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ABSTRACT

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again ur-

gency to an old question: What are the limits on prediction and what can be proposed

that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine stockpiles may

have on a single influenza outbreak. The purpose is to highlight the challenges faced

by populations embedded in inadequate health systems and to identify and assess

ways of ameliorating the impact of resource limitations on public health policy.

Age-specific per capita constraint rates play an important role on the dynamics of

communicable diseases and, influenza is, of course, no exception. Yet the challenges

associated with estimating age-specific contact rates have not been decisively met.

And so, this thesis attempts to connect contact theory with age-specific contact data

in the context of influenza outbreaks in practical ways. In mathematical epidemiol-

ogy, proportionate mixing is used as the preferred theoretical mixing structure and

so, the frame of discussion of this dissertation follows this specific theoretical frame-

work. The questions that drive this dissertation, in the context of influenza dynamics,

proportionate mixing, and control, are:

I. What is the role of age-aggregation on the dynamics of a single outbreak? Or

simply speaking, does the number and length of the age-classes used to model

a population make a significant difference on quantitative predictions?

II. What would the age-specific optimal influenza vaccination policies be? Or,

what are the age-specific vaccination policies needed to control an outbreak in

the presence of limited or unlimited vaccine stockpiles?
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Intertwined with the above questions are issues of resilience and uncertainty in-

cluding, whether or not data collected on mixing (by social scientists) can be used

effectively to address both questions in the context of influenza and proportionate

mixing. The objective is to provide answers to these questions by assessing the role

of aggregation (number and length of age classes) and model robustness (does the

aggregation scheme selected makes a difference on influenza dynamics and control)

via comparisons between purely data-driven model and proportionate mixing models.
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Chapter 1

BACKGROUND ON INFLUENZA, SIR MODEL, VACCINE IMPLEMENTATION

AND RESEARCH FOCUS

1.1 Influenza Background and SIR Model

An influenza pandemic occurs when a non-human (novel) influenza virus steadily

and effectively enters a human population and quickly leads to a global outbreak

[1, 33, 45]. The World Health Organization (WHO) provides an influenza pandemic

alert system, with a scale ranging from Phase 1 (no known infections to humans)

to Phase 6 (a full-blown pandemic) [19, 68, 82]. The influenza viruses are classified

into types A, B and C on the basis of their core proteins. The virus types differ in

their level of spread and impact within its host populations. Types A and B can only

lead to cases in humans with a possibility of a full-blown pandemic [20, 47, 82]. The

focus of this dissertation is tied in to influenza A outbreaks in human populations.

The subtypes of influenza A viruses are determined by their membrane glycoproteins

which could be either haemagglutinin (HA) or neuraminidase (NA) [4, 82]. High mu-

tation rates and frequent genetic re-assortments of these viruses contribute to even

great variability of the HA and NA antigens. All of the currently identified 16 HA

and 9 NA subtypes of influenza A viruses are maintained in wild, aquatic bird popu-

lations. Viruses of the subtypes H1, H2 or H3, and N1 or N2 generally infect humans.

The primary transmission pathways of influenza are disseminated in the environment

by unprotected coughs and sneezes. Short-distance direct airborne transmission of

influenza viruses between individuals may occur, particularly in crowded enclosed

spaces. Hand contamination and direct inoculation of virus is another possible source
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of transmission. Influenza pathogenicity may vary from asymptomatic to fatal infec-

tion. Typical influenza symptoms include fever with abrupt onset, chills, sore throat,

cough, and are often accompanied by headache[5, 49, 52, 66, 64, 70, 76]. Influenza

weakens the immune system and can cause patients to suffer from pneumonia. In this

theoretical study the A-H1N1 2009 Pandemic is used to formulate the scenario that

highlight the results of this dissertation.

Pandemics influenza are different from Seasonal flu outbreaks. Seasonal influenza

is caused by influenza viruses that are similar to those already affecting people un-

like in the case of pandemic influenza, which is the result of emergent new influenza

viruses; that is, viruses that have had not been isolated in human populations. Sea-

sonal influenza generally causes an acute viral infection. It mainly affects children

younger than 2 years old, adults 65 years or older, pregnant women, and people of any

age experiencing chronic heart,lung kidney,liver blood or metabolic diseases (such as

diabetes), or weakened immune systems. The death rate for seasonal influenza can

be high, for example, around 56,979 deaths were attributed to influenza in the United

States of America [87].

The A-H1N1 2009 pandemic Influenza resulted in 12,469 deaths (8,868-18306) in

the United States, a surprisingly low number [44]. However unlike seasonal influenza,

the virus responsible for the A-H1N1 pandemic affected young adults. Relative pro-

tection from prior influenza exposure helps our understanding of the transmission

dynamics of influenza [14]. Key factors associated with the transmission dynamics of

influenza include variations in individuals’ susceptibility, variability in mixing among

the population, differences in infectiousness of infected people and changes in behav-

ior due to an infection outbreak [13, 72, 71]. Variations in susceptibility are often a

function of individuals’ immune system responses, which depends on the individuals’

prior history of exposure to related influenza strains [71]. Variability in mixing are
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the result of variations in the interactions of individuals in a population [12].

Changes in behavior can be due to the levels of information (education) on the

disease and decisions to avoid or not activities that might lead to infection during an

outbreak [30]. Mixing of individuals is directly related to infection patterns in the

population [14, 13, 25]. Hence, understanding and modeling the mixing structure of a

population is one of the important aspects associated with the study of the dynamics

of a disease. In this study, our goal is to understand the impact of the variability

in a population’s mixing structures on the transmission dynamics of influenza, using

mathematical models and available mixing data. The SIR epidemic model, where S

stands for (susceptible) individuals not yet infected at the current time; I represents

individuals that are infectious, in other words, individuals that have the diseases

and can spread it to others; and R refers to individuals who were infected but no

longer have and cannot transmit the infection, underlies our modeling framework

first introduced in 1927 by Kermack and McKendrick [51]. Historically, the SIR

continuous models have been used to model infectious disease dynamics and provide

public health policy guidance [10]. A marked increase in the use of SIR transmission

models, continuous and discrete, persists [2, 3, 11, 16, 17, 40, 75].

Optimal control methodology, a powerful tool, is used to make decisions involving

complex situations. The behavior of the system, as described by the state variables, is

continuously steered via suitable control functions. The goal is to ‘adjust’ the control

in order to maximize or minimize a given objective functional. The costs associated

with a disease are incorporated in the objective function; and so, the goal to achieve

maximum reductions at a minimal cost.

There has been many studies in the literature on the dynamics of pandemic or

seasonal influenza. Ball et al.(2002) considers stochastic epidemics among a pop-

ulation partitioned into households; mixing locally within households and globally
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throughout the population. In this study, the local transmission rate was assumed

higher than the global. Their optimization analysis led them to the conclusions that

vaccinating at the very beginning of the infection is, not surprisingly, the best strat-

egy if the goal is to reduce the transmission of a fast spreading disease[6]. Merl et

al. (2009) searched for optimal vaccination strategies for influenza outbreak within a

homogeneously mixing population within a Bayesian framework. Their vaccination

strategies are adjusted to reflect the anticipated trajectory of the epidemic given the

population’s current state and approximately updated parameter estimates. That is,

the transmission rate from the previous time step is used and the vaccination strategy

is adjusted accordingly [62]. Ludkovski et al. (2010) used the work of Merl et al. in

the context of (closed) communities where medical officers can monitor each individ-

ual [59]. Their model though important- assumed homogenous mixing even though

age structure rates may have been critical [59].Finally, a volume of papers connected

to the 2009 pandemic influenza that focusses on the role of mobility, optimal control,

and more is available online [53].

Castillo-Chavez et al. (1988,1989) have studied the role of age structure on sin-

gle and multiple strain influenza models in the context of cross-immunity, a partial

“somewhat” effective natural vaccine [14, 13]. Mylius et al. (2008) focus on analyz-

ing an age structure influenza model and verifying what vaccination policy is best

to implement in order to reduce the transmission of the disease. These researches

proposed the introduction of vaccines at the beginning or at the peak of the infection

[69]. Lee et al. (2012) introduced an age structure vaccination within an optimal

control framework and addressed the question of vaccines optimality when resources

are limited.

Since the dynamics of influenza are strongly correlated with age dependent mix-

ing [13], formulating an age-structured continuous in time model that divides the
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population into a finite number of age groupings.

In this thesis, we study the impact that variability in the contact matrix and

mixing assumptions have on the size of an influenza outbreak and on the development

of optimal vaccination strategies.

1.2 Contact Matrix

Researchers have used several methods to provide information about social con-

tacts, some of them include the use of synthetic data, while others used population

surveys [26, 28, 31, 46, 67, 96]. Lozzi et al. (2010) used an individual-based model

(IBM) to compute a variety of synthetic age specific contact matrices. Their scenarios

used data from a survey that collected contact data, supported by the Italian Na-

tional Statistical Agency (INSA). Their sample size was 55,773 individuals, grouped

into 21,075 households. Their data included socio-demographic data (e.g., school and

workplace attendance, household structure, etc.) [46]. This Italian survey considered

the difference between weekday and weekend information by dividing the sample in

three groups (first group was asked to fill the diary on a given workday (18,085 diaries

collected), the second group collected only Saturday activity (16,828), and the third

only Sunday information (16,293)). Wallinga et al. (2006) collected similar data via

a large cross sectional survey in the Netherlands. The total number of participants

that met the criteria for their analysis was 59 % (1,819 participants of 3084). Par-

ticipants were randomly selected from population records. Survey participants were

asked to provide information on how many individuals they conversed with during a

typical week, excluding household members. They divided the contacts by age using

the following six age classes: [0-5], [6-12], [13-19], [20-39], [40-59], and ≥60, groupings

in years.

