
Design and Synthesis of a Hierarchical Hybrid Controller

for Quadrotor Navigation

by

Xiaotong Zhang

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2015 by the

Graduate Supervisory Committee:

Georgios Fainekos, Chair

Heni Ben Amor

Aviral Shrivastava

ARIZONA STATE UNIVERSITY

May 2016

 i

ABSTRACT

There has been exciting progress in the area of Unmanned Aerial Vehicles (UAV)

in the last decade, especially for quadrotors due to their nature of easy manipulation and

simple structure. A lot of research has been done on achieving autonomous and robust

control for quadrotors. Recently researchers have been utilizing linear temporal logic as

mission specification language for robot motion planning due to its expressiveness and

scalability. Several algorithms have been proposed to achieve autonomous temporal logic

planning. Also, several frameworks are designed to compose those discrete planners and

continuous controllers to make sure the actual trajectory also satisfies the mission

specification. However, most of these works use first-order kinematic models which are

not accurate when quadrotors fly at high speed and cannot fully utilize the potential of

quadrotors.

This thesis work describes a new design for a hierarchical hybrid controller that is

based on a dynamic model and seeks to achieve better performance in terms of speed and

accuracy compared with some previous works. Furthermore, the proposed hierarchical

controller is making progress towards guaranteed satisfaction of mission specification

expressed in Linear Temporal Logic for dynamic systems. An event-driven receding

horizon planner is also utilized that aims at distributed and decentralized planning for large-

scale navigation scenarios. The benefits of this approach will be demonstrated using

simulations results.

 ii

DEDICATION

To My Parents

 iii

ACKNOWLEDGMENTS

I will like to express my deepest appreciation and gratitude to my advisor and

committee chair, Dr. Georgios Fainekos, for giving me an opportunity to work on this

exciting research topic and for providing invaluable amount of ideas, mentoring, support

and patience overseeing my research. I would like to thank the committee members, Dr.

Heni Ben Amor, Dr. Aviral Shrivastava and Dr. Yinong Chen for agreeing to be a part of

my committee and providing ideas and feedback. I would like to thank my lab mates Adel

Donkachi, Kangjin Kim, Bardh Hoxha, and Wei Wei for providing support. Finally, I

would like to thank my parents for always being supportive and encouraging me with their

best wishes, without whom this journey would have been very difficult.

This thesis work has been partially supported by NSF CPS 1446730. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National Science Foundation.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION .. 1

1.1 Motivation and Challenges ... 1

1.2 Contributions ... 3

1.3 Structure of the Thesis ... 4

2 BACKGROUND .. 5

2.1 Quadrotor Model and Dynamics ... 5

2.2 Feedback Linearization and Attitude Control .. 9

2.3 Decidable Hybrid System ... 11

2.4 Linear Temporal Logic (LTL) .. 13

2.5 Approximate Simulation Relations ... 18

3 RELATED WORK ... 21

3.1 Temporal Logic Motion Planning for Dynamic Robots 21

3.2 Receding Horizon Planning .. 23

4 PROBLEM FORMULATION ... 28

5 HIERARCHICAL HYBRID CONTROLLER DESIGN ... 31

5.1 Controller Based on PID Algorithm ... 31

 v

CHAPTER Page

5.2 Hierarchical Hybrid Controller ... 33

5.3 Local Plan Resolver ... 38

5.4 Putting Everything Together ... 40

6 IMPLEMENTATION AND SIMULATION .. 44

6.1 Implementation .. 44

6.2 Comparison with PD Controller ... 45

6.3 System Integration Testing ... 53

7 CONCLUSION... 59

REFERENCES.. 61

APPENDIX

A SIMULATIONS FOR TRACKING ERROR ANALYSIS 64

 vi

LIST OF TABLES

Table Page

1. PID Parameters after Optimization ... 48

 vii

LIST OF FIGURES

Figure Page

1 Typical Model of a Quadrotor ... 6

2 An Environment for Formula 8 ... 15

3 Buchi Automaton Captured from Formula 8 .. 15

4 Global Transition System for Environment in Figure 2 ... 17

5 Global Product Transition System Based on Equation 9 and Figure 4 17

6 Execution Process of the Receding Horizon LTL Planning Algorithm 24

7 Situation with no Valid Local Plan ... 26

8 Situation with no Valid Local Plan ... 26

9 A Surveillance Environment ... 29

10 PID Controller Block Diagram .. 32

11 Hierarchical Structure .. 34

12 Low-Level Controllers ... 36

13 Situation when no Local Plan is Found ... 39

14 Path Found after Increasing Partition Resolution ... 39

15 State Machine for the Planner and the Controller ... 45

16 Trajectory at Velocity 0.4 .. 46

17 Trajectory at Velocity 0.8 .. 46

18 Trajectory at Velocity 1.2 .. 46

19 Trajectory at Velocity 1.4 .. 46

20 Trajectory on X-Y Plane at Velocity 0.4... 46

 viii

Figure Page

21 Trajectory on X-Y Plane at Velocity 0.8 ... 46

22 Trajectory on X-Y Plane at Velocity 1.2... 46

23 Trajectory on X-Y Plane at Velocity 1.4... 46

24 Output after Parameter Optimization .. 48

25 Trajectory with PD Controller at Velocity 0.4 .. 49

26 Trajectory with PD Controller at Velocity 0.6 .. 49

27 Trajectory with PD Controller at Velocity 0.8 .. 49

28 Trajectory with PD Controller at Velocity 0.9 .. 49

29 Trajectory on X-Y Plane at Velocity 0.4... 49

30 Trajectory on X-Y Plane at Velocity 0.6... 49

31 Trajectory on X-Y Plane at Velocity 0.8... 49

32 Trajectory on X-Y Plane at Velocity 0.9... 49

33 Tracking Error at Velocity 0.3 .. 50

34 Tracking Error at Velocity 1.4 .. 51

35 Trajectory with Approximate Simulation Method at Velocity 0.8 52

36 Trajectory with PD Controller at Velocity 0.8 .. 52

37 Environment and Mission Trajectory .. 53

38 Mission Trajectory. .. 54

39 Tracking Error over Time. ... 55

40 Tracking Error over Time. at Velocity 0.3 .. 56

41 Tracking Error over Time. at Velocity 0.6 .. 56

42 Tracking Error over Time. at Velocity 0.9 .. 57

 ix

Figure Page

43 Quadrotor Fly Through High Resolution Area ... 57

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation and Challenges

Quadrotors have gained more and more attention in civilian applications as their

manufacturing and maintenance cost went down to acceptable levels in the past few years.

Compared with manned aerial vehicles, quadrotors have unique advantages in many areas.

To list a few, quadrotors are widely used in:

 Aerial Surveillance: These light-weight, easy-maneuvered, and low-cost flying

devices are almost the ideal tools for carrying missions in dangerous areas that

are hard for human to reach. For example, the DJI Inspire quadrotor was recently

used to record volcano eruptions in Vanuatu, and got by far the most close-up

video of an erupting volcano [1]. Other aerial vehicles have never been able to

get this close to a live volcano.

 Commercial Transportation: Traditional manned heavy helicopters are only used

for high-value commercial applications due to the high cost, complex

maintenance, and long-term pilot training. Quadrotors greatly simplified this

thanks to its simplified structure and autonomous control software. Amazon and

DHL have launched projects seeking to use quadrotors to deliver packages [2].

 Search and Patrol: Such operations are time-consuming and often dangerous for

manned aerial vehicle. Thanks to their light-weighted structure, quadrotors could

carry more fuel and equipment to work for longer time and be more efficient. The

 2

Canadian mounties have announced that a police quadrotor equipped with

thermal sensors, for the first time, successfully saved a driver’s life in a remote

woody area [3].

However, in most of such applications, quadrotors are controlled remotely by

human pilots, which significantly limits its applicability and utilization in diverse

applications. Flying quadrotors controlled by unprofessional pilots have caused a lot of

controversial issues regarding privacy and safety [4]. Many privacy places, even the White

House, were reported to have found unidentified quadrotor’s intrusion. Also, many pilots

of passenger airlines have reported seeing quadrotors near planes landing routes. For these

reasons, a robust and accurate controller is much more desirable and essential for

quadrotors compared with other robot applications.

A lot of research has been done in designing automated controllers that are robust

and accurate enough to replace the remote pilots and accomplish the desired missions

autonomously. In my opinion, the challenges in designing such controllers can be

summarized in the following three aspects:

1) Finding a language that could formally define complex mission specifications and

a planner which could automatically and efficiently generate plans that satisfy

these specifications.

2) A continuous controller for the quadrotor’s non-linear high-order dynamics that

is able to follow reference commands from the higher level planner.

 3

3) An interface that composes the high-level discrete planer and the low-level

continuous controller, such that the behavior of the quadrotor satisfies the high-

level specifications.

1.2 Contributions

The main contribution of this thesis is the design and implementation of a new kind of

hierarchical hybrid controller for quadrotors. Compared with the previous approaches that

used a first-order kinematic model such as [5] and [6], it is designed to accommodate a

high-order dynamic model of the quadrotor’s behavior in order to achieve better

performance in terms of velocity and safety. Linear Temporal Logic (LTL) is used as the

mission specification language and a LTL receding horizon planning method [7] is adopted

to generate discrete plans that satisfy the mission specification. Compared with global

planning, receding horizon method does not rely on global data and thus is more efficient

for large-scale distributed path planning. To compose the high-level discrete plans and

actual physical system of a quadrotor, the approximate simulation relations method [8] is

used heuristically in order to improve the chances that the actual behavior of the quadrotor

also satisfies the high-level specification. In later sections, the benefits of the proposed

control synthesis framework will be shown by simulation results. A local planer is also

proposed to fly through areas with higher resolution.

A software-in-the-loop simulator for quadrotor is also developed to test and verify

the controller’s design. It is based on the quadrotor model in Robotic toolbox [9] in

MATLAB/Simulink. It receives commands from the controller and updates the states of

the quadrotor in Simulink. It communicates through UDP with the controller.

 4

1.3 Structure of the Thesis

This thesis introduces a new design of a hierarchical hybrid controller for quadrotors and

its benefits compared with some previous approaches. This thesis is structured according

to the following outline:

Chapter 2: Reviews some fundamental background knowledge. Several models and

notations which are used later in this thesis are also introduced.

Chapter 3: Reviews previous works that this thesis is fundamentally based on and

discusses their relationship to this work. A review of related works is also included.

Chapter 4: Describes the problems to be solved in this thesis.

