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ABSTRACT 

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV) 

in the last decade, especially for quadrotors due to their nature of easy manipulation and 

simple structure. A lot of research has been done on achieving autonomous and robust 

control for quadrotors. Recently researchers have been utilizing linear temporal logic as 

mission specification language for robot motion planning due to its expressiveness and 

scalability. Several algorithms have been proposed to achieve autonomous temporal logic 

planning. Also, several frameworks are designed to compose those discrete planners and 

continuous controllers to make sure the actual trajectory also satisfies the mission 

specification. However, most of these works use first-order kinematic models which are 

not accurate when quadrotors fly at high speed and cannot fully utilize the potential of 

quadrotors.  

This thesis work describes a new design for a hierarchical hybrid controller that is 

based on a dynamic model and seeks to achieve better performance in terms of speed and 

accuracy compared with some previous works. Furthermore, the proposed hierarchical 

controller is making progress towards guaranteed satisfaction of mission specification 

expressed in Linear Temporal Logic for dynamic systems. An event-driven receding 

horizon planner is also utilized that aims at distributed and decentralized planning for large-

scale navigation scenarios. The benefits of this approach will be demonstrated using 

simulations results. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Challenges 

Quadrotors have gained more and more attention in civilian applications as their 

manufacturing and maintenance cost went down to acceptable levels in the past few years. 

Compared with manned aerial vehicles, quadrotors have unique advantages in many areas. 

To list a few, quadrotors are widely used in: 

 Aerial Surveillance: These light-weight, easy-maneuvered, and low-cost flying 

devices are almost the ideal tools for carrying missions in dangerous areas that 

are hard for human to reach. For example, the DJI Inspire quadrotor was recently 

used to record volcano eruptions in Vanuatu, and got by far the most close-up 

video of an erupting volcano [1]. Other aerial vehicles have never been able to 

get this close to a live volcano. 

 Commercial Transportation: Traditional manned heavy helicopters are only used 

for high-value commercial applications due to the high cost, complex 

maintenance, and long-term pilot training. Quadrotors greatly simplified this 

thanks to its simplified structure and autonomous control software. Amazon and 

DHL have launched projects seeking to use quadrotors to deliver packages [2]. 

 Search and Patrol: Such operations are time-consuming and often dangerous for 

manned aerial vehicle. Thanks to their light-weighted structure, quadrotors could 

carry more fuel and equipment to work for longer time and be more efficient. The 
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Canadian mounties have announced that a police quadrotor equipped with 

thermal sensors, for the first time, successfully saved a driver’s life in a remote 

woody area [3]. 

However, in most of such applications, quadrotors are controlled remotely by 

human pilots, which significantly limits its applicability and utilization in diverse 

applications. Flying quadrotors controlled by unprofessional pilots have caused a lot of 

controversial issues regarding privacy and safety [4]. Many privacy places, even the White 

House, were reported to have found unidentified quadrotor’s intrusion. Also, many pilots 

of passenger airlines have reported seeing quadrotors near planes landing routes. For these 

reasons, a robust and accurate controller is much more desirable and essential for 

quadrotors compared with other robot applications. 

A lot of research has been done in designing automated controllers that are robust 

and accurate enough to replace the remote pilots and accomplish the desired missions 

autonomously. In my opinion, the challenges in designing such controllers can be 

summarized in the following three aspects: 

1) Finding a language that could formally define complex mission specifications and 

a planner which could automatically and efficiently generate plans that satisfy 

these specifications. 

2) A continuous controller for the quadrotor’s non-linear high-order dynamics that 

is able to follow reference commands from the  higher level planner. 
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3) An interface that composes the high-level discrete planer and the low-level 

continuous controller, such that the behavior of the quadrotor satisfies the high-

level specifications. 

1.2  Contributions 

The main contribution of this thesis is the design and implementation of a new kind of 

hierarchical hybrid controller for quadrotors. Compared with the previous approaches that 

used a first-order kinematic model such as [5] and [6], it is designed to accommodate a 

high-order dynamic model of the quadrotor’s behavior in order to achieve better 

performance in terms of velocity and safety. Linear Temporal Logic (LTL) is used as the 

mission specification language and a LTL receding horizon planning method [7] is adopted 

to generate discrete plans that satisfy the mission specification. Compared with global 

planning, receding horizon method does not rely on global data and thus is more efficient 

for large-scale distributed path planning. To compose the high-level discrete plans and 

actual physical system of a quadrotor, the approximate simulation relations method [8] is 

used heuristically in order to improve the chances that the actual behavior of the quadrotor 

also satisfies the high-level specification. In later sections, the benefits of the proposed 

control synthesis framework will be shown by simulation results. A local planer is also 

proposed to fly through areas with higher resolution. 

A software-in-the-loop simulator for quadrotor is also developed to test and verify 

the controller’s design. It is based on the quadrotor model in Robotic toolbox [9] in 

MATLAB/Simulink. It receives commands from the controller and updates the states of 

the quadrotor in Simulink. It communicates through UDP with the controller.  
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1.3  Structure of the Thesis 

This thesis introduces a new design of a hierarchical hybrid controller for quadrotors and 

its benefits compared with some previous approaches. This thesis is structured according 

to the following outline: 

Chapter 2: Reviews some fundamental background knowledge. Several models and 

notations which are used later in this thesis are also introduced. 

Chapter 3: Reviews previous works that this thesis is fundamentally based on and 

discusses their relationship to this work. A review of related works is also included.  

Chapter 4: Describes the problems to be solved in this thesis. 

Chapter 5: Describes the structure of the hierarchical hybrid controller as well as 

the roles of each component and how they cooperate with each other to full fill the mission 

specification. 

Chapter 6: Presents some simulation results of this design and it compares the 

proposed controller design with previous research to show its benefits. 

Chapter 7: Gives a conclusion and several possible future directions in this area of 

research. 
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CHAPTER 2 

BACKGROUND 

This chapter presents some background concepts, definitions, and notations that this thesis 

is built upon. Notations used in this chapter will be remain consistent later in this thesis. It 

will be helpful to read through this chapter in order to better understand the later contents. 

2.1  Quadrotor Model and Dynamics 

Figure 1  shows a classic model of a quadrotor. The coordinate frame in the picture is 

defined as the body frame ℬ, which is fixed to the quadrotor, and its three axis are hereby 

denoted by 𝑥ℬ , 𝑦ℬ , and 𝑧ℬ  respectively. In contrast, the world frame 𝒲 is fixed to the 

ground and its three axis are denoted by 𝑥𝒲, 𝑦𝒲, and 𝑧𝒲. 

A quadrotor has 6 degrees of freedom (DOF) which are its movement along the 𝑥ℬ, 

𝑦ℬ, 𝑧ℬ and its rotation along 𝑥ℬ, 𝑦ℬ, and 𝑧ℬ (pitch, roll, and yaw). The only inputs to the 

system are the rotation velocities of the four rotors (𝜔1,  𝜔2,  𝜔3,  𝜔4) which provide lift 

and maneuverability. 



 6 

 

Figure 1 Typical Model of a Quadrotor 

According to classic control theory, having equal or more control inputs than 

outputs is a necessary condition to achieve fully decoupled control. In a quadrotor there are 

six degrees of freedom while it only has four inputs. This means some maneuvers are not 

controllable or coupled with other maneuvers. The rest part of this section will introduce 

the dynamics and basic control methods for a quadrotor. 

A rotor i with angular velocity 𝜔𝑖 can generate corresponding thrust 𝐹𝑖 and moment 

𝑀𝑖 that are approximately described by the following equations: 

 𝐹𝑖 = 𝑘𝐹𝜔𝑖
2 

 𝑀𝑖 = 𝑘𝑀𝜔𝑖
2  
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where  𝑘𝐹  and 𝑘𝑀  are constant parameters that are determined by the rotor’s size and 

shape. The generated thrust vectors of each of the four rotors are always parallel to 𝑧ℬ, and 

the direction of the moment is determined by the rotation direction. In Figure 1, rotors 1 & 

3 rotate counter-clockwise and generate clockwise moments, while rotors 2 & 4 rotate 

clockwise and thus generate counter-clockwise moments. A quadrotor can achieve 

complex maneuvers by changing the angular velocity of the four rotors.  