Studies using specialized populations have also been carried out. Edmunds et al.
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(2006) sampled a population of undergraduate students at the University of Warwick

with the goal of estimating the number of physical contact, the stability and level

of assortative sexual encounters as a function of age. The participants were asked

to record the number of contacts and contact details over a period of three days.

Contact constituted a physical touch without conversation to an intimate contact of

sexual nature [28].

Mossong et al. 2008 carried out a large scale contact pattern survey across Europe

with the goal of parametrizing the mathematical models used to design control strate-

gies [67]. They define contact as a skin to skin physical contact (kiss or handshake)

or a two way conversation, with 3 or more words, in the physical presence of another

person but no physical contact.

Del Valle et al. (2007) used census data from the city of Portland Oregon as input

to generate a social network of synthetic population[26]. Their goal was to estimate

the age-dependent forces of infection in age-structured, compartmental models on fast

spreading diseases.

1.3 Research Focus

In the second chapter of this dissertation we identify vaccination policies aimed

at reducing the spread of disease. The policies are implemented via a simple model

and unlimited and limited vaccine stockpiles. The focus shifts to the role of vaccines

in structured age-populations in later chapters.

Publications geared towards increasing our understanding of the dynamics of a

system within age structure model include [23, 56, 25, 39, 90]; These publications,

though useful, used only an arbitrary number of age group divisions. Here, we test, in

a limited way, age group divisions and test how well mathematical formulations like

proportionate mixing does when compared to a data-driven mixing formulation[13].
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Researchers have conducted regional, city or state surveys to gather information on

how people interact with each other [39, 67, 96]. There are only a few comprehensive

surveys, and so, Mossong et al. (2008) has become the survey to “go”. Mossong et al.

(2008) goal was to define and measure explicit contacts of individuals by age groups

via the survey analysis carried out on eight European countries [67].

Computer based simulations aimed at tracking the behavior of the individuals

on a daily basis have also been carried out using, synthetic census-generated popula-

tions [26]. Theoretical general age-specific models have been introduced and analyzed

to study disease dynamics, for example proportionate mixing, preferential mixing,

standard mixing, and reduced mixing [9, 13, 25, 90]. Castillo-Chavez et al.(1989),

Busenberg et al. (1991), and Blythe’s et al. (1991) research introduce key definitions,

derivations, and properties to model mixing [9, 12, 13].

Glasser et al. (2011) tested the impact of age structured population model on

disease dynamics using different contacts data sets(Mossong et al. 2008, Wallinga et

al. 2006, Del Valle et al 2007); the focus on the kids-parents contact relations [39].

Towers et al. (2012) goal identified groups (based on age peers or family classification)

to address where social distancing would be most effective in controlling an outbreak

using an epidemic model and Mossong et al. data[90]. Del Valle et al. (2013) used

mixing patterns based on both empirical and theoretical studies to determine the

impact that different mixing functions have on disease spread. Their study tested

several mixing assumptions, including proportionate mixing . They evaluated the

role of contact data variability in an SIR type model [25]. For comparison purposes;

they divided their population on four age groups albeit no group re-arrangements

were tested and no distributions to construct in mixing assumptions were used to

address variability. Our aim, is use, to compare the mathematical proportionate

mixing approach against empirical using age-stratification to find how robust the
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mathematical formulation is to misspecification in the contact matrix. As part of our

comparison we will increase the number of age groups, consider only proportionate

mixing approach, using point estimates and variability in the point estimates.

Also, some researchers have suggested to do some form of comparison using op-

timization tools, in our case we introduce the vaccination as a form of control [25].

We do a relative cost difference analysis to asses how robust proportionate mixing is

when compared to the model output using directly the Mossong et al. (2008) survey

contact data. The goal is to assess how accurate the proportionate mixing formulation

is, and see if it is a good alternative to solving age-structure problems.

The overall objective of this thesis is to focus on the role of age stratification,

mixing, resources, and cost of disease outbreaks. The thesis involves three studies:

• Study I: The analysis of influenza vaccination strategies when supply is limited

• Study II: The study of the impact of mixing patterns and assumptions on the

dynamics of age structured populations

• Study III: The role of age-related contact structure and cost of an outbreak on

the development of optimal vaccination control policies

The third chapter will introduce the age structure and contact matrix formulations,

both making use of the survey data and contact definitions found in Mossong et

al. (2008). We will compare how well the approaches do when simulating the fast

spreading disease, influenza. In chapter 4, we will introduce vaccines as a form of

control and compare the relative cost outputs and relative cost of infection using

proportionate mixing and directly data-driven mixing models.
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Chapter 2

ROLE OF VACCINATION USE STRATEGIES WHEN SUPPLY IS LIMITED

2.1 Motivation

In 2009 Health Agencies from the US declared an influenza Pandemic on june

2009 [41, 80, 97] . The fear of a drastic increase in infection and mortality due to

transmission drove significant efforts to develop and distribute vaccines to protect

the population [92]. Some current research allocate resources assuming that we have

unlimited stockpiles of vaccines [60, 86, 91] . However only 900 million vaccine dosages

were available in 2009-2010 [34, 36, 77, 83].The challenge posed by vaccine production

restrictions and logistic distribution limitations (experienced over the course of this

pandemic) raised a key question: What is the impact of having access only to a limited

number of dosages? This work aim to shed light on finding methods to minimize the

transmission of a fast spreading disease when supply is limited.

2.2 Introduction

The World Health Organization (WHO) declared an influenza A(H1N1) pandemic

on June 11, 2009 [35, 19], that is, just a few months after a novel strain had been

identified from an infectious individual in Mexico [95]. The subsequent spread of

this new strain of H1N1 in the southern hemisphere increased the fear that a more

virulent strain would return to the northern hemisphere in the fall. Hence, efforts

to develop a vaccine that could be distributed prior to the return of H1N1 to the

northern hemisphere became a global priority. The uncertainties associated with the

magnitude and nature of this health emergency dramatically increased the demand
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for a vaccine that was still in the design phase.

It soon became apparent that no more than 900 million vaccine dosages would

be available in 2009-2010 [74]. Wealthy nations soon purchased most of the expected

vaccine production leaving an inadequate supply available for the rest of the world.

Canada for example ordered more than 50 million dosages while the USA secured

200 million dosages [81, 88]. On the other hand the WHO was able to secure only 37

millions dosages that had to be judiciously distributed to poor nations from December

to February [29]. The first batches arrived in Canada on October 21 and in the USA in

October 19, 2009 [73, 18]. Limited supplies were used to vaccinate primarily pregnant

woman, young children, and medical personnel [7, 73, 18]. In other words, nations

that had managed to secure large supplies still had to wait several months for full

delivery, with most dosages arriving well within the second wave. The challenge posed

by vaccine production restrictions and logistic distribution limitations (experienced

over the course of this pandemic) raised several questions: What is the impact of

having access only to a limited number of dosages? What is the impact of delays

in accessing the available vaccine supply? What is the role of a large percentage of

H1N1 asymptomatic infectious individuals?

In this note, we only address the first question but its relationship to the others is

addressed briefly in the conclusion. A single-outbreak epidemiological model is used

to study the impact of a limited vaccine (not 100% effective) supply on the fall 2009-

wave in the northern hemisphere. It is assumed (a highly conservative assumption)

that the vaccine is available from the beginning of the outbreak. The role of this

vaccine is first analyzed under the assumption that the population has access to an

unlimited supply. Next, the case when the vaccine supply can only protect a small

proportion of the total population at risk is studied numerically. In both cases,

optimal control theory is used to find the optimal vaccine-strategy (unconstrained
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and constrained cases) in situations where the vaccine fails to protect a fraction of

the vaccinated populations.

2.3 Pandemic Influenza Model with Vaccination Control
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Figure 2.1: Flow Chart of the Single Outbreak Influenza Transmission Model with Vac-
cination

In this section, we use an existing single outbreak model [21, 23] modified through

the incorporation of a control function, the time-dependent vaccination rate. Two

optimal control problems are formulated and their impact on numerically derived

optimal vaccination strategies is evaluated under distinct vaccine coverage scenarios

and various values of the basic reproduction number R0 [57]. The model classifies

individuals as susceptible (S), effectively vaccinated (V ), ineffectively vaccinated (F ),

protected by vaccination (P ), latent (E), infectious (I), hospitalized (J), recovered

(R), and dead (D) (see Figure 1). Susceptible individuals are exposed to the influenza
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virus with a force of infection given by β I(t)+J(t)
N(t)

where β is the transmission rate

and N(t) denotes the total population size (N(t) = S(t) + V (t) + F (t) + P (t) +

E(t) + I(t) + J(t) + R(t)). The control function (denoted by u(t)), the vaccination

rate of susceptible individuals, is calculated under a particular set of assumptions.

Susceptible individuals (S) go to the vaccination class at the rate εu(t), where ε in

(0,1) is a measure of the vaccine efficacy. Therefore, (1 − ε) denotes the fraction of

ineffectively (failure) vaccinated individuals per unit of time. Vaccinated individuals

go to the P (perfectly protected) class at the rate η while infected individuals enter

either the Recovered class R(t) at the rate γ1 or the Hospitalized class (J(t)) at the

rate α. Individuals in the Hospitalized class enter the Recovered class at the rate γ2

or the Death (D(t)) class at the rate δ [23]. These definitions and assumptions lead

to the following system of nonlinear differential equations that models the dynamics

of a single epidemic outbreak.

