
Locality Sensitive Indexing for Efficient High-Dimensional Query Answering in the

Presence of Excluded Regions

by

Aneesha Bhat

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved December 2015 by the
Graduate Supervisory Committee:

Kasim Selçuk Candan, Chair
Hasan Davulcu

Maria Luisa Sapino
Mohamed Sarwat

ARIZONA STATE UNIVERSITY

May 2016

ABSTRACT

Similarity search in high-dimensional spaces is popular for applications like image

processing, time series, and genome data. In higher dimensions, the phenomenon of

curse of dimensionality kills the effectiveness of most of the index structures, giving

way to approximate methods like Locality Sensitive Hashing (LSH), to answer simi-

larity searches. In addition to range searches and k-nearest neighbor searches, there

is a need to answer negative queries formed by excluded regions, in high-dimensional

data. Though there have been a slew of variants of LSH to improve efficiency, re-

duce storage, and provide better accuracies, none of the techniques are capable of

answering queries in the presence of excluded regions.

This thesis provides a novel approach to handle such negative queries. This is

achieved by creating a prefix based hierarchical index structure. First, the higher

dimensional space is projected to a lower dimension space. Then, a one-dimensional

ordering is developed, while retaining the hierarchical traits. The algorithm intel-

ligently prunes the irrelevant candidates while answering queries in the presence of

excluded regions. While naive LSH would need to filter out the negative query results

from the main results, the new algorithm minimizes the need to fetch the redundant

results in the first place. Experiment results show that this reduces post-processing

cost thereby reducing the query processing time.

i

DEDICATION

To my family.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor, Dr. Kasim

Selcuk Candan for his guidance throughout my research. He gave me the freedom

to explore new ideas and approaches, and at the same time, corrected me when I

deviated. Discussions with him would always clarify complex concepts. In addition,

these discussions would provide pointers to new concepts and motivate us to come

up with new ideas.

I would like to take this opportunity to thank Dr. Maria Luisa Sapino who has

given me valuable feedback in all the research discussions we have had. I would like

to thank my committee members, Dr. Hasan Davulcu and Dr. Mohamed Sarwat

who have supported me and given me valuable inputs. I would to thank the Emitlab

group members -Silvestro Roberto-Poccia, Jung Hyun Kim, Xinsheng Li, Xilun Chen,

Shengyu Wang, Sicong Liu and Yash Garg. It was great to have intellectual and non-

research discussions with you all. Thanks to Parth Nagarkar for his guidance from

the very beginning. The countless brainstorming sessions have helped me advance in

my thesis quickly.

I am grateful to Arizona State University and the School of Computing, Informat-

ics, and Decision Systems Engineering for providing me with the infrastructure and

resources during my graduate studies. I would like to thank Christina Sebring, who

has advised me at every step regarding the procedures and deadlines.

I am extremely thankful to Dr. Erik Johnston, Dr. Dara Wald and Dr. Ajay

Vinze for giving me the opportunity to work as a Graduate Research Assistant in

their projects. These projects have given me opportunities to apply my computer

science skills in sustainability.

I am thankful to my husband Adithya Murthy for motivating me to pursue my

iii

dream of doing research. His never-ending patience and encouragement has led to

my success. I am grateful to his mother Radha Murthy and father, U. Vishnumurthy

for supporting me and my decisions. I am thankful to my mother, U. Vijayalakshmi,

father, Manohara P and brother Manoj Bhat, for everything. I am also thankful to

all my friends and everyone else who have helped me reach where I am today.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 7

1.2 Thesis Contributions to Research . 8

1.3 Organization of the Thesis . 9

2 RELATED WORK . 11

2.1 Space Filling Curves . 11

2.2 Multi-Dimensional Index Structures . 12

2.3 Vector Approximation Files (VA-Files) . 13

2.4 Locality Sensitive Hashing and its Variants . 14

3 INDEXING IN HIGH-DIMENSIONAL SPACES . 18

3.1 Z-order Curve . 18

3.1.1 Computing the Z-codes . 19

3.1.2 Hierarchical Nature of the Z-order Curves and Range Queries 20

3.2 Locality Sensitive Hashing . 21

3.2.1 Hash Function . 23

3.2.2 Quality Guarantee . 25

4 ANSWERING QUERIES IN THE PRESENCE OF EXCLUDED RE-

GIONS . 29

4.1 Relation Between Query Radius, r and Bucket Width, w 29

4.2 Design of the Proposed LSH Index . 31

4.2.1 At a Hash Function Level . 32

v

CHAPTER Page

4.2.2 At a Hash Table Layer Level . 35

4.2.3 At the Index Level . 41

4.3 Query Processing . 42

4.3.1 Post Processing . 44

4.4 Theoretical Analysis . 44

5 EXPERIMENTS AND RESULTS . 51

5.1 Experimental Setup . 51

5.1.1 Color Dataset - Real Data . 51

5.1.2 Aerial Data - Real Data . 51

5.1.3 Uniform Data . 51

5.2 System Setup. 52

5.3 Comparison Algorithm . 53

5.4 Evaluation Criteria . 53

5.4.1 Time Taken to Process Queries . 53

5.4.2 Candidates Savings Vs. Recall Loss . 54

5.5 Results . 55

5.5.1 Time Taken . 56

5.5.2 Candidates Savings vs Recall Loss. 61

5.5.3 Impact of Density of Data Distribution in Uniform Data 67

5.5.4 Queries with Large Number of Small-Sized Excluded Regions 67

6 CONCLUSION . 70

REFERENCES . 71

vi

LIST OF TABLES

Table Page

5.1 Parameter and Values Used in Experiments (defaults in bold) 55

vii

LIST OF FIGURES

Figure Page

1.1 Similarity Searches In 2-d Spaces . 3

1.2 rc-Near Neighbor Query . 4

1.3 Query Region Of Interest,q, With an Excluded Region,q′ 8

3.1 Z-order Exhibiting Fractal Property [35] . 19

3.2 Mapping a Point to Z-code . 20

3.3 Hierarchical Representation of Z-curve Ordering . 21

3.4 Range Search With Probability P1 And P2 for Radii r and cr 22

3.5 Geometric Representation of Hash Function for Euclidean Family 25

3.6 Range Search with Probability P1 And P2 for Radii r and cr 27

4.1 Workflow of Building Index and Query Processing . 32

4.2 Projection of the Main Query and the Excluded Region on a One-

Dimensional Real Line. The Projection of Negative Query Region is a

Subset of the Projection of Main Query Region. 33

4.3 Hierarchical Bucket Structure (For Different Bucket Sizes) Of A Single

Hash Function . 34

4.4 Single Hash Table Layer Formed by Intersection of k Hash Functions. . . 36

4.5 Projection Of Points v1, v2, v3, v4 and q on Two Hash Functions,

Where k=2 . 37

4.6 Points in the Reduced Space Where the Number of Dimensions is the

Number of Hash Functions, k = 2. 38

4.7 Hierarchy of Hash Functions and Z-order . 38

4.8 Points in the Reduced Space Where the Number of Dimensions is the

Number of Hash Functions, k = 2 With Query Point. 42

viii

Figure Page

4.9 Query Region and Excluded Region. Region A is the Main Region of

Interest Shown in Green. Region B is the Region to Exclude from the

Main Region of Interest. Region C is Any Region Outside of Range r+

from Query Point, q. 45

4.10 Impact of Radius on Probability for a Fixed Bucket Size, w. 45

4.11 Regions A, B and C Along with Probability Guarantees for Queries

with Different Radiuses. 47

4.12 Effect Of Choosing Hash Function For Excluded Region 50

5.1 Distance Histogram of Datasets . 52

5.2 Percentage Gain in Time Taken for Values of k in the Presence of 0,1

and 2 Excluded Regions Observed in Uniform Data. l = 5 56

5.3 Percentage Gain in Time Taken for Values of k in the Presence of 0,1

and 2 Excluded Regions Observed in Color Data. l = 5 57

5.4 Percentage Gain in Time Taken for Values of k in the Presence of 0,1

and 2 Excluded Regions Observed in Aerial Data. l = 5 57

5.5 Percentage Gain in Time Taken for Values of l in the Presence of 0,1

and 2 Excluded Regions Observed in Uniform Data. k = 8 58

5.6 Percentage Gain in Time Taken for Values of l in the Presence of 0,1

and 2 Excluded Regions Observed in Color Data. k = 8 59

5.7 Percentage Gain in Time Taken for Values of l in the Presence of 0,1

and 2 Excluded Regions Observed in Aerial Data. k = 8 59

5.8 Effect of k on Candidates Savings and Recall Loss on Uniform Data . . . 60

5.9 Effect of k on Candidates Savings and Recall Loss on Color Data 60

5.10 Effect of k on Candidates Savings and Recall Loss on Aerial Data 61

ix

Figure Page

5.11 Impact of Recall on Varying k . 61

5.12 Effect of l on Candidates Savings and Recall Loss on Uniform Data 63

5.13 Effect of l on Candidates Savings and Recall Loss on Color Data 63

5.14 Effect of l on Candidates Savings and Recall Loss on Aerial Data 63

5.15 Impact of Recall on Varying Number of Layers . 64

5.16 Effect of r on Candidates Savings and Recall Loss on Uniform Data . . . 65

5.17 Effect of r on Candidates Savings and Recall Loss on Color Data 65

5.18 Effect of r on Candidates Savings and Recall Loss on Aerial Data 66

5.19 Effect of Density of Data Distribution in Uniform Data 66

5.20 Queries with One Large Excluded Region of 1/4 Volume Vs. Queries

with 100 Excluded Regions of 1/400 volume . 68

5.21 Queries with One Large Excluded Region of 1/4 Volume Vs. Queries

with 100 Excluded Regions of 1/400 Volume . 68

5.22 Queries with One Large Excluded of 1/4 Volume Vs. Queries with 100

Excluded Regions of 1/400 Volume . 69

x

Chapter 1

INTRODUCTION

Growing use of technology is resulting in vast amounts of multimedia data in dif-

ferent forms like audio, video, and images. Many of the multimedia applications are

represented as high-dimensional data[18]. High dimensional data is the representa-

tion of an object using a group of features(which define the object) called a feature

vector. Color, texture, and shape descriptors are some of the examples of features

that describe a multimedia object[49]. Due to the amount of information stored in

each high-dimensional data object, their sizes are generally high. Efficient storage and

retrieval of high-dimensional data is crucial for everyday applications. With enhanced

mechanisms for storage, there is always a need for efficient retrieval techniques to get

the required information.

Depending on the context and type of the application, there are various search

techniques employed in multimedia applications. Some of the frequently used retrieval

techniques which fall into the category of similarity searches in high-dimensional

spaces are the following [49]:

• Exact Searches : To find objects identical to the given query.

• Range Searches : To find all objects in the data space which are within a given

distance (range) from a query feature vector as shown in Figure 1.1(a).

• Nearest Neighbor Searches : To find an object which is the most similar to the

query feature vector. This search can be generalized to find k nearest objects

to the feature vector. Figure 1.1(b) shows a k-nn search where, for k = 3, the

results returned are the points a, b and c.

1

• All-closest-pairs-queries : To find all possible pairs of objects which are similar

to each other in the data space.

The formal definitions for Range query and Nearest Neighbor query are as follows:

Definition 1.1. Range Query, In the given space D, let q be the query point and

dist(v1, v2) be a function which computes the distance between any two points v1 and

v2. Range Query retrieves all the points in the data space within a distance of r,

where r > 0.

RangeQuery(q, r)dist = {vεD|dist(q, v) ≤ r} (1.1)

Definition 1.2. k-Nearest Neighbor Query, In the given space D, let q be the

query point and let dist(v1, v2) be a function which computes the distance between any

two points v1 and v2. K-nearest neighbor Query returns k closest points in the data

space, where k > 0.

k − nn Query(q, k)dist = {R ⊆ D|∀vr ∈ R, v′r /∈ R, dist(q, vr) ≤ dist(q, v′r) ∧ |R| = k}

(1.2)

Similarity searches in high-dimensional data is very popular for various appli-

cations involving image, genome, documents, and time series data [28]. There are

various indexing mechanisms to solve the problem of nearest neighbor searches and

range searches. Some of the well-known techniques include Quadtree [22], R-Tree

[30], R+-Tree[50], R*-Tree [9], KD-Tree [10], SR-Tree [34], and TV Tree [36]. Due to

the curse of dimensionality, these indexing techniques are rendered inefficient when

the number of dimensions increase over ten[58].