Chapter 5: Describes the structure of the hierarchical hybrid controller as well as

the roles of each component and how they cooperate with each other to full fill the mission

specification.

Chapter 6: Presents some simulation results of this design and it compares the

proposed controller design with previous research to show its benefits.

Chapter 7: Gives a conclusion and several possible future directions in this area of

research.

 5

CHAPTER 2

BACKGROUND

This chapter presents some background concepts, definitions, and notations that this thesis

is built upon. Notations used in this chapter will be remain consistent later in this thesis. It

will be helpful to read through this chapter in order to better understand the later contents.

2.1 Quadrotor Model and Dynamics

Figure 1 shows a classic model of a quadrotor. The coordinate frame in the picture is

defined as the body frame ℬ, which is fixed to the quadrotor, and its three axis are hereby

denoted by 𝑥ℬ , 𝑦ℬ , and 𝑧ℬ respectively. In contrast, the world frame 𝒲 is fixed to the

ground and its three axis are denoted by 𝑥𝒲, 𝑦𝒲, and 𝑧𝒲.

A quadrotor has 6 degrees of freedom (DOF) which are its movement along the 𝑥ℬ,

𝑦ℬ, 𝑧ℬ and its rotation along 𝑥ℬ, 𝑦ℬ, and 𝑧ℬ (pitch, roll, and yaw). The only inputs to the

system are the rotation velocities of the four rotors (𝜔1, 𝜔2, 𝜔3, 𝜔4) which provide lift

and maneuverability.

 6

Figure 1 Typical Model of a Quadrotor

According to classic control theory, having equal or more control inputs than

outputs is a necessary condition to achieve fully decoupled control. In a quadrotor there are

six degrees of freedom while it only has four inputs. This means some maneuvers are not

controllable or coupled with other maneuvers. The rest part of this section will introduce

the dynamics and basic control methods for a quadrotor.

A rotor i with angular velocity 𝜔𝑖 can generate corresponding thrust 𝐹𝑖 and moment

𝑀𝑖 that are approximately described by the following equations:

 𝐹𝑖 = 𝑘𝐹𝜔𝑖
2

 𝑀𝑖 = 𝑘𝑀𝜔𝑖
2

 7

where 𝑘𝐹 and 𝑘𝑀 are constant parameters that are determined by the rotor’s size and

shape. The generated thrust vectors of each of the four rotors are always parallel to 𝑧ℬ, and

the direction of the moment is determined by the rotation direction. In Figure 1, rotors 1 &

3 rotate counter-clockwise and generate clockwise moments, while rotors 2 & 4 rotate

clockwise and thus generate counter-clockwise moments. A quadrotor can achieve

complex maneuvers by changing the angular velocity of the four rotors.

A quadrotor controls its attitude by the following equation:

𝐼 [

�̈�

�̈�
�̈�

] = [

𝐿(𝐹2 − 𝐹4)
𝐿(𝐹3 − 𝐹1)

𝑀1−𝑀2 +𝑀3−𝑀4

] − [

�̇�

�̇�
�̇�

] × 𝐼 [

�̇�

�̇�
�̇�

] (1)

where 𝜙, 𝜃, 𝜓 are quadrotor’s roll, pitch, and yaw angles, 𝐿 is the distance between the

center of a rotor to the center of gravity, 𝐼 is the quadrotor’s inertia matrix that is

approximately a diagonal matrix due to its symmetric structure:

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]

A quadrotor can control its movement by the following equation:

𝑚�̈� = [
0
0

−𝑚𝑔
] + 𝑅 [

0
0
𝛴𝐹𝑖

] (2)

where 𝑚 is the quadrotor’s mass, 𝑟 = [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇 is the position matrix, and 𝑅 is the

transition matrix from ℬ to 𝒲:

 8

[

𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃 − 𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙

−𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝜃
]

From the above analysis, it’s obvious that the value of 𝐹2 − 𝐹4 has effect on roll

angle 𝜙, 𝐹3 − 𝐹1 has effect on pitch angle 𝜃, and 𝑀1−𝑀2 +𝑀3−𝑀4 has effect on the yaw

angle 𝜓. Changing the positon can be achieved by changing orientation angles and total

thrusts. To make it convenient for future analysis, the following mapping is applied:

𝑢1 = 𝑘𝐹(𝜔1
2 + 𝜔2

2 + 𝜔3
2 + 𝜔4

2)

𝑢2 = 𝑘𝐹(𝜔2
2 − 𝜔4

2)

𝑢3 = 𝑘𝐹(𝜔1
2 − 𝜔3

2)

𝑢4 = 𝑘𝑀(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)

Then, the former equations can be changed to the following equations:

Σ𝑞 =

{

�̈�𝑥 = −(𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙) ∙

𝑢1

𝑚

�̈�𝑦 = −(𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜓) ∙
𝑢1

𝑚

�̈�𝑧 = 𝑔 − (𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃) ∙
𝑢1

𝑚

�̈� = �̇��̇� (
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
) +

𝐿

𝐼𝑥𝑥
𝑢2

�̈� = �̇��̇� (
𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
) +

𝐿

𝐼𝑥𝑥
𝑢2

�̈� = �̇��̇� (
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
) +

𝐿

𝐼𝑦𝑦
𝑢3

 (3)

This model will be referred to as Σ𝑞 for the rest of this thesis. As it can be seen, it

is a non-linear high-order system. A simple and common way to analyze this model is to

linearize the model at near-hover state where 𝜙, 𝜃, and 𝜓 are small. Though it is simple

 9

for implementation and analysis, it’s only accurate at near-hover state and could cause large

error when operating at high speed. In this work, feed-back linearization is applied to

control a quadrotor which is covered in the next section.

2.2 Feedback Linearization and Attitude Control

According to [10], for a nonlinear system defined as:

𝑥 = f(𝑥) + g(x)u

y=h(𝑥)

where f and g are smooth vector fields and h is an infinitely differentiable function, there

exists a function 𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣 such that the output y and new input v are linearized.

As it is mentioned in the previous section, changing a quadrotor’s movement can

be achieved by changing its orientation and overall thrust. The rest of this section will

present an attitude controller using feedback linearization [11].

First, define the states, inputs, and outputs of the altitude controller. The state is

defined as 𝑥𝑝 = [𝜙 𝜃 𝜓 �̇� �̇� �̇�]𝑇, input 𝑢𝑞 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇, and output

𝑦𝑝 = [𝑢1 𝜙 𝜃 𝜓]𝑇.

Then, define the following feedback linearization to obtain a linear system, as it is

done in [11]

𝑢2 = 𝑓2(�̇�, �̇�, �̇�) + 𝑢2
∗

𝑢3 = 𝑓3(�̇�, �̇�, �̇�) + 𝑢3
∗

𝑢4 = 𝑓4(�̇�, �̇�, �̇�) + 𝑢4
∗

 (4)

where

 10

𝑓2(�̇�, �̇�, �̇�) =
𝐼𝑥𝑥

𝐿
(𝐾2�̇� − �̇��̇�

𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
)

𝑓3(�̇�, �̇�, �̇�) =
𝐼𝑦𝑦

𝐿
(𝐾3�̇� − �̇��̇�

𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
)

𝑓4(�̇�, �̇�, �̇�) = 𝐼𝑧𝑧 (𝐾4�̇� − �̇��̇�
𝐼𝑥𝑥−𝐼𝑦𝑦

𝐼𝑧𝑧
)

 (5)

𝐾2, 𝐾3, 𝐾4 are parameters. Here, a linearized system is obtained in the following form:

[

�̈�

�̈�
�̈�

] =

[

 𝐾2�̇� +

𝐿

𝐼𝑥𝑥
𝑢2
∗

𝐾3�̇� +
𝐿

𝐼𝑦𝑦
𝑢3
∗

𝐾4�̇� +
1

𝐼𝑧𝑧
𝑢4
∗
]

 (6)

Then, a linearized and decoupled system Σ𝑝 = (𝐴𝑝, 𝐵𝑝, 𝐶𝑝, 𝐷𝑝) is obtained:

�̇�𝑝 = 𝐴𝑝𝑥𝑝 + 𝐵𝑝𝑢𝑝
𝑦𝑝 = 𝐶𝑝𝑥𝑝 + 𝐷𝑝𝑢𝑝

 (7)

and

𝐴𝑝 =

[

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 𝐾2 0 0
0 0 0 0 𝐾3 0
0 0 0 0 0 𝐾4]

 𝐵𝑝 =

[

0 0 0 0
0 0 0 0
0 0 0 0

0
𝐿

𝐼𝑥𝑥
0 0

0 0
𝐿

𝐼𝑦𝑦
0

0 0 0
1

𝐼𝑧𝑧]

𝐶𝑝 = [

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 𝐷𝑝 =

[

1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0]

 11

where 𝑢𝑝 = [𝑢1 𝑢2
∗ 𝑢3

∗ 𝑢4
∗]𝑇 is the new input vector after feedback linearization.

Note that 𝑢1 is actually not used in attitude control, it is here to make the format consistent.

With the feedback linearized and decoupled system, it will be very easy to define a

proportional control law. Taking the control of roll angle as an example, it will be feasible

to have 𝑢2
∗ = 𝑤2(𝜑𝑑𝑒𝑠 − 𝜑), where 𝜑𝑑𝑒𝑠 is the reference command. This forms a closed-

loop system and its behavior is determined by the parameter pair (𝐾2, 𝑤2), and it’s not hard

to get its transfer function:

𝐹(𝑠) =
𝑋4(𝑠)

𝑋4𝑑𝑒𝑠(𝑠)
=

1

𝐼𝑥𝑥 (𝐿𝑤2)⁄ ∙ 𝑠2 − (𝐾2𝐼𝑥𝑥) (𝐿𝑤2) ∙ 𝑠 + 1⁄

which is a second-order transfer function. To make it stable, 𝐾2 must be negative to make

its poles on the left-half plane. With the PID control design function in the Control System

Toolbox [12] and the transfer function above as the design plant, it is not hard to get

parameters with promising results. For the control on the roll angle, having 𝐾2 = −80 and

𝑤2 = 414.51 can achieve 0.11 second of settle time and 0 % overshoot.