Ṡ(t) = −u(t)S(t)− β I(t) + J(t)

N(t)
S(t) (2.1)

V̇ (t) = εu(t)S(t)− ηV (t)− β I(t) + J(t)

N(t)
V (t)

Ḟ (t) = (1− ε)u(t)S(t)− β I(t) + J(t)

N(t)
F (t)

Ṗ (t) = ηV (t)

Ė(t) = β
I(t) + J(t)

N(t)
(S(t) + V (t) + F (t))− kE(t)

İ(t) = kE(t)− (α + γ1)I(t)

J̇(t) = αI(t)− (γ2 + δ)J(t)

Ṙ(t) = γ1I(t) + γ2J(t)

Ḋ(t) = δJ(t)

Ẏ (t) = u(t)S(t)
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The model’s basic reproduction number R0 (using the next generation operator ap-

proach [27, 93]) is given by:

R0 = β(
1

α + γ1

+
α

(α + γ1)(γ2 + δ)
). (2.2)

R0 is a measure of the transmissibility of the infectious disease when the population is

completely susceptible. Specifically, R0 accounts for the average number of secondary

cases generated by a primary case during his/her infectious period given that S(0) ≈

N(0). Typically, we have that when R0 > 1 an outbreak takes place while R0 < 1

indicates that an outbreak cannot be sustained. We take S(0) = S0, E(0) = E0, and

I(0) = I0 with S0 + E0 + I0 = N0 [I0 > and E0 > 0 and N0 >> I0 + E0]. Using the

approach in [11], we derive the final size relationship

ln
S0

S∞
< R0[1− S∞

N0

]

where the percentage of individuals recovered or dead from the infection is given by

[1− S∞
N0

].

The aim of this work is to minimize the number of infected individuals over a finite

time interval [0, T ] at a minimal cost. This outcome would be the result of implement-

ing an optimal vaccine policy during the course of an influenza epidemic outbreak.

These unconstrained (unlimited vaccines) and constrained (limited vaccines) optimal

control problems are handled using the approach illustrated in [42, 50, 54, 57]. The

objective functional to be minimized is therefore

F(u(t)) =

∫ T

0

[I(t) +
W

2
u2(t)]dt (2.3)

where the control effect is modeled by a quadratic term in u(t). The weight constant

W is a measure of the relative cost of vaccination over a finite time period. The con-

strained optimal problem with the isoperimetric-constraint (limited vaccine) consists
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of finding an optimal control function u∗(t) such that

F(u∗(t)) = minΩF(u(t)) (2.4)∫ T

0

u(t)S(t)dt = B (2.5)

where Ω = {u(t) ∈ L1(0, T )‖0 ≤ u(t) ≤ b, t ∈ [0, T ]} and subject to System (1). The

equality constraint (isoperimetric constraint) represents the total amount of vaccines

available B over the time interval [0, T ]. Constraint (5) can be reformulated in terms

of the differential equation Ẏ (t) = u(t)S(t) with the initial condition Y (0) = 0 and

final condition Y (T ) = B (added to System (1)). This way of including the isoperi-

metric constraint lets us apply the standard Pontryagin’s Maximal Principle in our

search for an optimal solution of the constrained optimization problem (additional

necessary conditions are derived in Appendix). The solution of the unconstrained op-

timal control problem excludes the Ẏ (t) equation while the solution of the constrained

problem requires the inclusion of the Ẏ (t) equation which is equivalent to (5). The

default values for initial conditions and model parameters are in Table 1. Units are

per day for all rates. These baseline values are used throughout the manuscript unless

otherwise indicated.

2.4 Simulations and Results

We present numerical simulations under two scenarios: the unconstrained optimal

vaccination and the constrained optimal one. The first case assumes that there exists

a large vaccine supply to protect the (almost) full population while the later assumes

that there is limited access to the vaccine. Our focus is on understanding the effects

of optimal vaccination strategies on the dynamics of pandemic influenza. The impact

of such controls is evaluated under different values of the basic reproductive number,

R0, and under pre-selected levels of vaccine coverage. A sensitivity analysis is carried
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out on the weight constants, on the upper bounds of the controls, and a mean vaccine

efficacy in the unconstrained optimal vaccination strategy.

2.4.1 Results in the Unconstrained Vaccine Supply Case

First, the unconstrained optimal control problem is solved under two distinct

transmissibility levels modeled by R0. Figure 2 illustrates the optimal control func-

tions computed (as a function of time) when R0 = 1.3 and R0 = 2.0 (top). The

corresponding daily incidence of the infected class with/without vaccines is displayed

in Figure 2 (bottom). The implementation of an optimal vaccine strategy reduces the

number of infected cases significantly (almost no outbreak) when R0 is low (R0 = 1.3).

We observe that maximum vaccination effort must be allocated at the beginning of

the pandemic for both values of R0. The optimal vaccination must be applied for a

longer period of time when R0 is high (R0=2.0) since there are much more infected

individuals (red solid curve in the top graph). In the absence of vaccines, a higher

peak in the incidence of infected cases over a shorter time period is detected when

R0 = 2.0 (red dotted curve in the bottom graph). Even though a considerable in-

crease in the number of vaccines is put in place, there is still an outbreak (red solid

curve in the bottom graph).

2.4.2 Sensitivity Analysis

We explore the effect of changes in model parameters on the dynamics of influenza

pandemics by carrying out a sensitivity analysis. Our sensitivity analysis focuses on

studying the role of varying the control weight constants (W ), the control upper

bounds (the maximum vaccination rate), and the vaccine efficacy. The impact of

these parameters on the fraction of cumulative infected cases is compared in the

presence and the absence of vaccines.
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Weight constant

We choose four values of the weight constants, W = 1, 102, 104, and 106 when R0 =

1.3. A comparison of results implementing optimal vaccination policies is shown in

Figure 3 under different weight constants on the control. Time series of optimal

control functions are in the top of Figure 3 (left) while the corresponding incidence of

infected individuals are in the bottom graph of Figure 3 (left). The general shapes of

the control functions are similar (monotonic decreasing in time) with large changes

in magnitude. As the weight constants are increased, the cost of vaccinations also

increase. These changes result in increases in the height of the epidemic peak that are

the result of reductions in the number of vaccines available to individuals. The impact

of the weight constants on the fraction of cumulative infected cases and vaccinated

cases is displayed as a function of R0 in the right graph. Under higher vaccination

coverage (almost 90% using the weight constants in the range of 102-106 ), the fraction

of infected cases is reduced significantly (less than 10% of the total infected cases up

to values of R0 <= 1.6).

Upper bounds of the control

We carry out a sensitivity analysis on pre-selected control upper bounds starting

from their impact on the fraction of cumulative infected cases. Four different upper

bounds on controls (a priori maximum vaccination rates for susceptible individuals)

are chosen in the range (0.05, 0.1, 0.2, 0.5). Figure 4 shows the results of implementing

optimal vaccination controls constrained by these upper bounds when R0 = 1.3.

Optimal controls are graphed at the top while the corresponding incidence of infected

individuals are plotted at the bottom (left). The cumulative fraction of infected and

vaccinated cases are shown in the right graph of Figure 4 under different values of

R0. The larger upper bound, the better impact of vaccines in reducing the number

of infected cases for all ranges of R0 values. For example, the use of the largest
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upper bound (b = 0.5) generates dramatic reductions in the number of infected cases,

regardless of the value of R0.

Vaccine efficacy

We explore the impact of changes in vaccine efficacy on the control functions as

well as on the fraction of cumulative infected cases. Figure 5 presents the results of

implementing optimal vaccination strategies using different values for vaccine efficacy

(ε = 0.4, 0.6, 0.8, 1) when R0 = 1.3. The optimal controls and the corresponding

incidence of infected individuals are given in Figure 5 (left). It is observed that the

vaccination strategy with larger vaccine efficacy uses less number of vaccines. For

example, the amount of vaccines with an efficacy, ε <= 0.4 is almost double of those

required when ε >= 0.8. The role of vaccine efficacy variation becomes clearer when

one looks at the cumulative fraction of infected cases as R0 is varied (Figure 5 right).

The optimal vaccination strategy using a higher value of vaccine efficacy (ε = 0.8)

manages to keep the fraction of infected cases under 20% for most ranges of R0 (< 2)

even though it uses less vaccines.

2.4.3 Results Under Isoperimetric Constraint

We solved a constrained (isoperimetric) optimal control problem under pre-specified

isoperimetric constraints (amount of vaccines). We consider three vaccine coverage

levels (15%, 30%, and 50%). The numerical method used to solve this constrained

optimal control problem turned out to be quite sensitive to the levels of vaccine

available. As a result of the boundary conditions in the adjoint system (from the

isoperimetric constraint), convergence issues had to be addressed.

Figure 6 plots time series of the optimal vaccinations under three different vaccine

coverages (15%, 30%, and 50%). These results are contrasted with those obtained

in the absence of vaccines. The left graph displays the control functions as well as
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the resulting incidence (infected cases) when a smaller value of the control upper

bound (b=0.05) was in use. The right graph shows the results of using a larger value

for the control upper bound (b=0.2). We see that maximum vaccination rates must

always be implemented at the beginning until all the available vaccines are depleted

in both cases. The effect of two upper control bounds on the incidence of infected

cases does not seem to be significant provided that the maximum vaccination rates

are put in place at the start of the pandemic and that R0 lies in the low range (e.g

R0 = 1.3). The impact of vaccinations with 30% and 50% vaccine coverages on

the fraction of cumulative infected cases is illustrated in Figure 7. When R0 is low

enough (<= 1.4), the optimal strategy with 30% still generates significant reductions

(<= 10%). However, the benefits of the application of controls under higher vaccine

coverage (>= 50%) increase as R0 increases (R0 >= 1.5).