A quadrotor controls its attitude by the following equation: 

𝐼 [

�̈�

�̈�
�̈�

] =  [

𝐿(𝐹2 − 𝐹4)
𝐿(𝐹3 − 𝐹1)

𝑀1−𝑀2 +𝑀3−𝑀4

] − [

�̇�

�̇�
�̇�

] × 𝐼 [

�̇�

�̇�
�̇�

] (1) 

where 𝜙, 𝜃, 𝜓 are quadrotor’s roll, pitch, and yaw angles, 𝐿 is the distance between the 

center of a rotor to the center of gravity, 𝐼  is the quadrotor’s inertia matrix that is 

approximately a diagonal matrix due to its symmetric structure: 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] 

A quadrotor can control its movement by the following equation: 

𝑚�̈� =  [
0
0

−𝑚𝑔
] + 𝑅 [

0
0
𝛴𝐹𝑖

] (2) 

where 𝑚 is the quadrotor’s mass, 𝑟 = [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇  is the position matrix, and 𝑅 is the 

transition matrix from ℬ to 𝒲: 
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[

𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙

−𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃
]  

From the above analysis, it’s obvious that the value of 𝐹2 − 𝐹4 has effect on roll 

angle 𝜙, 𝐹3 − 𝐹1  has effect on pitch angle 𝜃, and 𝑀1−𝑀2 +𝑀3−𝑀4 has effect on the yaw 

angle 𝜓. Changing the positon can be achieved by changing orientation angles and total 

thrusts. To make it convenient for future analysis, the following mapping is applied: 

𝑢1 =  𝑘𝐹(𝜔1
2 +  𝜔2

2 +  𝜔3
2 +  𝜔4

2) 

𝑢2 =  𝑘𝐹(𝜔2
2 − 𝜔4

2) 

𝑢3 =  𝑘𝐹(𝜔1
2 − 𝜔3

2) 

𝑢4 =  𝑘𝑀(𝜔1
2 −  𝜔2

2 + 𝜔3
2 − 𝜔4

2) 

Then, the former equations can be changed to the following equations: 

Σ𝑞 =

{
 
 
 
 
 

 
 
 
 
 
�̈�𝑥 = −(𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙) ∙

𝑢1

𝑚
 

�̈�𝑦 = −(𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜓) ∙
𝑢1

𝑚

�̈�𝑧 =  𝑔 − (𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃) ∙
𝑢1

𝑚

�̈� =  �̇��̇� (
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
) + 

𝐿

𝐼𝑥𝑥
𝑢2

�̈� =  �̇��̇� (
𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
) + 

𝐿

𝐼𝑥𝑥
𝑢2

�̈� =  �̇��̇� (
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
) + 

𝐿

𝐼𝑦𝑦
𝑢3

 (3) 

This model will be referred to as Σ𝑞 for the rest of this thesis. As it can be seen, it 

is a non-linear high-order system. A simple and common way to analyze this model is to 

linearize the model at near-hover state where 𝜙, 𝜃, and 𝜓 are small. Though it is simple 
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for implementation and analysis, it’s only accurate at near-hover state and could cause large 

error when operating at high speed. In this work, feed-back linearization is applied to 

control a quadrotor which is covered in the next section. 

2.2  Feedback Linearization and Attitude Control 

According to [10], for a nonlinear system defined as: 

𝑥 = f(𝑥) + g(x)u 

y=h(𝑥) 

where f and g are smooth vector fields and h is an infinitely differentiable function, there 

exists a function 𝑢 =  𝛼(𝑥) + 𝛽(𝑥)𝑣 such that  the output y and new input v are linearized. 

As it is mentioned in the previous section, changing a quadrotor’s movement can 

be achieved by changing its orientation and overall thrust. The rest of this section will 

present an attitude controller using feedback linearization [11]. 

First, define the states, inputs, and outputs of the altitude controller. The state is 

defined as 𝑥𝑝 = [𝜙 𝜃 𝜓 �̇� �̇� �̇�]𝑇, input 𝑢𝑞 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇, and output 

𝑦𝑝 = [𝑢1 𝜙 𝜃 𝜓 ]𝑇.  

Then, define the following feedback linearization to obtain a linear system, as it is 

done in [11] 

𝑢2 = 𝑓2(�̇�, �̇�, �̇�) + 𝑢2
∗

𝑢3 = 𝑓3(�̇�, �̇�, �̇�) + 𝑢3
∗

𝑢4 = 𝑓4(�̇�, �̇�, �̇�) + 𝑢4
∗

 (4) 

where  
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𝑓2(�̇�, �̇�, �̇�) =
𝐼𝑥𝑥

𝐿
(𝐾2�̇� − �̇��̇�

𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
)

𝑓3(�̇�, �̇�, �̇�) =
𝐼𝑦𝑦

𝐿
(𝐾3�̇� − �̇��̇�

𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
)

𝑓4(�̇�, �̇�, �̇�) = 𝐼𝑧𝑧 (𝐾4�̇� − �̇��̇�
𝐼𝑥𝑥−𝐼𝑦𝑦

𝐼𝑧𝑧
)

 (5) 

𝐾2, 𝐾3, 𝐾4 are parameters. Here, a linearized system is obtained in the following form: 

[

�̈�

�̈�
�̈�

] =  

[
 
 
 
 𝐾2�̇� +  

𝐿

𝐼𝑥𝑥
𝑢2
∗

𝐾3�̇� +  
𝐿

𝐼𝑦𝑦
𝑢3
∗

𝐾4�̇� +  
1

𝐼𝑧𝑧
𝑢4
∗
]
 
 
 
 

 (6) 

Then, a linearized and decoupled system Σ𝑝 = (𝐴𝑝, 𝐵𝑝, 𝐶𝑝, 𝐷𝑝) is obtained: 

�̇�𝑝 = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢𝑝
𝑦𝑝 = 𝐶𝑝𝑥𝑝 + 𝐷𝑝𝑢𝑝

 (7) 

and 

𝐴𝑝 =

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 𝐾2 0 0
0 0 0 0 𝐾3 0
0 0 0 0 0 𝐾4]

 
 
 
 
 

 𝐵𝑝 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0
𝐿

𝐼𝑥𝑥
0 0

0 0
𝐿

𝐼𝑦𝑦
0

0 0 0
1

𝐼𝑧𝑧]
 
 
 
 
 
 
 
 
 

 

𝐶𝑝 = [

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 𝐷𝑝 =

[
 
 
 
 
1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0]
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where 𝑢𝑝 =  [𝑢1 𝑢2
∗ 𝑢3

∗ 𝑢4
∗]𝑇  is the new input vector after feedback linearization. 

Note that 𝑢1 is actually not used in attitude control, it is here to make the format consistent. 

With the feedback linearized and decoupled system, it will be very easy to define a 

proportional control law. Taking the control of roll angle as an example, it will be feasible 

to have 𝑢2
∗ = 𝑤2(𝜑𝑑𝑒𝑠 −  𝜑), where 𝜑𝑑𝑒𝑠 is the reference command. This forms a closed-

loop system and its behavior is determined by the parameter pair (𝐾2, 𝑤2), and it’s not hard 

to get its transfer function: 

𝐹(𝑠) =  
𝑋4(𝑠)

𝑋4𝑑𝑒𝑠(𝑠)
= 

1

𝐼𝑥𝑥 (𝐿𝑤2)⁄ ∙ 𝑠2 − (𝐾2𝐼𝑥𝑥) (𝐿𝑤2) ∙ 𝑠 + 1⁄
 

which is a second-order transfer function. To make it stable,  𝐾2 must be negative to make 

its poles on the left-half plane. With the PID control design function in the Control System 

Toolbox [12] and the transfer function above as the design plant, it is not hard to get 

parameters with promising results. For the control on the roll angle, having 𝐾2 = −80 and 

𝑤2 = 414.51 can achieve 0.11 second of settle time and 0 % overshoot. 

2.3  Decidable Hybrid System 

Hybrid system is a kind of system that consists of a combination of continuous and discrete 

states [13], [14], [15], [16]. A hybrid system can be formally defined as: 

𝐻𝑆 = (𝒳, 𝐿, 𝑋0, 𝐼, 𝑓, 𝑇), 

where 𝒳 ⊆ ℝ𝑁 is the set of continuous state, 𝐿 is the set of discrete locations (also called 

cells in this work), 𝑋 = 𝒳 × 𝐿 is the overall continuous-discrete state space. Here, 𝑋0 ⊆ 𝑋 
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 is the set of initial states, 𝐼 is the function that assigns 𝑥 ∈ 𝒳 to some 𝑙 ∈ 𝐿 such that 𝑥 lies 

inside the region labeled by l. 𝑇 ⊂ 𝐿 × 𝒳 × 𝐿 is the set of discrete transitions and 𝑓: 𝐿 →

(𝒳 → 𝑇𝒳) specifies the continuous flow (vector fields) in each location.   

Hybrid system is a major modeling framework for a large class of systems like air-

traffic management systems, self-driving vehicles, and robotics. A hybrid system is 

decidable if there exists a computation procedure that could verify any property in the 

system within a finite number of steps. One key property that needs to be verified in the 

areas of motion planning is reachability and avoidance. This is the problem of determining 

whether the system could reach a set of states (targets) while avoid reaching another set of 

states (obstacles). 

Calin Belta et al in [17] proposed a framework that synthesizes a rectangular multi-

affine hybrid system which is bisimilar [17] with its discrete quotient transition 

system 𝐷𝑆 = (𝐿, 𝐿0, 𝑇𝑑), where 𝐿 has the same meaning as it is in HS, 𝐿0 is the set of initial 

discrete states and 𝑇𝑑 ⊆ 𝐿 × 𝐿 is the discrete transition system. The bisimulation property 

was first introduced in [18] and [19], it indicates whether two systems are equivalent in 

reachability properties.  