2

(a) Range Query (b) K-Nearest Neighbor Query

Figure 1.1: Similarity Searches In 2-d Spaces

Dimensionality Curse

As the number of dimensions increase, most of these index techniques are rendered

inefficient. As the dimensionality increases, distance between any two given points

tends to be similar. Near neighbor loses its meaning and also makes similarity searches

more complex due to the sparsity of data space. High dimensional data contains a

lot of dead spaces and the conventional space partitioning techniques split the data

irrespective of presence of data points. This results in a lot of redundant informa-

tion being maintained in the index structure. Due to this, it may so happen that

a query processing would result in an empty data page pointing to the space [12].

Index structures like R-Tree using Bounding Regions would result in a lot of overlap-

ping Minimum Bounding Regions (MBR) which again results in an expensive query

processing. The problem tree structures encounter is that when, dimensionality in-

creases, almost all the nodes in the tree are checked for similarity [58].This leads to

a space complexity of O(n) or sometimes worse[51]. A simple sequential search over

the dataset beats range searches using above methods.

However, a wide range of applications require similarity search in high-dimensions

3

like text or document search, audio and video retrieval [19], data compression [27], and

pattern recognition [16]. This has given rise to the use of approximation techniques

which provide faster results. Approximate near neighbors results are proven to provide

similar results as sequential searches but in lesser time [32]. The gain in time with

these approaches compensate for the occasional misses in the results.

Definition 1.3. c-approximate R-near neighbor, (r,c)-NN [5] Given a data

set D in d-dimensional space, a query point q, error probability δ and range r, if there

is a point v, where v ε D, such that ||q, v|| ≤ r, then (r, c) − NN returns a point

within distance cr with a probability of 1− δ.

Figure 1.2: rc-Near Neighbor Query

Definition 1.4. Approximate k-nearest neighbor [37] Given a data set D in

d dimensional space, an integer k, and a query point q, k-NN query needs to return

k points v1, ..., vk in such a way that ||q, vi|| is at most (1 + ε) times more than the

||q, vc||, where ε is a small real number and pc ⊂ D and pc is the closest point to q in

D.

Locality Sensitive Hashing (LSH) [28, 32] has been proven to be an efficient in-

dexing mechanism to answer range queries and nearest neighbor queries in high-

4

dimensional databases. This technique makes use of hash functions that project the

points in the original space to a lower dimensional space. It is based on the premise

that points closer in the original space hash to the same buckets in the projected

space with higher probability. Points hashed to the same bucket as the query are

processed to fetch the results. LSH is used in a range of applications that deal with

unstructured data like similarity search in tweets [53].

Queries With Excluded Regions

In addition to the similarity searches discussed above, there is a need for answering

negative queries efficiently. A large number of applications have queries which have a

main region of interest and a negative query indicating the region which needs to be

excluded. In the case of multimedia objects, there are searches to find objects similar

to a particular query feature f1 and at the same time, not similar to a query feature

f2. This gives rise to a scenario where the query results comprise of a range query

with f1 as a query point and without the results of the range query with f2 as query

point. Here, the range query with query point as f1 forms the main query or the

main region of interest and the range query with query point as f2 forms a negative

query.

To further illustrate the above use case, the following are applications where this

technique would be useful.

Document Search

A documents collection like web pages are often queried for similarity searches. Due

to the size of the document collection, efficient indexing mechanisms are required to

process the query quickly. Query file and documents are both considered to be a bag

of words and searching using vector similarity is an easy technique to find results.

5

However, the similarity between documents only leverages the word(in terms of n-

grams of characters) similarity. It does not make use of the semantics of the words.

There are plenty of words in English which have different meanings depending on the

context. If we know that the user is not interested in a specific subset of queries due

to relevance feedback, we can show the most relevant results to the user by removing

the uninteresting results. Consider the main query Q to be the search string or search

file, which is a generic query that might mean different things in different contexts.

Consider a query Q′, such that Q′ ⊂ Q and the user is not interested in results

returned by Q′. Here, Q forms a main query and Q′ forms an excluded region or a

negative query.

Image Retrieval

Image data can be represented as a set of features in space, where the number of

features could range from a few tens to thousands. A feature in image data could be

color, shape, contours, saturation, luminance or textures. There has been research in

the area of application of LSH for image databases. To illustrate our problem, consider

a collection of images in an image database consisting of millions of images. We have

a query image Qi, which displays an image of a street. We would like to retrieve

all the images from the database that resemble this query image. Concurrently, we

would want to exclude all the night time images of the street that are dark. Another

query Qn forms the negative query, the results of which we would like to exclude.

While linear search on the whole database is deemed to be expensive, approximate

methods can be used to fetch the results satisfying closeness to Qi and exclusion of

results satisfying the negative query Qn.

6

Retrieving Music

Approximate nearest neighbor queries are very practicable in music search. Audio

data can be best represented as high-dimensional data and each track can be rep-

resented as a set of features. These features are matched during a similarity query.

[15, 14] discuss feature extraction in audio, similarity measure among audio shingles

and finding closest music track using Locality Sensitive Hashing. Let Qa be a query

audio track and we would like to find all other audio tracks which sound similar.

In addition, we are interested in finding those audio tracks which are instrumental.

Given a vocal track, Qv, we would want to perform a negative query using Qv on the

results returned by similarity search on a Qa. Here, Qa can be considered as a main

query and Qv as a query for the exclusion whose results we want to eliminate.

To elucidate further, the problem this thesis is trying to solve is described in the

following section.

1.1 Problem Statement

The main goal of this research is to be able to query a region of interest while

avoiding smaller region(s) within, which needs to be excluded. Figure 1.3 illustrates

a simple example query : Let us assume we have a query q with radius r, which

we are interested in and a query q′ with radius r′ which we are not interested in.

The smaller region formed by query q′ forms an excluded region in the main region

of interest. If the region covered by q is Reg and region covered by q′ is Reg′, then

Reg′ ⊆ Reg. This thesis tries to efficiently answer such queries by minimizing the

fetching of candidate points that fall within the excluded regions. The problem can

be generalized to cases where Reg ∩Reg′ 6= ∅.

7

Figure 1.3: Query Region Of Interest,q, With an Excluded Region,q′

1.2 Thesis Contributions to Research

A naive approach to solve the problem is to perform a single query q, using LSH,

and then compute the distance from the query point to all the candidate objects to

remove the candidates which fall into the excluded region. This will give us only the

points which lie within the region of interest. But this approach is inefficient since we

need to retrieve and filter redundant candidates. This research provides a solution

that avoids fetching the candidates that fall within the excluded region.

• Hash functions of LSH are used to project the original space of d dimensions

into a lower dimension space, k (number of hash functions in a hash table).

• Z-ordering is applied on the reduced k dimensional space to generate a one-

dimensional ordering of the projected points. The reduced space is stored in

a data structure which utilizes the hierarchical nature of points for query pro-

cessing.

• Range queries are performed intelligently on this data structure to achieve the

8

required results of positive and negative queries.

Given the range of applications like music retrieval, text, document search, and image

retrieval, handling negative queries in an intuitive manner will be useful in many

scientific and analytical multimedia applications. The algorithm provides a variation

of Locality Sensitive Hashing method to provide a space efficient, time efficient data

structure with quality guarantee of results.

• Firstly, this reduces a huge amount of processing cost required to filter out the

unwanted data points from the candidate results.

• Secondly, we build the LSH index on a hierarchical structure which can answer

range queries for multiple radii. The index is constructed for the smallest possi-

ble radius for the dataset, but stored in a manner using which larger radii range

queries can be answered. This space efficient index structure is in the order of

O(n) which uses minimal memory.

1.3 Organization of the Thesis

The organization of the rest of the thesis is as follows:

• Chapter 2 provides a literature survey on the popular indexing techniques in

high-dimensional database

• Chapter 3 introduces background concepts about Locality Sensitive Hashing

and Z-order curves.

• Chapter 4 presents the proposed enhancement over the existing naive LSH.

• Chapter 5 discusses the experimental setup, results, and analysis of the experi-

ments.

9

• Chapter 6 concludes the thesis and discusses future work.

10

Chapter 2

RELATED WORK

Over the years, a large number of indexing techniques have been developed for

indexing in high-dimensional databases. Various techniques include one-dimensional

ordering, space partition techniques, data partitioning methods and approximation

methods.

2.1 Space Filling Curves

A simple yet interesting approach is to provide one-dimensional ordering to high-

dimensional data. This can be achieved by space filling curves [6]. These space filling

curves span across the data space covering all the data points, to transform the

high-dimensional space into a one-dimensional sequence. There are simple space

filling curves like the column order or the row order and complex ones making use

of concepts of bit interleaving [55], quad code[22] and location code [3]. Some of the

popular space filling curves are Gray Code [20, 21], z-order curve[45, 40] and Hilbert’s

curve [33]. Row ordering or column ordering are called concatenation methods since

the code corresponding to the data point is derived by concatenating the x-coordinate

value with the y-coordinate value(row or column ordering depending on whether the

x-coordinate is most significant or y-coordinate) [49]. On the other hand, z-curve is a

bit-interleaving code. In this method, the code representing the object is formed by

alternating the bits of the x-coordinate and the y-coordinate in two-dimensional space.

Bit concatenation leads to long narrow searches whereas bit interleaving methods like

z-curve facilitates compact square searches. Hilbert curves and z-order curves exhibit

an interesting behavior called the fractal structure. They are self-similar and tend

11

to repeat the same pattern at multiple scales. This beautiful behavior proves to be

useful to perform range queries and partial queries at different levels of granularities.

Compactness and the fractal nature of the curves makes Hilbert or z-curve more

popular than the row-ordering or column ordering curves.

2.2 Multi-Dimensional Index Structures

One of the basic yet highly prominent foundational construct is the hierarchical

subdivision of data. Common examples are the B-Trees or the B+-Trees [8]. The

key idea of such index structures is that they provide sorting of data. This sorting

can prove useful while data is stored on disk. If data points are close in the orig-

inal space, sorting ensures that they are close on disk.[13]. These methods can be

classified into space partitioning techniques and data paritioning techniques [23]. In

space partitioning techniques, the space is divided into hyperplanes irrespective of

the distribution of data. This forms a disjoint set of regions with data. In data par-

titioning techniques, the space is divided based on the distribution of the data. This

may result in overlapping regions of data.

Grid files is one of the older indexing techniques in which the space is divided

using a grid like structure. Each cell within the grid contains data points which

can be accommodated within a page while storing[43]. The disadvantage of such a

structure is that if there are less points, then the space in the page can go wasted

and if there are more points, then the points can span across more than one page.

Quadtrees, although similar to grid files, are an improved index structure where

the space is partitioned taking into consideration the data points [22]. The root

of the quadtree covers the entire space. Each internal node has four children in

a two-dimensional quad tree. Each incoming point subdivides the two-dimensional

space into four partitions which forms its children subtree[4]. Using this approach a

12

hierarchical structure is built. A node is split when the number of points increase over

a predefined limit. When the same principle of indexing is applied to two-dimensional

data, it is referred to as Octree. This approach can be generalized to d-dimensions.

Another popular index structure for high-dimension data space is the kd-tree

which supports multiple dimensions. It forms a binary search tree structure, where

each internal node divides the space into two along a single dimension. The space is

split along different dimensions at different levels of the tree in a round-robin fashion

[13].

R-Tree is a another popular multi-dimensional index technique which uses mini-

mum bounding regions (MBR) to store the objects. R-Tree is a generalized version of

B+-tree which handles multiple dimensions along with offering efficient space utiliza-

tion. MBRs are constructed such that they form a minimum bounding region for the

point object. To form a hierarchical tree structure nearby MBRs are grouped to form

a larger MBR. Though R-Tree is one of the very popular techniques that is employed

in a large number of spatial and other commercial databases, it does have a drawback

due to the overlapping MBRs. R+-Tree and R*-Trees provide enhancements over the

naive R-Tree.

To overcome the problem of curse of dimensionality seen in these tree based index

structures, there has been extensive research on approximate indexing techniques.

Vector Approximation Files and Locality Sensitive Hashing are popular approxima-

tion indexing methods.

2.3 Vector Approximation Files (VA-Files)

In [58], the authors establish that the popular partitioning methods provide a

linear complexity which is, most of the times, surpassed by the naive sequential scan.

VA-File is a method which optimizes linear scan for performing similarity searches.

13

Using VA-File, each data object is represented with the help of (a) an approximation

cell represented by b(user given parameter) bits per dimension and (b) a pointer to the

list of data objects on the actual disk. The data space is divided into 2b cells and each

data object is represented by one of these cells [11]. Every cell is represented by a bit

string formed by the concatenation of bit values of ranges in each dimension. Hence

a VA-File index is essentially an array of these bit-string values which represent the

grid cells and each cell contains a pointer to the data objects on disk that fall into the

cell. Given a range query, a linear scan of the vector approximation cells is performed.