2.5 Conclusion

An existing influenza transmission model is used to explore the impact of optimal

vaccination policies under limited vaccine supplies (isoperimetric constrained model).

Under a rather set of optimistic assumptions (vaccines available at the beginning of a

pandemic), constrained and unconstrained optimal control problems are formulated.

The constraint imposed (a limited vaccine supply) is incorporated in the isoperimetric

optimal control problem through the addition of a differential equation with two

“boundary” conditions.

Results suggest that both optimal vaccination policies (constrained or uncon-

strained) must be implemented at the maximum vaccination rate for all ranges of R0

and at the beginning of the outbreak. There are no significant differences under the

constrained or unconstrained strategies when R0 is low (<= 1.3) and more in line

with transmissibility estimates for seasonal influenza [22]. Hence, in some sense, this
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result indicates that there is no “need” for a nation to have more than 15 % of the

vaccines needed to cover its total population. The pre-selected values of the upper

bounds on controls and vaccine efficacy levels have a significant impact on the final

size of infected cases. Increases on the upper bound of the optimal control and the

efficacy level result in a decrease in the amount of vaccines that must be administered.

In this study, the focus has been exclusively in the study of constrained and

unconstrained vaccine availability scenarios at the start of an epidemic outbreak.

In other words, the study has been quite limited as noted in the introduction with

important critical questions that should be simultaneously addressed being ignored.

The time delays associated with the process of vaccine preparation, production and

delivery of a new vaccine (around 6 months) just after a new strain was identified must

be factored in. The role of age-specific risk, asymptomatic individuals (which can

infect others) and the impact that these individuals have through their “accidental”

use of vaccine supplies, must also be considered. These ignored factors make it difficult

to mitigate the impact of super-fast spreading diseases like influenza. In summary,

for super-fast spreading diseases limitations in supply can make all the difference

particularly when R0 is large.
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Chapter 3

WHAT IS THE EFFECT OF AGGREGATION ON DISEASE DYNAMICS

3.1 Introduction

The lack of precise information on how individuals interact with each other in-

creases our difficulty in assessing the impact of a fast spreading diseases like in-

fluenza. Over the past 30 years scientist have suggested various ways of estimat-

ing contact rates given the limited and non-precise data. Collecting data via sur-

veys on samples of particular populations and using synthetic data and simulations

[9, 13, 43, 65, 67, 96].Contact mixing data collected through surveys is expensive,

whereas synthetic data, generated via models, has built in limitations [26, 67]. Re-

searches have attempted to connect limited survey with mathematical models in or-

der to improve the value of contact rates estimates. The modeling variations in-

volves mixing assumptions including proportionate mixing and data driven mixing

[9, 13, 25, 43, 65, 90].

The models that used contact data directly from the field are referred here as

empirical-data-driven mixing models, whereas the models built under theoretical mix-

ing assumptions, are named after their standard nomenclature including proportional

or preferred mixing models [39, 90].

The use of data driven mixing models have helped identify the presence of groups,

within the population of interest that have drastic impact on the model-simulated

disease dynamics. Glasser et al. (2012) used various mathematical formulations of

mixing within a Susceptible-Infected-Recovered (SIR) infection model comparing the

outcomes of theoretically driven models to those generated via empirical data-driven
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mixing formulations.Towers et al.(2012) extended the models of Glasser et al. (2012)

by incorporating interactions between grandparents and grandchildren; identifying

the role of these interactions on the transmission of a disease like influenza.

While Glasser et al.(2012) focused on the study of the use of several data-motivated

mixing formulations on incidence outcomes, Del Valle et al. (2013) instead con-

centrated on identifying the difference in final size and peak of epidemic infection

outcomes under various theoretical mixing formulations (proportionate mixing, pref-

erential mixing, reduced mixing, and data driven mixing). Del Valle et al. (2013)

used an age-structured mixing model to test the role of different age-specific mixing

assumptions (dependence on population size, average,contacts, group preference and

more) on disease dynamics using simulated data. These studies used a fixed number

of age groups and age-boundaries. They did not include vaccination. The impact of

contacts on disease dynamics within these modeling was measured using output met-

rics that included final size outbreak, peak outbreak, the average number of secondary

cases generated by an infected individual, and outbreak duration.

Our simulations show that this type of models are extremely sensitive to the use

of age-boundaries. Therefore, we study the role of uncertainty associated with the

number of age groups selected and age aggregation boundaries on disease dynamics.

We develop and analyzed a mathematical framework that addresses the effect of age

aggregation, a step needed in validating model results using empirical data. The

focus is on the role that proportionate mixing models have in the study of influenza

outbreaks. Our study begins to address the following challenges:

1. How do we develop robust age-structured models? What is the appropriate

number of age-groups? How do we make such choices given the limited survey

data? What impact do our aggregation choices have on the value on interven-

tions?
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2. How do we quantify the uncertainty generated by variations in the estimates of

age-specific contact rates on disease patterns?

The prototype selected theoretical model, proportionate mixing in this dissertation is

tested against the empirical data-driven model, generated using Mossong et al. (2008)

data. We carry this analysis in the context of a simulated influenza outbreak. Contact

matrices are constructed using the average number of contacts (from data) within the

proportionate mixing model. The generated disease dynamics are compared to those

generated when the average number of contacts data is used directly under no specific

theoretical model (data-driven mixing model) within the influenza simulation.

3.1.1 Contact Definition

In short, we constructed a contact matrix following the information given in the

study by Mossong et al. (2008) [67], a large scale survey involving Belgium, Germany,

Finland, Great Britain, Italy, Luxembourg, the Netherlands and Poland, carried out

from May 2005 to September 2006. The sampling procedure guaranteed that sample

used in the survey was representative of the whole population, in terms of geographical

spread, age, and gender. The researchers oversampled children and adolescents given

their (assumed) greater role on the transmission dynamics of influenza. A contact

was defined as a skin to skin physical interaction (kiss or handshake) or a two way

conversation with 3 or more words in the physical presence of another person but no

physical contact. The researchers gave the participants diaries to fill with the following

information: employment level, sociodemographic information, level of completed

education, household composition, age, and gender.

Participants were assigned a random day of the week and asked to record all the

contacts they made for a period of 24 hours starting at 5 am. The contacts made

that day were recorded once. The record included the location (home, work, school,
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park, ice cream shop, etc.), the duration (5 mins, 5 to 15 mins, 15 mins to 1hour,

1 to 4 hours or more ), and the frequency (e.g daily, almost daily, once or twice a

week, once or twice a month, less than once a month, once a year or first time).

Participants were asked to write down the age and gender of the person they had a

contact with. If they did not know the age of the person, they were asked to provide

an estimate of the person’s age range. The data from this survey is used to construct

a 100 x 100 contact matrix that takes into account all the relevant information from

the participants and the contacts that they made in a given day. We matched the

participants with their corresponding age and with the individuals that they made

contacts with (including their age).

3.1.2 Reciprocity

Assumption of closed population means, within the contact matrix Cij, that reci-

procity holds, that is , that the total number of contacts between age group i and age

group j must be equal to the total number of contacts between age group j and age

group i [12, 15? , 90, 84, 85, 96]. We implemented reciprocity using the approach

found in Medlock et al. (2009) [61]. Specifically, the elements of the contact matrix

are generated by dividing the number of contacts per person within age group i with

people in age group j (Cij) by the proportion of the population in age group j, that

is,

φ̂ij =
NCij
Nj

where N is the total population and Nj is the total population for age group j.

We correct for reciprocity by using:
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φij =
φ̂ij + φ̂ji

2

3.2 Methods

We use the age-structured SIR Model ( [10, 51]) given by the following set of

nonlinear differential equationsThe age structure model is as follows:

Ṡi = −qSi
m∑
j=1

fij
Ij
Nj

İi = qSi

m∑
j=1

fij
Ij
Nj

− γiIi

Ṙi = γiIi (3.1)

where i and j ∈ {1, 2, ...,m}, m are the number of age classes and fij is used for

different mixing formulations. We used the following two:

fij =

 Cij, directly from data driven mixing

Cip̄j, under proportional mixing assumption
(3.2)

where Cij represents the average number of contacts that an individual in age group

i with an individual in age group j has per unit of time. Ci represents the average

number of contacts of an individual in age group i per unit of time [43] and pij,

defined below, denotes the probability of an individual in age group i contacting an

individual in age group j; It is worth observing that Cij and Ci are estimated from

the Mossong et al. (2008) data. Since we are dealing with proportionate mixing pij

is independent of i, that is pij = p̄j. The parameters for this model are listed and

defined in Table 3.1:
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Table 3.1: Parameter Definitions

Variables Definition Value Source

i Age group index n [67]

Si Susceptible population in age group i Varies –

Ii Infected population in age group i Varies –

Ri Recovered class in age group i 0 –

Parameters Definition Value Source

q Probability of Infection given a contact 0.67 [8, 58]

p̄j Proportionate mixing Varies [43, 67]

fij Effective mixing rates between age group i and age group j Varies [67]

γi Recovery Rate 1
1.5

[55]

wi Statistical weight adjustment PopulationPercentage
SamplePercentage

Varies [67]

Nj The number of people in group j Varies –

µi Contact mean from the survey data Varies –

σ2
i Variance of contacts from the survey data Varies –

µ̂i Estimate of contact mean used as parameter for the TN Distribution Varies –

σ̂2
i Estimate of variance used as parameter for the TN Distribution Varies –

A mixing matrix from empirical data [67] is estimated and used on the data driven

model and the proportionate formulations [13, 38, 26, 25, 43] to generate the values

used for Cij and Cj, i, j = 1, 2, ...,m . We varied the age group divisions from two up

to eight groups. For comparison purposes we concentrated on the use of proportional

mixing as the ‘null’ model so that we are able to understand the role of variations in

contact rates between the age groups under proportionate mixing and an empirically

data-driven model.