In this work, spaces are divided into non-overlapping N-dimensional rectangles 

characterized as a tuple (𝑎, 𝑏), where 𝑎 = (𝑎1, 𝑎2,  ⋅⋅⋅ 𝑎𝑁), 𝑏 = (𝑏1, 𝑏2,⋅⋅⋅ 𝑏𝑁), and 𝑎𝑖 < 𝑏𝑖 

for 𝑖 = 1,2,⋅⋅⋅ 𝑁. For each rectangle, the multi-affine function vector field 𝑓 is assigned as: 

 



 13 

𝑓(𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑁) = ∑ ∏(
𝑥𝑘 − 𝑎𝑘
𝑏𝑘 − 𝑎𝑘

)
𝜁𝑘(𝑣𝑘)

⋅

𝑁

𝑘=1(𝑣1,⋅⋅⋅,𝑣𝑀)∈𝑉𝑁

(
𝑏𝑘 − 𝑥𝑘
𝑏𝑘 − 𝑎𝑘

)
1−𝜁𝑘(𝑣𝑘)

𝑓(𝑣1,⋅⋅⋅, 𝑣𝑁) 

and 

�̇� = 𝑓(𝑥) 

where 𝑥 = (𝑥1,⋅⋅⋅, 𝑥𝑁)  is the continuous position,  𝑉𝑁 = ∏ {𝑎𝑖, 𝑏𝑖}
𝑁
𝑖=1  is the set of 2𝑁 

vertices, and function 𝜁𝑘: {𝑎𝑘, 𝑏𝑘} → {0,1}  is the indicator function that 𝜁𝑘(𝑎𝑘) =

0, 𝜁𝑘(𝑏𝑘) = 1. Hybrid systems with this multi-affine function can be informally explained 

as follows: the value of this function is uniquely determined by its values at its vertices. If 

all the vectors at the vertices “point out” of a specific facet, then any continuous trajectory 

following this vector field will go through the same facet. If all the vectors at the vertices 

“point inside” the rectangle, then all continuous trajectories will stay inside the rectangle. 

Thus, such HS and its corresponding DS are bi-similar. A formal proof and a more detailed 

discussion can be found in [5] and [20]. 

2.4  Linear Temporal Logic (LTL) 

Temporal logic provides tools for reasoning standard logic statements over time. It is 

commonly used in formal verification tools in robot motion planning and for requirements 

of computer programs. As a formal statement tool, its statements are precise and 

unambiguous. It is also similar to structured English syntax, making it very easy to 

understand. Linear Temporal Logic (LTL) is a kind of temporal logic whose syntax 

contains the following temporal operations such as always (G), eventually (F), next (X) 

and until (U), and the standard logic operators like negation (¬ ), disjunction (∨ ), 
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conjunction (∧), and implication (⇒). LTL formulas are defined according to the following 

grammar: 

𝜙 ∷= 𝜋 |¬𝜙 | 𝜙 ∨ 𝜙 | 𝜙𝒰𝜙  

where 𝜙  is a LTL formula, Π is the set of atomic propositions, and 𝜋 ∈ Π is an atomic 

proposition.  In real applications, LTL can be used to describe complex behaviors for 

robots. The following are several examples for some frequently used specifications: 

 Coverage: the LTL formula 𝐹𝜋1 ∧ 𝐹𝜋2 ∧ 𝐹𝜋3 ∧⋅⋅⋅∧ 𝐹𝜋𝑛  specifies that robot 

should eventually visit region 𝜋1, 𝜋2,⋅⋅⋅, 𝜋𝑛 with no particular order. 

 Reachability and avoiding obstacles: the LTL formula ¬(𝜋1 ∨ 𝜋2 ∨ 𝜋3 ∨⋅⋅⋅∨

𝜋𝑛)𝒰 target  specifies that before robot reaches its target target, it should avoid 

regions 𝜋1, 𝜋2 ⋅⋅⋅ 𝜋𝑛.  

 Non-strict Sequencing: the LTL formula 𝐹(𝜋1 ∧ 𝐹(𝜋2 ∧ 𝐹(𝜋3))) specifies that 

the robot should reach region 𝜋1, 𝜋2, and 𝜋3 in that order (without preceding 

sequences like 𝜋1, 𝜋3, 𝜋2, 𝜋3. 

It has been proven that any LTL formula can be converted to Büchi automaton [21] 

defined as: 

𝐵 ≔ (𝑆𝐵, 𝑆𝐵0, 𝑇𝐵, Σ𝐵, 𝐹𝐵) 

where 𝑆𝐵 is the set of states, 𝑆𝐵0 is the set of initial states, 𝑇𝐵 ⊆ 𝑆𝐵 × Σ𝐵 × 𝑆𝐵 is the non-

deterministic transition function, Σ𝐵  is the input alphabet, and 𝐹𝐵 ⊆ 𝑆𝐵  is the set of 

accepting states. There are already several publicly available tools that can achieve this like 
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ltl2ba [22]. Figure 3 shows the generated Büchi  automaton using 𝑙𝑡𝑙2𝑏𝑎  from LTL 

formula:  

𝜙𝑙 = 𝑮𝑭 𝑝ℎ𝑜𝑡𝑜 ∧ 𝑮 (𝑝ℎ𝑜𝑡𝑜 ⇒ 𝑿 𝑢𝑝𝑙𝑜𝑎𝑑) ∧ 𝑮(𝑢𝑝𝑙𝑜𝑎𝑑 ⇒ 𝑿 𝑝ℎ𝑜𝑡𝑜)  (8) 

where the request 𝑝ℎ𝑜𝑡𝑜 lies in cell (3,1) and the request 𝑢𝑝𝑙𝑜𝑎𝑑 lies in cell (5,10), as it is 

shown in Figure 2. 

 

Figure 2  An Environment for Formula 8 

 

Figure 3 Buchi Automaton Captured from Formula 8 
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A common and proven method to use LTL as planning tool is to form the product 

automaton P from the product of the Büchi automaton B and a weighted transition system 

T. The weighted transition system T can be defined as: 

𝑇 ≔ (𝑆𝑇 , 𝑠𝑇0, 𝑇𝑇 , ℎ𝑇 , 𝑤𝑇) 

where 𝑆𝑇 is the set of discrete states, 𝑠𝑇0 is the initial state, 𝑇𝑇 ⊆ 𝑆𝑇 × 𝑆𝑇 is the transition 

function, ℎ𝑇 ∶  𝑆𝑇 → 2Π is the labeling function giving a state the corresponding atomic 

propositions, and 𝑤𝑇: 𝑇𝑇 → ℕ  is the function assigning non-negative weight to each 

transition. The product automaton P can be defined as: 

𝑃 ≔ 𝐵⊗ 𝑇 = (𝑆𝑃, 𝑆𝑝0, 𝑇𝑃, 𝑤𝑃, 𝐹𝑃) 

where 𝑆𝑝 ⊆ 𝑆𝑇 × 𝑆𝐵  is the set of states, 𝑆𝑝0  is the set of initial state that 

{(𝑠𝑇 , 𝑠𝐵)|(𝑠𝐵, ℎ𝑇(𝑠𝑇), 𝑠𝐵
′ ) ∈ 𝑇𝐵, 𝑠𝐵 ∈ 𝑆𝐵0, 𝑠𝑇 ∈ 𝑆𝑇0} , 𝑇𝑝 = {((𝑠𝑇 , 𝑠𝐵), (𝑠𝑇

′ , 𝑠𝐵
′ ))|(𝑠𝑇, 𝑠𝑇

′ ) ∈

𝑇𝑇 , (𝑠𝐵, 𝑠𝐵
′ ) ∈ 𝑇𝐵} is the transition function, 𝑤𝑃 = 𝑤𝑇(𝑞𝑇 , 𝑞𝑡′) is the weight function, and 

𝐹𝑃 = {(𝑠𝑇 , 𝑠𝐵)|𝑠𝐵 ∈ 𝐹𝐵} is the set of accepting states. This way, the product transition 

automaton captures both the mission specification information and transition information. 

Figure 3 shows the Büchi automaton generated from the LTL formula 8. Planning based 

on P will satisfy the requirements of both the LTL formula and the transition system.  

Figure 4 shows the global transition system in which the weight of transition is the smallest 

manhattan distance and Figure 5 is its product with the previous Buchi automaton. Figure 

3, Figure 4, and Figure 5 are obtained from the codes that come with [7].  
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Figure 4 Global Transition System for Environment in Figure 2 

 

Figure 5 Global Product Transition System Based on Equation 9 and Figure 4 
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2.5  Approximate Simulation Relations 

Approximate simulation relations, as it was introduced in [23] and [24], allows to 

characterize a simple approximate system from the actual complex system that can be used 

to simplify the controller design. The approximate system can be lifted to the actual system 

through an interface function characterized by a simulation function and the errors between 

the trajectories of the two systems are guaranteed to be bounded. A detailed discussion and 

applications can be found in [25], [24], and [26]. Methodologies for designing such 

interfaces are described in [27].  

Generally, systems using approximate simulation relations contain at least two 

layers. The first layer is an abstract model which is a simplified version of the real system 

that is used to meet the high-level specifications. The second layer is a higher fidelity model 

that is closer to the real system. Considering the following two models: 

Σ: {
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = ℎ(𝑥(𝑡))
 

where 𝑥(𝑡) ∈ 𝑋 ⊆ ℝ𝑛  is the state of the system, 𝑋𝐼 is the set of initial states and 𝑥(0) ∈

𝑋𝐼 , 𝑢(𝑡) ∈ 𝑈 ⊆ ℝ
𝑞  is the input of the system, 𝑦(𝑡) ∈ 𝑌 ⊆ ℝ𝑘 is the output of the system 

and 

Σ′: {
�̇�(𝑡) = 𝑔(𝑧(𝑡), 𝑣(𝑡))

𝑦′(𝑡) = 𝑘(𝑧(𝑡))
 

where 𝑧(𝑡) ∈ 𝑍 ⊆ ℝ𝑚, 𝑍𝐼 is the set of initial states of the abstract system and 𝑧(0) ∈ 𝑍𝐼, 

 𝑣(𝑡) ∈ 𝑉 ⊆ ℝ𝑝 is the input of the system and , 𝑦′(𝑡) ∈ 𝑌 ⊆ ℝ𝑘 is the output of the system. 
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To apply approximate simulation relations, Σ′ must be a complete approximate 

subsystem of precision δ of Σ. A complete subsystem can be defined as follows: for any 

initial state such that 𝑥(0) = 𝑥0 𝜖 𝑋𝐼 of Σ, there is an initial state 𝑧(0) = 𝑧0 𝜖 𝑍𝐼 of Σ’ such 

that for every state trajectory 𝑧(𝑡) starting at 𝑧0 of Σ’, there always exists a state trajectory 

𝑥(𝑡) of Σ starting at 𝑥0 satisfying ‖ℎ(𝑥(𝑡) − 𝑘(𝑧(𝑡))‖ ≤ 𝛿 for all 𝑡 ≥ 0. 

