

landscape-scale technological wear traces, hypotheses about the diversity of hunting 

technology, toolkit organization, and landscape use strategies can be tested. 

4.5 Goals and Hypotheses 

 In the following chapters, the methodology and results for creating Middle Range 

linkages integrating behavioral ecology models and experimental archaeology to achieve 

two research goals relevant to modern human origins are presented.  
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4.5.1 Goal 1 – Experimental Work 

The first goal is to establish linkages between traces of assemblage lithic edge 

damage distributions and causal agents of known taphonomic and behavioral processes. 

Post-depositional damage is reported to be undirected and random along tool edges 

(McBrearty et al., 1998), but rarely quantified (c.f., McPherron et al., 2014). In contrast, 

behavioral wear is often concentrated at frequent areas of use (Tringham et al., 1974). 

The goal of most use-wear analyses is to identify individual tool function using a 

reference collection composed of many different tool types, arrangements, and use-

actions. However, the multitude of prehistoric and taphonomic wear combinations (and 

resulting wear-trace equifinality) is rarely addressed because sample variation is 

emphasized over sample size. As a result, traditional use-wear analysis suffers from a 

lack of robust statistical testing by which other researchers can assess their results. The 

work presented in the following chapters provides more general patterns identifiable from 

archaeological assemblages compared to experimental distributions, with the 

behavioral/taphonomic processes with the highest likelihood being quantitatively 

arbitrated. Creating experimental assemblage distributions of edge damage allows 

behavioral inferences to be made by quantitatively linking to archaeological patterns of 

edge damage through the nested actualistic chain of inference.  

4.5.2 Goal 2 – Archaeological Hypothesis Testing 

The second goal of this dissertation is to analyze a cross-section of MSA cave and 

open-air archaeological assemblages from across paleoscape contexts and will proceed 

with two objectives. The first objective is to identify whether taphonomic processes are 

entirely influencing archaeological edge damage patterning. The second objective focuses 
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on understanding behavioral differences in edge damage formation by testing for 

differences in how stone tools are used and discarded in coastal/interior and cave/open-air 

contexts. The following series of hypotheses are made using experimental and behavioral 

ecology models for how tool use and discard behaviors may differ across the landscape.  

4.5.2.1 Hypothesis 1 

Stone tools from open-air contexts indicate greater exposure to weathering processes, 

whereas cave contexts indicate greater exposure to trampling. 

Distributions of edge damage from open-air and cave sites will be compared to 

the fluvial and trampling experiments. Frequency of rolled and water-worn surfaces will 

be identified and compared between assemblages. Importantly, if archaeological edge 

damage distributions are not significantly different from the taphonomic damage patterns, 

then no behavioral interpretations of edge damage can be made from those assemblages. 

However, if both site contexts are significantly different from the experimental pattern, 

then fluvial and trampling processes are unlikely to have significantly influenced the 

formation of edge damage.   

4.5.2.2 Hypothesis 2 

 Sites on the paleocoast will reflect different patterns of hunting and butchery on points, 

blades, and flakes, compared to sites in the paleointerior. 

A vastly different array of plants and animals were available in paleocoastal 

contexts compared to the paleointerior (chapter 3). Much like today, it is anticipated that 

during paleocoastal occupation, resources important to human foragers will tend to be 

distributed patchily (i.e., seal colonies, mollusks, geophyte patches), and the fauna living 
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in coastal Fynbos vegetation tends to be small-bodied (Skead, 1980). For paleointerior 

occupation (including sites that are today located on the coast, but were located in the 

interior during periods of lowered sea-levels), it is anticipated that the expansion of a 

grassland ecosystem south of the modern coastline onto the Agulhas bank would bring 

with it a more homogenous suite of  large-bodied grazing terrestrial fauna such as black 

wildebeest, giant hartebeest, and long horned buffalo (Marean, 2010b; Compton, 2011; 

Faith, 2011a). The foraging strategies represented by each analyzed lithic assemblage are 

likely to vary in response to site context during the time of occupation, and it is 

anticipated that paleointerior occupation will differ from paleocoastal occupation. 

Ethnographically, small bodied animals are frequently hunted with snares, traps, and 

untipped arrows (Churchill, 1993), which would decrease the amount of hunting evidence 

left on stone tools. If paleocoastal cave sites tended to be residential, long-term 

occupations, then less intensively used cutting edges will be predicted since long-term 

residential sites are supplied with fresh stone more regularly (e.g., Binford, 1980; 

Surovell, 2009; Barton and Riel-Salvatore, 2014). If no significant difference between 

site proximity to the coastline is observed, then it is possible that MSA foraging patterns 

were less dichotomous and similar lithic discard behaviors occurred across the landscape. 

Therefore, by testing for differences in tool use and discard between paleoscape contexts 

a better understanding of the foraging system on the south coast during the MSA may be 

gained.  

4.5.2.3 Hypothesis 3 

Caves will have fewer DIFs and less overall damage; whereas open-air sites will have 

higher frequency of DIFs and more overall damage. 



 

108 

 

It is hypothesized that tools discarded in cave contexts will tend to either be 

towards the end of their use-life, or used very opportunistically depending on whether the 

cave is being regularly supplied with raw material. Caves will have lower frequency of 

impact fractures because broken tips are more often discarded on the landscape, 

frequently at kill sites (Villa et al., 2009a; Wilkins et al., 2012) and because a greater 

range of activities take place at residential sites, so the relative frequency of hunting tools 

is lower. It is not clear how retouch, the use of foreshafts, and armature delivery 

mechanism influence where broken points are repaired or discarded on the landscape. In 

Holdaway’s (1989) model, broken point bases from use as armatures are expected to be 

more common at residential sites when they are removed from the haft prior to inserting a 

fresh point, while the broken distal end is ‘lost’ on the landscape and not returned to 

camp. Flenniken (1991) has shown that on arrows from North American prehistoric sites, 

the ratio of base (complete points and proximal bases) to tips (distal tips and midsection) 

reflect site function - kill sites have a 1:1 ratio of bases:tips, whereas camp sites have a 

nearly 4:1 ratio of bases to tips. Perhaps counter-intuitively, since broken projectile tips 

are more likely to contain evidence of impact fractures, and the tip portion is more likely 

to be deposited in the field, then the expectation may be that the relative frequency of 

impact fractures will be higher on the landscape than in a residential site, as was shown in 

Figure 12.  

Most archaeological examples of this patterning involve technology that includes 

a foreshaft where the stone point is physically attached. Fewer studies have addressed 

how stone points directly attached to a main shaft would be treated after breakage. 

Foreshafts are advantageous in that they reduce the likelihood of losing the costly main 
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spear shaft, reduce the overall weight that is carried when multiple armatures are carried, 

and allow for quicker in-field repairs (Churchill, 1993; Ellis, 1997). Their downside is an 

increased time investment prior to hunting, and higher likelihood of breakage during use 

(Ellis, 1997). The discard of tips in the field may be related to the discard of broken 

foreshafts in the field. 

Extraction activities such as disarticulation creates more edge damage (Braun et 

al., 2008b), which will tend to occur outside of cave contexts. Caves tend to be supplied 

with material; therefore tools are expected to be damaged less intensively. It is 

anticipated that open-air tools will be damaged more heavily and distributed more 

similarly to the experimental set of disarticulation tools. If no significant difference 

between site context is observed, then it is possible that MSA foraging was either highly 

residential (and thus open-air sites are also residential) or perhaps caves were not as 

residential as anticipated. Either way, by comparing edge damage patterns across site 

contexts, insight into the landscape use strategies of MSA populations on the south coast 

will be gained. 

4.5.2.4 Hypothesis 4 

Blades from open-air sites will reflect field-butchery patterns of edge damage more 

closely, and blades from caves will reflect defleshing tasks. 

 Given that experimental butchery patterns of field-dressing and defleshing tasks 

can be distinguished (which will be tested in Chapter 6), it is also hypothesized that on 

average, field-dressing tasks will tend to occur at localities on the landscape, and that 

defleshing tasks will occur more frequently at habitation and residential sites. These tasks 
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will be evident in the patterns of edge damage on the stone tools from these different 

settings. 

4.5.2.5 Hypothesis 5 

Temporal change across sites will show shift from spear-technology using points to 

microlithic and blade-based projectile technology. 

 Projectile technology arguably appears by 71 ka at Pinnacle Point in the 

microlithic technology in the SADBS at PP5-6. Many have argued that the backed 

geometric blades and segments (portions of blades) in the HP is indicative of the first 

evidence for projectile technologies. However, MSA technologies typical of sequences 

before and after the HP never totally disappear. If convergent-MSA points were at least 

sometimes used as spear-points, then the question becomes whether this technology is 

replaced during the HP, or if the innovations during the HP add technological complexity 

onto existing technology that is maintained within the cultural system. Given a return to 

typical prepared core stone tool technologies after the HP, the most parsimonious 

explanation is that quartzite points were used for the same tasks, or range of tasks, 

throughout the MSA. The alternative possibility is that tasks completed with quartzite 

tools become more specialized, while silcrete tools are used for many of the tasks 

formerly used mainly by quartzite points and blades.  

4.6 Conclusion 

 In order to make statements about MSA technological behaviors on the south 

coast of South Africa, Middle Range research must be conducted that provides linkages 

between how humans structured their mobility in the past and present, and between 
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patterns of edge modification recognizable archaeologically and patterns incurred during 

experimentation today. A model of hunter-gatherer mobility and lithic use was presented, 

which led to the formulation of a series of hypotheses about MSA technological 

behaviors on the south coast. Combining experimental archaeology, and archaeological 

data from coastal and interior caves and open-air sites provides the data with which these 

hypotheses may be tested. The following chapter provides the methodological procedures 

that were performed to accomplish these tasks. 
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CHAPTER 5 – METHODS  

 

5.0 Introduction 

In this chapter, the development and history to the methods used in this 

dissertation are presented. The assemblage edge damage approach arose out of perceived 

shortcomings with traditional use-wear methods being applied to MSA artifacts on the 

south coast. Traditional use-wear is performed on fine-grained raw materials, ideally with 

organic residue preservation. It typically lacks firm statistical footing due to the small 

sample sizes. The method advocated here documents edge wear instances on fine and 

coarse grained raw materials using GIS software. These are then used to create an 

aggregate distribution of damage along tool edges, from proximal to distal, for large 

samples of different tool types. Generating edge damage distributions for experimental 

taphonomic and behavioral processes allows post-depositional patterning to be separated 

from tool use patterns. In the following chapter, these methods are described, and the 

analytical procedures outlined with which the hypotheses presented in Chapter 4 can be 

tested. 

5.1 Edge Damage Background 

The formalization of stone tool use-wear came with the pioneering work of 

Semenov (1964) published in Russian in 1957, but translated into English in 1964. Others 

had been interested in the question of how tools were used, but assumptions were made 

based on morphology, ethnographic similarity, and archaeologist’s intuition about how 

tools “should” be used. Semenov (1964) analyzed tool striations and made comparisons 

with how metal tools were striated to argue for tool function. In Western countries, use-
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wear experimentation first became more truly Middle Range with the work of Sonnenfeld 

(1962) who wanted to know whether stone adzes were used as hoes, and devised a series 

of experiments to test this hypothesis. Inspired by the English translation of Semenov’s 

book, Tringham and colleagues (1974) developed an extensive experimental collection of 

stone tools used for a variety of tasks and analyzed them under low-power microscopy to 

identify patterns of edge damage due to tool use. As discussed in the previous chapter, as 

archaeological science developed more sophisticated techniques in other fields, analysis 

of stone tool edge-wear also experienced a fluorescence of methods and techniques for 

identifying prehistoric function. One branch of use-wear studies sought to identify 

microfractures on tool edges under low-power microscopes that could be used to 

determine the orientation of cutting motions and the types of materials being worked 

(Odell, 1977; Odell and Odell-Vereecken, 1980; Kamminga, 1982). This method has the 

advantage of being relatively quick, with the ability to analyze large assemblages of 

tools. The other branch of use-wear studies looks at fine-grained materials under high-

magnification for polishes, striations, and abrasion that can be linked to experimental 

observations of these micro-traces. This method has been argued to be more reliable on 

some aspects of tool use such as the material being worked, but is very time intensive – 

both in time spent analyzing per tool, and time required for training. Micro-traces of 

residues have been explored on tool edges using new instruments capable of detecting 

blood (Kooyman et al., 1992; Downs and Lowenstein, 1995), plant and animal tissues 

and polish (Briuer, 1976; Anderson, 1980; Kealhofer et al., 1999; Lombard, 2004), and 

ochre and mastics from hafting (Lombard, 2007b). More recently, amid calls for 

standardization of all these methods (Evans and Donahue, 2005; Evans et al., 2014), 
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some researchers are developing machine-learning methods (Stevens et al., 2010) and 

high-resolution scanning of tool edges and polishes (Evans and Donahue, 2008; Evans 

and Macdonald, 2011; Macdonald, 2014) to classify worn edges and remove the 

subjectivity in use-wear that has long been criticized (Newcomer et al., 1986; Unrath et 

al., 1986; Shea, 1987). While not yet fully realized, such methods hold promise of a 

completely objective methodology for confidently identifying prehistoric tool use. 

The current methodology for inferring tool function in the South African MSA 

record has several issues that this project seeks to overcome. (1) Identifying residues is 

dependent on good organic preservation (Crowther and Haslam, 2007), which is 

uncommon at the timescale of the MSA. (2) Traditional “high-powered” microwear 

studies (i.e., polishes, striations) are generally only visible on very fine-grained stone 

tools, and while present, are a minority of raw materials in the MSA (Rots et al., 2006), 

which has limited the utility of microwear studies during this time period. (3) Due to time 

constraints, residue and microwear analyses are often on a small portion of an assemblage 

studied based on a priori expectations rather than the complete, unbiased assemblage. 

These pre-selected pieces are often retouched, and although present in MSA assemblages, 

are much less common than at contemporary sites in Europe or the Levant. (4) Most use-

wear analyses are based on subjective similarities between individual archaeological and 

experimental tool sets, which although informative, lack quantitative means of testing 

researcher assertions, and blind-test results have shown a need for significant 

improvement. (5) In terms of impact fracture frequencies (DIFs, as defined in Chapter 4), 

only a handful of studies have identified how taphonomic processes may form DIFs, 

leading some to question how ‘diagnostic’ of projectile use these fracture types could 
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possibly be (Sano, 2009; Pargeter, 2011b). (6) Morphometric variables indirectly linked 

to tool use as hunting tips are based on the range of variation in ethnohistoric tool 

observations, and may not be representative of Pleistocene technologies. With few 

alternative methods for understanding how stone tools were used in the past, this aspect 

of human evolution has been largely unknown. Developing methods to not only make 

inferences about stone tool use, but also how tool use varied across the landscape is 

critical for understanding technological adaptations during the MSA. 

Many current studies still use high-powered and low-powered microscopy to 

address questions of tool function (Lombard, 2005a; Rots, 2013); however as will be 

described in this chapter, this dissertation takes a different approach in many respects. 

The operational sequence of traditional use-wear is generally along the following: 1) 

create a well-controlled experimental collection with a wide variety of tool types used for 

a wide variety of function. 2) Study the experimental tools and learn how to identify 

where use damage occurred, and how to classify it. 3) Study a selected portion of 

archaeological stone tools. 4) Identify individual tools that have characteristics 

subjectively similar to pieces in the experimental collection. 5) Disregard taphonomic 

processes as possible agents of wear formation. Making individual comparisons and 

classifications makes it difficult for other researchers to evaluate the claims made by use-

wear analysts. It could be argued that the blind-test provides the means by which use-

wear claims may be judged, however even blind-tests are difficult to evaluate since there 

is no standardized protocol for how they are administered, how they are scored, or how 

they are reported (Young and Bamforth, 1990). The diversity of archaeological 

assemblages far exceeds the diversity of experimental lithic collections, and it could be 
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argued that unless blind-tests are performed on the same raw material as the assemblage 

being analyzed, then the results have little meaning anyway.  

Alternatively, the method advocated here is an assemblage-scale, probabilistic 

approach, or simply the “assemblage approach” (Wilkins et al., 2015). This method 

overcomes problems with the traditional use-wear analysis reliance on linking individual 

features on individual tools, and the subsequent lack of statistical power to make 

confident inferences about wear formation causes. With the assemblage approach, 

populations of damage on experimental tools are compared to populations of damage on 

archaeological tools. It is difficult to assess the individual function of individual tools, but 

through the analysis of a population of tools, patterning that is consistent with some 

processes over others can be quantitatively assessed. The operational sequence is as 

follows: 1) create large samples of well-controlled experimental tools exposed to both 

taphonomic and behavioral processes so that patterns can be analyzed on distributions. 2) 

Photograph experimental tools both before and after and map damage to exact location 

on tool edge for analysis and so the trace-agent causal linkage is documented. 3) Analyze 

complete archaeological assemblages of tools. 4) Quantitatively compare the frequencies 

and distributions of archaeological edge damage to the experiments to make confident 

statements about likely causes of edge damage patterning. 5) Identify taphonomic edge 

damage patterning, and utilize to understand site formational processes and prehistoric 

edge damage dynamics.  

To understand variability in MSA tool use, there is a need to develop methods 

that quantitatively examines such assemblage-scale patterns. Bird et al. (2007) use image 

analysis and GIS to examine the distribution of edge damage from a sample of points 
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from PP13B. In their analysis, Bird et al. mapped edge damage onto shapefile outlines of 

lithic artifacts. Using the centroid of the artifact, they created polar distributions of edge 

damage using the degrees around the tool relative to the midline. This approach has the 

advantage of precisely recording edge damage in a geospatial environment with very 

large samples, from which statistical tests of whether damage is distributed randomly or 

non-randomly may be performed and is more objective than traditional use-wear because 

it is based on aggregated assemblage distributions and no attribution of individual edge 

damage features is made. With polar statistics, Bird et al. (2007) argue points from 

PP13B exhibit patterned damage, unlikely to be the result of taphonomic processes. 

Schoville (2010) continued this line of research by looking at both the frequency and 

distribution of edge damage on every point from PP13B. Schoville also used GIS to 

record edge damage by mapping edge scars to an image of the tool, creating a permanent 

record of damage observations. Schoville then analyzed the perimeter of tool edges using 

common linear statistical tests by dividing points into edges based on the segment 

between point proximal platform and distal tip (Schoville, 2010; Schoville and Brown, 

2010). The frequency and distribution was then compared to random, or uniform, 

distributions with the Kolmogorov-Smirnov test (Schoville, 2010) and to an experimental 

distribution of points used as spear points (Schoville and Brown, 2010). These results 

demonstrated that the points from PP13B have edge damage that is non-randomly 

distributed, and significantly different from spear-tipped armatures. Wilkins et al. (2012) 

used the assemblage approach to analyze the damage patterns on 500,000 year-old 

banded ironstone points from Kathu Pan 1 (KP1), South Africa. The edge damage at KP1 

was distributed significantly different from random, and consistent with experimental 



 

118 

 

spear-points using knapped ironstone points. This result establishes an early time period 

for hafted hunting technology in the early MSA (Wilkins et al., 2012).  

5.1.1 Objections 

The assemblage edge damage method has recently been challenged by Rots and 

Plisson (but see Lazuen, 2014; 2014). In their view, function can only be established by 

observing wear traces on individual archaeological tools that can be linked to a “large” 

referential collection. To establish projectile function, Rots and Plisson (2014) argue that 

multiple “diagnostic” traces must be observed on an individual tool that are suggested to 

be indicative of projectile function. However, this assertion has not been shown in the 

literature, neither statistically nor anecdotally. Rots and Plisson (2014) also suggest that 

post-depositional damage cannot be understood within an assemblage of tools because 

there is no way to sort the “blur” of taphonomic edge damage from behavioral patterns. 

Wilkins et al. (2015) argue that at an assemblage scale, post-depositional damage is 

distributed differently than behavioral damage, which allows it to be statistically 

differentiated. Assemblage scale analyses allow for quantification and statistical 

evaluation of archaeological patterning to contextualize behavioral meaning in ways that 

individual artifact approaches cannot (Riel-Salvatore et al., 2008). 

An important point to make here is that the assemblage approach is not argued to 

replace the existing microscopic use-wear methodology, but to move lithic functional 

analyses forward by placing lithic modification observations into a universal format 

(GIS) and provide more objective and quantitative tools for analyzing those observations. 

The focus of this dissertation is on macroscopic edge damage analysis because large 

samples of tools can be analyzed on coarse and (relatively) fine-grained raw material 
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types (i.e., quartzite and silcrete, respectively), distributions of damage can be statistically 

compared to experiments, and distributions of lithic edge damage are detectable even at 

low exposure durations (Shea and Klenck, 1993). Analyzing assemblage patterns has 

stronger statistical power compared to interpreting individual wear traces. Here, the 

existing methodology is improved upon and populations of stone tools from entire MSA 

assemblages at multiple scales are compared to a wider variety of experimental 

processes.  

Evans (2013) argues that the assemblage approach suffers from a lack of blind-

testing by which other researchers can judge its efficacy. Blind-tests are important tools 

to critique the practitioners of microwear and improve the methodology. The assemblage 

edge damage approach does not lend itself as easily to blind-testing validation for several 

reasons. First, it is an assemblage approach, therefore individual classifications that are 

either “true” or “false” are not made. The only observer classification is which areas of an 

edge are damaged or not, which is akin to identifying flake scars at a small-scale, which 

is not difficult. Secondly, the edge damage method makes probabilistic statements using 

statistical methods instead of relying on ‘expert opinion’ after adequate blind-test 

proficiency. In other words, with the assemblage edge damage approach, statements are 

made about whether two distributions are from the same populations with 95% 

confidence; with blind-tests, the probability of wear trace attribution being correct is 

relative to the analyst’s performance on a limited set of blind-test scores (often less than 

20 flakes; Evans, 2014). These test scores are frequently around 50%, although some 

researchers have achieved 90% accuracy (Rots, 2006). Since the assemblage damage 
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method has an alpha of 0.05, it is a more conservative approach to questions of tool 

function.  

5.1.2 Shape and Edge Angle 

Morphological characteristics of analyzed tools can influence edge damage 

formation and must be accounted for. Protruding edges form damage due to cutting 

motions more quickly, while scraping damage forms concave notches (Tringham et al., 

1974). The frequency with which tool edges will form visible damage is also influenced 

by lateral edge angle. Thinner edges form damage more readily than steeper angles 

(Grace, 1989). The complicating aspect of edge angle, is that on some types of detached 

pieces, edge angle may be non-randomly distributed (McPherron et al., 2014). Since edge 

angle is correlated with taphonomic edge damage formation, if edge angles are non-

randomly distributed then edge damage may be non-randomly distributed as well. 

McPherron et al. (2014) found that edge angle on flakes was non-randomly distributed, 

but did not examine points or blades. Schoville (2014) found that trampling edge damage 

on silcrete blades formed randomly, implying that the edge angle may not be patterned on 

blades as it is on flakes. Comparing edge damage to a random or uniform distribution as a 

proxy for taphonomic damage is reasonable when there is no systematic patterning in 

edge angle, but when there is, or when the distribution of edge angle is unknown, it is 

necessary to compare with empirical experimental assemblages that include the same 

variability in edge angle as archaeological assemblages. In other words, finding that an 

assemblage distribution of damage is significantly non-random (i.e., Bird et al. 2007; 

Schoville, 2010) does not necessarily imply behavioral edge damage formation. To 

account for both tool shape and edge angle in this dissertation, damage distributions will 
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be compared to random, but also to empirical taphonomic edge damage distributions 

from lithic material separated into morphologically similar categories as archaeological 

tools so that edge angle is accounted for. The three categories that will be analyzed 

separately are (1) blades, defined as having a maximum length greater than two times the 

width; (2) points, defined as detached pieces greater than 2 cm in maximum length with 

converging lateral edges; (3) flakes, complete detached pieces that terminate in a distal 

feather, hinge, overshoot, or step (when confident not a snap). Since there is no reason to 

suspect the distribution of edge angle is different between the experimental and 

archaeological tool shape categories, the edge damage patterns account for variation in 

edge angle – whether random or non-random. Performing the taphonomic experiments to 

generate edge damage distributions is a crucial aspect of this research since no 

methodology yet exists to quickly obtain edge angle data at the same scale as the edge 

damage data. 

5.2 Edge Damage Methods 

5.2.1 Edge Damage Populations 

 Central to this project is the motivation for generating statistically meaningful 

experimental populations of lithic edge damage that can be used to infer prehistoric 

behavior from archaeological distributions (Table 4). Since any behavioral input to edge 

wear occurred in minutes or hours and post-depositional processes have been acting on 

artifacts for at least 50,000 years, the first step in analysis must be testing whether the 

patterning, or lack thereof, is consistent with taphonomic processes rather than behavioral 

tool use. Two of the most common post-depositional processes that influence artifact 

movement are trampling and fluvial saltation. Therefore, a population exposed to both of 
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these processes were generated. The next step is to generate behavioral processes that can 

be compared. Two behaviorally meaningful uses of stone tools are as butchery cutting 

tools and as armature tips. Although stone tools can be, and likely were, used for a wide 

range of tasks (Shea, 2011a), these two functional categories are frequently juxtaposed in 

MSA studies. Some studies emphasize tools used for cutting tasks (Kuman, 1989; Iovita, 

2011), others emphasize their use as armatures (Lombard, 2005a; Brooks et al., 2006; 

Sisk and Shea, 2011), and ethnographically points were often used as both (Greaves, 

1997). Stone tools have been used for general cutting and butchery purposes since the 

origin of the archaeological record (Semaw et al., 2003; McPherron et al., 2010). 

However the landscape variability in this behavior is not well known, especially on the 

south coast MSA where the availability of terrestrial animals was in flux due to changing 

coastlines and precipitation (Marean et al., 2014). By limiting the comparisons to 

‘butchery’ and spear-tipped armatures, the evidence for landscape behavioral change in 

the MSA can begin to be evaluated. Additionally, these two tasks reflect differences in 

where extractive behaviors occur on the landscape because armatures are more frequently 

discarded on the landscape (such as kill sites, Villa et al., 2009a) whereas generalized 

cutting tools may be discarded more frequently in residential sites either sequentially or 

during retooling prior to logistical forays (Kuhn, 1989; Shea, 1991) because tools are 

discarded when exhausted in a serial fashion (Kuhn, 1989:38). Future work will expand 

the range of variation in tool distributions, but the scope of this dissertation is tightly 

focused on the edge damage patterning created by trampling, tumbling, butchery, and 

spear-tipped armatures. 
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5.2.2 Edge Damage Recording Procedures 

With one exception (Vleesbaai), all tools were analyzed and recorded following 

the same method. The method involves taking photographs of tools being studied, 

georeferencing those images in GIS, creating shapefiles and mapping the damage 

locations, and then bringing the shapefiles into a format to analyze relative damage 

distributions. This procedure creates an archive of digital shapefiles that encode the edge 

damage spatial information and allows for a variety of analyses, but the focus here will be 

on the frequency and distribution of edge damage on complete flakes, blades, points, and 

retouched pieces. 

Experimental Processes Description 

Spear Armatures Pointed flakes shot at four culled springboks with a 

calibrated crossbow 

Butchery Tools Unhafted and hafted knives used for butchering three 

domestic pigs 

Trampling Grids laid out at small farm with low, medium, and high 

activity for five months of trampling by cows, unshod 

horses, and wildlife 

Tumbling Commercial rock tumbler with loose gravels used for 5 

minutes per tool 

Table 4. Summary of tool use experiments in this study. 
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Every tool was first photographed on the dorsal and ventral surface with a DSLR 

camera with macro lens onto a grid using a portable light tent to ensure uniform clarity 

and color correction ability. The camera was mounted to a tripod with adjustable 

horizontal arm to ensure stable imagery, and every photograph is taken from an 

appropriate height above the artifact to minimize image distortion.  Digital images were 

then georeferenced in ESRI ArcGIS 10.2 using a background grid for landmarks (Figure 

16). For every specimen a shapefile was created for both the dorsal and ventral that 

contains the specimen number, damage classification codes, and damage metrics. A 

polygon is then traced around each specimen.  

Every specimen was then analyzed for macroscopic fractures under a binocular 

stereomicroscope with strong incident lighting. A maximum of 30x magnification was 

used to identify the nature of damage. Using the digitized image as a guide, individual 

edge damage occurrences are traced around individual damage scars by visually 

identifying on the imagery the outline of edge damage identified under microscopy. Each 

damage polygon is categorized based on visual morphology (e.g., crushing, snap, 

rounded - following Tringham et al. (1974)); and retouch is defined as continuous 

invasive edge modification with negative bulbs of percussion.  

5.2.3 Cumulative Distributions 

Each shapefile was standardized based on the location of damage from the 

platform to tip. For non-pointed artifacts, the tip is defined as the most distal point of a 

flake perpendicular to the platform, roughly synonymous with where “technological 

length” is taken. An excel template was then used to calculate total edge length and scale 

to 100. This removes the effect of size differences so that edge damage locations along 
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the tool edge are all relative to the standardized tool edge length between the platform 

and tip. The resulting data matrix consists of each tool face and edge (i.e., dorsal left edge 

of specimen 305308) and 100 columns where the presence/absence of edge damage is 

expressed as either “1” (present) or “0” (absent). For instance, if there was an edge 

damage scar that was 3% of the total edge length centered halfway up the edge, then 

columns 49, 50 (the exact midpoint), and 51 would have a value of “1” for that edge, 

while the remaining 97 locations would have a value of “0”. These damage counts can 

then be totaled for the location (sum of all damage that occurs at a single relative 

location), for a tool edge, for a complete tool, for a stratigraphic level, and higher scales 

Figure 16. Collection of edge damage data. A) Photographs taken from dorsal 

and ventral views onto a grid, then georeferenced and the outline digitized. Edge 

damage occurrences are “cut” out of the tool perimeters. B) The tool is divided 

into left and right sides for analysis, and the relative location of damage is 

calculated so that tool size is standardized. C) Archaeological assemblage damage 

is aggregated by adding damage locations into a frequency distribution. D) 

Archaeological assemblages (grey) may then be statistically compared to 

experimental distributions (red/blue). 
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of analysis. For example, if there were 100 tools, and every edge of every tool was 

completely damaged, then the total amount of damage possible would be 100 tools * 4 

edges * 100 locations each edge could possibly be damaged in = 40,000. However, in 

reality the amounts of damage are way lower than this, but this illustrates how damage 

counts may be totaled, and undamaged areas excluded. 

Cumulative distributions of edge damage frequency along tool edges are 

compared with the Kolmogorov-Smirnov (KS) test. The KS statistic is used to compare 

two cumulative distributions of edge damage in order to test whether both samples are 

drawn from the same distribution (Shennan, 1997). This statistic has the advantage of not 

making assumptions of what the underlying distributions are, and in that way is similar to 

bootstrapping methods. With each distribution represented by the cumulative frequency 

of edge damage from the platform to the tip (Figure 16), the KS test subtracts 

distributions and compares the maximum observed difference (in percentage) to a 

calculated D-statistic set to the desired confidence level (α= 0.05). If the maximum 

difference is greater than the D-statistic, the null hypothesis (equal distribution) is 

rejected. The locations of edge damage along the edges of lithic points are the 

distributions being compared (Figure 16). Distributions are also compared to a 

theoretical, “uniform”, distribution that reflects edge damage that formed with equal 

probability along the tool edge. Although this is roughly equivalent to a “random” 

distribution, the term “uniform” is used for these analyses to clarify that the comparison 

was not randomly sampled or resampled, but simply a uniform distribution of edge 

damage along the tool edge. Many experimental studies have demonstrated that damage 

from different activities creates different edge-wear distributions (Tringham et al., 1974; 
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Keeley, 1980; Rots et al., 2011) and the KS statistic helps tease apart these processes 

based on the observed damage patterning. 

5.2.4 Best-Fit Models 

Human behavior is extremely variable, and there are more possible combinations 

of tool types, hafting arrangements, and tool uses than in any experimental collection. 

The KS statistic is a hypothesis-testing approach (sensu Hilborn and Mangel, 1997), but 

given variability in assemblage composition it is expected that many sites may be 

significantly different from all experimental populations. Therefore, the experimental 

distributions of lithic edge damage are treated as models and assessed against the 

archaeological patterning, and the best model can be quantitatively arbitrated using a 

model selection inference criterion called the Akaike information criterion (AIC), which 

not only accounts for the increase in fit with added parameters (e.g., multiple edge 

damage distribution process combinations), but also penalizes a model for having added 

parameters without sufficient increase in the explained variance, which prevents over-

fitting (Burnham and Anderson, 2002). Results of this maximum likelihood approach 

provide the best possible model given the currently available data, making them 

comparable among assemblages (Hilborn and Mangel, 1997).  

This statistical procedure is an advance over previous work that relied solely on 

hypothesis testing because it is multivariate, less sensitive to low sample sizes, and less 

susceptible to Type II errors (Akaike, 1974; Hilborn and Mangel, 1997). The stepwise 

regression models were analyzed in JMP Pro 11 statistical analysis software using a 

forward stepping (additive) procedure where the term with the lowest p-value is added 

first, and then subsequent terms are added and removed until the best model is found. The 
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best model is one with the lowest value for AIC, but if the change in AIC (ΔAIC) is <2, 

then the models are considered equivalent and no “best” is selected. Each term is given 

equal weight to enter the model, but will explain different amounts of the residual error. 

In other words, a best model with multiple terms (e.g., spears + trampling) will be 

selected based on the overall improvement in model fit, but the terms will explain 

different amounts of the variance in observed archaeological edge damage patterning.  

The results are presented for two models. The first is the result from fitting a 

single parameter to the archaeological data. The resulting best-fit variable AIC and R2 

values can then be compared against a full-set parameter model where the model fitting 

algorithm sequentially adds and subtracts parameters until a model with the lowest AIC is 

reached. With n-parameters, the best fit model can contain anywhere from 1 to n 

variables. When n>1 in the full-set model, the R2 value will always be lower than the 

single-fit model. On many models, the R2 values are low, even though the likelihood 

procedure identified it as the best-fitting model. Highly variable data can produce low R2 

values, even though a significant trend has been fit. Given the multitude of processes that 

can influence edge damage formation, it is unlikely to find a perfect fit. However, the 

model-fitting procedure identifies the most likely process or combination of processes 

given the currently available data. Therefore, the model that is chosen is selected based 

on quantitative criteria, but is subject to further refinement in the future as additional 

experimental processes are added as potential terms for the model fitting. The 

methodology outlined here should serve has a baseline for future likelihood approaches to 

lithic use-wear and functional analyses. 



 

129 

 

An example of this procedure is illustrated in Figure 16D. If the first panel is the 

archaeological distribution being analyzed, the model-fitting procedure will 

systematically add and subtract parameters for trampling damage, cutting damage, and 

projectile damage, until a best-fit combination with the lowest AIC is obtained (likely just 

the “spear tip” model in this example). 

5.3 Taphonomic Experiments 

 Stone tools can be subjected to a variety of processes during the production, use, 

and discard. Archaeologists are generally interested in the behavioral component of an 

artifact’s life history. Once artifacts are discarded, trampling and fluvial transport can 

alter the provenience and cause breakage to lithic material. Some of this post-depositional 

damage can appear similar to behaviorally caused damage, and accounting for this 

equifinality is the first priority for a functional analysis of lithic edge damage analysis. In 

addition to refining behavioral interpretations, post-depositional patterning may provide 

insight into some other aspects of site formation, such as walking paths and occupation 

intensity. 

 All stone tools used in the following experiments were knapped by Kyle Brown 

using raw-materials obtained from primary sources near Mossel Bay, South Africa. The 

raw-material was obtained from some locations where no permit was required, although a 

permit was obtained for collecting geologic samples as part of the NSF funded 

Paleoscape Modeling Project (NSF #BCS-1138073  to C. Marean). All silcrete was heat-

treated prior to knapping following Brown et al. (2009). Silcrete and quartzite were 

knapped using hard-hammer percussion and punch techniques similar to MSA 

assemblages (Soriano et al., 2007). 
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5.3.1 Trampling 

 After being discarded and prior to burial, stone tools are vulnerable to being 

stepped on by humans and animals. There have been numerous studies directed at 

understanding the effects of trampling on stone tools. Several factors have been shown to 

influence the production of trampling damage to flakes, including raw material, the 

duration of trampling, the density of artifacts, and how compact the sediment is. These 

factors also influence the spatial disturbance of artifacts.  

 Unlike previous studies of trampling that tend to be short, focused, intentional 

trampling events (Shea and Klenck, 1993; Eren et al., 2010; Pargeter, 2011a; McPherron 

et al., 2014), for this experiment a long-term study site was used. Artifact burial is likely 

a process on the order of weeks or months (if not years), therefore a long-term study site 

is more applicable to the archaeological record than 30 minutes of human trampling. 

These experiments were performed at the Alpen Cellars property winery in Northern 

California that also maintains a small herd of cattle, two unshod horses, and is home to a 

variety of wild animals such as deer, bear, and small mammals passing through (Figure 

17). Three different contexts were selected for trampling sites based on the degree of 

animal activity that was expected. The high-intensity site is a coral used periodically to 

restrict the movements of the cattle prior to being transported off-site. Horses and cattle 

are periodically fed in the coral, attracting their presence frequently. The ground surface 

in the coral is barren, and the sediment is soft clayey-silt, that turns into mud during 

rainstorms. Although substrate has been shown to influence the amount of damage that 

occurs due to trampling, prior studies have not found significant differences in the 

distribution of damage due to substrate (Pryor, 1988). The medium-intensity site is 
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adjacent to a cattle trail that leads to the coral, located on a small grassy field between 

two water culverts. Animals would pass through this area, and occasionally graze on the 

grasses, but it is not a large area nor a constrained area in which intensive activities 

would take place. The area is surrounded by deciduous trees, and the leaf-litter was raked 

clear prior to laying out the flakes. The soil is a silty loam, and highly organic with 

grasses, roots, and weeds present. The low-intensity site is located on the edge of a large 

field. While the area is occasionally grazed by cattle and horses, it’s a large area and no 

repeated concentrations of animals was anticipated. This area is a fluvial silty floodplain, 

mostly covered with perennial rye grasses (non-native). Some small granite and shale 

Figure 17. Trampling experiment layout. A) Cattle preparing for trampling. B) 

Grid used at each site. C) Grid on the ground. D) Tools pre-trample. 
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cobbles were noted in the area. This area was not raked clear, as the leaf-litter was much 

lighter than in the medium-intensity area.  

Motion-sensitive digital cameras were used to monitor the actual activity of these 

three areas. Similar “camera-traps” are used to monitor wildlife activity by hunters, 

biologists, and conservationists all over the world, and are widely available. A camera 

was placed ~2m high (above cattle height) on nearby trees, with an empty 16 GB SD 

memory card. These cameras are rated for 6 month-battery life, but the batteries were 

changed after 3 months (October) to ensure functionality.  

 At each trampling site, 100 flakes were used consisting of 40 quartzite, 40 

silcrete, and 20 quartz and ironstone flakes. A variety of shapes and sizes were used (see 

Appendix A). Flakes were laid out in a 3 x 3m grid, divided into ten evenly spaced 

columns (A-J) and rows (1-10) using string, so that 100 cells of equal 30x30cm size were 

created. This allows each artifact to have a buffer around it that may be less realistic for 

comparisons with cave and rockshelter settings, but it is important to establish a baseline 

of damage patterning before incorporating increasingly complex variables. Metal stakes 

were driven into the corners of each trampling area to ensure recovery after 6 months of 

trampling. A stratified-random assignment of flakes to trampling area, column, and row 

was used. Flakes were then laid out by alternating dorsal and ventral side-up in the center 

of each cell (established by using a straight-edge to connect the corners and placing the 

flake in the center “X”). In this way, each trampling site was randomized, containing 

equivalent frequencies of flake raw-material and side-up. The layout of each trampling 

area is shown in Appendix B.  



 

133 

 

 After 5 months of exposure (August – December, 2012), the tools were collected 

prior to the onset of winter when snow cover could make recovery difficult. 

Unfortunately a total station wasn’t available when the tools were laid out, but a Topcon 

Total Station was used during recovery to piece plot the location of each tool. Since the 

starting position of each tool is known relative to the corners of the 3x3 grid, starting 

coordinates were able to be retro-calculated by obtaining the coordinates of the grid 

corners, and then offsetting for each cell. For instance, cell A1 would be in the Northwest 

corner of each grid, and the center of the cell is 15cm south and 15cm east of the corner 

coordinates. Each tool that was recovered in-situ was piece-plotted to total station, and 

the side-up was recorded. This allows for tool recovery rates, disturbance distance, and 

side-up “flipping” to be calculated for each trampling area. 

5.3.2 Rock Tumbler 

 Chambers (2003) has shown that during flume experiments, lithic damage only 

formed during artifact saltation. A water-filled rock tumbler is often used by geologists to 

mimic the effects of long-

term fluvial saltation in a 

short amount of time (e.g., 

Argast et al., 1987; Smith 

and Nelson, 2003:8). In this 

experiment a mixture of 

coarse gravels (avg. 26mm 

length), water, a quartz 

hammerstone, and 

B

D

A C

Figure 18. Rock-tumbler setup. A) Two drums. B) 

Digital timer switch. C) Drum with water and gravel 

matrix. D.) Tools after tumbling laid out to dry. 
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individual silcrete and quartzite flakes were placed into a two chamber commercial rock-

tumbler to simulate the impact of fluvial activity on stone tool edges (Figure 18). The 

mass of each barrel including water, gravel, and hammerstone was similar (Barrel 1 = 

422g; Barrel 2=434g). Sixty tools evenly split between quartzite and silcrete were 

prepared for this experiment. Tools were paired so that a silcrete flake and quartzite flake 

of similar size were run simultaneously in one of the two barrels. The barrels were 

alternated between raw-materials after each trial run so that neither quartzite nor silcrete 

were in the same barrel. After trial and error, a duration of 5 minutes was decided on, 

which created some damage without completely rounding all the edges.  

5.4 Behavioral Experiments 

Experimental collections of stone tools with both known taphonomic and 

behavioral wear patterns are needed to understand archaeological patterns of lithic edge 

damage. At the artifact scale, many types of stone breakage are indistinguishable between 

behavioral and depositional processes. It is often argued that post-depositional damage 

tends to be undirected and random along tool edges (McBrearty et al., 1998) and that, in 

contrast, behavioral wear is concentrated at frequent areas of use (Tringham et al., 1974). 

The goal of most use-wear analyses is to identify individual tool function using a 

reference collection composed of many different tool types, arrangements, and use-

actions. However, the multitude of prehistoric and taphonomic wear combinations (and 

resulting wear-trace equifinality) is rarely addressed because sample variation is 

emphasized over sample size. As a result, traditional use-wear analysis suffers from a 

lack of robust statistical testing by which other researchers can assess their results. This is 

exemplified in the recent debate over the function of 500,000 year old points from KP1. 
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In their critique of Wilkins et al. (2012), Rots and Plisson (2014) suggest that for a tool to 

be considered to have had functioned as an armature, it has to exhibit, “two wear 

features”. This assertion is not referenced, and has no statistical reasoning behind it. 

Assertive statements such as, “…more than 50% of the pieces could hardly have been 

used in any way other than to tip arrows…” (Lombard, 2011) and “this pattern is 

interpreted as being caused by a thrusting spear that is turned (twisted) to one side (the 

right) immediately after insertion…” (Rots et al., 2011) are presented as fact, often with 

little supporting statistical analyses with which other researchers can evaluate the claims. 

This project seeks more general patterns identifiable from archaeological assemblages 

compared to experimental distributions, with the behavioral/taphonomic processes with 

the highest likelihood being quantitatively arbitrated.  
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5.4.1 Spear Armature Tips 

A calibrated crossbow was constructed following Shea et al. (2001) to create 

experimental patterns of edge damage from thrusting spear use (Figure 19). Experimental 

points similar to those recovered from PP13B were replicated by K. Brown using 

quartzite local to the Pinnacle Point caves (n=62). Each convergent flake was hafted to a 

wooden dowel using a combination of Acacia karroo mastic and cow (Bos taurus) tendon 

(Figure 19). Each experimental point was initially thrust once and then examined for edge 

wear. Each surviving point (i.e., still forming a point) was thrust until a catastrophic 

break occurred, up to a maximum of six trials. The crossbow was calibrated to 28 kg of 

draw force similar to Shea et al. (2001) and was kept constant for each replication. Four 

B

D

CA

Figure 19. Spear armature setup. A) Quartzite point hafted. B) Points drying in 

kiln. C) Point lodged in carcass after being fired. D) Calibrated crossbow setup. 
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springbok carcasses (Antidorcas marcupialis) culled from a nearby ranch for the purpose 

of experimentation and consumption served as the target.  

5.4.2 Butchery 

 Three butchery experiments were completed using domestic pigs obtained from 

small-scale residential farms located near Arizona State University. These experiments 

were all performed by an experienced butcher, hunter, and licensed journeyman farrier 

with extensive knowledge of ungulate anatomy, Jeremiah Harris. A single butcher was 

used to keep butchery technique constant and remove inter-experimenter variability in 

stone tool use. A total of 60 tools were prepared for the butcher. 

Each pig was dispatched using modern techniques, but all subsequent butchery 

was performed using a combination of quartzite and silcrete tools. In addition to unhafted  

 

Figure 20. Butchery tools. A) Silcrete, B) silcrete with mastic, C) quartzite with 

mastic, D) quartzite in slot haft with mastic. 
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tools, two basic hafting styles 

(Figure 20) were made using mastic 

obtained from commercial grade 

acacia gum (“gum Arabic”) 

following designs used by 

Australian Aborigines and 

traditional leillara blades (Tindale, 

1965). While there are numerous possibilities for hafting methods, these two strategies 

involve the fewest techno-units (Oswalt, 1976), are well known from the ethno-historic 

record, and serve as a starting point for the assemblage edge damage method. The 

powdered resin was mixed with water over low 

heat on a stove using an initial ratio of 2.5g resin, 

2.5g water, and 1g sand, following the recipe 

provided by Zipkin et al. (2014). The mixture was 

allowed to air dry until tacky, then applied to stone 

tools. Ten quartzite MSA points were lodged into 

20cm long hard-wood handles using a slot-haft, then reinforced with the mastic mixture. 

Mastic ‘globs’ were applied to both quartzite points and silcrete blades following Tindale 

(1965).  

The butchery was divided into two stages that represent different activities in 

order to test whether there was a difference in behavioral signature between the two. The 

first stage was the initial “field dressing”, where the animals were eviscerated, skinned, 

and disarticulated into manageable units as shown in Figure 21. The second stage of 

Figure 21. Field dressing during butchery. 

Figure 22. Defleshing butchery. 
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“defleshing” involved cutting the meat from around the bones and reducing conjoined 

elements into parts that could be efficiently managed while cooking shown in Figure 22. 

5.5 Archaeological Assemblages 

The analyzed archaeological assemblages cover a cross-section of MSA cave and 

open-air assemblages from across paleoscape contexts (see section 6.2 for archaeological 

results and sample sizes in Table 20). Data have been collected periodically since 2007, 

and with some adjustment, have remained largely the same throughout the data collection 

period of this dissertation. 

5.5.1 Die Kelders Cave 1 (DK1) 

 DK1 is a coastal cave located near the town of Gansbaai in the winter rainfall 

region of the CFR. Edge damage data were collected at the Iziko South African Museum. 

Only the lithic assemblage from the 1995 excavations, layers 6 through 14, was used for 

the analysis since the database from A. Thackeray was kindly made available. The 1993 

excavations were primarily LSA and were not analyzed here. From the 1995 excavations, 

the complete assemblage of convergent points (n=85) were located and analyzed for edge 

damage under 30x power using a binocular stereomicroscope with strong incidence 

lighting. These points are described as “convergent flakes” by Thackeray. Unfortunately, 

due to museum upgrades subsequent to my brief 2010 visit, the DK1 collection was in 

storage and I was unable to sample flakes and blades from DK1. 

5.5.2 Vleesbaai 

 Vleesbaai (VB) is an open-air locality approximately 10 km west of Pinnacle 

Point. Three areas have been intensively surveyed along the raised dune sands and red 
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paleosols where dense artifact scatters occur (Oestmo et al., 2014). In field data recording 

began at Vleesbaai in 2010. In field 

edge damage analysis began in 2012, 

and the methods differed from the 

other sites analyzed due to the 

constraints of field recording. At VB, 

no artifacts were collected. Instead, 

every artifact was coded in the field 

and then returned to its original 

location. This includes the edge 

damage analysis which had to be 

adapted for field recording. For the 

in-field edge damage analysis, an 

iPad 2 protected with a Survivor® case was mounted onto a tripod using the iMount® 

attachment (Figure 23). Artifact images were taken using the onboard camera, and the 

edge damage outlines were drawn onto the artifact image using the “Notability” 

application available from the iTunes store. These files were then exported into ArcGIS 

and the lines transferred to shapefiles, and then treated as the other archaeological and 

experimental assemblages. All complete flakes, blades, points, and retouched pieces 

recorded in 2012 and 2013 were analyzed for edge damage in the field using a 30x 

optical jeweler’s loupe. 

Figure 23. In-field artifact edge damage data 

collection at Vleesbaai. 
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5.5.3 Pinnacle Point 

 The lithic collections from PP13B, PP9, and PP5-6 are stored at the Munro House 

on the Diaz Museum grounds, Mossel Bay. Initially, only complete points from PP13B 

identified by Thompson et al. (2010) were analyzed in 2008 and previously published 

(Schoville, 2010). Subsequently, all the complete blades and points from PP13B were 

analyzed (N=509). At PP5-6, all points examined by Brown (2012) were initially 

analyzed, and the complete points, flakes, blades, and retouched pieces (N=1628) were 

examined later (Wilkins et al., 2014). The complete assemblage of points, flakes, blades, 

and retouched pieces from PP9 were analyzed (N=88) using the database compiled by 

Erin Thompson (unpublished).The methods for recording edge damage were the same for 

all sites from Pinnacle Point. 

5.5.4 Nelson Bay Cave 

 The NBC lithic collection is curated at the Field Museum, Chicago. Most of the 

artifacts are grouped into general artifact class by level by Volman (1981). The artifacts 

are not individually bagged, but usually in a box (often a cigar box) with other similar 

artifacts, separated by raw material. The typological designations from Volman (1981) 

were used for this analysis, although some incomplete flakes were excluded. The 

complete flakes, blades, points, and retouched pieces from Layers 6 and 10 were 

analyzed for this dissertation. To protect the artifacts and provide a numbering system, 

artifacts were individually bagged and small tags were created starting in Layer 10 with 

number 1 through 260 and Layer 6 numbered 261 through 512. 

 Layer 10 was located in drawers labeled 12 and 13, although no cores were found 

in these drawers. There were no artifacts other than quartzite. Initially, 139 artifacts were 
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analyzed, with the “irregular end-struck” and “irregular side-struck” flakes only being 

20% randomly sampled due to time constraints. Before leaving the collection, the 

remaining non-sampled portion of those two groups were given numbers and individually 

bagged for future work. Layer 6 (located in drawers 6 and 7) had much more variable raw 

materials. Of the 210 artifacts analyzed, 57 were excluded because they were 

fragmentary. As in Layer 10, some artifact categories were sampled due to time 

constraints, and a randomized 1-in-5 (20%) sampling strategy was selected. Before 

leaving the collection, I was able to individually bag and tag the unsampled “pointed 

flakes”, but not the other sampled categories. 

5.5.5 Oyster Bay 

 The Oyster Bay surface lithic scatter was collected over a two day period by 

James Brink and Johann Binneman in 1993. Artifacts were bagged based on loose spatial 

association in “sites” and “zones”. The main HP component is from Zone 3, Site 3, but 

artifacts from sites 1, 2, and 4 may be from the same occupation component. The artifacts 

are curated at the Albany Museum, Grahamstown, but have not yet been described and 

published. For this dissertation, artifacts were coded following the protocols at Pinnacle 

Point (Wilkins, et al., 2014) with the assistance of Dr. Jayne Wilkins, and then edge 

damage was analyzed. All artifacts from bags referred to as “HP” were analyzed, and 

there did not seem to be any selection bias as there were a large number of small, broken 

flake fragments. Artifacts were assigned unique identification numbers, starting at 1, 

through 623, and individually bagged. Edge damage analysis was performed on all 

complete flakes, blades, points, and retouched pieces from the HP bags that were coded 

(N=157), but none from the “bulk analysis” bags from other areas. 



 

143 

 

5.6 Conclusion 

This chapter presented the methods and samples used to analyze MSA behavioral 

variability and technological adaptations on the south coast. In total, 482 experimental 

tools were prepared for this portion of the study (Table 5). These form the linkages 

between archaeological edge damage patterning and MSA behavioral inferences. 

Table 5. Experimental sample size. 

Experiment Total Sample Size 

Trampling 300 

Rock Tumbler 60 

Spear Armature Tips 62 

Butchery 60 

 The combination of experimental and archaeological data generated can now be 

used to test hypotheses about edge damage formation proposed in chapter 4. In the next 

chapter, the results of these experiments are presented, and the comparisons with the 

analyzed archaeological assemblages are made.  
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CHAPTER 6 – RESULTS  

 

6.0 Introduction 

 This chapter presents the results of the taphonomic and behavioral experiments, as 

well as results of the archaeological edge damage analysis. The frequency and 

distribution of edge damage compared to a random, or “uniform”, distribution are 

analyzed across tool edges. Patterns characteristic of the four experimental processes 

(trampling, rock-tumbling, butchery, and spear-tip armatures) are summarized, and in the 

final section the results of a novel “line-fitting” procedure that quantitatively links 

archaeological edge damage patterning to the best-fitting experimental models are 

provided. These results provide insight into the agent(s) of edge damage formation in the 

South African MSA, and highlight behavioral patterns with implications for modern 

human evolution. 