Every cell is checked to see if it is a candidate cell that might contain objects that

fall under the range. This is estimated by computing the Euclidean distance from the

query point to the boundaries of the VA cell. On finding a potential cell, Euclidean

distance with all the objects within the cell is computed, to filter out only relevant

results. [11] describes a Simple Search Algorithm and Near Optimal Algorithm to

perform similarity searches.

2.4 Locality Sensitive Hashing and its Variants

The basic LSH was initially proposed by Indyk and Motwani in [32]. In this work,

the authors explain LSH taking into consideration the Hamming distance. In [28],

the authors further improve the basic LSH described earlier in [32], by optimizing the

previous approach to provide faster query time. In addition, the authors generalize

the previous approach into external memory. It was in [17], that LSH was first shown

to be designed for Euclidean distance. In this paper, the authors described the well

known technique of projecting the d-dimensional vector on a random vector and then

quantizing it into predefined buckets of width w to hash a data point. Data points

that fell into same buckets as the query point were chosen as candidate objects. k

such hash functions needed to be satisfied to be chosen as a candidate. This reduced

14

the number of false positives. More (l) hashtables were constructed to reduce the

misses.

An improvement over the original method called LSH Forest was proposed in [7].

The authors suggest a method to fetch the similar points without having to depend

on data to tune LSH index. The authors show that this improved LSH’s performance

for skewed datasets. Each layer is represented by a prefix tree data structure. The

paths of the prefix trees from root to leaves represent the k hash values in the layer.

Querying is a two-phased approach. The first phase which is a top-down approach,

finds the path to the leaf that contains the largest prefix of hash codes common

to the hash code formed by the query point. In the second bottom up phase, the

nodes are traversed upwards fetching candidates. If the lowest level points to all

the required candidates, the bottom-up traversal stops there, else it continues until

required candidates are fetched. A collection of such trees represent different layers

of a LSH, to form the LSH Forest.

In [54], the authors construct a compound hash key of length k. This represents

the data object in a reduced dimensionality of k. A z-order code for this vector in

a low dimension is computed. These values are stored in a B+-Tree, that further

transforms the points to a one-dimensional space. Given a query, the largest prefix

of the z-code of compound hash keys of the query is found in the B+-Tree. This is

the node of the B+-Tree preferred to fetch the candidates. In case more candidates

are required, the previous and next nodes of the tree are probed. A collection of such

trees forms an lsb-forest.

Another approach called Entropy based LSH [57] overcomes the space requirement

compared to previous methods. This method assumes that a point close to the query

is known and those buckets are probed that are calculated to have higher success

probability depending on the point. Using the underlying idea of entropy based LSH,

15

Multi-probe LSH probes nearby buckets for candidate results [39]. In this approach,

rather than creating multiple hash functions, very few hash functions are created.

If more results are required, nearby buckets are probed to fetch results. A work on

query range sensitive LSH provides an algorithm that generates a probe sequence

based on query range rather than a fixed probe [29]. There have been enhancements

to LSH to handle dynamic data sets and when queries are known [44, 31].

In [24], the authors publish a new variant of LSH based on counting collisions in

hash buckets. Instead of the traditional static L compound hash functions each con-

sisting of k hash functions, this work suggests creating m compound hash functions.

A candidate data vector is chosen if its hash code collides with a query point’s hash

code in at least k of the hash functions. In case no data point collides in k hash

functions, the paper employs a virtual re-ranking scheme to expand the width of the

hash bucket thereby increasing the chance of collision.

All of the above methods suffer from a major limitation that many random In-

put/Output (I/O) operations are required to fetch the candidate results. Sorting-Keys

LSH (SK-LSH) overcomes this drawback by storing the data points on disk such that

nearby points are stored closer to each other than the farther points [38]. To achieve

this, the authors define a new distance measure and sorting mechanism for data points

based on the prefix in the compound hash keys, and the data points are stored in

sorted order. While searching for the candidates, they ensure that minimum num-

ber of disk pages are accessed. [56] gives a detailed explanation of various hashing

techniques used for similarity searches.

Recent research in the area of similarity searches in high-dimensional data, de-

pends on the distribution of data. One such technique is Data Sensitive Hashing [26]

which makes use of adaptive boosting to generate hash functions. Another technique

called Data-Dependent Hashing [59] works in two levels. In the first level, data is

16

divided into clusters of similar distribution. Hash table indexes are built for each of

these clusters. For a given query, clusters with high probability of finding result are

chosen and queried using the index structure of that cluster.

A very recent index mechanism based on LSH is called Selective Hashing [25]. The

authors create multiple indices with different radii. Each object is a part of only

one of the indices creating a disjoint set of indices. During the query, all the indices

are looked into and relevant candidates are chosen. This method proves to be space

efficient and provides results with same recall as previous methods.

In [41], the goal of the authors is to efficiently solve a range query workload

in a one-dimensional space. In order to do this, they create novel query plans for

answering range queries. In this work, the authors introduce an Exclusive query plan

for answering excluded regions. Similarly, in [42], the authors also use Exclusive query

plans to efficiently solving range query workloads for two-dimensional spaces. These

work leverage the hierarchical nature of the data to provide efficient query processing

plans. They create cost models and query plans to answer a range query workload

for one-dimensional and two-dimensional spaces. The goal of my work is to answer

queries with excluded regions in high-dimensional spaces.

In spite of having multiple indexing techniques, none of these techniques directly

intend to solve the problem of answering query with excluded regions. To answer

range queries comprising of excluded regions or negative queries, the main query is

executed using one of these techniques and the irrelevant results need to be eliminated.

Hence, there is a need for an effective algorithm that can handle negative queries

nevertheless with similar guarantee of results.

17

Chapter 3

INDEXING IN HIGH-DIMENSIONAL SPACES

This section provides background information and concepts based on which the

proposed algorithm is designed. Firstly, we discuss the z-order curve [45, 40], com-

puting z-codes and its hierarchical property. Next, we discuss the Locality Sensitive

Hashing [32] and its quality guarantee.

3.1 Z-order Curve

Z-order or Morton order curve is a space filling curve that provides a one-dimensional

ordering to two or more dimensional data. At the same time, these one-dimensional

ordering preserve the locality of the points in the original space. Due to its simplicity

in mapping to one-dimensional ordering and its ability to preserve locality efficiently,

Z-order curve has been used as a popular technique[6].

Z-curve falls into the category of space filling curves that possess fractal property.

A fractal is a structure that exhibits a pattern of self-similarity in different resolutions.

Figure 3.1 shows the multiple scales of the z-ordering curve. In Figure 3.1(a), we see

that the whole space is covered by one single z. The z curve can be seen as covering 4

different regions in space - beginning from South West, next North West, continuing

to South East and finally North East. In Figure 3.1(b), we see a zoomed in version

of the previous z-curve, with each of the four regions having their own z-curve. And

finally in the Figure 3.1(c), the z-curves cover regions with finer granularity.

18

(a) 1st Order (b) 2nd Order (c) 3rd Order

Figure 3.1: Z-order Exhibiting Fractal Property [35]

3.1.1 Computing the Z-codes

Bit concatenation and bit-interleaving are two simple methods to map the multi-

dimensional point into one-dimensional ordering. Z-curve makes use of the bit-

interleaving method.

Figure 3.2 illustrates the mapping of a point to the corresponding z-curve value.

Consider the region highlighted in red, in the figure. If we were to number each cell as

the z-order curve sweeps through the region, starting from the bottom left cell as 0 and

the top right cell as 15, the red region would be numbered as 14. Though it appears

straight forward to count the cells as the z-curve sweeps, consider high-dimension

space with more than twenty dimensions and more partitions in space. Nevertheless,

z-curve wins, thanks to the easy mapping technique. Notice that the red region is

formed by x = 3 and y = 2. The z-code of the cell is formed, by interleaving the

digits in the binary representation of the values of the two co-ordinates. The right

side of the figure shows the bit-interleaving of 11 and 10 to arrive at 1110 which is

14.

To formalize the mapping, let us consider a two-dimensional space(for the sake of

simplicity) with x-axis and y-axis being the two dimensions. Both the co-ordinates

are divided into k equal regions. To simplify the geometry, let us assume that k is a

19

Figure 3.2: Mapping a Point to Z-code

power of 2. Each of these divisions can be represented by log2k binary digits. Let a

point A = (x, y) be represented as A = (xk−1, ..., x0), (yk−1, ..., y0) [49]. Z-order code

for the point A is given by the following

zcode(A) = xk−1yk−1...x1y1x0y0 (3.1)

The simple mapping technique has made the mapping from high-dimensional

spaces to one-dimensional ordering very efficient. From the Figure 3.1(c), it is clear

that the ordering is very compact. This implies that, as the granularity of the curve

formation increases, z-curve fills smaller regions at a time and grows to cover the

whole space while retaining the z nature [35].

3.1.2 Hierarchical Nature of the Z-order Curves and Range Queries

Locality preserving nature of z-curves have proven to be useful in range queries

[46]. Using a one-dimensional index structure like the B+-Trees, one can map the

points on high-dimensional space to one-dimensional ordering in a B+-Tree. However,

these mappings do not capture the locality in its entirety. There are cells which appear

next to each other in the Figure 3.2, but their z-code numbers have a lot of other

cells in between them.

Figure 3.3 shows the hierarchical representation of the z-orderings of the cells in

20

Figure 3.3: Hierarchical Representation of Z-curve Ordering

3.2. Let us consider a query ranging in the blue shaded box. This region covers

one complete z square of the 3rd order. It is interesting to note that due to the

hierarchical nature of the z-curve, the blue box can be represented as 11 ∗ ∗, where ∗

is a don’t care [13]. Any of the four cells represented by 1100, 1101, 1110 and 1111

can be represented by 11 ∗ ∗. Using this trait, a prefix based index structure can

be constructed to answer range queries. For range queries spanning across different

z regions, the query can be split accordingly into sub queries, to answer the range

query efficiently. The proposed algorithm make use of this hierarchical nature of the

z-curve to eliminate exclusion regions in the query.

3.2 Locality Sensitive Hashing

As discussed earlier, the need for faster processing of similarity searches in high-

dimensional data has given rise to approximate indexing techniques, Locality Sensitive

Hashing being one of the most prominent and efficient ones. This technique is based

on the premise that points closer in the original space hash to same buckets. Points

hashed to the same bucket as the query are potential candidates for results. A post

processing step on the candidates gives us the final results. Over the years, many

hash families have been devised to work with various distance measures.

Definition 3.1. Locality Sensitive Hashing is formally defined as the following

21

in Rd space. A family of hash functions H is considered to be locality sensitive in

(r, cr, P1, P2), if the following condition is satisfied for any two points q and v in Rd.

[17]

1. if ||q, v|| <= r, then Pr[h(q) = h(v)] ≥ P1

2. if ||q, v|| >= cr, then Pr[h(q) = h(v)] ≤ P2

The Definition 3.1 implies that, if q and v are within the required distance of r,

then the probability of both the points hashing to the same bucket is very high, i.e.,

greater than P1. If the distance between q and v is greater than cr, then there is

a very low probability (less than P2) that both the points hash to the same bucket.

The same is illustrated using Figure 3.4. It is crucial to maintain P1 > P2 to achieve

the required quality guarantee. The gap between P1 and P2 is amplified by using

multiple hash functions.

Figure 3.4: Range Search With Probability P1 And P2 for Radii r and cr

22

3.2.1 Hash Function

The quality guarantee of Locality Sensitive Hashing technique depends on the

effectiveness of hash function chosen in the Definition 3.1. It is interesting to note

that, in several applications, hashing is used as a technique to uniquely identify a

given object. The motive in the case of such hash functions is to hash the objects

into as different buckets as possible. Unlike such hash functions, LSH employs hash

functions which have the ability to hash similar objects into same buckets [48]. This

is the key idea behind use of hashing in similarity searches. Different hash families

have been discovered for different distance measures. For instance, when the distance

measure used is Hamming distance, the hash function is the value of a randomly

chosen co-ordinate of the binary vector. Let us assume the binary vectors are of the

form {0, 1}d and the distance between any two points v1, v2 is given by the number

of indices where the values of the indices do not match. The hash function for such

Hamming distance is given by h(p) = pi where i ε {1, 2...d} is chosen randomly[32].

Here, the probability P1 is given by the number of co-ordinates in the vectors where

the values match. If the radius is given by r, then Pr(h(q) = h(v)) is given by 1− r
d

(since the number of co-ordinates where the values can be different are at most r).