3.2.1 Proportionate Mixing

The general mixing formulation [9, 12, 13, 48] satisfy the following properties:

1. 0 < pij < 1 all i, j, and t

2.
∑m

j=1 pij = 1
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3. CipijNi = CjpjiNj

CipijNi = CjpjiNj accounts for the reciprocity demand; the total number of contacts

made by members of group i with members of group j per unit of time must be equal

to the total number of contacts made by members of group j with members of group

i per unit of time.

Proportionate mixing is the particular solution given by:

pij = p̄j =
NjCj∑n
v=1NvCv

(3.3)

where Nj is the number of people in group j, Ci =
∑m

j=1Cij is the average number

of contacts that a typical individual in group i has with anyone in the population per

unit of time; Cij is the average number of contacts of a typical individual in group

i with a typical individual of group j per unit of time [38]. We use data from the

Mossong et al. (2008) study to estimate Nj and Cij [67]. The data can be used to

generate estimates for each of the ages, from 0 to 100 years.

3.2.2 Basic Reproductive Number

The Basic reproductive number (R0) denotes the average number of secondary in-

fections generated by one infected individual during his/her infections period, assum-

ing that he/she is embedded in a fully susceptible population [13, 38, 26, 25, 43, 55].

R0, a function of demographic and epidemiological quantities, is a measure of the

transmissibility of the infectious disease in a naive population. When R0 > 1 an

outbreak is expected to take place while whenever R0 < 1 an outbreak is unlikely

to be sustained in a population. We use the methods in [94] to compute R0, under

proportionate mixing (Model 3.1). It is given by

R0 = q

∑m
i 6=j piCi

∏
γj∏m

n=1 γn
(3.4)

26



The details involved in calculating R0 can be found in the Appendix. Estimates of

R0 under the data driven mixing formulation are presented later on.

3.2.3 Final Epidemic Size

Comparing how well proportionate mixing does against a data-driven mixing for-

mulation must be carried out under some metrics. In this case, we use final epidemic

size.The final epidemic size for our model, under proportionate mixing, is a solution

of the following system:

ln

(
Si(0)

Si(∞)

)
=

m∑
j=1

q
Cipj
Njγj

(Sj(0)− Sj(∞)

for, i = 1,2,3,...,m

3.3 Numerical Results

The focus of this section is on assessing the relative difference in epidemic burden

under a data driven vs. proportionate mixing models.

We proceed as follows: First we assume that the mixing and its variability are

captured in the survey or modeled explicitly. We compute the role of mean estimates

of average contact rates within each age group; secondly, we simulate the transmission

dynamics of influenza, single outbreak, comparing the outcomes under the data-driven

vs. the proportionate mixing formulations. We evaluate the role of aggregation by

considering two to eight age groupings.

The probability of infection parameter (q) is kept constant at .3334.

Case 1: We use mean estimates and variances of the estimated average con-

tact age-group rates using the Mossong et al. (2008) survey data; the estimates are

plugged in under the assumptions that the population mixes according to proportion-
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ate mixing. The variability in mean estimates was added using a truncated normal

distribution of the age groups. We used our metric, final epidemic size, in calculating

relative differences from the mean under proportionate mixing (using Mossong et al.

data (2008)).

The relative difference is calculated by subtracting the final epidemic size outcome

obtained under the model with mean estimates of average contacts of age-groups and

variability in mean estimates, both under proportionate mixing. Our simulations

(using 1000 samples) showed that the duration of the outbreak, on average, did not

last more than 30 days in all age groups. The goal was to see how robust the age

group divisions are when we considered having error in the mean estimates under

proportionate mixing.

Figure 3.1: Variability in Mean Estimates vs. Mean Estimates under Proportionate
Mixing.
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Figure 3.2: Two Standard Deviations Away from the Mean Estimates under Proportion-
ate Mixing.

Using the relative difference in final size of the disease as a metric, we notice

that the greater the number of age groupings the smaller the impact of variations

on the average number of contacts (Figure 3.1). That is, increasing the number of

age groupings makes the model results more robust (the difference gets closer to 0

regardless of variation on the mean estimates). Figure 3.2 shows the output when we

include two curves with 2 standard deviations away from the mean estimated under

proportionate mixing. In this case we notice that as we increase the number of age

groupings the standard deviations decreases.

Considering variation in the age-boundaries of the groups (for example, in two age

groups cases age 0-20, 21-100 vs 0-25,26-100), leads to similar qualitative outcomes

to those seen in the final size relative differences simulations. We observed this same

outcome as we changed from two to eight age groups. Hence, we only considered less
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than 5 changes in variations on the age boundaries. As part of our future work we

will consider carrying out extensive and systematic variations.

Case 2: The end goal is to see how well the proportionate mixing formulation in

a SIR model with parameters from a fast spreading disease like influenza does against

the same epidemic model simulated using the data driven mixing formulation, as we

increase the level of aggregation (i.e. as we increase the number of age-groupings).

The comparisons are carried out using relative final epidemic size difference between

the outputs of both models. In this case, the baseline model for computing the

relative final size difference analysis used, is the model generated via the data- driven

mixing assumption. Figure 3.3 shows the data driven model vs mean estimates under

proportionate mixing formulation. We notice that as we increase the number of

age groupings, the difference between the final size also increases. We notice, using

influenza outbreak parameters, that there exist a threshold, 5 age groupings in our

simulations, after which, the relative differences in the final epidemic size (Figure 3.3)

begin to increase.
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Figure 3.3: Data Driven Model vs Mean Estimates under Proportionate Mixing Formu-
lation.

3.4 Conclusion

The goal of this chapter has been that of setting a process for evaluating the

effect of aggregation on disease dynamics. It is driven by the question, how many

age groupings must we consider in modeling an outbreak? And, what is the effect

of changing age boundaries, number of age grouping, on disease burden? In order to

answer these questions we use parameters and age structure formulations on a fast

spreading disease like influenza. We have carried out our analysis using exclusively

contact data from the survey of Mossong et al. (2008) and have applied it to the sim-

ulation of influenza outbreaks. We have observed that proportionate mixing does well

in “matching” influenza dynamics up to a certain threshold (number of age groupings)

when compared with the data-driven mixing model. We found, that the number of
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age groupings threshold was five for our simulations. The use of proportionate mixing

formulation may therefore be ok as long as the number of age groupings is small. Also,

these results, some coinciding with the CDC group arrangements recommendations

for a fast spreading disease like influenza, do tend to vary in the influenza literature

publications [55]. Here, we noticed that changing age boundaries does not seem to

have (in our limited simulations) a drastic impact in our results as long as the number

of age groupings is small. More variations on the age groupings cut off points should

be considered.

On the other hand, if we are somewhat certain that our population is well modeled

by proportionate mixing then increasing the number of age groups may be ok [25].

Several researchers have used models to evaluate interventions (i.e. social distancing,

vaccination) albeit they have not compared the proportionate mixing formulations to

the data driven formulations [55]. The final chapter focusses on assessing the impact

of mixing formulations and assumptions on the evaluation of vaccine interventions.

The analysis in Chapter 4 will assist us in addressing questions such as, what age

groupings should receive more vaccine interventions in order to minimize the disease

burden [25, 90]? The impact of control measures on the transmission of influenza is

analyzed as we vary the level of aggregation. We have included variability on the

mean estimates of the average contacts of age-groups under proportionate mixing as

well in our analysis.
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Chapter 4

ARE THE PROPOSED VACCINATION CONTROL STRATEGIES ROBUST TO

CHANGES IN AGE-STRUCTURED MIXING PATTERNS

4.1 Introduction

Mathematical formulations, like proportionate mixing, are unlikely to fully de-

scribe how individuals actually mix. These formulations are used by modelers be-

cause they capture heterogeneity in a “simple” way and when simulated via dynami-

cal system models it may allow us to assess how disease transmission occurs and how

resources should be allocated.

Formulating and understanding human behavior has been a difficult task for re-

searchers, modelers and policy makers. The importance of understanding individual

and group behavior is critical when the goal is to minimize the transmission of a fast

spreading disease like influenza, which may demand the use of the maximum level of

possible interventions.

Recent studies have compared the value of the models when subpopulations are

assumed to mix under data-driven or proportionate mixing also or alternative mixing

formulations in the study of the dynamics of a fast spreading disease like influenza [25].

These researchers have concluded that the use of certain mathematical formulations

(including proportionate mixing) are useful because there is very limited contact data

available. However, the robustness of these conclusions have not been addressed.

There is, in fact no study in the literature, that has looked at the role of uncertainty

in the population contact behavior on the dynamics of disease transmission. Since

conducting a comprehensive population contact survey takes time, is costly, and the
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results may become obsolete rather quickly, it has become important to study the

impact of variation on estimates of contact on simulated outbreaks. We learned

that comparing proportionate mixing against data-driven mixing, on age aggregated

models, using parameters from an influenza, manage to produce comparable results

when the number of age-groupings used is small. Our results are in agreement with

those found in recent influenza publications [25].

We reviewed studies aimed at identifying best mixing models and levels of aggre-

gation under different mitigation strategies for the spread of diseases like influenza

[23, 24, 54, 56, 55]. Most of these studies failed to identify the best mitigation strate-

gies when resources are scarce or under heterogeneous mixing [23, 55, 86, 60, 89].