2.3 Decidable Hybrid System

Hybrid system is a kind of system that consists of a combination of continuous and discrete

states [13], [14], [15], [16]. A hybrid system can be formally defined as:

𝐻𝑆 = (𝒳, 𝐿, 𝑋0, 𝐼, 𝑓, 𝑇),

where 𝒳 ⊆ ℝ𝑁 is the set of continuous state, 𝐿 is the set of discrete locations (also called

cells in this work), 𝑋 = 𝒳 × 𝐿 is the overall continuous-discrete state space. Here, 𝑋0 ⊆ 𝑋

 12

 is the set of initial states, 𝐼 is the function that assigns 𝑥 ∈ 𝒳 to some 𝑙 ∈ 𝐿 such that 𝑥 lies

inside the region labeled by l. 𝑇 ⊂ 𝐿 × 𝒳 × 𝐿 is the set of discrete transitions and 𝑓: 𝐿 →

(𝒳 → 𝑇𝒳) specifies the continuous flow (vector fields) in each location.

Hybrid system is a major modeling framework for a large class of systems like air-

traffic management systems, self-driving vehicles, and robotics. A hybrid system is

decidable if there exists a computation procedure that could verify any property in the

system within a finite number of steps. One key property that needs to be verified in the

areas of motion planning is reachability and avoidance. This is the problem of determining

whether the system could reach a set of states (targets) while avoid reaching another set of

states (obstacles).

Calin Belta et al in [17] proposed a framework that synthesizes a rectangular multi-

affine hybrid system which is bisimilar [17] with its discrete quotient transition

system 𝐷𝑆 = (𝐿, 𝐿0, 𝑇𝑑), where 𝐿 has the same meaning as it is in HS, 𝐿0 is the set of initial

discrete states and 𝑇𝑑 ⊆ 𝐿 × 𝐿 is the discrete transition system. The bisimulation property

was first introduced in [18] and [19], it indicates whether two systems are equivalent in

reachability properties.

In this work, spaces are divided into non-overlapping N-dimensional rectangles

characterized as a tuple (𝑎, 𝑏), where 𝑎 = (𝑎1, 𝑎2, ⋅⋅⋅ 𝑎𝑁), 𝑏 = (𝑏1, 𝑏2,⋅⋅⋅ 𝑏𝑁), and 𝑎𝑖 < 𝑏𝑖

for 𝑖 = 1,2,⋅⋅⋅ 𝑁. For each rectangle, the multi-affine function vector field 𝑓 is assigned as:

 13

𝑓(𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑁) = ∑ ∏(
𝑥𝑘 − 𝑎𝑘
𝑏𝑘 − 𝑎𝑘

)
𝜁𝑘(𝑣𝑘)

⋅

𝑁

𝑘=1(𝑣1,⋅⋅⋅,𝑣𝑀)∈𝑉𝑁

(
𝑏𝑘 − 𝑥𝑘
𝑏𝑘 − 𝑎𝑘

)
1−𝜁𝑘(𝑣𝑘)

𝑓(𝑣1,⋅⋅⋅, 𝑣𝑁)

and

�̇� = 𝑓(𝑥)

where 𝑥 = (𝑥1,⋅⋅⋅, 𝑥𝑁) is the continuous position, 𝑉𝑁 = ∏ {𝑎𝑖, 𝑏𝑖}
𝑁
𝑖=1 is the set of 2𝑁

vertices, and function 𝜁𝑘: {𝑎𝑘, 𝑏𝑘} → {0,1} is the indicator function that 𝜁𝑘(𝑎𝑘) =

0, 𝜁𝑘(𝑏𝑘) = 1. Hybrid systems with this multi-affine function can be informally explained

as follows: the value of this function is uniquely determined by its values at its vertices. If

all the vectors at the vertices “point out” of a specific facet, then any continuous trajectory

following this vector field will go through the same facet. If all the vectors at the vertices

“point inside” the rectangle, then all continuous trajectories will stay inside the rectangle.

Thus, such HS and its corresponding DS are bi-similar. A formal proof and a more detailed

discussion can be found in [5] and [20].

2.4 Linear Temporal Logic (LTL)

Temporal logic provides tools for reasoning standard logic statements over time. It is

commonly used in formal verification tools in robot motion planning and for requirements

of computer programs. As a formal statement tool, its statements are precise and

unambiguous. It is also similar to structured English syntax, making it very easy to

understand. Linear Temporal Logic (LTL) is a kind of temporal logic whose syntax

contains the following temporal operations such as always (G), eventually (F), next (X)

and until (U), and the standard logic operators like negation (¬), disjunction (∨),

 14

conjunction (∧), and implication (⇒). LTL formulas are defined according to the following

grammar:

𝜙 ∷= 𝜋 |¬𝜙 | 𝜙 ∨ 𝜙 | 𝜙𝒰𝜙

where 𝜙 is a LTL formula, Π is the set of atomic propositions, and 𝜋 ∈ Π is an atomic

proposition. In real applications, LTL can be used to describe complex behaviors for

robots. The following are several examples for some frequently used specifications:

 Coverage: the LTL formula 𝐹𝜋1 ∧ 𝐹𝜋2 ∧ 𝐹𝜋3 ∧⋅⋅⋅∧ 𝐹𝜋𝑛 specifies that robot

should eventually visit region 𝜋1, 𝜋2,⋅⋅⋅, 𝜋𝑛 with no particular order.

 Reachability and avoiding obstacles: the LTL formula ¬(𝜋1 ∨ 𝜋2 ∨ 𝜋3 ∨⋅⋅⋅∨

𝜋𝑛)𝒰 target specifies that before robot reaches its target target, it should avoid

regions 𝜋1, 𝜋2 ⋅⋅⋅ 𝜋𝑛.

 Non-strict Sequencing: the LTL formula 𝐹(𝜋1 ∧ 𝐹(𝜋2 ∧ 𝐹(𝜋3))) specifies that

the robot should reach region 𝜋1, 𝜋2, and 𝜋3 in that order (without preceding

sequences like 𝜋1, 𝜋3, 𝜋2, 𝜋3.

It has been proven that any LTL formula can be converted to Büchi automaton [21]

defined as:

𝐵 ≔ (𝑆𝐵, 𝑆𝐵0, 𝑇𝐵, Σ𝐵, 𝐹𝐵)

where 𝑆𝐵 is the set of states, 𝑆𝐵0 is the set of initial states, 𝑇𝐵 ⊆ 𝑆𝐵 × Σ𝐵 × 𝑆𝐵 is the non-

deterministic transition function, Σ𝐵 is the input alphabet, and 𝐹𝐵 ⊆ 𝑆𝐵 is the set of

accepting states. There are already several publicly available tools that can achieve this like

 15

ltl2ba [22]. Figure 3 shows the generated Büchi automaton using 𝑙𝑡𝑙2𝑏𝑎 from LTL

formula:

𝜙𝑙 = 𝑮𝑭 𝑝ℎ𝑜𝑡𝑜 ∧ 𝑮 (𝑝ℎ𝑜𝑡𝑜 ⇒ 𝑿 𝑢𝑝𝑙𝑜𝑎𝑑) ∧ 𝑮(𝑢𝑝𝑙𝑜𝑎𝑑 ⇒ 𝑿 𝑝ℎ𝑜𝑡𝑜) (8)

where the request 𝑝ℎ𝑜𝑡𝑜 lies in cell (3,1) and the request 𝑢𝑝𝑙𝑜𝑎𝑑 lies in cell (5,10), as it is

shown in Figure 2.

Figure 2 An Environment for Formula 8

Figure 3 Buchi Automaton Captured from Formula 8

 16

A common and proven method to use LTL as planning tool is to form the product

automaton P from the product of the Büchi automaton B and a weighted transition system

T. The weighted transition system T can be defined as:

𝑇 ≔ (𝑆𝑇 , 𝑠𝑇0, 𝑇𝑇 , ℎ𝑇 , 𝑤𝑇)

where 𝑆𝑇 is the set of discrete states, 𝑠𝑇0 is the initial state, 𝑇𝑇 ⊆ 𝑆𝑇 × 𝑆𝑇 is the transition

function, ℎ𝑇 ∶ 𝑆𝑇 → 2Π is the labeling function giving a state the corresponding atomic

propositions, and 𝑤𝑇: 𝑇𝑇 → ℕ is the function assigning non-negative weight to each

transition. The product automaton P can be defined as:

𝑃 ≔ 𝐵⊗ 𝑇 = (𝑆𝑃, 𝑆𝑝0, 𝑇𝑃, 𝑤𝑃, 𝐹𝑃)

where 𝑆𝑝 ⊆ 𝑆𝑇 × 𝑆𝐵 is the set of states, 𝑆𝑝0 is the set of initial state that

{(𝑠𝑇 , 𝑠𝐵)|(𝑠𝐵, ℎ𝑇(𝑠𝑇), 𝑠𝐵
′) ∈ 𝑇𝐵, 𝑠𝐵 ∈ 𝑆𝐵0, 𝑠𝑇 ∈ 𝑆𝑇0} , 𝑇𝑝 = {((𝑠𝑇 , 𝑠𝐵), (𝑠𝑇

′ , 𝑠𝐵
′))|(𝑠𝑇, 𝑠𝑇

′) ∈

𝑇𝑇 , (𝑠𝐵, 𝑠𝐵
′) ∈ 𝑇𝐵} is the transition function, 𝑤𝑃 = 𝑤𝑇(𝑞𝑇 , 𝑞𝑡′) is the weight function, and

𝐹𝑃 = {(𝑠𝑇 , 𝑠𝐵)|𝑠𝐵 ∈ 𝐹𝐵} is the set of accepting states. This way, the product transition

automaton captures both the mission specification information and transition information.

Figure 3 shows the Büchi automaton generated from the LTL formula 8. Planning based

on P will satisfy the requirements of both the LTL formula and the transition system.

Figure 4 shows the global transition system in which the weight of transition is the smallest

manhattan distance and Figure 5 is its product with the previous Buchi automaton. Figure

3, Figure 4, and Figure 5 are obtained from the codes that come with [7].

 17

Figure 4 Global Transition System for Environment in Figure 2

Figure 5 Global Product Transition System Based on Equation 9 and Figure 4

 18

2.5 Approximate Simulation Relations

Approximate simulation relations, as it was introduced in [23] and [24], allows to

characterize a simple approximate system from the actual complex system that can be used

to simplify the controller design. The approximate system can be lifted to the actual system

through an interface function characterized by a simulation function and the errors between

the trajectories of the two systems are guaranteed to be bounded. A detailed discussion and

applications can be found in [25], [24], and [26]. Methodologies for designing such

interfaces are described in [27].