Similarly, P2 is given by 1 − cr
d

. It is clear that P1 > P2 holds, hence it is an ideal

and simple hash function for Hamming distance family.

Since Euclidean distance measure is one of the most widely used distance measures,

we assume Euclidean distance in all our further discussions. Let us consider a data

set D containing n points. All points v ε D are of dimension d. Euclidean distance

(denoted by ||v − q||l2) between any two points in space is given by

||v − q||l2 =

√√√√ d∑
i=1

(vi − qi)2 (3.2)

23

In the case of Euclidean distance, [17] was the first to devise a hash function that

guarantees closeness of points in hashed space if the points were close to each other

in the original space. An ideal hash function for the Euclidean distance family in Rd

is given by the following:

The point v is projected on a random vector ~a, displaced by a random value b

and quantized into hash bins of size w. The random vector is taken from a p-stable

distribution, constructed by choosing the values of each of the co-ordinates from a

Gaussian distribution of mean 0 and standard deviation 1, N(0, 1). Such a random

vector is called a Gaussian random vector. It is proven that projections of two close

points using a Gaussian random vector remain close (explained in detail in Section

3.2.2).

The hash function for Euclidean family is defined as the following:

h(~v)a,b =

⌊
~v.~a+ b

w

⌋
(3.3)

where b.c is a floor operation, ~v ε D is a point in the d dimensional space D, w is the

bucket size, a is a Gaussian random vector and b ε [0, w) is a random number. The

geometric representation of the above equation is shown in the Figure 3.5. A is the

scalar dot product of query vector q, and the Gaussian random vector ~a. Similarly

B is the scalar dot product of query vector v, and the Gaussian random vector ~a.

Quantizing the one-dimensional line into equal buckets of width w gives the hash bins

into which the projections fall.

Using just one such hash function can lead to false positives and misses. In order to

avoid false positives, many such hash functions are concatenated to form a Compound

Hash Function. Hash values to which the points map to, are called the Compound

Hash Key (CHK). Many such CHKs can be used to avoid the misses. Next section

provides the theoretical guarantee of LSH using multiple hash functions and layers.

24

Figure 3.5: Geometric Representation of Hash Function for Euclidean Family

3.2.2 Quality Guarantee

This section discusses the probability guarantees for Euclidean hash function.

From Definition 3.1, we know that for a hash function to provide required success

probability, it is necessary to hold the inequality P1 > P2. Note that the Gaussian

random vector is generated using p-stable distribution. Projections of points that are

close, are also close to each other in the projected space when a Gaussian random

vector is used. The formal definition of p-stable distribution is the following[52]:

Definition 3.2. p-stable distribution A distribution S is called p-stable distribu-

tion, if, for any real numbers v1, ..., vn and random variables X1, ..., Xn,
∑

i viXi has

same probability distribution as (
∑

i |vi|
1
s).X, where X is a random variable drawn

from S.

Gaussian distribution being a 2-stable distribution, has the following property

[60]:

pdf(~v.~p) = |v|N(0, 1). (3.4)

The above equation implies that the probability distribution function (pdf) of a scalar

25

dot product of vector ~v with a Gaussian random vector,~p is the same as magnitude

of the vector ~v times the pdf of Gaussian distribution. This implies that for any

two points, q and v, if the ||q, v|| is less, the points are closer and the difference in

magnification of the pdf is small. Hence, there is a high probability that the two

points will collide into the same hash function. For points far away, the probability

of collision decreases.

To compute the probability P1, that two close points hash to the same bucket,

we denote fp(x) to be the probability density function for p-stable distribution. Let

r = ||v, q|| be the Euclidean distance between v and q and w be the hash bucket

size. If ~a is a Gaussian random vector, the probability distribution of a.v− a.q is the

same as r.X, where X is a random variable drawn from the p-stable distribution. The

probability that the two points v and q collide is given by

Prob[h(v), h(q)] =

∫ w

0

1

r
f2(

t

r
)(1− t

w
)dt (3.5)

for L2 space [17].

From Equation 3.5, we see that the probability of collision depends on the distance

between the two points. The probability monotonically decreases when the distance

between the points increases. Since P1 denotes the probability of closer points and

P2 denotes the probability of farther points, P1 > P2. Figure 3.6 shows the change in

probability as for different values of r when w is fixed. When the radius has a value of

r, probability that any point within r collides with the query q in the hash functions,

is given by P1. As the radius value increases, say to cr, then the probability that any

point outside of cr hashes to the same bucket as q is given by P2.

The gap between high probability P1 and low probability P2 can be amplified by

using many hash functions instead of a single hash function. Let g(v) be a function of

concatenation of k hash functions h(i) where i ε 1, ..., k. Each hash table is constructed

26

Figure 3.6: Range Search with Probability P1 And P2 for Radii r and cr

by using a family of hash functions G which reduces the dimension of the Rd space into

a k-dimensional space. Let G = {g : Rd 7→ Uk}, where G(v) = h1(v), h2(v), ..., hk(v).

The k hash functions are generated randomly and independently. A function G(v)

returns a concatenation of real numbers which forms a new hash key for the point v.

Using a concatenation of k functions forms a stricter hash function than a single hash

function h(v) reducing the false positives that would have been returned otherwise.

On the flip side, a stricter hash function G(v) introduces false negatives in the results.

To overcome this drawback, l layers of such hash functions are used. The index

structure is constructed using l hash tables G1, ..., Gl and it is sufficient that the

hash key of a point collides with the query point in any one of the hash tables. The

parameters k and l can be tuned to achieve the required probability.

If P1 is the probability that two points collide with each other, then the probability

that two points collide with each other in all the k hash functions is given by P k
1 . It

follows that the probability that two close points do not collide in at least one of the

k hash functions is given by

1− P k
1 .

27

Probability that two points do not collide in at least one hash function in all the

l layers is given by

(1− P k
1)l.

Hence, the probability that two points collide in all the k hash functions in at

least one of the l layers is given by

SuccessProbability = 1− (1− P k
1)l (3.6)

The parameters k and l are chosen to achieve the required probability guarantee.

Using these fundamental concepts, the next section discusses the enhanced algo-

rithm for LSH for handling exclusion regions.

28

Chapter 4

ANSWERING QUERIES IN THE PRESENCE OF EXCLUDED REGIONS

LSH has been proven to give good results for approximate nearest neighbor

searches and range searches in high-dimensional spaces. In this section, an enhance-

ment is proposed on the existing LSH algorithm. This new approach is designed to

handle range queries which are comprised of negative queries. To set the context,

the relation between the radius of range query and the bucket size used in LSH is

discussed first. The next section provides the design of the new algorithm. The design

is first described for the hash function level, then built on for the compound hash

key level and next for the whole index. Finally, the design and algorithms of query

processing, are described.

4.1 Relation Between Query Radius, r and Bucket Width, w

A crucial step in the LSH procedure is to quantize the projection of the data

object on to a random vector. The projection scale is divided into equally spaced

buckets of width w (introduced earlier in section 3.2). Let v and q be two points in

the data space D of dimension d. Let r = ||v− q|| be the Euclidean distance between

the points v and q. Let a be the random vector of dimension d whose co-ordinates

are drawn from the Gaussian distribution. The distance between the two points in

the projected space is given by a.v − a.q. The probability that v and q collide with

each other in the hashed space is given by the following [17]:

Prob[h(v), h(q)] =

∫ w

0

1

r
f2(

t

r
)(1− t

w
)dt

29

where, f2(x) = 2√
2π
e−

x2

2

Solving the integral gives us,

P1 = 1− 2norm(−w
r

)− (1− e−
w2

2r2)

√
2

π

r

w
(4.1)

where, for any random variable in a distribution with mean 0 and standard devi-

ation 1, norm(.) denotes its cumulative distribution function (cdf).

If r2 ≥ w2/2, P1 can be reduced to

P1 ≤ 1−
√

2

π

r

w
(1− 1

e
) (4.2)

Given a probability P1, it is evident from the Equation 4.2, that w is directly propor-

tional to r. When the value of w is small, the bucket size formed by the intersection

of k hash functions is small. Such a small bucket would hold less number of can-

didates (points closer to the query with high probability), hence answering smaller

radii. Fetching more number of candidates can be accomplished by increasing the

width of the bucket, w, within each hash function. This principle forms the basis of

other popular LSH algorithms like Multi-Probe LSH [29]. In Multi-Probe LSH, when

more number of candidates needs to be fetched, the nearby buckets are probed to

fetch the candidates.

In [17], authors discuss the effect of changing w on ρ, where ρ = ln 1/p1
ln 1/p2

. It has

been experimentally shown by the authors that, after a certain value of w, ρ is not

effected by increasing w further. However, a large value of w will further reduce the

gap between P1 and P2. To overcome this problem, more hash functions in each layer

is required, thereby increasing the query processing cost.

In the new algorithm, this principle is used to assign different bucket sizes, w and

w′ for the query and the excluded region respectively. This depends on a number of

factors like the data distribution and the number of hash functions k. If r and r′ are

30

two radii such that r > r′, and w and w′ are the corresponding bucket widths, then

w > w′.

4.2 Design of the Proposed LSH Index

In this section, the proposed hierarchical index structure using Locality Sensi-

tive Hashing is explained which enables us to answer queries with excluded regions.

As described earlier, LSH is used to perform dimensionality reduction on the data.

Several data points can fall into the same hash code created by the hash function.

Within each layer of the index structure, a hierarchical tree is constructed to depict

the reduced space and the pointers to data points. This vector in the reduced space

is converted to a z-code. We get a one-dimensional ordering for all the vectors in the

reduced space. This is stored in a data structure which makes use of the hierarchy of

the points to answer different range of queries. An algorithm is provided to retrieve

the required range of queries while handling negative queries as well.

Figure 4.1 provides the overall workflow of the algorithm. The data in the original

space is projected on a smaller dimension using the compound hash functions of LSH.

This transforms the original data points to CHKs. The original space of d dimensions

is reduced to the size of CHK. Z-codes are computed for each of the CHKs to get a one-

dimensional ordering. The one-dimensional ordering is stored in a binary search tree

to perform range queries. Range searches are performed on the search tree avoiding

the range of excluded region to get the candidates at each layer. Candidates from all

layers are combined and actual Euclidean distance is computed to filter out the false

positives. The workflow is explained in detail in the rest of this chapter. The design

is explained for a main query with one excluded region, however, the same design can

be used to handle multiple exclusion regions.

31

Figure 4.1: Workflow of Building Index and Query Processing

4.2.1 At a Hash Function Level

Consider the data space D in d dimensions consisting of n points. The first step

is to convert the d dimensional point v, (v ε D) to a k-dimensional point. This

is achieved by compound hash keys generated by using k hash functions in LSH,

G(o) = h1(o), h2(o), h3(o)...hk(o). For the Euclidean hash family, the hash function

is formed by projecting the data vector v on a random vector a and by chopping

the line into equally spaced buckets of width w as described in Equation 3.3. Let us

32

consider a query set which consists of a main query and a query for excluded region,

of a smaller radius. In the previous section, we see that bucket size, w, is a function

of the query radius, r. This demands an index structure which is sufficient to answer

queries of both the radii. In the new approach, an implicit hierarchy is constructed

to depict the various resolutions of the bucket size.

Figure 4.2: Projection of the Main Query and the Excluded Region on a One-

Dimensional Real Line. The Projection of Negative Query Region is a Subset of

the Projection of Main Query Region.

Figure 4.2 shows the projection of the main query q on the real line l in green. The

projection of the negative query region is shown in red. We notice that the locality of

the main query and the negative query is maintained in the projection. The goal is

to fit the two different radii with optimal values of w (for the main query) and w′ (for

the negative query) such that the both w and w′ divide the real line into 2f and 2f
′

buckets where f and f ′ are integers. This condition (though not necessary) simplifies

the algorithm and the discussion in the next section when we map the hash values

into a one-dimensional ordering.

For a given data set, we can fix w and w′ to be the optimal bucket sizes, where r

33

and r′ are the main query radius and negative query radius respectively. Hierarchical

nature of the bucket size provides us with the flexibility to choose from possible

options of w value whenever r is greater than r′. Quality of the results can be further

tuned by varying the values of number of hash functions k. In the case of traditional

LSH, the bucket size w is generally chosen to be significantly larger than the query

radius r. Though this increases false positives, it does reduce misses. However, when

the goal is to avoid the region in case of an exclusion queries, w needs to be as small

as possible. A false positive in the excluded region results in a miss in the main region

of interest. Such misses needs to be avoided.