Some studies have focused on the study of optimal vaccination strategies under pa-

rameter uncertainty [24, 60, 89] but have failed to consider the effect of uncertainty

arising from the nature of the age-structured contacts.

In short, inaccurate applications of control policies and a lack of understanding

on the role of aggregation, that is, the number of age groupings used, may lead to

highly uncertain conclusions (e.g. erroneous decisions on what is the best target age

group). The lack of systematic uncertainty assessment may lead to undesirable dis-

ease management outcomes that include: (1) an overestimation of disease spread,

which results in greater intervention expenditures or (2) an underestimation of dis-

ease impact, which results in greater transmission and, in some cases, greater disease

mortality.

The goals of Chapter 4 include: How well does proportionate mixing do against

standard data in identifying the “best” disease vaccination control interventions poli-

cies? and, would we arrive at the same control policy recommendations when the age

aggregation scheme is changed?
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4.2 Methods

Two contact matrices, based on data driven mixing and proportionate mixing

assumptions [13, 43, 9], were generated using survey data [67]. They were used within

the SIR age-structured model below, that includes the vaccination of a fraction of the

susceptible individuals. Specifically, the model used is given by the following nonlinear

system,

Ṡi = −uiSi − qSi
m∑
j=1

fij
Ij
Nj

(4.1)

İi = qSi

m∑
j=1

fij
Ij
Nj

− γiIi − σiIi

Ṙi = uiSi + γiIi

where i and j ∈ {1, 2, ...,m} and m are the number of age groupings; fij models the

mixing formulations depending on its expression as given below:

fij =

 Cij, directly from data driven mixing

Cip̄j, under proportional mixing

Here, we are imputing our estimates for Cij and Ci. The susceptible individuals that

get vaccinated move to the recovered class at the per capita rate ui (referred as the

control throughout this chapter). The transmission potential of the pathogen is a

function of the population contact matrix (fij) and the probability of infection per

“approximate” contact, q (kept constant).

The comparison between proportionate and the data driven mixing formulations

is made using the total cost of disease burden (infection and vaccination) as a proxy.

Total cost is computed using direct (implementation of vaccination) and indirect cost

(number of cases generated during the outbreak). The total cost is used on the

objective function that defines the optimal control problem. It is used to identify

optimal interventions (control) rates.
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4.2.1 Optimal Control Framework

The aim of this work is to contrast the differences between data-driven and pro-

portionate mixing models via their role in minimizing the total cost. The framework

identifies optimal intervention policies that minimizes the number of infected indi-

viduals over a finite time interval [0, T ]. The results were obtained for unconstrained

(unlimited vaccines) optimal control problems [32, 56, 55, 57, 78, 86]. The objective

functional of this framework, to be minimized is given by,

min
ui

∫ T

0

m∑
i=1

(Ii + u2
i

W

2
)dt (4.2)

The optimal control framework is (4.2) subject to (4.1). The first step is to show

analytically that for a given initial condition there exists a unique solution to the

optimal control problem.

The goal of an optimal vaccination strategy is to minimize the objective func-

tional given constraint equations and the system of equations (the integrand of (4.2)

is a convex function of u and the state system satisfies the Lipshitz property with

respect to the state variables). The existence of optimal controls is guaranteed by

standard control theory results [32, 56, 55, 57, 78, 86]. The necessary conditions,

that there exists an optimal solution, are derived using Pontryagin’s Maximum Prin-

ciple [79]. This principle converts the optimal control framework into minimizing the

Hamiltonian (H) given by:
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H =
m∑
i=1

[Ii(t) +
Wi

2
u2
i (t)] (4.3)

+
m∑
i=1

λSi
[−uiSi − qSi

m∑
j=1

fij
Ij
Nj

]

+
m∑
i=1

λIi [qSi

m∑
j=1

fij
Ij
Nj

− γiIi − σiIi]

+
m∑
i=1

λRi
[uiSi + γiIi]

where m is the number of age groupings.

From this Hamiltonian and Pontryagin’s Maximum Principle, we obtain

Theorem: There exist the optimal control u∗(t) and corresponding state solutions,

X∗= (S∗i , I
∗
i , R∗i ) on 4.2 over Ω. In order for the previous statement to be true, it is

necessary that there exist adjoint variables λi(t) such that Equations 4.4 and 4.5 are

satisfied:

˙−λSi(t) = − ∂H

∂Si(t)
= −[(−ui(t)− qiSi(t),

m∑
j=1

fij
Ij(t)

Nj

)λSi(t)

+ (qiSi(t)
m∑
j=1

fij
Ij(t)

Nj

)λIi(t) + ui(t)λRi(t)]

˙−λIi(t) = − ∂H

∂Ii(t)
= −[1− (qiSi(t)

fii
Ni

)λSi(t) + (qiSi(t)
fii
Ni

− γi − δi)λIi(t)

+ γiλRi(t) + δiλDi(t)]

˙−λRi(t) = − ∂H

∂Ri(t)
= 0 (4.4)

H is minimized with respect to the control (at the optimal control). We dif-

ferentiate H with respect to u on the set Ω and arrive at the following optimality

condition:
∂H

∂ui
= uiW − λSi

Si = 0

ui∗ = λSi

Si
W

(4.5)
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4.2.2 Cost of Disease

Given that we want to test the effectiveness of proportionate mixing under vac-

cination control, we make use of the minimal cost of the disease (infection and

vaccination) output used in the optimal control formulation. Specifically , we use:∫ T
0

∑m
i=1(I∗i (t)+(u∗i )

2(t)W
2

)dt, which will give us the total cost of infection for a given

data set. In order to assess the effect of proportionate mixing formulation under

vaccination (control) we follow these steps:

1. Compute the minimum cost under the for the Data driven mixing assumption

(DD)∫ T
0

∑m
i=1(IDD,∗i (t) + (uDD,∗i )2(t)W

2
)dt

2. Compute the minimum cost under the proportionate mixing assumptions (PM)∫ T
0

∑m
i=1(IPM,∗

i (t) + (uPM,∗
i )2(t)W

2
)dt

3. Compare how well the model with proportionate mixing assumption did against

the model with the data driven mixing assumptions by comparing their respec-

tive minimum cost.

In order to follow through the comparison outlined in the previous step, we do

the following:

1. Use the control solution (ûPM,∗
i (t)) obtained under the proportionate mixing as-

sumptions and apply it to the Data Driven dynamic epidemic model to compute

IDD,∗i (t)

2. Calculate the Cost of an imperfect control
∫ T

0

∑m
i=1(IDD,∗i (t) + (uPM,∗

i )2(t)W
2

)dt
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• uPM,∗
i (t) is the control under Proportionate Mixing assumptions

• IDD,∗i (t) lnfected individuals using Data Driven Mixing State equations

with Proportionate Mixing control

3. Calculate Relative Cost difference

•
∫ T
0

∑m
i=1(IDD,∗

i (t)+(uDD,∗
i )2(t)W

2
)dt−

∫ T
0

∑m
i=1(IPM,∗

i (t)+(uPM,∗
i )2(t)W

2
)dt∫ T

0

∑m
i=1(IDD,∗

i (t)+(uDD,∗
i )2(t)W

2
)dt

We analyze the relative cost difference of the data driven model against the one

generated, via the proportionate mixing model, as we increase the number of age

stratification (groupings) from 2 to 6 age groupings. We use the recommended age

group structured from the Center of Disease and Control for vaccination for influenza

like disease. For comparison purposes, we also incorporate age group division (group-

ing) found in the literature [55].

4.3 Results

We want to find out how well the proportionate mixing model captures the dy-

namics of an outbreak as we increase the level of age structure(groupings) under

vaccination. We evaluate our results using relative cost differences between the data-

driven mixing and the proportionate mixing models [56, 55].Seeing wether or not

variation of age boundaries (cut off points) in the age structure grouping changes our

results, is important. The age structure grouping recommendations from the CDC

for influenza vaccination and the age structure grouping from Lee et al. (2012) were

used to apply the age aggregation cut offs.

The results below are collected using data driven mixing (Mossong or M;creating

subgroups of contacts within the contact matrix under the data driven mixing formu-

lation ), proportionate mixing (SDPM; mean contacts with mixing rates proportional
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to both contacts in the group and population of the group), and variation in aver-

age contacts under proportionate mixing (TNPM; mean contacts with variability and

mixing rates proportion to both group-contacts and group population).

The results below are collected in two subsections. The first collects the output

values generated using the CDC framework; the second set of results collects the

results generated using Lee et al. (2012) age group framework. It is worth nothing

that within each framework, we present the relative cost difference of using the pro-

portionate mixing under standard data (SDPM) and including variability or error in

the proportionate mixing formulation (TNPM).

4.3.1 CDC Age Group Framework

The graph below shows the relative cost difference when using Mossong vs. SDPM

and mean TNPM contact matrix set up. We notice that as we increase the number

of age groups the relative difference increases in both cases. The relative difference

on the Mossong vs SDPM output increases significantly after 4 age groups. In the

case of Mossong vs mean TNPM we notice there is a higher relative cost difference

in every age group division. The difference also increases as we increase the number

of age groups (Figure 4.1). We also include a trend line with the relative difference

plots.
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Figure 4.1: Relative Cost Difference using the CDC Framework.

We observe the vaccination policies must be implemented at a maximum rate from

the very beginning of the transmission of the epidemic (Figure 4.2) as expected. We

observed similar results regardless of the number of age groupings, 2 to 6. Here, we

present the output of the control when implementing different type of mixing assump-

tions (data driven mixing = Mossong, Mean estimates = SDPM, and variability on

the mean estimates = TNPM)
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Figure 4.2: Output of the Control Over Time used to Minimize the Infected Individuals:
2 Age Groups Example.