6.1 Experiment Results 

6.1.1 Trampling 

A series of 300 quartzite, silcrete, quartz, and ironstone points, flakes, and blades 

were exposed to trampling by unshod horses, cows, and wildlife on a winery in northern 

California for five months. The results of the long-term trampling experiment are 

provided below. The number of images taken by the motion cameras positioned at each 

trampling site (Table 6) indicate that the corral had the greatest animal activity (4 times 

as much as either the other two locales), but that the field had more animal activity than 

the trail location. Based on the images, the animals tended to stay and graze in the open 

field for longer periods, which caused the camera trap to take more photographs. In 
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contrast, the trail had a greater diversity of animals, but images were typically of them 

walking through and not lingering in that location. 

Table 6. Frequency of camera-trap images taken at trampling locations. 

Location Within Field Trail Adjacent Within Corral 

Anticipated 

Trampling Intensity 

Low Med High 

Total Images 2734 2147 8231 

Average/day 21.7 17.0 65.3 

 

Table 7. Artifact recovery at each trampling location (Nstart=100 in each locale). All 

recovered tools from the field and trail were plotted with the total station.

 Location Total Station Plotted 

(% of total recovered) 

Total Recovered 

(% of start) 

Flipped from Start 

(% of plotted) 

Field 95 (100%) 95 (95%) 36 (38%) 

Trail 87 (100%) 87 (87%) 38 (44%) 

Corral 22 (34%) 65 (65%) 13 (59%) 

 

In terms of recovery rate, the three areas followed a trend consistent with 

expectations (Table 7). The field had the highest recovery rate, followed by the trail, and 

the corral. At the corral, only 22 of the recovered 65 tools were able to be piece plotted 

because of the severity of artifact movement both vertically within the clayey mud, as 

well as laterally outside of the trampling grid. After trowel excavating the entire 3 x 3m 

grid 20cm deep, it was determined that due to time constraints a 1m perimeter around the 
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grid would be excavated with shovels and screening through ¼” mesh. This method 

resulted in the recovery of an additional 43 tools, which have no post-experiment 

provenience. At the field and trail sites, artifacts were generally still located on the 

surface and very little excavation was needed. Every artifact recovered was piece plotted 

at these two trampling areas. Similar to the recovery rate data, the rate of artifact flipping 

(i.e., from dorsal to ventral side-up or vice-versa) was correlated with the expected 

trampling intensity. The corral had a high-degree of artifact flipping (59% of piece-

plotted tools) while the field had the lowest degree of flipping (38%). Despite the 

difference in motion-detection photographs between the trail and field locations, it seems 

that the trail was subjected to more disturbance than the field (Figures 24, 25, and 26). 

Figure 24. Motion camera photos from trail (“medium intensity”) context. A) 

endangered Humboldt Marten; B) cattle passing through trampling area during 

day; C) deer passing through trampling area at night; D) cattle lingering in 

trampling area; E) donkey passing through trampling area; F) recovering tools and 

piece plotting in the trampling area at the end of the experiment. 
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This may be because animal movement causes more damage than animal loitering, which 

was generally the case in the field. 

Figure 25. Motion camera photographs in field (“low intensity”) context. A) Cattle 

lingering in trampling area; B) Deer lingering in trampling area at night; C) horse 

passing through tramping area at night; D) deer lingering in trampling area during 

day; E) Kyle Brown checking battery levels mid-way through experiment; F) 

Recovery and piece-plotting of artifacts at the end of the experiment. 
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Figure 26. Motion camera photos in corral (“high intensity”) trampling location. A) 

small mammal disturbance; B) cattle laying down on trampling area during day; C) 

cattle laying down in trampling area at night; D) cattle in trampling area; E) fox (?) 

in trampling area; F) excavating the trampling area at the end of the experiment to 

recover tools. 
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Edge damage scars were variable from trampling. Small, discrete scars, and large, 

invasive notches (approximating retouch) were observed, as well as lateral and transverse 

snaps. Examples of edge damage resulting from trampling are shown in Figure 27.  

6.1.1.1 Frequency of Edge Damage 

Location Edge Damage 

Total 

Total recovered 

tools 

Mean damage per 

recovered tool 

Field 1085 95 11.4 

Trail 1954 87 22.5 

Corral 1501 65 23.1 

12-225D 12-201D 12-71D 12-83D 

Figure 27. Shapefiles showing trampling edge damage scars on blades, flakes, and 

points. Red areas are edge damage, platform filled black. 

Table 8. Trampling location damage total and mean damage per recovered tool. 
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 Edge damage was frequently noted on the trampled tools from each of the three 

locations. The mean damage per recovered tool corresponds well with trampling intensity 

expectations, although the trail and corral have nearly equivalent mean damage 

frequencies (Table 8).  

 Unexpectedly, the left and right edges often have significantly different 

frequencies of damage. Overall, there is more damage on the right edges than the left (χ2 

= 17.301, df = 1, p = 0.0001), and more damage on the dorsal face than the ventral (χ2 = 

12.032, df = 1, p = 0.005). An equal number of tools were randomly chosen to be placed 

dorsal and ventral face up. The high dorsal damage is being driven in particular by the 

much higher dorsal-right edge damage total (n=1321, χ2 = 55.552, df = 3, p < 0.0001). A 

chi-square test of only the other three edges suggests no significant differences in damage 

frequency (χ2 = 1.470, df = 2, p = 0.4795). It’s not known why the dorsal-right edge in 

particular would result in an increased amount of damage compared to the rest of the tool 

edge, but future work will examine the role shape variation is playing in this 

experimental set. Tables 7-9 show the total amount of edge damage on each edge by flake 

shape - blades, points, and flakes, respectively.  
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Table 9. Edge damage on trampled blades with left vs. right comparison using chi-

square, p-values <0.05 indicate significant difference. 

Location Face Side Edge 

Damage 

Total 

p-value chi-square 

High 

Intensity 

Dorsal L 118 0.000 12.529 

R 179 

Ventral L 67 0.001 10.876 

R 111 

Med 

Intensity 

Dorsal L 180 0.000 19.835 

R 275 

Ventral L 190 0.181 1.791 

R 217 

Low 

Intensity 

Dorsal L 128 0.757 0.096 

R 133 

Ventral L 78 0.000 12.565 

R 129 

Total Left 761   

Right 1044   

Dorsal 1013   

Ventral 792   
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Table 10. Edge damage on trampled points with left vs. right comparison using chi-

square, p-values <0.05 indicate significant difference. 

Location Face Side Edge 

Damage 

Total 

p-value chi-square 

High 

Intensity 

Dorsal L 70 0.001 19.03 

R 132   

Ventral L 98 0.061 3.5 

R 126   

Med 

Intensity 

Dorsal L 159 0.120 2.424 

R 188   

Ventral L 165 0.912 0.012 

R 163   

Low 

Intensity 

Dorsal L 100 0.666 0.186 

R 94   

Ventral L 55 0.241 1.374 

R 68   

Total Left 703   

Right 647   

Dorsal 1344   

Ventral 743   

 

Table 11. Edge damage frequency on trampled flakes and left vs. right comparison 

using chi-square, p-values <0.05 indicate significant difference. 

Trampling 

Location 

Face/Side Edge 

Damage 

Total 

p-value chi-square 

High Intensity 

Dorsal Left 115 0.001 11.681 

Dorsal Right 173   

Ventral Left 194 0.000 70.693 

Ventral Right 60   

Med Intensity 

Dorsal Left 48 0.000 32.895 

Dorsal Right 123   

Ventral Left 141 0.000 12.789 

Ventral Right 87   

Low Intensity 

Dorsal Left 94 0.000 41.525 

Dorsal Right 24   

Ventral Left 79 0.686 0.163 

Ventral Right 74   
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6.1.1.2 Distribution of Edge Damage 

 The distribution of damage on all trampling tools is shown in Figure 28 as the 

total amount of edge damage at each location along the tool perimeter (excluding the 

platform) divided by the total amount of damage for that edge. Combined, the 

distribution of edge damage on trampled flakes, blades, and points is not significantly 

different from a uniform distribution (KS-test, p = 0.791).   

 

Figure 28. Edge damage distribution on all trampled tools. X-axis is relative edge 

damage frequency for left (blue) and right (red) edges of the dorsal and ventral 

surfaces. Y-axis is relative edge location from the proximal platform (bottom) to the 

distal end (top). 

Separately, the distribution of damage on blades is also not significantly different from 

uniform (KS-test, p=0.497), however flakes and points are significantly non-uniform 
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(KS-test, p=0.012, and p<0.0001, respectively). This is consistent with recent findings 

from McPherron, et al. (2014) who found a significantly non-random distribution of edge 

damage on trampled flakes, which they relate to uneven distribution of “edge angle” on 

flakes in particular. 

Contrary to expectations, the left and right edges for all areas have significantly 

different distributions of edge damage from each other, except for the high-intensity 

ventral surface (p=0.1395). The left and right distributions of edge damage on points in 

particular are significantly different (Table 12). The signal is mixed for blades and flakes, 

the dorsal left and right distributions of blades are not significantly different, and the 

ventral left and right distributions of flakes are not significantly different. 

Table 12. Comparison of left and right trampling edge damage distributions for 

dorsal and ventral faces. P-values <0.05 indicate significantly different distributions 

(using Kolmogorov-Smirnov test). 

Left and Right Distribution Comparison Dorsal Ventral 

Field (low) 0.0001 0.0001 

Trail (med) 0.0235 0.0001 

Corral (high) 0.0001 0.1395 

Points (all areas) 0.0001 0.0001 

Blades (all areas) 0.2137 0.0305 

Flakes (all areas) 0.0001 0.2483 

 

6.1.1.3 Side-up 

 In terms of side-up frequency, there is clearly a pattern (consistent with 

McPherron et al. 2014; contra Tringham et al. 1974) where damage forms more readily 
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on the upward facing surface. The trampling experiments by Tringham et al. (1974) were 

done by human tramplers for 30 minutes, on only 10 flakes, which likely influences the 

discrepancy in results. Table 13 shows this pattern for the three trampling intensity areas. 

At every location, when dorsal was face up, the dorsal face had the most damage, and 

when ventral was up, ventral had the most damage (Dorsal up, χ2 = 71.426, df = 1, p = 

0.0001; Ventral up, χ2 = 7.392, df = 1, p = 0.0066). 
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Table 13. Total trampling edge damage by surface facing up. 

Trampling Location Total dorsal up Total ventral up 

 Dorsal Ventral Dorsal Ventral 

High Intensity 436 248 351 408 

Low Intensity 321 207 252 276 

Med Intensity 375 309 598 654 

 

6.1.1.4 Trampling Summary 

The trampling data appear to be more patterned than anticipated, as has been 

noted by McPherron et al. (2014), and in contrast to studies with more subjective 

observation of trampling damage distributions described as ‘random’ (e.g., Tringham et 

al., 1974; McBrearty et al., 1998). Patterned taphonomic edge damage has implications 

for behavioral inferences based on the statistical difference between archaeological edge 

damage distributions and random (e.g., Bird et al., 2007)– testing archaeological data 

against random alone is insufficient to exclude post-depositional damage processes as the 

causal agent. Therefore, in this dissertation, archaeological damage distributions will be 

compared to the actual trampling distributions rather than ‘random’ (or uniform) alone to 

identify post-depositional patterning. The following points summarize the key findings 

from the trampling experiments: 

• Animal movement affects trampling damage intensity more than animal 

presence. 

• Trampling damage tends to form on the side-up surface. In these experiments, 

the side-up was evenly distributed between dorsal and ventral, but there are 

reasons to expect that archaeological side-up frequencies can be different 

(Schoville 2014). 
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• Trampling damage is randomly distributed on blades, but non-random on 

points and flakes, likely reflecting more uniform edge angles (e.g., 

McPherron, et al. 2014). 

• The frequency of damage on left and right edges are significantly different, 

but it is not known why the dorsal-right edge in these experiments were so 

heavily damaged. The other three edges are not significantly different from 

each other. Future research will address assemblage patterning in edge shape. 

 

6.1.2 Rock Tumbler 

 After exposing flakes and blades made from quartzite and heat-treated silcrete to 

five minutes of tumbling in a rock-tumbler, extensive damage across all tool types was 

observed. Although some tools had nearly continuous damage around the tools, the 

damage tended to be very shallow (e.g., Figure 29).  
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6.1.2.1 Frequency of Edge Damage 

 There are no significant differences in how damage formed across the flake 

surface (dorsal/ventral and left/right, χ2, p>0.05), but within flakes (not blades), there is a 

significant tendency to form damage unequally on the dorsal-right/ventral-left cutting 

edge (Table 14). 

 

 

 

Figure 29. Example of damage formation area on tools tumbled in a rock-tumbler 

for 5 minutes. 
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Table 14. Rock tumbler total edge damage by typology, face, and side. 

Typology Face Side Total 

Blade 

Dorsal 

L 518 

R 578 

Ventral 

L 523 

R 526 

Flake 

Dorsal 

L 207 

R 266 

Ventral 

L 278 

R 179 

6.1.2.2 Distribution of Edge Damage 

 Overall, the distribution of damage due to tumbling in a rock-tumbler is not 

significantly different from random (KS-test, p = 0.3669; Figure 30). This pattern holds 

when separated into tool shape, the distribution of damage on tumbled blades (KS-test, p 

= 0.999) and flakes (KS-test, p = 0.456) are not significantly different from random. The 

distribution of damage is not statistically different between the left and right sides for 

both flakes and the ventral surface of blades. The dorsal edges of blades have 

significantly different distributions of damage between the left and right sides (KS-test, 

p=0.007). 

6.1.2.3 Tumbling Summary 

 Overall, the experimental sample of flakes and blades exposed to five minutes of 

rock-tumbling exhibit damage that occurs randomly across edges. No large transverse 

snaps were caused by the tumbling action, although damage could occasionally be 
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extensive along the tool edge. The following points summarize the key findings from the 

tumbling experiments: 

• Edge damage from rock tumbling results in damage equally on each edge. 

• Rock tumbling produces damage distributed uniformly across each edge. 
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Figure 30. Edge damage distribution on flakes and blades from being tumbled. X-

axis is relative edge damage frequency for left (blue) and right (red) edges of the 

dorsal and ventral surfaces. Y-axis is relative edge location from the proximal 

platform (bottom) to the distal end (top). 
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6.1.3 Butchery 

 Of the 60 tools prepared for the butchery task, the butcher used 29. Of those, 25 

exhibited visible edge damage during analysis. Butchery tasks were divided between the 

initial “field dressing” activities of skinning, eviscerating, and disarticulating, and the 

subsequent “defleshing” activities of removing meat from the disarticulated bones. Points 

and blades were used for these activities, and damage was observed on the majority of the 

 

Figure 31. Edge damage on butchery tools. A) DIF, burination, on tool 14-23; B) 

slight damage on dorsal right, 14-56; C) notch on ventral left edge, 14-50. 

used tools, despite few of them being used to exhaustion (per comments from the 

butcher, Jeremiah Harris). Visible damage was highly variable, and included slight edge 

rounded, some invasive scarring, and distal snaps (Figure 31). 

6.1.3.1 Frequency of Edge Damage 

 Overall, there is more damage on the left edge compared to the right (585 and 

477, respectively; χ2 = 10.983, df=1, p=0.0009), but the dorsal and ventral faces do not 
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have significantly different frequencies of damage (549 and 513, respectively; χ2 = 1.220, 

df=1, p=0.269; Table 15).  

Table 15. Total edge damage on butchery tool edges. 

Damage Total Dorsal Ventral 

Left 251 334 

Right 298 179 

 

6.1.3.2 Distribution of Edge Damage 

 As anticipated, damage from butchery is non-randomly distributed. Both on the 

dorsal and ventral surfaces, damage on the left and right sides are distributed significantly 

differently (Dorsal: KS-test, p=0.0444; Ventral: KS-test, p<0.001; Figure 32). 
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Figure 32. Edge damage distribution on butchery tools. X-axis is relative edge 

damage frequency for left (blue) and right (red) edges of the dorsal and ventral 

surfaces. Y-axis is relative edge location from the proximal platform (bottom) to the 

distal end (top). 

6.1.3.3 Field Processing vs. Defleshing Butchery Patterns 

 The distribution of edge damage created from defleshing and field processing 

activities are significantly different (D=0.15726, p<0.0001). Within each activity group, 

the left and right distributions are generally distributed differently, with the exception of 

the damage located on the dorsal face of the defleshing tools (Table 16). The edge 

damage distributions for defleshing is shown in Figure 33, and the field dressing pattern 

is shown in Figure 34. 
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Table 16. Comparison of left and right butchery tool edge damage distributions 

using KS-test. P-values <0.05 indicate significantly different distributions of edge 

damage between left and right edges. 

Butchery Type Dorsal Ventral 

Defleshing .3178 0.0001 

Field Processing 0.0422 0.0001 

 

 

Figure 33. Defleshing edge damage distributions. X-axis is relative edge damage 

frequency for left (blue) and right (red) edges of the dorsal and ventral surfaces. Y-

axis is relative edge location from the proximal platform (bottom) to the distal end 

(top). 
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Figure 34. Field dressing butchery edge damage distributions. X-axis is relative edge 

damage frequency for left (blue) and right (red) edges of the dorsal and ventral 

surfaces. Y-axis is relative edge location from the proximal platform (bottom) to the 

distal end (top). 

6.1.3.4 Butchery summary 

 The butchery experiments produced extensive damage that exhibit patterning on 

both points and blades. It is unknown how the idiosyncrasies of the individual butcher 

influence the overall frequency and distribution of damage, but with these data as a 

starting point, the following points can summarize the butchery edge damage results: 

• Butchery resulted in more damage on the left edge than the right, but was 

formed equally between dorsal and ventral faces. It is not known how 

handedness affects this pattern, but it is anticipated to be the opposite for a 

left-handed butcher (Schoville, 2010). 

• Butchery resulted in damage significantly different from random, and the left 

and right edges had different distributions. 
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• Field processing and defleshing activities result in significantly different 

distributions of edge damage. Particularly near the distal ends of tools, field 

dressing activities produced more damage. 

6.1.4 Spear-tip Armatures – MSA Points 

 In these experiments, MSA points (detached pieces with converging scars that 

form a point) made from mostly quartzite (61/64 points, silcrete 3/64) were hafted and 

thrust into springbok a total of 150 times for all points (mean = 2.34 thrusts per point). 

These experiments resulted in extensive edge damage to the points, including numerous 

distal breaks and impact fractures, as well as hafting damage closer to the proximal end 

of the points. Microscope images of these fractures are shown in Figure 35. 

 

Figure 35. Fractures on quartzite spear armature tips. A) Point H-8, distal tip 

damage; B) Point H-9, distal termination of lateral burination; C) Point H-5, ventral 

stepped-crushing on transverse snap. 
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6.1.4.1 Frequency of Edge Damage 

 The total amount of damage, regardless of location along the edge, from use as 

spear-tip armatures formed unequally on the dorsal and ventral faces (D=2200, V=2645; 

χ2=40.872, df=1, p=0.0001, Table 17). In contrast, the total amount of edge damage, 

regardless of location along the edge, was not statistically different between the left and 

right sides (L=2458, R=2387; χ2=1.040, df=1, p=0.3077, Table 17).  

Table 17. Edge damage totals from experimental spear-tip armatures. 

Edge Dorsal Ventral Total 

Left 1239 1219 2458 

Right 961 1426 2387 

Total 2200 2645 4845 

 

6.1.4.2 Distribution of Edge Damage 

 As previously reported by Schoville and Brown (2010) but with an additional 29 

spears points, the overall distribution of damage on spear points (i.e., where the damage 

is located on average along the tool edge) is concentrated at the tip. The distribution of 

spear point damage along the point edge is not significantly different between the left and 

right sides (KS-test, p=0.1613), or between dorsal and ventral faces (KS-test, p=0.9963, 

Figure 36), and a slight increase near the base of points is seen, what Schoville and 

Brown (2010) referred to as a “hafting bump”.  
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Figure 36. Distribution of experimental spear-tip armature edge damage. 

6.1.4.3 Spear-tip armature summary 

 Using MSA points as spear-tipped armatures is extremely effective at penetrating 

the target, and produces extensive damage to the point edges. It’s unknown how different 

hafting scenarios would influence the patterning of edge fractures, but all spear tips used 

in these experiments were constructed in the same fashion, and therefore serves as a 

baseline for experimental edge damage distributions due to spear-tipped armature 

function. The following points summarize the results of the spear-tip armature 

experiments. 

• The ventral surface forms edge damage from armature-tips more frequently 

than the dorsal surface. Schoville and Brown (2010) suggested this is due to 

the slight curvature of detached pieces from prepared cores common in the 

MSA. 
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• The left and right sides form damage equally frequently, with equivalent 

distributions. 

6.1.5 Experimental DIF Frequency 

 Overall, diagnostic impact fracture formation was relatively rare. No DIFs formed 

from tumbling points and blades in a geologic rock-tumbler. Trampling resulted in a 

small number of DIFs (2.6%, Table 18), while butchery had a slightly higher frequency 

especially on slot hafted points (10%, Table 18). As expected, spear-tip armature tips 

formed the highest frequency of DIFs (24%, Table 18). 

Table 18. Frequency of experimental DIF formation. 

Experimental 

Sample 

Points 

w/ 

DIF 

Total 

Points 

Blades 

w/ 

DIF 

Total 

Blades (N) 

Flakes 

w/ DIF 

Total 

Flakes (N) 

Tumbler 0 22 (0%) 0 40 (0%) - - 

Trampling 0 61 (0%) 3 117 (2.6%) 0 59 (0%) 

Butchery 2 20 (10%) 0 9 (0%) - - 

Spear-tips 6 25 (24%) - - - - 

 

6.1.6 Summary of Experiments 

 The overall pattern of edge damage formation from the four experimental 

processes examined here is summarized in Table 19. No two experiments have the same 

frequency, distribution, and DIF characteristics. Therefore, these criteria provide the 

linkages between observed patterns of edge damage on archaeological tools (traces) to 

the causal agents observed in the experiments. The method presented here provides the 

ability to objectively link traces to causal agents of edge damage accumulation in 

archaeological assemblages without referring to subjective or unobserved causation. 
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Incorporating these processes into a model of edge damage formation allows the various 

parameters of damage formation to be explored in ways that are more difficult when edge 

wear traces are examined individually or through univariate analyses (Hilborn and 

Mangel, 1997).   

Table 19. Summary table of edge fracture characteristics of experimental processes 

linking causal agent with observed edge damage (traces). 

Experiment Frequency 

(Dorsal vs. 

Ventral) 

Frequency 

(Left vs. 

Right) 

Observed 

Distribution 

vs. Random 

Distribution 

(Left vs. Right) 

DIFs 

(95% C.I.) 

Trampling Dorsal >? 

Side-up 

dependent 

Right>? 

 

Blades = 

Points/Flakes 

≠ 

≠ 0.3-3.8% 

Tumbling Same Same Same Same 0% 

Butchery 

(Rt Handed) 

Same Left ≠ ≠ 0.8 – 23% 

Spear-tip 

Armatures 

Ventral > Same ≠ Same 11-44% 

  

6.2 Archaeological Results 

 A summary of the number of tools analyzed, and the number with identified edge 

damage is provided in Table 20. Summary of archaeological tools analyzed by 

assemblage of aggregated archaeological levels sorted by temporal approximation.. The 

most complete samples come from PP5-6, Vleesbaai, Oyster Bay, and Nelson Bay Cave, 

where points, flakes, and blades were all analyzed. The sample from PP13B includes all 

recovered points and blades, but the sample from DK1 only includes points due to 

logistical constraints. Published data from Kathu Pan 1 provided by Wilkins et al. (2012) 

is also included for comparison in some tests. A variety of edge damage trace 

morphologies were noted, including notches, rounding, slight edge ‘nibbling’, ‘fresh’ 
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damage (excluded from analysis), retouch (excluded from analysis due to damage 

associated with retouching), snap/step fractures, and the full suite of fractures considered 

“diagnostic impact fractures” (DIFs). A sample of these from PP5-6 where the greatest 

number of tools were analyzed are illustred in Figure 37, in order to provide a sense of 

the variation in edge damage types across the different raw materials sampled. 
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Figure 37. Archaeological edge damage from PP5-6. Spec No., StratAgg, and raw 

material are, A) distal snap and left lateral notch (121104, DBCS, silcrete); B) 

damage on dorsal left edge (348245, YBSR, quartzite); C) slight edge ‘nibbling’ 

(381457, YBSR, chert); D) edge damage on dorsal right (121104, DBCS, silcrete); E) 

fresh damage (335090, YBSR, silcrete); F) damage on ventral left edge and G) small 

notch on dorsal left edge of MSA point (307446, YBSR, silcrete); H) edge rounding 

on ventral right (337007, OBS1, quartzite); I) invasive retouched notch on blade 

(122718, DBCS, silcrete); J) two DIFs – burination on left, and step terminating 

bending fracture on right (121634, DBCS, silcrete); K) DIF, step-terminating 

bending fracture (371681, YBSR, silcrete); L) DIF, step-terminating bending 

fracture (279258, YBSR, silcrete). 
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Table 20. Summary of archaeological tools analyzed by assemblage of aggregated 

archaeological levels sorted by temporal approximation. In most cases, complete 

assemblages were analyzed, but see section 5.5 for caveats (i.e., NBC and OB).  

Assemblage Total Analyzed Edge Damage Identified 

Assemblage Total Point Blade Flake Total Point Blade Flake Total 

PP5-6 RBSR 286 7 30 52 89 3 13 34 50 

PP5-6 BCSR 1470 2 48 235 285 0 21 92 113 

Vleesbaai 2772 13 27 341 381 3 3 56 62 

PP5-6 DBCS 790 7 45 126 178 4 27 61 92 

PP5-6 OBS2 1063 2 30 192 224 1 13 62 76 

NBC 6 252 28 58 90 176 19 10 49 78 

PP5-6 SGS 92 1 4 15 20 0 3 4 7 

Oyster Bay 622 51 20 86 157 26 6 26 58 

DK1 6-9 37 37 NA NA 37 12 - - 12 

PP5-6 OBS1 393 0 15 84 99 0 8 28 36 

PP5-6 SADBS 202 15 17 34 66 10 10 11 31 

PP5-6 ALBS 83 5 3 15 23 3 1 9 13 

DK1 10-16 50 50 NA NA 50 24 - - 24 

PP5-6 LBSR 1638 70 94 477 641 48 43 168 259 

PP13B MIS5 3466 203 178 NA 381 71 66 - 137 

PP5-6 YBS 6 1 1 1 3 1 1 1 3 

NBC 10 260 51 0 70 121 34 0 38 72 

PP9 159 23 5 60 88 15 3 21 39 

PP13B MIS6 1979 89 39 NA 128 16 12 - 28 

Total 15620 655 614 1878 3147 290 240 660 1190 
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Table 21. Summary of total amount of edge damage on archaeological tools by 

assemblage of aggregated archaeological levels sorted by temporal approximation. 

 Blade Flake Point 

 Dorsal Ventral Dorsal Ventral Dorsal Ventral 

Assemblage L R L R L R L R L R L R 

PP5-6 RBSR 184 159 82 53 442 386 373 337 66 65 18 17 

PP5-6 BCSR 238 359 175 240 1457 1443 1106 872 - - - - 

Vleesbaai 57 29 8 18 582 481 304 270 32 61 16 37 

PP5-6 DBCS 146 315 203 277 791 764 445 707 106 92 20 66 

PP5-6 OBS2 91 128 13 54 772 390 329 331 8 39 3 0 

NBC 6 27 69 32 22 346 434 372 295 74 147 95 137 

PP5-6 SGS 73 45 0 24 63 51 33 27 - - - - 

Oyster Bay 86 139 110 94 326 263 160 273 345 229 261 260 

DK1 6-9 - - - - - - - - 95 128 32 52 

PP5-6 OBS1 48 41 29 35 157 146 249 207 - - - - 

PP5-6 SADBS 73 42 140 47 111 70 22 34 128 46 86 52 

PP5-6 ALBS 0 0 7 0 76 107 35 68 56 73 35 18 

DK1 10-16 - - - - - - - - 198 224 142 153 

PP5-6 LBSR 478 497 207 405 1448 1568 1444 1048 485 476 329 337 

PP13B MIS5 557 503 442 489 - - - - 1153 887 632 576 

PP5-6 YBS 9 12 36 14 1 0 0 14 31 11 0 10 

NBC 10 - - - - 289 352 190 310 248 276 183 277 

PP9 28 0 31 6 77 127 44 146 87 42 94 141 

PP13B MIS6 64 145 25 127 - - - - 314 223 144 98 

 

. 
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6.2.1 Archaeological Frequency 

 The damage for each site and level by three artifact shape groupings (point, blade, 

and flake) are shown in Table 21. Unfortunately, there is uneven representation by site, 

shape, and raw-material, but with a total a total amount of edge damage instances of 

42,408, there should be adequate coverage to test the hypotheses outlined in Chapter 4. 

Table 22 provides the results of chi-square test of the edge damage frequency data for 

each archaeological assemblage by tool shape, face, and side. The significant p-values 

(p<0.05) were then translated to whichever face or side had the predominant frequency of 

edge damage in Table 23. If there was no statistically different edges, an equal-sign 

represents equivalent frequencies of damage. 

Edge damage intensity was calculated by dividing the percentage of damage per 

tool by the total number of tools exhibiting any amount of damage. This is an estimate of 

the intensity of edge damage in each assemblage that is summarized by tool shape and 

environmental context in Figure 38. 
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Table 22. Comparison of edge damage frequency by face and edge (χ2), p<0.05 is 

significantly different. Assemblages arranged in ~temporal order. 

 Blade Flake Point 

Assemblage 

Dor. vs. 

Ven. 

Left vs. 

Right 

Dor. vs. 

Ven. 

Left vs. 

Right 

Dor. vs. 

Ven. 

Left vs. 

Right 
PP5-6 RBSR 0 0.014 0.003 0.019 0 0.880 

PP5-6 BCSR 0 0 0 0.001 - - 

Vleesbaai 0 0.089 0 0.638 0.001 0 

PP5-6 DBCS 0.536 0 0 0 0 0.058 

PP5-6 OBS2 0 0 0 0 0 0.001 

NBC 6 0.001 0.009 0.003 0.772 0.605 0 

PP5-6 SGS 0 0.737 0 0.172 - - 

Oyster Bay 0.311 0.074 0 0.118 0.180 0.001 

DK1 6-9 - - - - 0 0.003 

PP5-6 OBS1 0.043 0.936 0 0.054 - - 

PP5-6 SADBS 0 0 0 0.060 0.042 0 

PP5-6 ALBS 0.008 0.008 0 0.001 0 1 

DK1 10-16 - - - - 0 0.167 

PP5-6 LBSR 0 0 0 0.001 0 0.238 

PP13B MIS5 0.004 0.875 - - 0 0 

PP5-6 YBS 0.001 0.024 0.001 0.001 0 0.170 

NBC 10 - - 0 0 0.041 0.001 

PP9 0.264 0 0.003 0 0 0.917 

PP13B MIS6 0.003 0 - - 0 0 
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Table 23. Translation of p-values in Table 17 into assemblage edge damage 

frequency characteristics, cell is the face/side with greater damage frequency, = 

represents no significant difference; blanks indicate no data.  

Assemblage 

Blade Flake Point 

D. vs. V. L. vs. R. D. vs. V. L. vs. R. D. vs. V. L. vs. R. 

PP5-6 RBSR Dorsal Left Dorsal Left Dorsal = 

PP5-6 BCSR Dorsal Right Dorsal Left  - 

Vleesbaai Dorsal = Dorsal = Dorsal Right 

PP5-6 DBCS = Right Dorsal Right Dorsal = 

PP5-6 OBS2 Dorsal Right Dorsal Left Dorsal Right 

NBC 6 Dorsal Right Dorsal = = Right 

PP5-6 SGS Dorsal = Dorsal =   

Oyster Bay = = Dorsal = = Left 

DK1 6-9     Dorsal Right 

PP5-6 OBS1 Dorsal = Ventral =  - 

PP5-6 SADBS Ventral Left Dorsal = Dorsal Left 

PP5-6 ALBS   Dorsal Right Dorsal = 

DK1 10-16     Dorsal = 

PP5-6 LBSR Dorsal Right Dorsal Left Dorsal = 

PP13B MIS5 Dorsal =   Dorsal Left 

PP5-6 YBS Ventral Left Ventral Right Dorsal = 

NBC 10   Dorsal Right Dorsal Right 

PP9 = Left Dorsal Right Ventral = 

PP13B MIS6 Dorsal Right   Dorsal Left 
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Figure 38. Edge damage intensity as measured by the mean damage per tool by tool 

shape and environmental context with undamaged edges excluded. The vertical 

extent are the 95% confidence interval limits on proportion of DIFs, horizontal bar 

is mean damage intensity. 

6.2.2 Archaeological Distribution 

 A graphical display of edge damage distribution histogram for each 

archaeological assemblage are provided in Appendix C, and the statistical analyses will 

just be summarized here by tool shape.  

In Table 24, the chi-square p-value for assemblage distributions compared to a 

uniform distribution and a comparison of the left and right edges (KS-test p-values) are 

shown for points. 
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Table 24. Point p-values for Kolmogorov-Smirnov comparisons between edge 

damage distributions of archaeological assemblages and uniform, and between 

archaeological left and right distributions. In approximate temporal order. 

Assemblage All edges vs. 

 Uniform 

Distribution  

Left vs. Right 

PP5-6 RBSR 0.000 0.081 

Vleesbaai 0.995 0.001 

PP5-6 DBCS 0.999 0.000 

NBC 6 0.000 0.000 

PP5-6 OBS2 1.000 0.000 

Oyster Bay 0.000 0.001 

DK1 6-9 0.973 0.375 

PP5-6 SADBS 0.002 0.000 

PP5-6 ALBS 0.986 0.000 

DK1 10-16 0.000 0.000 

PP5-6 LBSR 0.001 0.888 

PP13B MIS5 0.000 0.000 

PP5-6 YBS 0.065 0.012 

NBC 10  0.000 0.053 

PP9 0.000 0.070 

PP13B MIS6 0.000 0.055 

 The assemblage distribution of edge damage on points from DK1 layers 6-9, PP5-

6 ALBS, PP5-6 DBCS, PP5-6 OBS2, PP5-6 YBS, and Vleesbaai, are not significantly 

different from a uniform distribution of edge damage. The assemblages from DK1 layers 
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6-9, NBC layer 10, PP13B MIS6 layers, PP5-6 LBSR, PP5-6 RBSR, and PP9 have 

distributions of edge damage on the left and right edges that are not significantly 

different. 

 The distribution of edge damage on blades for each archaeological assemblage are 

summarized in Table 25. The majority of damage on blades from the archaeological 

assemblages are not significantly different from uniform, and only the blades from 

PP13B MIS5, PP5-6 BCSR, PP5-6 DBCS, PP5-6 LBSR, and PP5-6 SGS are 

significantly different from a uniform distribution. More assemblages have significantly 

different distributions of edge damage between left and right edges.  

The distribution of edge damage on flakes for each archaeological assemblage are 

summarized in Table 26. 
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Table 25. Blade p-values for Kolmogorov-Smirnov comparisons between edge 

damage distributions of archaeological assemblages and uniform, and between 

archaeological left and right distributions. Assemblages arranged in approximate 

temporal order. 

Assemblage All edges vs. 

 Uniform 

Distribution  

Left vs. Right 

PP5-6 RBSR 0.936 0.000 

PP5-6 BCSR 0.000 0.000 

Vleesbaai 0.930 0.058 

PP5-6 DBCS 0.000 0.023 

PP5-6 OBS2 0.100 0.100 

NBC 6 0.999 0.000 

PP5-6 SGS 0.000 0.080 

Oyster Bay 0.933 0.026 

PP5-6 OBS1 0.257 0.005 

PP5-6 SADBS 0.166 0.034 

PP5-6 ALBS 0.651 NA 

PP5-6 LBSR 0.033 0.000 

PP13B MIS5 0.000 0.006 

PP5-6 YBS 1.000 0.000 

PP9 0.966 0.285 

PP13B MIS6 0.083 0.000 
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Table 26. Flake p-values for Kolmogorov-Smirnov comparisons between edge 

damage distributions of archaeological assemblages and uniform, and between 

archaeological left and right distributions. Assemblages arranged in approximate 

temporal order. 

Assemblage All edges vs.  

Uniform 

Distribution  

Left vs. Right 

PP5-6 RBSR 0.093 0.000 

PP5-6 BCSR 0.000 0.001 

Vleesbaai 0.013 0.119 

PP5-6 DBCS 0.000 0.035 

PP5-6 OBS2 0.661 0.000 

NBC 6 0.113 0.021 

PP5-6 SGS 0.749 0.000 

Oyster Bay 0.864 0.001 

PP5-6 OBS1 0.000 0.003 

PP5-6 SADBS 1.000 0.035 

PP5-6 ALBS 0.078 0.150 

PP5-6 LBSR 0.000 0.014 

PP5-6 YBS 0.841 0.413 

NBC 10  0.998 0.023 

PP9 0.917 0.131 
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6.2.3 Archaeological DIF Frequency 

 Impact fractures were relatively rare in the archaeological assemblages analyzed 

in this dissertation. They were identified on points, blades, and flakes, but predominantly 

on points. A summary of the DIF frequencies is shown in Table 27. 

Table 27. Frequency of ‘diagnostic impact fractures’ (DIFs) on archaeological 

points, blades, and flakes. Assemblages arranged in approximate temporal order. 

Site Points 

w/ DIF 

Total 

Points (N) 

Blades 

w/ DIF 

Total 

Blades 

(N) 

Flakes 

w/ DIF 

Total Flakes 

(N) 

PP5-6 RBSR 1 7 (14%) 2 30 (6.7%) 2 52 (3.8%) 

PP5-6 BCSR 0 2 (0%) 3 48 (6.3%) 0 235 (0%) 

Vleesbaai 1 13 (7.7%) 0 27 (0%) 0 341 (0%) 

PP5-6 DBCS 0 7 (0%) 4 41 (9.8%) 4 126 (3.2%) 

PP5-6 OBS2 0 2 (0%) 0 30 (0%) 0 192 (0%) 

NBC 6 0 28 (0%) 1 52 (1.9%) 1 120 (0.8%) 

PP5-6 SGS 0 1 (0%) 0 4 (0%) 0 15 (0%) 

Oyster Bay 4 29 (14%) 1 20 (5%) 1 86 (1.2%) 

DK1 6-9 1 37 (2.7%) - - - - 

PP5-6 OBS1 - - 1 15 (6.7%) 0 84 (0%) 

PP5-6 SADBS 1 15 (6.7%) 1 17 (5.9%) 0 35 (0%) 

PP5-6 ALBS 0 5 (0%) 0 3 (0%) 0 15 (0%) 

DK1 10-16 1 50 (2.0%) - - - - 

PP5-6 LBSR 2 70 (2.9%) 1 94 (1.1%) 1 477 (0.2%) 

PP13B MIS5 4 184 (2.2%) 0 178 (0%) - - 
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PP5-6 YBS 0 1 (0%) 0 1 (0%) 0 1 (0%) 

NBC 10 3 60 (5%) - - 0 61 (0%) 

PP9 0 23 (0%) 0 5 (0%) 0 60 (0%) 

PP13B MIS6 1 54 (1.9%) 0 39 (0%) - - 

 

6.2.4 Best-Fit Models 

 With the general assessments of the frequency and distribution of edge damage 

from MSA assemblages completed, they can be used as a reference point for a more 

thorough analysis of edge damage patterning. In the following section, the process with 

the most support will be quantitatively arbitrated using a model-fitting procedure. These 

models take into account both the frequency and distribution of edge damage 

simultaneously, while also providing an indication of whether the pattern is best fit by a 

single process (and what that process is) or best fit by a combination of processes (and 

what those processes are). The logic and details of this methodology were outlined in 

Chapter 5, and will be tested here using experimental and hypothetical distributions prior 

to analysis of the MSA archaeological edge damage distribution data.  

As discussed previously in Section 5.2.4, stepwise regression models were 

constructed using JMP Pro 11 statistical analysis software with forward stepping such 

that the term with the lowest p-value is added first and subsequent terms are added and 

removed until the best model is found. A best model with multiple terms (e.g., spears + 

trampling) is selected based on the overall improvement in model fit, but in reality, the 

terms will explain different amounts of the variance in observed archaeological edge 
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damage patterning. In the following sections, the results are presented for two models. 

The first is the result from fitting a single term with the lowest p-value to the 

archaeological data. This provides an indication of the primary process (of those being 

tested here) that accounts for the largest amount of variance in archaeological edge 

damage. The second is the full model consisting of all possible combination of terms with 

the lowest AIC, as long as the change in AIC is greater than 2. Otherwise alternative 

models are considered equivalent, and only the single-best fitting term is reported. Within 

the full model, each term will explain different amounts of the residual variance in 

observed archaeological edge damage. However, for the purposes of the landscape scale 

analyses in section 6.3, these are interpreted as having contributed equally to the 

formation of the observed edge damage patterning because the goal of this dissertation is 

to test hypotheses of landscape scale edge damage formation processes. If an 

experimental process helps to explain any amount of variation in the best-fit model, then 

it is inferred to have contributed to the observed archaeological patterning and those are 

the processes on the landscape which are being explained. In the analyses of temporal 

variability, only the single best-fit variables are used to look for patterning in the main 

causal agents of edge damage through time.  

6.2.3.1 Testing the Procedure 

 Each of the experimental distributions were included in a stepwise regression 

model in order to test the ability of the procedure to identify the process(es) that are most 

consistent with the archaeological edge damage distribution curves. Each experimental 

distribution consists of the complete distribution of edge damage that includes all four 
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edges. This is illustrated in Figure 39 for the spear-tipped projectiles edge damage 

distribution.  

In Table 28, the four experimental edge damage distribution models of known 

causal agency (spear-tip armatures “spears”, combined trampling areas “trampling”, 

butchery processes combined “butchery”, and rock tumbler “tumbling”) were used as 

parameters for five modeled distributions consisting of n= 10000, 1000, 500, 100, and 50 

random instances of edge damage. The random distributions were created by randomly 

sampling from a uniform distribution of edge damage (i.e., each location along edge had 

equal probability of damage) n-times with replacement. Since these are random 

distributions, we would not anticipate behavioral processes to fit the distribution, nor 

would the trampling and tumbling distributions necessarily. In fact, we find that for each 

random model (n=10000, 1000, 500, 100, and 50), post-depositional processes are the 

Figure 39. Spear-tipped armature edge damage combined into a single 

distribution of dorsal and ventral edge damage for the line-fitting stepwise 

regression modeling.  



 

188 

 

single best-fit variables, but generally only account for less than 1% of the variability. 

This highlights that post-depositional processes are not as undirected as previously 

thought, but also that this procedure does not fit behavioral causal agents to random trace 

patterning. 

The same four experimental processes were used as parameters for the edge 

damage distribution from Kathu Pan 1 that have been shown to be best explained by a 

combination of spear-use and post-depositional processes (Wilkins and Schoville, 2016). 

Using the line-fitting procedure, a similar result is reached. The single best prediction 

variable are experimental armatures (“spears”). The best complete model consists of (in 

decreasing order of importance), spears, trampling, and butchery processes. The 

distribution of experimental spear tipped armatures alone explain 33.2% of the observed 

variance in archaeological edge damage on KP1 points, and the addition of trampling and 

butchery distributions as model parameters only explains an additional 1.6% of the 

variance.  

Table 28. Test of line-fitting procedure using samples outside experimental edge 

damage distributions generated here. Ironstone spear-tip edge damage reported by 

Wilkins et al. (2012).  

Site 

Best 

Single 

Variable AICc R2 

Best Model Out 

of All 

Combinations AICc R2 
Experimental 

Ironstone Spears 

Spears 1942.87 0.332 Spears+Trampling

+Butchery 

1945.36 0.348 

Random (n=10,000) Trampling 2942.17 0.001 None   

Random (n=1000) Tumbler 2088.91 0.002 None   

Random (n=500) Tumbler 1782.70 0.002 None   

Random (n=100) Trampling 1117.79 0.036 Trampling+Spears 1114.13 0.050 

Random (n=50) Trampling 907.00 0.001 None   
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 The line-fitting procedure is consistent with expectations and results from prior 

research using edge damage distributions. Therefore, the following section provides the 

best-fit models using the Akaike Information Criterion (AIC) for the archaeological 

assemblages studied here. The raw data for each experiment and assemblage used for the 

line-fitting analyses are provided in Appendix D. 

6.2.3.2 Points 

 The results of the line-fitting procedure for the archaeological points is shown in 

Table 29. Most assemblages are best explained by a combination of processes, although a 

few are best explained by a single predictor variable such as “tumbling” in the DBCS 

layer at PP5-6 (a debris flow layer, Brown et al., 2012) and “butchery” in the PP13B 

MIS5 layers (consistent with Schoville, 2010). Other assemblages are explained by a 

combination of two processes, such as “trampling” and “spears” at Oyster Bay and 

Vleesbaai (both open-air sites) as well as in Nelson Bay Cave layer 10, and “butchery” 

and “trampling” in the PP5-6 YBS layer. Other assemblages are more ambiguous and are 

best-fit by three terms (i.e., PP13B MIS6 layers, PP5-6 LBSR, or PP5-6 ALBS), or four 

terms (Nelson Bay Cave layer 6, PP5-6 SADBS, DK1 layers 10-16).  
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Table 29. Result of line-fitting procedure for archaeological points. The single best 

experimental causal agent that explains the most variation and the best model out of 

all combinations are provided. Assemblages in approximate temporal order. 

Assemblage 

Best 

Single 

Variable AICc R2 

Best Model Out of All 

Combinations AICc R2 

PP5-6 RBSR Spears 331.40 0.180 Spears+Tumbler 328.19 0.190 

Vleesbaai Trampling 686.02 0.019 Trampling+Spears 681.38 0.036 

PP5-6 DBCS Tumbler 767.19 0.033 Tumbler 767.19 0.033 

PP5-6 OBS2 Butchery 251.48 0.011 Butchery+Trampling+Spears 249.30 0.027 

NBC-6 Spears 1188.69 0.190 Spears+Butchery+Trampling+ 

Tumbler 

1159.55 0.258 

Oyster Bay Spears 1546.81 0.391 Spears+Trampling 1536.07 0.410 

DK1 6-9 Trampling 986.85 0.060 Trampling+Tumbler+Spears 999.79 0.086 

PP5-6 

SADBS 

Butchery 933.87 0.163 Trampling+Spears+ 

Butchery+Tumbler 

852.17 0.328 

PP5-6 ALBS Tumbler 657.10 0.032 Tumbler+Spears+Trampling 650.39 0.058 

DK1 10-16 Spears 1487.81 0.101 Spears+Trampling+ 

Butchery+Tumbler 

1462.74 0.168 

PP5-6 LBSR Spears 1740.66 0.045 Trampling+Butchery+Spears 1724.48 0.065 

PP13B MIS5 Butchery 2258.07 0.027 Butchery 2258.07 0.027 

PP5-6 YBS Butchery 265.15 0.011 Butchery+Trampling 263.82 0.019 

NBC-10 Spears 1580.58 0.194 Spears+Butchery 1548.03 0.261 

PP9 Spears 1100.48 0.046 Spears+Trampling+Tumbler 1097.96 0.062 

PP13B MIS6 Trampling 1577.94 0.012 Spears+Butchery+Trampling 1577.35 0.023 

6.2.3.3 Blades 

 For line-fitting of the blades, the experimental sample included the “spears”, 

although this experimental sample only consists of points. Additionally, the experimental 

“butchery” blades were separated into the “defleshing” and “field-dressing” blade 

distributions. Since the MSA layers that are being sampled include microlithic industries, 

generally on silcrete, the archaeological blades were also divided into blades <30mm in 

maximum length (“small”) and blades >30mm (“big”). The arbitrary value of 30mm was 

chosen as the division point because “microlithic” industries are often those with mean 

length less than 30mm (Clark, 2001a; Brown et al., 2012). The results are provided in 

Table 30 for big blades and Table 31 for small blades. 
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In general, the “big” quartzite blades tend to best be explained by multiple 

parameters including a butchery process and a post-depositional process. The single best-

estimator parameters are “field dressing” followed by “defleshing”, however the 

experimental spear distribution explains a substantial amount of variation in the PP5-6 

LBSR quartzite blades and is the best prediction model of all possible combinations. 

Similarly, the PP5-6 OBS2 blades are best explained by a single taphonomic variable – 

rock tumbling. The blades from Nelson Bay Cave where the presence of water in the 

sediments is well-documented (Butzer, 1973) does not appear to have resulted in edge 

damage patterning consistent with a rock-tumbler on the blades from layer 6 (no layer 10 

blades were examined). 

In contrast, the edge damage distribution curves of “big” silcrete blades tend to be 

best explained by the taphonomic experimental parameters, including both trampling and 

rock tumbling. However, the best model for all the assemblages (except PP5-6 SADBS) 
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Table 30. Results of line-fitting procedure for large (>30 mm) archaeological blades. 

Assemblages in approximate temporal order. 

Assemblage Type 

Best 

Single 

Variable AICc R2 Best Model Out of All Combinations AICc R2 

PP5-6 RBSR 

Q
u

ar
tz

it
e 

>
3

0
 m

m
 

Field 241.33 0.050 None     

Vleesbaai Deflesh 610.79 0.022 Field+Deflesh+Spears 607.52 0.040 

PP5-6 DBCS Field 210.30 0.092 None    

PP5-6 OBS2 Tumbler -123.39 0.014 Tumbler -123.39 0.014 

Oyster Bay Field 671.26 0.360 Field+Spears+Deflesh+Tumbler 617.61 0.449 

PP5-6 SADBS Field 384.88 0.023 None    

PP5-6 LBSR Spears 1134.17 0.038 Spears 1134.17 0.038 

PP13B MIS5 Field 1757.34 0.101 Field + Deflesh 1753.92 0.113 

PP9 Deflesh 423.48 0.028 Field+Deflesh+Trampling+Spears 413.85 0.066 

PP13B MIS6 Deflesh 1138.64 0.056 Deflesh+Trampling+Field 1114.41 0.121 

PP5-6 RBSR 

S
il

cr
et

e 
>

3
0

 m
m

 

Field 662.95 0.043 Field+Spears+Trampling 646.40 0.091 

PP5-6 BCSR Spears 940.52 0.118 Spears+Field+Trampling+Tumbler 940.52 0.213 

PP5-6 DBCS Spears 1044.91 0.059 Field+Spears+Trampling+Tumbler 988.80 0.195 

PP5-6 OBS2 Trampling 926.05 0.171 Trampling+Spears+Field+Deflesh 910.08 0.215 

NBC 6 Spears 420.45 0.054 Spears+Deflesh+Field 416.65 0.072 

Oyster Bay Tumbler 629.50 0.048 Tumbler+Spears+Trampling+Field 613.62 0.099 

PP5-6 OBS1 Trampling -489.15 0.013 Trampling+Spears -496.98 0.037 

PP5-6 SADBS Tumbler 397.33 0.033 Tumbler 397.33 0.033 

PP5-6 ALBS Trampling -492.15 0.020 Trampling+Spears -492.38 0.026 

PP5-6 LBSR Trampling 1514.74 0.115 Trampling+Spears+Deflesh+Tumbler 1509.16 0.141 

PP5-6 YBS Trampling 353.93 0.043 Trampling+Tumbler+Field+Spears 342.16 0.085 

PP13B MIS5 Field 49.95 0.038 Field+Spears+Trampling 1.35 0.148 
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Table 31. Results of line-fitting procedure for small (<30 mm) mostly silcrete (except 

for the MIS5 quartzite assemblage) archaeological blades. Assemblages in 

approximate temporal order. 

Assemblage Type 

Best 

Single 

Variable AICc R2 Best Model Out of All Combinations AICc R2 

PP5-6 RBSR 

S
il

cr
et

e 
<

3
0

 m
m

 

Trampling 976.48 0.044 Trampling+Field 988.28 0.059 

PP5-6 BCSR Field 1294.60 0.141 Field+Trampling 1292.48 0.150 

PP5-6 DBCS Field 1050.19 0.291 Field+Spears 1035.87 0.312 

PP5-6 OBS2 Tumbler 140.29 0.024 Spears+Deflesh+Tumbler+Field 123.03 0.080 

NBC 6 Trampling 395.76 0.090 Trampling+Field+Spears 371.15 0.153 

PP5-6 SGS Spears 662.41 0.068 Spears+Trampling+Field 653.87 0.097 

PP5-6 OBS1 Deflesh 659.31 0.023 Deflesh 659.31 0.023 

PP5-6 SADBS Spears 537.95 0.381 Spears+Deflesh+Trampling 554.00 0.393 

PP5-6 LBSR Trampling 12.66 0.115 Trampling+Field+Tumbler -7.38 0.167 

PP13B MIS5qz Field 205.35 0.035 Field+Tumbler+Spears 197.02 0.064 

PP13B MIS5 Field -296.05 0.055 None    

PP13B MIS6 Field -77.07 0.044 Field+Tumbler+Spears -96.49 0.098 

 

consisted of 2+ parameters. Interestingly, the experimental spear edge damage 

distribution was the single best predictor for Nelson Bay Cave layer 6 and the PP5-6 

DBCS, both layers attributed to the Howiesons Poort - although the PP5-6 BCSR is not 

HP and the large silcrete blades are explained by the distribution of experimental spear 

edge damage.  

 The small blades are generally silcrete, except for the small assemblage from 

PP13B MIS5 made on quartzite. The experimental edge damage distribution from “field 

dressing” butchery is the single best explanatory parameter for several of the 

assemblages. The small blades from the PP5-6 SADBS and SGS are best explained by 

the experimental “spear” distribution, although the full best-fit model also includes 

trampling and butchery parameters. The best single variable for the HP assemblages in 
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the PP5-6 DBCS and NBC 6 are not best explained by “spears” as the large blades from 

these assemblages were. This is interesting because the backed pieces from the HP, often 

argued to be projectile armatures, are larger than 30 mm (~33mm on average), whereas 

the backed pieces from the SADBS and SGS are significantly smaller (~27 mm, Brown 

et al., 2012). In other words, backed pieces from the HP are large and often argued to be 

used as projectiles, and the large blades from the HP assemblages in the DBCS and NBC 

6 have edge damage patterning consistent with spear-tip armature experiments, but the 

small blades don’t. Backed pieces from the SADBS and SGS are small, and the small 

blades from these layers have edge damage patterning consistent with spear-tip 

armatures, but the large blades don’t. 