Figure 4.3: Hierarchical Bucket Structure (For Different Bucket Sizes) Of A Single

Hash Function

A hierarchical representation of the bucket sizes is shown in Figure 4.3. To answer

the query, q, we use a query at level 4w which falls into bucket (of a hash function)

b13. We use radius w to get the bucket (of hash function) which q′ falls into. b13

comprises of b1, b2, b3, and b4 at leaf. The candidate results for this hash function are

those points which are in the buckets (of hash function) b1, b2, and b4.

b13 − b3 = b1 ∪ b2 ∪ b4 (4.3)

In the case of a single hash function, it is clear that we can fetch the candidates

in the buckets b1, b2, and b4 without having to look into the bucket b3. As in the case

34

of traditional LSH, we make use of multiple such hash functions in a layer, to build

a compound hash key. Also, we use multiple layers to increase the accuracy of the

results. The following sections discuss how to perform the intersection of buckets of

different hash functions while maintaining the boundaries of the excluded region.

4.2.2 At a Hash Table Layer Level

A bucket at the level of a layer is formed by the intersection of k hash functions.

For a point to be a candidate result of the query, it needs to collide with the hash

values of the query point in all the k hash functions. In the problem of query set

including negative queries, for each of the k hash functions, we have a larger range

of candidates satisfying the main query and a smaller subset satisfying the negative

query. The goal of this section is to devise a data structure such that we can efficiently

fetch only required candidates. As a solution, we construct a tree index structure at

each layer to represent the space projected using hash functions. The dimension of

the new space is equal to the number of hash functions in a layer, k. The scale of

each dimension is based on the number of buckets (within a hash function). The hash

value of a data point, v, needs to collide with the hash value of the given query, q,

for each dimension of the new space for v to be returned as a result.

As shown in Figure 4.4, q is the larger query and q′ is a query with smaller radius.

The region of interest in this figure is q − q′. Let us consider k = 2 hash functions

in the layer, forming a Compound Hash Function (CHK), G(v) = h1(v).h2(v). If

the bucket width were to be set appropriately, and Sh1 represents the set of points

projected on the green region because of h1 and Sh2 represents the set of points

projected on the green region because of h2, then the candidate set as a result of

G(v) is Sh1 ∩Sh2 . Similarly, we are interested in the points that fall in the red region

on both the projected lines. If Rh1 is the set of points that fall in the red region on

35

Figure 4.4: Single Hash Table Layer Formed by Intersection of k Hash Functions.

the projected line for h1 and Rh2 is the set of points that fall in the red region on

the projected line for h2, then we would like to exclude the set of points belonging

to Rh1 ∩ Rh2 . Hence the final set of points that the resultant candidate set should

contain is given by the following:

CandidateResults = {Sh1 ∩ Sh2} − {Rh1 ∩Rh2} (4.4)

In order to arrive at the two segments (marked by red and green) on the projected

lines, we need to maintain two different bucket sizes. We also note that since the query

q′ is completely within q, the same is reflected in the projected segments, A larger

bin w can contain a few smaller hash bins w′. The goal is to construct a hierarchical

index structure such that the smaller hash bins are children of larger hash bins.

First, with the help of an example, the mapping of G(v) to z-order space is dis-

cussed. Then, the same concept is extended to handle negative queries. Consider the

Figure 4.5 with points v1, v2, v3, and v4 in two-dimensional space with x and y being

the 2 co-ordinates. Let q be the query point. We see two lines, a1 and a2 on which the

points are projected. Let these two lines represent the real lines on which the points

are projected for hash functions h1 and h2. The two lines are then quantized into

36

Figure 4.5: Projection Of Points v1, v2, v3, v4 and q on Two Hash Functions, Where

k=2

equally sized bins. For instance, point v1 falls into the bin number 1 of a1 and bin

number 1 of a2 (where bin numbers start from 0). Similarly all the other points are

projected on a1 and a2. This gives us with the following CHKs for the points namely

{1, 1}, {1, 4}, {5, 7} and {6, 6} in the form of {h1(vi)h2(vi)}, where i = 1, ..., n is the

index of the points. We have now transformed the points in the original space to the

new space.

Figure 4.6 represents the new space with the two co-ordinates being the h1(v)

and h2(v) for any point v. This figure shows that G(v1), G(v2), G(v3) and G(v4)

are points in the transformed space. As G(v1) falls in the cell formed by 001 in

the h1(v) dimension and 001 in the h2(v) dimension, the z-code value of the point

G(v1) is given by 000011(as discussed in Equation 3.1). Though similar technique of

one-dimensional ordering has been used in [54] and [47], neither of them apply it to

handle negative queries.

37

Figure 4.6: Points in the Reduced Space Where the Number of Dimensions is the

Number of Hash Functions, k = 2.

Figure 4.7: Hierarchy of Hash Functions and Z-order

38

With this information, we now see how mapping to z-order can be useful to handle

negative queries. Figure 4.7 shows the relation between two different resolutions of

z-order representation of CHKs. Let us assume that the width of the edge of each of

the smaller cell is one unit. We can observe two different resolutions in the figure as

follows:

• Let us consider the smaller resolution where both the dimensions are divided

into two regions of width four units each, thus forming four quadrants. Since

there are only two divisions in each dimension, we require one digit to label the

cell in a dimension. Let us call this number the precision for the resolution. Let

the number of hash bins formed for a hash function be given by U . Then U is

the number of co-ordinates in a dimension, and its precision p of a resolution is

given by,

p = log2 U (4.5)

Hence, for the smaller resolution, the co-ordinates in both the dimensions are 0

and 1. This is shown by bold lines in the figure.

• Next, we consider the larger resolution where the scale varies from 0 to 7 in

both the dimensions where the width of the edge of each cell formed is 1 unit.

The precision for this resolution is given by log28 which is 3, thereby requiring

3 digits to represent each co-ordinate.

To uncover the relationship between the hierarchies of both the resolutions, con-

sider the green square which represents a cell in the smaller resolution. This cell is

labeled 11 by interleaving the bits of the two co-ordinates. The red square on the

other hand, represents a cell in the higher resolution, labeled as 110111. All the cells

in the higher resolution have the prefix of the cell it is contained within, in the smaller

39

resolution. 11, which is in the smaller resolution is the prefix of the cell 110111, which

is in the higher resolution. We derive the following relationship between the labels of

the cells (one-dimensional ordering) of smaller and higher resolutions.

Cell labeled 11 contains many more cells of higher resolutions. Using the label

of the cell in smaller resolution, one can derive the labels of cells in higher resolu-

tion. Let p be the precision in the smaller resolution and p′ be the precision in the

higher resolution. Let x be the label of the cell in the smaller resolution. It contains

x′0, ...x
′
n−1, where n is the number of higher resolution cells contained within a larger

cell. The cell x′0, with the smallest z-order labeling in the higher resolution contained

within the cell x , in two dimension space is given by

x′0 = x << (2 ∗ (p′ − p)) (4.6)

Similarly, the cell x′n−1 with the largest z-order label in the higher resolution contained

within the larger cell x is given by

x′n−1 = (x+ 1) << (2 ∗ (p′ − p))− 1 (4.7)

With the help of Equation 4.6 and Equation 4.7, we can derive the relationship

between the labels of the cells in different resolutions. The example above considers

the case when the number of dimensions is two so that it is easy to visualize. The

same can be applied for k number of dimensions. For k hash functions, the projected

space is of dimension k. The above equations can be generalized to the following.

x′0 = x << (k ∗ (p′ − p)) (4.8)

Similarly, the cell x′n−1 with the largest z-order label in the higher resolution contained

within the larger cell x is given by

x′n−1 = (x+ 1) << (k ∗ (p′ − p))− 1 (4.9)

40

Algorithm 1 ComputeQueryRange
1: procedure ComputeQueryRange

2: leftShift = k(p′ − p)

3: zcode = ComputeHashCode(w)//This function first projects the points into lower dimension and computes zcode

4: QueryRange.begin = zcode << leftShift

5: QueryRange.end = (zcode+ 1) << leftShift− 1

6: return QueryRange

Algorithm 1 describes the method ComputeQueryRange(...) that transforms the

query range in the original space to the range in the one-dimensional ordering. The

index structure is constructed with the highest resolution possible depending on op-

timum values for w′. A cell of smaller resolution is represented as a factor of a cell

of higher resolution. This gives us an index structure where the bucket width grows

in factors of 2f , where f is an integer. Optimal w and w′ values are chosen for the

query point and the negative query point respectively. Hence, there can be a set of

fixed bucket sizes for a particular data set depending on the data distribution. The

one dimensional ordering along with the pointers to all the actual points, is stored in

a tree data structure to perform efficient range searches.

4.2.3 At the Index Level

Multiple layers are used in LSH to avoid false negatives and improve the quality

of the results. We construct L such hierarchical layers. Let Rcand,li be the result

candidates at layer li, then the final set of candidates will be

CandidateResultSet =
L⋃
l=1

Rcand,li (4.10)

The hash functions in each of the l∗k hash functions are generated independently

and randomly.

41

Figure 4.8: Points in the Reduced Space Where the Number of Dimensions is the

Number of Hash Functions, k = 2 With Query Point.

4.3 Query Processing

This section discusses the efficient retrieval of results in the case of negative

queries. Let us consider a larger query q with radius r and smaller query q′ with

radius r′. In the index building phase, the points were hashed into buckets of smaller

resolution, i.e., buckets of width w. Depending on the query sizes, optimal w and

w′ are chosen for q and q′. An index structure of upto four levels is constructed to

conduct experiments.

During the query processing stage, z-codes for both q and q′ are computed. If

the query range of q′ is completely within q, then the zcode(G(q)) will be a prefix of

zcode(G(q′)). The z-code of the query point is realized in terms of multiple cells of

higher resolution. All the cells of higher resolutions are probed for candidates except

42

Algorithm 2 Get candidates from a single layer
1: struct QueryRange{begin, end}

2: Input:

• Main query , q

• Negative query , q′

3: procedure QueryLayer(layerNumber)

4: candidates = ∅

5: queryRange = ComputeQueryRange(q)

6: exclQueryRange = ComputeQueryRange(q′)

7: for zcode:queryRange.begin to queryRange.end do

8: if zcode < exclQueryRange.begin and zcode > exclQueryRange.end then

9: Candidates = Candidates ∩ PointsHashedToZcode

Algorithm 3 Get candidates from all the layers
1: procedure GetAllCandidates

2: Candidates = ∅

3: for i:1 to number of layers, l do

4: IntCandidates = QueryRange(i)

5: Candidates = Candidates ∪ IntCandidates

the cell with the label of z-code of q′. This would return all the candidate points which

are satisfied by the query q without containing the points that satisfy the negative

query q′.

We make use of Figure 4.8 to illustrate with an example. Using different w and

w′, we get two different z-codes. Cell labeled 11 for the larger query q and 110111

for the smaller query q′. Leveraging the fact that the z-code of the larger query is a

prefix of smaller query, we can easily perform a range search on the one dimensional

index structure for all nodes of the form 110000 to 111111 while excluding the results

for 110111. This will not fetch any of the points that lie within the bucket containing

points that fall within the excluded region. The pseudo-code for fetching candidates

from a single layer and finally from all the layers together is outlined in Algorithm

2 and Algorithm 3 respectively. Algorithm 2 fetches candidates from a single layer

43

Algorithm 4 Post processing results
1: Input:

• A set of candidate results S, size of the result set ns

• Main query radius, r

• Negative query radius, r′

2: procedure processresults

3: Results = ∅

4: for i:1 to ns do

5: distanceToQueryPoint = ComputeEuclideanDistance(q, Si)

6: if distanceToQueryPoint ≤ r then

7: distanceToHoleQueryPoint = ComputeEuclideanDistance(q′, Si)

8: if distanceToHoleQueryPoint > r then

9: Add Si to Results

in the presence of one exclusion region. If there are multiple exclusion regions, range

search is performed excluding candidates from all the exclusion regions.

4.3.1 Post Processing

Though we have eliminated most of the points that fall in the excluded regions,

since LSH is an approximation scheme, there is a need to filter out the results from

the generated candidate set. To accomplish this step, Euclidean distance is computed

between the query point and every other point to check whether the point is within

the bounds of the main query. Then, Euclidean distance is computed between the

negative query point and the points within the main query to further rule out any

false positive due to the excluded region. The pseudo-code for the same is outlined

in Algorithm 4.

4.4 Theoretical Analysis

In Section 3.2.2, we discussed the quality guarantee for the traditional LSH. The

proposed algorithm modifies the existing LSH to handle excluded queries. Hence, the

44

theoretical probability guarantees that hold for the traditional LSH, do not remain

the same. Since the excluded regions are also eliminated using approximation, the

probabilities for a point to collide with the query point also changes.