The output of the incidence curve is shown in Figure 4.3. We notice that the

incidence output is qualitatively similar when using proportionate vs. using the data

driven mixing (Figure 4.3).

Figure 4.3: Output of the Incidence over Time of Infected Individuals from Age Group
1 to 6 using 3 Different Approaches.
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4.3.2 Lee et al. Age Group Framework

Figure 4.4 shows the relative cost difference when we use the age grouping ar-

rangement as per Lee et al. (2012). The relative cost difference in both data driven

and proportionate mixing cases increases as we increase the number of age groups.

The difference using the SDPM vs Mossong regroup data is smaller in the first 4 age

groups divisions.

Figure 4.4: Relative Cost difference .
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Figure 4.5: Output of the Incidence over Time of Infected Individuals from Age Group
1 to 6 using 3 Different Approaches.

We compared both outcomes and noticed that regardless of the difference in age

group cut off points they both have the relative cost difference consistent until 3

age groupings. After this threshold value the trends changes significantly. This could

suggest a cut off point of 3 age groupings when implementing vaccine control measures

for a fast spreading disease like influenza.
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Figure 4.6: Relative Difference Data Driven Contact Mixing vs Mean Estimates in Pro-
portionate Mixing using CDC and Lee et al. (2012) Framework.

4.4 Conclusion

This study has focused on finding how robust the mathematical formulation is to

misspecification in the contact matrix; that is, how well models under the proportion-

ate mixing do when compared to models under data driven mixing in the absence or

presence of controls (vaccination). The comparisons where carried out when optimal

intervention rates that guaranteed minimal total cost of intervention. Finding out

wether or not a cut off on the number of age-groupings played a role on the relative

cost of the implementation of a vaccine has been part of our analysis. We also study

wether or not policy recommendations for age group structured model differed when

compared to a non age group structured models. We noticed that age structure and
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non age-structured models led to similar vaccination policy recommendation, namely

that the majority of resources must be implemented at the beginning of the transmis-

sion of a fast disease, like influenza. The use of different age groupings; one following

CDC age-grouping recommendations and based on the literature, did not have a sig-

nificant impact on the total cost of infection up to a particular threshold. The use

of 3 age groupings still provided acceptable relative cost difference independently of

the age group framework used. Hence, we see that proportionate mixing works well

under different age grouping as long as we keep the age groupings below a threshold.

Naturally, the threshold may change if we use a different data set. We recommend

checking several age grouping cut off points to see when the use of proportionate

mixing leads to possibly unacceptable results.

The results on this chapter when assumed unlimited vaccination resources. As we

noted in the second chapter (Vaccination strategies when supply is limited) we are

planning to incorporate the limited constraint (isoperimetric optimal control problem)

in this setting. In our second chapter we identified the range of convergence, however

when dealing with age structure models, increasing the number of age groups, made

it impossible to identify the convergence range. This challenge will be addressed in

future work.

Overall it can be argued that using a population that follows proportionate mixing will

be robust to mis- specifications up to a certain critical number of age group divisions,

what would this critical value be will depend on the data, model framework, and

age-boundaries.

46



Chapter 5

IMPLICATIONS FROM DATA-DRIVEN MECHANISTIC MODELING

APPROACH AND MANAGEMENT RESOURCE ALLOCATIONS TO REDUCE

IMPAT OF FAST SPREADING DISEASE

5.0.1 Goal of Thesis

Dynamical models are often used to evaluate interventions for control of infectious

diseases in a population. Population’s mixing/contact data are of great importance if

the goal is to parametrize age structured models or if the aim is to look at age-specific

control policies within some realistic scenarios. Contact data is difficult to obtain and

most often not available. Hence, modelers have constructed age-dependent mathe-

matical formulations like proportionate mixing that allows them to estimate mixing

patterns with limited contact data and, consequently, studies that quantify disease

dynamics under these mixing models often the underestimation or overestimation

disease burden. In this thesis, we investigate the robustness of misspecification in

age-dependent contact matrices (via a mathematical formulation like proportionate

mixing) on the transmission dynamics and control of a communicable disease. We

compare proportionate and data-driven mixing in the context of influenza outbreaks

and vaccination in order to identify optimal vaccination strategies when supply is

limited. We also look at the impact of contact estimates in mixing patterns and

variations on disease disease dynamics within age structure populations. We also

study the role of age-related contact structures and cost within an outbreak when

vaccination is available.
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5.0.2 Review of Results

The second chapter addresses the optimal distribution of vaccination resources

needed to minimize the spread of a disease, particularly, when resources are limited.

We find that vaccination resources must be implemented at the beginning of an out-

break regardless of stockpile size. We further conclude that whenever transmission

of the disease is low, vaccinating may not have a significant effect in reducing the

number of infected individuals. Results are sensitive to mixing patterns in the pop-

ulation i.e., the way individuals interact with each other and their rate of contacts.

Hence, we also explore the role of age-structured mixing on disease transmission dy-

namics. There are rather few published papers that attempt to collect comprehensive

data from surveys on the number of contacts that an individual has on a particular

day. Several papers introduce mathematical formulations on ways that individuals

interact and their impact on disease dynamics. Proportionate mixing on the dynamic

results are compared to those obtained when the survey data was used directly. The

relative difference in final epidemic size when the number of age groups (from 2 to 8

age-groups) are varied are also compared.

Our results suggest that the relative difference in final outbreak size for models is

low (with increases in number of age groups in the models) when the number of age

groups is small.

We develop an optimal control framework (expansion from the second chapter) to

include age structure and find that the maximum amount of vaccines available must

be distributed at the beginning of an outbreak regardless of the number of the age

groupings considered; the same outcome coming from non age-structured models. Of

course, how the vaccine must be distributed within need not be uniform.

We compare the relative cost of between the output of vaccination data-driven
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model and proportionate mixing. The results show that the relative cost difference will

increase as we increase the number of age groupings. Further, significant difference are

observed when the number of age-groupings increases. Here, using a four age group

(or lower) under proportionate mixing produces accurate results on to the amount of

control needed to restrain the spread of an influenza like disease spread.

Overall proportionate mixing is a useful formulation, when there is a lack of in-

formation or mis-specification on contact patterns (contact matrix) as long as the

age-grouping used is low.

5.0.3 Caveats and Future Work

This work should be expanded to consider the implications associated with the

limitations of our current study, for example, verifying if similar results are generated

when we consider a limited vaccine stockpile or other forms of control, like social

distancing. Also, the results must be validated and compared using various data sets

(ie. Episims [25]). Other potential expansion may be needed to study the role of the

dominant eigenvalue of the contact matrix on the disease dynamics as we increase the

number of age groups. We should also consider alternative mathematical formulations

in constructing contact matrices like, preferential mixing and reduced mixing.

We plan to use bootstrapping techniques to examine model outcomes when contact

patterns are varied. Finally, we plan to consider testing this technique on various fast

spreading diseases.
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[17] Carlos Castillo-Chávez and Abdul-Aziz Yakubu. Discrete-time sis models with
simple and complex population dynamics. IMA VOLUMES IN MATHEMATICS
AND ITS APPLICATIONS, 125:153–164, 2002.

[18] CDC. The 2009 h1n1 pandemic: Summary highlights, april 2009-april 2010.

[19] Margaret Chan. World now at the start of 2009 influenza pandemic. 2009.

[20] Jiezhong Chen, Yi-Mo Deng, et al. Influenza virus antigenic variation, host
antibody production and new approach to control epidemics. Virol J, 6(30):3,
2009.

[21] G Chowell, C E Ammon, N W Hengartner, and J M Hyman. Transmission dy-
namics of the great influenza pandemic of 1918 in geneva, switzerland: Assessing
the effects of hypothetical interventions. J Theor Biol, 241(2):193–204, Jul 2006.

[22] G Chowell, M A Miller, and C Viboud. Seasonal influenza in the united states,
france, and australia: transmission and prospects for control. Epidemiol Infect,
136(6):852–64, Jun 2008.

[23] Gerardo Chowell, Cécile Viboud, Xiaohong Wang, Stefano M Bertozzi, and
Mark A Miller. Adaptive vaccination strategies to mitigate pandemic influenza:
Mexico as a case study. PLoS One, 4(12):e8164, 2009.

[24] Damian Clancy and Nathan Green. Optimal intervention for an epidemic model
under parameter uncertainty. Math Biosci, 205(2):297–314, Feb 2007.

[25] Sara Y Del Valle, J M Hyman, and Nakul Chitnis. Mathematical models of con-
tact patterns between age groups for predicting the spread of infectious diseases.
Math Biosci Eng, 10(5-6):1475–97, 2013.

[26] Sara Y Del Valle, James M Hyman, Herbert W Hethcote, and Stephen G Eu-
bank. Mixing patterns between age groups in social networks. Social Networks,
29(4):539–554, 2007.

[27] O Diekmann and JAP Heesterbeek. Mathematical epidemiology of infectious
diseases: model building, analysis and interpretation. 2000. Wiley, 2000.

51



[28] W J Edmunds, G Kafatos, J Wallinga, and J R Mossong. Mixing patterns and
the spread of close-contact infectious diseases. Emerg Themes Epidemiol, 3:10,
2006.

[29] Martin Enserink. The challenge of getting swine flu vaccine to poor nations.

[30] Eli P Fenichel, Carlos Castillo-Chavez, MG Ceddia, Gerardo Chowell, Paula
A Gonzalez Parra, Graham J Hickling, Garth Holloway, Richard Horan, Ben-
jamin Morin, Charles Perrings, et al. Adaptive human behavior in epidemiologi-
cal models. Proceedings of the National Academy of Sciences, 108(15):6306–6311,
2011.