The approximate simulation relations can be defined as follows: 

Definition 1:  A relation ℛ ⊆ ℝ𝑚 × ℝ𝑛 is an approximate simulation relation of precision 

𝛿 between Σ′ and Σ if for all (𝑧0, 𝑥0) ∈ ℛ, 

1) ‖ℎ(𝑥0) − 𝑘(𝑧0)‖ ≤ 𝛿 

2) For any state trajectory 𝑧(𝑡) of Σ′ starting at 𝑧(0) = 𝑧0 there exists a state trajectory 

𝑥(𝑡) of Σ starting at 𝑥(0) = 𝑥0 and satisfying:  ∀t ≥ 0, (𝑥(𝑡), 𝑧(𝑡)) ∈ ℛ. 

Such approximate simulation relations can be achieved by using a class of functions 

called simulation functions [12]. A simulation function is a non-increasing positive 

function that bounds the distance between the trajectories of Σ and Σ′. 

Definition 2:  A function 𝑉 ∶  ℝ𝑚 × ℝ𝑛  →  ℝ+ is a simulation function between Σ and Σ’ 

for all (𝑧, 𝑥) ∈ ℝ𝑚 × ℝ𝑛 that satisfies: 

𝑉(𝑧, 𝑥) ≥ ‖𝑘(𝑧) − ℎ(𝑥)‖, and 

sup
𝑣∈𝑉 

inf
𝑢∈𝑈 

(�̇�(𝑥(𝑡), 𝑧(𝑡))) =  sup
𝑣∈𝑉 

inf
𝑢∈𝑈 

(
𝜕𝑉(𝑧, 𝑥)

𝜕𝑧
𝑔(𝑧, 𝑣) +

𝜕𝑉(𝑧, 𝑥)

𝜕𝑥
𝑓(𝑥, 𝑢)) ≤ 0 
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This definition can be interpreted as follows: 𝑣(𝑡)  can be considered as a 

disturbance signal and 𝑢(𝑡) as a control signal, then for any disturbance signal, there can 

always be a control signal that the simulation function is non-increasing. Knowledge of 

𝑣(𝑡) can be used to construct 𝑢(𝑡). Fainekos at el in [27] present a method using the 

knowledge of 𝑣(𝑡), 𝑧(𝑡), and 𝑥(𝑡) to form an interface that achieves a maximum tracking 

error bounded by 2𝑣𝑚𝑎𝑥 where  𝑣𝑚𝑎𝑥 is the maximum value of 𝑣(𝑡). This work will be 

reviewed with details later in Section 3. 

Then, since 

‖𝑘(𝑧0) − ℎ(𝑥0)‖ ≤ √𝑉(𝑧0, 𝑥0) ≤ 𝛿, (𝑧0, 𝑥0) ∈ ℛ. 

it can be inferred that a relation defined by 

ℛ = {(𝑧, 𝑥) ∈  ℝ𝑚 ×ℝ𝑛 |𝑉(𝑧, 𝑥) ≤  𝛿2} 

is also an approximate relation of precision 𝛿 between Σ′ and Σ.  
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CHAPTER 3 

RELATED WORK 

This thesis describes a framework that aims to solve the problem of controlling a quadrotor 

modeled by second-order dynamics to satisfy specifications expressed in linear temporal 

logic. There is already a lot of related work that solves part of the problem.  This section 

reviews some previous works that are closely related or directly used in this thesis.  

3.1 Temporal Logic Motion Planning for Dynamic Robots 

Fainekos et al in [3] presented a framework solving the problem of temporal logic motion 

planning for general ground robots modeled by second order dynamics using approximate 

relations and Temporal Logic over the Reals (RTL) [28].  

Consider a second-order dynamic model of a ground robot Σ𝑟 described as: 

Σ𝑟: {
�̇�(𝑡) = 𝑦(𝑡), 𝑥(𝑡) ∈ 𝑋, 𝑥(0) ∈ 𝑋0

�̇�(𝑡) = 𝑢(𝑡), 𝑦(𝑡) ∈ ℝ2, 𝑦(0) = [0 0]𝑇
 

where 𝑥(𝑡) is the position of the robot, 𝑦(𝑡) is its velocity, and 𝑢(𝑡) is the input command, 

which is also robot’s acceleration, and 𝑢(𝑡) ∈ 𝑈 = {𝜇 ∈ ℝ2|‖𝜇‖ ≤ 𝑢𝑚𝑎𝑥}. Its states are 

defined as 𝜃(𝑡) = [𝑥𝑇(𝑡)  𝑦𝑇(𝑡)]𝑇. Then they defined the following notation: 

�̇�(𝑡) = 𝐴𝜃(𝑡) + 𝐵𝑢(𝑡), 𝑥(𝑡) = 𝐶𝑥𝜃(𝑡), 𝑦(𝑡) = 𝐶𝑦𝜃(𝑡). 

Also, consider an abstracted first-order kinematic model Σ𝑟′: 

Σ𝑟
′ : �̇�(𝑡) = 𝑣(𝑡), 𝑡 ≥ 0, 𝑧(0) ∈ 𝑍0 
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where 𝑧(𝑡) ∈ 𝑍 ⊆ ℝ2 is the position of the robot in this kinematic model, and 𝑣(𝑡) ∈ 𝑉 =

{𝓋 ∈ ℝ2|‖𝓋‖ ≤ 𝑣𝑚𝑎𝑥} is its input representing its velocity. 

Then they proposed an interface function and a simulation function that Σ𝑟′ is an 

approximate relation to Σ𝑟 with bounded error proportional to 𝑣𝑚𝑎𝑥. 

Suppose 𝛼 satisfies the following inequation: 

𝑣𝑚𝑎𝑥

2
(1 + |1 −

1

𝛼
| +

2

√𝛼
) ≤ 𝑢𝑚𝑎𝑥 , 𝛼 > 0 . 

Then, the approximate relation given by: 

𝒱 = {(𝑧, 𝜃) ∈ ℝ2 ×ℝ4|𝒮(𝑧, 𝜃) ≤ 4𝓋𝑚𝑎𝑥
2 } 

is an approximate relation of precision 2 𝑣𝑚𝑎𝑥  between Σ𝑟′  and Σ𝑟 . 𝒮(𝑧, 𝜃) =

max (𝒬(𝑧, 𝜃), 4𝑣𝑚𝑎𝑥
2 ) where 

𝒬(𝑧, 𝜃) =  ‖𝐶𝑥𝜃 − 𝑧‖
2 + 𝛼‖𝐶𝑥𝜃 − 𝑧 + 2𝐶𝑦𝜃‖

2
. 

 Then, function 

𝑢𝑟(𝑣, 𝑧, 𝜃) =
𝑣

2
+
−1 − 𝛼

4𝛼
(𝐶𝑥𝜃 − 𝑧) − 𝐶𝑦𝜃 

is the associated interface function.  

One of the most valuable part of this conclusion is that the maximum tracking error 

between the dynamic model and the kinematic model is bounded to two times the 

maximum velocity of the kinematic model. This means that the tracking accuracy can be 

improved by reducing the kinematic model’s maximum velocity. Also, the tracking error 
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will grow together with robot’s velocity, forcing designers to make a trade-off between 

speed and accuracy. 