Figure 4.9: Query Region and Excluded Region. Region A is the Main Region of

Interest Shown in Green. Region B is the Region to Exclude from the Main Region

of Interest. Region C is Any Region Outside of Range r+ from Query Point, q.

Figure 4.10: Impact of Radius on Probability for a Fixed Bucket Size, w.

As illustrated in Figure 4.9, let the main region of interest be defined by a query

45

point, q and a radius of r. Let qe be the query point for the excluded region and

re, the radius of the excluded region. Let us denote the region in green as A, which

is the main area of interest. Let the region in orange be denoted by B which is the

region to be excluded. Let C be the region outside of A, which we are not interested

in. Since we make use of another hash function for excluded region, we make use of

probabilities of both the queries to derive a combined success probability.

Using Definition 3.1 of LSH, let us define two hash families to answer the main

query and excluded region respectively. Let (r, cr, P+
1 , P

+
2) be the family of hash

functions to answer the main query. Similarly, let (r−, c−r−, P−1 , P
−
2) be the family of

hash functions to answer the excluded region query. Figure 4.11 represents the two

hash families. Let h(v) be the the hash function for the main query and let h′(v) be

the hash function for the excluded region. Recall that the individual hash functions

in the main query and exclusion query are different because of the bucket sizes. Also,

an object in the main query is returned if all the hash functions in a layer collide with

q. Similarly, an object in the excluded region is eliminated, if the object collides with

qe in all the hash functions in a layer. Using these families of hash functions, we can

derive the probability with which an object within the region of interest is returned.

We see from Figure 4.10 that, for a fixed w, as the radius increases, the probability

of the point within the radius being returned, decreases. In the case of main query,

for a given pair of r and cr, the radius is chosen to be close to r in order to avoid

misses. This also gives rise to false positives (objects that lie in region C), but those

can be removed during post processing. However, in the case of the excluded region,

with an exclusion radius of re, if the hash function for excluded region is chosen such

that r− is equal to re, the probability of elimination of points within B increases.

However, this has a side effect of eliminating the good candidates (false positives in

the case of exclusion query) outside of B. This results in misses from the actual

46

region of interest, A, which needs to be avoided. Hence, we define probabilities with

which an object is returned, depending on the region it occurs in.

Figure 4.11: Regions A, B and C Along with Probability Guarantees for Queries with

Different Radiuses.

The success of the proposed approach can be assessed using the following proba-

bilities:

1. Probability, ψ+
l , of returning an object in region A

2. Probability, ψ−l of not returning an object in region B or C

Probability of returning an object in region A

In a given layer, let G(v) be the compound hash function for the main query and let

G′(v) be the compound hash function for the exclusion query. Probability of returning

the points within the region A, relates to the recall of the results. This depends on

the probabilities on both G(v) and G′(v) as follows:

• Prob[An object in region A is returned by G(v)]. The probability that an object

in A is returned by h(v) is P+
1 . Probability that a layer of hash functions returns

47

the object in A is P+
1
k
.

• Prob[G(v)′ does not eliminate a point in region A]. We need to choose the

r− and c−r− such that the probability of collision of a point in A with qe is

minimized. If we choose c−r− such that, it is aligned with re, the probability

that a point in A collides with qe is P−2 . The probability of not eliminating a

point in A translates to probability of not returning a point in A by the excluded

region hash function. The probability of not returning a point within A by at

least one of the hash functions (of excluded regions) in a layer is (1− (P−2)
k
).

For a given layer, if we assume that the hash functions are independent of to

each other, the overall probability of returning a point that is in the region A is

P+
1
k
.(1− (P−2)

k
).

If ψ+ is the probability of returning correct results in the entire index, it can be

obtained by computing the probability of returning correct results in at least one of

the l layers and is given by,

ψ+ = 1− (1− P+
1
k
.(1− (P−2)

k
))l (4.11)

Probability of eliminating an object in region B or C

Probability that the negative candidates are not returned relates to the precision of

the returned results. This probability depends on the following:

• Prob[G(v)′ eliminates all the points in B]. This measures the probability of

exclusion hash function to correctly eliminate the irrelevant results. In an ideal

case, the value of c− will be very close to 1 (c− = 1 + ε, where ε is close to 0).

This implies the probability of collision of point inside of r− with query point

is almost equal to the probability of collision of a point inside of r−c− with the

48

query point. Probability that a point within B collides with qe is P−1 . Hence,

probability of G(v)′ to eliminate irrelevant candidates for the entire CHK is

given by (P−1)
k
.

• Prob[G(v) does not return a candidate in C].The probability that the query

collides with a point in region C, in one hash function is P+
2 . Probability that

the query collides with a point in region C in all hash functions in a layer is

(P+
2)

k
. Probability that the query point does not collide with a point in region

C in at least one hash function is 1− (P+
2)

k
).

For a given layer, probability that incorrect results are not returned is given by

P−1
k
.(1− (P+

2)
k
))

If ψ− is the probability of not returning incorrect results in the entire index, it

can be achieved by computing the probability of not returning incorrect results in all

the layers.

ψ− = ((P−1)
k
.(1− (P+

2)
k
))
l

(4.12)

The success of the algorithm depends on maximizing the probabilities in the Equa-

tions 4.11 and 4.12. For a given value of re if we choose the index parameters such

that re is close to r, then we eliminate most of the candidates within the excluded

region. On the other hand, we introduce a lost of misses because of eliminating candi-

dates from region A. Figure 4.12(a) shows that if re is chosen close to r−, then misses

are increased, whereas if re is chosen close to c−r−, then false positives increase. For

the given radii of the main query and exclusion query, and the values of w and w′, we

choose the value of k that maximizes both these probabilities ψ+ and ψ−. Increas-

ing ψ+ avoids misses in the results, thereby increasing recall of the returned results.

Increasing ψ−, decreases false positives, thereby reducing post processing cost. The

49

(a) Effect Of Choosing Hash Function For Ex-

cluded Region

(b) Designing Hash Functions Such That

c− Is Close To 1

Figure 4.12: Effect Of Choosing Hash Function For Excluded Region

ideal selection of hash functions would be such that c− is very close to 1. This implies

that r− and r−c− are very close. All the objects within r− will be eliminated with

high probability and all objects outside of r−c− are not eliminated in the final result.

50

Chapter 5

EXPERIMENTS AND RESULTS

This section discusses the experimental setup, the system setup, the data sets

used in evaluation, the evaluation criteria used, and the analysis of results.

5.1 Experimental Setup

Experiments are conducted on three data sets namely Color, Aerial and Uniform

data.

5.1.1 Color Dataset - Real Data

Corel dataset is a collection of 68,040 real images [2]. The data used are the feature

vectors extracted from these images. More specifically, the color dataset consists of

color histograms of these images that represents density of colors in the image. Each

object in this data set is of 32 dimensions. The values in each of the co-ordinates of

the data is between 0 and 1.

5.1.2 Aerial Data - Real Data

Aerial data consists of large aerial photographs. It contains 275,465 data objects

which are texture descriptors. Each feature vector is of 60 dimensions [1]. The values

in each co-ordinate of the data varies from 0.008 to 270.

5.1.3 Uniform Data

To analyze the behavior of the algorithm in uniform distribution, synthetic data

is generated. The size of the data set is 100,000 data objects. The value of each co-

51

(a) Aerial Data (b) Color Data

(c) Uniform Data

Figure 5.1: Distance Histogram of Datasets

ordinate of a data object is a number that is generated uniformly at random. Each

data object contains 32 dimensions. The values in each of the co-ordinates range

between 0 and 1.

Figures 5.1(a), 5.1(b) and 5.1(c) show the distance histograms of the datasets used

in the experiments.

5.2 System Setup

Experiments were executed on a Microsoft Windows(R) 7 (x64) machine having,

Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz processor. The algorithm was imple-

mented in C++ using Microsoft Visual Studio environment.

52

5.3 Comparison Algorithm

Since none of the existing LSH techniques handle queries with exclusions, a naive

method is implemented using LSH. In the naive approach, an LSH index structure

is implemented as efficiently as possible. Points that are within a range of r from

query q, are computed using the naive LSH index. These candidate results would

also contain points that are within the exclusion region. In the post processing step,

Euclidean distance is computed from the main query point to the object, to check if it

is within a distance of r. If the point lies within the query range of r, then Euclidean

distance is computed with the exclusion query point q′. If the point lies within the

exclusion radius of r′, then such a point is eliminated. In short, the candidates for the

main query are fetched. In the post processing step, the points in the excluded region

are eliminated. For simplicity, let us call this approach LSH-Naive and proposed

approach, LSH-E (LSH with Excluded Regions).

5.4 Evaluation Criteria

Next, we discuss the various evaluation techniques that were employed to evaluate

the accuracy and performance of the algorithm.

5.4.1 Time Taken to Process Queries

The efficiency of the algorithm is evaluated based on the time taken to retrieve

the results. Time taken represents the combined time taken to fetch the candidate

results, and to post process them. Percentage gain with respect to time taken in

LSH-Naive and LSH-E is computed. Let time taken by LSH-Naive be tLSH−Naive and

time taken by LSH-E be tLSH−E. Percentage gain in time taken is computed by

gain =
tLSH−Naive − tLSH−E

tLSH−Naive(for 0 excludedregions)

(5.1)

53

Percentage of time gain is computed for zero excluded regions, one excluded region

and two excluded regions. All the gains are normalized with respect to time taken

by zero excluded regions. The gain in time is computed by varying the parameters -

number of hash functions k, number of layers, l and radius of the excluded region, r′.

5.4.2 Candidates Savings Vs. Recall Loss

The proposed algorithm reduces the number of candidates fetched, thereby reduc-

ing post processing time. In order to ensure that the results returned are relevant,

we measure both the Candidates Savings, as well as Recall Loss. Candidates Savings

is the drop in the number of candidates that need to be post-processed. Since the

proposed algorithm introduces an approximation to eliminate irrelevant candidates,

there is a slight loss in terms of recall. Recall is computed as a ratio of the number

of correct results returned by the LSH algorithm to the actual number of correct

results. In the experiments, both the gain in terms of candidates and loss in terms of

recall are discussed. Let RecallLSH−Naive be the recall in the case of LSH-Naive and

RecallLSH−E be the recall in the case of LSH-E, then loss in recall is as follows:

Loss in Recall =
RecallLSH−E −RecallLSH−Naive

RecallLSH−Naive
(5.2)

Let CandLSH−Naive be the number of candidates returned by Naive LSH, and CandLSH−E

be the number of candidates returned by LSH-E, then gain in terms of candidates

drop is given by the following:

Candidates Savings =
CandLSH−Naive − CandLSH−E

CandLSH−Naive
(5.3)

The goal of this research is to achieve a gain in Candidates Savings while maintaining a

low Loss in terms of Recall. The experiments are executed by varying the parameters

k, l and r.

54

Parameter Values

Datasets Uniform, Color, Aerial

k 7, 8, 9, 10, 11

l 3, 4, 5, 6, 7

No. of excluded regions 0, 1, 2

ratio of volume of excluded region to query region 1/4, 1/10, 1/20, 1/50

Table 5.1: Parameter and Values Used in Experiments (defaults in bold)

5.5 Results

The three data sets have different distributions and this has an influence on the

choice of various parameters. The distance histogram of the distances between points

for the Uniform dataset has most of the points between 2 units and 2.5 units. Hence, r

is chosen to be 2.3. We select a radius for the excluded region such that the size of the

excluded region is one-fourth the size of the main query. Therefore, the value of r′−

for Uniform dataset is 2.2 (32 dimensions). For the Uniform dataset, the parameter

w for the main query is set at 3 and we use the next smaller value of w′ in the

hierarchy, that is 1.5, for the excluded regions. These values of bucket size provide

recall guarantees of over 0.7. For the Color dataset, w for the main query is set as 0.8

and w′ for the excluded region is set as 0.4. The chosen radius of main query is 0.6

and radius of excluded region r′−, is 0.574. For the Aerial dataset, w is chosen to be

80 and w′ is chosen to be 40. The chosen radius values of r and r′− are 50 and 48.75

respectively. As discussed in the theoretical analysis Section 4.4, the w′ for excluded

region is chosen such that, the probability of not returning a good candidate because

of excluded region, is minimized. The radius of the exclusion region is aligned to the

c−r− radius which determines P2.

55

Table 5.1 gives the list of parameters that were varied to carry out the experiments.