Generally, systems using approximate simulation relations contain at least two

layers. The first layer is an abstract model which is a simplified version of the real system

that is used to meet the high-level specifications. The second layer is a higher fidelity model

that is closer to the real system. Considering the following two models:

Σ: {
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = ℎ(𝑥(𝑡))

where 𝑥(𝑡) ∈ 𝑋 ⊆ ℝ𝑛 is the state of the system, 𝑋𝐼 is the set of initial states and 𝑥(0) ∈

𝑋𝐼 , 𝑢(𝑡) ∈ 𝑈 ⊆ ℝ
𝑞 is the input of the system, 𝑦(𝑡) ∈ 𝑌 ⊆ ℝ𝑘 is the output of the system

and

Σ′: {
�̇�(𝑡) = 𝑔(𝑧(𝑡), 𝑣(𝑡))

𝑦′(𝑡) = 𝑘(𝑧(𝑡))

where 𝑧(𝑡) ∈ 𝑍 ⊆ ℝ𝑚, 𝑍𝐼 is the set of initial states of the abstract system and 𝑧(0) ∈ 𝑍𝐼,

 𝑣(𝑡) ∈ 𝑉 ⊆ ℝ𝑝 is the input of the system and , 𝑦′(𝑡) ∈ 𝑌 ⊆ ℝ𝑘 is the output of the system.

 19

To apply approximate simulation relations, Σ′ must be a complete approximate

subsystem of precision δ of Σ. A complete subsystem can be defined as follows: for any

initial state such that 𝑥(0) = 𝑥0 𝜖 𝑋𝐼 of Σ, there is an initial state 𝑧(0) = 𝑧0 𝜖 𝑍𝐼 of Σ’ such

that for every state trajectory 𝑧(𝑡) starting at 𝑧0 of Σ’, there always exists a state trajectory

𝑥(𝑡) of Σ starting at 𝑥0 satisfying ‖ℎ(𝑥(𝑡) − 𝑘(𝑧(𝑡))‖ ≤ 𝛿 for all 𝑡 ≥ 0.

The approximate simulation relations can be defined as follows:

Definition 1: A relation ℛ ⊆ ℝ𝑚 × ℝ𝑛 is an approximate simulation relation of precision

𝛿 between Σ′ and Σ if for all (𝑧0, 𝑥0) ∈ ℛ,

1) ‖ℎ(𝑥0) − 𝑘(𝑧0)‖ ≤ 𝛿

2) For any state trajectory 𝑧(𝑡) of Σ′ starting at 𝑧(0) = 𝑧0 there exists a state trajectory

𝑥(𝑡) of Σ starting at 𝑥(0) = 𝑥0 and satisfying: ∀t ≥ 0, (𝑥(𝑡), 𝑧(𝑡)) ∈ ℛ.

Such approximate simulation relations can be achieved by using a class of functions

called simulation functions [12]. A simulation function is a non-increasing positive

function that bounds the distance between the trajectories of Σ and Σ′.

Definition 2: A function 𝑉 ∶ ℝ𝑚 × ℝ𝑛 → ℝ+ is a simulation function between Σ and Σ’

for all (𝑧, 𝑥) ∈ ℝ𝑚 × ℝ𝑛 that satisfies:

𝑉(𝑧, 𝑥) ≥ ‖𝑘(𝑧) − ℎ(𝑥)‖, and

sup
𝑣∈𝑉

inf
𝑢∈𝑈

(�̇�(𝑥(𝑡), 𝑧(𝑡))) = sup
𝑣∈𝑉

inf
𝑢∈𝑈

(
𝜕𝑉(𝑧, 𝑥)

𝜕𝑧
𝑔(𝑧, 𝑣) +

𝜕𝑉(𝑧, 𝑥)

𝜕𝑥
𝑓(𝑥, 𝑢)) ≤ 0

 20

This definition can be interpreted as follows: 𝑣(𝑡) can be considered as a

disturbance signal and 𝑢(𝑡) as a control signal, then for any disturbance signal, there can

always be a control signal that the simulation function is non-increasing. Knowledge of

𝑣(𝑡) can be used to construct 𝑢(𝑡). Fainekos at el in [27] present a method using the

knowledge of 𝑣(𝑡), 𝑧(𝑡), and 𝑥(𝑡) to form an interface that achieves a maximum tracking

error bounded by 2𝑣𝑚𝑎𝑥 where 𝑣𝑚𝑎𝑥 is the maximum value of 𝑣(𝑡). This work will be

reviewed with details later in Section 3.

Then, since

‖𝑘(𝑧0) − ℎ(𝑥0)‖ ≤ √𝑉(𝑧0, 𝑥0) ≤ 𝛿, (𝑧0, 𝑥0) ∈ ℛ.

it can be inferred that a relation defined by

ℛ = {(𝑧, 𝑥) ∈ ℝ𝑚 ×ℝ𝑛 |𝑉(𝑧, 𝑥) ≤ 𝛿2}

is also an approximate relation of precision 𝛿 between Σ′ and Σ.

 21

CHAPTER 3

RELATED WORK

This thesis describes a framework that aims to solve the problem of controlling a quadrotor

modeled by second-order dynamics to satisfy specifications expressed in linear temporal

logic. There is already a lot of related work that solves part of the problem. This section

reviews some previous works that are closely related or directly used in this thesis.

3.1 Temporal Logic Motion Planning for Dynamic Robots

Fainekos et al in [3] presented a framework solving the problem of temporal logic motion

planning for general ground robots modeled by second order dynamics using approximate

relations and Temporal Logic over the Reals (RTL) [28].

Consider a second-order dynamic model of a ground robot Σ𝑟 described as:

Σ𝑟: {
�̇�(𝑡) = 𝑦(𝑡), 𝑥(𝑡) ∈ 𝑋, 𝑥(0) ∈ 𝑋0

�̇�(𝑡) = 𝑢(𝑡), 𝑦(𝑡) ∈ ℝ2, 𝑦(0) = [0 0]𝑇

where 𝑥(𝑡) is the position of the robot, 𝑦(𝑡) is its velocity, and 𝑢(𝑡) is the input command,

which is also robot’s acceleration, and 𝑢(𝑡) ∈ 𝑈 = {𝜇 ∈ ℝ2|‖𝜇‖ ≤ 𝑢𝑚𝑎𝑥}. Its states are

defined as 𝜃(𝑡) = [𝑥𝑇(𝑡) 𝑦𝑇(𝑡)]𝑇. Then they defined the following notation:

�̇�(𝑡) = 𝐴𝜃(𝑡) + 𝐵𝑢(𝑡), 𝑥(𝑡) = 𝐶𝑥𝜃(𝑡), 𝑦(𝑡) = 𝐶𝑦𝜃(𝑡).

Also, consider an abstracted first-order kinematic model Σ𝑟′:

Σ𝑟
′ : �̇�(𝑡) = 𝑣(𝑡), 𝑡 ≥ 0, 𝑧(0) ∈ 𝑍0

 22

where 𝑧(𝑡) ∈ 𝑍 ⊆ ℝ2 is the position of the robot in this kinematic model, and 𝑣(𝑡) ∈ 𝑉 =

{𝓋 ∈ ℝ2|‖𝓋‖ ≤ 𝑣𝑚𝑎𝑥} is its input representing its velocity.

Then they proposed an interface function and a simulation function that Σ𝑟′ is an

approximate relation to Σ𝑟 with bounded error proportional to 𝑣𝑚𝑎𝑥.

Suppose 𝛼 satisfies the following inequation:

𝑣𝑚𝑎𝑥

2
(1 + |1 −

1

𝛼
| +

2

√𝛼
) ≤ 𝑢𝑚𝑎𝑥 , 𝛼 > 0 .

Then, the approximate relation given by:

𝒱 = {(𝑧, 𝜃) ∈ ℝ2 ×ℝ4|𝒮(𝑧, 𝜃) ≤ 4𝓋𝑚𝑎𝑥
2 }

is an approximate relation of precision 2 𝑣𝑚𝑎𝑥 between Σ𝑟′ and Σ𝑟 . 𝒮(𝑧, 𝜃) =

max (𝒬(𝑧, 𝜃), 4𝑣𝑚𝑎𝑥
2) where

𝒬(𝑧, 𝜃) = ‖𝐶𝑥𝜃 − 𝑧‖
2 + 𝛼‖𝐶𝑥𝜃 − 𝑧 + 2𝐶𝑦𝜃‖

2
.

 Then, function

𝑢𝑟(𝑣, 𝑧, 𝜃) =
𝑣

2
+
−1 − 𝛼

4𝛼
(𝐶𝑥𝜃 − 𝑧) − 𝐶𝑦𝜃

is the associated interface function.

One of the most valuable part of this conclusion is that the maximum tracking error

between the dynamic model and the kinematic model is bounded to two times the

maximum velocity of the kinematic model. This means that the tracking accuracy can be

improved by reducing the kinematic model’s maximum velocity. Also, the tracking error

 23

will grow together with robot’s velocity, forcing designers to make a trade-off between

speed and accuracy.

3.2 Receding Horizon Planning

Ulusoy and Belta in [7] present a new kind of receding horizon planner for automatically

controlling a robot satisfying both the global and local mission specifications. Consider a

decomposed environment ℰ defined as:

ℰ = (𝒞, 𝒮, ℒ𝑠 , 𝒟, ℒ𝑑(𝑡))

where 𝒞 = {𝑐𝑥,𝑦,𝑧 |0 ≤ 𝑥 < 𝑝, 0 ≤ 𝑦 < 𝑞, 0 ≤ 𝑧 < 𝑟} is a 𝑝 × 𝑞 × 𝑟 matrix of cubic cells,

𝒮 is the set of global static requests, ℒ𝑠: 𝒞 → 𝒮 is a map from a cubic cell to global static

requests located in this cell, 𝒟 is the set of local dynamic requests, and ℒ𝑑(𝑡): 𝒞 → 𝒟 is a

time-varying map from a cubic cell to local dynamic requests occurred in this cell at the

time t. The global mission specification 𝜙𝑔 is expressed in LTL and is defined over the set

of global static request 𝒮 defined in ℰ, it dictates the global motion of the robot in the

environment. The local mission specification consists of a priority function 𝑝𝑟𝑖𝑜: 𝒟 → ℕ

where lower number means higher priority, and a regular expression 𝜙𝑙 over the set of

local dynamic request 𝒟, it specifies how the vehicle should respond to the local dynamic

requests detected within the sensor range. The generated trajectory by this method is

guaranteed to be shortest in manhattan distance if the target is within the sensor range or

there is no obstacle between current position and target. Figure 6 demonstrates its execution

procedure.

 24

 LTL Formula

Buchi Automaton B

Product
Automaton G

Global
Environment E

Update G

Global Transition
System T

Local request
detected?