3.2  Receding Horizon Planning 

Ulusoy and Belta in [7] present a new kind of receding horizon planner for automatically 

controlling a robot satisfying both the global and local mission specifications. Consider a 

decomposed environment ℰ defined as: 

ℰ = (𝒞, 𝒮, ℒ𝑠 , 𝒟, ℒ𝑑(𝑡)) 

where 𝒞 = {𝑐𝑥,𝑦,𝑧 |0 ≤ 𝑥 <  𝑝, 0 ≤ 𝑦 < 𝑞, 0 ≤ 𝑧 < 𝑟} is a 𝑝 × 𝑞 × 𝑟 matrix of cubic cells, 

𝒮 is the set of global static requests, ℒ𝑠: 𝒞 → 𝒮 is a map from a cubic cell to global static 

requests located in this cell, 𝒟 is the set of local dynamic requests, and ℒ𝑑(𝑡): 𝒞 → 𝒟 is a 

time-varying map from a cubic cell to local dynamic requests occurred in this cell at the 

time t. The global mission specification 𝜙𝑔 is expressed in LTL and is defined over the set 

of global static request 𝒮 defined in ℰ, it dictates the global motion of the robot in the 

environment. The local mission specification consists of a priority function 𝑝𝑟𝑖𝑜: 𝒟 → ℕ 

where lower number means higher priority, and a regular expression 𝜙𝑙 over the set of 

local dynamic request 𝒟, it specifies how the vehicle should respond to the local dynamic 

requests detected within the sensor range. The generated trajectory by this method is 

guaranteed to be shortest in manhattan distance if the target is within the sensor range or 

there is no obstacle between current position and target. Figure 6 demonstrates its execution 

procedure. 
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Figure 6 Execution Process of the Receding Horizon LTL Planning Algorithm 

In Figure 6, the algorithm first translates the LTL formula 𝜙𝑔 to a Buchi automaton 

B. Then, it takes the product of the Buchi automaton B with the global transition system T 

to generate a global product automaton G, which captures the motion between cells with 

global requests and global mission specifications. Then, a local transition system U which 

covers areas within the sensor range is constructed and a local path within U is calculated 

which satisfies both the global mission specification and the local mission specifications, 
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and is able to avoid the unsafe areas detected in U. It will first serve the local requests with 

the highest priority if there are any, then head to the closest global request cell if it is in the 

sensor range, or head to a cell on the border of the sensor range that has the minimum sum 

of real distance and heuristic distance. Here, the real distance is the distance between the 

current position and the target border cell, and the heuristic manhattan distance is between 

the border cell and the next global target.  

The receding horizon method generates a local discrete trajectory instead of just the 

next neighboring cell, which will be helpful when generating a continuous trajectory from 

it (we will show this in the next section). Also, its computation does not rely on all the 

global environment data, but only on environment data within its sensor range. These are 

very desirable properties when flying UAVs in real world where the environment data is 

enormous and the computation power is limited.  

As the sensor range is limited when compared to the size of the global environment, 

it is possible that there is no satisfying local discrete plan within the sensor range. This 

problem is not handled in the current theory as presented in [7], as it is demonstrated in 

Figure 7 and Figure 8. 
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Figure 7 Situation with no Valid Local Plan 

 

Figure 8 Situation with no Valid Local Plan 

In Figure 7, the grid is the local planning area with distance 3 and the blue cell is 

the next global target. The shown local path calculated by the local planner with the 
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minimum sum of the real distance (the red arrow) and heuristic distance (green arrow) is 

not valid while there is a feasible alternative plan (brown arrow) that the local planer cannot 

find. Then, the quadrotor moves to the right cell, as in Figure 8 and then it has to re-plan.  

A problem is raised here that there are two local plans with the same summation of real 

distance and heuristic distance. Thus the behavior of this algorithm is nondeterministic. If 

it chose to go left, it will go back to the situation in Figure 7 and get trapped in a live-lock 

situation and cannot move forward. 

One solution to handle this is by adding a higher-level resolver with global 

environment information. As the calculation of such a resolver will involve global 

environment data, it should not be called too frequently, it will only be called when local 

planning has reached to a live-lock situation. 

Another solution is to increase the the environment’s resolution. As it is mentioned 

before, the environment is decomposed into cubic cells which will inevitably lose some 

geometric data. A solid obstacle in a coarsely decomposed environment may found 

“apertures” if the decomposition resolution is increased. This will be shown in detail in 

Section 5.3. 
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CHAPTER 4 

PROBLEM FORMULATION 

Consider a non-linear quadrotor model Σ𝑞  and the corresponding feedback linearized 

concrete model Σ, as it is described in Section 2.1 and 2.2, and a decomposed environment  

ℰ = (𝒞, 𝒮, ℒ𝑠 , 𝒟, ℒ𝑑(𝑡)) 

where 𝒞 = {𝑐𝑥,𝑦,𝑧 |0 ≤ 𝑥 ≤ 𝑝, 0 ≤ 𝑦 ≤ 𝑞, 0 ≤ 𝑧 ≤ 𝑟}  is an 𝑝 × 𝑞 × 𝑟  matrix of cubic 

cells, 𝒮 is the set of static requests, ℒ𝑠: 𝒞 → 𝒮 is a map from a cubic cell to static requests 

located in this cell, 𝒟 is the set of dynamic requests, and ℒ𝑑(𝑡): 𝒞 → 𝒟 is a time-varying 

map from a cubic cell to dynamic requests occurred in this cell at the time t. The 

construction of the linearized concrete model Σ will be described in detail in later section. 

The goal of this thesis is to design a hierarchical hybrid controller that generate 

control signal 𝑢(𝑡) for Σ such that its resulting state trajectory 𝑥(𝑡) satisfies both the global 

mission specification 𝜙𝑔 expressed in LTL and local specifications 𝜙𝑙 that is the same as 

defined in Section 3.2.  

A hierarchical synthesis approach is used to achieve this objective. The hierarchical 

structure consists of a high-level planner that generates discrete plans satisfying all global 

and local specifications, a low-level controller handling continuous controls that makes 

sure its output could track the input command, and a synthesis framework using the 

approximate simulation relation method which guarantees the trajectory of the concrete 

model Σ can track its abstracted kinematic model Σ′ with a bounded error. 
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Thus, the problem can be described as follows: Given an environment ℰ, a non-

linear model 𝛴𝑞 of a quadrotor, global requirement 𝜙𝑔 and local requirement 𝜙𝑙, design 

a hierarchical hybrid controller for 𝛴𝑞  such that its trajectories satisfy all the 

specifications. 

The following example is based on the example in [7] but extended to 3D 

environment with more complexed obstacles, as it is shown in Figure 9. 

 

Figure 9 A Surveillance Environment 

In Figure 9, the green cells are global requests which include 𝑝ℎ𝑜𝑡𝑜 in cell (3,1,2) 

and 𝑢𝑝𝑙𝑜𝑎𝑑  in cell (9,13,5) respectively, the yellow cell is the local dynamic request 

𝑎𝑠𝑠𝑖𝑠𝑡 in cell (5,10,1), the cyan cell is the local dynamic request 𝑒𝑥𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ in cell (7,8,1), 

and the grey cells are the obstacles. The global static mission specification is the same as 

Formula 8 and the local dynamic request is defined as: 

𝜙𝑙 ≔ (𝑒𝑥𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ|𝑎𝑠𝑠𝑖𝑠𝑡)∗, 𝑝𝑟𝑖𝑜(𝑎𝑠𝑠𝑖𝑠𝑡) = 1, 𝑝𝑟𝑖𝑜(𝑒𝑥𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ = 0) (9) 
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which can be interpreted as: Serve the assist and extinguish requirement if they are detected 

within the sensor range and extinguish has higher priority than assist.  
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CHAPTER 5 

HIERARCHICAL HYBRID CONTROLLER DESIGN 

This chapter presents and analyzes the design of a hierarchical hybrid controller following 

the approaches described in Sections 2.3 and 2.5 as well as how it is adapted to control a 

quadrotor which is a complex non-linear system. Another design based on traditional PID 

controller is also presented. Their performance comparison will be shown in Section 6.2. 

5.1  Controller Based on PID Algorithm 

Constructing controllers for complex physical systems have been one of the biggest 

challenges in the area of motion planning. There have been a lot of proposed solutions to 

achieve this goal and PID control has become one of the most popular control algorithms 

in the past decades due to its simplicity and efficiency. According to [29], 90% of industrial 

controllers are based on the PID algorithm.  

The advantage of PID control is that it does not require much knowledge of the 

control target. The design and parameter tuning can be done by analyzing the input and 

output of the target system. The recent booming of “plug-and-play” PID controllers and 

automated parameter optimization tools have made it even more convenient to use PID 

control [30].  

Figure 10 presents the block diagram of the structure of a PID control system for a 

quadrotor. In the block diagram, Σ𝑞 is the non-linear model of the quadrotor described by 

Equation 3, 𝑟 is the position of the quadrotor and 𝑢1, 𝑢2, 𝑢3, 𝑢4 are the input to Σ𝑞. The 

receding horizon LTL planner 𝑃𝑅𝐻 is based on the algorithm presented in Section 3.2 and 
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𝑣 is the calculated output of the planner by constructing local multi-affine vector fields as 

it is shown in Section 2.3. The calculated  𝑣 , representing the desired velocity of the 

quadrotor, serves as the input to the kinematic model Σ𝑘 of the quadrotor defined as:  

Σk: {
�̇�𝑘(𝑡) = 𝐴𝑘𝑥𝑘(𝑡) + 𝐵𝑘𝑣𝑘(𝑡)

𝑦𝑘(𝑡) = 𝐶𝑘𝑥𝑘(𝑡) + 𝐷𝑘𝑣𝑘(𝑡)
 (10) 

where 𝑥𝑘(𝑡) ∈ 𝑋𝑘0 ⊆ ℝ3 is the position vector in the 3D environment for this kinematic 

model, 𝑣𝑘(𝑡) ∈ 𝑉 = {𝓋 ∈  ℝ
3|‖𝓋‖ ≤  𝑣𝑚𝑎𝑥}  is the input velocity for this system, 

𝑦𝑘(𝑡) ∈ 𝑋𝑘0 ⊆ ℝ
3 is the output, and 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 are defined as follows: 

𝐴𝑘 = [
0 0 0
0 0 0
0 0 0

] , 𝐵𝑘 = [
1 0 0
0 1 0
0 0 1

] 𝐶𝑘 = [
1 0 0
0 1 0
0 0 1

]𝐷𝑘 = [
0 0 0
0 0 0
0 0 0

] 

It is already proven in [17] that the output trajectory 𝑦𝑘(𝑡) of Σ𝑘 is guaranteed to satisfy 

the mission specification in the planner 𝑃𝑅𝐻. 