The default values for k, l, and volume of excluded region to query region ratio are 8, 5

and 1/4 respectively. The w′ values chosen for the excluded region hash functions are

selected such that, the radius of excluded region is aligned with the miss probability

of c−r−. Choosing a w′ in such manner avoid misses in the final result.

5.5.1 Time Taken

Impact of k on Time Taken

Figure 5.2: Percentage Gain in Time Taken for Values of k in the Presence of 0,1 and

2 Excluded Regions Observed in Uniform Data. l = 5

Figures 5.2, 5.3, and 5.4 show that the proposed algorithm has consistent gain

compared to naive LSH, when there are one or two excluded regions. In the case

of zero excluded regions, the gain is almost equal to zero. The minimal gain and

loss in the case of zero excluded regions is due to average computation times across

multiple runs. The experiment results show that, as the value of k increases, the time

gain for LSH-E with respect to LSH-Naive reduces. As the number of hash functions

56

Figure 5.3: Percentage Gain in Time Taken for Values of k in the Presence of 0,1 and

2 Excluded Regions Observed in Color Data. l = 5

Figure 5.4: Percentage Gain in Time Taken for Values of k in the Presence of 0,1 and

2 Excluded Regions Observed in Aerial Data. l = 5

k increases, the hash function for answering the main query becomes stricter. This

reduces the number of candidates in the first place. On the other hand, the number

of candidates to be eliminated because of the excluded region also reduces, since the

57

hash function for the excluded region query becomes stricter. This leads to reduced

benefits of elimination of excluded region in the case of LSH-E.

The time taken to post process the second exclusion region is higher than that for

the queries with one exclusion region. This is because the Euclidean distance com-

putation is done twice for two exclusion regions. With reduced number of candidates

to post process in the case of LSH-E, the time gain in case of two exclusion regions

is more than queries with one excluded region.

Impact of l on Time Taken

Figure 5.5: Percentage Gain in Time Taken for Values of l in the Presence of 0,1 and

2 Excluded Regions Observed in Uniform Data. k = 8

Figures 5.5, 5.6, and 5.7 show that, LSH-E shows an improvement with respect

to time taken by LSH-Naive. In the case of zero excluded regions, both the methods

take almost the same time.

As the number of layers increase, the rate of increase in terms of candidates is

low. Each layer adds new candidates which might already have been returned by the

58

Figure 5.6: Percentage Gain in Time Taken for Values of l in the Presence of 0,1 and

2 Excluded Regions Observed in Color Data. k = 8

Figure 5.7: Percentage Gain in Time Taken for Values of l in the Presence of 0,1 and

2 Excluded Regions Observed in Aerial Data. k = 8

other layers. Similarly, the rate of increase of number of candidates for elimination

with addition of new layers is low. This reflects in lesser gain in terms of processing

time.

59

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.8: Effect of k on Candidates Savings and Recall Loss on Uniform Data

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.9: Effect of k on Candidates Savings and Recall Loss on Color Data

In the case of time gain, we notice that the gain in terms of two excluded regions

is more than the gain in the case of one excluded region. Firstly, more candidates

are pruned in the case of two excluded regions. Of the remaining candidates to be

post-processed, Euclidean distance needs to be computed with the main query and

the excluded region query points. This leads to a high gain in terms of time taken

for LSH-E with respect to LSH-Naive.

60

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.10: Effect of k on Candidates Savings and Recall Loss on Aerial Data

Figure 5.11: Impact of Recall on Varying k

5.5.2 Candidates Savings vs Recall Loss

Impact of k on Candidates Savings and Recall Loss

Figures 5.8, 5.9, and 5.10 show the impact of changing k on the candidates savings

and the recall loss. It can be observed that the Uniform data shows the least gain

compared to the real datasets. In the case of Uniform data, the points are uniformly

distributed and hence the variance of distance between any two points is very low.

61

Whereas in the case of real data, the points seem to be clustered. In the case of

Uniform data in high-dimension, all the points are at almost equal distances to each

other. In the process of elimination of points in the excluded region, the points within

the main query of interest also get eliminated. Due to this, it can be observed that,

the gain in terms of candidates saved is almost equal to the loss in recall in the case

of Uniform data. In case of real data, the impact of elimination of exclusion region

is less on the points in the main region of interest. Hence, the excluded regions are

removed more effectively in the case of LSH-E.

In the case of zero excluded regions, the gain in terms of candidates is zero. To

measure the gains in the case of excluded regions, the hash functions for LSH-Naive

and LSH-E are chosen to be the same for the base case of zero excluded regions. As

the number of hash functions increases, the hash function for main query becomes

more stricter, which reduces the number of candidates. As discussed in Section 5.5.1,

the excluded region query also becomes more strict but excludes fewer candidates

than the decrease in candidates in the main query. This explains the decrease in

candidates savings. As k increases, the main query returns lesser candidates both in

the case of LSH-naive and LSH-E. In the case of LSH-E, lesser number of excluded

region candidates are eliminated. Therefore, the loss in recall reduces.

Impact of l on Candidates Savings and Recall Loss

Figures 5.12, 5.13, and 5.14 show the impact of changing l on the candidates savings

and the recall loss. As the number of layers increase, the number of candidates

increase due to the hash functions of the main query. As candidates increase, recall

in the LSH-Naive increases. Whereas, in the case of excluded region queries, as the

number of layers increase, the points of interest become candidates for elimination

in the case of LSH-E. For a candidate to be eliminated, it needs to be eliminated by

62

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.12: Effect of l on Candidates Savings and Recall Loss on Uniform Data

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.13: Effect of l on Candidates Savings and Recall Loss on Color Data

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.14: Effect of l on Candidates Savings and Recall Loss on Aerial Data

all the layers. A candidate eliminated in one layer can re-appear as a candidates, if

another layer did not eliminate it. Hence, the number of candidates returned increases

63

Figure 5.15: Impact of Recall on Varying Number of Layers

and the ratio of candidates saved decreases. With the increased number of candidates,

the recall loss is minimized. It can be observed that the real data show more gains

with respect to candidates savings versus recall loss than in the case of Uniform data,

due to the distribution of points in the datasets. In the case of zero excluded regions,

the number of candidates in the case of LSH-Naive and LSH-E are the same. Hence

there is no candidates savings and no recall loss.

Figures 5.11 and 5.15 show the trends of ratio of Recall Loss in LSH-Naive to LSH-

E for varying k and l respectively. These results are collected using the theoretical

analysis using Uniform dataset. The decreasing recall loss shows a similar trend as our

experimental results. However, theoretical ratios show a lower value of loss compared

to experiments. This could be because of the distribution of data points. For a given

exclusion radius, more points get eliminated because of the exclusion query radius.

The probability of exclusion outside of c−r− (defined in Section 4.4) is more in reality

when compared to the theoretical analysis.

64

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.16: Effect of r on Candidates Savings and Recall Loss on Uniform Data

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.17: Effect of r on Candidates Savings and Recall Loss on Color Data

Impact of re on Candidates Savings and Recall Loss

The experiments were executed keeping the default parameters of k and l. The radius

of the exclusion region was changed to reflect the volume ratios of 1/4, 1/10, 1/20,

and 1/50.

Figures 5.16, 5.17, and 5.18 show the impact of changing the excluded region ra-

dius. In these experiments, the default parameters are set to the values corresponding

to parameters of 1/4 volume. The values of w and w′ are set for 1/4 volume values

and are not changed while varying the exclusion radius. The number of candidates

remain the same because the parameters used in the index are the same. Same num-

65

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.18: Effect of r on Candidates Savings and Recall Loss on Aerial Data

(a) One Excluded Region (b) Two Excluded Regions

Figure 5.19: Effect of Density of Data Distribution in Uniform Data

ber of candidates are fetched for both LSH-Naive and LSH-E. In the case of LSH-E,

with the excluded region hash function, a set of candidates belonging to the main

query are also eliminated. If the excluded region radius is small, the misses caused

due to elimination of candidates from the main query is significant. When the radius

of excluded region increases, some of these elements from the main query which were

eliminated are not required to be returned any more. This improves the recall in the

case of LSH-E when the radius of exclusion region is larger.

66

5.5.3 Impact of Density of Data Distribution in Uniform Data

To analyze the impact of density of data in the case of Uniform data, datasets

were generated with sizes 50,000, 100,000, 500,000, and 1,000,000, each having 32

dimensions. Each co-ordinate of the object was randomly generated with values

between 0 and 1. The parameters, bucket size, number of hash functions and number

of layers were set to be default (as given in Table 5.1). Figure 5.19(a) and 5.19(b)

show the Candidates Savings and the Recall Loss for the different densities in the case

of one excluded region and two excluded regions. As the density increases in case

of Uniform data, the number of pairs of points having smaller distances increases.

Also, the number of pairs of points having distances in the range of 2.0 to 2.5 units

also increases proportionately. With increased density, the number of objects that

get eliminated due to the excluded regions increases. But good candidates also get

eliminated proportionately, which decreases recall. Therefore, we can observe a slight

increase in the candidates savings, at the same time a slight increase in recall loss.

5.5.4 Queries with Large Number of Small-Sized Excluded Regions

This section analyzes the behavior of a single large excluded region in comparison

with a large number of small-sized excluded regions. For every dataset, 100 query sets

are created such that, each query set has a single main query and 100 small excluded

region queries which are 1/400 in volume compared to the main query. In the case

of excluded regions with smaller hole size, w′ for the excluded region query is chosen

to be w/4. Whereas in the case of excluded region of volume 1/4, w′ is chosen to be

w/2. A smaller w′ is chosen so that the elimination of good candidates is minimized

for small-sized excluded regions. Figure 5.20 shows the behavior in the case of Color

dataset. Due to the clustering of data points, a query with 100 excluded regions

67

Figure 5.20: Queries with One Large Excluded Region of 1/4 Volume Vs. Queries

with 100 Excluded Regions of 1/400 volume

Figure 5.21: Queries with One Large Excluded Region of 1/4 Volume Vs. Queries

with 100 Excluded Regions of 1/400 Volume

returns very few points as a final result. In the case of LSH-Naive, the number of

candidates remain the same and the excluded region points are eliminated in post

processing step. Whereas, in the case of LSH-E, more number of points are eliminated

68

Figure 5.22: Queries with One Large Excluded of 1/4 Volume Vs. Queries with 100

Excluded Regions of 1/400 Volume

due to 100 queries and the actual results are not eliminated. Hence, the candidates

savings is high and loss in recall is extremely low. Of the 100 query sets, 37 of them

returned 0 as the final result. In those queries, LSH-E fetched 9% candidates less

compared to LSH-Naive. In the case of Aerial dataset too, we see a high gain in

terms of candidates saved. However, some of the good candidates are also lost due

to elimination. But the ratio of candidates savings to loss in recall is high as seen

in Figure 5.21. In the case of Uniform data, the ratio of gain in terms of candidates

and loss in recall is the least. With uninteresting candidates being eliminated, good

candidates are also lost in the case of Uniform data as shown in Figure 5.22. Due

to the distribution of Uniform data in high-dimension, a lot of points lie in between

r− and r−c− which may or may not get eliminated. In the case of real data, the

proposed approach proves to be more beneficial for candidates savings in case of

multiple small-sized excluded regions.

69

Chapter 6

CONCLUSION

It has been observed that, extending the naive LSH with the proposed approach

shows a significant gain in terms of time taken when there are one or two excluded

regions. The proposed approach avoids fetching of irrelevant candidates that are

present in the excluded region. While the naive LSH fetches all the queries in the

main query, the proposed approach avoids fetching irrelevant candidates in the first

place. For the same parameters of LSH, naive method does have a slightly better

recall compared to the proposed approach. This is due to the introduction of a few

misses because of the excluded region. However, the number of candidates fetched is

low compared to the naive LSH. The gain in terms of candidates is higher than the

slight loss in terms of recall.

Since, none of the existing LSH algorithms inherently handle queries in the pres-

ence of excluded regions, the proposed algorithm gives a simple and effective way

of doing the same. The proposed approach is an in-memory based implementation.

A disk based implementation of the same would provide significant gains as well.

The gain in terms of I/O costs while fetching only relevant candidates can be high

compared to other disk based approaches that fetch the irrelevant candidates before

filtering them.

70

REFERENCES

[1] “Aerial data”, URL https://www.autonlab.org/autonweb/15960.html
(2015).

[2] “Corel data”, URL https://archive.ics.uci.edu/ml/
machine-learning-databases/CorelFeatures-mld/ (2015).

[3] Abel, D. J. and J. Smith, “A data structure and algorithm based on a linear
key for a rectangle retrieval problem”, Computer Vision, Graphics, and Image
Processing 24, 1, 1–13 (1983).