6.2.3.4 Flakes 

 Flakes are more difficult to classify because they are the gradation between points 

and blades, are highly variable in size and shape, and therefore were likely used in a 

variety of ways across this continuum. Additionally, as previously discussed, the time 

period sampled includes microlithic blade layers that may have a different edge damage 

formation history than larger blades. No typological “flakes” were used in the butchery 

experiments (just “points” and blades”), and the spear experiments only included points. 

Therefore, the flake model selection parameters are divided into small (<30 mm) and 

large (>30 mm) flakes, which are being compared to flakes (trampling, tumbling), blades 

(butchery), and points (butchery and armatures). This value is arbitrary and was selected 

for the same reason as the 30mm cutoff for blades – microlithic industries typically 

produce flakes and blades with mean length less than 30mm. The model fitting procedure 

provides an indication of the nature of the distributions for flakes, as well as if they are 
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providing a different signal of edge damage formation history as the archaeological 

points and blades. The results of the line-fitting procedure for flakes is provided in Table 

32 for big flakes and Table 33 for small flakes. 

Table 32. Results of line-fitting procedure for big (>30 mm) archaeological flakes. 

Assemblage 

Best 

Single 

Variable AICc R2 

Best Model Out of All 

Combinations AICc R2 

PP5-6 RBSR 
Butchery 

points 
1347.93 0.054 Butchery points 1347.93 0.054 

PP5-6 BCSR Spears 1449.3 0.392 None   

Vleesbaai 
Butchery 

points 
1553.51 0.028 Butchery points+Butchery blades 1553.04 0.034 

PP5-6 DBCS Spears 1406.49 0.020 Spears+Trampling+Tumbler 1398.681 0.042 

PP5-6 OBS2 Spears 929.383 0.059 Spears+Butchery blades 915.666 0.096 

NBC 6 
Butchery 

blades 
1758.73 0.099 

Butchery 

blades+Trampling+Spears+Tumbler 
1739.41 0.155 

Oyster Bay 
Butchery 

blades 
1138.32 0.021 Butchery blades 1138.32 0.021 

PP5-6 OBS1 Trampling 1196.2 0.062 

Butchery 

blades+Spears+Trampling+Butchery 

points 

1173.154 0.119 

PP5-6 SADBS 
Butchery 

blades 
369.19 0.027 None   

PP5-6 ALBS Trampling 582.061 0.035 None   

PP5-6 LBSR 
Butchery 

blades 
2195.35 0.175 

Butchery 

blades+Trampling+Butchery points 
2161.17 0.250 

PP5-6 YBS Tumbler -197.82 0.026 None   

NBC 10 
Butchery 

points 
1397.38 0.017 Butchery points+Spears 1387.13 0.0467 

PP9 
Butchery 

points 
1123.16 0.089 Butchery points+Butchery blades 1119.425 0.098 
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Table 33. Results of line-fitting procedure for small (<30 mm) archaeological flakes. 

Assemblage 

Best Single 

Variable AICc R2 

Best Model Out of All 

Combinations AICc R2 

PP5-6 RBSR 
Butchery - 

blades 
1500.48 0.088 None   

PP5-6 BCSR Spears 2422.05 0.264 Spears+Butchery-blades+Trampling 2394.63 0.320 

Vleesbaai 
Butchery - 

blades 
976.721 0.064 

Butchery blades+Spears+Butchery 

points 
959.67 0.112 

PP5-6 DBCS Spears 2170.03 0.227 Spears+Butchery-blades+Trampling   

PP5-6 OBS2 Spears 1745.47 0.005 Spears 1745.47 0.005 

NBC 6 
Butchery - 

points 
799.972 0.044 None   

PP5-6 SGS 
Butchery - 

blades 
743.198 0.017 Butchery - blades 743.198 0.017 

Oyster Bay Trampling 990.336 0.068 
Butchery -blades+Spears+Butchery 

-points+Trampling 
939.805 0.191 

PP5-6 OBS1 
Butchery - 

blades 
1282.16 0.161 

Butchery 

blades+Spears+Tumbler+Trampling 
1284.59 0.217 

PP5-6 

SADBS 
Tumbler 1017.21 0.015 Tumbler 1017.21 0.015 

PP5-6 ALBS 
Buchery - 

blades 
801.302 0.005 None   

PP5-6 LBSR 
Butchery - 

blades 
1837.06 0.071 

Butchery 

blades+Trampling+Spears+Tumbler 
1817.12 0.130 

NBC 10 
Buchery - 

blades 
286.706 0.225 

Butchery -

blades+Spears+Tumbler+Trampling 
1569.86 0.095 

PP9 
Butchery - 

blades 
681.663 0.292 None   

 

 In general, the “butchery blades” term tends to fit small flakes (<30 mm) as the 

best single variable, however the best complete model often includes multiple variables. 

There is no clear pattern with the large blades, with butchery points and blades, post-

depositional variables, and even spears occurring in equal frequencies as the single best 

parameters. Two of the single best-fit parameters explain an extremely low amount of 

variation in flake edge damage distribution (PP5-6 ALBS and PP5-6 OBS2 flakes <30 

mm have R2 = 0.005), which suggests that the experimental distributions are not 

adequately explaining the variability in edge damage.  
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6.3 Landscape variability 

 In the following sections, the edge damage patterning evident at the landscape 

scale is analyzed in order to examine the hypotheses outlined in Chapter 4. These 

hypotheses relate tool use and taphonomy to the archaeological context on the landscape 

in which they were deposited – including open-air, caves, inland, and coastal setting 

variables. Patterning through time is also examined, in order that these results can be 

placed within the context of technological variability within the MSA as a whole. 

 Following the general outline of this chapter, the landscape patterning identifiable 

from points, blades, and flakes are discussed in order. 

6.3.1 Caves vs. Open-Air 

6.3.1.1 Points 

 Table 34 provides the frequency each experimental process occurs in the best-fit 

model across archaeological contexts for points. Although the sample of open-air sites is 

low and not statistically significant, they provide an indication that edge damage on 

points from these contexts is consistent with a combination of armature tips and 

trampling (χ2 = 4.000, df = 3, p = 0.262). This pattern holds if the published assemblage 

of points from KP1 is included which is best fit by the 2-parameter equation of spears and 

trampling. Cave assemblages contain a diverse suite of edge damage formation processes, 

with no single process being dominant (χ2 = 1.000, df = 3, p = 0.801). 
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Table 34. Summary of best-fitting model parameters by archaeological assemblage 

context for points. 

 Although the sample of open-air assemblages is small (as is common for all MSA 

contexts on the south coast), this pattern is suggestive of point discard from spear-tip use 

at open-air sites. This is better supported by the frequencies of DIFs between cave and 

open-air assemblages shown in Figure 40. Open-air assemblages have significantly more 

impact fractures on points compared to cave assemblages (Fisher’s exact test, p=0.0137). 

 

Figure 40. 95% C.I. on proportion of DIFs on points from cave and open-air site 

contexts. Dark rectangle indicates 95% confidence limits, red bar is mean. 
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6.3.1.2 Blades 

 Table 35 provides the frequency each experimental process occurs in the best-fit 

model across archaeological contexts for blades. A similar diversity of edge damage 

formation processes are apparent from cave contexts. With butchery split between the 

“defleshing” and “field dressing” patterns, cave contexts have a higher frequency of 

“field dressing”, and “spears”, however a chi-square test indicates the difference is not 

significant (χ2 = 6.394, df=4, p=0.1716). Blades from open-air contexts exhibit a diversity 

of processes as well, and there are no significant differences between their frequencies (χ2 

= 1.273, df=4, p=0.8659). 

Table 35. Summary of best-fitting model parameters by archaeological assemblage 

context for blades. 

Context Trampling Tumbling Defleshing Field Dressing Spears 

Cave (n=14) 17 9 9 18 18 

Open-Air (n=2) 1 2 2 3 3 

 

 The high frequency of edge damage patterning on blades consistent with damage 

from experimental spear-tipped armatures may indicate that the range of detached pieces 

suitable for use as armatures includes unretouched blades. This has been argued for 

backed blades present in the MSA by at least 71 ka (Brown et al., 2012), and may include 

unretouched blades as well. 

 The high frequency of “field dressing” compared to “defleshing” edge damage 

patterning at caves may be consistent with size-dependent transport patterns common in 

faunal remains from MSA assemblages (see Chapter 4, figure 2). Since small animals can 
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be completely transported, very little field processing occurs, and this could result in an 

increased frequency of tools used for both primary and secondary butchery tasks in cave 

assemblages. Since field processing creates more damage in general, it would tend to be 

the predominant edge damage signal from mixed butchery tasks. It is difficult to ascertain 

how representative two open-air assemblages of blades are in terms of edge damage 

patterning, but it’s conceivable that the approximately even frequency of defleshing and 

field processing parameters indicates both tasks occurred at open-air sites in equal 

measure. Additional research is needed to more fully examine the distribution of cutting 

tasks on the landscape during the MSA, but assemblage analysis of edge damage 

patterning appears to be a promising step forward. 

6.3.1.3 Flakes 

 Table 35 provides the frequency each experimental process occurs in the best-fit 

model across archaeological contexts for flakes. Again, cave assemblages represent a 

diversity of edge damage formation processes, especially post-depositional and butchery 

processes, but also experimental spear distributions. Open-air assemblages have flake 

edge damage patterning less influenced by post-depositional processes, and largely 

influenced by butchery patterns – either blades or points, although there is some evidence 

for small-blades to have edge damage patterning consistent with spear tipped armatures. 
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Table 36. Summary of best-fitting model parameters by archaeological site context 

for flakes. 

Context Trampling Tumbling 

Butchery 

- blades 

Butchery - 

points Spears 

Cave (flakes >30 mm) 

(n=11) 
4 2 5 5 5 

Cave (flakes <30 mm) 

(n=12) 
5 5 7 1 6 

Open-Air (flakes >30 mm) 

(n=2) 
0 0 2 1 0 

Open-Air (flakes <30 mm) 

(n=2) 
1 0 2 2 2 

 

6.3.2 Coastal vs. Interior 

6.3.2.1 Points 

The frequency each experimental process occurs in the best-fit model between 

coastal and interior archaeological contexts for points are provided in Table 37. 

Regardless of inferred coastal or interior context during occupation, sites have a very 

uniform frequency of processes consistent with edge damage formation (Coastal, 

χ2=0.857, df=3, p=0.836; Interior, χ2=1.2, df=3, p=0.753). There does not appear to be 

any support for a difference in coastal and interior site context and best-fitting model 

parameters.  
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Table 37. Summary of all best-fitting model parameters by archaeological 

assemblage setting for points. 

Context Trampling Tumbling Butchery Spears 

Coastal (n=6) 4 2 4 4 

Interior (n=10) 8 8 5 9 

 

6.3.2.2 Blades 

Table 38 provides the frequency each experimental process occurs in the best-fit 

model between coastal and interior archaeological contexts for blades. Both coastal and 

interior occupations have a uniform diversity of processes that are consistent with the 

formation of edge damage on blades (Coastal, χ2=4.875, df=4, p=0.300; Interior, 

χ2=4.545, df=4, p=0.337).  

Table 38. Summary of best-fitting model parameters by archaeological assemblage 

setting for blades. 

Context Trampling Tumbling Defleshing Field Dressing Spears 

Coastal (n=5) 9 4 3 9 7 

Interior (n=11) 11 7 8 14 15 

 

 

6.3.2.3 Flakes 

Table 39 provides the frequency each experimental process occurs in the best-fit 

model between coastal and interior archaeological settings for flakes. As was the case 

with points and blades, there is a uniform frequency with which each best-fitting model 
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parameter occurs by context and flake size. No significant differences between best-

fitting model parameters was noted for flakes. 

Context Trampling Tumbling 

Butchery 

- blades 

Butchery 

- points Spears 

Coastal (flakes 

>30 mm) (n=5) 1 0 2 3 1 

Coastal (flakes 

<30 mm) (n=5) 3 2 3 0 3 

Interior (flakes 

>30 mm) (n=7) 3 2 5 3 4 

Interior (flakes 

<30 mm) (n=7) 3 3 5 2 4 

Table 19. Summary count of frequency of best-fitting model parameters by 

archaeological assemblage setting for flakes. 
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6.3.3 Temporal variability 

6.3.3.1 Points 

 The single best-fitting experimental distribution parameter for each assemblage is 

plotted by estimated age in Figure 41 for points. Assemblages with edge damage 

distributions consistent with the experimental spear-armatures span nearly the entire 

range of the MSA sampled in this dissertation, other than PP13B layers from MIS6. 

Assemblages of points with a distribution best-fit by the experimental butchery data are 

more constrained between 100-60 ka.  In terms of damage intensity, there is no clear 
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Figure 41. Single best-fit variable by time for points. 



 

205 

 

temporally vectored change in edge damage formation on archaeological points (Figure 

42). 

6.3.3.2 Blades 

The single best-fitting experimental distribution parameter for each assemblage is 

plotted by estimated age in Figure 43 for blades. Assemblage distributions of damage on 

blades which are consistent with the experimental spear damage are constrained to ~80-

60 ka, a time period during which microlithic technology first appears at PP5-6 (Brown et 

al., 2012), and becomes widespread throughout South Africa in the HP. Blades consistent 

with cutting tasks such as defleshing and field butchery occur throughout the span of the 

MSA. Damage attributable to a trampling origin occur after MIS5e, and few assemblages 

are consistent with the tumbling pattern of damage formation, even at Nelson Bay Cave 

where water transport is likely.

Figure 42. Archaeological edge damage intensity on points through time. 
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Figure 43. Single best-fit variable by time for blades. Time period of microlithic 

technologies at other MSA sites highlighted in yellow. Big blades are >30mm and 

colored grey for quartzite and red for silcrete; small blades are <30mm, all silcrete. 

 Edge damage intensity on blades through time is shown in Figure 44. There does 

not seem to be any temporally vectored change in the average amount of edge damage on 

blades that have at least one instance of edge damage. This is similar to the lack of 

patterning seen in archaeological point edge damage intensity through time. 
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6.3.3.3 Flakes 

 The single best-fitting experimental distribution parameter for each assemblage is 

plotted by estimated age in Figure 45 for flakes, split by the arbitrary maximum length of 

30mm. Flakes with damage distributions consistent with cutting tasks such as butchery 

with blades and points are the most common best-fit parameter, and occur throughout the 

MSA time period sampled here (no PP13B flakes were examined). Several assemblages 

with flakes consistent with spears do occur after ~65 ka. Flakes with damage patterning 

consistent with trampling only occur in the time period between ~70-60 ka. This is also 

true for blades. Since trampling damage is correlated with disturbance activity, there may 

be a correlation between additional activity in these assemblages during this time period 

Figure 44. Little patterning is seen in archaeological edge damage intensity on 

blades through time. 
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– possibly due to increased population sizes, reduced mobility, or both (Ambrose and 

Lorenz, 1990). 

 

Figure 45. Single best-fit variable by time for flakes. 

 The intensity of edge damage on flakes through time is shown in Figure 46. 

Unlike points and blades, there does appear to be a strong temporal pattern in edge 

damage intensity on flakes – more recent flakes have more edge damage per tool than 

older flakes. A logistic curve fit to these data has R2=0.420.  
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6.4 Summary 

 In this chapter, the results of the experimental and archaeological edge damage 

analyses were presented that will form the basis of the discussion in the next chapter. The 

hypotheses put forward in chapter 4 will be examined with these results, and behavioral 

and technological variability in the MSA will be discussed. 

  

Figure 46. Edge damage intensity is strongly patterned through time on flakes. 
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CHAPTER 7 – DISCUSSION AND CONCLUSIONS 

 

7.0 Introduction 

 In this chapter, the results of the trace-agent edge damage formation experiments 

and archaeological patterning of edge damage distribution is related back to the goals and 

hypotheses laid out in Chapter 4. The objective of this dissertation was to understand the 

behavior of modern humans on the south coast of South Africa during the MSA, but edge 

damage analysis also allows aspects of site formation to be examined that can inform 

other facets of archaeological interpretations. To begin, the first two goals of this 

dissertation will be evaluated in light of the results presented in chapter 6. As part of goal 

2, the five hypotheses laid out in chapter 4 that relate landscape archaeological patterns in 

inferred edge damage processes will be examined, with the evidence providing some 

support for three (Hypotheses 2, 3, and 5), and not supporting two (Hypotheses 1 and 4). 

The third section of this chapter will consist of site-specific discussions, as the results 

from chapter 6 also highlight patterns that are informative to site-specific formation 

processes and behavioral inferences. In the final section, I will discuss the implications of 

this project for technological variability in the MSA, it’s bearing on modern human 

behavior, and dispersal out of Africa; and MSA landscape use by using edge damage and 

macrofracture patterning as lines of evidence. At the end of this chapter, the overall 

project background, objectives, results, and conclusions will be summarized. 

7.1 Goal 1 

The first goal of the dissertation was to create an experimental database of 

taphonomic and behavioral edge damage. These experiments provided the trace-agent 
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linkages through which behavioral interpretations about the past ultimately can be made, 

but also pave the way for additional work that can strengthen and improve the approach 

used in this dissertation.  

 One key limitation of the experimental design is that only a subset of the range of 

processes that influence edge damage formation were tested. A wide range of other 

activities are needed to expand the range of behaviorally meaningful activities that can be 

distinguished using this method. The generally low R2-values indicate that much of the 

variation in edge damage patterning still needs to be accounted for, and additional 

experiments can begin to identify the causal agency behind variability in edge damage 

formation processes unidentified by the experimental causal agents examined here.  

 The long-term trampling study provided valuable data on artifact edge damage 

formation, recovery attrition, movement, and displacement. Doing similar experiments in 

other settings (e.g., dune sand, caves and rockshelters) with more human trampling, or 

with less spacing between artifacts can provide insight into trampling damage variability. 

Artifact compaction is a serious issue at many sites (especially layer 6 at DK1, Marean et 

al., 2000b) and experiments are needed to evaluate how this process may influence 

damage formation relative to trampling processes.  

Additional behavioral experiments are needed to understand how different 

cutting, scraping, and drilling tasks form edge damage at an assemblage-scale. The 

experiments separating field-dressing from defleshing butchery in this dissertation 

provides an archaeological correlate that is unlikely to be visible at the scale of a single 

artifact. In other words, traditional edge damage approaches are unlikely to be able to 
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discern the stage in the butchery process beyond “meat-cutting”.  In addition to more 

scar-trait statistical analyses, such as shape, size, orientation along the edge, additional 

behavioral experiments will improve the accuracy of trace-agent linkages. With more 

precise linkages, the range of behavioral and taphonomic formational processes stone 

tools were exposed to on the landscape in the MSA can be further identified. 

Although this study identified armatures in some MSA assemblages on the south 

coast, identifying armature method (spear, atlatl, bow) archaeologically has been an 

elusive task for researchers (Sisk and Shea, 2011). Some progress has been made using 

micro-stress features visible as ‘velocity-dependent fracture surface features’ such as 

Wallner lines or fracture wings (Hutchings, 2011) from high energy impact fractures but 

these are only visible on very fine-grain, homogenous materials (Hutchings, 1997; Sahle 

et al., 2013). To see whether this was possible for heat-treated silcrete, backed blades shot 

as high-velocity projectile armatures (Schoville et al., 2013) were supplied to Karl 

Hutchings for analysis but no velocity-dependent fracture surface features were visible 

(Hutchings, personal communication), and even fine-grained quartzites do not show these 

features. Other methods for identifying armature methods such as tip cross-sectional area 

and perimeter (Sisk and Shea, 2011) have been critiqued for their reliance on 

ethnographic data from outside Australia – and when Australian data are added there is 

very little distinction in armature sizes (Clarkson, 2011; Newman and Moore, 2013). 

Clarkson (2011) argues that impact fracture size may be able to distinguish 

thrusting/throwing spears from higher velocity weaponry, but so far these data are limited 

and additional experimentation is needed. For now, the identification of armature tips on 
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points and blades suggest changes in prehistoric weaponry occurred, but the exact nature 

of these developments requires further experimental work. 

7.2 Goal 2 

 Utilizing the trace-agent inferential chain to identify behavioral and taphonomic 

processes in MSA assemblages provided evidence for (1) the multi-functionality of 

points throughout the MSA; (2) the use of blades, even unretouched ones, as armatures 

during the HP; and (3) changes in the taphonomic formation of damage on flakes through 

time may relate to site use intensity, increased population, reduced residential mobility, 

or some combination of the three. The outcome of the analyses during Goal 2 also 

identified several limitations in the current study: there was uneven coverage of sites and 

time periods, and few open-air assemblages; uneven representation of flakes and blades 

from some sites, especially the lack of blades from DK1 makes understanding the 

functional and stylistic variability of un-retouched HP blades difficult and the analysis 

only focused on the unretouched assemblage component. Some of these issues are 

systematic to Stone Age archaeology – more sites, better dates, and improved 

environmental data are always needed. Despite these caveats, the methodology and sites 

surveyed provided a sufficient test of MSA edge damage variability to begin identifying 

patterns of behavioral and taphonomic processes operating on multiple scales of analysis. 

 In chapter 4, there were five hypotheses proposed that relate patterning in edge 

damage on MSA points, flakes, and blades, to how MSA foragers may have been 

utilizing the landscape. The results of these hypotheses are as follows. 



 

214 

 

7.2.1 Hypothesis 1 

Stone tools from open-air contexts indicate increased exposure to weathering processes, 

whereas cave contexts indicate increased exposure to trampling. 

 Post-depositional damage influences archaeological material in every context in 

some way. It was hypothesized that open-air sites, as unprotected micro-contexts, would 

be exposed to increased levels of artifact rolling and turbation due to their exposed 

location on the landscape. This was expected to result in a higher frequency of tools with 

a distribution of damage consistent with the experimental rock-tumbler damage. In 

contrast, cave contexts are restricted spaces that concentrate activity within them. This 

was expected to result a higher frequency of tools with a distribution of damage 

consistent with trampling damage. 

From the analysis presented in the prior chapter, this hypothesis is not supported. 

Although more assemblages fit trampling distribution in caves than tumbling (36 of 59 

trampling, 61% vs. 23 of 59 tumbling, 39%), the difference is not statistically significant 

(p=0.091). A similar pattern is evident at open-air sites, where 4 of 6 tool assemblages fit 

a trampling (66%) pattern, and only 2 of 6 fit a tumbling (34%) pattern, but again, the 

difference is not statistically significant (p=0.414). Some have argued that trampling is 

simply a more common post-depositional processes acting on archaeological 

assemblages, and is more difficult to detect (McPherron et al., 2014), which may make 

the edge damage distribution signal weaker. Additionally, tumbling may not result in 

damage at the energy-levels of archaeological site formation because they are lower than 

what experimentation of fluvial transport and edge damage formation have used (Lenoble 

and Bertran, 2004; Chu et al., 2015). For example, in a fabric analysis of sediments from 
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PP13B, Bernatchez (2010) illustrates that most artifacts are subjected to disturbance 

intensity less than that from ‘shallow run-off’, except for two stratigraphic aggregates in 

the Western excavation area (LB Sand 1 and LBG Sand 2). In flume experiments, Chu et 

al. (2015) demonstrate that transport of at least medium-size gravels are required for 

damage to form on flint artifacts due to fluvial movement, which are generally larger than 

what is found in the archaeological deposits analyzed here (e.g., Karkanas and Goldberg, 

2010; Karkanas et al., 2015), and requiring higher velocity fluvial movement. When 

fluvial transport occurred archaeologically, it does not appear to have resulted in as much 

edge alteration as trampling in the contexts analyzed here. In summary, MSA sites are 

exposed to trampling damage on average in similar frequencies between open-air and 

cave assemblages, contrary to Hypothesis 1. 

7.2.2 Hypothesis 2 

Sites on the paleocoast will reflect different patterns of hunting and butchery on points, 

blades, and flakes, compared to sites in the paleointerior. 

Human behavior is adapted to the availability of needed resources. Since a 

different array of plants and animals were available in paleocoastal contexts compared to 

paleointerior contexts – especially with regard to shellfish access, it was anticipated that 

humans would have used and discarded tools differently in these two contexts. By testing 

for differences between paleoscape contexts, aspects of the technological behavior within 

the MSA foraging system can be identified. 

The results from analyses presented in Chapter 6 provide some tentative support 

for Hypothesis 2. Rather than clear cut differences in exactly which processes form edge 
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damage on tools differently between paleocoastal and paleointerior sites, it appears that 

there may simply be more diversity of processes in paleocoastal contexts. One way to 

examine this pattern is to look at the equability of experimental processes identified in 

each context. To do this, the Shannon evenness index was calculated on the frequency of 

best-fit model parameters (Faith and Gordon, 2007), where evenness is equal to 

-Σpi ln pi/ln S, where S is the number of types of edge damage processes possible from 

the line-fitting procedure (e.g., defleshing, tumbling) and pi is the standardized proportion 

of processes for the i-th context (i.e., coastal or interior). In this analysis, evenness values 

(E) that are close to 1 represent assemblages where each edge damage formation 

processes is represented equally, whereas values closer to 0 represent assemblages where 

the processes of edge damage formation are unevenly represented (Shennan, 1997). For 

instance, if one context had edge damage on tools attributed to butchery, armatures, 

tumbling, and trampling one time each, then the evenness would be equal to 1. The more 

uneven the frequency of edge damage processes, the lower the value of E.  

Points have edge damage patterning slightly more equitably distributed on coastal 

assemblages compared to interior assemblages (interior points E=0.969, coastal points 

E=0.980). In contrast, both blades and flakes have edge damage patterning more equally 

represented across interior sites than coastal sites (interior flakes E=0.966, coastal flakes 

E=0.803; interior blades E=0.980, coastal blades E=0.947), though the difference is not 

significant. The rationale behind Hypothesis 2 is that the distribution of resources in 

coastal environments would provide different opportunities for stone tool use than 

interior locations. The results presented here suggest that, in terms of the somewhat 

limited number of processes tested here, there are not significant differences between the 
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diversity of processes that tools were exposed to in coastal contexts compared to interior 

contexts.  

As discussed in chapter 4, the intensity of behavioral edge damage formation may 

be causally linked to degree of curation. Following Odell (1996), as foraging groups 

become more mobile, tools will tend to serve more functions and be utilized more 

intensively. Edge damage formed significantly more heavily on points from interior 

locations compared to coastal sites (coastal=36.0%, interior=45.9%; t-test, p<0.001), 

consistent with more frequent use of points in contexts where larger game are present 

such as Renosterveld and Thicket vegetation. Blades have ~equal damage formation 

between coastal (34.6%) and interior (35.0%) assemblages (t-test, p=0.824), whereas 

flakes have higher amount of damage per tool in coastal contexts (38.4%) compared to 

interior (32.1%) assemblages (t-test, p<0.0001). Blades appear to have been exposed to a 

similar diversity of edge damage processes at both coastal and interior locations, and also 

exhibit similar intensity of damage. Flakes have significantly higher edge damage 

intensity in coastal environments but were possibly exposed to less diversity of edge 

damage formation processes at coastal locations.  

7.2.3 Hypothesis 3 

Caves will have fewer DIFs and less damage intensity; whereas open-air sites will have 

higher frequency of DIFs and higher damage intensity. 

It was hypothesized that tools discarded in cave contexts will tend to either be 

towards the end of their use-life, or used very opportunistically depending on whether the 

cave is being regularly supplied with raw material. Caves will have lower frequency of 
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impact fractures because broken tips are more often discarded on the landscape, 

frequently at kill sites (Villa et al., 2009a; Wilkins et al., 2012) and because a greater 

range of activities take place at residential sites, so the relative frequency of hunting tools 

is lower. 

The results of this dissertation are consistent with fewer ‘impact fractures’ in 

enclosed cave contexts (2.9%) compared to open-air sites (11.9%; Fisher’s exact test, 

p=0.0137), consistent with the findings of Wilkins, et al. (2012) and Villa, et al. (2009a). 

This is also consistent with discard of broken points with impact fractures more 

frequently on the landscape rather than transported back to caves. The ubiquity of this 

pattern likely represents an optimal solution regarding where to retool, and where to 

discard broken tools, but then the question becomes, how is this the optimal solution?  

As tools become worn and break, it is necessary to replenish the toolkit either by 

repairing broken tools or replacing those beyond repair. Retooling tasks frequently occur 

at habitation sites during times when other foraging tasks are not possible (e.g., evening 

and night), and thus lower the overall cost of tool maintenance tasks (Binford, 1980; 

Torrence, 1989). It could be expected that broken points (proximal pieces, mostly) would 

be more common where retooling occurs because resins and bindings would need to be 

loosened, a process that often involves heat to soften mastic (Hunzicker, 2008). Other 

researchers have argued that broken point tips are discarded on the landscape (Holdaway, 

1989; Flenniken, 1991), repairable points are transported back to residential camps for 

retouch (Shea, 1991), and broken proximal ends are discarded at camp sites during 

retooling (Hunzicker, 2008). Andrefsky (2008) argues that raw-material proximity 

influences where broken points are discarded, and localities located near quarries will 
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tend to have higher frequencies of impact fractures than residential areas located more 

than a day’s walk from raw material sources. 

What may be informative in this case is to analyze how more recent hunter-

gatherers used and discarded broken stone points on the landscape. Paleo-Indian sites in 

North America are notable in several respects, including their finely made spear-tips 

(possibly atlatl), the high visibility of kill-sites on the landscape (Kelly and Todd, 1988), 

and points hafted to a foreshaft (Stanford, 1996; Pearson, 1999). Paleoindian kill-sites 

indicate a very high frequency of points with projectile impact fractures are discarded on 

the landscape as part of the Paleo-Indian hunting and tool use system (Figure 47). This 

pattern is arguably similar to the patterning seen in MSA point impact fractures. 

Although comparative data are limited, it is notable that this pattern is the opposite of that 

seen in Neandertal assemblages in European Middle Paleolithic assemblages (Figure 47) 

where a low frequency of impact fractures on the landscape at open-air sites, and high 

frequency of impact fractures in caves is seen (Villa and Lenoir, 2006; Villa et al., 

2009a). Holdaway (1989) found the ratio of point tips to bases at two Mousterian 

rockshelters to be the opposite of what is found at sites with projectile armatures. This 

may imply that the system of point use and discard used by modern humans is different 

from what was being employed by Neandertals, either in terms of technology being used, 

transport decisions made on carcasses with point tips embedded within them, or the 

structure of toolkit repair timing.  

One possibility may be the use of a foreshaft as part of the hafting complex. 

Foreshafts are a ‘breakthrough’ technology (e.g., Brown et al., 2009; Wrangham, 2009) 

in the sense that it makes hunting less dangerous by allowing multiple strikes with a spear 
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during hunting, is less cumbersome than 

carrying around multiple spears, reduces the 

risk of breaking or losing the wooden spear 

shaft, and the hafted foreshaft set may also 

function easily as handled knives (Churchill, 

1993). The origin of this technology is not 

well understood, but are minimally in place 

in the Magdalenian (~17 ka, Chauvière et 

al., 2006), at Paleoindian sites (~12 ka, 

Stanford, 1996)), and within the 

ethnographic record of Australian aborigines 

(Allen, 2011). On the south coast of South 

Africa, foreshafts at the end of wooden 

spears would be especially economical because few trees suitable for spear shafts exist 

(Van Wyk and Gericke, 2000; Brown and Marean, 2010), and the use of foreshafts would 

mitigate the risk of loss or damage to the more valuable end. Foreshafts are 

multifunctional, and the use of points as knives in some contexts (e.g., PP13B MIS 5, 

PP5-6 OBS2) is consistent with this interpretation. It’s possible that the different broken 

point discard patterning seen in Mousterian sites is related to the lack of foreshaft 

technologies, however this proposition requires additional experimentation. 

In terms of the edge damage intensity, overall, open-air sites tend to have more 

edge damage per tool. Blades have significantly greater damage per tool in open-air 

contexts (p<0.0001), and the average for open-air points and flakes is greater than cave 

Figure 47. Impact fracture frequency by 

site context between Middle Paleolithic ( 

“MP”) (Callow, 1986; Villa and Lenoir, 

2006), Paleo-Indian (Hutchings, 1997; 

Villa et al., 2009a), and MSA (here) 

sites. Paleo-Indian data from Sandia 

Cave and the Casper site. 
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contexts, although the differences are not statistically significant (p=0.1603 and 

p=0.2918, respectively). As described in chapter 4, increased frequencies of behavioral 

edge damage is suggested to occur on more highly curated toolkits. Tools taken on 

logistical forays tend to be more heavily curated (i.e., less expedient) than those produced 

and used at residential sites. This is consistent with a more logistical pattern of tool-use 

on the landscape, where they become more heavily worn prior to discard. Supplying 

caves with raw-material during longer occupations may lead to more expedient tool use, 

and less damage intensity. 

7.2.4 Hypothesis 4 

Blades from open-air sites will reflect field-butchery patterns of edge damage more 

closely, and blades from caves will reflect defleshing tasks. 

 Since the experimental butchery processes of field-dressing and defleshing 

resulted in significantly different distributions, it was hypothesized that field-butchery 

would tend to occur on the landscape where animals are initially dispatched and 

processed for transport. In contrast, caves would tend to be areas where animal parts are 

transported and with additional processing largely influenced by defleshing tasks for 

meat distribution. 

 While intuitive, the results do not provide support for this hypothesis. In fact, 

field-dressing edge damage patterning was included as a best-fit variable much more 

frequently at caves than defleshing patterning was. This may be because butchery that 

occurs at caves is from smaller animals that must be completely butchered, or that this 
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pattern is similar to other processes not currently sampled by an experimental distribution 

(e.g., hide scraping?). 

7.2.5 Hypothesis 5 

Temporal change across sites will show a shift from spear-technology using points to 

microlithic and blade-based projectile technology. 

Temporal change was identified, most clearly in how blades were being used. 

Points were multi-functional throughout the MSA, including use as armature tips and as 

knives. The temporal pattern for flakes is most clearly associated with increased damage 

intensity through time, and the possible meaning behind this will be discussed further in 

section 7.4. 

Many have argued that the backed geometric blades and segments (portions of 

blades) in the HP is indicative of the first evidence for projectile technologies. However, 

MSA technologies typical of sequences before and after the HP never totally disappear. If 

convergent-MSA points were occasionally used as spear-points, then the question 

becomes whether this technology is replaced during the HP, or if the innovations during 

the HP add technological complexity onto existing technology that is maintained within 

the cultural system. It was hypothesized that the microlithic industries that appear ~70 ka 

mark a shift to projectile technology that replaces the existing armature toolkit, and 

quartzite points would be used mostly as cutting tools during this time period. 

The results of this analysis indicate that the use of quartzite points associated with 

typical Mode 3 technologies are multi-purpose, including use as both spear-tipped 

armatures and knives. This variability in tool use continues into the time period 
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associated with microlithic industries starting ~71 ka and ending by ~60 ka. During this 

time period, the typical mode 3 industries that occur throughout the MSA do not 

disappear, but become less frequent and an increase in finer-grained silcrete blades 

occurs. Small silcrete blades have edge damage patterning consistent with use as 

armature tips only during this period of time. Although retouched backed pieces are 

frequently thought to have been forms of projectile armatures (Lombard and Phillipson, 

2010; Brown et al., 2012), it was unexpected that the unretouched blades may have been 

used in this fashion. This is not without analogy, however. Ethnographic and museum 

examples of microlithic blades hafted to projectiles are known from numerous locations 

(Clark, 1977b; Nuzhnyi, 1993; Yaroshevich et al., 2010). Use-wear analyses restricted to 

retouched tools or small subsamples of unretouched tools may overlook such patterning, 

highlighting the value of the assemblage edge damage approach to inferring function. 

The use of points as spear-tip armatures during this time period suggests that 

rather than a replacement of technology, these industries operated in parallel. Increased 

technological complexity is often associated with the creation of task-specific toolkits 

(Oswalt, 1976; Odell, 1998). Task specific activities may occur embedded within 

residential movements, but more frequently as part of increased frequency of logistical 

foraging activities (Binford, 1980). Frequent residential movements would tend to 

discourage task-specific toolkits that would require frequent transport of a larger number 

of tools (Kuhn, 1994; Collard et al., 2005). Low residential mobility and long-term 

occupation may also be suggested in the HP particularly by the dense burning layers that 

occur at KRM (Singer and Wymer, 1982), PP5-6 (Karkanas et al., 2015), and Sibudu 

(Wadley, 2010a).  
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7.3 Site-Specific Implications 

Although the overarching theme of this dissertation is to evaluate landscape-scale 

technological behaviors in the MSA, the results provide several insights into site specific 

patterning that warrants discussion. 

7.3.1 PP13B 

The analysis of points from PP13B indicated their use as cutting tools in MIS5 (F-

ratio=10.989, p=0.001, R2=0.027), as has been suggested by separate but similar analyses 

from Bird et al. (2007) and Schoville (2010). This highlights both the consistency of edge 

damage analysis at the assemblage scale, but also indicates that points discarded at 

PP13B at this time were unlikely to have been predominantly used as spear points prior 

to discard.  

This analysis also provides some indication that points in MIS 6 have edge 

damage more consistent with post-depositional damage, but also as armature tips (F-

ratio=4.569, p=0.034, R2=0.023). This pattern is somewhat inconsistent with Schoville 

(2010) who did not identify any major differences between MIS 6, late MIS 6, early MIS 

5, and late MIS 5 (the MIS 6 points had not been analyzed prior to the Bird et al. study). 

The different groupings used may influence the ability to tease out edge damage 

patterning, but the line-fitting statistical procedure used here also has clear advantages in 

its ability to identify multiple processes that may have influenced damage formation. 

The evidence for quartzite points being occasionally used as spear-tips is 

supported by the faunal evidence from PP13B. O’Driscoll (2012) argues that three bones 

of size 3 mammals identified by Thompson (2008) from PP13B have stone fragments 



 

225 

 

embedded in them consistent with armature lesions. One of the fragments is from MIS 6, 

and the other two are from MIS 5 (O’Driscoll, 2012:72). Although there is little evidence 

for spear-points based on the edge damage and impact fractures from MIS 5, this likely 

reflects patterns of broken tool discard on the landscape and mobility and foraging 

strategies. Additionally, the fauna from MIS 6 is notably larger than MIS 5 (Thompson, 

2010b), and it isn’t clear how faunal transport bias may affect the archaeological 

frequencies of projectile bone lesions and lithic impact fractures on stone armatures 

(O'Driscoll and Thompson, 2014). 

At PP13B, small and large blades are consistent with the butchery cutting 

distributions in MIS 5 and 6 on both quartzite and silcrete. In terms of blade use, there 

does not seem to be any differentiation in use as seen in later assemblages such as the HP 

levels and SADBS. The bladelets identified at PP13B by Marean, et al. (2007) did not 

have any observable edge damage - all the blade edge damage observed in this study was 

on tools greater than 10mm in width. This may indicate that this subset of tools were not 

necessarily intended products of the knapping process. The lack of bladelet cores at 

PP13B (Thompson et al., 2010) also suggests that this subset of tools were not 

necessarily intended knapping products. At PP13B, there is a unimodal blade size 

continuum that includes bladelets (Thompson et al., 2010). This same unimodal blade 

size pattern is also observed at Kathu Pan 1 (Wilkins and Chazan, 2012), which has been 

dated to ~500 ka (Porat et al., 2010), and in pre-HP levels at Sibudu (Villa et al., 2005). 

In those analyses (KP1 and Sibudu), the presence of bladelets are seen as opportunistic 

occurrences, rather than a true bladelet technology. It seems more parsimonious to 

conclude that the bladelets at PP13B fall within this category as well. 
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An important caveat for the inclusion of PP13B MIS 6 as an interior context is 

that Marean et al. (Marean et al., 2007) and Fisher (2010) indicate there are periods 

during MIS6 occupation of PP13B when the coastline was near, therefore making it a 

coastal assemblage - particularly in the LC-MSA Lower. Other MIS6 StratAggs such as 

DB Sand 4 and LBG Sand 2-3 are consistent with distant coastlines. Our current 

resolution linking radiometric ages with the global sea-level curve is not yet precise 

enough to be certain, but the general trend is for the coastline during MIS 6 to be located 

greater than 20 km from Pinnacle Point throughout MIS 6 (Fisher et al., 2010), which is 

why it was analyzed as such here. Relatively brief sea-level progressions during MIS 6 

may have an influence on these results that should be taken into consideration. The shell 

and whale barnacle found in the LC-MSA Lower would suggest that considerable 

variability in coastline position existed in MIS6.  

Table 40. PP13B site formation processes from Karkanas and Goldberg (2010:table 

1) and single best-fitting variable from line-fitting procedure. 

Assem. Main Formation Processes Age (ka) Points Blades 

MIS 5 

Anthropogenic input from superimposed 

combustion features 

130-90 Butchery 

Field 

Butchery 

MIS 6 

Superimposed combustion features, roof 

spalling, Aeolian activity, slumping 

180-150 Trampling 

Field 

Butchery 

 

7.3.2 PP5-6 

 There is a diversity of edge damage patterning evident at PP5-6, and the complex 

post-depositional history identified by Karkanas et al. (2015) is also seen in the edge 
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damage. In Table 41, the main post-depositional formation processes identified through 

micromorphology analysis at PP5-6 (Karkanas et al., 2015) is presented alongside the 

inferred main edge damage formation process. Post-depositional processes are the best 

fitting single variable for 6 of 9 stratigraphic aggregates with large silcrete blades. 

However, there are behavioral signals within the assemblage that the edge damage 

analysis identified. Points have edge damage patterning consistent with spear tips in the 

RBSR and LBSR, including high frequency of DIFs (14% in RBSR, but only 2.9% in 

LBSR); and cutting tasks in OBS2, SADBS, and YBS. Blades at PP5-6 have edge 

damage patterning that is size dependent. Large quartzite blades are consistent with “field 

butchery” tasks in the DBCS, RBSR, and SADBS, as spear tips in the LBSR, and a 

taphonomic signal from the OBS2. Large silcrete blades are consistent with “field 

butchery” tasks in the RBSR, a post-depositional pattern in the ALBS, LBSR, OBS1, 

SADBS, and YBS, and as spear-tips in the BCSR and DBCS. Small silcrete blades are 

consistent with “field butchery” tasks in the BCSR and DBCS; defleshing tasks in the 

OBS1, a taphonomic pattern in the LBSR, OBS2, and RBSR; and as spear tips in the 

SADBS and SGS. Large flakes have more edge damage patterning consistent with 

behavioral processes while the small flakes have more taphonomic damage patterning. 



 

228 

 

Table 41. PP5-6 StratAgg formation processes from Karkanas et al. (2015) and single best-fitting variables from line-fitting 

analysis for quartzite points, silcrete blades, and flakes (big >30 mm, small < 30mm). 

StratAgg Main Formation Processes Age ± Points Big Blades Sm. Blades Big Flakes Sm. 

Flakes 

RBSR Aeolian, debris flow, pedogenesis 51 2 Spears Butchery Trampling Butchery Butchery 

BCSR Combustion, Aeolian, debris flow, 

decalcification 

52 3 NA Spears Butchery NA Spears 

DBCS Debris flow, aeolian, combustion, 

decalcification 

62 3 Tumbler Spears Trampling Spears Spears 

OBS2 Aeolian, decalcification, trampling, 

combustion, debris flow 

63 3 Butchery Trampling Tumbler Spears Spears 

SGS Combustion, trampling, Aeolian 64 3 NA NA Spears NA Butchery 

OBS1 Aeolian, trampling, combustion, debris flow, 

sheetwash, partial decalcification 

69 3 NA Trampling Butchery Trampling Butchery 

SADBS Trampling, Aeolian, combustion 71 3 Butchery Tumbler Spears Butchery Tumbler 

ALBS Aeolian, combustion, trampling 72 3 Tumbler Trampling Butchery Trampling Butchery 

LBSR Free-fall roofspall, sheetwash, small-scale 

debris flow, combustion, trampling, 

cementation 

81 4 Spears Trampling Trampling Butchery Butchery 

YBS Aeolian 96 6 Butchery Trampling NA Tumbler NA 

2
2
8
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7.3.3 PP9 

At PP9, points have edge damage patterning consistent with spears and 

taphonomic damage, but there are fewer DIFs than anticipated for armature tips, which 

may simply be part of the larger pattern for caves to have fewer DIFs in general. All 

blades at PP9 are larger than 30mm and fit a “defleshing” butchery pattern, but the full 

model fits ‘field dressing+defleshing+trampling+spears’. Flakes indicate use as cutting 

tools, both small and large flakes fit “butchery” patterns. The overall damage intensity at 

PP9 is low compared to the other assemblages (points=24.3%, blades=21.7%, 

flakes=29.1% for PP9, the overall averages are points=37.6%, blades=33.6%, 

flakes=36.6%), consistent with the ephemeral use of this site (Matthews et al., 2011).  

7.3.4 DK1 

 The assemblage from DK1 has the ability to highlight interesting aspects of 

spatial structuring of behavioral adaptations in the MSA because of presence of a similar 

raw-material shift to increased silcrete seen in HP assemblages, but without the backed 

pieces diagnostic of the HP. Unfortunately, I was unable to analyze the blades from DK1 

for this dissertation, which may have provided additional insight into this question. The 

published zooarchaeological data from DK1 indicate very small mammals being brought 

in by humans (Armstrong, 2013) but the primary accumulator of small bovids is argued 

to be from raptor predation (Marean et al., 2000a). However, even with small bovids 

removed from their analysis, Clark and Kandel (2013) have suggested that there is a shift 

to small prey during MIS 4 across the South African MSA record, including at DK1. A 

reasonable hypothesis, is that a significant portion of the silcrete blades from DK1 

functioned as armatures, as is suggested by the edge damage analysis from other MIS 4 
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sites including PP5-6 and NBC layer 6, but this clearly needs to be tested. The MSA 

points from DK1 layers 10-16 are consistent with a diversity of edge damage processes 

(all four), but fit spear points the best (R2=0.168). Intensive compaction, diagenesis, and 

roof-fall occurred in layer 6 (Marean et al., 2000b), and the points from DK1 layers 6-9 

are consistent with trampling damage. This damage patterning only explains 6% of the 

variation in edge damage (R2=0.06), and it is not clear how similar trampling and 

diagenetic compaction processes influence edge damage formation. 

Table 42. DK1 geologic formation processes from Goldberg (2000:table 3) and best-

fit single variable for DK1 points edge damage formation. 

Assem. Main Formation Processes Artifacts Points 

6-9 

L6: collapsed roof rock, loam; 

L8: loam, bioturbation. 

Abundant bone, ash, 

and shell. 

Trampling 

10-16 

Decalcification, loam, ‘eboulis secs’, 

post-depositional disturbance by 

animals, humans, or wind. 

Charcoal, bone, 

carnivore coprolite. 

Spears 

 

7.3.5 Nelson Bay Cave 

 At Nelson Bay Cave, edge damage on points appears to be the same between 

layers 6 and 10 - spear-tip armatures are the best single variable, and the best full model 

includes spear-tips and butchery. The larger blades in NBC 6 are consistent with use as 

spear-tip armatures, similar to the HP assemblages at PP5-6 (DBCS), however the small 

blades have damage more consistent with trampling processes. Small and large flakes in 

both NBC 6 and 10 show edge damage consistent with cutting tasks. Overall, the 
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taphonomic experimental processes did not explain much variation in the edge damage 

patterning at NBC, which may be somewhat surprising given the water-logged nature of 

the sediments – suggesting churning and debris flow were not influential processes in 

edge damage formation. Overall, NBC fits the general pattern of edge damage formation 

identified in the PP5-6 sequence. 

Table 43. NBC geologic formation processes (Butzer, 1973; Deacon, 1978) and single 

best-fit edge damage formation variables for points, blades (small <30 mm, big >30 

mm), and flakes. 

Assem. Main Formation Processes Points 

Big 

Blades  

Sm. 

Blades Flakes 

6 

Angular roofspall, dark loam, 

saturated, ferruginized. 

Spears Spears Trampling Butchery 

10 Lag deposit, loam, saturated. Spears N/A N/A Butchery 

 

7.3.6 Vleesbaai 

 At Vleesbaai, points have a high frequency of impact fractures (7.7%) consistent 

with use as spear-tipped armatures, but the edge damage patterning is more consistent 

with the combined processes of trampling and use as spear-tipped armatures. Edge 

damage patterning on the large blades (>30 mm) at Vleesbaai are consistent with 

butchery patterns, and no small (<30 mm) blades were analyzed. This is consistent with 

the observation that tools at Vleesbaai are larger, with more cortex than those that were 

brought into nearby caves PP13B and PP9 (Oestmo et al. 2014). Small and large flakes 

are consistent with butchery patterns, but these processes explain a low amount of the 
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overall variation in edge damage (R2=0.064 and 0.028 on large and small flakes, 

respectively). 

7.3.7 Oyster Bay 

 At Oyster Bay, points are also consistent with use as spear-tipped armatures based 

on the edge damage patterning (R2=0.391) and high frequency of impact fractures (14%). 

Large quartzite blades are consistent with butchery, but a diversity of processes (4) are in 

the best fit model. Large silcrete blades fit the tumbler distribution. Large flakes are 

consistent with trampling, small flakes consistent with butchery patterns. Overall, this is 

similar to the analysis from Vleesbaai. 

 Fauna from OB has been identified as mostly large open-habitat grazers, 

consistent with, but not diagnostic of, an occupation of OB during a glacial phase 

(Carrion et al., 2000). However, so far no taphonomic analyses of these faunal remains 

have been conducted, and analysis of the complete lithic assemblage is ongoing 

(Schoville and Wilkins, n.d.), therefore it is difficult to relate the edge damage patterning 

to a broader archaeological context at OB.  

7.4 MSA technological variability 

 Within the last 20 years, there has been a shift in how MSA behavioral 

adaptations are perceived (McBrearty and Brooks, 2000; Henshilwood and Marean, 

2003). The traditional perspective viewed MSA foragers as less adept hunters, 

technologically less sophisticated, and culturally less complex than LSA and Upper 

Paleolithic hominins (e.g., Klein, 1999). Now it is widely recognized that MSA hunters 

were highly skilled at acquiring diverse and ‘dangerous’ species and scavenging was not 
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their predominant method of acquiring meat (Marean and Assefa, 1999; Marean, 2007; 

Faith, 2008). Tortoises, shellfish, and mole-rats were frequently obtained in parallel with 

the acquisition of large (size 3-5) antelope (Marean et al., 2007; Wadley, 2010b; 

Thompson and Henshilwood, 2014). MSA technology includes many novel techniques 

for constructing tools, including heat-treatment of silcrete, pressure-flaking, and the use 

of complicated ochre mastic recipes for hafting (Wadley, 2005; Brown et al., 2009; 

Mourre et al., 2010; Wadley, 2010a). Culturally, artifacts with symbolic purposes have 

been found from several sites, including shell beads, cross-hatched ochre incisions, 

‘beauty’ shells, and engraved ostrich eggshell (d'Errico et al., 2005; Henshilwood et al., 

2009; Jerardino and Marean, 2010; Texier et al., 2010). This study fits within this 

paradigm shift by exploring the emergent complexity seen in the manufacture, use, and 

discard of stone tools in the MSA through a landscape-scale perspective. This approach 

allows variability in technological behaviors on the south coast to be explored at multiple 

scales that provide insight into early modern human behavior. 

7.4.1 Dynamic Settlement System 

 Most studies of MSA behavioral variability tend to be more site-specific than 

landscape-broad (Wadley, 2007; Porraz et al., 2013). For instance, Blombos Cave is 

frequently thought to have been a unique activity place for early humans on the south 

coast (Thompson, 2010b; Henshilwood and Dubreuil, 2011). This small cave located on 

the bank of a steep cliff contains symbolic evidence unparalleled in the MSA record 

including a ‘paint kit’, and has a faunal assemblage distinct from other well analyzed 

zooarchaeological assemblages at DK1 and PP13B (Thompson, 2010b; Henshilwood et 

al., 2011). However, identifying site-specific behavior is likely more a function of the 
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small sample of well-excavated sites available for discussion in the MSA and does little 

to explain landscape scale settlement, foraging strategies, or cultural and stylistic 

patterning in the MSA (Conard, 2001; Marean et al., 2014). Characterizing site-specific 

behavior provides some insight into behavior, but is limited in its ability to address how 

common those behaviors were, how they varied across the landscape, or change through 

time.  

 As shown by the results of testing Hypotheses 2 and 3, there are patterns in MSA 

technological behavior across the landscape that are not site-specific. An increased 

diversity of processes causing edge damage patterning are implicated in paleocoastal 

environments compared to paleointerior sites, and paleo-interior tools tend to form 

damage more intensively. This pattern is consistent with longer or more frequent 

residential occupation in paleocoastal environments, and more short term activity focused 

site occupation when in paleointerior contexts. As described in Chapter 3, the 

environment on the south coast provides an abundance of collectible protein such as 

shellfish, marine mammal wash-ups, and tortoises that may influence the site occupation 

strategies reflected in the lithic technology. The division of labor within human foragers 

is probably affected by the availability of collectible plants and animals (Kuhn and Stiner, 

2006). The addition of smaller but collectible resources reduces the daily variance and 

may allow males in particular more time to pursue higher ranked game and engage in 

other pursuits (Hawkes, 1996). Since there is no evidence for fewer hunting tools during 

occupation of the paleocoast, hunting likely maintained an integral role in the foraging 

strategy across the landscape – possibly implying a division of labor common to modern 

foraging societies. Gurven and Hill (2009) identify five aspects of hunter-gatherer 
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socioecology which are anticipated to result in a sexual division of labor: (1) prolonged 

childhood dependence, (2) need for both protein and carbohydrate in diet, (3) skill-

dependent foraging efficiency, (4) spatiotemporal segregation of important resources, and 

(5) sex-specific comparative advantages in certain foraging tasks. Of these, (1), (2), (3), 

and (5) likely had their root much earlier in human evolution. Occupation of coastal 

environments while still maintaining a hunting adaptation implies that (4) was also in 

place at this time because large animals optimally hunted with spear technology are 

spatio-temporally separated from the collectible resources on the coast. 