PID Controller

Quadrotor Kinematic 
Model 

Non-linear Quadrotor 
Plant

Receding Horizon LTL 
Planner

-

+

-

+

 

Figure 10 PID Controller Block Diagram 

Then, 𝑒𝑟 = [𝑒𝑥, 𝑒𝑦, 𝑒𝑧]
𝑇
, which is the tracking error between the position of Σ𝑞 and 

Σ𝑘, and 𝑒𝜓, which is the error between the yaw angle 𝜓 in Σ𝑞 and the reference yaw angle 
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𝑟𝜓, are fed into the PID controller. Here, 𝑟𝜓 is set to 0 in this work because there is no 

requirement on the yaw angle and this do not have any effect on the quadrotor’s position 

control [11]. However, it is fully capable of tracking reference command if it is necessary 

in future works. The output of the PID controller is calculated using the following equations: 

{
 
 
 
 

 
 
 
 𝑢1 = 𝑘𝑝𝑧𝑒𝑧 + 𝑘𝑑𝑧 �̇�𝑧 + 𝑘𝑖𝑧∫𝑒𝑧𝑑𝑡

𝑢2 = 𝑘𝑝𝑦𝑒𝑦 + 𝑘𝑑𝑦 �̇�𝑦 + 𝑘𝑖𝑦∫𝑒𝑦𝑑𝑡

𝑢3 = 𝑘𝑝𝑥𝑒𝑥 + 𝑘𝑑𝑥 �̇�𝑥 + 𝑘𝑖𝑥∫𝑒𝑥𝑑𝑡

𝑢4 = 𝑘𝑝𝜓𝑒𝜓 + 𝑘𝑑𝜓 �̇�𝜓 + 𝑘𝑖𝜓∫𝑒𝜓𝑑𝑡

 

where 𝑘𝑝∗ ,∗= {𝑥, 𝑦, 𝑧, 𝜓}, are the PID parameters. With the help of the Simulink Design 

Optimization toolbox [31] in MATLAB/Simulink, tuning these parameters has become a 

much easier job. The PID parameters are trained by having the quadrotor’s non-linear 

model tracking a ramp signal, which simulates the controller’s work situations where it has 

to track the trajectory of the quadrotor’s abstract model Σ𝑘 that flies with constant velocity. 

Section 6.2 contains more details of the optimization and the results can be found in       

Table 1.  

5.2  Hierarchical Hybrid Controller 

Although the PID control algorithm is easy to use, it does not give any formal guarantee 

on its dynamic tracking error which is crucial for safety. It is believed in this work that a 

hierarchical controller, as it is proposed and applied in [24] and [27], will give better 

performance and guarantee for safety. In this work, progress are made towards that 

direction. Namely, It is established here that if the hierarchical controller in [27] is used, 
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then experimentally better performance can be achieved than the PID architecture in 

Section 5.1.  

Hierarchical control design has been proven to be an efficient approach for 

controlling complex non-linear systems. The advantage of the hierarchical structure is that 

each layer handles a simpler local problem coordinated by higher layers which will not 

override its decisions. This way, a complex problem is broken into a series of simpler 

problems and organized in a hierarchical structure.  The hierarchical structure of this work 

is very similar to the approach in [27], but extended to controlling quadrotors. The 

hierarchical control architecture is shown in Figure 11.  

Abstract Model 
 

Receding Horizon LTL   
Planner     

Interface 

Non-Linear Quadrotor 
Plant

Low-Level 
Controllers 

 

Figure 11 Hierarchical Structure 

There are two layers in this hierarchical structure. 
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The first layer includes a receding horizon LTL planner 𝑃𝑅𝐻 as proposed in [7] and 

an abstract kinematic model of the quadrotor Σ𝑘 as in Equation 9. The reason of adding an 

extra abstract model is to simplify the planning problem which otherwise is an undecidable 

problem, in general. These two parts are exactly the same with those in Section 5.1.  

The following is an interface function  𝑓𝑖  that takes the actual position of the 

quadrotor 𝑟, the position in the kinematic model 𝑦𝑘 , and the desired velocity from the 

vector field 𝑣  as input and computes the desired acceleration vector 𝑢𝑎  as output. The 

generated acceleration vector 𝑢𝑎  serves as the input to the next layer. The interface 

function 𝑓𝑖  is used as computed in [27], which means that for a second order dynamic 

model with  �̈� = 𝑢𝑎 the tracking error ‖𝑟 − 𝑦𝑘‖ is bounded by 2𝑣𝑚𝑎𝑥. Note though that 

the interface function 𝑓𝑖 should be computed as described in [24]. Here, this work shows 

that the interface from [27] still achieves good experimental performance, albeit without 

formal guarantees. These three parts forms the hybrid controller 𝐻ℎ𝑏. 

The second layer consists of a series of low-level controllers and the non-linear 

quadrotor plant. In [27], the concrete model is a second-order dynamic model taking the 

acceleration command as input directly, which assumes that the acceleration could change 

immediately. This works for low-speed ground vehicles since the time duration that the 

torque is applied to the wheels is short enough to be ignored. But for a quadrotor, this 

assumption can no longer hold as the acceleration control is achieved by attitude control 

which has longer time constant. Thus, extra controllers are needed to achieve the desired 

acceleration command 𝑢𝑎 from the interface function, as it is shown in Figure 12. 
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Hierarchical Hybrid 
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Non-linear Quadrotor Plant
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Figure 12 Low-level Controllers 

Here, the hybrid controller 𝐻ℎ𝑏 is the part in the dashed rectangle in Figure 11, 𝑇 

is the transformation function that transfers the given acceleration vector 𝑢𝑎  into the 

corresponding desired orientation angles 𝜙𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠, 𝜓𝑑𝑒𝑠  and total thrust 𝑢1 . Assuming 

that the desired yaw angle 𝜓𝑑𝑒𝑠  is 0, the relationship between 𝑢𝑎 , 𝑢1, and  the desired 

orientation angles at static state can be described by the following equation [11]: 
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𝑢𝑎 = [𝑢𝑎𝑥, 𝑢𝑎𝑦, 𝑢𝑎𝑧]
𝑇
=

[
 
 
 
 

𝑢1 𝑠𝑖𝑛(𝜃𝑑𝑒𝑠) 𝑐𝑜𝑠(𝜑𝑑𝑒𝑠)

𝑚
𝑢1𝑠𝑖𝑛 (𝜑𝑑𝑒𝑠)

𝑚
𝑢1 𝑐𝑜𝑠(𝜃𝑑𝑒𝑠) 𝑐𝑜𝑠(𝜑𝑑𝑒𝑠)

𝑚
− 𝑔]

 
 
 
 

 (10) 

where 𝑔 is the gravity acceleration and 𝑚 is the mass of the quadrotor. Given the desired 

acceleration and current orientation angles, 𝑢1 and the desired orientation angles can be 

calculated using the following equations: 

{
 
 
 

 
 
 𝜙𝑑𝑒𝑠 = atan (

𝑢𝑎𝑦

𝑢𝑎𝑧 + 𝑔
)

𝜃𝑑𝑒𝑠 = atan (
𝑢𝑎𝑥

(𝑢𝑎𝑧 + 𝑔)/cos(𝜙𝑑𝑒𝑠)
)

𝜓𝑑𝑒𝑠 = 0

𝑢1 =
(𝑢𝑎𝑧 + 𝑔) ∗ 𝑚

cos(𝜙) ∗ cos(𝜃)

 

Where 𝜙 and 𝜃 are current roll and pitch angles. Function 1 is the corresponding Matlab 

implementation: 

Function 1: Transfer an acceleration vector to corresponding 𝒖𝟏, 𝝓𝒅𝒆𝒔, 𝜽𝒅𝒆𝒔, 𝝍𝒅𝒆𝒔 

1 function [phi, theta, psi, u1]= fcnT(ax,ay,az,cur_phi, cur_theta) 

2     g=9.81; 

3     M=4; 

4     phi=atan(ay/(az+g)); 

5 theta = atan(ax/((az+g)/cos(phi))); 

 

 

6 psi = 0 

7     u1=(az+g)*M/(cos(cur_phi)*cos(cur_theta)); 

 

where variable phi, theta, psi, and u1 represent the desired row, pitch yaw, and overall 

thrust respectively, ax, ay, and az are components of 𝑢𝑎, cur_phi, and cur_theta are the 

current row and pitch angles. As the yaw angle does not has any impact on the position 

control of a quadrotor and to simplify the analysis, the yaw angle is set to 0 throughout this 
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work. Also, in line 7, u1 is calculated using the current row and pitch angle instead of the 

desired angles. This is to ensure the dynamic stability of the control on the z-axis as the 

actual orientation angles cannot converge to the desired angles immediately. 

Then, the calculated 𝑢1 is directly fed to the non-linear quadrotor plant, 𝜙𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠, 

and 𝜓𝑑𝑒𝑠 are used to calculate 𝑒𝑝 which is the difference between the desired angles and 

current angles. Then, the attitude controller takes 𝑒𝑝 as input to calculate the feedback-

linearized inputs 𝑢2
∗ , 𝑢3

∗ , 𝑎𝑛𝑑 𝑢4
∗ , as it is shown in Equation (4) and (6). In the end, the rest 

of the control signals 𝑢2, 𝑢3,  and 𝑢4  are calculated through the feedback linearization 

controller based on Equation 5. 