[4] Ahn, H.-K., N. Mamoulis and H. M. Wong, “A survey on multidimensional access
methods”, (2002).

[5] Andoni, A. and P. Indyk, “Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions”, in “Foundations of Computer Science,
2006. FOCS’06. 47th Annual IEEE Symposium on”, pp. 459–468 (IEEE, 2006).

[6] Asano, T., D. Ranjan, T. Roos, E. Welzl and P. Widmayer, “Space-filling curves
and their use in the design of geometric data structures”, Theoretical Computer
Science 181, 1, 3–15 (1997).

[7] Bawa, M., T. Condie and P. Ganesan, “Lsh forest: self-tuning indexes for sim-
ilarity search”, in “Proceedings of the 14th international conference on World
Wide Web”, pp. 651–660 (ACM, 2005).

[8] Bayer, R. and E. McCreight, Organization and maintenance of large ordered
indexes (Springer, 2002).

[9] Beckmann, N., H.-P. Kriegel, R. Schneider and B. Seeger, The R*-tree: an effi-
cient and robust access method for points and rectangles, vol. 19 (ACM, 1990).

[10] Bentley, J. L., “Multidimensional binary search trees used for associative search-
ing”, Communications of the ACM 18, 9, 509–517 (1975).

[11] Blott, S. and R. Weber, “A simple vector-approximation file for similarity search
in high-dimensional vector spaces”, ESPRIT Technical Report TR19, ca (1997).

[12] Böhm, C., S. Berchtold and D. A. Keim, “Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases”, ACM
Computing Surveys (CSUR) 33, 3, 322–373 (2001).

[13] Candan, K. S. and M. L. Sapino, Data management for multimedia retrieval
(Cambridge University Press, 2010).

[14] Casey, M. and M. Slaney, “Fast recognition of remixed music audio”, in “Acous-
tics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Con-
ference on”, vol. 4, pp. IV–1425 (IEEE, 2007).

71

https://www.autonlab.org/autonweb/15960.html
https://archive.ics.uci.edu/ml/machine-learning-databases/CorelFeatures-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/CorelFeatures-mld/

[15] Casey, M. A. and M. Slaney, “Song intersection by approximate nearest neighbor
search.”, in “ISMIR”, vol. 6, pp. 144–149 (2006).

[16] Cover, T. M. and P. E. Hart, “Nearest neighbor pattern classification”, Informa-
tion Theory, IEEE Transactions on 13, 1, 21–27 (1967).

[17] Datar, M., N. Immorlica, P. Indyk and V. S. Mirrokni, “Locality-sensitive hash-
ing scheme based on p-stable distributions”, in “Proceedings of the twentieth
annual symposium on Computational geometry”, pp. 253–262 (ACM, 2004).

[18] Datta, R., D. Joshi, J. Li and J. Z. Wang, “Image retrieval: Ideas, influences,
and trends of the new age”, ACM Computing Surveys (CSUR) 40, 2, 5 (2008).

[19] Deerwester, S. C., S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A.
Harshman, “Indexing by latent semantic analysis”, JAsIs 41, 6, 391–407 (1990).

[20] Faloutsos, C., “Multiattribute hashing using gray codes”, in “ACM SIGMOD
Record”, vol. 15, pp. 227–238 (ACM, 1986).

[21] Faloutsos, C., “Gray codes for partial match and range queries”, Software Engi-
neering, IEEE Transactions on 14, 10, 1381–1393 (1988).

[22] Finkel, R. A. and J. L. Bentley, “Quad trees a data structure for retrieval on
composite keys”, Acta informatica 4, 1, 1–9 (1974).

[23] Fonseca, M. J., J. Jorge et al., “Indexing high-dimensional data for content-based
retrieval in large databases”, in “Database Systems for Advanced Applications,
2003.(DASFAA 2003). Proceedings. Eighth International Conference on”, pp.
267–274 (IEEE, 2003).

[24] Gan, J., J. Feng, Q. Fang and W. Ng, “Locality-sensitive hashing scheme based
on dynamic collision counting”, in “Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data”, pp. 541–552 (ACM, 2012).

[25] Gao, J., H. Jagadish, B. C. Ooi and S. Wang, “Selective hashing: Closing the
gap between radius search and k-nn search”, in “Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining”,
pp. 349–358 (ACM, 2015).

[26] Gao, J., H. V. Jagadish, W. Lu and B. C. Ooi, “Dsh: Data sensitive hashing
for high-dimensional k-nnsearch”, in “Proceedings of the 2014 ACM SIGMOD
international conference on Management of data”, pp. 1127–1138 (ACM, 2014).

[27] Gersho, A. and R. M. Gray, Vector quantization and signal compression, vol. 159
(Springer Science & Business Media, 2012).

[28] Gionis, A., P. Indyk, R. Motwani et al., “Similarity search in high dimensions
via hashing”, in “VLDB”, vol. 99, pp. 518–529 (1999).

72

[29] Gu, X., L. Zhang, D. Zhang, Y. Zhang, J. Li and N. Bao, “Query range sen-
sitive probability guided multi-probe locality sensitive hashing”, in “Software
Engineering, Artificial Intelligence, Networking and Parallel & Distributed Com-
puting (SNPD), 2012 13th ACIS International Conference on”, pp. 3–9 (IEEE,
2012).

[30] Guttman, A., R-trees: a dynamic index structure for spatial searching, vol. 14
(ACM, 1984).

[31] Huang, Q., J. Feng, Y. Zhang, Q. Fang and W. Ng, “Query-aware locality-
sensitive hashing for approximate nearest neighbor search”, Proceedings of the
VLDB Endowment 9, 1 (2015).

[32] Indyk, P. and R. Motwani, “Approximate nearest neighbors: towards remov-
ing the curse of dimensionality”, in “Proceedings of the thirtieth annual ACM
symposium on Theory of computing”, pp. 604–613 (ACM, 1998).

[33] Jagadish, H. V., “Linear clustering of objects with multiple attributes”, in “ACM
SIGMOD Record”, vol. 19, pp. 332–342 (ACM, 1990).

[34] Katayama, N. and S. Satoh, “The sr-tree: An index structure for high-
dimensional nearest neighbor queries”, in “ACM SIGMOD Record”, vol. 26,
pp. 369–380 (ACM, 1997).

[35] Lawder, J. K. and P. J. King, “Using space-filling curves for multi-dimensional
indexing”, in “Advances in Databases”, pp. 20–35 (Springer, 2000).

[36] Lin, K.-I., H. V. Jagadish and C. Faloutsos, “The tv-tree: An index structure
for high-dimensional data”, The VLDB Journal 3, 4, 517–542 (1994).

[37] Liu, T., A. W. Moore, K. Yang and A. G. Gray, “An investigation of practical
approximate nearest neighbor algorithms”, in “Advances in neural information
processing systems”, pp. 825–832 (2004).

[38] Liu, Y., J. Cui, Z. Huang, H. Li and H. T. Shen, “Sk-lsh: an efficient index
structure for approximate nearest neighbor search”, Proceedings of the VLDB
Endowment 7, 9, 745–756 (2014).

[39] Lv, Q., W. Josephson, Z. Wang, M. Charikar and K. Li, “Multi-probe lsh: ef-
ficient indexing for high-dimensional similarity search”, in “Proceedings of the
33rd international conference on Very large data bases”, pp. 950–961 (VLDB
Endowment, 2007).

[40] Manola, F. and J. A. Orenstein, “Toward a general spatial data model for an
object-oriented dbms.”, in “VLDB”, pp. 328–335 (1986).

[41] Nagarkar, P. and K. S. Candan, “Hcs: Hierarchical cut selection for effi-
ciently processing queries on data columns using hierarchical bitmap indices.”,
in “EDBT”, pp. 271–282 (2014).

73

[42] Nagarkar, P., K. S. Candan and A. Bhat, “Compressed spatial hierarchical
bitmap (cshb) indexes for efficiently processing spatial range query workloads”,
Proceedings of the VLDB Endowment 8, 12 (2015).

[43] Nievergelt, J., H. Hinterberger and K. C. Sevcik, The grid file: An adaptable,
symmetric multi-key file structure (Springer, 1981).

[44] Ocsa, A. and E. P. De Sousa, “An adaptive multi-level hashing structure for fast
approximate similarity search”, Journal of Information and Data Management
1, 3, 359 (2010).

[45] Orenstein, J. A., “Redundancy in spatial databases”, in “ACM SIGMOD
Record”, vol. 18, pp. 295–305 (ACM, 1989).

[46] Orenstein, J. A. and T. H. Merrett, “A class of data structures for associative
searching”, in “Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on
Principles of database systems”, pp. 181–190 (ACM, 1984).

[47] Pan, J. and D. Manocha, “Bi-level locality sensitive hashing for k-nearest neigh-
bor computation”, in “Data Engineering (ICDE), 2012 IEEE 28th International
Conference on”, pp. 378–389 (IEEE, 2012).

[48] Rajaraman, A., J. D. Ullman, J. D. Ullman and J. D. Ullman, Mining of massive
datasets, vol. 77 (Cambridge University Press Cambridge, 2012).

[49] Samet, H., The design and analysis of spatial data structures, vol. 85 (Addison-
Wesley Reading, MA, 1990).

[50] Sellis, T., N. Roussopoulos and C. Faloutsos, “The r+-tree: A dynamic index
for multi-dimensional objects”, (1987).

[51] Slaney, M. and M. Casey, “Locality-sensitive hashing for finding nearest neigh-
bors [lecture notes]”, Signal Processing Magazine, IEEE 25, 2, 128–131 (2008).

[52] Slaney, M., Y. Lifshits and J. He, “Optimal parameters for locality-sensitive
hashing”, Proceedings of the IEEE 100, 9, 2604–2623 (2012).

[53] Sundaram, N., A. Turmukhametova, N. Satish, T. Mostak, P. Indyk, S. Madden
and P. Dubey, “Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing”, Proceedings of the VLDB Endowment 6, 14, 1930–
1941 (2013).

[54] Tao, Y., K. Yi, C. Sheng and P. Kalnis, “Quality and efficiency in high dimen-
sional nearest neighbor search”, in “Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data”, pp. 563–576 (ACM, 2009).

[55] Tropf, H. and H. Herzog, “Multidimensional range search in dynamically bal-
anced trees.”, ANGEWANDTE INFO. , 2, 71–77 (1981).

[56] Wang, J., H. T. Shen, J. Song and J. Ji, “Hashing for similarity search: A
survey”, arXiv preprint arXiv:1408.2927 (2014).

74

[57] Wang, Q., Z. Guo, G. Liu and J. Guo, “Entropy based locality sensitive hashing”,
in “Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on”, pp. 1045–1048 (IEEE, 2012).

[58] Weber, R., H.-J. Schek and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces”, in “VLDB”,
vol. 98, pp. 194–205 (1998).

[59] Xie, H., Z. Chen, Y. Liu, J. Tan and L. Guo, “Data-dependent locality sensitive
hashing”, in “Advances in Multimedia Information Processing–PCM 2014”, pp.
284–293 (Springer, 2014).

[60] Zolotarev, V. M., One-dimensional stable distributions, vol. 65 (American Math-
ematical Soc., 1986).

75

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Problem Statement
	Thesis Contributions to Research
	Organization of the Thesis

	RELATED WORK
	Space Filling Curves
	Multi-Dimensional Index Structures
	Vector Approximation Files (VA-Files)
	Locality Sensitive Hashing and its Variants

	INDEXING IN HIGH-DIMENSIONAL SPACES
	Z-order Curve
	Computing the Z-codes
	Hierarchical Nature of the Z-order Curves and Range Queries

	Locality Sensitive Hashing
	Hash Function
	Quality Guarantee

	ANSWERING QUERIES IN THE PRESENCE OF EXCLUDED REGIONS
	Relation Between Query Radius, r and Bucket Width, w
	Design of the Proposed LSH Index
	At a Hash Function Level
	At a Hash Table Layer Level
	At the Index Level

	Query Processing
	Post Processing

	Theoretical Analysis

	EXPERIMENTS AND RESULTS
	Experimental Setup
	Color Dataset - Real Data
	Aerial Data - Real Data
	Uniform Data

	System Setup
	Comparison Algorithm
	Evaluation Criteria
	Time Taken to Process Queries
	Candidates Savings Vs. Recall Loss

	Results
	Time Taken
	Candidates Savings vs Recall Loss
	Impact of Density of Data Distribution in Uniform Data
	Queries with Large Number of Small-Sized Excluded Regions

	CONCLUSION

	REFERENCES