In addition to the differential transport and discard of tools with impact fractures 

on points, caves tend to have blades with ‘field-dressing’ edge damage patterning, 

whereas more open contexts have an even frequency of ‘field-dressing’ and ‘defleshing’ 

butchery patterns. Although these two processes are not completely representative of the 

range of cutting behaviors that occurred in the MSA, they do provide an indication of 

differential processes of edge damage formation across the landscape on blades. The 

reasons for this patterning require further investigation, but may be due to differential 

carcass transport patterns and the overall tendency for more damage to form from field 

dressing (disarticulating) activities than defleshing (Braun et al., 2008b). 

7.4.2 Dynamic Temporal Change 

The results from this study suggests that quartzite MSA points were used as 

spear-tips throughout the MSA, but were multi-functional. Blades may also have been 

used as armature-tips for short periods of time centered on 70 ka, but otherwise used as 

cutting tools throughout MSA. 
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I follow Brown et al. (2012) and consider the HP and SADBS assemblages as 

microlithic in character (contra Igreja and Porraz, 2013). The retention of mode 3 

technologies being used for the same variety of tasks with the addition of microlithic 

technology is unique in terms of the global pattern of microlithization outside of South 

Africa (Kuhn and Elston, 2002; Groucutt et al., 2015). More frequently, microlithization 

is a process of technological changeover from prior toolkit strategies, such as the case in 

East Africa at the Naisiusiu Beds and in East Asia by ~40 ka (Groucutt et al., 2015), 

arguably associated with spread of modern humans out of Africa (Mellars et al., 2013). 

This may suggest that the microlithization in the HP is a niche broadening strategy – the 

prior techniques and strategies for MSA foragers were still viable, but additional 

technology allowed for increased foraging returns (McCall and Thomas, 2012).  

Behavioral ecological prey-choice models may provide an illustration of why 

existing technologies would be maintained alongside new innovations. The prey-choice 

model explains forager decisions to pursue encountered prey as a response to perceived 

return rate and encounter rates of different prey (Krebs and Davies, 1981; Stephens and 

Krebs, 1986). Highly ranked prey will always be pursued upon encounter because they 

will maximize the return rate. Moving down the list of prey rankings, at some point it is 

more productive to keep searching than to pursue low-ranked animals that are 

encountered. However, this equation can change as the population of higher ranked prey 

becomes reduced (lower encounter rates) or new technologies decrease the pursuit costs 

of otherwise lowly ranked prey. This has been described for foraging groups in South 

America where monkeys are only hunted once shotguns are available (Hill and Hawkes, 

1983). If decisions to maintain the cultural knowledge to produce different technologies 
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are substituted for prey species, then the decision to broaden the technological repertoire 

may have maximized return rates for foragers between ~80-60 ka compared to the option 

of removing the existing technology from the repertoire and focusing solely on the 

production of microlithic technology. 

The use of specific raw-materials for certain functional tasks such as the new 

technologies seen in the HP also contrasts with the pattern of lithic utilization observed in 

some Middle Paleolithic assemblages in Portugal where both relatively coarse-grained 

quartzite and finer grained cherts are available (Pereira, 2013). In those contexts, 

Neandertal toolmakers made the same tools for the same tasks despite the different 

functional characteristics of the raw materials, whereas modern humans in the Upper 

Paleolithic developed parallel technologies to optimize the functional characteristics of 

flint, quartz, and quartzite (Pereira, 2013). The initial colonization of the central Iberian 

region that is flint-poor may have been stalled due to time needed for cultural knowledge 

and foraging networks to develop into a cultural package capable of effectively exploiting 

this region. The development of parallel technological systems appears to be an 

adaptation modern humans utilized in multiple contexts in prehistory. 

7.4.3 A Time and Place Model 

 Parkington (1980) interprets lithic variability in south coast LSA archaeological 

assemblages in terms of patterning identifiable from an analysis of site placement in 

temporal and spatial context. As Parkington notes, “by ‘place’ is meant not simply the 

latitude and longitude of an assemblage location but rather the set of opportunities 

offered by the location and thus the likelihood of particular activities taking place there 

(p.73).” To understand the temporal and spatial aspect of technological change in the 
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context of human evolution in the MSA, the functional component of site-occupation 

needs to be identified, so that the stylistic and cultural elements can be derived through 

comparison with assemblages in disparate site contexts (Parkington, 1980).  

Some researchers have argued that the technological innovation of projectile 

armatures (in the HP) imply diet breadth broadening (Lombard and Phillipson, 2010; 

Dusseldorp, 2012). But as Churchill (1993) and others (Ellis, 1997) have shown, 

projectile armatures such as bow-and-arrow are associated with smaller prey, but not 

necessarily a wider diet breadth. However, the co-occurrence of MSA points used as 

armature tips alongside small blades arguably used as projectiles, implies a co-occurrence 

of technologies that are associated with a broader range of prey taxa, and thus do suggest 

diet breadth expansion. Spear tips are almost exclusively associated with large game 

hunting, or small-medium animal hunting after they have been disadvantaged in some 

way (Churchill, 1993). Ethnographic observations of disadvantaging prey include 

cooperative drives, persistence hunting, pit-falls, or by trapping animals in natural 

landscape features (Carrier, 1984; Churchill, 1993). The use of parallel technologies 

provides access to a greater range of prey sizes from a wider spectrum of strategies.  

The dramatic technological shift in the HP may be due to demographic changes – 

either increased population or reduced territory sizes (Ambrose and Lorenz, 1990; Powell 

et al., 2009). Both would create conditions in which an optimal solution would be to 

intensify resource acquisition within the foraging area. The possibility of increased 

demographic pressure between 70-60 ka is also suggested by the frequency of 

taphonomic edge damage during this time period – particularly due to trampling, which is 

also seen in micromorphology at PP5-6 (Karkanas et al., 2015). Sites that are re-occupied 
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more frequently or continuously occupied for longer require clearing out debris to 

maintain the living space (Binford, 1980). When lithic debris is accumulating faster than 

deposition covers tools or humans clear them out, then they are more frequently exposed 

to human trampling (Nielsen, 1991). This appears to be the case on the south coast, 

particularly for flakes. There is a clear pattern for edge damage to become heavier 

through time on flakes that may have been used very briefly. This increase may reflect 

trampling intensity, however this is not reflected in the edge damage patterning of flakes. 

Additional investigation is required to explore the relationship between demography, site 

occupation, and edge damage formation, but these results provide some hypotheses for 

testing this relationship. 

7.5 Conclusion 

In this chapter, the results of this dissertation were discussed across multiple 

scales – from site specific inference to landscape scale patterning and finally broader 

issues of modern human behaviors in the MSA. Five hypotheses that relate spatial and 

temporal behaviors to lithic edge damage processes were tested. There was no support for 

the hypothesis that weathering and trampling processes are different between open-air 

and cave contexts (Hypothesis 1). There is some evidence that assemblages occupied in 

paleocoastal and paleointerior contexts were exposed to differing intensities of edge 

damage on points and flakes consistent with Hypothesis 2. Open-air assemblages have 

significantly greater frequencies of DIFs and have more damage per tool than in interior 

assemblages, consistent with Hypothesis 3. Blades from open-air and caves do not seem 

to reflect differences in butchery tasks (Hypothesis 4). As would be expected, there is 

significant temporal change in edge damage processes (Hypothesis 5), particularly in how 
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blades were being used, but also in the increased amount of trampling damage on flakes 

through time. Points are consistent with multi-functional tools throughout the MSA, 

including use as armature tips and as knives. 

Modern human populations on the south coast were using and discarding tools 

dynamically depending on the availability of resources and perceived economic decisions 

relating to site context and overall land-use strategies. Caves were not simply base 

camps, and open-air sites are not simply extraction localities; both constitute aspects of 

the landscape foraging continuum with patterned behaviors in how stone tools were 

made, used, and discarded across space. Rather than a single static techno-foraging 

strategy, new technologies were developed ~70 ka and used alongside existing mode 3 

technology. New technologies being used for parallel tasks (armatures, cutting) may 

suggest a niche widening strategy, which is concordant with the (somewhat limited) 

faunal record at this time.  

Two features identified in this analysis may help identify aspects of ‘modern 

human behavior’, in that they appear to contrast with the foraging strategy of Neandertals 

in Europe at this time and are not seen in earlier archaeological records in Africa (and are 

thus, derived in an evolutionary sense). First, lithic technology was used in paleocoastal 

environments for a more diverse range of tasks than in the paleointerior, and spear-tipped 

armatures were still in use in the paleocoastal contexts, which I’ve argued suggests a 

sexual-division of labor in place by this time. Kuhn and Stiner (2006) have noted that 

there is very little evidence for similar labor divisions in Neandertal faunal and lithic 

records. Secondly, the pattern of broken point discard in the south coast MSA is the 

opposite of that seen in the Middle Paleolithic, and consistent with that seen in much later 
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Paleoindian sites. Fractures described as ‘diagnostic’ of armature use are more frequent at 

open-air sites on the south coast than in caves, whereas in the Middle Paleolithic the 

reverse is true. This is concordant with the pattern of “tips-to-bases” analyzed by 

Holdaway (1989) for Mousterian sites if compared to late Archaic sites in North America 

(Flenniken, 1991). The meaning of this pattern is less clear, and I have proposed that it 

may relate to a lack of complex foreshaft technology on Mousterian armatures, but other 

possibilities exist. 

A defining trait of the human lineage is the creation, use, and transmission of 

cultural and technological knowledge. Understanding the interactions between 

technology and the environment is essential to illuminating the role of culture and its 

evolution during the origin of our species. This study focused on understanding ancient 

tool use from the study of lithic edge damage patterns at archaeological assemblages in 

southern Africa by using novel quantitative methods for analyzing stone edge wear. An 

extensive experimental program of modern tool use using replicated stone tools provided 

the inferential linkages between artifact wear trace and causal agent. This analysis 

provided new insights into how and why stone tools were made, used, and discarded – 

with important implications for the evolution of hunting, foraging, landscape use, and site 

formation processes. The south coast of South Africa has a rich and complex MSA 

archaeological record, and landscape variability in edge damage formation provide an 

additional source of information about the origins and evolution of early modern human 

behavior. 
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APPENDIX A 

EXPERIMENTAL TOOL METRICS 
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Exp. Exp. Group Year 

Exp. 

No. Other Raw Mat. Shape Len. Wid. Thk. 

Mass 

(g) Comments 

Butchery after spears 2009 09P2  Quartzite Point 48 38 8 11  

Butchery after spears 2009 09P4  Quartzite Point 54 36 10 15  

Butchery after spears 2009 09Si2  Silcrete Point 71 29 7 13  

Butchery after spears 2008 P12  Quartzite Point 65 49 11 30 

used for butchery - 

not hafted 

Butchery after spears 2008 P13  Quartzite Point 72 44 14 29 used for butchery 

Butchery after spears 2008 P15  Quartzite Point 77 38 15 40 

used for butchery - 

not hafted 

Butchery after spears 2008 P9  Quartzite Point 77 35 12 23 used for butchery 

Butchery Pig 1 2014 14-10 

Field 

Dressing Quartzite Point 76 35 12 31 Dowel 

Butchery Pig 1 2014 14-11 Defleshing Quartzite Point 64 32 15 27 Dowel 

Butchery Pig 1 2014 14-18 Defleshing Quartzite Point 60 34 14 25 Dowel 

Butchery Pig 1 2014 14-19 Defleshing Quartzite Point 84 31 15 35 Unhafted 

Butchery Pig 1 2014 14-22 Defleshing Quartzite Point 85 31 13 31 Unhafted 

Butchery Pig 1 2014 14-3 

Field 

Dressing Quartzite Point 76 38 13 39 Dowel 

Butchery Pig 1 2014 14-36 

Field 

Dressing Silcrete Blade 86 19 7 11 Proximal Mastic 

Butchery Pig 1 2014 14-38 

Field 

Dressing Silcrete Point 65 21 9 9 Proximal Mastic 

Butchery Pig 1 2014 14-55 

Field 

Dressing Silcrete Point 85 31 13 30 Unhafted 

Butchery Pig 1 2014 14-56 

Field 

Dressing Silcrete Blade 83 36 14 36 Unhafted 

Butchery Pig 1 2014 14-6 

Field 

Dressing Quartzite Point 76 50 11 35 Proximal Mastic 

Butchery Pig 1 2014 14-7 

Field 

Dressing Quartzite Point 74 36 18 40 Proximal Mastic 

Butchery Pig 2 2014 14-13 

Field 

Dressing Quartzite Point 73 27 11 18 Unhafted 
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Butchery Pig 2 2014 14-21 

Field 

Dressing Quartzite Point 63 47 16 33 Proximal Mastic 

Butchery Pig 2 2014 14-24 Defleshing Quartzite Point 65 29 11 12 Dowel 

Butchery Pig 2 2014 14-29 

Field 

Dressing Quartzite Point 52 24 8 7 Dowel 

Butchery Pig 2 2014 14-39 Defleshing Silcrete Blade 93 18 12 18 Proximal Mastic 

Butchery Pig 2 2014 14-41 

Field 

Dressing Silcrete Blade 82 29 12 29 Lateral Mastic 

Butchery Pig 2 2014 14-47 

Field 

Dressing Silcrete Point 70 27 12 21 Lateral Mastic 

Butchery Pig 2 2014 14-52 

Field 

Dressing Silcrete Blade 74 17 7 6 Unhafted 

Butchery Pig 3 2014 14-17 

Field 

Dressing Quartzite Point 73 45 14 23 Unhafted 

Butchery Pig 3 2014 14-2 Defleshing Quartzite Point 68 22 11 12 Dowel 

Butchery Pig 3 2014 14-23 Defleshing Quartzite Point 76 30 9 17 Dowel 

Butchery Pig 3 2014 14-27 

Field 

Dressing Quartzite Point 64 30 13 15 Dowel 

Butchery Pig 3 2014 14-45 Defleshing Silcrete Blade 74 23 8 13 Lateral Mastic 

Butchery Pig 3 2014 14-5 Defleshing Quartzite Flake 64 33 11 23 Dowel 

Butchery Pig 3 2014 14-50 

Field 

Dressing Silcrete Blade 87 32 16 45 Lateral Mastic 

Butchery Pig 3 2014 14-60 Defleshing Silcrete Blade 56 23 6 8 Unhafted 

Butchery Pig 3 2014 14-8 

Field 

Dressing Quartzite Point 72 44 11 26 Proximal Mastic 

Spear 1 shots 2009 09H11  Quartzite Point 44 44 11 14  

Spear 1 shots 2009 09H2  Quartzite Point 62 27 8 14  

Spear 1 shots 2009 09H8  Quartzite Point 72 44 15 33 

7 day resin top 

coated with fresh 

resin 

Spear 1 shots 2009 09H9  Quartzite Point 69 59 11 32  

Spear 1 shots 2009 09P1  Quartzite Point 70 35 10 16  

Spear 1 shots 2009 09P10  Quartzite Point 88 30 9 20  

Spear 1 shots 2009 09P11  Quartzite Point 63 36 9 16  
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Spear 1 shots 2009 09P13  Quartzite Point 62 24 7 15  

Spear 1 shots 2009 09P3  Quartzite Point 86 40 11 44  

Spear 1 shots 2009 09P5  Quartzite Point 74 34 10 18  

Spear 1 shots 2009 09P6  Quartzite Point 79 24 9 14  

Spear 1 shots 2009 09P7  Quartzite Point 72 29 9 14 fresh reheated resin 

Spear 1 shots 2009 09P9  Quartzite Point 61 33 10 14  

Spear 1 shots 2009 09Si3  Silcrete Point 61 24 5 8  

Spear 1 shots 2009 09Si4 ALB Silcrete Point 78 35 13 23 reheated fresh resin 

Spear 1 shots 2009 09Si5 ALB Silcrete Point 75 42 12 36  

Spear 1 shots 2008 HH5  Quartzite Point 76 44 15 31 

failure after round 

1 

Spear 1 shots 2008 HH7  Quartzite Point 59 29 13 17 

failure after round 

1 

Spear 1 shots 2008 P1  Quartzite Point 83 37 9 23 

failure after round 

1 

Spear 1 shots 2008 P10  Quartzite Point 83 24 11 20 CF on first shot 

Spear 1 shots 2008 P14  Quartzite Point 69 44 14 32 CF on shot #1 

Spear 1 shots 2008 P7  Quartzite Point 67 44 12 25 

failure after round 

1 

Spear 2 shots 2009 09P12  Quartzite Point 63 38  28  

Spear 2 shots 2009 09SB1  Silcrete Point 72 32  20 

on 1st shot, haft 

came loose 

Spear 2 shots 2009 09Si1  Silcrete Point 56 25  8  

Spear 2 shots 2008 HH3  Quartzite Point 69 39 16 30 

damage with 

hafting failure on 

first shot of round 

2 

Spear 2 shots 2008 P4  Quartzite Point 64 29 8 13 

CF on shot into 

HM 

Spear 2+ shots 2008 HH8  Quartzite Point 62 41 13 19 

hafting failure, 

lateral ED 

Spear 3 shots 2009 09H10  Quartzite Point 60 38  23  

Spear 3 shots 2009 09H4  Quartzite Point 62 51  20  
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Spear 3 shots 2009 09H6  Quartzite Point 59 37  21  

Spear 3 shots 2009 09P8  Quartzite Point 64 46  36  

Spear 3 shots 2009 09SB2  Silcrete Point 62 30  19  

Spear 3 shots 2008 HH9  Quartzite Point 68 26 10 15 

double step 

fracture on shot #2 

Spear 3+ shots 2008 HH11  Quartzite Point 70 46  42 

stopped after 

interesting tip 

breakage, found tip 

Spear 4 shots 2009 09H3  Quartzite Point 57 27  14  

Spear 5 shots 2009 09H7  Quartzite Point 63 33  16  

Spear 5 shots 2008 P11  Quartzite Point 63 35 11 15 

small break on #1, 

bigger break on #5 

Spear 6 shots 2009 09Si6 ALB Silcrete Point 57 26 8 8  

Spear 6+ shots 2008 HH1  Quartzite Point 62 40 11 23 

no breakage, no 

haft slippage (prox 

break when hafting 

was removed) 

Spear 6+ shots 2008 HH10  Quartzite Point 41 32 9 12 

tip notch on shot 

#3 

Spear 6+ shots 2008 HH2  Quartzite Point 91 37 13 39 

small tip break on 

#3, large notch on 

#4, possible burin 

on #5 

Spear 6+ shots 2008 HH4  Quartzite Point 42 44 10 18  

Spear 6+ shots 2008 HH6  Quartzite Point 55 34 11 17 

tip breakage after 

#1 

Spear 6+ shots 2008 P2  Quartzite Point 75 44 11 30  

Spear 6+ shots 2008 P3  Quartzite Point 76 37 14 29  

Spear 6+ shots 2008 P5  Quartzite Point 74 27 12 18  

Spear 6+ shots 2008 P6  Quartzite Point 77 50 15 38  

Spear 6+ shots 2008 P8  Quartzite Point 71 31 11 21  

Spear 7 shots 2009 09H5  Quartzite Point 52 40 19 29 

reheated haft after 

2 shots 
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Spear 7 shots 2009 09SB3 1-ALB-A Silcrete Point 72 38 11 28  

Spear N/A 2009 09H1  Quartzite Point 73 23 12 13 

dropped when 

hafting 

Trampled Corral 2012 5  Quartzite flake 71 37 13 36 (started dorsal up) 

Trampled Corral 2012 9 P-3 Quartzite blade 54 24 7 8 

punch or HH? 

(started dorsal up) 

Trampled Corral 2012 12  Quartzite Point 76 28 11 22 (started dorsal up) 

Trampled Corral 2012 13  Quartzite flake 47 31 14 17 (started dorsal up) 

Trampled Corral 2012 21  Quartzite Point 77 37 11 24 (started dorsal up) 

Trampled Corral 2012 23 10H-2 Quartzite Point 62 56 12 33 (started dorsal up) 

Trampled Corral 2012 25 10H-1 Quartzite Point 54 32 13 19 (started dorsal up) 

Trampled Corral 2012 29  Quartzite flake 85 47 13 55 (started ventral up) 

Trampled Corral 2012 32  Quartzite blade 71 33 19 40 (started ventral up) 

Trampled Corral 2012 33  Quartzite flake 67 35 11 24 (started ventral up) 

Trampled Corral 2012 37  Quartzite blade 84 40 12 52 (started dorsal up) 

Trampled Corral 2012 38  Quartzite blade 77 18 8 13 (started ventral up) 

Trampled Corral 2012 39  Quartzite blade 76 23 10 22 (started dorsal up) 

Trampled Corral 2012 42  Quartzite blade 79 36 12 40 (started ventral up) 

Trampled Corral 2012 45  Quartzite flake 63 35 8 25 (started ventral up) 

Trampled Corral 2012 48  Quartzite 

irregular 

blade 72 34 11 41 (started ventral up) 

Trampled Corral 2012 49  Quartzite 

irregular 

blade 71 29 8 18 (started dorsal up) 

Trampled Corral 2012 50  Quartzite blade 82 38 13 40 (started dorsal up) 

Trampled Corral 2012 52  Quartzite 

irregular 

blade 82 22 12 22 (started ventral up) 

Trampled Corral 2012 54  Quartzite blade 82 35 14 37 (started dorsal up) 

Trampled Corral 2012 59  Quartzite flake 65 34 12 27 (started ventral up) 

Trampled Corral 2012 63  Quartzite blade 80 30 10 25 (started ventral up) 

Trampled Corral 2012 67  Quartzite flake 90 47 12 57 (started ventral up) 

Trampled Corral 2012 69  Quartzite blade 106 33 12 41 (started dorsal up) 
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Trampled Corral 2012 73  Quartzite blade 74 32 8 18 (started ventral up) 

Trampled Corral 2012 74  Quartzite flake 59 45 9 31 (started ventral up) 

Trampled Corral 2012 76  Quartzite blade 79 29 11 25 (started dorsal up) 

Trampled Corral 2012 78  Quartzite Point 44 24 6 6 (started dorsal up) 

Trampled Corral 2012 82  Quartzite Point 63 30 11 20 (started ventral up) 

Trampled Corral 2012 86  Quartzite Point 47 25 9 12 (started ventral up) 

Trampled Corral 2012 88  Quartzite Point 53 28 9 10 (started dorsal up) 

Trampled Corral 2012 91  Quartzite Point 73 36 10 23 (started ventral up) 

Trampled Corral 2012 93  Quartzite Point 64 35 11 27 (started dorsal up) 

Trampled Corral 2012 101  Quartzite 

convergent 

blade 79 31 11 25 (started ventral up) 

Trampled Corral 2012 106  Quartzite flake 34 19 3 4 (started dorsal up) 

Trampled Corral 2012 108  Quartzite flake 36 21 7 8 (started ventral up) 

Trampled Corral 2012 111  Quartzite Point 55 30 10 21 (started dorsal up) 

Trampled Corral 2012 114  Quartzite 

convergent 

blade 88 39 14 47 (started dorsal up) 

Trampled Corral 2012 117  Quartzite Point 74 45 18 54 (started ventral up) 

Trampled Corral 2012 118  Quartzite Point 73 35 10 27 (started ventral up) 

Trampled Corral 2012 123  Silcrete flake 50 30 11 14 (started ventral up) 

Trampled Corral 2012 125  Silcrete Point 48 31 7 10 (started dorsal up) 

Trampled Corral 2012 128  Silcrete blade 44 15 4 3 (started dorsal up) 

Trampled Corral 2012 131  Silcrete Point 61 35 6 15 (started ventral up) 

Trampled Corral 2012 132  Silcrete Point 53 26 7 8 (started dorsal up) 

Trampled Corral 2012 137  Silcrete 

irregular 

blade 62 25 9 8 (started dorsal up) 

Trampled Corral 2012 140  Silcrete blade 36 15 3 1 (started dorsal up) 

Trampled Corral 2012 142  Silcrete 

convergent 

blade 42 14 7 3 (started ventral up) 

Trampled Corral 2012 147  Silcrete 

convergent 

blade 70 28 13 25 (started dorsal up) 

Trampled Corral 2012 151  Silcrete flake 40 24 13 7 (started ventral up) 
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Trampled Corral 2012 155  Silcrete Point 62 28 9 9 (started ventral up) 

Trampled Corral 2012 164  Silcrete Point 52 33 11 16 (started dorsal up) 

Trampled Corral 2012 173  Silcrete 

convergent 

blade 53 24 6 9 (started dorsal up) 

Trampled Corral 2012 178  Silcrete blade 54 21 6 6 (started ventral up) 

Trampled Corral 2012 179  Silcrete Point 47 20 7 5 (started dorsal up) 

Trampled Corral 2012 180  Silcrete blade 94 25 6 15 (started ventral up) 

Trampled Corral 2012 181  Silcrete blade 92 37 14 59 

"naturally backed" 

(started dorsal up) 

Trampled Corral 2012 183  Silcrete blade 77 17 8 9 

cortical dorsal 

(started ventral up) 

Trampled Corral 2012 185  Silcrete blade 72 18 5 7 (started ventral up) 

Trampled Corral 2012 186  Silcrete blade 48 23 8 5 (started dorsal up) 

Trampled Corral 2012 188  Silcrete blade 57 21 7 8 (started dorsal up) 

Trampled Corral 2012 190  Silcrete blade 93 26 10 19 (started ventral up) 

Trampled Corral 2012 191  Silcrete 

convergent 

blade 52 17 7 5 (started ventral up) 

Trampled Corral 2012 192  Silcrete blade 63 24 10 12 (started ventral up) 

Trampled Corral 2012 193  Silcrete blade 44 17 10 5 (started ventral up) 

Trampled Corral 2012 194  Silcrete blade 56 18 6 6 (started dorsal up) 

Trampled Corral 2012 196  Silcrete Point 52 25 10 10 (started dorsal up) 

Trampled Corral 2012 202  Silcrete 

convergent 

blade 48 23 6 2 (started ventral up) 

Trampled Corral 2012 205  Silcrete blade 62 29 8 11 (started ventral up) 

Trampled Corral 2012 206  Silcrete blade 65 26 6 5 

missing platform 

(started dorsal up) 

Trampled Corral 2012 220  Silcrete blade 68 26 11 17 (started ventral up) 

Trampled Corral 2012 221  Silcrete blade 74 18 6 7 (started dorsal up) 

Trampled Corral 2012 222  Silcrete blade 83 25 9 16 (started ventral up) 

Trampled Corral 2012 227  Silcrete flake 43 22 6 5 (started dorsal up) 

Trampled Corral 2012 230  Silcrete flake 33 15 6 2 (started dorsal up) 
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Trampled Corral 2012 232  Silcrete blade 77 37 15 36 (started dorsal up) 

Trampled Corral 2012 233  Silcrete blade 79 37 14 36 (started ventral up) 

Trampled Corral 2012 235  Silcrete flake 63 34 12 26 (started dorsal up) 

Trampled Corral 2012 241  Silcrete Point 58 44 7 13 (started ventral up) 

Trampled Corral 2012 244  Silcrete flake 41 21 6 3 (started dorsal up) 

Trampled Corral 2012 245  Silcrete 

irregular 

blade 90 47 12 45 (started ventral up) 

Trampled Corral 2012 246 1 BIF flake 66 63 21 96 (started ventral up) 

Trampled Corral 2012 248 45 BIF flake 78 53 12 48 (started dorsal up) 

Trampled Corral 2012 252 21 BIF flake 45 58 10 33 

sidestruck (started 

ventral up) 

Trampled Corral 2012 256 131 BIF flake 53 31 13 20 

crushed platform 

(started dorsal up) 

Trampled Corral 2012 260 62 BIF flake 43 29 8 6 (started ventral up) 

Trampled Corral 2012 265  BIF flake 36 22 6 5 (started dorsal up) 

Trampled Corral 2012 266  BIF blade 35 12 3 1 (started dorsal up) 

Trampled Corral 2012 269  Quartz flake 26 19 4 1 (started ventral up) 

Trampled Corral 2012 271  Quartz Point 45 33 9 11 (started ventral up) 

Trampled Corral 2012 275  Silcrete 

notched 

blade 73 42 12  (started ventral up) 

Trampled Corral 2012 277  Silcrete 

notched 

blade 53 45 11  (started ventral up) 

Trampled Corral 2012 278 12-38 Silcrete 

backed 

blade 32 9 4 1 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Corral 2012 285 12-51 Silcrete 

backed 

blade 18 9 2 0 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Corral 2012 290 12-58 Silcrete 

backed 

blade 22 9 4 1 

prepared for rusty 

trampling (started 

ventral up) 
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Trampled Corral 2012 294 12-67 Silcrete 

backed 

blade 37 12 4 2 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Corral 2012 295 12-68 Silcrete 

backed 

blade 52 16 6 5 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Corral 2012 297 12-74 Silcrete 

backed 

blade 27 9 2 1 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Corral 2012 298 12-75 Silcrete 

backed 

blade 38 16 5 3 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Corral 2012 299 12-76 Silcrete 

backed 

blade 28 11 5 1 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Field 2012 3  Quartzite flake 55 46 13 27 

cobble platform 

(started dorsal up) 

Trampled Field 2012 4  Quartzite blade 63 26 10 18 (started dorsal up) 

Trampled Field 2012 7  Quartzite Point 74 40 15 37 (started ventral up) 

Trampled Field 2012 8  Quartzite blade 87 37 15 48 

cortical lateral, 

prox, and distal 

(started dorsal up) 

Trampled Field 2012 11  Quartzite 

convergent 

blade 80 28 13 23 (started dorsal up) 

Trampled Field 2012 14  Quartzite flake 59 53 11 34 (started dorsal up) 

Trampled Field 2012 19  Quartzite 

convergent 

blade 76 23 10 17 (started dorsal up) 

Trampled Field 2012 20  Quartzite Point 75 34 17 45 

large heavy point. 

Prior removal scar 

on dorsal right 

(started dorsal up) 

Trampled Field 2012 22  Quartzite flake 62 28 11 16 (started dorsal up) 

Trampled Field 2012 24 10X-1 Quartzite Point 51 30 10 14 

unknown knapping 

technique (started 

dorsal up) 
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Trampled Field 2012 26 10P-2 Quartzite Point 89 41 9 39 (started ventral up) 

Trampled Field 2012 28 10H-3 Quartzite Point 90 31 10 24 (started ventral up) 

Trampled Field 2012 31  Quartzite blade 65 23 11 16 (started ventral up) 

Trampled Field 2012 34  Quartzite blade 76 22 9 20 (started dorsal up) 

Trampled Field 2012 40  Quartzite blade 75 31 14 41 (started ventral up) 

Trampled Field 2012 43  Quartzite flake 73 45 14 50 (started dorsal up) 

Trampled Field 2012 44  Quartzite flake 59 33 8 18 (started dorsal up) 

Trampled Field 2012 46  Quartzite flake 66 41 11 30 (started dorsal up) 

Trampled Field 2012 51  Quartzite blade 76 27 8 22 

not sure what Pm 

is (started ventral 

up) 

Trampled Field 2012 55  Quartzite flake 73 44 11 34 (started dorsal up) 

Trampled Field 2012 58  Quartzite flake 66 46 13 35 (started ventral up) 

Trampled Field 2012 64  Quartzite blade 82 35 12 37 (started dorsal up) 

Trampled Field 2012 66  Quartzite 

convergent 

blade 79 42 9 29 (started ventral up) 

Trampled Field 2012 68  Quartzite 

irregular 

blade 81 32 13 37 (started dorsal up) 

Trampled Field 2012 72  Quartzite blade 70 22 13 20 

very small 

platform (started 

ventral up) 

Trampled Field 2012 77  Quartzite flake 56 42 12 28 (started dorsal up) 

Trampled Field 2012 80  Quartzite Point 50 18 6 7 (started ventral up) 

Trampled Field 2012 85 F3 Quartzite Point 55 35 10 17 (started ventral up) 

Trampled Field 2012 87  Quartzite Point 51 23 7 9 (started ventral up) 

Trampled Field 2012 90  Quartzite 

convergent 

blade 46 19 4 5 (started dorsal up) 

Trampled Field 2012 92  Quartzite 

convergent 

blade 59 22 11 17 (started dorsal up) 

Trampled Field 2012 95  Quartzite Point 79 33 11 25 (started ventral up) 

Trampled Field 2012 96  Quartzite 

convergent 

blade 85 44 14 57 (started ventral up) 

Trampled Field 2012 97  Quartzite Point 70 47 21 48 (started ventral up) 
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Trampled Field 2012 98  Quartzite Point 71 32 9 29 (started dorsal up) 

Trampled Field 2012 99  Quartzite Point 69 36 9 22 (started ventral up) 

Trampled Field 2012 104  Quartzite 

irregular 

blade 78 30 23 39 

very thick (started 

ventral up) 

Trampled Field 2012 107  Quartzite blade 48 16 6 6 (started ventral up) 

Trampled Field 2012 110  Quartzite 

convergent 

blade 72 33 9 25 (started dorsal up) 

Trampled Field 2012 112  Quartzite flake 51 31 14 28 (started ventral up) 

Trampled Field 2012 113  Quartzite Point 72 34 10 29 (started ventral up) 

Trampled Field 2012 126  Silcrete Point 42 39 13 18 (started dorsal up) 

Trampled Field 2012 127  Silcrete Point 45 24 6 4 (started ventral up) 

Trampled Field 2012 133  Silcrete flake 64 38 21 38 (started dorsal up) 

Trampled Field 2012 136  Silcrete Point 72 43 12 26 (started ventral up) 

Trampled Field 2012 138  Silcrete blade 46 17 5 3 (started dorsal up) 

Trampled Field 2012 139  Silcrete blade 45 14 7 5 (started ventral up) 

Trampled Field 2012 144  Silcrete 

convergent 

blade 68 24 6 9 (started dorsal up) 

Trampled Field 2012 148  Silcrete blade 78 30 13 20 (started ventral up) 

Trampled Field 2012 149  Silcrete blade 63 19 4 3 (started ventral up) 

Trampled Field 2012 154  Silcrete flake 48 33 13 13 (started dorsal up) 

Trampled Field 2012 156  Silcrete Point 53 29 14 17 (started dorsal up) 

Trampled Field 2012 158  Silcrete blade 63 26 7 9 (started dorsal up) 

Trampled Field 2012 161  Silcrete blade 58 29 12 18 (started ventral up) 

Trampled Field 2012 162  Silcrete 

irregular 

blade 68 33 9 15 (started dorsal up) 

Trampled Field 2012 165  Silcrete blade 49 17 8 6 (started ventral up) 

Trampled Field 2012 167  Silcrete blade 120 31 11 45 

dorsal right 

completely 

retouched? (started 

ventral up) 

Trampled Field 2012 169  Silcrete Point 44 20 12 5 

from 2010 points 

(started ventral up) 
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Trampled Field 2012 171  Silcrete Point 46 26 8 8 

from 2010 points 

(started ventral up) 

Trampled Field 2012 172 10P-1 Silcrete Point 44 31 8 8 

from 2010 points 

(started ventral up) 

Trampled Field 2012 175  Silcrete 

convergent 

blade 69 34 11 25 (started dorsal up) 

Trampled Field 2012 177  Silcrete flake 45 29 11 12 (started ventral up) 

Trampled Field 2012 182  Silcrete blade 75 15 6 9 (started dorsal up) 

Trampled Field 2012 184  Silcrete blade 68 18 9 9 (started dorsal up) 

Trampled Field 2012 189  Silcrete blade 94 32 16 36 (started dorsal up) 

Trampled Field 2012 195  Silcrete blade 60 25 12 14 (started dorsal up) 

Trampled Field 2012 200  Silcrete blade 63 21 9 12 (started ventral up) 

Trampled Field 2012 204  Silcrete blade 69 28 12 11 

changed to Dorsal 

during setup 

(started dorsal up) 

Trampled Field 2012 208  Silcrete blade 87 33 15 40 (started dorsal up) 

Trampled Field 2012 209  Silcrete blade 84 29 14 29 (started ventral up) 

Trampled Field 2012 210  Silcrete flake 39 28 8 4 (started dorsal up) 

Trampled Field 2012 212  Silcrete Point 48 24 6 4 (started ventral up) 

Trampled Field 2012 213  Silcrete flake 43 27 10 7 (started ventral up) 

Trampled Field 2012 218  Silcrete blade 80 22 10 20 (started ventral up) 

Trampled Field 2012 219  Silcrete blade 80 30 9 24 (started ventral up) 

Trampled Field 2012 225  Silcrete 

convergent 

blade 47 18 7 7 (started dorsal up) 

Trampled Field 2012 229  Silcrete blade 57 25 12 14 (started ventral up) 

Trampled Field 2012 231  Silcrete blade 40 17 7 3 (started dorsal up) 

Trampled Field 2012 234  Silcrete blade 61 31 12 22 (started ventral up) 

Trampled Field 2012 236  Silcrete flake 57 44 12 20 (started dorsal up) 

Trampled Field 2012 238  Silcrete 

irregular 

blade 74 37 9 24 (started dorsal up) 

Trampled Field 2012 239  Silcrete Point 62 44 12 22 (started dorsal up) 
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Trampled Field 2012 240  Silcrete blade 69 29 13 19 (started dorsal up) 

Trampled Field 2012 247 125 BIF flake 70 48 9 39 (started ventral up) 

Trampled Field 2012 250 54 BIF flake 53 52 12 34 

no platform 

(started ventral up) 

Trampled Field 2012 251 50 BIF flake 28 55 12 20 

sidestruck (started 

dorsal up) 

Trampled Field 2012 253 26 BIF flake 35 45 13 18 

sidestruck (started 

ventral up) 

Trampled Field 2012 259 30 BIF flake 47 36 15 16 

split flake (started 

dorsal up) 

Trampled Field 2012 261 139 BIF flake 32 34 7 8 

sidestruck (started 

dorsal up) 

Trampled Field 2012 262 140 BIF flake 41 22 4 5 

fragment (started 

dorsal up) 

Trampled Field 2012 263  BIF flake 82 43 13 50 (started dorsal up) 

Trampled Field 2012 272  Quartz flake 50 50 10 21 (started ventral up) 

Trampled Field 2012 276  Silcrete 

notched 

blade 54 28 7  (started ventral up) 

Trampled Field 2012 279 12-40 Silcrete 

backed 

blade 22 9 3 1 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Field 2012 281 12-42 Silcrete 

backed 

blade 16 9 3 0 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Field 2012 283 12-49 Silcrete 

backed 

blade 27 10 5 1 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Field 2012 286 12-52 Silcrete 

backed 

blade 24 9 4 1 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Field 2012 287 12-54 Silcrete 

backed 

blade 31 10 3 1 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Field 2012 289 12-57 Silcrete 

backed 

blade 38 16 4 3 

prepared for rusty 

trampling (started 

ventral up) 
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Trampled Field 2012 292 12-63 Silcrete 

backed 

blade 43 16 6 4 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Field 2012 301  Silcrete 

backed 

blade 40 16 6  

made by Kyle for 

J-10 square; low 

density (started 

dorsal up) 

Trampled Trail 2012 1  Quartzite blade 106 38 18 76 

cortical distal and 

prox (started 

ventral up) 

Trampled Trail 2012 2  Quartzite 

convergent 

blade 71 26 12 25 (started dorsal up) 

Trampled Trail 2012 6  Quartzite 

convergent 

blade 75 20 11 13 (started ventral up) 

Trampled Trail 2012 10  Quartzite Point 73 26 10 23 (started ventral up) 

Trampled Trail 2012 15  Quartzite 

convergent 

blade 74 31 16 30 (started ventral up) 

Trampled Trail 2012 16  Quartzite 

convergent 

blade 71 24 17 19 (started dorsal up) 

Trampled Trail 2012 17 H Quartzite Point 48 26 9 9 (started dorsal up) 

Trampled Trail 2012 18  Quartzite 

irregular 

point 50 23 5 6 

sort of split (started 

ventral up) 

Trampled Trail 2012 27 10X-2 Quartzite 

convergent 

flake 71 34 11 24 (started ventral up) 

Trampled Trail 2012 30  Quartzite flake 71 43 12 35 (started ventral up) 

Trampled Trail 2012 35  Quartzite flake 83 48 20 96 (started dorsal up) 

Trampled Trail 2012 36  Quartzite blade 79 35 11 39 (started dorsal up) 

Trampled Trail 2012 41  Quartzite blade 83 38 16 54 (started dorsal up) 

Trampled Trail 2012 47  Quartzite flake 61 42 8 27 (started dorsal up) 

Trampled Trail 2012 53  Quartzite blade 71 36 12 37 (started ventral up) 

Trampled Trail 2012 56  Quartzite flake 70 40 11 33 (started ventral up) 

Trampled Trail 2012 57  Quartzite flake 63 49 12 32 (started dorsal up) 

Trampled Trail 2012 60  Quartzite blade 65 25 8 13 (started ventral up) 
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Trampled Trail 2012 61  Quartzite 

irregular 

blade 83 30 12 31 (started dorsal up) 

Trampled Trail 2012 62  Quartzite flake 78 46 16 58 (started dorsal up) 

Trampled Trail 2012 65  Quartzite blade 87 27 11 21 (started dorsal up) 

Trampled Trail 2012 70  Quartzite blade 87 30 8 18 (started dorsal up) 

Trampled Trail 2012 71  Quartzite flake 64 38 17 42 (started ventral up) 

Trampled Trail 2012 75  Quartzite 

irregular 

blade 82 28 11 16 (started ventral up) 

Trampled Trail 2012 79  Quartzite Point 45 20 5 6 (started dorsal up) 

Trampled Trail 2012 81  Quartzite Point 49 22 8 9 (started dorsal up) 

Trampled Trail 2012 83  Quartzite Point 69 34 13 31 (started ventral up) 

Trampled Trail 2012 84  Quartzite Point 46 26 10 11 (started dorsal up) 

Trampled Trail 2012 89  Quartzite Point 63 24 9 13 (started dorsal up) 

Trampled Trail 2012 94  Quartzite Point 71 34 13 32 (started dorsal up) 

Trampled Trail 2012 100  Quartzite Point 63 30 10 16 (started dorsal up) 

Trampled Trail 2012 102  Quartzite flake 44 26 10 8 (started ventral up) 

Trampled Trail 2012 103  Quartzite blade 57 21 7 11 (started ventral up) 

Trampled Trail 2012 105  Quartzite Point 61 35 14 22 (started ventral up) 

Trampled Trail 2012 109  Quartzite blade 64 23 10 17 (started ventral up) 

Trampled Trail 2012 115  Quartzite 

convergent 

blade 85 39 18 60 (started ventral up) 

Trampled Trail 2012 116  Quartzite 

irregular 

blade 87 23 6 18 (started ventral up) 

Trampled Trail 2012 119  Quartzite 

convergent 

blade 70 30 9 19 (started ventral up) 

Trampled Trail 2012 120  Quartzite Point 98 39 16 49 (started dorsal up) 

Trampled Trail 2012 121  Silcrete Point 51 26 6 7 (started ventral up) 

Trampled Trail 2012 122  Silcrete Point 52 27 13 13 (started ventral up) 

Trampled Trail 2012 124  Silcrete Point 41 32 10 12 (started dorsal up) 

Trampled Trail 2012 129  Silcrete blade 57 24 11 13 (started ventral up) 

Trampled Trail 2012 130  Silcrete flake 53 32 10 17 (started dorsal up) 
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Trampled Trail 2012 134  Silcrete blade 55 22 9 10 (started dorsal up) 

Trampled Trail 2012 135  Silcrete 

irregular 

blade 69 25 9 13 (started dorsal up) 

Trampled Trail 2012 141  Silcrete blade 33 13 4 1 (started dorsal up) 

Trampled Trail 2012 143  Silcrete blade 51 21 3 5 (started ventral up) 

Trampled Trail 2012 145  Silcrete flake 41 19 4 2 

missing platform 

(started dorsal up) 

Trampled Trail 2012 146  Silcrete blade 54 23 7 7 (started ventral up) 

Trampled Trail 2012 150  Silcrete blade 53 22 8 8 (started ventral up) 

Trampled Trail 2012 152  Silcrete Point 49 23 8 7 (started ventral up) 

Trampled Trail 2012 153  Silcrete blade 73 36 11 31 (started ventral up) 

Trampled Trail 2012 157  Silcrete blade 63 30 14 22 (started dorsal up) 

Trampled Trail 2012 159  Silcrete Point 77 38 10 28 (started ventral up) 

Trampled Trail 2012 160  Silcrete 

convergent 

blade 48 20 7 4 (started ventral up) 

Trampled Trail 2012 163  Silcrete Point 69 42 17 40 (started dorsal up) 

Trampled Trail 2012 166  Silcrete blade 103 30 11 33 (started dorsal up) 

Trampled Trail 2012 168  Silcrete Point 45 23 7 6 

from 2010 points 

(started ventral up) 

Trampled Trail 2012 170  Silcrete Point 39 23 8 5 

from 2010 points 

(started ventral up) 

Trampled Trail 2012 174  Silcrete 

convergent 

blade 68 32 12 28 (started dorsal up) 

Trampled Trail 2012 176  Silcrete flake 71 37 13 42 

"naturally backed" 

(started dorsal up) 

Trampled Trail 2012 187  Silcrete blade 60 20 4 6 (started dorsal up) 

Trampled Trail 2012 197  Silcrete Point 51 32 17 24 (started ventral up) 

Trampled Trail 2012 198  Silcrete flake 72 47 16 42 (started dorsal up) 

Trampled Trail 2012 199  Silcrete Point 56 30 12 16 (started ventral up) 

Trampled Trail 2012 201  Silcrete blade 77 19 7 5 (started dorsal up) 

Trampled Trail 2012 203  Silcrete blade 47 14 6 2 (started dorsal up) 
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Trampled Trail 2012 207  Silcrete 

convergent 

blade 80 25 15 22 (started ventral up) 

Trampled Trail 2012 211  Silcrete Point 63 34 12 21 (started dorsal up) 

Trampled Trail 2012 214  Silcrete flake 39 22 5 2 (started dorsal up) 

Trampled Trail 2012 215  Silcrete Point 47 36 12 16 (started dorsal up) 

Trampled Trail 2012 216  Silcrete blade 103 39 21 73 (started dorsal up) 

Trampled Trail 2012 217  Silcrete 

convergent 

blade 83 26 14 38 (started ventral up) 

Trampled Trail 2012 223  Silcrete blade 55 24 7 7 (started ventral up) 

Trampled Trail 2012 224  Silcrete blade 59 28 11 16 (started ventral up) 

Trampled Trail 2012 226  Silcrete blade 48 14 5 3 (started ventral up) 

Trampled Trail 2012 228  Silcrete blade 41 15 6 3 (started ventral up) 

Trampled Trail 2012 237  Silcrete flake 71 39 13 31 (started ventral up) 

Trampled Trail 2012 242  Silcrete 

convergent 

blade 45 19 7 3 (started dorsal up) 

Trampled Trail 2012 243  Silcrete blade 48 19 5 4 (started dorsal up) 

Trampled Trail 2012 249 5 BIF flake 68 51 8 26 (started dorsal up) 

Trampled Trail 2012 254 143 BIF flake 57 32 8 23 (started ventral up) 

Trampled Trail 2012 255 3 BIF flake 60 55 13 47 (started ventral up) 

Trampled Trail 2012 257 24 BIF flake 34 33 8 14 (started ventral up) 

Trampled Trail 2012 258 12 BIF flake 61 37 11 29 (started ventral up) 

Trampled Trail 2012 264  BIF blade 60 26 8 15 (started dorsal up) 

Trampled Trail 2012 267  Quartz flake 43 22 8 5 (started dorsal up) 

Trampled Trail 2012 268  Quartz flake 36 28 9 6 (started ventral up) 

Trampled Trail 2012 270  Quartz blade 37 14 4 2 (started dorsal up) 

Trampled Trail 2012 273  Silcrete 

notched 

blade 55 31 10  (started dorsal up) 

Trampled Trail 2012 274  Silcrete 

notched 

blade 63 34 12  (started ventral up) 

Trampled Trail 2012 280 12-41 Silcrete 

backed 

blade 18 8 3 0 

prepared for rusty 

trampling (started 

dorsal up) 
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Trampled Trail 2012 282 12-47 Silcrete 

backed 

blade 29 12 4 1 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Trail 2012 284 12-50 Silcrete 

backed 

blade 33 14 6 2 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Trail 2012 288 12-56 Silcrete 

backed 

blade 26 11 4 1 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Trail 2012 291 12-60 Silcrete 

backed 

blade 37 18 6 3 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Trail 2012 293 12-66 Silcrete 

backed 

blade 30 11 4 1 

prepared for rusty 

trampling (started 

dorsal up) 

Trampled Trail 2012 296 12-70 Silcrete 

backed 

blade 32 13 5 2 

prepared for rusty 

trampling (started 

ventral up) 

Trampled Trail 2012 300 12-77 Silcrete 

backed 

blade 25 11 5 1 

prepared for rusty 

trampling (started 

dorsal up) 

Tumbler  2014 14-101  Silcrete Point 52 20 10 6 Unhafted 

Tumbler  2014 14-102  Silcrete Blade 69 24 6 8 Unhafted 

Tumbler  2014 14-103  Silcrete Blade 55 26 5 6 Unhafted 

Tumbler  2014 14-104  Silcrete Blade 64 31 11 16 Unhafted 

Tumbler  2014 14-105  Silcrete Blade 76 29 12 22 Unhafted 

Tumbler  2014 14-106  Silcrete Flake 70 40 8 19 Unhafted 

Tumbler  2014 14-107  Silcrete Point 64 29 9 17 Unhafted 

Tumbler  2014 14-108  Silcrete Blade 61 24 6 9 Unhafted 

Tumbler  2014 14-109  Silcrete Blade 66 24 16 20 Unhafted 

Tumbler  2014 14-110  Silcrete Point 62 28 9 15 Unhafted 

Tumbler  2014 14-114  Silcrete Blade 57 28 10 14 Unhafted 

Tumbler  2014 14-116  Silcrete Blade 63 21 10 12 Unhafted 

Tumbler  2014 14-117  Silcrete Blade 87 23 8 20 Unhafted 
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Tumbler  2014 14-118  Silcrete Point 70 51 17 46 Unhafted 

Tumbler  2014 14-119  Silcrete Blade 31 14 6 2 Unhafted 

Tumbler  2014 14-12  Quartzite Flake 59 36 12 22 Unhafted 

Tumbler  2014 14-120  Silcrete Blade 39 17 4 1 Unhafted 

Tumbler  2014 14-121  Silcrete Point 35 13 7 3 Unhafted 

Tumbler  2014 14-122  Silcrete Blade 44 20 3 1 Unhafted 

Tumbler  2014 14-123  Silcrete Point 68 37 11 20 Unhafted 

Tumbler  2014 14-124  Silcrete Point 42 24 11 10 Unhafted 

Tumbler  2014 14-125  Silcrete Blade 43 17 7 5 Unhafted 

Tumbler  2014 14-126  Silcrete Blade 77 26 9 16 Unhafted 

Tumbler  2014 14-128  Silcrete Blade 76 24 9 17 Unhafted 

Tumbler  2014 14-129  Silcrete Blade 83 28 10 15 Unhafted 

Tumbler  2014 14-130  Silcrete Blade 78 37 17 32 Unhafted 

Tumbler  2014 14-14  Quartzite Point 73 29 8 19 Unhafted 

Tumbler  2014 14-15  Quartzite Point 67 30 13 22 Unhafted 

Tumbler  2014 14-16  Quartzite Flake 73 37 20 35 Unhafted 

Tumbler  2014 14-20  Quartzite Point 68 29 13 18 Unhafted 

Tumbler  2014 14-26  Quartzite Point 59 36 9 17 Unhafted 

Tumbler  2014 14-4  Quartzite Point 66 36 17 34 Proximal Mastic 

Tumbler  2014 14-46  Silcrete Blade 55 13 7 3 Lateral Mastic 

Tumbler  2014 14-51  Silcrete Blade 63 25 10 14 Unhafted 

Tumbler  2014 14-53  Silcrete Point 54 30 10 13 Unhafted 

Tumbler  2014 14-54  Silcrete Blade 51 18 5 3 Unhafted 

Tumbler  2014 14-58  Silcrete Blade 59 20 5 5 Unhafted 

Tumbler  2014 14-59  Silcrete Blade 73 20 9 11 Unhafted 

Tumbler  2014 14-61  Quartzite Flake 52 40 12 20 Unhafted 

Tumbler  2014 14-62  Quartzite Point 54 34 17 27 Unhafted 

Tumbler  2014 14-65  Quartzite Point 85 41 9 24 Unhafted 

Tumbler  2014 14-66  Quartzite Point 44 31 13 12 Unhafted 
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Tumbler  2014 14-67  Quartzite Blade 77 37 11 37 Unhafted 

Tumbler  2014 14-68  Quartzite Point 78 33 13 27 Unhafted 

Tumbler  2014 14-69  Quartzite Flake 52 44 13 21 Unhafted 

Tumbler  2014 14-70  Quartzite Blade 75 31 13 26 Unhafted 

Tumbler  2014 14-71  Quartzite Flake 70 46 19 38 Unhafted 

Tumbler  2014 14-72  Quartzite Flake 51 26 10 12 Unhafted 

Tumbler  2014 14-73  Quartzite Blade 52 21 14 12 Unhafted 

Tumbler  2014 14-74  Quartzite Blade 60 20 8 7 Unhafted 

Tumbler  2014 14-75  Quartzite Blade 81 31 13 24 Unhafted 

Tumbler  2014 14-76  Quartzite Blade 78 31 10 31 Unhafted 

Tumbler  2014 14-77  Quartzite Flake 78 31 13 32 Unhafted 

Tumbler  2014 14-78  Quartzite Point 74 49 13 29 Unhafted 

Tumbler  2014 14-79  Quartzite Blade 73 30 8 17 Unhafted 

Tumbler  2014 14-80  Quartzite Blade 90 30 10 31 Unhafted 

Tumbler  2014 14-91  Quartzite Blade 70 35 10 22 Unhafted 

Tumbler  2014 14-92  Quartzite Point 43 31 11 9 Unhafted 

Tumbler  2014 14-93  Quartzite Flake 59 32 8 12 Unhafted 

Tumbler  2014 14-94  Quartzite Point 45 30 7 7 Unhafted 

Tumbler  2014 14-95  Quartzite Blade 52 20 9 7 Unhafted 

Tumbler  2014 14-96  Quartzite Blade 60 28 11 14 Unhafted 
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TRAMPLING GRID LAYOUTS 
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Each grid consists of tool number (e.g., 12-45 is tool “12-45”, a quartzite flake) in 30 x 30 cm grid squares (e.g., F2 is a 30 x 30 

square in the high intensity trampling area). These are provided to illustrate the spacing and relative placement of each trampled 

flake at the beginning of the experiment. 
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B.1 Group 1 – High Intensity corral tool layout. Tool in square A1 was placed ventral side up, and then alternated dorsal/ventral 

across rows. 