Chose the dynamic request
with highest priority as next
global target

Chose the cell with minimum
sum of real distance and
heuristic distance as next
global target

Generate local plan
and control signal

Quadrotor plant

Construct local
transition system U

ltl2ba

Automaton
product

False True

Quadrotor
position

Figure 6 Execution Process of the Receding Horizon LTL Planning Algorithm

In Figure 6, the algorithm first translates the LTL formula 𝜙𝑔 to a Buchi automaton

B. Then, it takes the product of the Buchi automaton B with the global transition system T

to generate a global product automaton G, which captures the motion between cells with

global requests and global mission specifications. Then, a local transition system U which

covers areas within the sensor range is constructed and a local path within U is calculated

which satisfies both the global mission specification and the local mission specifications,

 25

and is able to avoid the unsafe areas detected in U. It will first serve the local requests with

the highest priority if there are any, then head to the closest global request cell if it is in the

sensor range, or head to a cell on the border of the sensor range that has the minimum sum

of real distance and heuristic distance. Here, the real distance is the distance between the

current position and the target border cell, and the heuristic manhattan distance is between

the border cell and the next global target.

The receding horizon method generates a local discrete trajectory instead of just the

next neighboring cell, which will be helpful when generating a continuous trajectory from

it (we will show this in the next section). Also, its computation does not rely on all the

global environment data, but only on environment data within its sensor range. These are

very desirable properties when flying UAVs in real world where the environment data is

enormous and the computation power is limited.

As the sensor range is limited when compared to the size of the global environment,

it is possible that there is no satisfying local discrete plan within the sensor range. This

problem is not handled in the current theory as presented in [7], as it is demonstrated in

Figure 7 and Figure 8.

 26

Figure 7 Situation with no Valid Local Plan

Figure 8 Situation with no Valid Local Plan

In Figure 7, the grid is the local planning area with distance 3 and the blue cell is

the next global target. The shown local path calculated by the local planner with the

 27

minimum sum of the real distance (the red arrow) and heuristic distance (green arrow) is

not valid while there is a feasible alternative plan (brown arrow) that the local planer cannot

find. Then, the quadrotor moves to the right cell, as in Figure 8 and then it has to re-plan.

A problem is raised here that there are two local plans with the same summation of real

distance and heuristic distance. Thus the behavior of this algorithm is nondeterministic. If

it chose to go left, it will go back to the situation in Figure 7 and get trapped in a live-lock

situation and cannot move forward.

One solution to handle this is by adding a higher-level resolver with global

environment information. As the calculation of such a resolver will involve global

environment data, it should not be called too frequently, it will only be called when local

planning has reached to a live-lock situation.

Another solution is to increase the the environment’s resolution. As it is mentioned

before, the environment is decomposed into cubic cells which will inevitably lose some

geometric data. A solid obstacle in a coarsely decomposed environment may found

“apertures” if the decomposition resolution is increased. This will be shown in detail in

Section 5.3.

 28

CHAPTER 4

PROBLEM FORMULATION

Consider a non-linear quadrotor model Σ𝑞 and the corresponding feedback linearized

concrete model Σ, as it is described in Section 2.1 and 2.2, and a decomposed environment

ℰ = (𝒞, 𝒮, ℒ𝑠 , 𝒟, ℒ𝑑(𝑡))

where 𝒞 = {𝑐𝑥,𝑦,𝑧 |0 ≤ 𝑥 ≤ 𝑝, 0 ≤ 𝑦 ≤ 𝑞, 0 ≤ 𝑧 ≤ 𝑟} is an 𝑝 × 𝑞 × 𝑟 matrix of cubic

cells, 𝒮 is the set of static requests, ℒ𝑠: 𝒞 → 𝒮 is a map from a cubic cell to static requests

located in this cell, 𝒟 is the set of dynamic requests, and ℒ𝑑(𝑡): 𝒞 → 𝒟 is a time-varying

map from a cubic cell to dynamic requests occurred in this cell at the time t. The

construction of the linearized concrete model Σ will be described in detail in later section.

The goal of this thesis is to design a hierarchical hybrid controller that generate

control signal 𝑢(𝑡) for Σ such that its resulting state trajectory 𝑥(𝑡) satisfies both the global

mission specification 𝜙𝑔 expressed in LTL and local specifications 𝜙𝑙 that is the same as

defined in Section 3.2.

A hierarchical synthesis approach is used to achieve this objective. The hierarchical

structure consists of a high-level planner that generates discrete plans satisfying all global

and local specifications, a low-level controller handling continuous controls that makes

sure its output could track the input command, and a synthesis framework using the

approximate simulation relation method which guarantees the trajectory of the concrete

model Σ can track its abstracted kinematic model Σ′ with a bounded error.

 29

Thus, the problem can be described as follows: Given an environment ℰ, a non-

linear model 𝛴𝑞 of a quadrotor, global requirement 𝜙𝑔 and local requirement 𝜙𝑙, design

a hierarchical hybrid controller for 𝛴𝑞 such that its trajectories satisfy all the

specifications.

The following example is based on the example in [7] but extended to 3D

environment with more complexed obstacles, as it is shown in Figure 9.

Figure 9 A Surveillance Environment

In Figure 9, the green cells are global requests which include 𝑝ℎ𝑜𝑡𝑜 in cell (3,1,2)

and 𝑢𝑝𝑙𝑜𝑎𝑑 in cell (9,13,5) respectively, the yellow cell is the local dynamic request

𝑎𝑠𝑠𝑖𝑠𝑡 in cell (5,10,1), the cyan cell is the local dynamic request 𝑒𝑥𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ in cell (7,8,1),

and the grey cells are the obstacles. The global static mission specification is the same as

Formula 8 and the local dynamic request is defined as:

𝜙𝑙 ≔ (𝑒𝑥𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ|𝑎𝑠𝑠𝑖𝑠𝑡)∗, 𝑝𝑟𝑖𝑜(𝑎𝑠𝑠𝑖𝑠𝑡) = 1, 𝑝𝑟𝑖𝑜(𝑒𝑥𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ = 0) (9)

 30

which can be interpreted as: Serve the assist and extinguish requirement if they are detected

within the sensor range and extinguish has higher priority than assist.

 31

CHAPTER 5

HIERARCHICAL HYBRID CONTROLLER DESIGN

This chapter presents and analyzes the design of a hierarchical hybrid controller following

the approaches described in Sections 2.3 and 2.5 as well as how it is adapted to control a

quadrotor which is a complex non-linear system. Another design based on traditional PID

controller is also presented. Their performance comparison will be shown in Section 6.2.

5.1 Controller Based on PID Algorithm

Constructing controllers for complex physical systems have been one of the biggest

challenges in the area of motion planning. There have been a lot of proposed solutions to

achieve this goal and PID control has become one of the most popular control algorithms

in the past decades due to its simplicity and efficiency. According to [29], 90% of industrial

controllers are based on the PID algorithm.

The advantage of PID control is that it does not require much knowledge of the

control target. The design and parameter tuning can be done by analyzing the input and

output of the target system. The recent booming of “plug-and-play” PID controllers and

automated parameter optimization tools have made it even more convenient to use PID

control [30].

Figure 10 presents the block diagram of the structure of a PID control system for a

quadrotor. In the block diagram, Σ𝑞 is the non-linear model of the quadrotor described by

Equation 3, 𝑟 is the position of the quadrotor and 𝑢1, 𝑢2, 𝑢3, 𝑢4 are the input to Σ𝑞. The

receding horizon LTL planner 𝑃𝑅𝐻 is based on the algorithm presented in Section 3.2 and

 32

𝑣 is the calculated output of the planner by constructing local multi-affine vector fields as

it is shown in Section 2.3. The calculated 𝑣 , representing the desired velocity of the

quadrotor, serves as the input to the kinematic model Σ𝑘 of the quadrotor defined as:

Σk: {
�̇�𝑘(𝑡) = 𝐴𝑘𝑥𝑘(𝑡) + 𝐵𝑘𝑣𝑘(𝑡)

𝑦𝑘(𝑡) = 𝐶𝑘𝑥𝑘(𝑡) + 𝐷𝑘𝑣𝑘(𝑡)
 (10)

where 𝑥𝑘(𝑡) ∈ 𝑋𝑘0 ⊆ ℝ3 is the position vector in the 3D environment for this kinematic

model, 𝑣𝑘(𝑡) ∈ 𝑉 = {𝓋 ∈ ℝ
3|‖𝓋‖ ≤ 𝑣𝑚𝑎𝑥} is the input velocity for this system,

𝑦𝑘(𝑡) ∈ 𝑋𝑘0 ⊆ ℝ
3 is the output, and 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝐷𝑘 are defined as follows:

𝐴𝑘 = [
0 0 0
0 0 0
0 0 0

] , 𝐵𝑘 = [
1 0 0
0 1 0
0 0 1

] 𝐶𝑘 = [
1 0 0
0 1 0
0 0 1

]𝐷𝑘 = [
0 0 0
0 0 0
0 0 0

]

It is already proven in [17] that the output trajectory 𝑦𝑘(𝑡) of Σ𝑘 is guaranteed to satisfy

the mission specification in the planner 𝑃𝑅𝐻.

PID Controller

Quadrotor Kinematic
Model

Non-linear Quadrotor
Plant

Receding Horizon LTL
Planner

-

+

-

+

Figure 10 PID Controller Block Diagram

Then, 𝑒𝑟 = [𝑒𝑥, 𝑒𝑦, 𝑒𝑧]
𝑇
, which is the tracking error between the position of Σ𝑞 and

Σ𝑘, and 𝑒𝜓, which is the error between the yaw angle 𝜓 in Σ𝑞 and the reference yaw angle

 33

𝑟𝜓, are fed into the PID controller. Here, 𝑟𝜓 is set to 0 in this work because there is no

requirement on the yaw angle and this do not have any effect on the quadrotor’s position

control [11]. However, it is fully capable of tracking reference command if it is necessary

in future works. The output of the PID controller is calculated using the following equations:

{

 𝑢1 = 𝑘𝑝𝑧𝑒𝑧 + 𝑘𝑑𝑧 �̇�𝑧 + 𝑘𝑖𝑧∫𝑒𝑧𝑑𝑡

𝑢2 = 𝑘𝑝𝑦𝑒𝑦 + 𝑘𝑑𝑦 �̇�𝑦 + 𝑘𝑖𝑦∫𝑒𝑦𝑑𝑡

𝑢3 = 𝑘𝑝𝑥𝑒𝑥 + 𝑘𝑑𝑥 �̇�𝑥 + 𝑘𝑖𝑥∫𝑒𝑥𝑑𝑡

𝑢4 = 𝑘𝑝𝜓𝑒𝜓 + 𝑘𝑑𝜓 �̇�𝜓 + 𝑘𝑖𝜓∫𝑒𝜓𝑑𝑡

where 𝑘𝑝∗ ,∗= {𝑥, 𝑦, 𝑧, 𝜓}, are the PID parameters. With the help of the Simulink Design

Optimization toolbox [31] in MATLAB/Simulink, tuning these parameters has become a

much easier job. The PID parameters are trained by having the quadrotor’s non-linear

model tracking a ramp signal, which simulates the controller’s work situations where it has

to track the trajectory of the quadrotor’s abstract model Σ𝑘 that flies with constant velocity.