One crucial issue that must be mentioned here is that the interface function 𝑓𝑖 is 

utilized here in order to make the second-order dynamic model being able to track the 

corresponding kinematic model with a bounded error. But for the design described in this 

section, the existence of the non-linear transformation function T makes the whole system 

non-linear (the feedback linearization is only done for the nested attitude control). These 

controllers can only make the system behave like a second-order dynamic system by 

adjusting the quadrotor’s orientation angles and thrust to follow the acceleration command, 

which will add extra dynamics to the system. Thus, for this design, the established bound 

in [27] is not theoretically guaranteed. The actual tracking error will be analyzed through 

simulation results in Chapter 6. 

5.3  Local Plan Resolver 

In the receding horizon method, a local plan within the quadrotor’s sensor range needs to 

be calculated. The target of the local plan is either a global request cell in 𝑃, if it is within 
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the sensor range, or the cell that has the closest heuristic manhattan distance. But it is 

possible that there is no such trajectory that leads to that target. Figure 13 shows this 

situation. 

 

Figure 13 Situation when no Local Plan is Found 

This is caused by the limited resolution of the environment ℰ which results in some 

geometric data being lost. Thus, one possible solution is to increase the resolution in order 

to try to find a trajectory to the target. Figure 14 shows such an example. 

 

Figure 14 Path Found after Increasing Partition Resolution 
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The environment’s resolution will be reduced after the quadrotor has reached the 

new target. As the new target in the high resolution environment is a subset of the old target 

in the original environment, the receding horizon planner can resume execution. 

The advantage of this design is that it gives more flexibility to the trade-off problem 

between speed and safety that is mentioned in Section 2.5. The use of the approximate 

simulation relations method brings a bound for the tracking error, which is an important 

property for safety. By enlarging the obstacles, the value of this bound will ensure that the 

quadrotor will not hit the obstacles. Also, as the bound is proportional to the maximum 

planned velocity, it becomes possible to make sure that the continuous trajectory satisfies 

the mission specification in the planner by adjusting the velocity. The quadrotor can fly 

faster when there is more open space and fly slower when there is higher resolution and 

many obstacles to improve accuracy and safety. 

5.4  Putting Everything Together 

At this point, the design has a receding horizon planner, a continuous controller for the 

quadrotor and a synthesis framework using the approximate simulation relation method. 

Now it’s time to put all these parts together to make them work with each other. One main 

challenge is that both the planner and the continuous controller need to check and calculate 

commands frequently, thus they should work in parallel. Algorithm 1 and Algorithm2 

demonstrate the work procedure of the implementation in pseudocode. 

Algorithm 1: System Initialization 

1 Fetch the environment  env 

2 Fetch the quadrotor configuration quad 

3 Construct the global transition system, Buchi 

automaton, and product automaton 
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4 Construct quadrotor controller quad_controller using 

env, quad 5  

6 //State variable initialization 

7 cid = initial cell id 

8 state = initial quadrotor state // can be: fly, hover, 

error 9 route = None 

10 fly_mode = normal 

 

Algorithm 2: Main Control Loop 

1 System Initialization() 

2 while true: 

3     cid=quad_controller.get_cell() 

4     if route is None or cid is not route[0]: 

6         if route[0] or route[1] is high resolution 

cell: 7             //Switch to high-resolution mode 

8             fly_mode = slow 

9             quad.env, planner.env = 

env.high_resolution_env 10             route = planner.genPlan() 

11         else: 

12             //Switch to normal mode 

13             fly_mode = normal 

14             quad.env, planner.env = env.normal_env() 

15             route = planner.genPlan() 

16         //Check validation 

17         if route is None: 

18             state = error 

19             break; 

20     if fly_mode is slow:  

21         quad_controller.velocity = slow 

22     else: 

23         quad_controller.velocity = normal 

24     quad_controller.fly_route(route) 

 

Algorithm 1 handles the initialization of state variables, the environment, and the 

controller. The off-line calculation of the Buchi automaton, global transition system and 

global product transition system are also done at this stage. 
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Algorithm 2 demonstrates the high-level controller that handles different situations. 

As calling a receding horizon method to update the plan consumes much more computation 

power (generating local transition system, checking the global product system, and calling 

Dijkstra’s algorithm to calculate a local path), it is only called when the quadrotor enters a 

new cell. To achieve fast velocity while ensuring safety, the environment has two 

decomposition systems, the normal environment and high-resolution environment. The 

high-resolution environment is only activated when at least one of the first two cells 

contains a higher resolution decomposition. Otherwise, the environment will switch back 

to the normal decomposition. 

As it was presented before, the receding horizon method cannot guarantee that the 

generated path is valid and it will fail in two scenarios: the established target within the 

sensor range is not reachable and the established target leads the quadrotor to “linger” 

around. This is due to the limited range of its sensor which could not look far enough to 

find a better solution. One way to solve this problem is to conduct a global trajectory 

planning using A* algorithm. As it was mentioned in the previous section, one advantage 

of using the receding horizon method is that it does not rely on the global data for planning. 

Thus, the global trajectory planning is only called when there is no valid local plan that 

could make progress. Before calling the global trajectory planner, the distance between the 

local target and the nearest next target in 𝑃 will be recorded as d*.  The quadrotor will 

follow the global trajectory until its distance to the next target in 𝑃 is smaller than d*, which 

means that quadrotor has moved out of the “trap” where it cannot find a valid local plan. 

Note that when the quadrotor is following the global trajectory, it cannot react to local 

dynamic requests.  
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Here, one problem that still remains open is the detection of the failure of receding 

horizon LTL algorithm. Based on current observations, the quadrotor can be trapped in a 

live-lock situation that move back and forth. But this is not theoretically proved and there 

can be other situation as well. For this reason, this problem is not yet solved in this work. 
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CHAPTER 6 

IMPLEMENTATION AND SIMULATION 

This section will describe the implementation of the design in Section 5.2 and make 

comparison with the PID only approach in Section 5.1 in order to demonstrate the benefits 

of this design. 

6.1  Implementation 

The hybrid controller is implemented in Python and the acceleration controller as well as 

the quadrotor simulator are implemented using MATLAB/Simulink. The hybrid controller 

will calculate the desired acceleration command and send it to the acceleration controller. 

Then the acceleration controller will generate the rotation commands for the four rotors 

that will follow the command and compute the simulated states of the quadrotor and send 

to the hybrid controller. The two parts communicate through UDP channels and work 

cooperatively to accomplish the mission. 1.3 

The hybrid controller contains two parts that execute in parallel: the high level 

planner that executes in 10 Hz and the low level controller that executes in 200Hz. The two 

parts cooperate through reading and writing protected variables, including the current 

discrete trajectory and the quadrotor states, position and commands. The high level planner 

will re-plan and update the current discrete-trajectory when the quadrotor enters a new cell. 

If the quadrotor has reached the last cell in the discrete trajectory and have not received 

any command from the planner, it will hover at the center point of the last cell. 
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Figure 15 State Machine for the Planner and the Controller 

6.2 Comparison with the PD Controller 

This section presents the simulation results of having a quadrotor fly through a pre-defined 

discrete trajectory with different velocities to check its safety. The results will also be 

compared with the approach in Section 5.1 which uses a simple PD controller instead of 

the approximate simulation method. The two simulations are performed with the same 

quadrotor platform, same acceleration limit, and follow the same assigned discrete 

trajectory. In Figure 16 to Figure 23, the green lines are the trajectory of the abstract model 

Σ′ and the red lines are the actual trajectory of the non-linear quadrotor model Σ𝑞. The 

yellow lines mark the differences between the two trajectories at the same time. 

The results of using approximate simulation relations are shown in Figure 16 to 

Figure 23: 
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Figure 16 Trajectory on X-Y Plane at 

Velocity 0.4 

 

Figure 17 Trajectory on X-Y Plane at 

Velocity 0.8 

 

Figure 18 Trajectory on X-Y Plane at 

Velocity 1.2 

 

Figure 19 Trajectory on X-Y Plane at 

Velocity 1.4 

 

 

Figure 20 Trajectory at Velocity 0.4 

 

Figure 21 Trajectory at Velocity 0.8 

 

 

Figure 22 Trajectory at Velocity 1.2 

 

 

Figure 23 Trajectory at Velocity 1.4 
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The figures on the right panel are the actual 3D trajectories and the figures on the left panel 

are their projection onto the X-Y plane. As it can be seen, the tracking error increases with 

the velocity. The maximum velocity the approximate simulation method can achieve is 1.4 

without flying out of the assigned cells.  

One common design approach for a PID controller was discussed in Section 5.1. 