 A B C D E F G H I J 

1 12-42 12-69 12-118 12-266 12-269 12-54 12-246 12-78 12-32 12-5 

2 11-67 11-74 12-23 11-58 12-232 12-45 12-244 12-260 12-128 12-33 

3 12-63 12-179 12-117 12-196 12-277 12-188 12-180 12-106 12-192 12-132 

4 12-181 12-48 12-88 12-82 12-12 12-233 12-265 11-68 12-9 12-271 

5 12-52 11-38 12-252 12-137 12-123 12-111 12-193 12-235 12-178 12-147 

6 12-256 12-67 12-173 12-202 12-230 12-245 12-114 12-38 12-39 12-229 

7 12-86 11-76 12-222 12-13 12-291 12-125 12-73 12-93 12-183 12-164 

8 11-51 12-275 12-186 12-155 12-248 12-74 12-194 12-241 12-50 12-101 

9 12-205 12-76 12-131 12-140 12-151 12-221 12-220 12-25 12-185 12-49 

10 12-227 12-191 11-75 12-142 12-37 12-190 12-206 12-108 12-21 12-59 
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B.2 Group 2 – Medium intensity trail tool layout grid. Tool in square A1 was placed dorsal side up, and then alternated 

ventral/dorsal across rows. 

 

 A B C D E F G H I J 

1 12-243 12-146 12-124 12-199 12-99 12-228 12-273 12-129 12-47 12-254 

2 12-274 12-211 12-27 12-36 12-116 12-157 11-70 11-77 12-6 12-264 

3 12-166 12-60 12-242 12-226 12-203 12-150 12-187 12-103 12-201 12-197 

4 12-255 12-141 12-170 12-134 12-53 12-65 12-115 12-84 12-1 12-57 

5 12-214 12-160 12-135 12-143 11-50 12-30 12-145 12-217 12-130 12-15 

6 12-18 12-2 12-121 12-249 12-258 12-270 12-71 12-89 12-10 12-100 

7 11-66 12-56 12-267 12-223 12-174 12-83 12-120 12-122 11-60 12-105 

8 12-152 12-62 12-257 12-81 12-75 12-198 12-153 12-163 12-159 12-41 

9 12-35 12-109 12-216 11-47 12-61 12-268 11-56 12-207 12-70 12-119 

10 12-168 12-79 12-224 12-215 11-41 12-17 12-102 12-176 12-237 12-16 

*11-41 is ventral up 
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B.3 Group 3 – Low intensity field tool layout grid. Tool in square A1 was placed dorsal side up, and then alternated ventral/dorsal 

across rows. 

 

 A B C D E F G H I J 

1 12-90 12-7 12-261 12-177 12-11 11-63 12-3 12-87 12-4 12-276 

2 12-234 12-154 12-113 12-259 12-167 12-184 12-95 12-175 11-42 12-19 

3 12-210 12-250 12-24 12-219 12-239 12-247 12-126 12-161 12-236 12-171 

4 12-96 12-55 12-148 12-133 12-213 12-8 12-112 12-144 12-212 12-158 

5 12-240 12-58 12-263 12-139 12-68 12-80 12-20 12-85 11-49 12-209 

6 12-149 12-251 11-57 12-231 12-72 12-34 12-172 12-156 12-104 12-195 

7 12-64 12-218 12-208 12-127 12-262 12-66 12-204 11-40 12-138 12-200 

8 12-136 12-92 12-28 12-43 11-54 12-238 12-165 12-162 12-107 12-225 

9 12-182 12-40 12-77 12-99 12-46 12-31 12-110 12-51 12-44 12-169 

10 12-97 12-189 12-253 12-22 12-26 12-14 12-272 12-98 12-229 12-301 
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APPENDIX C 

EDGE DAMAGE DISTRIBUTIONS 
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C.1 Edge damage histograms 

In this appendix, graphs of the edge damage distribution on each assemblage tool type is 

shown graphically. Each graph has the same format. Each distribution is relative to the 

location on the edge on the y-axis. At the bottom of the y-axis (0) is the proximal edge 

adjacent to the platform. At the top of the y-axis (100) is the distal most extent of the tool, 

roughly synonymous with where the point of ‘technological-length’ measurement is 

taken. The edge damage frequency is on the x-axis, and is divided between the left edge 

(blue shaded histogram on the ‘negative’ side) and right edge (red shaded histogram on 

the ‘positive’ side). The edge damage frequency is relative to the amount of damage on 

that edge for the entire assemblage of that tool type. For instance, if there are 3 instances 

of damage at 15% of the relative location up tool edges and 348 total instances of 

damage, the value at the location 15% up the tool edge will be 0.0086 (3/348). There are 

two graphs for each assemblage-tool combination, and Dorsal is always on the left and 

Ventral is on the right.  

Figure 48. Edge damage histogram, following 

Wilkins et al. (2012). 
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Figure 49. DK1 10-16 points edge damage distribution. 

 
Figure 50. DK1 6-9 points edge damage distribution. 
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Figure 51. Nelson Bay Cave layer 10 flakes edge damage distribution. 

 
Figure 52. Nelson Bay Cave layer 10 points edge damage distribution. 
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Figure 53. Nelson Bay Cave layer 6 blades edge damage distribution. 

 
Figure 54. Nelson Bay Cave layer 6 flakes edge damage distribution. 
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Figure 55. Nelson Bay Cave layer 6 points edge damage distribution. 

 
Figure 56. Oyster Bay blades edge damage distribution. 
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Figure 57. Oyster Bay flakes edge damage distribution. 

 
Figure 58. Oyster Bay points edge damage distribution. 
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Figure 59. PP13B MIS 5 blades edge damage distribution. 

 
Figure 60. PP13B MIS 5 points edge damage distribution. 
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Figure 61. PP13B MIS 6 blades edge damage distribution. 

 
Figure 62. PP13B MIS6 points edge damage distribution. 
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Figure 63. PP5-6 ALBS blades edge damage distribution. No dorsal or ventral right 

edge damage observed. 

 
Figure 64. PP5-6 ALBS flakes edge damage distribution. 
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Figure 65. PP5-6 ALBS points edge damage distribution. 

 
Figure 66. PP5-6 BCSR blades edge damage distribution. 
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Figure 67. PP5-6 BCSR flakes edge damage distribution. 

 
Figure 68. PP5-6 DBCS blades edge damage distribution. 
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Figure 69. PP5-6 DBCS flakes edge damage distribution. 

 
Figure 70. PP5-6 DBCS points edge damage distribution. 
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Figure 71. PP5-6 LBSR blades edge damage distribution. 

 
Figure 72. PP5-6 LBSR flakes edge damage distribution. 
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Figure 73. PP5-6 LBSR points edge damage distribution. 

 
Figure 74. PP5-6 OBS1 blades edge damage distribution. 



 

322 

 

 
Figure 75. PP5-6 OBS1 flakes edge damage distribution. 

 
Figure 76. PP5-6 OBS2 blades edge damage distribution. 
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Figure 77. PP5-6 OBS2 flakes edge damage distribution. 

 

 
Figure 78. PP5-6 OBS2 points edge damage distribution. 
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Figure 79. PP5-6 RBSR blades edge damage distribution. 

 
Figure 80. PP5-6 RBSR flakes edge damage distribution. 
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Figure 81. PP5-6 RBSR points edge damage distribution. 

 
Figure 82. PP5-6 SADBS blades edge damage distribution. 
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Figure 83. PP5-6 SADBS flakes edge damage distribution. 

 
Figure 84. PP5-6 SADBS points edge damage distribution. 
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Figure 85. PP5-6 SGS blades edge damage distribution. 

 
Figure 86. PP5-6 SGS flakes edge damage distribution. 
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Figure 87. PP5-6 YBS blades edge damage distribution. 

 
Figure 88. PP5-6 YBS flakes edge damage distribution. 
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Figure 89. PP5-6 YBS points edge damage distribution. 

 
Figure 90. PP9 blades edge damage distribution. 
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Figure 91. PP9 flakes edge damage distribution. 

 

 
Figure 92. PP9 points edge damage distribution. 
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Figure 93. Vleesbaai blades edge damage distribution. 

 
Figure 94. Vleesbaai flakes edge damage distribution. 
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Figure 95. Vleesbaai points edge damage distribution. 
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APPENDIX D 

EDGE DAMAGE DATASETS 
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In the following appendix, the raw data used in the step-wise regression 

models is provided. As discussed in Chapters 5 and 6, these data are ordered from 1-

400 such that 1-100 is the dorsal left edge damage, 101-200 is the dorsal right edge 

damage, 201-300 is the ventral left edge damage, and 301-400 is the ventral right 

edge damage. Each value represents the total number of edge damage scarring at that 

relative location along tool edges. Both experimental and archaeological data are 

provided for the points, blades, and flakes studied in this dissertation. 
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D.1 Points 

D.1.1 Experimental Data 

Location Spears Butchery Defleshing Field Dressing Trampling Tumbler 

1 0 1 0 1 0 2 

2 0 1 0 1 0 1 

3 2 2 1 1 1 2 

4 2 2 1 1 1 1 

5 2 2 1 1 1 1 

6 3 2 1 1 0 4 

7 4 2 1 1 0 4 

8 6 2 1 1 1 3 

9 9 2 1 1 1 3 

10 8 2 1 1 1 3 

11 7 2 1 1 1 3 

12 6 2 1 1 1 2 

13 5 2 1 1 1 3 

14 4 2 1 1 2 4 

15 5 1 0 1 2 3 

16 6 1 0 1 3 1 

17 5 1 0 1 3 0 

18 5 1 0 1 3 1 

19 5 1 0 1 3 1 

20 6 1 0 1 3 1 

21 7 0 0 0 3 0 

22 7 0 0 0 2 1 

23 8 1 1 0 1 2 
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24 8 2 2 0 1 4 

25 8 3 3 0 1 4 

26 7 3 3 0 1 3 

27 7 3 3 0 1 2 

28 8 2 2 0 1 2 

29 10 2 2 0 1 1 

30 7 2 2 0 2 1 

31 7 1 1 0 3 1 

32 7 0 0 0 3 1 

33 6 0 0 0 4 1 

34 5 0 0 0 5 1 

35 5 0 0 0 6 2 

36 6 0 0 0 5 3 

37 6 0 0 0 4 1 

38 7 0 0 0 4 2 

39 7 1 1 0 3 2 

40 6 1 1 0 3 1 

41 8 1 1 0 3 0 

42 6 0 0 0 4 0 

43 8 0 0 0 2 1 

44 8 0 0 0 2 1 

45 8 0 0 0 1 2 

46 11 0 0 0 3 2 

47 10 0 0 0 5 2 

48 11 0 0 0 5 1 

49 11 0 0 0 5 0 

50 9 0 0 0 5 1 

51 9 0 0 0 5 2 
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52 10 1 1 0 5 2 

53 10 1 1 0 5 1 

54 9 1 1 0 3 1 

55 10 1 1 0 2 3 

56 10 1 1 0 1 4 

57 8 1 1 0 2 4 

58 11 1 1 0 2 4 

59 10 2 1 1 2 3 

60 11 3 1 2 2 1 

61 11 4 2 2 2 1 

62 11 4 2 2 2 1 

63 13 4 2 2 3 2 

64 14 4 2 2 3 2 

65 14 4 2 2 2 2 

66 11 3 1 2 2 4 

67 11 4 1 3 3 6 

68 10 2 0 2 3 5 

69 10 3 0 3 2 3 

70 11 3 0 3 2 2 

71 12 3 0 3 2 1 

72 15 1 0 1 3 1 

73 15 1 0 1 3 2 

74 16 1 0 1 3 2 

75 16 0 0 0 5 2 

76 17 1 0 1 3 1 

77 17 2 1 1 3 1 

78 17 2 1 1 3 1 

79 21 2 1 1 4 3 
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80 21 2 1 1 6 4 

81 21 1 1 0 5 4 

82 21 3 0 3 5 3 

83 23 4 1 3 3 3 

84 20 4 1 3 4 2 

85 21 4 1 3 5 3 

86 20 3 1 2 5 4 

87 23 3 1 2 5 4 

88 25 4 2 2 5 4 

89 25 3 1 2 4 4 

90 27 3 1 2 6 4 

91 28 3 1 2 8 3 

92 30 3 1 2 9 2 

93 28 3 1 2 8 3 

94 28 5 1 4 8 1 

95 30 5 1 4 8 2 

96 32 6 2 4 9 1 

97 32 6 2 4 7 1 

98 34 6 3 3 6 0 

99 35 8 3 5 7 0 

100 36 8 3 5 7 0 

101 34 8 3 5 6 2 

102 34 8 3 5 6 2 

103 34 6 2 4 5 2 

104 35 6 2 4 4 2 

105 33 6 2 4 4 2 

106 32 3 0 3 3 4 

107 28 4 0 4 3 5 
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108 27 3 0 3 3 5 

109 27 4 1 3 3 5 

110 27 4 1 3 3 6 

111 26 5 1 4 3 6 

112 25 4 1 3 3 4 

113 24 3 0 3 3 5 

114 18 3 0 3 3 3 

115 18 4 1 3 3 3 

116 18 5 1 4 3 2 

117 17 4 2 2 2 2 

118 17 4 2 2 2 2 

119 14 4 2 2 4 1 

120 13 3 2 1 3 2 

121 13 2 1 1 3 4 

122 11 0 0 0 2 4 

123 11 1 0 1 2 3 

124 11 1 0 1 1 3 

125 12 1 0 1 1 3 

126 12 1 0 1 1 2 

127 11 2 0 2 1 1 

128 10 2 0 2 2 1 

129 10 2 0 2 3 2 

130 9 2 0 2 3 2 

131 9 1 0 1 3 2 

132 8 2 0 2 4 2 

133 7 2 0 2 5 2 

134 7 2 0 2 5 2 

135 7 2 0 2 6 2 
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136 6 2 0 2 6 2 

137 6 3 1 2 5 3 

138 6 3 1 2 4 4 

139 6 3 1 2 5 5 

140 6 2 1 1 5 4 

141 6 2 1 1 6 4 

142 6 2 1 1 8 3 

143 6 1 0 1 7 2 

144 6 1 0 1 8 2 

145 7 1 0 1 6 2 

146 8 1 0 1 5 3 

147 7 1 0 1 5 3 

148 7 1 0 1 4 2 

149 8 1 0 1 4 5 

150 7 1 0 1 3 4 

151 7 1 0 1 3 3 

152 6 1 0 1 3 2 

153 5 1 0 1 3 1 

154 5 2 0 2 3 2 

155 5 2 0 2 2 2 

156 5 2 0 2 1 2 

157 6 1 0 1 1 3 

158 6 1 0 1 3 3 

159 6 1 0 1 4 3 

160 6 1 0 1 4 2 

161 6 1 0 1 3 3 

162 6 1 0 1 3 4 

163 5 0 0 0 3 4 
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164 5 0 0 0 3 3 

165 5 1 0 1 5 4 

166 4 1 0 1 5 4 

167 4 0 0 0 4 4 

168 6 1 1 0 5 4 

169 5 1 1 0 5 2 

170 5 1 1 0 5 2 

171 7 1 1 0 6 2 

172 6 1 1 0 6 3 

173 5 1 1 0 6 2 

174 4 1 1 0 5 2 

175 5 1 1 0 5 3 

176 4 1 1 0 5 2 

177 4 1 1 0 6 1 

178 4 1 1 0 6 0 

179 4 0 0 0 6 0 

180 5 0 0 0 5 1 

181 7 0 0 0 7 2 

182 5 0 0 0 5 3 

183 5 2 2 0 5 2 

184 3 2 2 0 5 2 

185 3 2 2 0 5 3 

186 3 2 2 0 5 3 

187 1 0 0 0 5 2 

188 3 0 0 0 5 1 

189 4 0 0 0 5 2 

190 3 1 1 0 5 2 

191 4 1 1 0 4 2 
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192 4 1 1 0 4 2 

193 4 1 1 0 5 3 

194 4 1 1 0 6 3 

195 2 1 1 0 6 3 

196 1 0 0 0 6 2 

197 1 0 0 0 5 2 

198 1 0 0 0 4 2 

199 0 0 0 0 3 2 

200 0 0 0 0 3 2 

201 0 1 1 0 3 0 

202 0 0 0 0 3 1 

203 0 0 0 0 3 2 

204 0 0 0 0 3 2 

205 0 0 0 0 4 3 

206 0 0 0 0 5 3 

207 2 0 0 0 6 4 

208 4 0 0 0 9 4 

209 4 0 0 0 9 4 

210 4 1 0 1 10 3 

211 4 1 0 1 8 3 

212 4 1 0 1 7 2 

213 4 2 0 2 7 3 

214 4 2 0 2 7 2 

215 4 1 0 1 7 2 

216 3 1 0 1 6 2 

217 4 2 1 1 5 3 

218 4 2 1 1 6 2 

219 5 2 1 1 6 1 
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220 6 1 1 0 7 1 

221 7 1 1 0 8 0 

222 7 1 1 0 7 0 

223 9 2 1 1 6 0 

224 8 3 2 1 5 0 

225 8 3 2 1 4 1 

226 9 3 2 1 3 1 

227 7 3 2 1 3 0 

228 8 3 1 2 3 1 

229 9 2 0 2 3 2 

230 9 2 0 2 4 3 

231 10 2 0 2 3 2 

232 10 2 0 2 3 3 

233 8 2 0 2 5 2 

234 7 2 0 2 4 3 

235 7 2 0 2 4 3 

236 7 1 0 1 2 3 

237 6 1 0 1 2 3 

238 5 1 0 1 2 5 

239 4 1 0 1 2 5 

240 4 0 0 0 2 4 

241 6 1 0 1 2 4 

242 7 2 1 1 1 4 

243 7 4 2 2 1 5 

244 6 4 2 2 1 4 

245 6 4 2 2 2 3 

246 6 5 2 3 2 3 

247 6 5 3 2 2 1 
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248 6 4 2 2 2 2 

249 6 4 2 2 1 2 

250 6 5 2 3 0 2 

251 6 4 0 4 0 3 

252 5 3 0 3 0 4 

253 5 3 0 3 0 3 

254 5 3 1 2 0 4 

255 5 2 1 1 0 3 

256 5 2 1 1 0 4 

257 6 2 1 1 0 5 

258 7 2 1 1 1 4 

259 7 3 1 2 1 4 

260 8 3 1 2 1 5 

261 6 3 1 2 1 4 

262 9 3 1 2 1 3 

263 10 2 1 1 1 3 

264 10 2 1 1 0 1 

265 10 3 1 2 0 2 

266 10 3 1 2 0 3 

267 9 4 1 3 0 5 

268 9 4 1 3 0 6 

269 9 4 1 3 0 5 

270 11 3 1 2 0 3 

271 14 4 2 2 0 2 

272 15 4 2 2 0 3 

273 15 3 2 1 0 3 

274 16 2 2 0 0 3 

275 15 3 2 1 1 3 
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276 16 4 2 2 0 5 

277 14 3 1 2 0 5 

278 18 3 1 2 0 3 

279 18 4 1 3 0 3 

280 20 4 1 3 0 3 

281 20 3 1 2 1 4 

282 22 4 1 3 1 3 

283 25 3 1 2 1 3 

284 25 2 0 2 2 2 

285 25 2 0 2 2 1 

286 29 1 0 1 3 2 

287 30 2 0 2 3 2 

288 30 2 0 2 4 3 

289 30 3 1 2 4 4 

290 33 4 1 3 4 4 

291 34 4 1 3 5 3 

292 37 4 1 3 6 0 

293 38 3 1 2 6 1 

294 36 3 1 2 8 2 

295 36 3 1 2 8 2 

296 36 3 1 2 9 4 

297 37 3 1 2 9 4 

298 38 3 1 2 9 3 

299 39 3 1 2 8 3 

300 39 3 1 2 8 3 

301 40 5 2 3 6 2 

302 40 5 2 3 6 2 

303 39 5 2 3 6 2 
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304 38 6 3 3 6 2 

305 36 6 3 3 6 2 

306 33 6 3 3 6 2 

307 33 6 3 3 6 2 

308 32 6 3 3 6 2 

309 32 5 3 2 5 3 

310 29 5 3 2 5 1 

311 29 6 4 2 4 1 

312 29 6 4 2 5 1 

313 29 6 4 2 4 1 

314 27 4 3 1 3 1 

315 25 1 1 0 3 1 

316 23 2 2 0 3 1 

317 26 1 1 0 3 1 

318 25 1 1 0 3 1 

319 25 1 1 0 3 2 

320 25 3 2 1 3 2 

321 25 3 2 1 4 3 

322 25 4 2 2 5 3 

323 20 3 1 2 5 4 

324 17 2 1 1 5 4 

325 17 2 1 1 4 2 

326 15 2 1 1 3 2 

327 14 0 0 0 3 3 

328 13 1 0 1 2 3 

329 12 1 0 1 3 1 

330 12 1 0 1 3 1 

331 12 1 0 1 4 1 
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332 12 1 0 1 4 1 

333 12 1 0 1 4 0 

334 12 1 0 1 4 1 

335 12 0 0 0 4 1 

336 14 1 0 1 2 1 

337 14 1 0 1 3 1 

338 13 1 0 1 3 2 

339 13 2 1 1 3 1 

340 12 2 2 0 2 2 

341 12 2 2 0 2 1 

342 12 3 3 0 2 2 

343 15 4 4 0 1 3 

344 14 5 5 0 2 3 

345 13 4 4 0 3 3 

346 14 3 3 0 5 3 

347 13 1 1 0 5 3 

348 12 1 1 0 5 2 

349 11 1 1 0 5 2 

350 12 2 1 1 5 2 

351 13 1 0 1 4 1 

352 12 1 0 1 5 1 

353 13 1 0 1 5 1 

354 11 0 0 0 5 1 

355 10 0 0 0 4 2 

356 10 0 0 0 3 3 

357 11 0 0 0 2 2 

358 9 0 0 0 2 4 

359 10 0 0 0 4 4 
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360 10 0 0 0 4 4 

361 10 0 0 0 4 3 

362 9 0 0 0 3 3 

363 11 0 0 0 2 4 

364 8 0 0 0 2 3 

365 9 0 0 0 2 3 

366 8 0 0 0 2 2 

367 7 0 0 0 3 1 

368 8 0 0 0 4 2 

369 8 0 0 0 4 3 

370 8 0 0 0 5 3 

371 7 1 0 1 4 3 

372 8 1 0 1 5 3 

373 8 1 0 1 4 2 

374 8 1 0 1 3 1 

375 9 0 0 0 3 1 

376 10 0 0 0 3 0 

377 10 0 0 0 3 0 

378 8 0 0 0 3 0 

379 6 0 0 0 4 0 

380 7 0 0 0 4 0 

381 6 0 0 0 3 0 

382 8 1 0 1 3 1 

383 7 2 1 1 3 1 

384 6 2 1 1 4 0 

385 5 1 1 0 4 1 

386 7 1 1 0 4 3 

387 8 1 1 0 4 4 
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388 9 1 1 0 3 3 

389 9 1 1 0 3 2 

390 8 1 1 0 4 2 

391 5 1 1 0 3 2 

392 5 1 1 0 3 2 

393 5 1 1 0 3 2 

394 5 0 0 0 2 2 

395 5 0 0 0 2 1 

396 4 0 0 0 2 0 

397 3 0 0 0 1 0 

398 3 0 0 0 2 0 

399 2 0 0 0 1 0 

400 1 0 0 0 1 0 

 

D.1.2 Archaeological Data 

Location PP9 OB 
NB-

6 

NB-

10 
VB ALBS DBCS LBSR OBS2 RBSR SADBS YBS 

PP13B-

MIS6 

PP13B-

MIS5 

DK1 

6-9 

DK1 

10-

16 

1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 

2 0 2 0 0 0 1 1 1 0 0 0 0 0 2 0 0 

3 0 2 0 0 0 1 1 3 0 0 0 0 0 2 0 0 

4 0 2 0 0 0 1 1 4 0 0 0 0 0 2 0 0 

5 0 3 0 0 0 1 1 5 0 0 0 0 1 3 0 0 

6 0 4 0 0 0 1 1 5 0 0 0 0 1 4 0 0 

7 0 4 0 0 0 1 1 4 0 0 1 0 1 5 0 0 

8 0 5 0 0 0 1 1 4 0 0 1 0 0 5 1 0 

9 0 5 0 0 0 1 1 4 0 0 2 0 1 6 1 0 
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10 0 6 0 0 0 1 1 5 0 0 2 0 1 7 1 1 

11 1 4 0 0 0 1 1 4 0 0 2 0 0 7 1 1 

12 1 4 0 0 0 1 2 4 0 0 2 0 1 6 2 1 

13 1 4 0 0 0 1 2 4 0 0 2 0 2 6 2 3 

14 1 3 0 0 0 1 2 4 0 0 1 0 3 6 2 3 

15 1 3 0 0 0 1 2 5 0 0 1 0 3 7 2 2 

16 1 4 0 1 0 1 2 6 0 0 1 0 2 8 2 2 

17 1 4 0 3 0 1 2 6 0 0 1 0 2 10 1 2 

18 1 4 0 2 0 1 2 5 0 0 1 0 2 11 0 3 

19 1 4 2 2 0 2 2 5 0 0 1 0 2 13 1 2 

20 1 4 2 2 0 2 1 7 0 0 1 0 2 12 1 2 

21 1 3 2 2 0 1 2 6 0 0 1 1 2 13 1 2 

22 1 3 1 2 0 1 2 8 0 0 1 1 2 14 1 2 

23 0 2 1 2 0 1 2 7 0 0 0 1 2 12 0 3 

24 0 4 0 1 0 1 2 8 0 0 0 1 3 10 0 4 

25 0 5 0 0 0 1 2 6 0 0 1 1 4 11 0 4 

26 1 5 0 1 0 1 2 3 0 0 1 1 6 13 0 3 

27 1 5 0 2 0 1 2 5 0 0 1 1 5 12 0 2 

28 1 3 1 2 0 1 2 6 0 0 0 1 6 12 0 4 

29 1 3 1 2 0 1 2 5 0 0 0 1 6 10 0 4 

30 2 5 1 2 0 1 2 5 0 0 1 1 7 13 0 4 

31 1 5 2 2 0 1 2 6 0 0 1 1 6 14 1 4 

32 1 5 2 2 0 1 2 6 0 0 1 1 7 14 1 4 

33 2 4 2 2 0 1 2 5 0 0 1 1 7 13 2 4 

34 2 3 2 2 0 0 2 7 0 0 1 1 7 11 2 2 

35 2 1 2 2 0 0 2 6 0 0 1 1 6 12 2 2 

36 4 0 2 2 0 0 1 6 0 0 1 1 5 10 2 1 

37 4 0 1 2 0 0 1 7 0 0 1 1 6 13 1 2 
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38 3 0 1 3 0 0 1 7 0 0 1 0 6 14 1 2 

39 3 0 1 3 0 0 1 7 0 0 1 0 6 12 1 3 

40 3 0 2 3 0 0 0 8 0 0 1 0 4 14 1 2 

41 3 1 2 4 0 0 0 7 0 0 2 0 4 14 1 2 

42 3 3 2 4 0 0 0 6 0 0 2 0 3 14 1 2 

43 2 4 2 4 0 0 0 6 0 0 2 0 4 14 0 2 

44 3 4 2 3 0 0 1 6 0 0 2 0 4 15 0 2 

45 1 4 1 3 0 0 1 6 0 0 2 0 6 14 0 1 

46 0 2 1 4 0 0 1 4 0 0 2 0 7 13 0 1 

47 0 2 0 5 0 0 1 4 0 0 2 0 6 14 0 2 

48 0 3 0 4 0 0 1 4 0 0 2 0 4 13 1 3 

49 0 4 1 4 0 0 1 2 0 0 2 0 4 13 1 6 

50 0 5 1 3 0 0 2 1 0 0 1 0 5 11 1 6 

51 0 4 2 4 0 0 2 2 0 0 1 0 5 12 1 5 

52 0 2 2 3 0 0 2 1 0 0 1 0 5 11 1 4 

53 1 2 2 3 0 0 1 1 0 0 1 0 5 13 1 3 

54 1 3 2 3 0 0 2 4 0 0 1 0 4 14 2 3 

55 1 2 1 3 0 0 1 4 0 0 1 0 4 16 2 4 

56 2 3 0 2 0 0 1 4 0 0 1 0 3 20 2 3 

57 2 4 0 4 1 0 1 4 0 0 1 0 3 19 2 3 

58 1 3 0 5 1 0 1 3 0 0 1 0 5 14 2 4 

59 1 4 0 7 1 0 1 4 0 0 2 0 4 13 2 4 

60 1 4 0 7 1 0 1 3 0 0 2 0 4 13 2 4 

61 0 4 0 6 1 0 1 3 0 1 2 0 5 16 1 2 

62 0 3 0 5 1 0 2 3 0 1 2 0 5 17 1 2 

63 0 4 0 3 1 0 1 4 0 0 2 0 6 16 0 1 

64 0 4 0 1 1 0 1 4 0 0 2 0 6 15 0 2 

65 1 3 0 2 1 0 1 4 0 0 2 0 3 19 0 2 
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66 1 2 0 2 0 0 1 5 0 1 2 0 4 16 0 2 

67 1 2 0 2 1 1 1 5 0 1 2 0 3 17 0 1 

68 1 2 0 2 1 1 1 5 0 1 1 0 2 16 0 2 

69 1 2 0 5 1 1 1 5 0 1 2 0 3 15 0 2 

70 1 2 0 6 1 1 1 5 0 1 2 0 2 15 1 1 

71 1 2 0 6 1 1 1 5 0 1 2 0 1 19 1 1 

72 1 1 0 6 1 1 0 5 0 1 1 1 2 21 1 1 

73 1 1 0 8 1 1 0 3 0 0 1 1 1 20 2 1 

74 0 1 0 5 1 1 0 6 0 0 1 1 1 18 2 1 

75 0 1 0 5 1 1 0 5 0 0 1 1 2 16 2 0 

76 0 2 0 5 1 1 0 6 0 0 1 1 1 15 2 1 

77 0 3 0 4 1 1 0 5 0 0 2 1 2 17 2 2 

78 0 3 0 4 1 1 0 7 0 0 2 0 2 14 1 2 

79 0 3 0 1 1 1 0 7 0 0 3 0 1 11 1 2 

80 0 4 0 1 1 1 0 7 1 1 2 0 2 10 1 1 

81 0 5 0 1 1 1 0 7 1 1 3 0 2 14 1 1 

82 1 5 0 2 0 1 0 7 1 1 3 0 1 15 2 1 

83 1 4 0 3 0 1 0 7 1 0 3 0 0 16 2 1 

84 0 4 0 3 0 1 0 6 0 0 2 0 2 17 2 1 

85 0 5 0 3 0 1 0 4 0 0 2 0 2 19 2 1 

86 0 4 0 2 0 1 0 4 0 0 2 0 2 17 2 1 

87 0 4 0 2 0 1 0 5 0 0 2 0 5 15 2 1 

88 0 3 0 2 0 1 0 5 0 0 1 0 5 12 2 2 

89 0 3 0 2 0 0 0 5 0 0 0 0 4 11 1 2 

90 0 4 1 3 0 0 1 6 0 0 0 1 2 12 1 2 

91 0 4 1 3 0 0 1 6 0 0 0 1 3 11 1 2 

92 0 6 1 4 0 0 1 5 0 0 1 1 2 8 1 2 

93 0 6 2 4 1 0 1 5 0 0 1 1 1 10 1 2 
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94 2 8 2 3 1 0 1 5 0 1 1 1 1 10 1 1 

95 2 8 3 2 1 0 1 5 0 1 1 1 2 8 1 1 

96 2 7 3 2 1 0 1 3 1 1 1 1 3 8 0 1 

97 2 8 3 0 1 0 1 5 1 1 1 1 3 7 0 1 

98 1 8 3 0 1 0 1 8 1 0 1 0 2 6 0 1 

99 1 8 3 0 1 0 1 8 1 0 1 0 2 4 0 1 

100 1 8 3 0 1 0 1 8 0 0 1 0 0 2 0 0 

101 1 6 5 1 1 0 1 8 1 0 2 0 0 4 0 0 

102 1 6 4 1 1 0 2 8 1 0 2 0 0 4 0 0 

103 1 6 4 1 1 0 2 8 0 0 2 0 0 5 0 1 

104 1 6 4 2 1 1 2 7 0 0 2 0 0 5 0 4 

105 1 5 4 2 1 1 2 6 0 0 2 0 0 6 1 4 

106 1 4 2 3 1 1 2 6 0 0 3 0 0 6 1 6 

107 1 3 2 4 0 1 1 7 0 0 3 0 0 7 1 7 

108 1 3 2 4 0 1 1 6 0 0 3 0 0 6 1 7 

109 1 4 3 4 0 1 1 6 0 1 2 0 1 8 1 6 

110 0 3 2 4 0 1 1 6 0 1 2 0 2 7 1 6 

111 0 4 1 4 0 1 1 5 0 1 1 0 2 6 1 6 

112 0 4 1 4 0 1 1 6 0 1 1 0 2 4 1 6 

113 0 3 1 4 0 1 1 5 0 1 1 0 2 4 2 6 

114 0 3 2 3 0 1 1 4 1 1 1 0 2 4 2 5 

115 0 2 2 3 0 1 1 5 0 1 1 0 1 4 2 6 

116 0 2 2 3 0 1 1 5 0 1 1 0 1 6 2 6 

117 0 1 2 4 0 1 1 4 0 1 1 0 2 7 3 5 

118 0 2 2 4 0 1 1 5 0 1 1 0 2 8 2 7 

119 0 3 2 5 0 1 1 4 0 1 1 0 3 7 1 6 

120 0 3 1 6 0 1 1 4 0 1 0 0 3 6 0 6 

121 0 2 1 7 0 1 1 4 1 1 0 0 3 8 0 7 
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122 0 2 1 7 0 1 1 4 1 1 1 0 3 8 0 7 

123 1 2 2 8 0 1 1 4 1 1 1 0 3 5 0 6 

124 1 1 2 10 0 1 1 4 1 0 1 0 4 6 0 7 

125 1 0 3 8 0 1 1 4 1 0 1 0 4 7 0 6 

126 1 0 2 7 0 1 1 4 1 0 1 0 4 6 1 6 

127 1 1 2 7 0 1 1 5 1 0 1 0 3 8 1 5 

128 1 1 3 5 0 1 1 4 1 0 1 0 1 8 1 3 

129 1 3 4 4 0 1 1 4 1 1 1 0 2 10 1 3 

130 0 3 4 5 0 1 1 3 1 1 0 0 2 11 1 3 

131 0 3 4 5 0 1 1 5 1 1 0 0 2 9 1 3 

132 0 2 4 4 0 1 1 5 1 1 0 0 1 10 1 3 

133 0 2 4 4 1 1 1 6 1 1 0 0 2 8 1 3 

134 0 1 4 3 1 1 1 5 1 0 0 0 4 8 0 2 

135 0 1 3 3 1 0 1 4 1 0 0 0 4 11 0 2 

136 0 1 2 4 2 0 1 4 1 0 0 0 5 12 2 2 

137 0 2 2 4 2 0 1 3 1 0 0 0 5 12 2 1 

138 0 2 3 3 1 0 1 4 1 0 0 0 6 11 3 1 

139 0 3 4 3 1 0 1 3 1 0 0 0 6 12 3 1 

140 0 3 4 2 1 1 1 3 1 0 0 0 4 11 3 1 

141 0 3 4 3 1 1 1 3 1 0 0 0 4 8 3 2 

142 0 4 4 3 1 1 2 3 0 0 0 0 3 10 4 2 

143 0 4 3 4 1 1 2 3 0 0 0 0 4 11 4 2 

144 0 3 0 4 1 1 2 3 0 0 1 0 4 14 3 2 

145 1 2 0 3 1 2 2 3 0 0 1 0 2 13 2 3 

146 1 2 1 4 1 2 1 2 0 0 1 0 2 13 2 3 

147 2 2 1 4 1 1 1 1 0 0 1 0 2 11 1 3 

148 1 2 1 4 1 2 1 1 0 0 1 0 2 12 1 1 

149 1 2 1 2 1 2 1 1 0 0 1 0 2 11 2 1 
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150 1 3 0 1 1 2 1 2 1 0 0 0 3 11 2 1 

151 0 3 0 0 2 2 0 1 1 0 0 0 5 9 2 1 

152 1 2 0 1 2 1 1 1 1 0 0 0 5 9 1 1 

153 1 3 0 1 2 2 1 1 1 0 0 0 4 8 2 1 

154 1 4 0 1 2 2 2 0 1 0 0 0 4 8 2 0 

155 1 3 0 2 2 2 2 2 1 0 0 0 5 9 2 0 

156 2 3 0 2 2 2 2 3 1 0 0 0 5 10 2 0 

157 2 3 1 2 2 1 1 2 1 0 0 0 5 9 0 0 

158 2 3 1 2 2 1 1 2 0 0 0 0 5 11 0 0 

159 1 3 1 2 2 1 1 2 0 0 0 0 5 11 0 0 

160 1 2 0 2 2 1 1 4 0 0 0 0 3 12 0 0 

161 1 2 0 2 2 1 1 4 0 0 0 0 1 12 0 0 

162 1 0 0 2 2 1 1 4 0 0 0 0 2 12 0 0 

163 1 0 0 2 2 1 1 4 0 0 0 0 2 14 0 0 

164 1 1 0 2 2 1 1 5 0 0 0 0 3 14 0 0 

165 0 1 1 2 2 0 1 5 0 0 0 0 3 12 0 0 

166 0 1 1 2 2 0 1 7 0 0 0 1 3 14 0 0 

167 0 1 1 2 2 0 1 8 0 0 0 1 3 13 1 0 

168 0 1 1 3 1 0 0 7 0 0 0 1 3 12 1 0 

169 0 0 2 3 0 0 0 8 1 0 0 1 3 13 1 0 

170 0 1 2 4 0 0 0 9 0 0 0 1 3 11 1 0 

171 0 1 1 4 0 0 0 9 0 0 0 1 3 11 1 0 

172 0 2 1 2 0 0 0 8 1 0 0 1 3 13 3 0 

173 0 2 1 2 0 0 0 8 1 0 0 1 2 12 4 0 

174 0 2 1 2 0 0 1 7 1 0 0 1 2 12 4 1 

175 0 2 1 2 0 0 1 7 1 0 0 1 2 12 3 1 

176 0 1 1 1 0 0 1 8 1 0 0 1 2 13 3 2 

177 0 1 1 1 0 0 1 11 1 0 0 0 2 12 3 2 
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178 0 2 1 1 0 0 1 10 0 0 0 0 2 15 3 2 

179 0 2 1 1 0 0 1 10 0 0 0 0 1 14 3 1 

180 0 2 1 1 0 0 1 9 0 0 0 0 0 14 2 1 

181 0 2 1 1 0 0 0 8 0 0 0 0 0 12 1 1 

182 0 2 0 1 0 0 0 7 0 0 0 0 1 12 1 1 

183 0 2 0 0 0 0 0 6 0 0 0 0 1 11 1 1 

184 0 3 0 1 0 0 0 7 0 0 0 0 2 8 1 1 

185 0 3 0 1 0 0 0 5 0 0 0 0 2 8 1 1 

186 0 2 0 1 0 1 0 4 0 0 0 0 1 9 1 1 

187 0 1 0 1 0 1 0 4 0 0 0 0 1 10 1 1 

188 0 3 0 2 0 1 0 6 0 0 0 0 0 11 1 1 

189 0 2 0 2 0 1 0 7 0 0 0 0 0 10 1 1 

190 0 2 0 2 0 1 1 7 0 0 0 0 1 9 1 1 

191 0 2 0 2 0 1 1 7 0 0 0 0 1 7 1 1 

192 1 2 0 2 0 1 1 6 0 0 0 0 1 7 1 1 

193 1 2 0 2 0 0 1 5 0 0 0 0 1 7 1 1 

194 1 2 0 1 0 0 1 4 0 0 0 0 1 6 1 1 

195 0 1 0 0 0 0 1 4 0 0 0 0 0 6 1 1 

196 0 1 0 0 0 0 1 4 0 0 0 0 0 5 1 1 

197 0 1 1 0 0 0 0 4 0 0 0 0 0 5 1 1 

198 0 1 1 0 0 0 0 4 0 0 0 0 0 4 0 1 

199 0 1 1 0 0 0 0 4 0 0 0 0 0 2 0 1 

200 0 1 1 0 0 0 0 2 0 0 0 0 0 2 0 0 

201 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

202 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

203 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

204 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

205 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 
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206 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

207 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

208 0 3 1 0 0 0 0 0 0 0 0 0 0 2 0 1 

209 0 3 1 0 0 0 0 0 0 0 0 0 0 3 0 1 

210 0 2 1 0 0 0 0 1 0 0 0 0 0 3 0 1 

211 0 2 1 1 0 0 0 3 0 0 0 0 0 4 0 1 

212 0 2 1 1 0 0 0 3 0 0 0 0 0 5 0 1 

213 0 1 1 1 0 0 0 3 0 0 0 0 0 6 0 0 

214 0 0 0 1 0 1 0 3 0 0 0 0 0 6 0 0 

215 0 0 0 1 0 1 0 2 0 0 0 0 1 6 0 0 

216 1 1 0 0 1 1 0 3 0 0 0 0 1 5 0 0 

217 1 1 0 1 1 1 0 3 0 0 0 0 1 6 0 0 

218 1 1 0 1 1 1 0 2 0 0 0 0 1 6 0 0 

219 1 0 0 1 1 1 0 2 0 0 0 0 0 7 1 0 

220 1 0 0 1 1 1 0 3 0 0 0 0 0 6 1 0 

221 1 0 0 1 1 1 0 4 0 0 0 0 0 5 1 1 

222 1 0 0 0 1 0 0 5 0 0 0 0 0 6 1 1 

223 0 0 0 0 1 0 0 4 0 0 0 0 0 8 1 1 

224 0 0 0 1 1 0 1 3 0 0 0 0 0 8 0 2 

225 1 0 0 1 1 0 1 2 0 0 0 0 0 8 0 2 

226 1 0 0 1 1 0 1 3 0 0 0 0 0 8 0 1 

227 1 0 0 1 1 0 1 3 0 0 0 0 1 8 0 1 

228 1 0 0 1 1 0 1 2 0 0 0 0 1 8 0 1 

229 1 0 0 1 1 0 1 4 0 0 0 0 2 9 0 1 

230 2 0 0 1 1 0 1 4 0 0 0 0 3 10 0 1 

231 2 0 1 1 1 0 1 4 0 0 0 0 3 8 0 1 

232 2 1 1 1 0 0 1 5 0 0 0 0 2 7 0 2 

233 2 1 1 1 0 0 1 4 0 0 0 0 1 8 0 2 
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234 2 1 0 1 0 0 1 5 0 0 0 0 1 7 0 2 

235 2 1 0 2 0 0 1 4 0 0 0 0 1 10 0 2 

236 2 1 0 2 0 0 1 4 0 0 0 0 1 8 0 1 

237 2 1 0 2 0 0 1 4 0 0 0 0 0 8 1 1 

238 1 1 1 1 0 0 1 3 0 0 0 0 0 9 1 2 

239 1 1 1 1 0 0 0 4 0 0 2 0 0 6 2 2 

240 0 1 1 2 0 0 0 4 0 0 2 0 0 7 1 3 

241 1 2 1 2 0 0 0 5 0 0 2 0 0 7 1 3 

242 1 3 0 2 0 0 0 5 0 0 2 0 0 7 1 3 

243 2 3 2 2 0 0 0 6 0 0 2 0 0 8 1 3 

244 2 2 3 1 0 0 0 7 0 0 2 0 2 7 1 3 

245 2 2 3 0 0 0 0 6 0 0 2 0 2 6 1 0 

246 2 2 3 1 0 0 0 7 0 0 1 0 3 6 0 0 

247 2 2 3 1 0 0 0 6 0 0 2 0 3 6 0 0 

248 2 2 3 1 0 0 0 5 0 0 2 0 3 6 1 0 

249 2 2 3 1 0 0 0 6 0 0 2 0 4 7 1 0 

250 1 2 2 1 0 0 0 6 0 0 2 0 4 7 1 0 

251 1 2 2 0 0 0 0 5 0 0 2 0 1 10 1 0 

252 1 2 2 0 0 0 0 5 0 0 2 0 4 8 1 0 

253 1 2 0 1 0 0 0 3 0 0 2 0 4 7 1 0 

254 1 1 0 1 0 0 0 2 0 0 1 0 4 6 0 1 

255 1 2 0 1 0 0 0 3 0 0 1 0 2 6 0 1 

256 1 2 0 1 0 0 0 3 0 0 1 0 3 8 0 2 

257 1 2 0 1 0 0 0 3 0 0 1 0 3 6 0 3 

258 0 2 1 2 0 0 0 2 0 0 1 0 3 7 0 3 

259 0 2 1 3 0 0 0 2 0 0 1 0 0 8 0 3 

260 0 2 2 3 0 0 0 3 0 0 1 0 1 7 0 1 

261 0 2 2 3 0 0 0 3 0 0 1 0 2 7 0 1 



 

 

3
5
9 

262 1 3 2 3 0 0 0 2 0 0 1 0 2 7 0 2 

263 1 3 2 3 0 0 0 2 0 0 1 0 5 8 0 2 

264 1 3 2 2 0 0 0 4 0 0 1 0 5 8 0 2 

265 1 3 2 3 0 0 0 4 0 0 1 0 5 6 0 2 

266 1 3 2 3 0 1 0 4 0 0 1 0 4 5 0 2 

267 1 2 1 3 0 1 0 4 0 1 1 0 3 6 0 2 

268 0 3 0 1 0 1 0 4 0 1 1 0 2 7 0 2 

269 0 2 0 2 0 1 0 4 0 1 1 0 2 8 0 3 

270 0 3 0 2 0 1 0 5 0 1 1 0 1 7 0 3 

271 0 2 0 2 0 1 0 6 0 1 2 0 1 6 0 4 

272 0 4 0 2 0 1 0 5 0 0 2 0 1 7 0 3 

273 0 4 0 2 0 1 0 3 0 0 3 0 3 6 0 3 

274 1 4 0 2 0 1 0 3 0 0 3 0 3 7 0 2 

275 1 3 0 2 0 1 0 5 0 0 3 0 4 9 0 2 

276 3 3 0 1 0 1 0 5 0 0 3 0 4 9 0 2 

277 3 2 1 1 0 1 0 5 0 0 4 0 3 10 0 2 

278 3 1 1 2 0 1 0 4 0 0 3 0 2 8 0 2 

279 2 0 1 2 0 1 0 3 0 0 2 0 1 9 0 2 

280 2 1 1 3 0 1 0 2 0 0 2 0 0 9 0 1 

281 2 1 1 2 0 1 0 2 0 0 2 0 0 9 0 1 

282 1 0 1 2 0 1 0 1 0 0 1 0 0 9 0 0 

283 1 0 1 2 0 1 0 1 0 0 1 0 1 10 0 0 

284 0 1 1 2 0 1 0 1 0 0 1 0 1 8 0 2 

285 0 3 1 2 0 1 0 2 0 0 1 0 1 10 0 3 

286 0 3 1 2 0 0 0 2 0 0 0 0 1 11 0 3 

287 0 5 1 2 0 0 0 2 0 0 0 0 1 10 0 2 

288 0 6 1 1 0 0 0 2 0 0 0 0 1 7 0 2 

289 0 6 1 1 0 0 1 0 1 0 0 0 1 6 0 2 
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290 0 6 1 1 0 0 1 1 1 0 0 0 1 6 1 2 

291 0 6 2 2 0 0 1 3 1 1 0 0 1 4 1 1 

292 0 9 2 4 0 0 1 3 0 1 0 0 2 3 1 2 

293 0 9 2 5 0 0 1 4 0 1 0 0 2 5 1 2 

294 2 9 2 6 0 1 0 5 0 2 1 0 2 6 1 2 

295 2 10 2 8 0 1 0 5 0 2 1 0 2 5 1 2 

296 1 11 3 9 0 1 0 5 0 2 1 0 2 4 1 2 

297 2 13 3 9 0 1 0 7 0 1 1 0 2 5 1 2 

298 2 13 3 9 0 1 0 7 0 1 1 0 2 4 1 2 

299 3 13 3 7 0 1 0 7 0 1 1 0 1 2 1 1 

300 3 13 3 7 0 1 0 7 0 1 1 0 1 1 1 1 

301 4 9 3 8 0 1 1 7 0 1 1 0 1 2 1 2 

302 4 9 3 8 0 1 1 7 0 1 1 0 1 2 1 2 

303 3 9 4 7 0 1 1 6 0 1 1 0 1 3 1 2 

304 3 8 4 7 0 1 1 6 0 1 1 0 1 3 1 3 

305 3 7 4 6 0 1 1 7 0 1 1 0 1 3 1 5 

306 2 5 4 6 0 1 1 5 0 0 1 0 1 5 1 4 

307 2 4 4 5 0 1 1 4 0 0 1 0 1 4 1 4 

308 2 3 4 4 0 0 1 4 0 0 1 0 1 4 1 4 

309 1 2 3 2 0 0 1 3 0 0 1 0 1 4 1 4 

310 1 2 3 2 0 0 1 4 0 0 1 0 1 4 0 3 

311 2 2 3 2 0 0 1 5 0 0 1 0 2 3 0 3 

312 2 2 1 3 0 0 1 5 0 0 1 0 2 3 0 3 

313 3 1 1 4 0 0 1 4 0 0 1 0 1 2 0 2 

314 3 1 1 4 0 0 1 3 0 0 1 0 1 3 0 2 

315 2 1 1 5 0 0 1 2 0 0 1 0 0 3 0 3 

316 1 1 1 6 0 0 1 1 0 1 1 0 1 2 1 4 

317 1 1 1 6 0 0 1 1 0 1 1 0 1 2 1 4 
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318 1 1 0 5 0 0 1 2 0 1 1 0 1 3 1 3 

319 1 1 0 4 0 1 1 4 0 1 1 0 1 2 1 3 

320 1 1 1 4 0 1 1 6 0 1 2 0 1 1 1 3 

321 1 1 1 4 0 1 1 6 0 0 2 0 2 3 1 3 

322 0 2 2 3 0 1 1 6 0 0 2 0 2 3 1 2 

323 0 2 2 3 0 1 1 5 0 0 2 0 2 4 1 2 

324 1 2 2 3 0 1 0 6 0 0 2 0 2 4 1 1 

325 1 2 2 3 0 1 0 5 0 0 2 0 2 6 1 1 

326 1 2 2 2 1 1 0 6 0 0 2 0 2 5 1 2 

327 1 3 1 2 1 1 0 6 0 0 1 0 2 7 1 2 

328 1 3 0 3 1 1 0 5 0 0 1 0 0 5 1 2 

329 1 3 1 3 1 1 0 4 0 0 1 0 0 6 0 2 

330 1 3 2 4 1 0 0 5 0 0 1 0 0 7 0 2 

331 1 3 1 4 1 0 0 4 0 0 1 0 1 7 0 1 

332 1 4 2 3 1 0 0 5 0 0 1 0 1 9 0 1 

333 1 4 2 2 1 0 0 4 0 0 1 0 1 8 0 3 

334 1 4 3 2 1 0 0 3 0 0 0 0 0 9 0 3 

335 1 4 3 2 1 0 0 5 0 0 0 0 0 7 0 3 

336 1 4 2 1 0 0 0 4 0 0 0 0 0 6 0 3 

337 1 4 3 1 0 0 1 4 0 0 1 0 0 7 0 2 

338 1 4 3 0 0 0 1 4 0 0 1 1 2 8 0 1 

339 1 4 3 1 0 0 1 4 0 0 1 1 2 9 0 1 

340 1 4 2 2 0 0 1 3 0 0 1 1 2 8 1 1 

341 1 4 2 2 0 0 1 4 0 0 1 1 1 7 1 1 

342 1 3 2 2 0 0 1 4 0 0 1 1 1 8 1 0 

343 2 2 2 2 0 0 0 4 0 0 1 0 1 7 1 0 

344 2 1 2 2 0 0 0 4 0 0 0 0 1 5 1 0 

345 2 2 2 0 0 0 0 4 0 0 0 0 1 9 1 1 
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346 2 3 1 0 0 0 0 4 0 0 0 0 3 11 1 2 