Section 6.2 contains more details of the optimization and the results can be found in

Table 1.

5.2 Hierarchical Hybrid Controller

Although the PID control algorithm is easy to use, it does not give any formal guarantee

on its dynamic tracking error which is crucial for safety. It is believed in this work that a

hierarchical controller, as it is proposed and applied in [24] and [27], will give better

performance and guarantee for safety. In this work, progress are made towards that

direction. Namely, It is established here that if the hierarchical controller in [27] is used,

 34

then experimentally better performance can be achieved than the PID architecture in

Section 5.1.

Hierarchical control design has been proven to be an efficient approach for

controlling complex non-linear systems. The advantage of the hierarchical structure is that

each layer handles a simpler local problem coordinated by higher layers which will not

override its decisions. This way, a complex problem is broken into a series of simpler

problems and organized in a hierarchical structure. The hierarchical structure of this work

is very similar to the approach in [27], but extended to controlling quadrotors. The

hierarchical control architecture is shown in Figure 11.

Abstract Model

Receding Horizon LTL
Planner

Interface

Non-Linear Quadrotor
Plant

Low-Level
Controllers

Figure 11 Hierarchical Structure

There are two layers in this hierarchical structure.

 35

The first layer includes a receding horizon LTL planner 𝑃𝑅𝐻 as proposed in [7] and

an abstract kinematic model of the quadrotor Σ𝑘 as in Equation 9. The reason of adding an

extra abstract model is to simplify the planning problem which otherwise is an undecidable

problem, in general. These two parts are exactly the same with those in Section 5.1.

The following is an interface function 𝑓𝑖 that takes the actual position of the

quadrotor 𝑟, the position in the kinematic model 𝑦𝑘 , and the desired velocity from the

vector field 𝑣 as input and computes the desired acceleration vector 𝑢𝑎 as output. The

generated acceleration vector 𝑢𝑎 serves as the input to the next layer. The interface

function 𝑓𝑖 is used as computed in [27], which means that for a second order dynamic

model with �̈� = 𝑢𝑎 the tracking error ‖𝑟 − 𝑦𝑘‖ is bounded by 2𝑣𝑚𝑎𝑥. Note though that

the interface function 𝑓𝑖 should be computed as described in [24]. Here, this work shows

that the interface from [27] still achieves good experimental performance, albeit without

formal guarantees. These three parts forms the hybrid controller 𝐻ℎ𝑏.

The second layer consists of a series of low-level controllers and the non-linear

quadrotor plant. In [27], the concrete model is a second-order dynamic model taking the

acceleration command as input directly, which assumes that the acceleration could change

immediately. This works for low-speed ground vehicles since the time duration that the

torque is applied to the wheels is short enough to be ignored. But for a quadrotor, this

assumption can no longer hold as the acceleration control is achieved by attitude control

which has longer time constant. Thus, extra controllers are needed to achieve the desired

acceleration command 𝑢𝑎 from the interface function, as it is shown in Figure 12.

 36

Hierarchical Hybrid
Controller

Transform T

Non-linear Quadrotor Plant

Attitude Controller

Feedback
Linearization

+ -

Figure 12 Low-level Controllers

Here, the hybrid controller 𝐻ℎ𝑏 is the part in the dashed rectangle in Figure 11, 𝑇

is the transformation function that transfers the given acceleration vector 𝑢𝑎 into the

corresponding desired orientation angles 𝜙𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠, 𝜓𝑑𝑒𝑠 and total thrust 𝑢1 . Assuming

that the desired yaw angle 𝜓𝑑𝑒𝑠 is 0, the relationship between 𝑢𝑎 , 𝑢1, and the desired

orientation angles at static state can be described by the following equation [11]:

 37

𝑢𝑎 = [𝑢𝑎𝑥, 𝑢𝑎𝑦, 𝑢𝑎𝑧]
𝑇
=

[

𝑢1 𝑠𝑖𝑛(𝜃𝑑𝑒𝑠) 𝑐𝑜𝑠(𝜑𝑑𝑒𝑠)

𝑚
𝑢1𝑠𝑖𝑛 (𝜑𝑑𝑒𝑠)

𝑚
𝑢1 𝑐𝑜𝑠(𝜃𝑑𝑒𝑠) 𝑐𝑜𝑠(𝜑𝑑𝑒𝑠)

𝑚
− 𝑔]

 (10)

where 𝑔 is the gravity acceleration and 𝑚 is the mass of the quadrotor. Given the desired

acceleration and current orientation angles, 𝑢1 and the desired orientation angles can be

calculated using the following equations:

{

 𝜙𝑑𝑒𝑠 = atan (

𝑢𝑎𝑦

𝑢𝑎𝑧 + 𝑔
)

𝜃𝑑𝑒𝑠 = atan (
𝑢𝑎𝑥

(𝑢𝑎𝑧 + 𝑔)/cos(𝜙𝑑𝑒𝑠)
)

𝜓𝑑𝑒𝑠 = 0

𝑢1 =
(𝑢𝑎𝑧 + 𝑔) ∗ 𝑚

cos(𝜙) ∗ cos(𝜃)

Where 𝜙 and 𝜃 are current roll and pitch angles. Function 1 is the corresponding Matlab

implementation:

Function 1: Transfer an acceleration vector to corresponding 𝒖𝟏, 𝝓𝒅𝒆𝒔, 𝜽𝒅𝒆𝒔, 𝝍𝒅𝒆𝒔

1 function [phi, theta, psi, u1]= fcnT(ax,ay,az,cur_phi, cur_theta)

2 g=9.81;

3 M=4;

4 phi=atan(ay/(az+g));

5 theta = atan(ax/((az+g)/cos(phi)));

6 psi = 0

7 u1=(az+g)*M/(cos(cur_phi)*cos(cur_theta));

where variable phi, theta, psi, and u1 represent the desired row, pitch yaw, and overall

thrust respectively, ax, ay, and az are components of 𝑢𝑎, cur_phi, and cur_theta are the

current row and pitch angles. As the yaw angle does not has any impact on the position

control of a quadrotor and to simplify the analysis, the yaw angle is set to 0 throughout this

 38

work. Also, in line 7, u1 is calculated using the current row and pitch angle instead of the

desired angles. This is to ensure the dynamic stability of the control on the z-axis as the

actual orientation angles cannot converge to the desired angles immediately.

Then, the calculated 𝑢1 is directly fed to the non-linear quadrotor plant, 𝜙𝑑𝑒𝑠, 𝜃𝑑𝑒𝑠,

and 𝜓𝑑𝑒𝑠 are used to calculate 𝑒𝑝 which is the difference between the desired angles and

current angles. Then, the attitude controller takes 𝑒𝑝 as input to calculate the feedback-

linearized inputs 𝑢2
∗ , 𝑢3

∗ , 𝑎𝑛𝑑 𝑢4
∗ , as it is shown in Equation (4) and (6). In the end, the rest

of the control signals 𝑢2, 𝑢3, and 𝑢4 are calculated through the feedback linearization

controller based on Equation 5.

One crucial issue that must be mentioned here is that the interface function 𝑓𝑖 is

utilized here in order to make the second-order dynamic model being able to track the

corresponding kinematic model with a bounded error. But for the design described in this

section, the existence of the non-linear transformation function T makes the whole system

non-linear (the feedback linearization is only done for the nested attitude control). These

controllers can only make the system behave like a second-order dynamic system by

adjusting the quadrotor’s orientation angles and thrust to follow the acceleration command,

which will add extra dynamics to the system. Thus, for this design, the established bound

in [27] is not theoretically guaranteed. The actual tracking error will be analyzed through

simulation results in Chapter 6.

5.3 Local Plan Resolver

In the receding horizon method, a local plan within the quadrotor’s sensor range needs to

be calculated. The target of the local plan is either a global request cell in 𝑃, if it is within

 39

the sensor range, or the cell that has the closest heuristic manhattan distance. But it is

possible that there is no such trajectory that leads to that target. Figure 13 shows this

situation.

Figure 13 Situation when no Local Plan is Found

This is caused by the limited resolution of the environment ℰ which results in some

geometric data being lost. Thus, one possible solution is to increase the resolution in order

to try to find a trajectory to the target. Figure 14 shows such an example.

Figure 14 Path Found after Increasing Partition Resolution

 40

The environment’s resolution will be reduced after the quadrotor has reached the

new target. As the new target in the high resolution environment is a subset of the old target

in the original environment, the receding horizon planner can resume execution.

The advantage of this design is that it gives more flexibility to the trade-off problem

between speed and safety that is mentioned in Section 2.5. The use of the approximate

simulation relations method brings a bound for the tracking error, which is an important

property for safety. By enlarging the obstacles, the value of this bound will ensure that the

quadrotor will not hit the obstacles. Also, as the bound is proportional to the maximum

planned velocity, it becomes possible to make sure that the continuous trajectory satisfies

the mission specification in the planner by adjusting the velocity. The quadrotor can fly

faster when there is more open space and fly slower when there is higher resolution and

many obstacles to improve accuracy and safety.

5.4 Putting Everything Together

At this point, the design has a receding horizon planner, a continuous controller for the

quadrotor and a synthesis framework using the approximate simulation relation method.

Now it’s time to put all these parts together to make them work with each other. One main

challenge is that both the planner and the continuous controller need to check and calculate

commands frequently, thus they should work in parallel. Algorithm 1 and Algorithm2

demonstrate the work procedure of the implementation in pseudocode.