But the Simulink Design Optimization tool failed to converge during the parameter 

optimization for this approach. Up to this point, this work has not been able to figure out 

the reason of the failure and the possibility of a software bug or an improper parameter 

cannot be excluded. However, this work did succeed to optimize the parameter following 

the approach in [7], where the PD controller is used to generate an acceleration control 

signal: 

�̈�𝑑𝑒𝑠 = 𝑘𝑝𝑒 + 𝑘𝑑�̇� 

Here,  �̈�𝑑𝑒𝑠  is the computed acceleration command, 𝑒 is the tracking error between the 

quadrotor’s actual position and the abstract model’s position at the same time, and 𝑘𝑝 and 

𝑘𝑑 are the proportional and derivative parameters respectively. As the performance of the 

PD controller highly relies on the parameter tuning, the controller is trained to track a ramp 

signal with the slope set to 0.25 using the Simulink Design Optimization and got the 

following set of parameters described in Table 1. 
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Table 1 PID Parameters after Optimization 

 𝑘𝑝 𝑘𝑑 

x-axis 1.061 0.911 

y-axis 1.061 0.911 

z-axis 0.966 1.061 

 

Figure 24 shows the design interface and output after the parameter optimization, 

where the blue lines are the position tracking error at different optimization iterations and 

the bold black lines are the upper and lower bounds for the tracking error. It took about 2 

hours to converge the search of parameters, but this time is subject to change with different 

initial condition and computer performance. 

 

Figure 24 Output after Parameter Optimization 

As it can be seen, the quadrotor could track a ramp signal with almost 0 static error 

and a very small dynamic error at the starting time. The simulation results of using the PD 

controller are shown in Figure 25Figure 32. 
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Figure 25 Trajectory on X-Y Plane at 

Velocity 0.4 

 

Figure 26 Trajectory on X-Y Plane at 

Velocity 0.6 

 

Figure 27 Trajectory on X-Y Plane at 

Velocity 0.8 

 

Figure 28 Trajectory on X-Y Plane at 

Velocity 0.9 

 

Figure 29  Trajectory with PD Controller 

at Velocity 0.4 

 

Figure 30 Trajectory with PD Controller 

at Velocity 0.6 

 

Figure 31 Trajectory with PD Controller 

at Velocity 0.8 

 

Figure 32  Trajectory with PD Controller 

at Velocity 0.9 
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The maximum velocity that can be achieved without flying out of the assigned cells 

is 0.9.  

The simulation results have shown that the approach using the approximate 

simulation relations achieved better performance in terms of speed and accuracy compared 

to the old approach using the PD controller. Also, the approximate simulation relation can 

provide a tracking error bound, while the PD controller cannot. However, this cannot be 

formally proved with the current approximate simulation relation. Experimentally, the 

approximate simulation is better than the PD controller. Note however that the 

performances of both methods highly rely on the choice of parameters, and thus it is hard 

to find the optimal parameters.  

Figure 33 shows that the bound set by the approximate simulation method is not 

violated during the execution. 

 

Figure 33 Tracking Error at Velocity 0.3 
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Figure 34 Tracking Error at Velocity 1.4 

Figure 33 and Figure 34 are plotted with the same trajectory as the previous simulations at 

velocity 0.3 and 1.4 respectively. The red lines are the established bound 2𝓋𝑚𝑎𝑥 and blue 

lines are the actual tracking error between the abstract model and concrete model. The 

increase of the tracking error is caused by the change of directions, and after that it will 

tends to get back to zero. This, from another aspect, verifies the correctness of the 

approximate simulation relation method. 

Another set of comparisons between the two methods is done to show that at the 

same velocity, the approach proposed in this work achieved higher accuracy and thus it 

could fly through more critical environments. Figure 35 and Figure 36 show the 

environment and the trajectories of the two methods with the same mission, which is to 

visit the three global requirements (the green cells) in order. 
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Figure 35 Trajectory with Approximate Simulation Method at Velocity 0.8 

 

 

Figure 36 Trajectory with PD Controller at Velocity 0.8 

As it is shown, the trajectory with the approximate simulation method successfully 

flew through the narrow space and reached the target. On the other hand, the trajectory 

with the PD controller failed to make the second turn and crashed into the obstacles (the 

gray cells). 
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6.3 System Integration Testing 

The third experiment aims to verify the integration with the planner and its functionality in 

satisfying the high-level mission specifications. The following scenario is constructed: a 

quadrotor has to take and upload photos (photo, upload) of a natural disaster repeatedly in 

a valley and also it has to extinguish fires and assist personnel during the way if such 

requests are detected within its sensor range. The quadrotor cannot upload before taking a 

new photo and cannot take a new photo before having uploaded the old one. The 

environment that this test is carried on is the same as the one described in Figure 9 and the 

global and local mission specifications are the same as Formula 8 and Formula 9. 

The following picture shows the trajectory for this mission which satisfies the 

defined specification. 

 

Figure 37 Environment and Mission Trajectory 
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In the figure above, the gray blocks are obstacles that the quadrotor should avoid. 

Green cells are global requests (photo or upload), the cyan and yellow cells are local 

dynamic requests (extinguish and assist, respectively), the blue line is the trajectory of the 

abstract kinematic model and the red line is the trajectory of the concrete non-linear 

dynamic model. The quadrotor was initially located in the “photo” cell in the right-bottom 

corner, and planned a trajectory to the next global request “upload”. During the flight to 

“upload”, it found local dynamic requests “assist” and “extinguish” and served them on the 

way. Then, it went on to the “upload”. After uploading the photos, it headed back to the 

“photo” location. 

Figure 38 demonstrates its trajectories more clearly. As it can be seen, the actual 

trajectory(red) is very close to the abstract kinematic model’s trajectory(green). Large 

tracking errors only occur when changing the direction.  

 

Figure 38 Mission Trajectory. 



 55 

Figure 39 compares the tracking error and the bound established by the approximate 

simulation relation method. The bound is never violated during the whole process. Large 

tracking errors still happened when changing the direction, and the error tends to be 

stabilized at about 0.15. Also, the bound established is pretty loose as the tracking error is 

much smaller than the calculated bound. To further show that the bound established in [27] 

is experimentally not violated, a series of experiments are carried with 10 different routes 

including extreme conditions like spiral rising and u-turn at different velocities. Figure 40 

to Figure 42 show the results of these simulations and their actual trajectories can be found 

in APPENDIX A . 

 

Figure 39 Tracking Error over Time. 
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Figure 40 Tracking Errors over Time at Velocity 0.3 

 

Figure 41 Tracking Errors over Time at Velocity 0.6 



 57 

 

Figure 42 Tracking Errors over Time at Velocity 0.9 

The last simulation experiment aims to verify the controller’s ability to detect and 

generate local plans to fly through areas with high-resolution decomposition. The result is 

shown in Figure 43. 

 

Figure 43 Quadrotor Fly Through High Resolution Area 
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The yellow cells are the obstacles with higher resolution. As it can be seen, the 

quadrotor generated a local plan and flew through it. After leaving this area, it recovered 

its initial environment decomposition. 
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CHAPTER 7 

CONCLUSION 

In this paper, a hierarchical hybrid controller for a dynamic quadrotor model is presented 

that experimentally guarantees the quadrotor’s behavior satisfies a high-level mission 

specification. A receding horizon method is used for planning a discrete trajectory, 

feedback linearization is applied to quadrotor’s non-linear model to achieve attitude and 

acceleration control, and the approximate simulation relation method is deployed for 

synthesis of the discrete planner and continuous controller. In addition, a local planner is 

also proposed to solve the problem when no local plan is found. Based on the simulation 

results, this approach achieved better performance in terms of speed and accuracy 

compared to previous approaches using  a PD controller.  

However, the interface used in this work is designed for a general second-order 

dynamic model which does not cover the quadrotor’s orientation dynamics. A 

transformation that transfers acceleration vector to the quadrotor’s orientation and an 

attitude controller are necessary to serve as adapters between the general second-order 

dynamic model and the actual non-linear model of the quadrotor. Thus, the tracking error 

bound described in [27] is not formally guaranteed. But, the bound is not violated based on 

multiple simulation results. 

Future work can concentrate on the following topics: 

 In [32], two feedback linearization laws are proposed to generate a linearized 

model of the quadrotor, which can be used to calculate interface functions with 
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guaranteed tracking error bound, as it is shown in [25]. The next step of this 

work is to utilize this approach to achieve a formal bound. 

 Improve the bound between the distance of the abstract model and concrete 

model. As it is shown in this thesis, the bound is proportional to the maximum 

velocity of the abstract model, and this bound is very loose as it is shown in the 

simulation results. Having a tighter bound could significantly improve the 

controller’s speed and accuracy. 

 Improve the ability of resisting disturbances. In real applications, a controller 

cannot be described as robust if it cannot handle disturbances like wind, change 

of payload, and even change of physical structures. There are already several 

works on this topic. In [33], a framework that takes the wind and fuel level into 

account is presented. In [34], a method that controls a quadrotor with a cable 

suspended load is proposed. 

 Economic physical implementation. One major reason of quadrotor’s increased 

popularity is its reduced cost and this trend will not stop. In [35], the authors 

tried to use commercial available components from smartphones to build a 

quadrotor which achieved promising performances compared with those using 

professional parts. Future work should concentrate on implementing the results 

of this thesis on such a quadrotor. 
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APPENDIX A 

SIMULATIONS FOR TRACKING ERROR ANALYSIS 
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In Section 6.3, Figures Figure 40 to Figure 42 shows the tracking error over time of having 

a quadrotor fly through 10 different assigned trajectories with three different velocities. To 

make these simulation results more convincing, this section presents the actual trajectories 

of these simulations. 

The following 10 figures shows the 10 actual trajectories at velocity 0.3, all 

trajectories consists of 1*1*1 cubic cells starting at (3, 1, 2): 
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