347 2 3 2 0 1 0 0 5 0 0 0 0 4 12 1 2 

348 2 3 2 1 1 0 0 5 0 0 0 0 3 14 1 2 

349 1 3 2 1 1 0 0 7 0 0 0 0 3 14 1 2 

350 2 3 2 2 1 0 0 7 0 0 0 0 4 12 1 2 

351 2 2 1 4 1 0 0 7 0 0 0 0 3 10 1 2 

352 2 2 1 4 1 0 0 9 0 0 0 0 1 10 0 2 

353 2 2 1 3 0 0 0 7 0 0 0 0 1 13 0 2 

354 1 1 1 3 0 0 0 6 0 0 0 0 0 9 0 1 

355 2 1 1 3 0 0 0 6 0 0 0 0 0 8 0 3 

356 2 1 1 4 0 0 0 5 0 0 0 0 0 8 0 5 

357 3 2 1 4 1 0 0 8 0 0 0 0 0 8 0 4 

358 2 3 1 3 1 0 0 8 0 0 0 0 0 9 0 3 

359 2 3 1 2 1 0 0 8 0 0 1 0 0 10 1 4 

360 1 3 1 3 1 0 0 7 0 0 1 0 0 12 1 4 

361 1 2 1 3 1 0 0 8 0 0 1 0 1 10 1 3 

362 1 2 0 3 1 0 0 7 0 0 1 0 1 9 1 3 

363 2 2 0 3 1 0 0 5 0 0 1 0 1 9 1 1 

364 2 2 0 2 1 0 1 4 0 0 0 1 1 8 2 0 

365 4 1 1 2 1 0 1 4 0 1 0 1 0 10 2 0 

366 4 1 1 2 1 0 1 4 0 1 0 1 0 8 2 0 

367 4 2 1 3 1 0 1 5 0 1 0 1 1 5 1 0 

368 4 2 0 3 0 0 1 4 0 0 0 1 1 4 1 0 

369 3 2 0 4 0 0 1 4 0 1 0 0 1 3 1 0 

370 3 2 0 4 0 0 1 4 0 1 0 0 0 5 1 0 

371 3 3 0 4 0 0 1 4 0 1 0 0 1 4 1 0 

372 3 3 1 4 0 0 1 4 0 1 0 0 0 4 1 0 

373 2 3 1 3 0 0 1 4 0 0 0 0 1 6 1 0 
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374 2 4 1 3 0 0 1 4 0 0 0 0 1 7 0 0 

375 2 4 2 4 0 0 1 4 0 0 0 0 1 7 0 1 

376 1 4 2 4 0 0 1 4 0 0 0 0 1 6 0 1 

377 1 4 1 5 0 0 1 3 0 0 0 0 1 5 0 1 

378 1 4 2 5 0 0 1 2 0 0 0 0 0 6 0 0 

379 1 4 2 4 0 0 1 2 0 0 0 0 0 8 0 0 

380 1 4 2 4 0 0 1 2 0 0 0 0 0 5 0 0 

381 0 4 2 2 0 0 1 2 0 0 0 0 1 4 0 0 

382 0 4 0 3 0 0 1 2 0 0 0 0 2 6 0 0 

383 0 2 1 3 0 0 1 2 0 0 0 0 2 8 0 0 

384 0 2 1 2 1 0 1 2 0 0 0 0 2 7 0 0 

385 0 1 1 1 1 0 1 1 0 0 0 0 2 7 0 0 

386 0 2 0 1 1 0 1 2 0 0 0 0 2 7 0 0 

387 0 2 0 1 1 0 1 0 0 0 0 0 1 3 0 0 

388 0 2 0 1 1 0 1 0 0 0 0 0 1 4 0 0 

389 0 2 0 1 1 0 1 0 0 0 0 0 1 3 0 0 

390 0 2 0 1 1 0 1 0 0 0 0 0 0 3 0 0 

391 0 2 0 1 1 0 1 0 0 0 0 0 0 3 0 0 

392 0 2 0 0 1 0 1 1 0 0 0 0 0 3 0 0 

393 0 2 0 0 1 0 1 1 0 0 0 0 0 2 0 0 

394 0 1 0 0 0 0 1 1 0 0 0 0 0 3 0 0 

395 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 

396 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 

397 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

398 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

399 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

400 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 
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D.2 Blades 

D.2.1 Experimental Data 

Location 

Butchery-

Deflesh 

Butchery-

Field Trampling Tumbler 

1 0 2 2 4 

2 0 2 2 6 

3 1 1 3 7 

4 1 2 4 7 

5 1 2 3 7 

6 1 1 3 7 

7 1 1 2 9 

8 1 1 3 9 

9 1 1 4 8 

10 1 1 4 7 

11 1 1 3 7 

12 1 1 2 8 

13 1 1 0 8 

14 1 1 2 5 

15 0 1 2 6 

16 0 1 3 4 

17 0 1 3 3 

18 0 1 4 1 

19 0 1 5 2 

20 0 1 4 2 



 

 

3
6
5 

21 0 0 4 4 

22 0 0 2 4 

23 1 0 2 5 

24 2 0 3 4 

25 3 0 2 5 

26 3 0 2 6 

27 3 0 3 5 

28 2 0 4 4 

29 2 0 4 5 

30 2 0 4 5 

31 1 0 4 3 

32 0 0 4 3 

33 0 0 5 3 

34 0 0 6 2 

35 0 0 4 1 

36 0 0 3 0 

37 0 1 3 2 

38 0 1 4 4 

39 1 0 4 2 

40 1 0 4 1 

41 1 0 4 1 

42 0 0 4 3 

43 0 0 3 4 

44 0 0 3 4 

45 0 0 3 1 

46 0 0 3 2 

47 0 0 3 2 

48 0 0 2 2 
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49 0 0 3 3 

50 0 0 3 4 

51 0 0 3 6 

52 1 0 5 6 

53 1 0 5 5 

54 1 0 4 6 

55 1 0 3 8 

56 1 1 4 8 

57 1 1 6 7 

58 1 1 5 4 

59 1 1 5 5 

60 1 2 7 9 

61 2 2 5 8 

62 2 2 6 8 

63 2 2 6 7 

64 2 2 6 7 

65 2 2 6 5 

66 1 2 4 6 

67 1 3 5 4 

68 0 2 4 5 

69 0 3 6 5 

70 0 3 7 6 

71 0 3 8 7 

72 0 2 7 8 

73 0 2 7 8 

74 0 1 5 6 

75 0 0 2 7 

76 0 1 2 6 
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77 1 1 2 5 

78 1 2 3 5 

79 1 2 4 4 

80 1 2 4 5 

81 1 1 3 3 

82 0 3 2 3 

83 1 3 2 5 

84 1 4 4 4 

85 1 4 4 3 

86 1 3 5 5 

87 1 2 7 7 

88 2 4 8 7 

89 2 4 6 7 

90 2 5 7 7 

91 1 5 6 8 

92 1 4 7 8 

93 1 4 8 8 

94 1 6 8 8 

95 1 6 7 6 

96 2 7 7 5 

97 2 7 7 6 

98 3 5 8 8 

99 3 7 7 7 

100 3 7 7 6 

101 3 7 7 6 

102 3 7 7 5 

103 2 6 9 7 

104 2 6 9 7 
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105 2 6 8 7 

106 0 5 10 4 

107 1 7 8 4 

108 1 6 8 6 

109 2 6 9 7 

110 2 6 8 7 

111 1 6 8 7 

112 1 5 7 7 

113 0 5 7 7 

114 0 5 7 5 

115 1 5 8 7 

116 1 6 8 7 

117 2 3 7 6 

118 2 3 7 4 

119 2 3 7 6 

120 2 3 9 6 

121 1 3 9 8 

122 0 2 12 7 

123 0 3 11 6 

124 0 3 7 3 

125 0 3 7 4 

126 0 3 8 4 

127 0 4 7 6 

128 0 4 7 9 

129 0 3 6 8 

130 0 5 5 7 

131 0 4 2 8 

132 0 4 2 10 
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133 0 3 2 9 

134 0 3 4 9 

135 0 3 4 7 

136 0 3 6 7 

137 2 3 6 7 

138 2 3 5 5 

139 2 3 4 6 

140 2 2 5 4 

141 1 2 5 9 

142 1 2 3 8 

143 0 3 3 10 

144 0 3 3 8 

145 0 3 3 6 

146 0 4 4 4 

147 0 3 3 3 

148 0 2 3 5 

149 0 2 3 5 

150 0 2 2 2 

151 0 2 3 3 

152 0 2 2 4 

153 0 2 3 4 

154 0 2 4 3 

155 0 4 3 2 

156 0 4 3 3 

157 0 2 7 7 

158 0 1 5 8 

159 0 1 5 6 

160 0 1 5 6 
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161 0 1 4 7 

162 0 1 2 8 

163 0 0 3 6 

164 0 0 4 6 

165 0 1 5 4 

166 0 1 5 4 

167 0 0 8 5 

168 1 0 8 4 

169 1 0 10 6 

170 1 0 8 5 

171 1 0 9 5 

172 1 0 7 6 

173 1 0 5 9 

174 1 0 6 10 

175 1 0 6 6 

176 1 0 5 5 

177 1 0 5 6 

178 1 0 4 8 

179 0 0 4 9 

180 1 0 4 9 

181 1 0 5 7 

182 0 0 6 4 

183 2 0 7 4 

184 2 0 7 5 

185 2 1 6 4 

186 2 1 6 6 

187 0 1 7 8 

188 0 1 8 8 
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189 0 1 8 7 

190 1 0 5 5 

191 1 0 5 4 

192 1 0 5 4 

193 1 0 4 3 

194 1 0 5 6 

195 1 0 5 6 

196 0 0 6 4 

197 0 0 7 2 

198 0 0 8 1 

199 0 0 8 0 

200 0 0 8 0 

201 1 0 2 3 

202 0 0 2 3 

203 0 0 3 3 

204 0 0 4 3 

205 0 1 4 3 

206 0 1 4 3 

207 0 1 2 2 

208 0 0 2 3 

209 0 0 2 4 

210 0 1 2 4 

211 0 1 2 4 

212 0 1 3 4 

213 0 2 3 3 

214 0 2 2 3 

215 0 1 1 5 

216 0 1 2 8 
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217 1 1 3 7 

218 1 1 3 5 

219 1 1 4 3 

220 1 0 5 2 

221 1 0 4 1 

222 1 0 5 2 

223 1 1 3 2 

224 2 1 3 5 

225 2 1 4 5 

226 2 1 5 3 

227 2 1 5 2 

228 1 2 5 2 

229 0 2 5 7 

230 0 2 5 7 

231 0 2 5 8 

232 0 2 5 6 

233 0 2 3 9 

234 0 2 2 9 

235 0 2 2 12 

236 0 1 2 10 

237 0 1 3 7 

238 0 2 3 7 

239 0 1 3 8 

240 0 0 1 8 

241 0 1 2 6 

242 1 2 2 5 

243 2 3 3 3 

244 2 3 2 4 
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245 2 3 2 6 

246 2 4 2 6 

247 3 4 3 8 

248 2 4 2 8 

249 2 3 1 5 

250 2 5 1 3 

251 0 6 1 3 

252 0 5 1 4 

253 0 5 1 3 

254 1 4 2 4 

255 2 2 2 4 

256 2 3 2 6 

257 1 4 3 6 

258 1 4 2 7 

259 1 4 2 5 

260 1 4 2 7 

261 1 4 4 6 

262 1 4 4 5 

263 1 3 4 4 

264 1 3 6 7 

265 1 3 6 9 

266 1 4 3 8 

267 1 5 5 7 

268 1 5 5 8 

269 1 4 5 9 

270 1 4 5 6 

271 2 4 5 5 

272 2 3 4 5 
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273 3 2 4 5 

274 3 1 4 5 

275 3 3 4 6 

276 3 3 5 4 

277 2 3 5 6 

278 1 3 4 6 

279 1 4 4 3 

280 1 4 5 3 

281 1 2 5 3 

282 1 3 5 8 

283 1 3 5 8 

284 0 3 5 7 

285 0 3 4 6 

286 0 2 2 6 

287 0 3 2 3 

288 0 3 2 3 

289 1 3 2 4 

290 1 4 4 4 

291 1 4 4 5 

292 1 4 4 5 

293 1 3 4 5 

294 1 3 4 5 

295 1 3 4 6 

296 1 3 4 7 

297 1 3 4 6 

298 1 3 4 6 

299 1 3 5 6 

300 1 3 5 5 
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301 2 4 7 5 

302 2 4 7 5 

303 2 4 7 6 

304 3 4 7 7 

305 3 4 8 7 

306 3 4 8 5 

307 3 4 6 4 

308 3 4 6 5 

309 3 3 5 6 

310 3 3 5 4 

311 4 3 5 4 

312 4 3 5 5 

313 4 3 4 6 

314 3 1 3 4 

315 1 0 3 4 

316 2 0 3 6 

317 1 0 4 5 

318 1 0 4 5 

319 1 0 3 6 

320 2 1 4 7 

321 2 1 3 8 

322 2 2 3 8 

323 1 2 4 6 

324 1 1 3 7 

325 1 1 3 6 

326 1 1 4 4 

327 0 0 4 3 

328 0 1 4 3 
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329 0 1 4 3 

330 0 1 4 5 

331 0 1 5 7 

332 0 1 6 7 

333 0 1 6 6 

334 0 1 5 6 

335 0 0 4 3 

336 0 1 3 3 

337 0 1 3 3 

338 0 1 3 4 

339 1 1 4 4 

340 2 0 4 4 

341 2 0 5 5 

342 3 0 5 6 

343 4 0 6 6 

344 5 0 5 6 

345 4 0 5 4 

346 3 0 4 5 

347 1 0 4 6 

348 1 0 5 6 

349 1 0 4 6 

350 1 1 3 7 

351 0 1 4 6 

352 0 1 4 7 

353 0 1 3 8 

354 0 0 5 8 

355 0 0 7 9 

356 0 0 9 9 
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357 0 0 7 8 

358 0 0 7 9 

359 0 0 5 9 

360 0 0 6 7 

361 0 0 5 8 

362 0 0 5 8 

363 0 0 6 8 

364 0 0 4 4 

365 0 0 4 4 

366 0 0 3 5 

367 0 0 3 5 

368 0 1 3 6 

369 0 1 3 6 

370 0 1 6 8 

371 0 1 7 7 

372 0 1 8 5 

373 0 1 7 5 

374 0 1 6 4 

375 0 0 6 3 

376 0 0 6 5 

377 0 0 5 5 

378 0 0 4 5 

379 0 0 3 6 

380 0 0 4 6 

381 0 0 3 5 

382 0 1 3 4 

383 1 1 5 2 

384 1 1 5 1 
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385 1 0 2 2 

386 1 0 3 2 

387 1 0 4 3 

388 1 0 3 4 

389 1 0 4 3 

390 1 0 5 2 

391 1 0 5 4 

392 1 0 5 5 

393 1 0 4 5 

394 0 0 4 5 

395 0 0 4 4 

396 0 0 3 5 

397 0 0 3 5 

398 0 0 3 3 

399 0 0 3 4 

400 0 0 2 2 

 

D.2.2 Archaeological Data – Blades (Quartzite >30mm) 

Loc. RBSR VB DBCS OBS2 OB SADBS LBSR 

PP13B-

MIS5 PP9 

PP13B-

MIS6 

1 0 0 0 0 0 0 1 2 0 0 

2 0 0 0 0 0 0 2 2 0 0 

3 0 0 0 0 0 0 2 2 0 1 

4 0 0 0 0 0 0 2 2 0 1 

5 0 0 0 0 0 0 2 2 0 1 

6 0 0 0 0 0 0 2 2 0 1 
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7 0 0 0 0 0 0 2 2 0 1 

8 1 0 0 0 0 0 2 2 0 1 

9 1 0 0 0 0 0 1 4 0 1 

10 0 0 0 0 0 0 2 3 0 1 

11 0 0 0 0 0 0 3 2 0 1 

12 0 0 0 0 0 0 3 2 0 1 

13 0 1 0 0 0 0 3 2 0 1 

14 0 1 0 0 0 0 3 1 0 1 

15 0 1 0 0 0 0 2 1 0 2 

16 0 1 1 0 0 0 3 2 0 2 

17 0 1 1 0 0 0 3 2 0 3 

18 0 1 1 0 0 0 3 3 0 3 

19 0 1 1 0 0 0 2 5 0 3 

20 0 1 1 0 0 0 2 6 0 3 

21 0 1 1 0 0 0 2 6 0 2 

22 0 1 1 0 0 0 1 6 0 2 

23 0 1 1 0 0 0 1 6 0 1 

24 0 1 1 0 0 0 0 5 0 1 

25 0 1 1 0 0 0 0 5 0 1 

26 0 1 1 0 0 0 0 6 1 1 

27 0 1 1 0 0 0 1 6 1 2 

28 0 2 0 0 0 0 1 6 0 2 

29 0 2 0 0 0 0 1 5 0 1 

30 0 2 0 0 0 0 1 6 0 1 

31 0 2 0 0 0 0 1 6 0 2 

32 0 2 0 0 0 0 1 7 0 1 

33 0 2 0 0 0 0 2 8 0 1 

34 0 1 0 0 0 0 2 8 0 1 
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35 0 1 0 0 0 0 2 6 0 0 

36 0 1 0 0 0 0 2 5 0 0 

37 0 2 1 0 0 0 4 5 0 0 

38 0 2 1 0 0 0 4 7 0 0 

39 0 2 1 0 0 0 2 6 0 0 

40 0 2 1 0 0 0 1 2 0 0 

41 0 2 1 0 0 0 0 2 0 0 

42 0 1 0 0 0 0 0 3 0 0 

43 0 0 0 0 0 0 1 3 0 1 

44 0 0 0 0 0 0 2 3 0 1 

45 0 0 0 0 0 0 2 3 0 1 

46 0 0 0 0 0 0 2 3 0 3 

47 0 0 0 0 0 0 2 1 0 3 

48 0 0 0 0 0 0 2 2 0 3 

49 0 0 0 0 0 0 3 3 0 3 

50 0 0 0 0 0 0 3 4 0 1 

51 0 0 0 0 0 0 3 5 0 1 

52 0 0 0 0 0 0 4 5 0 0 

53 0 0 0 0 0 0 4 4 0 0 

54 0 0 0 0 0 0 3 7 0 0 

55 0 0 0 0 0 0 3 10 0 0 

56 0 0 0 0 0 0 2 10 0 0 

57 0 1 0 0 1 0 2 6 0 0 

58 0 1 0 0 1 0 2 5 0 0 

59 0 1 0 0 1 0 2 6 1 0 

60 0 1 0 1 1 0 2 5 1 0 

61 0 1 0 1 1 0 2 5 1 0 

62 0 1 0 1 1 0 2 4 1 0 
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63 0 1 0 1 1 0 2 6 0 0 

64 0 0 0 1 1 0 2 6 0 0 

65 0 0 0 1 1 0 3 6 0 0 

66 0 0 0 1 1 0 3 5 0 0 

67 0 0 0 1 1 0 3 6 0 0 

68 0 0 0 1 0 0 3 5 0 0 

69 0 0 0 1 0 0 3 4 0 0 

70 0 0 0 1 0 0 3 4 0 0 

71 0 0 0 1 0 0 2 3 0 0 

72 0 0 0 1 0 0 3 3 0 0 

73 0 0 0 1 1 0 3 3 0 0 

74 0 0 0 1 1 0 3 6 0 0 

75 0 1 0 1 1 0 2 5 0 0 

76 0 1 0 1 1 0 2 6 0 0 

77 0 1 0 1 1 0 2 8 0 0 

78 0 1 0 0 1 0 2 7 0 0 

79 0 1 0 0 1 0 2 6 0 0 

80 0 1 0 0 1 0 2 5 0 0 

81 0 1 0 0 0 0 2 3 1 0 

82 0 1 0 0 1 0 2 6 1 0 

83 0 1 0 0 1 0 2 6 2 0 

84 0 0 0 0 1 0 2 8 2 0 

85 0 0 0 0 2 0 2 8 2 0 

86 0 0 0 0 2 0 2 11 2 0 

87 0 0 0 0 2 0 2 10 1 0 

88 0 0 0 0 2 1 2 10 2 0 

89 0 0 0 0 1 1 1 5 2 0 

90 0 0 0 0 1 1 1 6 2 0 
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91 0 0 0 0 1 1 1 6 1 0 

92 0 0 0 0 1 0 1 9 1 0 

93 0 0 0 0 1 0 1 10 1 0 

94 0 0 0 0 1 0 0 9 1 0 

95 0 0 0 0 1 0 0 8 1 0 

96 0 0 0 0 1 1 1 8 0 0 

97 0 0 0 0 1 1 1 9 0 0 

98 0 0 0 0 1 1 1 9 0 0 

99 0 0 0 0 1 0 0 9 0 0 

100 0 0 0 0 1 0 0 9 0 0 

101 0 0 0 0 0 0 0 8 0 1 

102 0 0 0 0 1 1 0 8 0 1 

103 0 0 0 0 1 1 1 10 0 1 

104 0 0 0 0 1 1 2 11 0 1 

105 0 0 0 0 1 0 2 10 0 1 

106 0 0 0 0 1 0 2 10 0 1 

107 0 0 0 0 1 1 2 10 0 1 

108 0 0 0 0 1 1 2 6 0 1 

109 0 0 0 0 1 0 1 5 0 1 

110 0 0 0 0 1 0 2 4 0 1 

111 0 0 0 0 1 0 3 4 0 2 

112 0 0 0 0 1 0 4 5 0 2 

113 0 0 0 0 2 0 4 4 0 2 

114 0 0 0 0 2 0 3 4 0 2 

115 0 0 0 0 2 0 3 3 0 2 

116 0 0 0 0 1 0 3 3 0 2 

117 0 1 0 0 2 0 3 3 0 1 

118 0 1 0 0 2 0 3 3 0 1 
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119 0 1 0 0 2 0 3 3 0 2 

120 0 1 0 0 2 0 3 3 0 2 

121 0 0 0 0 2 0 2 3 0 3 

122 0 0 0 0 2 0 2 3 0 3 

123 0 1 0 0 2 0 2 4 0 2 

124 0 1 0 0 2 0 2 4 0 3 

125 0 1 0 0 2 0 2 5 0 3 

126 1 1 0 0 2 0 2 6 0 3 

127 1 1 0 0 1 0 2 6 0 2 

128 1 2 0 0 2 0 3 5 0 2 

129 1 2 0 0 2 0 3 6 0 2 

130 0 2 0 0 2 0 3 4 0 1 

131 1 1 0 0 2 0 3 6 0 1 

132 1 1 0 0 1 0 3 7 0 1 

133 1 1 0 0 1 0 3 7 0 2 

134 1 1 0 0 1 0 3 5 0 2 

135 1 0 0 0 1 0 3 8 0 2 

136 1 0 0 0 1 0 3 8 0 1 

137 1 0 0 0 1 0 2 9 0 1 

138 1 0 0 0 1 0 2 8 0 1 

139 0 0 0 0 1 0 2 9 0 1 

140 0 0 0 0 1 0 1 9 0 1 

141 0 0 0 0 1 0 1 7 0 1 

142 0 0 0 0 1 0 1 7 0 1 

143 0 0 0 0 1 0 0 9 0 1 

144 0 0 0 0 1 0 0 9 0 1 

145 0 0 0 0 1 0 1 9 0 1 

146 0 0 0 0 1 0 1 10 0 2 
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147 0 0 0 0 1 0 1 8 0 2 

148 0 0 0 0 1 0 1 7 0 3 

149 0 0 0 0 1 0 2 7 0 3 

150 0 0 0 0 0 0 2 6 0 3 

151 0 0 0 0 0 0 2 4 0 2 

152 0 0 0 0 0 0 1 5 0 2 

153 0 0 0 0 0 0 1 8 0 2 

154 0 0 0 0 0 0 1 8 0 2 

155 0 0 0 0 0 0 1 6 0 2 

156 0 0 0 0 0 0 1 7 0 2 

157 0 1 0 0 0 0 1 7 0 3 

158 0 1 0 0 0 0 1 7 0 3 

159 0 1 0 0 0 0 1 7 0 2 

160 0 1 0 0 0 0 1 7 0 3 

161 0 1 0 0 0 0 1 6 0 4 

162 0 1 0 0 0 0 1 4 0 4 

163 0 1 0 0 0 0 1 3 0 3 

164 0 1 0 0 0 0 1 2 0 3 

165 0 1 0 0 0 0 2 0 0 3 

166 0 1 0 0 0 0 2 1 0 1 

167 0 0 0 0 0 0 2 1 0 1 

168 0 0 0 0 0 0 2 0 0 1 

169 0 0 0 0 0 0 0 1 0 1 

170 0 0 0 0 0 0 0 2 0 0 

171 0 0 0 0 0 0 0 3 0 0 

172 0 0 1 0 0 0 1 2 0 0 

173 0 0 1 0 0 0 1 3 0 0 

174 0 0 1 0 1 1 1 3 0 0 
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175 0 0 1 0 1 1 1 3 0 0 

176 1 0 1 0 1 1 0 4 0 0 

177 1 0 1 0 1 1 0 4 0 1 

178 1 0 1 0 1 1 1 3 0 1 

179 1 0 1 0 1 1 1 5 0 1 

180 0 0 1 0 1 1 1 4 0 1 

181 0 0 1 0 1 1 1 4 0 1 

182 0 0 1 0 1 1 1 4 0 0 

183 0 0 1 0 1 0 1 5 0 0 

184 0 0 1 0 1 0 1 5 0 0 

185 0 0 1 0 1 0 1 4 0 0 

186 0 0 1 0 1 0 1 4 0 0 

187 0 0 1 0 1 0 1 1 0 0 

188 0 0 1 0 1 0 0 1 0 1 

189 0 0 1 0 1 0 0 2 0 1 

190 0 0 1 0 1 0 0 2 0 1 

191 0 0 1 0 1 0 0 2 0 1 

192 0 0 1 0 1 0 0 2 0 1 

193 0 0 1 0 0 0 0 2 0 1 

194 0 0 1 0 0 0 0 2 0 1 

195 0 0 1 0 0 0 0 2 0 1 

196 0 0 1 0 0 0 0 2 0 1 

197 0 0 1 0 0 0 0 1 0 1 

198 0 0 1 0 0 0 0 1 0 1 

199 0 0 1 0 0 0 0 0 0 1 

200 0 0 1 0 0 0 0 0 0 1 

201 0 0 0 0 0 0 0 1 0 0 

202 0 0 0 0 0 0 0 1 0 0 
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203 0 0 0 0 0 0 0 1 0 0 

204 0 0 0 0 0 0 0 1 0 0 

205 0 0 0 0 0 0 0 1 0 0 

206 0 0 0 0 0 0 0 1 0 0 

207 0 0 0 0 0 0 0 2 0 0 

208 0 0 0 0 0 0 0 3 0 0 

209 0 0 0 0 0 0 1 3 0 0 

210 0 0 0 0 0 0 1 3 0 0 

211 0 0 0 0 0 0 1 5 0 0 

212 0 0 0 0 0 0 0 4 0 0 

213 0 0 0 0 0 1 0 4 0 0 

214 0 0 0 0 0 1 1 4 1 0 

215 0 0 0 0 0 1 1 6 1 1 

216 0 0 0 0 0 0 3 5 1 1 

217 0 0 0 0 0 0 3 6 1 2 

218 0 0 0 0 0 0 2 6 1 1 

219 0 0 0 0 0 0 2 7 1 2 

220 0 0 0 0 0 0 1 6 0 2 

221 0 0 0 0 0 0 0 6 0 2 

222 0 0 0 0 0 0 0 9 0 2 

223 0 0 0 0 0 0 0 10 1 2 

224 0 0 0 0 0 0 2 10 1 1 

225 0 0 0 0 0 0 2 9 1 1 

226 0 0 0 0 0 0 2 7 1 1 

227 0 0 0 0 0 0 2 6 1 1 

228 0 0 0 0 0 0 3 7 1 1 

229 0 0 0 0 0 1 3 8 1 0 

230 0 0 0 0 0 1 2 6 1 0 
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231 0 0 0 0 0 1 1 6 0 0 

232 0 0 0 0 0 1 1 7 0 0 

233 0 0 0 0 0 1 1 6 1 0 

234 0 0 0 0 0 1 1 5 1 0 

235 0 0 0 0 1 1 1 5 1 1 

236 0 0 0 0 1 1 1 3 0 1 

237 0 0 0 0 1 1 1 4 1 0 

238 0 0 0 0 1 1 1 3 1 0 

239 0 0 0 0 1 1 1 3 0 0 

240 0 0 0 0 1 1 1 3 0 0 

241 0 0 0 0 1 1 1 4 0 0 

242 1 0 0 0 1 1 1 4 1 0 

243 1 0 0 0 1 1 1 6 1 0 

244 1 0 0 0 1 1 1 7 1 0 

245 1 0 0 0 1 1 1 5 1 0 

246 1 0 0 0 1 2 1 5 1 0 

247 1 0 0 0 1 2 0 5 0 0 

248 1 0 0 0 1 2 2 5 0 0 

249 0 0 0 0 2 1 2 4 1 0 

250 1 0 0 0 1 1 2 6 1 0 

251 1 0 0 0 1 1 2 3 1 1 

252 1 0 0 0 1 1 2 3 1 1 

253 1 0 0 0 1 1 2 3 1 1 

254 1 0 0 0 1 1 2 3 0 0 

255 1 0 0 0 1 1 0 4 0 0 

256 0 0 0 0 1 0 1 4 0 0 

257 0 0 0 0 1 0 1 4 0 0 

258 0 0 0 0 1 0 1 5 0 0 
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259 0 0 0 0 1 0 1 5 0 0 

260 0 0 0 0 1 0 1 6 0 0 

261 0 0 0 0 1 0 1 6 0 0 

262 0 0 0 0 1 0 1 6 0 0 

263 0 0 0 0 1 0 1 5 0 0 

264 0 0 0 0 1 0 1 4 0 0 

265 0 0 0 0 1 0 0 6 0 0 

266 0 0 0 0 1 0 1 4 0 0 

267 0 0 0 0 1 0 0 3 0 0 

268 0 0 0 0 1 0 0 3 0 0 

269 0 0 0 0 1 0 0 3 0 0 

270 0 0 0 0 1 0 0 4 0 0 

271 0 0 0 0 1 0 0 5 1 0 

272 0 0 0 0 1 0 0 4 1 0 

273 0 0 0 0 1 0 0 3 0 0 

274 0 0 0 0 1 0 0 3 0 0 

275 1 0 0 0 1 0 0 4 0 0 

276 1 0 0 0 1 0 0 4 0 0 

277 2 0 0 0 1 0 0 3 0 0 

278 2 0 0 0 1 0 0 2 0 0 

279 2 0 0 0 1 0 0 2 0 0 

280 1 0 0 0 1 0 0 2 0 0 

281 1 0 0 0 1 0 0 2 0 0 

282 1 0 0 0 1 0 0 2 0 0 

283 1 0 0 0 1 0 0 1 0 0 

284 0 0 0 0 1 0 0 1 0 0 

285 0 0 0 0 1 0 1 2 0 0 

286 0 0 0 0 1 0 1 2 0 0 
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287 0 0 0 0 1 0 1 2 0 0 

288 0 0 0 0 1 0 1 3 0 0 

289 0 0 0 0 1 0 1 3 0 0 

290 0 0 0 0 1 0 1 3 0 0 

291 0 1 0 0 1 0 2 3 0 0 

292 0 1 0 0 1 0 2 4 0 0 

293 0 1 0 0 1 0 2 4 0 0 

294 0 1 0 0 2 0 2 4 0 0 

295 0 1 0 0 2 0 2 4 0 0 

296 0 1 0 0 3 0 2 4 0 0 

297 0 1 0 0 3 0 2 4 0 0 

298 0 1 0 0 3 0 2 4 0 0 

299 0 0 0 0 3 0 2 4 0 0 

300 0 0 0 0 2 0 2 4 0 0 

301 0 0 0 0 2 0 1 6 0 0 

302 0 0 0 0 2 0 2 6 0 0 

303 0 0 0 0 2 0 2 7 0 0 

304 0 0 0 0 2 0 2 7 0 0 

305 0 0 0 0 2 0 2 7 0 0 

306 0 0 0 0 2 0 2 6 0 0 

307 0 0 0 0 2 0 2 6 0 1 

308 0 0 0 0 2 0 3 6 0 1 

309 0 0 0 0 2 0 3 6 0 1 

310 0 0 0 0 2 0 3 7 0 1 

311 0 0 0 0 2 0 3 5 0 1 

312 0 0 0 0 2 0 2 4 0 1 

313 0 0 1 0 1 0 2 5 0 1 

314 0 0 1 0 1 0 2 5 0 1 
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315 0 0 1 0 0 0 2 5 0 0 

316 0 0 0 0 0 0 2 4 0 0 

317 0 0 0 0 0 0 2 3 0 0 

318 0 0 0 0 0 0 2 3 0 0 

319 0 0 0 0 1 0 2 3 0 0 

320 0 0 0 0 1 0 2 4 0 0 

321 0 0 0 0 1 0 2 4 0 0 

322 0 0 0 0 1 0 2 3 0 0 

323 0 0 0 0 0 0 2 4 0 0 

324 0 0 0 0 0 0 2 4 0 0 

325 0 0 0 0 0 0 3 3 0 0 

326 0 0 0 0 1 0 2 3 0 0 

327 0 0 0 0 1 0 2 3 0 0 

328 0 0 0 0 1 0 2 3 0 0 

329 0 0 0 0 1 0 1 3 0 0 

330 0 0 0 0 1 0 1 3 0 0 

331 0 0 0 0 0 0 2 3 0 1 

332 0 0 0 0 0 0 2 3 0 1 

333 0 0 0 0 0 0 2 3 0 1 

334 0 0 0 0 0 0 2 3 0 1 

335 0 0 0 0 0 0 1 3 0 1 

336 0 0 0 0 0 0 2 4 0 1 

337 0 0 0 0 0 0 3 5 0 2 

338 0 0 0 0 0 0 3 6 0 2 

339 0 0 0 0 0 0 3 7 0 2 

340 0 0 0 0 0 0 3 7 0 2 

341 0 0 0 0 0 0 3 7 1 2 

342 0 0 0 0 0 0 3 5 1 2 
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343 0 0 0 0 0 0 3 6 1 2 

344 0 0 0 0 0 0 3 5 1 2 

345 0 0 0 0 0 0 3 5 0 2 

346 0 0 0 0 0 0 2 4 0 1 

347 0 0 0 0 0 0 1 4 0 1 

348 0 0 0 0 0 0 1 6 0 1 

349 0 0 0 0 1 0 1 4 0 1 

350 0 0 0 0 1 0 0 4 0 1 

351 0 0 0 0 1 0 0 6 0 1 

352 0 1 0 0 1 0 0 5 0 2 

353 0 1 0 0 1 0 1 6 0 2 

354 0 1 0 0 1 0 1 6 0 3 

355 0 1 0 0 0 0 1 6 0 3 

356 0 1 0 0 0 0 1 6 0 3 

357 0 1 0 0 0 0 1 5 1 2 

358 0 1 0 0 0 0 1 5 1 3 

359 0 1 0 0 0 0 0 5 0 3 

360 0 0 0 0 0 0 0 4 0 3 

361 0 0 0 0 0 0 0 5 0 3 

362 0 0 0 0 0 0 1 4 0 3 

363 0 0 0 0 0 1 1 5 0 3 

364 0 0 0 0 0 1 1 5 0 3 

365 0 0 0 0 0 0 1 6 0 3 

366 0 0 0 0 0 0 1 6 0 3 

367 0 0 0 0 0 0 1 5 0 2 

368 0 0 0 0 0 0 1 5 0 2 

369 0 0 0 0 0 0 2 6 0 2 

370 0 0 0 0 0 0 2 8 0 3 
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371 0 1 0 0 0 0 2 8 0 3 

372 0 1 0 0 0 0 1 8 0 4 

373 0 1 0 0 0 0 1 7 0 3 

374 0 1 0 0 0 0 1 8 0 3 

375 0 1 0 0 0 0 1 8 0 2 

376 0 1 0 0 0 0 1 7 0 1 

377 0 1 0 0 0 0 2 6 0 1 

378 0 1 0 0 0 0 2 6 0 0 

379 0 1 0 0 0 0 1 6 0 0 

380 0 1 0 0 0 0 1 6 0 0 

381 0 0 0 0 0 0 1 6 0 0 

382 0 0 0 0 0 1 1 6 0 0 

383 0 0 0 0 0 1 2 6 0 0 

384 0 0 0 0 0 1 1 7 0 0 

385 0 0 0 0 0 1 1 5 0 0 

386 0 0 0 0 0 1 1 6 0 0 

387 0 0 0 0 0 1 1 5 0 0 

388 0 0 0 0 0 1 1 5 0 0 

389 0 0 0 0 0 1 1 4 0 0 

390 0 0 0 0 0 1 1 3 0 0 

391 0 0 0 0 0 1 0 2 0 0 

392 0 0 0 0 0 1 0 2 0 0 

393 0 0 0 0 0 0 0 2 0 0 

394 0 0 0 0 0 0 0 2 0 0 

395 0 0 0 0 0 0 0 2 0 0 

396 0 0 0 0 0 0 0 1 0 0 

397 0 0 0 0 0 0 0 2 0 0 

398 0 0 0 0 0 0 0 2 0 0 
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399 0 0 0 0 0 0 0 2 0 0 

400 0 0 0 0 0 0 0 2 0 0 

 

D.2.3 Archaeological Data – Blades (Silcrete >30mm) 

Loc. RBSR BCSR DBCS OBS2 NB6 OB OBS1 SADBS ALBS LBSR YBS 

PP13B-

MIS5 

1 0 0 0 0 1 0 0 0 0 0 0 0 

2 1 0 0 0 1 1 0 0 0 0 0 0 

3 1 0 0 0 1 1 0 0 0 0 0 0 

4 1 0 0 0 1 1 0 0 0 1 0 0 

5 1 0 0 0 1 1 0 0 0 2 0 0 

6 1 0 0 0 1 1 0 0 0 1 0 0 

7 1 0 0 0 1 1 0 0 0 1 0 0 

8 1 1 0 0 1 1 0 0 0 1 0 0 

9 1 1 0 0 1 1 0 0 0 1 0 0 

10 1 1 0 0 1 1 0 1 0 1 0 0 

11 1 1 0 0 1 1 0 0 0 2 0 0 

12 1 1 1 0 1 0 0 0 0 2 0 0 

13 1 1 1 1 0 0 0 0 0 2 0 0 

14 1 1 0 1 0 0 0 0 0 2 0 0 

15 1 1 0 1 0 0 0 0 0 2 0 0 

16 1 1 0 1 0 0 0 1 0 2 0 0 

17 1 1 0 1 0 0 0 1 0 2 0 0 

18 1 1 1 1 0 0 0 1 0 2 0 0 

19 1 0 1 1 0 0 0 1 0 1 0 0 

20 1 0 1 1 0 0 0 1 0 0 0 0 
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21 1 0 1 2 0 0 0 0 0 1 0 0 

22 1 0 0 1 0 0 0 0 0 1 0 0 

23 1 0 0 1 0 0 0 0 0 1 0 0 

24 1 0 0 1 0 1 0 0 0 2 0 0 

25 1 0 0 2 0 1 0 1 0 2 0 0 

26 1 1 1 2 0 1 0 1 0 2 0 0 

27 1 1 1 0 0 1 0 1 0 3 0 0 

28 1 2 1 0 0 1 0 1 0 4 0 0 

29 1 2 1 0 0 1 0 1 0 5 0 0 

30 1 2 1 2 0 1 0 1 0 5 0 0 

31 1 2 1 2 0 1 0 1 0 5 0 0 

32 0 1 0 2 0 1 0 1 0 5 0 0 

33 0 2 0 2 0 1 0 1 0 5 0 0 

34 0 2 1 2 0 1 0 1 0 3 0 0 

35 0 1 1 3 0 1 0 2 0 3 0 0 

36 0 1 1 3 0 0 0 2 0 2 0 0 

37 0 0 0 3 0 0 0 1 0 2 0 0 

38 0 1 0 0 0 0 0 1 0 2 0 0 

39 0 1 0 0 0 0 0 1 0 1 0 0 

40 0 0 0 0 0 0 0 1 0 3 0 0 

41 0 0 0 0 0 0 0 1 0 5 0 0 

42 0 1 0 0 0 0 0 1 0 6 0 0 

43 0 1 0 0 0 0 0 1 0 6 0 0 

44 0 1 0 0 0 0 0 1 0 5 0 0 

45 0 0 0 0 0 0 0 2 0 4 0 0 

46 0 0 0 0 0 0 0 2 0 5 0 0 

47 0 0 1 0 0 0 0 1 0 5 0 0 

48 1 0 1 0 0 0 0 1 0 5 0 0 
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49 1 0 1 1 0 0 0 1 0 4 0 0 

50 1 0 1 2 0 0 0 1 0 4 0 0 

51 1 0 1 2 0 0 0 1 0 3 0 0 

52 1 0 0 2 0 0 0 1 0 2 0 0 

53 1 0 0 1 0 0 0 1 0 3 0 0 

54 1 0 0 0 0 0 0 1 0 3 0 0 

55 1 0 0 1 0 0 0 1 0 3 0 0 

56 1 0 0 1 0 1 0 1 0 3 0 0 

57 1 0 0 1 0 1 0 0 0 4 0 0 

58 1 0 0 1 0 1 0 0 0 3 0 0 

59 1 0 0 2 0 1 0 0 0 3 0 0 

60 1 0 1 2 0 1 0 0 0 2 0 0 

61 1 0 1 1 0 1 0 0 0 1 0 0 

62 1 0 1 1 0 1 0 0 0 3 0 0 

63 0 0 1 1 1 2 0 0 0 3 0 0 

64 0 0 0 0 1 2 0 0 0 3 0 0 

65 0 0 0 0 1 2 0 0 0 4 0 0 

66 0 0 0 0 0 1 0 0 0 3 0 0 

67 0 0 1 0 1 0 0 0 0 2 0 0 

68 0 0 1 0 1 0 0 0 0 2 1 0 

69 0 0 1 1 1 0 0 0 0 2 1 0 

70 0 0 1 1 1 0 0 0 0 2 1 0 

71 0 0 1 1 0 0 0 0 0 2 1 0 

72 0 0 0 1 0 0 0 0 0 2 1 0 

73 0 0 0 1 0 0 0 0 0 2 1 0 

74 0 1 0 1 0 0 0 0 0 2 1 0 

75 0 1 1 1 0 0 0 0 0 3 1 0 

76 0 1 1 0 0 0 0 0 0 4 1 0 
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77 0 1 0 1 0 0 1 0 0 2 0 0 

78 1 2 1 0 0 0 1 0 0 1 0 0 

79 1 2 1 0 0 0 1 0 0 3 0 0 

80 1 2 1 0 0 0 1 0 0 4 0 0 

81 1 2 1 1 0 0 1 0 0 6 0 0 

82 1 2 1 1 0 0 1 0 0 6 0 0 

83 1 2 0 0 0 0 1 0 0 6 0 0 

84 1 2 0 0 0 0 0 0 0 4 0 0 

85 1 2 1 0 0 0 0 0 0 2 0 0 

86 1 2 1 0 0 1 0 0 0 2 0 0 

87 1 2 2 0 0 1 0 0 0 1 0 0 

88 1 2 1 0 0 1 0 0 0 1 0 0 

89 1 3 1 0 0 1 0 0 0 0 0 0 

90 0 3 1 0 0 1 0 0 0 0 0 0 

91 0 3 2 0 0 0 0 0 0 2 0 0 

92 0 2 1 0 0 0 0 0 0 4 0 0 

93 0 1 1 1 0 0 0 0 0 4 0 0 

94 1 1 0 1 0 0 0 0 0 3 0 0 

95 1 1 0 1 0 0 0 0 0 2 0 0 

96 1 1 0 1 0 0 0 0 0 3 0 0 

97 1 1 0 1 0 0 0 0 0 3 0 0 

98 1 1 1 1 0 0 0 0 0 2 0 0 

99 1 1 1 1 0 0 0 0 0 2 0 0 

100 1 1 0 1 0 0 0 0 0 2 0 0 

101 0 1 1 2 0 1 0 1 0 3 0 0 

102 0 1 1 2 0 1 0 1 0 4 0 0 

103 0 2 1 2 0 1 0 1 0 4 0 0 

104 0 2 1 2 0 1 0 1 0 4 0 0 
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105 0 2 1 2 0 1 0 1 0 5 0 0 

106 0 2 1 2 0 1 0 1 0 8 0 0 

107 0 1 1 2 0 1 0 1 0 8 0 0 

108 1 1 1 2 0 1 0 1 0 6 0 0 

109 1 1 1 3 0 1 0 1 0 8 0 0 

110 1 1 1 3 0 1 0 1 0 7 0 0 

111 1 1 1 3 0 0 0 1 0 8 0 0 

112 1 0 1 4 0 0 0 1 0 8 0 0 

113 1 1 1 4 0 0 0 0 0 6 0 0 

114 0 1 1 3 0 0 0 0 0 5 0 0 

115 0 1 1 3 0 0 0 0 0 4 0 0 

116 1 1 1 3 0 0 0 0 0 4 0 0 

117 1 1 1 2 0 0 0 0 0 3 0 0 

118 1 1 1 3 0 0 0 0 0 3 0 0 

119 2 1 1 3 0 0 0 0 0 4 0 0 

120 2 1 1 3 0 0 0 0 0 6 0 0 

121 2 1 1 3 0 0 0 0 0 5 0 0 

122 2 1 2 3 0 0 0 0 0 5 0 0 

123 2 0 2 3 0 0 0 0 0 5 0 0 

124 2 0 2 3 0 0 0 0 0 4 0 0 

125 2 0 2 3 0 1 0 0 0 3 0 0 

126 2 0 2 3 0 1 0 0 0 5 0 0 

127 2 0 1 1 0 1 0 0 0 2 0 0 

128 2 0 1 1 0 1 0 0 0 2 0 0 

129 2 0 1 1 0 1 0 0 0 2 0 0 

130 2 0 1 1 1 1 0 0 0 3 0 0 

131 1 0 0 1 1 1 0 0 0 3 0 0 

132 1 0 0 1 1 1 0 0 0 3 0 0 



 

 

3
9
8 

133 1 0 0 1 1 0 0 0 0 5 0 0 

134 1 0 0 1 1 0 0 0 0 3 1 0 

135 1 0 0 0 1 0 0 0 0 3 1 0 

136 1 0 0 0 1 1 0 0 0 4 1 0 

137 1 0 0 0 1 1 0 0 0 4 1 0 

138 1 0 0 1 1 0 0 0 0 3 1 0 

139 1 0 0 1 1 0 0 0 0 5 1 1 

140 1 0 0 1 1 0 0 0 0 4 1 1 

141 1 0 0 1 1 1 0 1 0 2 1 1 

142 1 0 0 1 0 1 0 1 0 3 1 1 

143 0 0 0 1 0 0 0 1 0 3 1 1 

144 1 1 0 1 0 1 0 0 0 3 1 1 

145 1 2 0 1 0 0 0 0 0 2 1 1 

146 1 1 0 1 0 0 0 0 0 2 0 1 

147 1 1 0 0 0 0 0 0 0 2 0 1 

148 1 1 0 0 0 0 0 0 0 3 0 1 

149 2 1 0 0 0 0 0 0 0 2 0 0 

150 2 0 0 1 0 1 0 0 0 4 0 0 

151 2 1 1 1 0 1 0 0 0 5 0 1 

152 2 2 2 0 0 1 0 0 0 5 0 1 

153 1 3 2 0 0 0 0 0 0 3 0 1 

154 1 3 2 0 0 1 0 0 0 3 0 1 

155 0 3 2 0 0 1 0 0 0 3 0 1 

156 0 2 3 0 0 1 0 0 0 3 0 1 

157 0 2 3 0 0 1 0 0 0 2 0 1 

158 0 2 3 0 0 1 0 0 0 1 0 1 

159 0 1 3 0 0 1 0 0 0 1 0 1 

160 1 2 2 1 0 1 0 0 0 1 0 0 



 

 

3
9
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161 1 2 2 1 0 1 0 0 0 1 0 0 

162 1 2 2 1 0 1 0 0 0 3 0 0 

163 1 2 1 1 0 1 0 0 0 2 0 0 

164 0 2 1 1 0 0 0 0 0 2 0 0 

165 0 2 1 1 0 0 0 0 0 5 0 0 

166 0 2 1 1 0 0 0 0 0 5 0 0 

167 0 1 1 1 1 0 0 0 0 5 0 0 

168 0 1 1 1 1 1 0 0 0 4 0 0 

169 0 1 0 1 1 1 0 0 0 5 0 0 

170 1 1 0 1 1 1 0 0 0 7 0 0 

171 1 1 0 1 1 1 0 0 0 7 0 0 

172 0 1 1 1 1 0 0 0 0 4 0 0 

173 0 1 1 1 1 0 0 0 0 4 0 0 

174 0 1 0 1 1 1 0 0 0 3 0 0 

175 0 1 1 1 0 1 0 0 0 2 0 0 

176 0 1 1 1 0 1 0 0 0 1 0 0 

177 0 0 3 1 0 1 0 0 0 1 0 0 

178 0 0 3 1 0 1 0 0 0 0 0 0 

179 0 0 3 1 0 1 0 0 0 1 0 0 

180 0 1 3 1 0 1 0 0 0 1 0 0 

181 1 1 2 1 0 0 0 0 0 2 0 0 

182 1 2 2 0 0 0 0 0 0 2 0 0 

183 1 2 1 0 0 0 0 0 0 2 0 0 

184 1 2 0 1 0 0 0 0 0 3 0 0 

185 1 1 0 1 0 0 0 0 0 1 0 0 

186 1 1 1 1 0 0 0 0 0 2 0 0 

187 0 1 1 1 0 0 0 0 0 2 0 0 

188 0 1 1 1 0 0 0 0 0 3 0 0 



 

 

4
0
0 

189 0 1 1 1 1 0 0 0 0 1 0 0 

190 0 0 1 1 1 0 0 0 0 1 0 0 

191 0 0 1 0 1 0 0 0 0 0 0 0 

192 0 0 1 0 1 0 0 0 0 1 0 0 

193 0 0 1 0 0 0 0 0 0 0 0 0 

194 0 0 1 0 0 0 0 0 0 0 0 0 

195 0 0 1 0 1 0 0 0 0 0 0 0 

196 0 0 0 0 1 0 0 0 0 0 0 0 

197 0 0 0 0 1 0 0 0 0 0 0 0 

198 0 0 0 0 1 0 0 0 0 0 0 0 

199 0 0 0 0 0 0 0 0 0 0 0 0 

200 0 0 0 0 0 0 0 0 0 0 0 0 

201 0 1 0 0 0 0 0 0 0 0 0 0 

202 0 1 0 0 0 0 0 0 0 0 0 0 

203 0 1 0 0 0 0 0 0 0 0 0 0 

204 0 1 0 0 0 0 0 0 0 0 0 0 

205 0 1 0 0 0 0 0 0 0 0 0 0 

206 0 1 0 0 0 0 0 0 0 0 0 0 

207 0 1 0 0 0 0 0 0 0 2 0 0 

208 0 1 0 0 0 0 0 0 0 2 0 0 

209 0 2 0 0 0 0 0 0 0 2 0 0 

210 0 2 0 0 0 0 0 0 0 2 0 0 

211 0 2 0 0 0 0 0 0 0 2 0 0 

212 0 1 0 0 0 0 0 0 1 2 0 0 

213 0 1 0 0 0 0 0 0 1 3 0 0 

214 0 0 0 0 0 0 0 0 1 4 0 0 

215 0 0 0 0 0 0 0 0 1 4 0 0 

216 0 0 0 0 0 0 0 0 1 4 0 0 



 

 

4
0
1 

217 0 0 0 0 0 1 0 0 1 3 0 0 

218 1 0 0 0 0 1 0 0 1 3 0 0 

219 1 0 0 0 0 1 0 0 0 4 0 0 

220 1 0 0 0 0 1 0 0 0 4 1 0 

221 1 0 0 0 1 1 0 0 0 3 1 0 

222 0 0 0 0 1 1 0 0 0 2 1 0 

223 0 0 0 0 1 1 0 0 0 3 1 0 

224 0 0 0 0 1 1 0 0 0 3 1 0 

225 0 0 0 0 1 1 0 0 0 3 1 0 

226 1 0 0 0 1 0 0 0 0 2 1 0 

227 1 0 0 0 1 0 0 0 0 2 1 0 

228 0 0 0 0 1 0 0 0 0 0 1 0 

229 0 0 0 0 1 0 0 0 0 0 1 0 

230 0 0 0 0 0 1 0 0 0 0 1 0 

231 1 0 1 0 0 0 0 0 0 0 1 0 

232 1 0 1 0 0 1 0 0 0 0 1 0 

233 0 0 1 0 0 1 0 0 0 1 1 0 

234 0 0 1 0 0 0 0 0 0 1 1 0 

235 0 0 1 0 0 1 0 0 0 1 1 0 

236 0 0 1 0 0 0 0 0 0 1 1 0 

237 0 0 1 0 0 1 0 0 0 0 1 0 

238 0 0 0 0 0 1 0 0 0 0 1 0 

239 0 0 0 0 0 0 0 0 0 0 1 0 

240 0 0 0 0 0 0 0 0 0 1 1 0 

241 0 0 1 0 0 0 0 0 0 2 1 0 

242 0 0 1 0 0 0 0 0 0 2 1 0 

243 0 0 1 0 0 0 0 0 0 2 1 0 

244 0 0 1 0 0 0 0 0 0 1 1 0 
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2 