Algorithm 1: System Initialization

1 Fetch the environment env

2 Fetch the quadrotor configuration quad

3 Construct the global transition system, Buchi

automaton, and product automaton

 41

4 Construct quadrotor controller quad_controller using

env, quad 5

6 //State variable initialization

7 cid = initial cell id

8 state = initial quadrotor state // can be: fly, hover,

error 9 route = None

10 fly_mode = normal

Algorithm 2: Main Control Loop

1 System Initialization()

2 while true:

3 cid=quad_controller.get_cell()

4 if route is None or cid is not route[0]:

6 if route[0] or route[1] is high resolution

cell: 7 //Switch to high-resolution mode

8 fly_mode = slow

9 quad.env, planner.env =

env.high_resolution_env 10 route = planner.genPlan()

11 else:

12 //Switch to normal mode

13 fly_mode = normal

14 quad.env, planner.env = env.normal_env()

15 route = planner.genPlan()

16 //Check validation

17 if route is None:

18 state = error

19 break;

20 if fly_mode is slow:

21 quad_controller.velocity = slow

22 else:

23 quad_controller.velocity = normal

24 quad_controller.fly_route(route)

Algorithm 1 handles the initialization of state variables, the environment, and the

controller. The off-line calculation of the Buchi automaton, global transition system and

global product transition system are also done at this stage.

 42

Algorithm 2 demonstrates the high-level controller that handles different situations.

As calling a receding horizon method to update the plan consumes much more computation

power (generating local transition system, checking the global product system, and calling

Dijkstra’s algorithm to calculate a local path), it is only called when the quadrotor enters a

new cell. To achieve fast velocity while ensuring safety, the environment has two

decomposition systems, the normal environment and high-resolution environment. The

high-resolution environment is only activated when at least one of the first two cells

contains a higher resolution decomposition. Otherwise, the environment will switch back

to the normal decomposition.

As it was presented before, the receding horizon method cannot guarantee that the

generated path is valid and it will fail in two scenarios: the established target within the

sensor range is not reachable and the established target leads the quadrotor to “linger”

around. This is due to the limited range of its sensor which could not look far enough to

find a better solution. One way to solve this problem is to conduct a global trajectory

planning using A* algorithm. As it was mentioned in the previous section, one advantage

of using the receding horizon method is that it does not rely on the global data for planning.

Thus, the global trajectory planning is only called when there is no valid local plan that

could make progress. Before calling the global trajectory planner, the distance between the

local target and the nearest next target in 𝑃 will be recorded as d*. The quadrotor will

follow the global trajectory until its distance to the next target in 𝑃 is smaller than d*, which

means that quadrotor has moved out of the “trap” where it cannot find a valid local plan.

Note that when the quadrotor is following the global trajectory, it cannot react to local

dynamic requests.

 43

Here, one problem that still remains open is the detection of the failure of receding

horizon LTL algorithm. Based on current observations, the quadrotor can be trapped in a

live-lock situation that move back and forth. But this is not theoretically proved and there

can be other situation as well. For this reason, this problem is not yet solved in this work.

 44

CHAPTER 6

IMPLEMENTATION AND SIMULATION

This section will describe the implementation of the design in Section 5.2 and make

comparison with the PID only approach in Section 5.1 in order to demonstrate the benefits

of this design.

6.1 Implementation

The hybrid controller is implemented in Python and the acceleration controller as well as

the quadrotor simulator are implemented using MATLAB/Simulink. The hybrid controller

will calculate the desired acceleration command and send it to the acceleration controller.

Then the acceleration controller will generate the rotation commands for the four rotors

that will follow the command and compute the simulated states of the quadrotor and send

to the hybrid controller. The two parts communicate through UDP channels and work

cooperatively to accomplish the mission. 1.3

The hybrid controller contains two parts that execute in parallel: the high level

planner that executes in 10 Hz and the low level controller that executes in 200Hz. The two

parts cooperate through reading and writing protected variables, including the current

discrete trajectory and the quadrotor states, position and commands. The high level planner

will re-plan and update the current discrete-trajectory when the quadrotor enters a new cell.

If the quadrotor has reached the last cell in the discrete trajectory and have not received

any command from the planner, it will hover at the center point of the last cell.

 45

FlyHover

Fly

Init

Error

Figure 15 State Machine for the Planner and the Controller

6.2 Comparison with the PD Controller

This section presents the simulation results of having a quadrotor fly through a pre-defined

discrete trajectory with different velocities to check its safety. The results will also be

compared with the approach in Section 5.1 which uses a simple PD controller instead of

the approximate simulation method. The two simulations are performed with the same

quadrotor platform, same acceleration limit, and follow the same assigned discrete

trajectory. In Figure 16 to Figure 23, the green lines are the trajectory of the abstract model

Σ′ and the red lines are the actual trajectory of the non-linear quadrotor model Σ𝑞. The

yellow lines mark the differences between the two trajectories at the same time.

The results of using approximate simulation relations are shown in Figure 16 to

Figure 23:

 46

Figure 16 Trajectory on X-Y Plane at

Velocity 0.4

Figure 17 Trajectory on X-Y Plane at

Velocity 0.8

Figure 18 Trajectory on X-Y Plane at

Velocity 1.2

Figure 19 Trajectory on X-Y Plane at

Velocity 1.4

Figure 20 Trajectory at Velocity 0.4

Figure 21 Trajectory at Velocity 0.8

Figure 22 Trajectory at Velocity 1.2

Figure 23 Trajectory at Velocity 1.4

 47

The figures on the right panel are the actual 3D trajectories and the figures on the left panel

are their projection onto the X-Y plane. As it can be seen, the tracking error increases with

the velocity. The maximum velocity the approximate simulation method can achieve is 1.4

without flying out of the assigned cells.

One common design approach for a PID controller was discussed in Section 5.1.

But the Simulink Design Optimization tool failed to converge during the parameter

optimization for this approach. Up to this point, this work has not been able to figure out

the reason of the failure and the possibility of a software bug or an improper parameter

cannot be excluded. However, this work did succeed to optimize the parameter following

the approach in [7], where the PD controller is used to generate an acceleration control

signal:

�̈�𝑑𝑒𝑠 = 𝑘𝑝𝑒 + 𝑘𝑑�̇�

Here, �̈�𝑑𝑒𝑠 is the computed acceleration command, 𝑒 is the tracking error between the

quadrotor’s actual position and the abstract model’s position at the same time, and 𝑘𝑝 and

𝑘𝑑 are the proportional and derivative parameters respectively. As the performance of the

PD controller highly relies on the parameter tuning, the controller is trained to track a ramp

signal with the slope set to 0.25 using the Simulink Design Optimization and got the

following set of parameters described in Table 1.

 48

Table 1 PID Parameters after Optimization

 𝑘𝑝 𝑘𝑑

x-axis 1.061 0.911

y-axis 1.061 0.911

z-axis 0.966 1.061

Figure 24 shows the design interface and output after the parameter optimization,

where the blue lines are the position tracking error at different optimization iterations and

the bold black lines are the upper and lower bounds for the tracking error. It took about 2

hours to converge the search of parameters, but this time is subject to change with different

initial condition and computer performance.

Figure 24 Output after Parameter Optimization

As it can be seen, the quadrotor could track a ramp signal with almost 0 static error

and a very small dynamic error at the starting time. The simulation results of using the PD

controller are shown in Figure 25Figure 32.

 49

Figure 25 Trajectory on X-Y Plane at

Velocity 0.4

Figure 26 Trajectory on X-Y Plane at

Velocity 0.6

Figure 27 Trajectory on X-Y Plane at

Velocity 0.8

Figure 28 Trajectory on X-Y Plane at

Velocity 0.9

Figure 29 Trajectory with PD Controller

at Velocity 0.4

Figure 30 Trajectory with PD Controller

at Velocity 0.6

Figure 31 Trajectory with PD Controller

at Velocity 0.8

Figure 32 Trajectory with PD Controller

at Velocity 0.9

 50

The maximum velocity that can be achieved without flying out of the assigned cells

is 0.9.

The simulation results have shown that the approach using the approximate

simulation relations achieved better performance in terms of speed and accuracy compared

to the old approach using the PD controller. Also, the approximate simulation relation can

provide a tracking error bound, while the PD controller cannot. However, this cannot be

formally proved with the current approximate simulation relation. Experimentally, the

approximate simulation is better than the PD controller. Note however that the

performances of both methods highly rely on the choice of parameters, and thus it is hard

to find the optimal parameters.

Figure 33 shows that the bound set by the approximate simulation method is not

violated during the execution.

Figure 33 Tracking Error at Velocity 0.3

 51

Figure 34 Tracking Error at Velocity 1.4

Figure 33 and Figure 34 are plotted with the same trajectory as the previous simulations at

velocity 0.3 and 1.4 respectively. The red lines are the established bound 2𝓋𝑚𝑎𝑥 and blue

lines are the actual tracking error between the abstract model and concrete model. The

increase of the tracking error is caused by the change of directions, and after that it will

tends to get back to zero. This, from another aspect, verifies the correctness of the

approximate simulation relation method.

Another set of comparisons between the two methods is done to show that at the

same velocity, the approach proposed in this work achieved higher accuracy and thus it

could fly through more critical environments. Figure 35 and Figure 36 show the

environment and the trajectories of the two methods with the same mission, which is to

visit the three global requirements (the green cells) in order.

 52

Figure 35 Trajectory with Approximate Simulation Method at Velocity 0.8

Figure 36 Trajectory with PD Controller at Velocity 0.8

As it is shown, the trajectory with the approximate simulation method successfully

flew through the narrow space and reached the target. On the other hand, the trajectory

with the PD controller failed to make the second turn and crashed into the obstacles (the

gray cells).

 53

6.3 System Integration Testing

The third experiment aims to verify the integration with the planner and its functionality in

satisfying the high-level mission specifications. The following scenario is constructed: a

quadrotor has to take and upload photos (photo, upload) of a natural disaster repeatedly in

a valley and also it has to extinguish fires and assist personnel during the way if such

requests are detected within its sensor range. The quadrotor cannot upload before taking a

new photo and cannot take a new photo before having uploaded the old one. The

environment that this test is carried on is the same as the one described in Figure 9 and the

global and local mission specifications are the same as Formula 8 and Formula 9.

The following picture shows the trajectory for this mission which satisfies the

defined specification.

Figure 37 Environment and Mission Trajectory

 54

In the figure above, the gray blocks are obstacles that the quadrotor should avoid.

Green cells are global requests (photo or upload), the cyan and yellow cells are local

dynamic requests (extinguish and assist, respectively), the blue line is the trajectory of the

abstract kinematic model and the red line is the trajectory of the concrete non-linear

dynamic model. The quadrotor was initially located in the “photo” cell in the right-bottom

corner, and planned a trajectory to the next global request “upload”. During the flight to

“upload”, it found local dynamic requests “assist” and “extinguish” and served them on the

way. Then, it went on to the “upload”. After uploading the photos, it headed back to the

“photo” location.

Figure 38 demonstrates its trajectories more clearly. As it can be seen, the actual

trajectory(red) is very close to the abstract kinematic model’s trajectory(green). Large

tracking errors only occur when changing the direction.

Figure 38 Mission Trajectory.

 55

Figure 39 compares the tracking error and the bound established by the approximate

simulation relation method. The bound is never violated during the whole process. Large

tracking errors still happened when changing the direction, and the error tends to be

stabilized at about 0.15. Also, the bound established is pretty loose as the tracking error is

much smaller than the calculated bound. To further show that the bound established in [27]

is experimentally not violated, a series of experiments are carried with 10 different routes

including extreme conditions like spiral rising and u-turn at different velocities. Figure 40

to Figure 42 show the results of these simulations and their actual trajectories can be found

in APPENDIX A .

Figure 39 Tracking Error over Time.

 56

Figure 40 Tracking Errors over Time at Velocity 0.3

Figure 41 Tracking Errors over Time at Velocity 0.6

 57

Figure 42 Tracking Errors over Time at Velocity 0.9

The last simulation experiment aims to verify the controller’s ability to detect and

generate local plans to fly through areas with high-resolution decomposition. The result is

shown in Figure 43.

Figure 43 Quadrotor Fly Through High Resolution Area

 58

The yellow cells are the obstacles with higher resolution. As it can be seen, the

quadrotor generated a local plan and flew through it. After leaving this area, it recovered

its initial environment decomposition.

 59

CHAPTER 7

CONCLUSION

In this paper, a hierarchical hybrid controller for a dynamic quadrotor model is presented

that experimentally guarantees the quadrotor’s behavior satisfies a high-level mission

specification. A receding horizon method is used for planning a discrete trajectory,

feedback linearization is applied to quadrotor’s non-linear model to achieve attitude and

acceleration control, and the approximate simulation relation method is deployed for

synthesis of the discrete planner and continuous controller. In addition, a local planner is

also proposed to solve the problem when no local plan is found. Based on the simulation

results, this approach achieved better performance in terms of speed and accuracy

compared to previous approaches using a PD controller.

However, the interface used in this work is designed for a general second-order

dynamic model which does not cover the quadrotor’s orientation dynamics. A

transformation that transfers acceleration vector to the quadrotor’s orientation and an

attitude controller are necessary to serve as adapters between the general second-order

dynamic model and the actual non-linear model of the quadrotor. Thus, the tracking error

bound described in [27] is not formally guaranteed. But, the bound is not violated based on

multiple simulation results.

Future work can concentrate on the following topics:

 In [32], two feedback linearization laws are proposed to generate a linearized

model of the quadrotor, which can be used to calculate interface functions with

 60

guaranteed tracking error bound, as it is shown in [25]. The next step of this

work is to utilize this approach to achieve a formal bound.

 Improve the bound between the distance of the abstract model and concrete

model. As it is shown in this thesis, the bound is proportional to the maximum

velocity of the abstract model, and this bound is very loose as it is shown in the

simulation results. Having a tighter bound could significantly improve the

controller’s speed and accuracy.

 Improve the ability of resisting disturbances. In real applications, a controller

cannot be described as robust if it cannot handle disturbances like wind, change

of payload, and even change of physical structures. There are already several

works on this topic. In [33], a framework that takes the wind and fuel level into

account is presented. In [34], a method that controls a quadrotor with a cable

suspended load is proposed.

 Economic physical implementation. One major reason of quadrotor’s increased

popularity is its reduced cost and this trend will not stop. In [35], the authors

tried to use commercial available components from smartphones to build a

quadrotor which achieved promising performances compared with those using

professional parts. Future work should concentrate on implementing the results

of this thesis on such a quadrotor.

 61

REFERENCES

[1] "Into an Active Volcano with the Inspire 1," 17 2 2015. [Online]. Available:

https://www.dji.com/newsroom/news/into-an-active-volcano-with-the-inspire-1.

[2] "Drone delivery is already here — and it works," 30 11 2015. [Online]. Available:

http://www.marketwatch.com/story/drone-delivery-is-already-here-and-it-works-

2015-11-30.

[3] "Canadian mounties claim first person's life saved by a police drone," 10 5 2013.

[Online]. Available: http://www.theverge.com/2013/5/10/4318770/canada-

draganflyer-drone-claims-first-life-saved-search-rescue.

[4] M. C. Heatherly, "Drones: The American Controversy," Journal of Strategic

Security, vol. 7.4, p. 25, 2014.

[5] Fainekos, Georgios E., Hadas Kress-Gazit, and George J. Pappas, "Hybrid controllers

for path planning: A temporal logic approach.," Decision and Control, 2005 and 2005

European Control Conference. CDC-ECC'05. 44th IEEE Conference on. IEEE, pp.

4885-4890, 2005.

[6] Fainekos, Georgios E., Hadas Kress-Gazit, and George J. Pappas, "Temporal logic

motion planning for mobile robots.," Robotics and Automation, 2005. ICRA 2005.

Proceedings of the 2005 IEEE International Conference, pp. 2020-2025, 2005.

[7] Ulusoy, Alphan, and Calin Belta, "Receding horizon temporal logic control in

dynamic environments.," The International Journal of Robotics Research, vol. 33.12

, pp. 1593-1607, 2014.

[8] Girard, Antoine, and George J. Pappas., "Hierarchical control using approximate

simulation relations."," Decision and Control, pp. 264-269, 2006.

[9] P. Corke, Robotics, Vision & Control: Fundamental Algorithms in Matlab, Springer,

2011.

[10] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer Science &

Business Media, 2013.

[11] H. Voos, "Nonlinear Control of a Quadrotor Micro-UAV using Feedback-

Linearization," Mechatronics, 2009. ICM 2009. IEEE International Conference, pp.

1-6, 2009.

[12] "PID Control Design with Control System Toolbox," Mathworks, [Online].

Available: http://www.mathworks.com/videos/pid-control-design-with-control-

system-toolbox-68748.html.

 62

[13] A. Alur, T. Henzinger, E. Sontag, Hybrid Systems III: Verification and Control,

Springer-Verlag, 1996.

[14] T. Henzinger, S. Sastry, Eds., Hybrid Systems: Computation and Control, Springer,

1998.

[15] F. Vaandrager, J. van Schuppen, Eds., Hybrid Systems: Computation and Control,

Springer, 1999.

[16] N. Lynch, B. Krogh, Eds., Hybrid Systems: Computation and Control, Springer,

2000.

[17] Belta, Calin, and Luc CGJM Habets., "Constructing decidable hybrid systems with

velocity bounds," Decision and Control, 2004. CDC. 43rd IEEE Conference on., vol.

1, pp. 467-472, 2004.

[18] D. M. R. Park, Concurrency and automata on infinite sequences, Springer-Verge,

1980.

[19] R. Miller, Communication and Concurrency, Pretice Hall, 1989.

[20] C. Belta, L. Habets, "Control of rectangular multi-affine systems with applications to

genetic networks," IEEE Transactions on Automatic Control, 2004.

[21] E. M. Clarke, O. Grumberg, D. Peled, Model checking, MIT press, 1999.

[22] P. Gastin, D Oddoux, "Fast LTL to Buchi automata translation," Processing of the

13th international conference on computer aided verification., pp. 53-65, 2001.

[23] A. Girard, J. Pappas, "Approximation Metrics for Discrete and Continuous Systems,"

Automatic Control, IEEE Transactions, vol. 52, no. 5, pp. 782-798, 2007.

[24] A. Girard, G. J. Pappas, "Hierarchical control system design using approximate

simulation.," Automatica, pp. 3727-3732, 2009.

[25] A. Girard, G.J. Pappas, "Approximate hierarchies of linear control systems.,"

Decision and Control, 2007 46th IEEE Conference., pp. 3727-3732, 2007.

[26] A. Girard, G. J. Pappas, "Approximate bisimulation relations for constrained linear

systems.," Automatica, pp. 1307-1317, 2007.

[27] Fainekos, G. E., Girard, A., Kress-Gazit, H., & Pappas, G. J., "Temporal logic motion

planning for dynamic robots," Automatica, vol. 45(2), pp. 343-352, 2009.

[28] M. Reynolds, "Continuous Temporal Models.," AI 2001: Advances in Artificial

Intelligence, pp. 414-425, 2011.

 63

[29] W. S. Levine, Ed. Piscataway, "PID Control," in The Control Handbook, IEEE Press,

1996, p. 198–209.

[30] Ang, Kiam Heong, Gregory Chong, Yun Li, "PID control system analysis, design,

and technology," Control Systems Technology, pp. 559-576, 2005.

[31] "Simulink Design Optimization," Mathworks, [Online]. Available:

http://www.mathworks.com/products/sl-design-optimization/.

[32] Bonna, R., and J. F. Camino., "Trajectory Tracking Control of a Quadrotor Using

Feedback Linearization".

[33] C. Yoo, R. Fitch, S. Sukkarieh, "Online task planning and control for fuel-constrained

aerial robots in wind fields," The International Journal of Robotics Research, 2015.

[34] P. Cruz, M. Oishi, R. Fierro, "Lift of a cable-suspended load by a quadrotor: A hybrid

system approach.," American Control Conference(ACC), pp. 1887-18992, 2015.

[35] G. Loianno, G. Cross, C. Qu, Y. Mulgaonkar, J. Hesch, V. Kumar, "Flying

Smartphones: Automated Flight Enabled by Consumer Electronics.," 2015.

[36] Michael, Nathan; Mellinger, D.; Lindsey, Q.; Kumar, V., "The GRASP Multiple

Micro-UAV Testbed,," Robotics & Automation Magazine, IEEE , vol. 17, pp. 56,65,

2010.

 64

APPENDIX A

SIMULATIONS FOR TRACKING ERROR ANALYSIS

 65

In Section 6.3, Figures Figure 40 to Figure 42 shows the tracking error over time of having

a quadrotor fly through 10 different assigned trajectories with three different velocities. To

make these simulation results more convincing, this section presents the actual trajectories

of these simulations.

The following 10 figures shows the 10 actual trajectories at velocity 0.3, all

trajectories consists of 1*1*1 cubic cells starting at (3, 1, 2):

Z

Y

X

X
Y

Z

Z

 66

X

X

X

Y

Y

Y

Z

Z

Z

 67

X

X

X

Y

Y

Y

Z

Z

Z

 68

X

X

Y

Y

Z

Z