245 0 0 1 0 0 0 0 0 0 1 1 0 

246 0 0 0 0 0 0 0 0 0 0 1 0 

247 0 0 1 0 0 0 0 0 0 0 1 0 

248 0 0 0 0 0 0 0 0 0 0 1 1 

249 1 0 0 0 0 0 0 0 0 0 1 1 

250 1 0 0 0 0 0 0 0 0 0 1 1 

251 1 0 0 0 0 0 0 0 0 0 0 0 

252 1 0 0 0 0 0 0 0 0 0 0 0 

253 1 0 0 0 0 0 0 0 0 0 1 0 

254 0 0 0 0 0 0 0 0 0 0 1 0 

255 0 0 0 0 0 0 0 0 0 1 1 0 

256 0 0 0 0 0 0 0 0 0 1 1 0 

257 0 0 0 0 0 0 0 0 0 1 1 0 

258 0 0 0 0 0 0 0 0 0 1 0 0 

259 0 1 0 0 0 0 0 0 0 0 0 0 

260 0 1 0 0 0 0 0 1 0 0 0 0 

261 0 0 0 1 0 0 0 1 0 0 0 0 

262 0 0 0 1 0 0 0 1 0 0 0 0 

263 0 0 0 1 0 0 0 1 0 1 0 0 

264 0 0 0 0 0 0 0 1 0 1 0 0 

265 0 0 0 0 0 1 0 1 0 1 0 1 

266 0 0 0 0 0 1 0 0 0 1 0 1 

267 0 0 0 0 0 1 0 0 0 1 0 1 

268 0 0 0 0 0 1 0 0 0 1 0 1 

269 0 0 0 0 0 1 0 0 0 1 0 1 

270 0 0 0 0 0 1 0 1 0 0 0 1 

271 0 0 0 0 0 1 0 1 0 0 0 1 

272 0 0 0 0 0 1 0 1 0 0 0 0 
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273 0 0 0 0 0 1 0 1 0 0 0 0 

274 0 0 0 0 0 1 0 1 0 0 0 0 

275 0 0 0 0 0 1 0 0 0 0 0 0 

276 0 0 0 0 0 0 0 0 0 0 0 0 

277 0 0 0 0 0 0 0 0 0 0 0 0 

278 0 0 0 0 0 0 0 0 0 0 0 0 

279 0 0 0 0 0 0 0 0 0 1 0 0 

280 0 0 0 0 0 0 0 0 0 1 0 0 

281 0 0 0 0 0 1 0 0 0 2 0 0 

282 0 0 0 0 0 1 0 0 0 2 0 0 

283 0 0 0 0 0 1 0 0 0 2 0 0 

284 0 0 0 0 0 1 0 0 0 2 0 0 

285 0 0 0 0 1 1 0 0 0 1 0 0 

286 0 0 0 0 1 1 0 0 0 1 0 0 

287 0 0 0 0 1 0 0 0 0 1 0 0 

288 0 0 0 0 1 0 0 0 0 1 0 0 

289 1 0 0 0 1 0 0 0 0 1 0 0 

290 1 0 0 0 1 0 0 0 0 0 0 0 

291 1 1 0 0 1 0 0 0 0 0 0 0 

292 1 1 0 0 1 0 0 0 0 0 0 0 

293 0 1 0 0 1 0 0 0 0 0 0 0 

294 0 1 0 0 1 0 0 0 0 1 0 0 

295 0 1 1 0 1 0 0 0 0 2 0 0 

296 0 1 1 0 1 0 0 0 0 1 0 0 

297 0 1 1 0 1 0 0 0 0 1 0 0 

298 0 1 1 0 1 0 0 0 0 2 0 0 

299 0 1 1 0 1 0 0 0 0 2 0 0 

300 0 1 1 0 1 0 0 0 0 2 0 0 



 

 

4
0
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301 0 2 3 0 1 0 0 0 0 5 0 0 

302 0 2 3 0 1 0 0 0 0 5 0 0 

303 0 2 3 0 1 0 0 0 0 5 0 0 

304 0 2 3 0 1 0 0 0 0 5 0 0 

305 0 2 3 0 1 0 0 0 0 3 0 0 

306 0 2 3 0 1 0 0 0 0 3 0 0 

307 0 2 2 0 1 0 0 0 0 4 0 0 

308 0 2 2 0 1 0 0 0 0 4 0 0 

309 0 2 2 0 1 0 0 0 0 3 0 0 

310 0 2 2 0 1 0 0 0 0 3 0 0 

311 0 4 2 0 1 0 0 0 0 3 0 0 

312 0 3 2 0 1 0 0 0 0 2 0 0 

313 0 3 2 0 1 0 0 0 0 1 0 0 

314 0 4 2 0 1 0 0 0 0 1 0 0 

315 0 3 2 0 1 0 0 0 0 1 0 0 

316 0 3 2 0 1 0 0 0 0 0 0 0 

317 0 3 2 0 1 0 0 0 0 0 1 0 

318 0 3 3 0 1 0 0 0 0 1 1 0 

319 0 3 3 0 0 0 0 0 0 1 1 0 

320 0 2 3 0 0 0 0 0 0 1 1 0 

321 0 1 2 0 0 0 0 0 0 2 1 0 

322 0 1 2 0 0 0 0 0 0 2 1 0 

323 0 1 2 0 0 0 0 0 0 1 1 0 

324 0 1 2 0 0 0 0 0 0 2 1 0 

325 0 1 2 0 0 0 0 0 0 3 1 0 

326 0 1 2 0 0 0 0 0 0 4 1 0 

327 0 1 3 0 0 0 0 0 0 4 1 0 

328 0 1 3 0 0 0 0 0 0 3 1 0 
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329 0 1 3 0 0 0 0 0 0 3 1 0 

330 0 1 3 0 0 0 0 0 0 3 1 0 

331 0 1 3 0 0 0 0 0 0 1 0 0 

332 0 2 3 0 0 0 0 0 0 1 0 0 

333 0 2 2 0 0 0 0 0 0 2 0 0 

334 0 2 2 0 0 0 0 0 0 3 0 0 

335 0 2 2 0 0 0 0 0 0 2 0 0 

336 0 2 3 0 0 0 0 0 0 2 0 0 

337 0 2 3 0 0 0 0 0 0 2 0 0 

338 0 2 3 0 0 0 0 0 0 2 0 0 

339 0 2 3 0 0 0 0 0 0 1 0 0 

340 0 2 3 0 0 0 0 0 0 2 0 0 

341 0 2 3 0 0 0 0 0 0 2 0 0 

342 0 2 3 0 0 0 0 0 0 2 0 0 

343 0 2 3 0 0 0 0 0 0 2 0 0 

344 0 2 3 0 0 0 0 0 0 3 0 0 

345 0 2 3 0 0 0 0 0 0 4 0 0 

346 0 2 2 0 0 0 0 0 0 3 0 0 

347 0 2 2 0 0 0 0 0 0 3 0 0 

348 0 2 2 0 0 1 0 0 0 3 0 0 

349 0 2 2 0 0 0 0 0 0 2 0 0 

350 0 2 1 0 0 0 0 0 0 2 0 0 

351 0 1 1 0 0 1 0 0 0 3 0 0 

352 0 1 1 0 0 1 0 0 0 3 0 0 

353 0 1 1 0 0 1 0 0 0 4 0 0 

354 0 1 1 0 0 1 0 0 0 4 0 0 

355 0 1 1 0 0 1 0 0 0 3 0 0 

356 0 1 1 0 0 1 0 0 0 3 0 0 



 

 

4
0
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357 0 1 1 0 0 1 0 0 0 1 0 0 

358 0 1 1 1 0 2 0 0 0 3 0 0 

359 0 1 1 1 0 2 0 0 0 3 0 0 

360 0 1 1 1 0 2 0 0 0 3 0 0 

361 0 1 1 0 0 2 0 0 0 3 0 0 

362 0 1 1 0 0 2 0 0 0 3 0 0 

363 0 1 2 0 0 1 0 0 0 2 0 0 

364 0 1 2 0 0 1 0 0 0 2 0 0 

365 0 1 2 1 0 0 0 0 0 3 0 0 

366 0 1 2 1 0 0 0 0 0 3 0 0 

367 0 1 1 2 0 0 0 0 0 3 0 0 

368 0 1 1 2 0 0 0 0 0 3 0 0 

369 0 1 1 1 0 0 0 0 0 4 0 0 

370 0 1 1 1 0 0 0 0 0 4 0 0 

371 0 1 1 1 0 0 0 0 0 5 0 0 

372 0 1 1 1 0 0 0 0 0 3 0 0 

373 0 1 1 2 0 0 0 0 0 2 0 0 

374 0 2 1 2 0 0 0 0 0 2 0 0 

375 0 2 1 1 0 0 0 0 0 2 0 0 

376 0 2 1 1 0 1 0 0 0 3 0 0 

377 0 2 1 1 0 1 0 0 0 4 0 0 

378 0 2 0 1 0 1 0 0 0 4 0 0 

379 0 2 1 0 0 1 0 0 0 3 0 0 

380 0 1 1 0 0 1 0 0 0 3 0 0 

381 0 1 1 0 0 1 0 0 0 3 0 0 

382 0 1 1 0 0 0 0 0 0 3 0 0 

383 0 1 1 0 0 0 0 0 0 4 0 0 

384 0 1 1 0 0 1 0 0 0 4 0 0 



 

 

4
0
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385 0 1 1 0 0 1 0 0 0 4 0 0 

386 0 1 1 1 0 1 0 0 0 3 0 0 

387 0 1 1 1 0 2 0 0 0 1 0 0 

388 0 1 1 1 0 2 0 0 0 1 0 0 

389 0 1 1 1 0 1 0 0 0 1 0 0 

390 0 1 1 1 0 1 0 0 0 2 0 0 

391 0 1 1 1 0 1 0 0 0 3 0 0 

392 0 1 1 1 0 1 0 0 0 2 0 0 

393 0 1 1 1 0 1 0 0 0 2 0 0 

394 0 0 1 1 0 1 0 0 0 2 0 0 

395 0 0 1 1 0 1 0 0 0 2 0 0 

396 0 0 1 1 0 1 0 0 0 2 0 0 

397 0 0 1 1 0 1 0 0 0 2 0 0 

398 0 0 1 1 0 1 0 0 0 2 0 0 

399 0 0 1 1 0 1 0 0 0 2 0 0 

400 0 0 1 1 0 1 0 0 0 1 0 0 

 

D.2.3 Archaeological Data – Blades (Silcrete <30mm) 

Loc. RBSR BCSR DBCS OBS2 NBC6 SGS OBS1 SADBS LBSR 

PP13B-

MIS5 

qz 

PP13B-

MIS5 

PP13B-

MIS6 

1 1 0 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 0 0 0 0 0 0 0 

5 1 0 0 0 0 0 0 0 0 0 0 0 



 

 

4
0
8 

6 1 0 0 0 0 0 0 0 0 0 0 0 

7 1 0 0 0 0 0 0 0 0 0 0 0 

8 1 0 0 0 0 0 0 0 0 0 0 0 

9 1 0 0 0 0 0 0 0 0 0 0 0 

10 1 0 0 0 0 0 0 0 0 0 0 0 

11 2 0 0 0 0 0 0 0 0 0 0 0 

12 2 0 0 0 0 0 0 0 0 0 0 0 

13 2 0 0 0 0 0 0 0 0 0 0 0 

14 2 0 0 0 0 0 0 0 0 0 0 0 

15 2 0 0 0 0 0 0 0 0 0 0 0 

16 2 0 0 0 0 0 0 0 0 0 0 0 

17 2 0 0 0 0 0 0 0 0 0 0 0 

18 2 0 0 0 0 0 0 0 0 0 0 0 

19 2 0 0 0 0 0 0 0 0 0 0 0 

20 2 0 0 0 0 1 0 0 0 0 0 0 

21 2 1 0 0 0 1 0 0 0 0 0 0 

22 1 1 0 0 0 1 0 0 0 0 0 0 

23 1 3 0 0 0 1 1 1 0 0 0 0 

24 1 4 0 0 0 1 1 1 0 0 0 0 

25 1 2 0 0 0 1 1 1 0 0 0 0 

26 1 2 0 0 0 1 1 1 0 0 0 0 

27 1 2 1 0 0 1 1 1 0 0 0 0 

28 1 2 1 0 0 1 1 1 0 0 0 0 

29 1 2 1 0 0 1 1 1 0 0 0 0 

30 1 2 1 0 0 1 0 1 0 1 0 0 

31 0 2 1 0 0 1 0 1 0 1 0 0 

32 0 3 1 0 0 1 1 0 0 1 0 0 

33 0 4 1 0 0 1 2 0 0 1 0 0 



 

 

4
0
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34 0 3 1 0 0 1 1 0 0 1 0 0 

35 0 3 1 0 0 1 0 0 0 1 0 0 

36 0 4 0 0 0 1 0 0 0 1 0 0 

37 0 2 0 0 0 1 1 0 0 1 0 0 

38 0 2 0 0 0 1 1 0 0 1 0 0 

39 0 3 0 0 0 1 1 0 0 1 0 0 

40 0 4 0 0 0 1 0 0 0 1 0 0 

41 1 4 0 0 0 1 0 0 0 1 0 0 

42 3 4 0 0 0 0 0 0 0 1 0 0 

43 3 4 1 0 1 0 0 0 0 1 0 0 

44 3 3 1 0 1 0 0 0 0 1 0 0 

45 3 3 1 0 1 0 1 0 0 1 0 0 

46 3 2 1 0 1 0 1 0 0 1 0 0 

47 3 1 1 0 1 0 1 0 0 1 0 0 

48 3 0 1 0 1 0 1 0 0 1 0 0 

49 3 0 1 0 1 0 0 0 0 1 0 0 

50 3 1 1 0 1 0 0 0 0 1 0 0 

51 3 1 1 0 0 0 0 0 0 1 0 0 

52 3 1 0 0 0 0 0 0 0 1 0 0 

53 3 1 0 0 0 0 0 0 0 1 0 0 

54 3 2 0 0 0 0 0 0 0 1 0 0 

55 3 2 1 0 0 0 0 0 0 1 0 0 

56 2 1 1 0 0 0 0 0 0 1 0 0 

57 2 1 1 0 0 0 0 0 0 0 0 0 

58 2 1 0 0 0 0 0 0 0 0 0 0 

59 1 2 0 0 0 0 0 0 0 0 0 0 

60 1 2 0 0 0 0 0 0 0 0 0 0 

61 1 2 1 0 0 0 0 0 1 0 0 0 



 

 

4
1
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62 1 1 1 0 0 0 0 0 1 1 0 0 

63 1 1 1 0 0 0 0 0 1 1 0 0 

64 1 2 1 0 0 0 0 0 1 1 0 0 

65 0 2 1 0 0 0 1 0 1 1 0 0 

66 1 2 1 0 0 1 1 0 1 1 0 0 

67 1 2 1 0 0 1 1 0 1 1 0 0 

68 1 2 2 0 0 1 1 0 1 1 0 0 

69 1 2 2 0 0 1 0 0 1 1 0 0 

70 1 1 2 0 0 2 0 0 1 1 0 0 

71 1 1 2 0 0 2 0 0 1 1 0 0 

72 1 2 2 0 0 2 0 0 1 1 0 0 

73 1 2 2 0 0 1 0 0 1 1 0 0 

74 1 2 2 0 0 2 1 0 1 0 0 0 

75 1 1 2 0 0 2 1 0 0 0 0 0 

76 1 2 2 0 0 2 1 0 0 0 0 0 

77 1 2 2 0 0 2 1 0 0 0 0 0 

78 1 2 2 0 0 2 1 0 0 0 0 0 

79 1 2 1 0 0 2 1 0 0 0 0 0 

80 1 2 1 0 0 2 1 0 0 0 0 0 

81 1 1 1 0 0 2 1 0 0 0 0 0 

82 1 1 1 0 0 2 1 0 0 0 0 0 

83 1 1 1 0 0 2 1 0 0 0 0 0 

84 1 1 1 0 0 2 1 0 0 0 0 0 

85 1 1 1 0 0 2 1 0 0 0 0 0 

86 1 0 1 0 0 2 1 1 0 0 0 0 

87 1 0 1 0 0 2 2 1 1 0 0 0 

88 0 0 1 0 0 2 1 1 1 0 0 0 

89 0 1 1 0 0 2 1 1 1 0 0 0 



 

 

4
1
1 

90 0 1 1 0 0 1 1 1 1 0 0 0 

91 0 2 2 0 0 1 1 1 1 0 0 0 

92 0 2 2 0 0 1 0 1 1 0 0 0 

93 0 2 2 0 0 1 0 1 1 0 0 0 

94 0 2 2 0 0 1 0 1 1 0 0 0 

95 0 2 2 0 0 1 0 1 0 0 0 0 

96 0 2 2 0 0 1 0 1 0 0 0 0 

97 0 2 2 0 0 1 0 1 0 0 0 0 

98 0 2 2 0 0 0 0 1 0 0 0 0 

99 0 2 1 0 0 0 0 1 0 0 0 0 

100 0 2 1 0 0 0 0 1 0 0 0 0 

101 0 3 1 0 1 1 0 1 0 0 0 0 

102 1 3 2 0 1 1 0 1 0 0 0 0 

103 1 3 2 0 1 1 0 1 1 0 0 0 

104 1 3 2 0 1 1 0 1 1 0 0 0 

105 1 4 1 0 1 1 0 1 1 0 0 0 

106 1 4 1 0 1 1 0 1 1 0 0 0 

107 1 4 2 0 1 1 0 0 1 0 0 0 

108 1 4 2 0 1 1 0 0 1 0 0 0 

109 0 4 2 0 0 1 0 0 1 0 0 0 

110 0 4 2 0 0 1 0 0 0 0 0 0 

111 0 4 2 0 1 1 0 0 0 0 0 0 

112 0 4 2 0 1 1 1 0 0 0 0 0 

113 0 3 2 0 1 1 1 0 0 0 0 0 

114 0 3 4 0 1 1 1 0 0 0 0 0 

115 0 3 4 0 1 1 1 0 0 0 0 0 

116 0 4 4 0 2 1 1 0 0 0 0 0 

117 0 4 4 0 2 1 1 0 0 0 0 0 
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118 0 4 4 0 2 1 1 0 0 0 0 0 

119 0 3 4 0 2 1 1 0 0 0 0 0 

120 0 3 4 0 2 1 1 0 0 0 0 0 

121 0 3 4 0 2 1 1 0 0 0 0 0 

122 0 3 2 0 2 1 1 0 0 0 0 0 

123 0 2 2 0 2 1 2 0 0 0 0 0 

124 0 3 2 0 1 1 2 0 0 0 0 0 

125 0 3 2 0 1 0 1 0 0 0 0 0 

126 0 3 2 0 1 0 1 0 0 0 0 0 

127 0 3 4 0 2 0 1 0 0 0 0 0 

128 0 5 4 0 2 0 1 0 0 0 0 0 

129 0 4 4 0 1 0 1 0 0 0 0 0 

130 0 5 4 0 0 0 1 0 0 0 0 0 

131 0 5 3 0 0 0 0 0 0 0 0 0 

132 0 5 3 0 0 0 0 0 0 0 0 0 

133 0 5 4 0 0 0 0 0 0 0 0 0 

134 0 4 4 0 0 0 0 0 0 0 0 0 

135 0 4 4 0 0 0 0 0 0 0 0 0 

136 0 4 3 0 0 0 0 0 0 0 0 0 

137 1 3 3 0 0 0 0 0 0 0 0 0 

138 1 4 3 0 0 0 0 0 0 0 0 0 

139 1 4 3 0 0 0 0 0 0 0 0 0 

140 1 3 3 0 0 0 0 0 0 0 0 0 

141 1 4 3 0 0 0 0 0 0 0 0 0 

142 1 4 3 0 0 0 0 0 0 0 0 0 

143 1 4 3 0 0 0 0 0 0 0 0 0 

144 1 5 2 0 0 0 1 0 0 0 0 0 

145 1 5 2 0 0 0 1 0 0 0 0 0 
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146 1 5 2 0 0 0 2 0 0 0 0 0 

147 1 5 2 0 0 0 2 0 0 0 0 0 

148 1 3 2 0 0 0 2 0 0 0 0 0 

149 1 2 1 0 0 0 2 0 0 0 0 0 

150 1 2 1 1 0 0 2 0 0 0 0 0 

151 1 2 2 1 0 0 2 0 0 0 0 0 

152 1 2 2 1 0 0 2 0 0 0 0 0 

153 1 2 2 1 0 0 0 0 0 0 0 0 

154 1 2 1 1 0 0 0 0 0 0 0 0 

155 1 2 1 1 0 0 0 0 0 0 0 0 

156 1 3 1 1 0 0 0 0 0 0 0 0 

157 1 3 1 1 0 0 0 0 0 0 0 0 

158 1 2 1 1 0 0 1 0 0 0 0 0 

159 1 2 1 0 0 0 1 0 0 0 0 0 

160 1 2 1 0 0 0 1 0 0 0 0 0 

161 2 3 2 0 0 1 0 0 0 0 0 0 

162 2 3 1 0 0 1 0 0 0 0 0 0 

163 2 4 2 0 0 1 0 0 0 0 0 0 

164 2 4 2 0 0 1 0 1 0 0 0 0 

165 2 3 1 0 0 1 0 1 0 0 0 0 

166 2 3 1 0 0 1 0 1 0 0 0 0 

167 2 4 1 0 0 1 1 1 0 0 0 0 

168 2 3 2 0 0 1 0 1 0 0 0 0 

169 2 3 2 0 0 1 0 1 0 0 0 0 

170 1 2 2 0 0 1 0 1 0 0 0 0 

171 1 2 2 0 0 1 0 0 0 0 0 0 

172 1 2 1 0 0 1 0 0 0 0 0 0 

173 1 2 1 0 0 1 0 0 0 0 0 0 
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174 1 3 2 0 0 1 0 0 0 0 0 0 

175 1 3 2 0 0 1 0 0 0 0 0 0 

176 1 3 2 0 0 1 0 0 0 0 0 0 

177 1 2 1 0 0 1 0 0 0 0 0 0 

178 1 2 0 0 0 1 0 0 0 0 0 0 

179 1 2 0 0 0 1 0 0 0 0 0 0 

180 1 1 0 0 0 1 0 0 0 0 0 0 

181 1 1 0 0 0 1 0 0 0 0 0 0 

182 1 1 1 0 0 0 0 0 0 0 0 0 

183 1 1 1 0 0 0 0 0 0 0 0 0 

184 1 1 1 0 0 0 0 0 0 0 0 0 

185 1 1 1 0 0 0 0 0 0 0 0 0 

186 1 2 1 0 0 0 0 0 0 0 0 0 

187 1 2 1 0 0 0 0 0 0 0 0 0 

188 1 1 1 0 0 0 0 0 0 0 0 0 

189 1 0 1 0 0 0 0 0 0 0 0 0 

190 1 0 1 0 0 0 0 0 0 0 0 0 

191 1 0 1 0 0 0 0 0 0 0 0 0 

192 0 0 1 0 0 0 0 0 0 0 0 0 

193 0 0 1 0 0 0 0 0 0 0 0 0 

194 0 0 0 0 0 0 0 0 0 0 0 0 

195 0 0 0 0 0 0 0 0 0 0 0 0 

196 0 0 0 0 0 0 0 0 0 0 0 0 

197 0 0 0 0 0 0 0 0 0 0 0 0 

198 0 0 0 0 0 0 0 0 0 0 0 0 

199 0 0 0 0 0 0 0 0 0 0 0 0 

200 0 0 0 0 0 0 0 0 0 0 0 0 

201 0 0 1 0 0 0 0 0 0 0 0 0 
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202 0 0 1 0 0 0 0 0 0 0 0 0 

203 0 0 1 0 0 0 0 0 0 0 0 0 

204 0 0 0 0 0 0 0 0 0 0 0 0 

205 0 0 0 0 0 0 0 0 0 0 0 0 

206 0 0 0 0 0 0 0 0 0 0 0 0 

207 0 0 0 0 0 0 0 0 0 0 0 0 

208 0 0 1 0 0 0 0 0 0 0 0 0 

209 0 0 1 0 0 0 0 0 0 0 0 0 

210 1 0 2 0 0 0 0 0 0 0 0 0 

211 1 0 2 0 0 0 0 0 0 0 0 0 

212 1 0 2 0 0 0 0 0 0 0 0 0 

213 0 0 2 0 0 0 0 0 0 0 0 0 

214 0 1 2 0 0 0 0 0 0 0 0 0 

215 0 1 2 0 0 0 0 0 0 0 0 0 

216 0 1 1 0 0 0 0 0 0 0 0 0 

217 0 1 1 0 0 0 0 0 0 0 0 0 

218 0 1 1 0 0 0 1 0 0 0 0 0 

219 0 1 1 0 0 0 1 0 0 0 0 0 

220 0 1 1 0 0 0 0 0 0 0 0 0 

221 0 1 1 0 0 0 0 0 0 0 0 0 

222 0 2 1 0 0 0 0 0 0 0 0 0 

223 0 2 1 0 0 0 0 0 0 0 0 0 

224 1 2 1 0 0 0 0 0 0 0 0 0 

225 1 2 1 0 0 0 0 0 0 0 0 0 

226 1 2 1 0 0 0 0 0 0 0 0 0 

227 1 2 1 0 0 0 0 0 0 0 0 0 

228 1 2 1 0 0 0 0 0 0 0 0 0 

229 1 2 0 0 0 0 0 0 0 0 0 0 
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230 0 2 0 0 0 0 0 0 0 0 0 0 

231 0 2 0 0 0 0 0 0 0 0 0 0 

232 0 2 1 0 0 0 0 0 0 0 0 0 

233 0 2 1 0 0 0 0 0 0 0 0 0 

234 0 1 1 0 0 0 0 0 0 0 0 0 

235 0 1 1 0 0 0 1 0 0 0 0 0 

236 0 1 1 0 0 0 1 0 0 0 0 0 

237 0 1 1 0 0 0 1 0 0 0 0 0 

238 0 2 1 0 0 0 1 0 0 0 0 0 

239 0 2 1 0 0 0 0 0 0 0 0 0 

240 0 2 1 0 0 0 0 0 0 0 0 0 

241 0 2 1 0 0 0 0 0 0 0 0 0 

242 0 2 2 0 0 0 0 0 0 0 0 0 

243 0 2 2 0 0 0 0 0 0 0 0 0 

244 0 2 2 0 0 0 0 0 0 0 0 0 

245 1 2 2 0 1 0 0 0 0 0 0 0 

246 1 1 2 0 1 0 0 0 0 0 0 0 

247 1 2 2 0 1 0 0 0 0 0 0 0 

248 1 2 2 0 1 0 0 0 0 0 0 0 

249 1 2 2 0 1 0 0 0 0 0 0 0 

250 1 2 3 0 1 0 0 0 0 0 1 0 

251 1 2 2 0 1 0 0 0 0 0 1 0 

252 2 2 3 0 0 0 0 0 0 0 1 0 

253 2 2 3 0 0 0 0 0 0 0 1 0 

254 2 2 3 0 0 0 1 0 0 0 1 0 

255 2 2 3 0 0 0 1 0 0 0 1 0 

256 2 2 3 0 0 0 1 0 0 0 1 0 

257 2 1 4 0 0 0 1 0 0 0 1 0 
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258 2 0 3 0 0 0 1 1 0 0 1 0 

259 2 0 3 0 0 0 1 1 0 0 1 0 

260 2 0 3 0 0 0 1 1 0 0 1 0 

261 2 0 3 0 0 0 1 1 0 0 1 0 

262 2 0 3 0 0 0 1 1 0 0 0 0 

263 2 0 3 0 0 0 1 1 0 0 0 0 

264 0 0 3 0 0 0 0 1 0 0 0 0 

265 0 0 3 0 0 0 0 1 0 0 0 0 

266 0 0 3 0 0 0 0 1 0 0 0 0 

267 0 0 4 0 0 0 0 1 0 0 0 0 

268 0 0 4 0 0 0 0 1 0 0 0 0 

269 0 0 4 0 0 0 0 1 0 0 0 0 

270 0 0 5 0 0 0 0 2 0 0 0 0 

271 0 0 5 0 0 0 1 2 0 0 0 0 

272 0 1 4 0 0 0 1 2 0 0 0 0 

273 0 2 2 0 0 0 1 2 0 0 0 0 

274 0 3 2 0 0 0 1 2 0 0 0 0 

275 0 3 2 0 0 0 1 2 0 0 0 0 

276 0 3 2 0 0 0 1 2 0 0 0 0 

277 0 3 2 0 0 0 1 2 0 0 0 0 

278 0 3 2 0 0 0 1 1 0 0 0 0 

279 0 3 2 0 0 0 1 1 0 0 0 0 

280 0 3 2 0 0 0 0 2 0 0 0 0 

281 0 3 1 0 0 0 0 2 0 0 0 0 

282 0 3 1 0 0 0 0 2 0 0 0 0 

283 0 3 1 0 0 0 0 2 0 0 0 0 

284 0 3 1 0 0 0 1 2 0 0 0 0 

285 0 3 1 0 0 0 1 2 0 0 0 0 
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286 0 3 2 0 0 0 1 2 0 0 0 0 

287 0 3 2 0 0 0 1 2 0 0 0 0 

288 0 3 2 0 0 0 0 2 0 0 0 0 

289 0 3 2 0 0 0 0 1 0 0 0 0 

290 0 2 2 1 0 0 0 1 0 0 0 0 

291 0 2 2 1 0 0 0 1 0 0 0 0 

292 0 2 2 1 0 0 0 2 0 0 0 0 

293 0 2 2 1 0 0 0 2 0 0 0 0 

294 0 2 2 1 0 0 0 2 0 0 0 0 

295 0 2 2 1 0 0 0 2 0 0 0 0 

296 0 2 2 1 0 0 0 2 0 0 0 0 

297 0 2 2 1 0 0 0 2 0 0 0 0 

298 0 2 2 1 0 0 0 2 0 0 0 0 

299 0 2 2 1 0 0 0 2 0 0 0 0 

300 0 2 2 0 0 0 0 2 0 0 0 0 

301 0 2 1 0 0 0 0 1 0 0 0 0 

302 0 2 1 0 0 0 0 1 0 0 0 0 

303 0 2 1 0 0 0 0 1 0 0 0 0 

304 0 2 1 0 0 0 0 1 0 0 0 0 

305 0 2 1 0 0 0 0 1 0 0 0 0 

306 1 2 1 0 0 0 0 1 0 0 0 0 

307 1 2 1 0 0 0 0 1 0 0 0 0 

308 1 2 1 0 0 0 0 1 0 0 0 0 

309 0 2 1 0 0 0 0 1 0 0 0 0 

310 0 2 1 0 0 0 0 1 0 0 0 0 

311 0 2 1 0 0 0 0 1 0 0 0 0 

312 1 2 1 0 0 1 0 1 0 1 0 0 

313 1 2 1 0 0 1 0 1 0 1 0 0 
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314 1 2 1 0 0 1 0 1 0 1 0 0 

315 1 2 1 0 0 1 0 1 0 1 0 0 

316 1 2 1 0 0 1 0 1 0 1 0 0 

317 0 2 1 0 0 1 0 1 0 1 0 0 

318 1 2 1 0 0 1 0 1 0 0 0 0 

319 1 2 1 0 0 1 0 1 0 0 0 0 

320 1 2 2 0 0 1 0 1 0 0 0 0 

321 2 2 2 0 0 1 0 0 0 0 0 0 

322 2 1 2 0 0 1 0 0 0 0 0 0 

323 2 1 2 0 0 1 0 0 0 0 0 0 

324 2 1 2 0 0 1 0 0 0 0 0 0 

325 2 1 1 0 0 1 0 0 0 0 0 0 

326 3 1 1 0 0 1 0 0 0 0 0 0 

327 3 1 1 0 0 1 0 0 0 0 0 0 

328 3 1 1 0 0 1 0 0 0 0 0 0 

329 3 1 1 0 0 1 0 0 0 0 0 0 

330 2 1 1 0 0 1 0 0 0 0 0 0 

331 2 1 1 0 0 1 0 0 0 0 0 0 

332 2 1 2 0 0 1 0 0 0 0 0 0 

333 1 1 2 0 0 1 0 0 0 0 0 0 

334 1 1 2 0 0 1 0 0 0 0 0 0 

335 1 1 2 0 0 1 0 0 0 0 0 0 

336 1 1 2 0 0 0 0 0 0 0 0 0 

337 1 1 2 0 0 0 1 0 0 0 0 0 

338 1 1 2 0 0 0 1 0 0 0 0 0 

339 1 0 2 0 0 0 1 0 0 0 0 0 

340 1 1 2 0 0 0 1 0 0 0 0 0 

341 0 1 2 0 0 0 1 0 0 0 0 0 
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342 0 1 2 0 0 0 1 0 0 0 0 0 

343 0 1 2 0 0 0 0 0 0 0 0 1 

344 0 1 1 0 0 0 0 0 0 0 0 1 

345 0 1 0 0 0 0 0 0 0 0 0 1 

346 0 1 0 0 0 0 0 1 0 0 0 1 

347 0 1 0 0 1 0 0 1 0 0 0 1 

348 0 1 0 0 1 0 0 1 0 0 0 1 

349 0 2 0 0 1 0 0 1 0 0 0 1 

350 0 2 0 0 1 0 0 1 0 0 0 1 

351 0 2 0 0 0 0 0 1 0 0 0 1 

352 0 2 0 0 0 0 0 1 0 0 0 1 

353 0 2 0 0 0 0 0 1 0 0 0 1 

354 0 2 0 0 0 0 0 1 0 0 0 1 

355 0 1 0 0 0 0 1 1 0 0 0 1 

356 0 1 0 0 0 0 1 1 0 0 0 1 

357 0 1 0 0 0 0 1 1 0 0 0 1 

358 0 1 0 0 0 0 1 1 0 0 0 1 

359 1 1 0 0 0 0 1 1 0 0 0 1 

360 1 1 0 0 0 0 1 0 0 0 0 1 

361 1 1 0 0 0 0 1 0 0 0 0 0 

362 1 1 1 0 0 0 1 0 0 0 0 0 

363 1 1 1 0 0 0 1 0 0 0 0 0 

364 1 1 1 0 0 0 2 0 0 0 0 0 

365 0 1 1 0 0 0 2 0 0 0 0 1 

366 0 0 1 0 0 0 2 0 0 0 0 1 

367 0 0 1 0 0 0 2 0 0 0 0 1 

368 0 0 0 0 0 0 1 0 0 0 0 0 

369 0 0 0 0 0 0 1 0 0 0 0 0 
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370 0 0 0 0 0 0 1 0 0 0 0 0 

371 0 0 0 0 0 0 0 0 0 0 0 0 

372 0 0 0 1 0 0 1 0 0 0 0 0 

373 0 0 1 1 0 0 1 0 0 0 0 0 

374 0 0 1 1 0 0 1 0 0 0 0 0 

375 0 0 1 1 0 0 1 0 0 0 0 0 

376 0 0 1 1 0 0 1 0 0 0 0 0 

377 0 0 1 1 0 0 1 0 0 0 0 0 

378 0 0 1 1 0 0 1 0 0 0 0 0 

379 0 0 1 1 0 0 1 0 0 0 0 0 

380 0 0 1 1 0 0 1 0 0 0 0 0 

381 0 0 1 1 0 0 0 0 0 0 0 0 

382 0 0 2 1 0 0 0 0 0 0 0 0 

383 0 0 2 0 0 0 0 0 0 0 0 0 

384 0 0 2 1 0 0 0 0 0 0 0 0 

385 0 0 2 1 0 0 0 0 0 0 0 0 

386 0 0 1 1 0 0 0 0 0 0 0 0 

387 0 0 1 1 0 0 0 0 0 0 0 0 

388 0 0 1 1 0 0 0 0 0 0 0 0 

389 0 0 1 1 0 0 0 0 0 0 0 0 

390 0 0 1 1 0 0 0 0 0 0 0 0 

391 0 0 1 0 0 0 0 0 0 0 0 0 

392 0 0 1 0 0 0 0 0 0 0 0 0 

393 0 0 1 0 0 0 0 0 0 0 0 0 

394 0 0 1 0 0 0 0 0 0 0 0 0 

395 0 0 1 0 0 0 0 0 0 0 0 0 

396 0 0 1 0 0 0 0 0 0 0 0 0 

397 0 0 1 0 0 0 0 0 0 0 0 0 
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398 0 0 1 0 0 0 0 0 0 0 0 0 

399 0 0 0 0 0 0 0 0 0 0 0 0 

400 0 0 0 0 0 0 0 0 0 0 0 0 

 

D.3 Flakes 

D.3.1 Experimental Data 

Location 
Butchery-

Blades 

Butchery-

Points 
Trampling Tumbler 

1 1 1 1 2 

2 1 1 2 1 

3 0 2 2 2 

4 1 2 2 1 

5 1 2 2 1 

6 0 2 2 4 

7 0 2 2 4 

8 0 2 2 3 

9 0 2 1 3 

10 0 2 1 3 

11 0 2 1 3 

12 0 2 1 2 

13 0 2 1 3 

14 0 2 2 4 

15 0 1 1 3 

16 0 1 1 1 

17 0 1 1 0 
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18 0 1 1 1 

19 0 1 0 1 

20 0 1 0 1 

21 0 0 0 0 

22 0 0 0 1 

23 0 1 0 2 

24 0 2 1 4 

25 0 3 1 4 

26 0 3 1 3 

27 0 3 1 2 

28 0 2 1 2 

29 0 2 1 1 

30 0 2 0 1 

31 0 1 2 1 

32 0 0 3 1 

33 0 0 3 1 

34 0 0 2 1 

35 0 0 2 2 

36 0 0 2 3 

37 1 0 2 1 

38 1 0 3 2 

39 0 1 2 2 

40 0 1 2 1 

41 0 1 2 0 

42 0 0 2 0 

43 0 0 2 1 

44 0 0 2 1 

45 0 0 3 2 



 

 

4
2
4 

46 0 0 3 2 

47 0 0 3 2 

48 0 0 3 1 

49 0 0 4 0 

50 0 0 4 1 

51 0 0 4 2 

52 0 1 4 2 

53 0 1 3 1 

54 0 1 3 1 

55 0 1 4 3 

56 1 1 3 4 

57 1 1 3 4 

58 1 1 3 4 

59 0 2 3 3 

60 0 3 4 1 

61 0 4 4 1 

62 0 4 4 1 

63 0 4 5 2 

64 0 4 4 2 

65 0 4 5 2 

66 0 3 5 4 

67 0 4 5 6 

68 0 2 5 5 

69 0 3 4 3 

70 0 3 3 2 

71 0 3 2 1 

72 1 1 2 1 

73 1 1 2 2 
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74 0 1 1 2 

75 0 0 1 2 

76 0 1 2 1 

77 0 2 2 1 

78 1 2 3 1 

79 1 2 3 3 

80 1 2 3 4 

81 1 1 1 4 

82 0 3 3 3 

83 0 4 3 3 

84 1 4 3 2 

85 1 4 3 3 

86 1 3 4 4 

87 0 3 4 4 

88 2 4 4 4 

89 3 3 5 4 

90 4 3 5 4 

91 3 3 4 3 

92 2 3 4 2 

93 2 3 4 3 

94 2 5 4 1 

95 2 5 4 2 

96 3 6 5 1 

97 3 6 5 1 

98 2 6 4 0 

99 2 8 3 0 

100 2 8 3 0 

101 2 8 0 2 
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102 2 8 0 2 

103 2 6 1 2 

104 2 6 1 2 

105 2 6 1 2 

106 2 3 2 4 

107 4 4 2 5 

108 4 3 2 5 

109 4 4 1 5 

110 4 4 1 6 

111 2 5 1 6 

112 2 4 2 4 

113 2 3 2 5 

114 2 3 3 3 

115 2 4 3 3 

116 2 5 4 2 

117 1 4 5 2 

118 1 4 5 2 

119 1 4 4 1 

120 2 3 4 2 

121 2 2 3 4 

122 2 0 1 4 

123 2 1 1 3 

124 2 1 1 3 

125 2 1 1 3 

126 2 1 3 2 

127 2 2 5 1 

128 2 2 5 1 

129 1 2 5 2 
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130 3 2 5 2 

131 3 1 5 2 

132 2 2 3 2 

133 1 2 4 2 

134 1 2 5 2 

135 1 2 4 2 

136 1 2 4 2 

137 2 3 5 3 

138 2 3 4 4 

139 2 3 4 5 

140 2 2 4 4 

141 1 2 5 4 

142 1 2 6 3 

143 2 1 6 2 

144 2 1 5 2 

145 2 1 5 2 

146 3 1 5 3 

147 2 1 6 3 

148 1 1 6 2 

149 1 1 6 5 

150 1 1 5 4 

151 1 1 5 3 

152 1 1 6 2 

153 1 1 5 1 

154 0 2 4 2 

155 2 2 4 2 

156 2 2 3 2 

157 1 1 4 3 
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158 0 1 4 3 

159 0 1 3 3 

160 0 1 5 2 

161 0 1 5 3 

162 0 1 4 4 

163 0 0 4 4 

164 0 0 4 3 

165 0 1 2 4 

166 0 1 2 4 

167 0 0 1 4 

168 0 1 1 4 

169 0 1 2 2 

170 0 1 3 2 

171 0 1 3 2 

172 0 1 3 3 

173 0 1 3 2 

174 0 1 2 2 

175 0 1 2 3 

176 0 1 3 2 

177 0 1 3 1 

178 0 1 4 0 

179 0 0 3 0 

180 1 0 1 1 

181 1 0 1 2 

182 0 0 2 3 

183 0 2 2 2 

184 0 2 1 2 

185 1 2 1 3 
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186 1 2 0 3 

187 1 0 0 2 

188 1 0 1 1 

189 1 0 2 2 

190 0 1 3 2 

191 0 1 3 2 

192 0 1 3 2 

193 0 1 4 3 

194 0 1 4 3 

195 0 1 4 3 

196 0 0 4 2 

197 0 0 4 2 

198 0 0 4 2 

199 0 0 4 2 

200 0 0 4 2 

201 0 1 3 0 

202 0 0 3 1 

203 0 0 5 2 

204 0 0 5 2 

205 1 0 4 3 

206 1 0 5 3 

207 1 0 5 4 

208 0 0 5 4 

209 0 0 3 4 

210 0 1 2 3 

211 0 1 2 3 

212 0 1 1 2 

213 0 2 2 3 
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214 0 2 2 2 

215 0 1 1 2 

216 0 1 2 2 

217 0 2 3 3 

218 0 2 3 2 

219 0 2 3 1 

220 0 1 2 1 

221 0 1 2 0 

222 0 1 3 0 

223 0 2 4 0 

224 0 3 5 0 

225 0 3 5 1 

226 0 3 5 1 

227 0 3 5 0 

228 0 3 6 1 

229 0 2 6 2 

230 0 2 6 3 

231 0 2 6 2 

232 0 2 5 3 

233 0 2 5 2 

234 0 2 5 3 

235 0 2 5 3 

236 0 1 6 3 

237 0 1 5 3 

238 1 1 5 5 

239 0 1 5 5 

240 0 0 7 4 

241 0 1 6 4 
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242 1 2 5 4 

243 1 4 6 5 

244 1 4 6 4 

245 1 4 5 3 

246 1 5 4 3 

247 2 5 4 1 

248 2 4 4 2 

249 1 4 4 2 

250 2 5 3 2 

251 2 4 3 3 

252 2 3 5 4 

253 2 3 6 3 

254 2 3 6 4 

255 2 2 6 3 

256 3 2 6 4 

257 3 2 4 5 

258 3 2 4 4 

259 2 3 5 4 

260 2 3 4 5 

261 2 3 4 4 

262 2 3 4 3 

263 2 2 4 3 

264 2 2 4 1 

265 1 3 5 2 

266 2 3 4 3 

267 2 4 4 5 

268 2 4 6 6 

269 1 4 7 5 
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270 2 3 6 3 

271 2 4 6 2 

272 1 4 7 3 

273 2 3 7 3 

274 2 2 7 3 

275 3 3 8 3 

276 2 4 6 5 

277 2 3 7 5 

278 1 3 7 3 

279 1 4 7 3 

280 1 4 7 3 

281 0 3 7 4 

282 0 4 5 3 

283 1 3 3 3 

284 1 2 1 2 

285 1 2 1 1 

286 1 1 1 2 

287 1 2 1 2 

288 1 2 1 3 

289 1 3 1 4 

290 1 4 2 4 

291 1 4 2 3 

292 1 4 2 0 

293 1 3 2 1 

294 1 3 2 2 

295 1 3 2 2 

296 1 3 2 4 

297 1 3 1 4 
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298 1 3 1 3 

299 1 3 1 3 

300 1 3 1 3 

301 1 5 1 2 

302 1 5 1 2 

303 1 5 1 2 

304 1 6 1 2 

305 1 6 1 2 

306 1 6 1 2 

307 1 6 1 2 

308 1 6 1 2 

309 1 5 1 3 

310 1 5 1 1 

311 1 6 1 1 

312 1 6 1 1 

313 1 6 1 1 

314 0 4 2 1 

315 0 1 2 1 

316 0 2 2 1 

317 0 1 1 1 

318 0 1 1 1 

319 0 1 1 2 

320 0 3 1 2 

321 0 3 1 3 

322 0 4 1 3 

323 0 3 1 4 

324 0 2 1 4 

325 0 2 1 2 
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326 0 2 2 2 

327 0 0 2 3 

328 0 1 3 3 

329 0 1 3 1 

330 0 1 2 1 

331 0 1 3 1 

332 0 1 3 1 

333 0 1 3 0 

334 0 1 3 1 

335 0 0 3 1 

336 0 1 4 1 

337 0 1 6 1 

338 0 1 5 2 

339 0 2 4 1 

340 0 2 3 2 

341 0 2 3 1 

342 0 3 2 2 

343 0 4 3 3 

344 0 5 3 3 

345 0 4 3 3 

346 0 3 2 3 

347 0 1 3 3 

348 0 1 5 2 

349 0 1 5 2 

350 0 2 4 2 

351 0 1 4 1 

352 0 1 4 1 

353 0 1 5 1 
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354 0 0 5 1 

355 0 0 5 2 

356 0 0 4 3 

357 0 0 3 2 

358 0 0 4 4 

359 0 0 4 4 

360 0 0 4 4 

361 0 0 4 3 

362 0 0 3 3 

363 0 0 2 4 

364 0 0 2 3 

365 0 0 2 3 

366 0 0 1 2 

367 0 0 1 1 

368 1 0 1 2 

369 1 0 1 3 

370 1 0 0 3 

371 0 1 0 3 

372 0 1 1 3 

373 0 1 1 2 

374 0 1 1 1 

375 0 0 1 1 

376 0 0 1 0 

377 0 0 1 0 

378 0 0 1 0 

379 0 0 1 0 

380 0 0 2 0 

381 0 0 3 0 
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382 0 1 3 1 

383 0 2 2 1 

384 0 2 2 0 

385 0 1 2 1 

386 0 1 2 3 

387 0 1 2 4 

388 0 1 1 3 

389 0 1 2 2 

390 0 1 2 2 

391 0 1 2 2 

392 0 1 2 2 

393 0 1 2 2 

394 0 0 2 2 

395 0 0 1 1 

396 0 0 1 0 

397 0 0 2 0 

398 0 0 3 0 

399 0 0 3 0 

400 0 0 3 0 

 

D.3.2 Archaeological Data – Large Flakes (>30mm) 

Loc. RBSR BCSR VB DBCS OBS2 NBC6 OB OBS1 SADBS ALBS LBSR YBS NBC10 PP9 

1 1 0 1 0 1 2 0 0 0 0 4 0 2 1 

2 1 0 1 0 1 3 0 0 0 0 6 0 2 1 

3 1 0 1 0 1 3 1 0 0 0 6 0 2 1 

4 1 0 1 0 1 3 2 0 0 0 6 0 2 1 
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5 1 0 1 0 2 4 2 0 0 0 6 0 2 1 

6 1 0 2 1 2 4 3 0 0 0 8 0 2 1 

7 1 0 2 1 2 4 3 0 0 0 8 0 1 1 

8 1 0 2 1 2 3 2 0 0 0 6 0 2 1 

9 1 0 2 1 2 4 3 0 0 0 6 0 2 1 

10 2 0 2 1 2 7 3 0 0 1 5 0 2 1 

11 2 0 2 1 2 7 3 0 0 1 6 0 2 1 

12 2 0 3 0 2 7 3 0 0 1 5 0 2 1 

13 2 0 2 0 2 8 3 1 0 1 5 0 4 1 

14 2 0 3 0 2 8 3 1 0 1 6 0 4 1 

15 2 0 4 0 2 9 3 1 0 1 8 0 3 1 

16 2 0 4 0 2 10 2 1 0 1 9 0 3 1 

17 1 0 4 0 3 10 3 1 0 0 11 0 4 1 

18 1 2 4 1 3 8 3 0 0 1 12 0 4 1 

19 1 2 4 1 3 6 3 0 0 0 11 0 5 0 

20 2 2 4 2 3 7 2 0 0 0 14 0 5 0 

21 2 2 5 2 3 7 2 0 0 1 13 0 5 0 

22 2 2 4 3 2 7 2 0 0 0 17 0 5 0 

23 2 2 4 4 2 5 2 0 0 0 15 1 4 0 

24 3 2 4 4 2 5 2 0 0 0 17 0 4 0 

25 3 1 4 4 1 5 2 0 0 1 17 0 3 0 

26 2 1 5 5 1 6 3 0 0 1 14 0 2 0 

27 2 1 5 6 1 4 2 0 0 1 14 0 3 0 

28 2 1 5 5 1 5 2 0 0 1 14 0 3 0 

29 2 1 5 3 1 6 2 0 0 1 9 0 4 1 

30 2 3 5 3 1 7 2 0 0 1 11 0 4 1 

31 1 3 4 2 1 7 2 0 0 1 11 0 4 1 

32 1 3 4 3 1 6 2 0 0 1 12 0 2 1 
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33 2 2 4 3 1 6 2 0 0 0 15 0 2 1 

34 3 3 4 3 2 7 2 0 0 1 16 0 2 2 

35 3 3 3 2 2 6 2 2 0 1 17 0 2 2 

36 3 4 4 3 2 6 2 2 1 1 17 0 2 1 

37 3 4 4 3 2 5 2 2 1 1 17 0 3 1 

38 3 4 5 2 2 5 2 2 1 0 15 0 3 1 

39 3 3 6 3 1 5 2 2 1 0 13 0 4 1 

40 3 3 6 1 1 5 2 2 1 0 12 0 5 0 

41 3 3 6 1 1 5 2 2 1 0 10 0 4 1 

42 2 3 5 1 1 6 2 2 1 0 10 0 4 1 

43 6 4 6 1 1 5 2 1 1 0 14 0 3 1 

44 6 4 5 1 1 5 3 1 1 0 16 0 4 1 

45 5 5 5 1 1 6 3 0 0 0 17 0 3 0 

46 4 5 5 1 1 6 3 0 0 0 18 0 3 1 

47 4 5 6 1 1 6 2 0 0 0 18 0 4 1 

48 5 5 5 1 1 6 3 0 0 0 17 0 5 1 

49 2 5 6 1 1 6 3 1 0 0 17 0 5 1 

50 3 3 5 2 1 6 3 1 1 0 18 0 5 0 

51 2 3 1 2 1 6 3 1 1 0 16 0 4 1 

52 3 3 2 1 1 5 3 2 1 0 13 0 4 1 

53 2 3 3 1 1 6 3 2 1 0 12 0 3 1 

54 1 5 4 1 1 7 3 2 1 0 10 0 4 1 

55 1 5 5 1 2 8 2 2 1 0 10 0 4 1 

56 1 4 4 2 2 8 3 2 1 0 10 0 4 1 

57 1 3 4 2 2 7 3 2 1 0 9 0 4 1 

58 1 3 5 2 2 5 3 2 1 0 11 0 4 0 

59 1 4 4 2 2 5 3 2 1 0 13 0 4 0 

60 1 4 5 3 2 5 3 1 0 0 13 0 3 0 
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61 1 3 6 2 1 5 3 1 1 0 14 0 2 0 

62 1 3 6 2 1 4 3 1 1 0 12 0 2 0 

63 1 3 5 2 1 4 2 1 1 0 12 0 1 0 

64 1 4 6 1 2 5 2 2 1 0 14 0 2 0 

65 1 5 6 1 2 4 2 2 1 0 14 0 4 0 

66 1 5 5 3 1 3 3 2 1 0 10 0 4 0 

67 4 4 5 3 1 2 3 2 1 0 10 0 3 0 

68 4 3 6 3 1 2 3 1 0 0 11 0 3 1 

69 4 5 8 3 1 4 3 1 0 0 15 0 2 1 

70 3 5 8 3 0 3 3 0 0 0 15 0 3 2 

71 2 5 7 3 0 3 3 0 0 0 15 0 2 2 

72 2 5 7 2 1 3 3 0 0 0 14 0 1 2 

73 2 5 7 3 1 2 3 0 0 0 16 0 2 2 

74 1 5 8 3 1 2 3 0 0 0 16 0 2 2 

75 1 4 7 3 2 2 3 0 0 0 14 0 2 2 

76 1 5 6 3 2 2 3 0 0 0 13 0 3 0 

77 2 3 6 4 2 2 3 0 0 0 12 0 3 0 

78 2 4 7 4 2 4 4 3 0 0 12 0 3 0 

79 2 4 6 2 3 2 3 3 0 0 13 0 3 0 

80 2 4 5 3 3 3 3 3 0 0 13 0 3 0 

81 2 4 6 2 2 3 3 3 0 0 14 0 3 0 

82 2 2 6 2 2 3 3 3 0 0 9 0 4 0 

83 2 2 7 2 2 3 2 3 0 0 11 0 5 0 

84 1 2 6 2 1 3 2 3 0 0 12 0 3 0 

85 1 2 5 4 1 2 2 2 0 0 13 0 3 0 

86 1 3 5 3 1 3 2 1 0 0 13 0 3 0 

87 3 3 6 4 1 3 1 1 0 0 14 0 4 0 

88 2 2 5 4 1 4 1 1 0 0 14 0 1 0 
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89 2 2 4 4 1 4 1 1 1 0 14 0 1 0 

90 1 3 4 4 1 4 1 1 1 0 14 0 1 0 

91 2 2 4 3 1 4 1 1 1 0 13 0 2 0 

92 1 3 4 3 1 4 1 1 1 0 12 0 2 0 

93 1 2 3 1 2 5 1 1 1 0 12 0 2 0 

94 2 2 2 1 2 6 1 1 1 0 13 0 0 0 

95 2 2 2 1 2 7 1 1 1 0 12 0 0 0 

96 1 2 2 1 2 8 1 1 0 0 14 0 0 0 

97 1 2 2 1 2 8 1 1 0 0 15 0 0 0 

98 0 2 2 1 1 7 1 1 0 0 14 0 2 0 

99 0 2 2 1 1 7 1 1 0 0 14 0 2 0 

100 0 2 2 1 1 7 1 1 0 0 14 0 2 0 

101 0 2 4 2 0 7 1 1 0 1 10 0 2 0 

102 0 2 4 2 1 7 1 1 0 1 11 0 3 0 

103 0 4 4 2 1 7 1 1 0 1 12 0 3 0 

104 0 5 3 2 1 7 2 0 0 2 12 0 3 0 

105 0 6 4 2 2 6 2 1 0 2 11 0 3 0 

106 0 6 3 2 2 6 2 1 0 2 12 0 4 0 

107 0 7 3 2 3 4 2 1 0 2 10 0 4 0 

108 1 7 3 2 3 3 3 0 0 2 12 0 4 0 

109 1 7 2 2 3 3 3 0 0 2 13 0 4 0 

110 1 6 2 2 2 3 3 0 0 1 13 0 3 0 

111 0 6 2 2 2 5 3 0 0 1 12 0 3 1 

112 1 6 2 2 3 5 3 0 0 1 12 0 2 1 

113 1 6 1 1 2 5 3 0 0 1 13 0 5 0 

114 1 7 1 1 2 5 2 0 0 1 12 0 5 0 

115 1 7 2 1 2 5 2 0 0 1 12 0 5 0 

116 1 6 3 1 1 6 2 0 0 1 13 0 5 0 
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117 0 6 3 1 1 6 3 0 0 1 13 0 5 0 

118 1 5 4 1 2 6 3 0 0 2 13 0 5 0 

119 1 5 5 1 1 6 3 0 0 2 14 0 4 0 

120 2 6 5 2 1 8 3 1 0 2 16 0 3 0 

121 2 6 5 3 1 8 4 1 0 1 17 0 2 0 

122 2 5 6 3 0 9 4 1 0 1 16 0 3 0 

123 2 4 6 3 0 7 3 2 0 0 17 0 3 0 

124 2 5 6 3 0 9 3 2 0 0 20 0 3 0 

125 3 4 6 3 0 10 3 1 0 0 19 0 5 0 

126 3 3 6 3 0 9 3 1 0 0 18 0 5 0 

127 3 4 6 3 0 9 3 1 0 0 19 0 5 0 

128 4 3 5 3 0 8 3 1 0 0 20 0 5 0 

129 4 3 6 3 0 9 3 1 0 0 18 0 5 0 

130 4 4 5 3 0 10 2 1 0 0 20 0 4 0 

131 3 4 5 3 0 11 2 1 0 0 20 0 4 0 

132 2 4 4 3 0 10 2 0 0 0 19 0 3 0 

133 2 5 5 2 1 10 2 0 0 0 21 0 4 0 

134 2 5 4 2 1 10 2 0 0 0 20 0 6 0 

135 3 5 5 2 1 8 2 0 0 0 20 0 5 0 

136 3 4 5 2 1 6 2 0 0 0 18 0 4 0 

137 3 3 5 2 1 7 2 1 0 0 19 0 5 1 

138 2 2 5 2 1 7 3 1 0 0 21 0 5 1 

139 2 2 5 1 1 8 2 1 0 0 22 0 4 1 

140 2 2 6 1 1 7 2 0 0 0 20 0 5 2 

141 1 3 6 1 1 6 2 0 0 0 21 0 5 1 

142 1 2 5 1 1 4 2 0 0 0 22 0 5 1 

143 2 2 7 1 1 5 3 0 0 0 20 0 7 1 

144 3 2 7 0 1 5 3 0 0 0 17 0 7 1 
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145 4 2 4 2 1 5 3 0 0 0 15 0 7 1 

146 4 2 5 2 1 7 3 1 0 0 14 0 7 2 

147 4 2 5 3 1 6 3 3 0 0 15 0 3 1 

148 4 3 5 3 1 6 3 3 0 0 18 0 5 1 

149 5 3 6 3 1 6 3 3 0 0 20 0 5 1 

150 6 2 5 3 1 6 3 3 0 0 17 0 4 1 

151 6 2 5 4 2 6 4 3 0 0 17 0 4 1 

152 6 2 6 3 1 6 4 4 0 0 16 0 5 0 

153 6 2 7 3 1 6 4 3 0 0 16 0 4 0 

154 4 2 7 4 1 6 3 2 0 0 17 0 3 1 

155 3 1 6 5 1 4 3 2 0 0 16 0 2 1 

156 2 1 5 5 1 4 3 1 0 0 13 0 2 1 

157 3 0 4 5 1 4 3 1 0 0 14 0 3 1 

158 4 0 4 4 1 4 3 1 0 0 12 0 3 1 

159 4 2 3 4 1 4 2 1 0 0 11 0 3 1 

160 5 2 5 4 1 3 2 0 0 0 12 0 3 1 

161 5 2 6 4 1 2 3 0 0 0 12 0 2 0 

162 5 2 6 4 0 2 2 0 0 0 13 0 1 3 

163 4 2 5 4 0 2 2 0 0 0 13 0 0 5 

164 2 1 5 4 0 3 2 0 0 0 13 0 2 5 

165 1 1 4 5 0 4 2 0 0 0 13 0 2 4 

166 1 2 4 5 0 3 3 0 0 0 14 0 3 4 

167 3 2 4 5 0 3 3 1 0 0 12 0 3 4 

168 3 2 3 3 0 3 3 1 0 0 11 0 2 3 

169 3 2 2 3 0 3 2 1 0 0 11 0 2 2 

170 4 2 3 3 1 3 2 1 0 0 9 0 3 2 

171 3 1 3 3 1 3 2 1 0 0 8 0 3 1 

172 4 1 3 5 1 5 2 1 0 0 8 0 4 1 



 

 

4
4
3 

173 4 0 4 4 1 6 1 1 0 0 9 0 3 1 

174 4 1 4 4 1 5 1 1 0 0 10 0 4 1 

175 4 1 5 5 1 6 2 0 0 0 9 0 4 1 

176 3 1 5 5 0 6 2 0 0 0 9 0 4 1 

177 3 1 5 4 0 6 2 0 0 0 11 0 2 2 

178 3 1 5 3 0 6 2 0 0 0 10 0 3 2 

179 3 2 6 3 0 6 2 0 0 0 12 0 4 2 

180 3 2 2 4 0 6 1 1 0 0 12 0 2 3 

181 1 1 2 5 0 7 1 1 0 0 11 0 1 2 

182 1 1 3 5 1 8 1 1 0 0 9 0 1 2 

183 1 1 4 6 1 8 1 1 0 0 6 0 1 2 

184 3 1 5 6 1 8 0 1 0 0 6 0 1 2 

185 3 1 5 6 1 8 0 1 0 0 5 0 0 3 

186 2 1 5 5 1 9 0 1 0 0 6 0 1 3 

187 2 2 4 5 1 7 1 1 0 0 4 0 3 3 

188 2 2 3 5 1 6 1 1 0 0 4 0 3 3 

189 2 0 2 5 0 5 1 0 0 0 5 0 2 1 

190 3 0 2 5 0 4 1 0 0 0 5 0 2 1 

191 3 0 1 5 0 3 1 0 0 0 3 0 2 1 

192 2 0 1 3 0 3 1 0 0 0 3 0 2 1 

193 0 0 1 1 0 3 1 0 0 0 2 0 2 2 

194 0 1 1 1 0 5 1 0 0 0 2 0 2 2 

195 0 1 2 2 0 5 1 0 0 0 2 0 2 2 

196 0 1 2 1 0 4 1 0 0 0 3 0 2 2 

197 0 0 2 1 0 3 1 0 0 0 2 0 1 1 

198 0 0 2 0 0 2 1 0 0 0 2 0 1 1 

199 0 0 2 0 0 2 1 0 0 0 2 0 1 0 

200 0 0 1 0 0 2 1 0 0 0 2 0 1 0 



 

 

4
4
4 

201 1 1 2 1 1 1 0 0 0 0 7 0 1 0 

202 2 1 2 1 1 1 0 1 0 0 8 0 1 0 

203 2 2 2 1 1 1 0 1 0 0 9 0 1 0 

204 2 2 2 1 1 1 0 1 0 1 9 0 1 0 

205 3 2 2 1 1 1 0 1 0 1 8 0 1 0 

206 3 2 2 1 1 1 0 1 0 0 8 0 0 0 

207 4 2 2 1 1 1 1 1 0 0 8 0 0 0 

208 4 2 2 1 1 1 1 1 0 0 7 0 1 0 

209 4 2 2 2 1 1 1 2 0 0 7 0 1 0 

210 3 3 2 2 1 1 2 2 0 0 8 0 1 0 

211 3 3 2 2 1 1 2 2 0 0 10 0 1 0 

212 2 3 2 2 1 1 0 2 0 0 10 0 1 0 

213 2 3 1 2 1 1 1 1 0 0 12 0 1 0 

214 2 3 1 2 3 0 1 1 0 0 12 0 1 0 

215 2 4 2 2 3 0 1 1 0 0 12 0 1 0 

216 1 3 2 2 3 0 1 1 0 0 11 0 2 0 

217 2 2 2 2 3 0 0 2 0 0 10 0 2 0 

218 2 2 2 2 3 0 1 2 0 0 8 0 2 0 

219 1 2 2 2 3 0 2 2 0 0 6 0 2 0 

220 1 2 2 2 2 1 2 2 0 0 9 0 2 0 

221 2 2 2 2 2 1 1 2 0 0 9 0 3 0 

222 2 1 2 2 2 2 1 2 0 0 11 0 3 1 

223 3 0 3 2 2 2 1 0 0 0 10 0 3 1 

224 3 0 4 4 1 2 2 1 0 0 11 0 3 1 

225 3 0 4 5 1 2 1 1 1 0 9 0 2 1 

226 3 0 4 5 1 2 1 0 1 0 8 0 2 0 

227 3 0 4 4 1 2 1 0 1 0 13 0 2 0 

228 3 0 4 2 1 2 1 0 1 0 13 0 2 0 



 

 

4
4
5 

229 3 0 4 3 1 3 1 0 1 0 12 0 2 0 

230 3 0 4 3 1 3 1 0 1 0 11 0 2 0 

231 3 0 3 4 1 2 1 0 1 0 12 0 2 0 

232 3 0 3 4 1 3 1 0 1 0 13 0 2 1 

233 2 0 2 4 2 3 0 1 1 0 14 0 2 1 

234 2 0 2 4 2 3 0 1 1 0 10 0 2 1 

235 2 0 2 3 2 3 0 1 1 0 11 0 1 1 

236 1 0 2 2 2 4 0 1 0 0 13 0 2 1 

237 3 0 2 2 1 4 0 1 0 0 14 0 1 0 

238 3 0 2 2 1 4 0 1 0 1 15 0 1 1 

239 3 0 1 2 0 4 0 1 0 1 16 0 1 1 

240 2 0 2 2 0 4 0 1 0 1 15 0 0 1 

241 1 0 2 2 0 4 0 1 0 1 14 0 1 1 

242 1 0 2 1 1 3 0 2 0 1 16 0 1 1 

243 3 0 2 1 1 3 0 3 0 1 17 0 1 1 

244 2 1 2 1 1 3 0 4 0 1 18 0 1 1 

245 2 1 2 2 1 3 0 4 0 1 16 0 2 1 

246 2 1 2 2 1 3 1 5 0 2 16 0 3 0 

247 3 1 2 2 1 2 1 5 0 2 13 0 2 1 

248 4 1 3 2 1 3 1 5 0 1 14 0 2 1 

249 4 1 2 2 0 3 1 4 0 1 10 0 2 1 

250 4 0 2 2 0 3 1 4 0 1 10 0 2 0 

251 4 0 2 2 0 3 1 3 0 1 9 0 3 0 

252 4 2 2 2 0 3 0 4 0 1 10 0 3 0 

253 2 3 3 2 0 4 1 4 0 1 11 0 2 2 

254 2 3 2 2 0 4 1 4 0 1 12 0 1 2 

255 2 2 3 1 0 4 1 4 0 0 15 0 1 2 

256 2 3 3 1 1 4 1 4 0 0 16 0 2 2 



 

 

4
4
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257 2 4 4 2 1 4 1 5 0 0 19 0 2 2 

258 1 3 4 2 1 4 1 4 0 0 22 0 2 2 

259 0 3 4 1 1 3 1 3 0 0 21 0 2 1 

260 0 5 3 1 1 3 1 3 0 0 22 0 2 0 

261 0 5 3 1 0 3 2 3 0 0 21 0 2 0 

262 0 4 3 1 0 3 2 4 0 0 20 0 2 0 

263 0 3 2 1 0 3 3 4 0 0 20 0 2 0 

264 0 4 2 0 0 3 2 3 0 0 17 0 2 1 

265 0 4 2 0 0 3 2 3 0 0 15 0 2 1 

266 0 4 1 0 0 3 2 3 0 0 16 0 2 1 

267 0 4 1 0 0 3 3 3 0 0 16 0 1 1 

268 1 4 0 0 0 4 3 3 0 0 17 0 1 1 

269 1 4 0 0 1 4 4 3 0 0 18 0 1 0 

270 3 4 1 0 1 4 4 2 0 0 19 0 1 0 

271 3 4 1 0 1 4 4 2 0 0 19 0 1 0 

272 3 4 1 0 1 4 4 2 0 0 19 0 1 0 

273 2 5 1 0 1 4 2 2 0 0 17 0 1 0 

274 3 4 2 0 1 4 2 2 0 0 12 0 1 0 

275 3 4 2 0 2 6 2 2 0 0 14 0 1 0 

276 2 4 2 0 2 6 1 2 0 0 13 0 2 0 

277 1 4 2 0 2 7 1 2 0 0 12 0 2 0 

278 0 3 2 0 2 8 3 2 0 0 10 0 2 0 

279 0 3 2 0 2 8 3 2 0 0 11 0 2 0 

280 0 3 1 0 2 7 3 2 0 0 12 0 2 0 

281 0 3 1 0 1 7 4 2 0 0 13 0 1 0 

282 1 2 1 0 1 5 4 1 0 0 14 0 1 0 

283 1 4 1 1 1 6 4 1 0 0 12 0 1 0 

284 1 4 1 1 1 6 2 1 0 0 10 0 1 0 



 

 

4
4
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285 1 5 2 1 1 6 2 1 0 0 9 0 2 0 

286 1 6 4 1 1 6 2 1 0 0 7 0 3 0 

287 2 6 4 1 1 6 1 1 0 0 7 0 3 0 

288 2 6 4 1 1 6 1 1 0 0 7 0 3 0 

289 2 6 4 1 1 7 1 2 0 0 9 0 3 0 

290 2 6 4 1 1 6 1 2 0 0 9 0 3 0 

291 4 6 5 1 1 6 1 2 0 0 10 0 4 0 

292 4 6 5 1 1 7 1 2 0 0 12 0 4 0 

293 4 6 3 1 1 6 1 2 0 0 12 0 4 0 

294 4 6 2 1 1 7 1 1 0 0 12 0 4 0 

295 4 6 2 2 1 8 1 1 0 0 11 0 4 1 

296 4 7 2 2 1 8 1 1 0 0 13 0 4 1 

297 4 7 2 2 1 8 1 1 0 0 13 0 4 1 

298 2 8 2 2 1 9 1 1 0 0 14 0 4 1 

299 2 8 1 2 1 8 1 1 0 0 13 0 4 1 

300 2 8 1 2 1 7 1 1 0 0 12 0 4 1 

301 3 6 2 2 1 7 2 0 0 0 6 0 1 1 

302 3 6 2 2 1 7 2 0 0 0 6 0 1 1 

303 3 6 2 2 2 7 2 0 0 0 6 0 1 1 

304 3 6 2 2 2 7 2 0 0 0 6 0 2 1 

305 2 6 2 2 2 7 2 0 0 0 7 0 2 1 

306 2 5 2 2 2 7 2 0 0 0 8 0 2 1 

307 2 5 2 2 2 6 2 0 0 0 9 0 2 1 

308 2 5 1 2 2 5 2 0 0 0 7 0 2 1 

309 2 5 1 2 2 6 2 0 0 0 9 0 2 1 

310 2 5 1 2 2 5 2 0 0 0 9 0 3 2 

311 2 5 1 2 2 4 2 0 0 0 9 0 3 2 

312 3 5 1 2 2 4 2 0 0 0 9 0 3 2 



 

 

4
4
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313 3 5 2 1 1 4 2 0 0 0 10 0 3 2 

314 2 6 2 1 1 4 2 0 0 0 10 0 2 2 

315 2 5 2 1 1 3 2 1 0 0 10 0 1 2 

316 2 5 2 1 2 3 2 1 0 0 9 0 1 2 

317 3 5 2 1 2 3 1 1 0 0 10 0 1 1 

318 4 5 2 1 2 3 1 1 0 0 10 0 1 1 

319 4 5 2 1 2 3 1 1 0 0 11 0 3 0 

320 4 5 1 1 2 3 1 1 0 0 10 0 3 0 

321 4 5 3 1 2 3 1 1 0 0 10 0 5 1 

322 3 4 3 1 2 4 1 1 0 0 9 0 5 1 

323 3 3 3 1 2 4 2 1 0 0 9 0 4 1 

324 3 3 4 0 2 2 2 1 0 0 11 0 4 1 

325 3 2 2 0 2 2 1 1 0 0 11 0 4 1 

326 3 1 3 0 2 3 1 1 0 0 11 0 2 1 

327 4 1 3 0 2 3 1 1 0 0 9 0 2 1 

328 2 1 3 0 2 4 1 1 0 0 9 1 3 0 

329 2 1 3 1 2 5 1 1 0 0 9 1 4 0 

330 2 2 2 1 2 5 1 1 0 0 9 1 4 1 

331 2 2 2 1 2 5 1 1 0 0 10 1 3 1 

332 1 2 1 1 2 5 1 1 0 0 12 1 3 1 

333 1 2 1 0 3 4 1 0 0 0 12 1 3 1 

334 0 2 1 0 3 4 2 0 0 0 13 1 3 1 

335 0 2 1 1 3 4 2 0 0 0 12 1 3 0 

336 1 2 2 1 3 4 2 0 0 0 10 1 4 0 

337 1 2 2 1 3 4 2 0 0 0 9 1 5 0 

338 1 1 3 1 3 1 2 0 0 0 10 1 5 0 

339 1 1 3 1 2 2 2 0 0 0 11 1 5 0 

340 1 1 2 0 2 2 2 0 0 0 11 1 4 0 



 

 

4
4
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341 1 1 3 0 2 2 2 0 0 0 9 1 3 0 

342 1 2 3 0 2 3 2 1 0 0 12 0 3 0 

343 1 2 3 0 2 3 1 1 0 0 13 0 3 0 

344 2 2 3 0 2 1 1 1 0 0 11 0 3 1 

345 2 2 4 0 2 2 1 1 0 0 10 0 3 1 

346 2 2 3 0 1 1 1 1 0 0 10 0 4 1 

347 2 2 3 0 1 1 1 1 0 0 10 0 5 1 

348 2 2 3 0 1 1 1 0 0 0 11 0 5 2 

349 1 2 2 1 1 1 1 1 0 0 10 0 6 1 

350 0 1 2 1 1 1 1 1 1 0 9 0 4 5 

351 0 1 3 1 1 1 1 2 1 0 9 0 4 5 

352 0 1 4 1 1 1 1 2 1 0 10 0 4 5 

353 0 1 4 1 1 1 1 2 1 0 10 0 5 5 

354 1 1 4 2 1 1 1 2 1 0 11 0 5 5 

355 1 1 4 2 1 0 1 1 1 0 9 0 5 5 

356 1 2 4 2 1 1 1 1 1 0 8 0 5 5 

357 1 2 5 3 2 1 1 1 1 0 10 0 5 4 

358 2 2 6 3 2 2 1 1 0 0 10 0 4 3 

359 2 2 6 3 3 2 1 0 0 0 10 0 4 2 

360 2 2 5 3 2 3 0 0 0 0 9 0 4 2 

361 2 2 5 3 2 5 0 0 0 1 8 0 3 2 

362 2 2 5 3 2 6 1 0 0 1 8 0 3 1 

363 2 2 5 3 1 6 1 1 1 1 7 0 3 1 

364 2 2 6 3 1 6 1 1 1 1 10 0 3 1 

365 2 2 4 3 1 5 1 1 1 1 10 0 3 1 

366 2 2 4 3 1 4 1 1 1 1 11 0 3 1 

367 2 2 5 2 1 4 1 2 1 1 11 0 3 1 

368 3 2 5 2 0 3 1 2 1 2 10 0 3 1 



 

 

4
5
0 

369 3 2 5 2 0 2 0 2 1 2 11 0 4 1 

370 4 2 5 1 0 2 0 2 1 1 11 0 5 1 

371 4 2 5 1 0 3 0 2 0 0 12 0 4 1 

372 4 1 3 1 0 5 0 2 1 0 11 0 4 1 

373 4 1 3 3 0 5 1 2 1 1 13 0 4 1 

374 3 1 4 2 0 5 1 2 1 1 12 0 4 1 

375 3 1 3 2 0 5 1 2 1 1 13 0 4 1 

376 4 2 2 3 0 4 1 2 1 1 13 0 4 1 

377 4 2 2 3 0 3 1 2 1 1 13 0 4 1 

378 4 0 2 3 1 3 2 3 1 1 11 0 3 1 

379 4 1 2 3 1 3 2 3 1 1 10 0 1 1 

380 4 2 2 2 1 3 2 3 1 1 11 0 1 1 

381 4 2 1 2 1 4 1 3 1 1 11 0 1 1 

382 4 2 1 1 1 4 2 3 1 0 10 0 1 1 

383 4 2 1 2 1 5 2 3 1 0 9 0 1 1 

384 4 2 2 2 1 4 2 2 1 0 9 0 1 1 

385 4 4 2 4 1 4 1 2 0 1 8 0 1 2 

386 4 5 2 3 1 3 1 2 0 1 7 0 1 2 

387 3 3 2 2 1 4 1 1 0 1 6 0 1 2 

388 3 2 2 1 2 4 1 1 0 1 8 0 3 2 

389 3 1 2 0 2 1 1 1 0 1 6 0 3 2 

390 3 1 2 0 1 1 2 1 0 1 6 0 4 2 

391 2 3 3 0 1 1 1 1 0 1 7 0 4 2 

392 2 4 3 0 1 1 1 1 0 1 7 0 4 2 

393 2 4 3 0 1 1 1 1 0 1 7 0 3 2 

394 2 4 3 0 1 3 1 1 0 0 7 0 4 2 

395 2 4 3 1 1 3 1 1 0 0 6 0 4 1 

396 1 2 2 0 1 3 0 1 0 0 6 0 2 1 



 

 

4
5
1 

397 1 2 1 0 1 2 0 1 0 0 6 0 2 1 

398 2 1 1 0 1 1 0 1 0 0 7 0 2 1 

399 2 1 1 0 1 0 0 1 0 0 5 0 2 0 

400 1 1 1 0 1 0 0 1 0 0 5 0 2 0 

 

 

D.3.3 Archaeological Data – Small Flakes (<30mm) 

Loc. RBSR BCSR VB DBCS OBS2 NBC6 SGS OB OBS1 SADBS ALBS LBSR NBC10 PP9 

1 0 2 0 0 3 1 0 0 0 1 0 1 0 0 

2 0 3 0 1 4 1 0 0 0 1 0 1 0 0 

3 0 3 0 1 4 1 0 0 0 1 0 1 0 0 

4 0 3 0 1 5 1 0 0 0 1 0 1 0 0 

5 0 3 1 2 5 1 0 0 0 1 0 1 0 0 

6 0 4 1 2 6 1 0 0 0 1 0 1 0 0 

7 0 5 1 2 6 1 0 0 0 1 0 2 0 0 

8 0 3 1 3 6 1 0 1 0 1 0 2 0 0 

9 0 3 1 3 7 1 0 1 0 1 0 2 0 0 

10 0 3 1 3 7 1 0 1 0 1 0 2 0 0 

11 0 5 1 3 7 1 0 1 1 1 0 2 0 0 

12 0 4 1 3 7 1 0 1 1 1 0 2 0 0 

13 0 3 1 3 7 1 0 1 1 1 0 1 0 0 

14 0 4 1 3 7 1 0 1 1 1 0 3 0 0 

15 0 4 1 3 7 1 0 1 1 1 0 3 0 0 

16 0 4 1 3 6 1 0 1 1 1 0 3 0 1 

17 1 3 1 2 6 1 1 1 1 1 0 3 0 1 



 

 

4
5
2 

18 1 4 2 2 6 1 1 1 1 0 0 3 0 1 

19 1 4 2 2 6 1 1 1 1 1 0 3 0 1 

20 1 4 2 2 6 1 1 1 1 2 0 3 0 1 

21 0 4 2 2 7 1 1 2 1 2 0 3 0 1 

22 0 2 2 2 7 1 1 2 2 2 0 4 0 1 

23 0 4 1 3 8 1 1 2 2 2 0 4 0 1 

24 0 4 2 5 8 1 1 2 2 1 0 5 0 1 

25 1 4 2 5 8 1 1 2 2 1 0 5 0 1 

26 1 4 2 4 8 1 1 1 2 1 1 5 0 1 

27 1 4 2 4 8 1 1 1 2 0 1 5 0 1 

28 1 2 2 4 8 1 1 1 2 0 1 5 0 0 

29 1 2 2 4 9 1 1 1 2 0 1 5 0 0 

30 1 5 2 2 10 1 0 2 1 1 1 4 0 0 

31 1 5 2 2 9 2 0 2 1 1 1 5 0 0 

32 1 5 2 2 8 2 1 2 1 1 1 5 0 0 

33 1 6 2 2 6 2 0 2 1 1 1 5 0 0 

34 1 7 2 3 4 2 0 2 0 1 1 5 0 0 

35 1 6 2 3 4 2 0 2 0 1 1 4 0 0 

36 1 6 2 3 4 2 0 2 0 1 1 5 0 0 

37 0 6 1 4 6 2 0 2 0 0 1 6 0 0 

38 1 6 1 5 6 1 0 2 0 0 1 5 0 0 

39 1 4 0 4 6 1 1 2 0 0 1 5 0 0 

40 2 5 0 5 7 2 1 2 0 0 1 4 0 0 

41 2 5 0 5 6 2 1 2 0 0 1 4 0 0 

42 1 5 1 5 6 2 1 2 0 0 1 4 0 0 

43 1 7 1 5 7 2 1 2 0 0 1 3 0 0 

44 1 8 1 5 8 2 1 2 0 0 1 3 0 0 

45 1 8 1 5 9 2 1 0 0 0 1 2 0 0 



 

 

4
5
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46 3 9 1 6 9 2 1 0 1 0 1 1 0 0 

47 4 10 1 6 9 2 2 0 2 1 1 1 0 0 

48 4 10 1 5 8 2 1 0 2 1 1 1 0 0 

49 4 9 1 5 8 2 1 0 2 2 1 1 0 0 

50 4 8 1 7 8 2 2 0 2 2 1 2 0 0 

51 3 8 1 7 7 2 2 0 1 2 1 2 0 0 

52 3 7 1 5 4 2 1 0 1 2 1 2 0 0 

53 3 8 1 6 4 2 1 0 1 2 1 3 0 0 

54 3 8 1 6 5 1 1 0 2 2 1 3 0 0 

55 4 8 1 5 5 0 1 0 2 2 1 3 0 0 

56 4 9 1 5 6 1 1 0 3 2 1 3 0 0 

57 5 8 1 5 5 0 1 0 3 2 0 5 0 0 

58 5 8 1 5 5 0 1 0 3 1 0 5 0 0 

59 5 6 1 4 5 0 2 0 3 0 0 5 0 0 

60 5 8 1 5 5 0 1 0 3 1 0 5 0 0 

61 5 9 1 4 4 0 1 1 2 2 0 5 0 0 

62 5 10 1 4 5 0 1 1 3 3 0 7 0 0 

63 5 12 0 3 4 0 1 1 4 3 0 7 0 0 

64 5 11 0 5 4 0 1 1 4 2 0 7 0 0 

65 5 11 0 5 4 0 1 1 4 1 0 7 0 0 

66 5 13 0 6 5 0 1 1 4 1 0 6 0 0 

67 5 13 0 6 4 0 1 1 5 1 0 6 0 0 

68 5 14 0 7 7 0 2 1 5 1 0 6 0 0 

69 5 14 0 8 7 0 2 1 4 0 0 6 0 0 

70 6 13 0 8 6 0 2 1 3 1 0 6 0 0 

71 5 11 0 7 6 1 2 1 3 1 0 4 0 0 

72 6 11 0 8 6 1 2 1 4 1 0 2 0 0 

73 6 11 0 8 7 1 2 1 4 2 0 4 0 0 



 

 

4
5
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74 6 12 0 7 7 0 0 1 4 2 0 4 0 0 

75 6 12 0 7 7 1 0 0 4 1 0 5 0 0 

76 4 13 0 7 7 1 0 0 4 1 1 4 0 0 

77 4 13 0 10 7 1 1 0 3 0 1 3 0 0 

78 4 12 0 10 7 0 1 1 3 0 1 5 0 0 

79 4 15 0 11 8 0 1 2 3 0 1 5 0 0 

80 4 17 0 10 10 0 1 2 3 0 1 4 0 0 

81 4 16 0 9 9 0 0 2 3 0 1 5 0 0 

82 4 17 0 9 9 0 0 2 2 0 1 5 0 0 

83 2 18 0 7 9 0 0 2 2 0 1 5 0 0 

84 2 20 0 7 9 0 0 2 2 0 1 5 0 1 

85 2 20 0 8 8 0 0 2 1 0 1 4 0 1 

86 1 20 0 8 7 0 0 2 1 0 1 6 0 1 

87 1 20 0 8 7 0 0 2 1 0 1 7 0 1 

88 1 21 0 7 7 0 0 1 1 0 1 7 0 1 

89 1 20 1 8 9 0 0 1 1 0 1 7 0 1 

90 1 20 1 9 8 0 0 1 1 0 1 7 0 1 

91 1 18 1 9 8 0 0 1 1 0 1 6 0 1 

92 1 19 1 8 8 0 0 1 1 0 1 6 0 1 

93 1 19 1 8 8 0 0 1 1 0 1 6 0 1 

94 1 18 1 7 7 0 0 1 1 0 1 4 0 1 

95 1 18 1 7 8 0 0 1 1 0 1 6 0 2 

96 1 18 1 7 6 0 0 1 1 0 1 6 0 2 

97 1 18 1 7 5 1 0 1 0 1 1 3 0 2 

98 1 17 1 7 5 1 0 1 0 1 1 3 0 2 

99 1 14 1 7 5 1 0 1 0 1 1 3 0 2 

100 1 14 1 6 5 1 0 1 0 1 0 3 0 2 

101 4 15 1 0 2 1 0 1 3 1 0 5 1 1 



 

 

4
5
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102 4 15 1 0 2 1 0 1 3 1 0 5 1 1 

103 4 17 1 0 2 1 0 1 3 1 0 5 1 1 

104 4 18 1 0 2 0 1 1 3 1 0 6 1 1 

105 4 19 1 0 2 0 2 1 4 1 0 7 1 2 

106 3 19 2 0 2 0 2 1 5 2 0 8 1 2 

107 3 19 2 0 2 0 2 1 5 2 0 8 1 2 

108 3 20 2 0 2 0 2 1 5 2 0 7 1 2 

109 3 21 2 1 4 0 2 1 5 2 0 7 1 2 

110 3 21 2 1 4 0 2 1 4 2 0 7 1 2 

111 5 20 3 1 4 0 1 1 5 2 0 8 1 2 

112 4 19 3 0 3 1 1 1 4 2 0 8 1 3 

113 4 18 4 0 3 1 1 1 4 2 0 7 1 3 

114 4 16 4 0 3 1 1 2 4 2 0 7 1 3 

115 4 17 3 0 4 1 1 2 3 2 0 7 1 3 

116 6 18 3 0 5 1 1 2 3 2 0 5 1 3 

117 7 15 3 0 5 1 1 2 3 2 0 4 1 2 

118 7 14 3 0 5 1 1 2 3 2 0 4 1 2 

119 6 14 3 0 5 1 1 2 3 2 0 4 1 2 

120 5 15 3 0 5 1 1 2 3 2 0 4 1 2 

121 4 15 2 0 5 1 1 2 3 1 0 4 1 2 

122 4 13 2 0 5 2 1 2 4 1 0 3 0 2 

123 4 14 1 0 5 3 2 1 4 1 0 3 0 1 

124 5 13 2 0 5 2 2 1 4 1 0 4 0 1 

125 5 14 2 0 6 2 2 1 5 1 0 5 0 1 

126 5 12 1 0 5 2 2 0 5 1 0 5 0 1 

127 6 13 1 0 4 2 2 0 5 0 0 5 0 1 

128 6 13 1 1 4 2 2 0 4 0 0 5 0 1 

129 6 12 2 1 4 2 2 0 4 0 0 4 0 1 



 

 

4
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130 4 12 2 1 4 1 2 0 4 0 0 5 0 1 

131 4 14 2 1 5 1 2 0 4 0 0 5 0 1 

132 4 13 2 1 5 0 2 0 4 0 0 5 0 1 

133 2 10 2 1 5 0 1 0 4 0 0 6 0 2 

134 2 10 2 1 5 0 1 0 4 0 0 7 0 2 

135 2 9 2 1 5 0 0 0 4 0 0 9 0 2 

136 3 11 2 1 5 0 0 0 4 0 0 10 0 2 

137 2 11 2 1 5 0 1 0 6 1 0 8 0 2 

138 3 12 1 1 4 0 1 0 4 1 1 8 0 2 

139 3 11 1 1 4 0 1 0 4 1 1 9 0 2 

140 3 12 1 1 5 0 1 0 4 1 1 10 0 2 

141 3 12 1 1 5 0 1 0 4 1 1 11 0 1 

142 3 11 1 1 5 0 1 0 3 1 1 13 0 1 

143 2 11 1 1 6 0 1 0 3 0 1 12 0 1 

144 2 12 1 1 5 0 1 0 3 0 1 11 0 1 

145 2 10 1 1 5 2 0 0 3 0 1 11 0 0 

146 2 9 1 1 6 2 0 0 3 0 0 11 0 0 

147 3 11 1 1 6 2 0 0 3 0 0 10 0 0 

148 3 10 0 1 6 2 0 0 3 0 0 10 0 0 

149 3 11 0 1 7 2 0 0 2 0 0 11 0 0 

150 3 11 0 0 8 2 0 0 2 0 0 11 0 0 

151 3 12 0 0 8 2 0 1 1 0 0 11 0 0 

152 3 12 0 0 7 2 0 1 1 1 0 8 0 0 

153 2 11 0 0 5 1 0 1 2 1 1 7 0 0 

154 2 12 0 0 6 1 0 1 2 2 1 7 0 0 

155 2 12 0 0 7 1 0 1 2 2 1 8 0 0 

156 2 10 0 0 7 1 0 1 1 2 1 10 0 0 

157 2 11 0 0 7 1 0 1 1 3 1 11 0 0 



 

 

4
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158 2 9 0 0 7 1 0 1 1 3 1 11 0 0 

159 2 10 1 0 5 1 0 1 1 2 2 10 0 0 

160 2 9 1 0 4 1 0 1 1 2 2 11 0 0 

161 3 8 1 0 4 1 1 1 1 2 2 9 0 0 

162 3 8 1 0 3 0 1 1 1 2 2 9 0 0 

163 3 11 1 0 4 0 1 1 1 2 2 7 0 0 

164 3 11 1 0 3 0 0 1 0 2 2 7 0 0 

165 2 13 1 0 3 1 0 1 1 2 2 6 0 0 

166 3 13 1 0 2 1 0 1 1 2 2 6 0 0 

167 3 14 1 0 2 2 0 1 1 2 2 5 0 0 

168 3 15 1 0 3 1 0 1 1 3 2 6 0 0 

169 3 12 1 0 2 1 1 1 2 3 3 6 0 0 

170 3 11 1 0 2 1 1 1 3 2 3 6 0 0 

171 2 10 0 0 3 1 1 1 2 3 3 6 0 0 

172 0 11 0 0 3 1 1 1 2 3 3 6 0 0 

173 0 9 0 0 3 1 1 1 2 3 3 6 0 0 

174 0 9 0 0 3 1 1 1 2 3 2 6 0 0 

175 1 9 0 0 3 1 1 1 2 3 2 6 0 0 

176 1 9 0 0 3 1 1 1 3 3 2 5 0 0 

177 1 7 0 0 3 1 1 1 3 3 2 5 0 0 

178 1 6 0 0 2 1 1 1 3 3 2 4 0 0 

179 1 7 0 0 2 1 1 1 3 3 2 3 0 0 

180 1 7 0 0 3 1 1 1 3 2 2 3 0 0 

181 1 5 0 0 2 1 0 1 3 2 2 3 0 0 

182 1 5 0 0 2 1 0 1 1 2 2 4 0 0 

183 1 2 0 0 2 1 0 1 1 2 2 3 0 0 

184 0 2 0 0 3 1 0 1 1 2 2 3 0 0 

185 0 1 0 0 3 1 0 1 1 2 1 2 0 1 



 

 

4
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186 0 2 0 0 2 1 0 1 1 2 1 2 0 1 

187 1 4 0 0 2 1 0 1 1 2 1 2 0 1 

188 1 3 0 0 2 1 0 1 1 2 1 2 0 1 

189 1 3 0 0 2 1 0 1 1 2 1 3 0 1 

190 1 2 0 0 2 0 0 1 1 2 0 3 0 1 

191 1 2 0 0 2 0 0 1 1 2 0 2 0 0 

192 1 3 0 0 2 0 0 0 1 0 0 1 0 0 

193 1 3 0 0 2 0 0 0 1 0 0 0 0 0 

194 1 3 0 0 2 0 0 0 1 0 0 0 0 0 

195 1 3 0 0 2 0 0 0 1 0 0 0 0 0 

196 1 2 0 0 2 0 0 0 1 0 0 0 0 0 

197 1 2 0 0 2 0 0 0 1 0 0 0 0 0 

198 0 2 0 0 2 0 0 0 1 0 0 0 0 0 

199 0 1 0 0 1 0 0 0 1 0 0 0 0 0 

200 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

201 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

202 2 0 0 0 1 0 0 0 0 0 0 1 0 0 

203 2 0 0 0 1 0 0 0 0 0 0 1 0 0 

204 2 0 0 0 1 0 0 0 0 1 0 1 0 0 

205 1 0 0 0 1 0 0 0 1 1 0 1 0 0 

206 1 0 0 0 1 0 0 0 1 1 0 1 0 1 

207 1 0 0 0 1 0 0 0 1 1 0 0 0 1 

208 1 0 0 1 2 0 0 0 1 1 0 0 0 0 

209 1 0 0 2 2 0 0 0 1 1 0 1 0 0 

210 1 0 0 3 2 0 0 1 1 1 0 3 0 0 

211 1 0 0 4 2 0 0 1 3 1 0 3 0 0 

212 1 0 0 3 2 0 1 1 3 1 0 3 0 0 

213 2 0 0 4 2 0 1 1 3 1 0 3 0 0 
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214 2 0 0 3 2 0 1 1 3 1 0 3 0 0 

215 2 0 0 4 2 0 0 1 3 0 0 3 0 0 

216 2 0 0 4 2 0 0 1 2 0 0 4 0 0 

217 3 0 0 4 2 0 0 1 1 0 0 5 0 0 

218 3 1 0 5 3 0 0 1 1 0 0 5 0 1 

219 2 1 0 5 2 0 0 1 1 0 0 5 0 1 

220 2 1 0 5 2 0 0 1 1 0 0 6 0 1 

221 1 1 0 4 3 0 0 1 1 0 0 6 0 1 

222 1 1 0 4 3 0 0 1 2 0 0 7 0 1 

223 2 1 1 5 3 0 0 1 2 0 0 7 0 1 

224 2 1 1 5 3 0 0 1 2 1 0 7 0 1 

225 3 1 1 5 3 0 0 1 2 1 0 6 0 1 

226 3 1 1 5 3 0 0 1 2 1 0 6 0 1 

227 4 1 2 5 5 0 0 1 2 1 0 4 0 1 

228 4 1 2 7 5 0 0 1 3 1 0 4 0 1 

229 4 1 2 5 5 0 0 1 2 1 0 6 0 1 

230 2 1 2 5 5 0 0 1 2 1 0 5 0 1 

231 1 1 2 4 6 0 0 1 2 1 0 6 0 1 

232 1 1 2 6 4 0 0 1 2 2 0 6 0 0 

233 3 1 2 6 4 0 0 1 2 2 0 7 0 0 

234 3 1 2 8 4 0 0 1 2 2 0 8 0 0 

235 3 1 3 8 3 0 0 1 2 2 0 7 1 0 

236 3 1 3 8 3 0 0 1 1 1 0 7 1 0 

237 4 1 2 8 3 0 0 1 1 1 0 6 1 0 

238 3 1 2 7 3 0 0 1 1 1 0 4 1 0 

239 4 1 2 8 3 0 0 1 1 1 0 4 1 0 

240 4 1 2 6 3 0 0 1 1 1 0 3 1 0 

241 4 1 2 6 3 0 0 1 1 1 0 4 1 0 
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242 4 1 2 7 2 0 0 1 1 1 0 4 0 0 

243 4 2 2 9 2 0 0 1 1 1 0 4 0 1 

244 6 2 2 9 2 0 0 1 1 1 0 3 0 1 

245 6 2 2 10 2 0 0 1 1 1 0 3 0 1 

246 6 1 2 10 2 0 0 1 3 1 0 4 1 1 

247 5 1 2 10 2 0 0 1 3 1 0 4 1 1 

248 5 1 2 10 1 0 0 0 3 0 0 4 1 1 

249 5 1 2 11 2 0 0 0 2 0 0 4 1 1 

250 6 0 2 10 3 0 0 0 3 0 0 2 1 1 

251 5 0 2 10 3 0 0 0 4 1 0 2 1 1 

252 5 0 2 11 3 0 0 0 4 1 0 2 1 1 

253 4 0 2 11 3 0 0 0 3 1 0 2 1 1 

254 5 0 2 10 3 0 0 0 3 1 0 2 1 1 

255 6 0 2 10 3 0 0 0 4 1 0 2 1 1 

256 5 1 2 10 4 0 0 0 4 1 0 1 1 1 

257 5 1 2 11 4 0 0 0 4 1 0 1 1 1 

258 5 1 1 10 4 0 0 0 5 0 0 1 1 1 

259 4 1 1 10 4 0 0 0 4 0 0 1 1 1 

260 4 1 1 10 5 0 0 0 4 0 0 1 1 0 

261 5 0 1 10 5 0 0 0 4 0 0 1 1 0 

262 4 0 1 11 5 0 0 0 5 0 0 1 1 0 

263 3 0 1 10 5 0 0 0 5 0 0 1 1 0 

264 3 1 1 11 6 0 0 0 4 0 0 1 1 0 

265 3 1 1 10 6 0 0 0 4 1 0 2 0 0 

266 3 3 1 11 6 0 0 0 3 1 1 3 0 0 

267 2 3 0 10 6 0 0 0 3 1 1 4 0 0 

268 3 3 0 10 5 0 0 0 3 1 1 4 0 0 

269 3 3 0 10 5 0 0 0 3 1 1 4 0 0 
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270 2 3 0 9 5 0 0 0 3 1 1 4 0 0 

271 2 3 0 9 5 0 0 0 4 2 1 3 0 0 

272 2 3 0 11 5 0 0 0 3 2 1 3 0 0 

273 2 3 0 10 4 0 1 0 3 2 1 3 1 0 

274 1 3 0 10 3 0 1 0 3 2 1 3 1 0 

275 1 3 0 10 3 0 1 0 3 2 1 3 1 0 

276 1 3 0 11 3 0 1 0 3 1 1 4 1 0 

277 1 3 0 12 3 0 1 0 2 1 1 4 1 0 

278 1 2 0 12 2 0 1 0 3 1 1 4 1 0 

279 1 2 0 12 2 0 1 0 3 1 1 4 1 0 

280 1 2 0 13 2 0 1 0 3 1 1 4 1 0 

281 1 2 0 12 2 0 1 0 3 1 1 4 1 0 

282 1 2 0 14 2 0 1 0 3 1 1 5 1 0 

283 1 2 0 14 2 0 1 0 3 1 1 6 1 0 

284 1 2 0 14 1 0 1 0 3 1 1 5 1 0 

285 1 2 0 15 1 0 0 0 3 1 1 5 1 0 

286 1 2 0 15 1 0 0 0 3 1 1 6 1 0 

287 1 2 0 15 1 0 0 0 2 2 1 6 1 0 

288 1 2 0 14 1 0 0 0 2 2 0 5 1 0 

289 1 2 0 13 1 0 0 0 1 2 0 5 1 0 

290 1 2 0 14 1 1 0 0 1 2 0 5 1 0 

291 1 2 0 15 1 1 0 0 1 2 0 5 1 0 

292 1 2 0 14 1 1 0 0 0 2 0 5 1 0 

293 1 2 0 15 1 1 0 0 1 2 0 5 1 0 

294 1 3 0 15 2 1 0 0 1 1 0 5 1 0 

295 1 2 0 15 2 0 0 0 1 1 0 5 1 0 

296 1 2 0 15 2 0 0 0 1 1 0 4 1 0 

297 1 2 0 15 2 0 0 0 1 1 0 4 1 0 
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298 1 2 0 15 2 0 0 0 1 2 0 4 1 0 

299 1 2 0 16 2 0 0 0 1 2 0 4 1 0 

300 1 2 0 16 2 0 0 0 1 2 0 4 1 0 

301 2 16 0 4 2 0 0 3 1 0 1 3 0 0 

302 2 16 0 4 2 0 0 3 1 0 1 3 0 0 

303 2 16 0 4 2 0 0 3 0 0 1 3 0 0 

304 2 16 0 5 2 0 0 3 0 0 1 3 0 0 

305 2 17 0 5 2 0 0 3 0 0 1 4 0 0 

306 3 18 0 7 2 0 0 3 0 0 1 4 0 0 

307 3 18 0 7 2 0 0 3 0 0 1 5 0 0 

308 3 18 0 7 2 0 0 3 0 0 1 4 0 0 

309 3 18 0 8 2 0 0 3 0 0 1 4 0 0 

310 3 17 0 8 2 0 0 3 0 0 1 4 0 0 

311 3 17 0 8 2 0 0 3 0 0 1 3 0 0 

312 3 16 0 8 2 0 0 3 0 0 1 3 0 0 

313 3 15 0 8 2 0 0 3 0 0 1 3 0 0 

314 3 14 1 8 2 0 0 3 1 0 1 3 0 0 

315 3 13 1 8 1 0 0 2 1 0 1 2 0 0 

316 3 13 1 8 1 0 0 2 1 0 1 1 0 0 

317 3 11 1 8 2 0 0 2 1 0 1 1 0 0 

318 3 10 1 8 3 0 0 2 1 0 0 0 0 0 

319 3 9 1 8 3 0 0 2 2 0 0 1 0 0 

320 3 8 0 7 3 0 0 2 2 0 0 1 0 0 

321 1 8 0 7 3 0 0 0 2 0 0 1 0 0 

322 2 8 0 7 3 0 0 0 2 0 0 1 0 0 

323 3 8 0 7 3 0 0 0 2 0 0 1 0 0 

324 3 7 0 7 4 0 0 0 2 0 0 1 0 0 

325 3 5 0 7 4 0 1 1 3 0 0 2 0 0 
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326 3 5 0 7 5 0 1 1 2 0 0 2 0 0 

327 3 5 0 7 5 0 1 1 1 0 0 2 0 0 

328 2 5 0 7 5 0 1 1 1 0 0 2 0 0 

329 2 5 0 7 5 0 1 1 1 0 0 2 0 0 

330 2 5 0 7 6 0 1 1 1 0 0 2 0 0 

331 2 5 0 8 6 0 1 1 1 0 0 2 0 0 

332 1 3 1 9 7 0 1 1 1 0 0 2 0 0 

333 1 3 1 10 6 0 1 2 1 0 0 2 0 0 

334 1 3 1 10 6 0 1 2 2 0 0 3 0 0 

335 1 3 1 8 6 0 1 2 3 0 0 3 0 0 

336 1 2 1 9 5 0 1 2 3 0 0 4 0 0 

337 2 3 1 9 5 0 1 2 3 0 0 4 0 0 

338 2 4 1 9 5 0 1 2 2 0 0 4 0 0 

339 2 4 1 10 6 0 1 2 2 0 0 3 0 0 

340 2 6 1 11 7 0 1 2 1 0 1 4 0 0 

341 1 6 1 11 7 0 1 3 1 0 1 3 0 0 

342 1 5 1 10 6 0 1 3 1 0 1 3 0 0 

343 2 5 1 10 7 0 1 3 2 0 1 3 0 0 

344 2 5 1 9 7 0 1 3 2 0 1 3 0 0 

345 2 5 1 10 7 0 1 3 2 0 1 3 0 0 

346 2 6 1 9 7 0 1 3 2 0 1 3 0 0 

347 2 6 1 8 6 0 1 3 2 0 1 3 0 0 

348 2 6 1 8 6 0 1 2 2 0 1 5 0 0 

349 2 6 1 9 5 0 1 2 1 0 1 5 0 0 

350 2 6 1 9 4 0 1 2 1 0 1 4 0 0 

351 2 6 1 8 4 0 1 2 1 0 1 4 0 0 

352 2 6 1 6 4 0 0 2 1 0 0 4 0 0 

353 1 6 1 7 5 0 0 2 2 0 1 4 0 0 
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354 1 5 1 7 5 0 0 2 2 0 1 4 0 0 

355 1 4 0 7 5 0 0 2 2 0 1 4 0 0 

356 1 4 0 6 4 0 0 2 2 0 1 2 0 0 

357 1 4 0 5 4 0 0 1 2 0 1 3 0 0 

358 1 4 0 4 3 0 0 2 2 0 1 3 0 0 

359 1 4 0 4 3 0 0 2 2 0 0 3 0 0 

360 2 5 1 5 4 0 0 2 2 0 0 2 0 0 

361 2 5 1 4 3 0 0 2 2 0 0 2 0 0 

362 2 5 1 4 3 0 0 2 2 0 0 2 0 0 

363 2 6 1 3 3 0 0 2 2 0 0 2 0 0 

364 2 6 1 5 4 0 0 2 2 0 0 3 0 0 

365 2 7 1 5 3 0 0 2 2 0 0 3 0 0 

366 2 7 1 5 2 0 0 1 2 0 0 3 0 0 

367 2 5 1 3 3 0 0 1 2 0 0 4 0 0 

368 2 6 1 3 4 0 0 1 2 0 0 4 0 0 

369 1 6 1 4 4 0 0 1 1 0 0 4 0 0 

370 2 5 1 5 4 0 0 1 1 0 0 4 0 0 

371 2 5 1 4 3 0 0 1 1 0 0 4 0 0 

372 2 6 1 6 4 0 0 1 2 0 0 3 0 0 

373 2 6 0 7 5 0 0 1 3 0 0 3 0 0 

374 2 6 0 7 5 0 0 1 3 1 0 2 0 0 

375 2 8 0 6 4 0 0 0 2 1 0 2 0 0 

376 2 8 0 5 4 0 0 1 1 1 0 2 0 0 

377 2 7 1 6 4 0 0 1 2 1 0 2 0 0 

378 1 6 1 5 3 0 0 1 2 1 0 2 0 1 

379 1 7 1 4 3 0 0 1 2 1 0 2 0 1 

380 1 5 1 4 3 0 0 1 2 1 1 2 0 1 

381 0 3 1 4 3 0 0 1 2 1 1 2 0 1 
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382 0 1 1 5 3 0 0 1 2 1 1 2 0 1 

383 0 1 1 4 4 0 0 1 2 1 0 3 0 1 

384 0 2 1 5 4 0 0 0 2 1 0 3 0 1 

385 0 2 0 5 4 0 0 0 2 1 0 3 0 0 

386 0 3 0 6 4 0 0 0 3 1 0 2 0 0 

387 0 3 0 5 3 0 0 0 3 0 0 2 0 0 

388 0 2 0 4 3 0 0 0 3 0 0 2 0 0 

389 0 1 0 4 2 0 0 0 3 0 0 2 0 0 

390 0 1 0 4 2 0 0 0 3 0 0 2 0 0 

391 0 1 0 4 2 0 0 0 3 0 0 2 0 0 

392 0 1 0 4 2 0 0 0 2 0 0 0 0 0 

393 0 1 0 4 2 0 0 0 2 0 0 0 0 0 

394 0 1 0 3 2 0 0 0 2 0 0 0 0 0 

395 0 1 0 3 2 0 0 0 2 0 0 0 0 0 

396 0 1 0 2 2 0 0 0 2 0 0 0 0 0 

397 0 1 0 2 2 0 0 0 2 0 0 0 0 0 

398 0 0 0 2 1 0 0 0 1 0 0 0 0 0 

399 0 0 0 2 1 0 0 0 1 0 0 0 0 0 

400 0 0 0 2 1 0 0 0 1 0 0 0 0 0 

 