[31] Neil M Ferguson, Matt J Keeling, W John Edmunds, Raymond Gani, Bryan T
Grenfell, Roy M Anderson, and Steve Leach. Planning for smallpox outbreaks.
Nature, 425(6959):681–685, 2003.

[32] WH Fleming and RW Rishel. Deterministic and stochastic optimal control. 1975.

[33] Staff: Centers for Disease Control and Prevention. Cdc resources for pandemic
flu.

[34] Carlos Franco-Paredes, Peter Carrasco, and Jose IS Preciado. The first influenza
pandemic in the new millennium: lessons learned hitherto for current control
efforts and overall pandemic preparedness. Journal of immune based therapies
and vaccines, 7(1):2, 2009.

[35] Christophe Fraser, Christl A Donnelly, Simon Cauchemez, William P Hanage,
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A.1 Optimal Control Formulation

The goal is to find an optimal vaccination strategy that minimizes Objective
Functional (3) given Criterion (4) and the regularity of System of equations (1) (the
integrand of F is a convex function of u and the the state system satisfies the Lipshitz
property with respect to the state variables). The existence of optimal controls is
guaranteed by standard results in control theory [32]. The necessary conditions that
optimal solutions must satisfy are derived using Pontryagin’s Maximum Principle
[79]. This principle converts Systems (1) and (4) into minimizing the Hamiltonian H
given by

H = I(t) +
W

2
u2(t) (A.1)

+ A1(t){−u(t)S(t)− β

N(t)
(I(t) + J(t))S(t)}

+ A2(t){εu(t)S(t)− ηV (t)− β

N(t)
(I(t) + J(t))V (t)}

+ A3(t){(1− ε)u(t)S(t)− β

N(t)
(I(t) + J(t))F (t)}

+ A4(t){ β

N(t)
(I(t) + J(t))(S(t) + V (t) + F (t))− kE(t)}

+ A5(t){kE(t)− (α + γ1)I(t))}
+ A6(t){αI(t)− (γ2 + δ)J(t)}
+ A7(t){u(t)S(t)}

From this Hamiltonian and Pontryagins Maximum Principle, we obtain
There exist the optimal control u∗(t) and corresponding state solutions, X∗= (S∗, V ∗,
F ∗, P ∗, E∗, I∗, J∗, R∗, D∗) that minimize F(u(t)) over Ω. In order for the above

59



statement to be true, it is necessary that there exist adjoint variables Ai(t) such that

Ȧ1 = −[A1(u(t)− A1
β

N(t)
(I(t) + J(t)) + A2(εu(t)) (A.2)

+ A3((1− ε)u(t) + A4
β

N(t)
(I(t) + J(t)) + A7u(t)]

Ȧ2 = −[A2 − η + A2(− β

N(t)
(I(t) + J(t))) + A4

β

N(t)
(I(t) + J(t))]

Ȧ3 = −[−A3
β

N(t)
(I(t) + J(t)) + A4

β

N(t)
(I(t) + J(t))]

Ȧ4 = −[A4(−k) + A5k]

Ȧ5 = −[1− A1
β

N(t)
S(t)− A2

β

N
V (t)− A3

β

N(t)
F (t)

+ A4
β

N(t)
(S(t) + V (t) + F (t))− A5(α + γ1) + A6α]

Ȧ6 = −[−A1
β

N(t)
S(t)− A2

β

N(t)
V (t) + A3

β

N(t)
(F (t))

− A4
β

N(t)
(S(t) + V (t) + F (t))− A6(γ2 + δ)]

Ȧ7 = 0

satisfying the transversality conditions,

Ai(T ) = 0, i = 1, · · · , 6 (A.3)

A7(T ) = θ. (A.4)

The Hamiltonian H is minimized with respect to the control (at the optimal control).
We differentiate H with respect to u on the set Ω and arrive at the following optimality
condition:

∂H

∂u
= Wu(t)− A1(t)S(t) + εS(t)A2(t) + (1− ε)A3(t)S(t) + A7(t)S(t). (A.5)

Solving for u∗ (by evaluating ∂H
∂u

at u∗), the optimality condition

u(t) =
S(t)

W
(A1(t)− εA2(t)− (1− ε)A3(t) + A7(t)) (A.6)

is obtained. Furthermore, using the standard argument for control bounds, we arrive
at the following expression for the optimal control function

u∗(t) = min
{
max

{
0,
S(t)

W
(A1(t)− εA2(t)− (1− ε)A3(t) + A7(t))

}
, b
}
. (A.7)
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Table A.1: Parameter Definitions and Baseline Values (and their Corresponding Sources)
Used in Numerical Simulations.

Parameter Description Values Reference

β Transmission rate (days−1) 0.75− 1.68 [21]
k Rate of progression to infectious (days−1) 0.53 [63]
δ Mortality rate (days−1) 0.01 [37]
γ1 Recovery rate (days−1) for infectious class

(days−1)
0.34 [21]

γ2 Recovery rate for hospitalized class (days−1) 1.10 [21]
α Diagnostic rate (days−1) 0.51 [21]
ε Efficacy of vaccination 0.5 [58]
S(0) Initial number of susceptible individuals 174673 [21]
E(0) Initial number of exposed individuals 207 [21]
I(0) Initial number of infectious individuals 132 [21]
T The simulated time (days) 200 -
b The upper bound of control .05− 0.2 -
W Weight constant on control 100 -

The unconstrained solution can be computed by solving the optimality system
which excludes the Ẏ (t) equation in (1) and the A7(t) equation in (7). The standard
two point boundary method is used to solve the unconstrained problem: first, the
state system is solved using a forward method with given initial conditions; secondly,
the corresponding adjoint system is solved using a backward scheme with the transver-
sality conditions; thirdly, a convex combination of previously and currently computed
controls are used to generate updated controls using the optimality equations; lastly,
the process is repeated until a convergence criterion is satisfied.

For, the constrained optimization problem, a new state variable, Y (t) is introduced
in (1) from the isoperimetric constraint (5), which requires boundary conditions at
t = 0 and t = T . From the requirements on Y (t), the corresponding adjoint variable
to Y (t) must meet a non-zero transversality condition at the final time T , namely that
A7(T ) ≡ θ. Note that θ is unknown therefore, an iteration process is needed to find the
right transversality condition required to satisfy the isoperimetric constraint (Y (T ) =
B). This additional iteration process uses Newton’s method and the procedure used
to implement it numerically identifies convergence issues that were never generated
in the search of solutions for the unconstrained problem.

The figure A.1 shows the optimal control functions over time when R0 = 1.3 and
R0 = 2.0. In this case the corresponding daily incidence rate in the infected class is
compared to the situation in the absence of vaccines.
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Figure A.1: The Optimal Control Functions over Time are Plotted When R0 = 1.3 and
R0 = 2.0.

Figure A.2 shows the comparison of results identifying optimal vaccination policies
using different weight constants on the control (W = 1, 102, 104, 106) when R0 =
1.3. The optimal controls and the corresponding incidence of infected individuals are
illustrated (left). The fraction of the cumulative number of infected and vaccinated
individuals are plotted under different weight constants as a function of R0 (right).
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Figure A.2: Optimal Vaccination Policies Results using Different Weight Constants on
the Control (W = 1, 102, 104, 106) when R0 = 1.3.

Figure A.3 shows the results of implementing optimal vaccination strategies when
different upper control bounds (b = 0.05, 0.1, 0.2, 0.5) are used with R0 = 1.3. The
optimal controls and the corresponding incidence of infected individuals are illustrated
(left). The fraction of the cumulative number of infected and vaccinated individuals
are plotted for distinct upper bounds as a function of R0. (right).
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Figure A.3: Optimal Vaccination Strategies Results when Different Upper Control
Bounds (b = 0.05, 0.1, 0.2, 0.5) are used with R0 = 1.3.

Figure A.4 shows the results of implementing optimal vaccination policies under
distinct vaccine efficacy constants on the control (ε = 0.4, 0.6, 0.8, 1) when R0 =
1.3. The optimal controls and the corresponding incidence of infected individuals
are plotted (left). The fraction of the cumulative number of infected and vaccinated
individuals are shown for different efficacy levels as a function of R0 (right).
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Figure A.4: Optimal Vaccination Policies under Distinct Vaccine Efficacy Constants on
the Control (ε = 0.4, 0.6, 0.8, 1) when R0 = 1.3.

Figure A.5 shows the optimal control functions plotted when b=0.05 (left) and
b=0.2 (right) under three different vaccination coverage (15%, 30%, and 50%). The
corresponding daily incidence in the infected class is compared with the one in the
absence of vaccines.
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Figure A.5: Optimal Control Functions Plotted When b=0.05 (left) and b=0.2 (right)
under Three Different Vaccination Coverage (15%, 30%, and 50%).
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Figure A.6 shoes the raction of the cumulative number of infected individuals
as a function of R0 is compared with the one under no vaccines using two different
vaccination coverage levels (30% and 50%).
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Figure A.6: Fraction of Cumulative Number of Infected Individuals as a Function of R0

Compared with and without Vaccines.
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APPENDIX B

MATHEMATICAL COMPUTATIONS
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The contact matrix used in the age-structured dynamics model (Equation 3.1) is
commuted from the survey data as follows:

1. For each individual the number of daily contacts were computed.

2. An average number of contacts for a specific age is calculated using data from
step 1 and age of individuals

3. Age-groups are constructed and an average contacts per age-group using step 2
are computed

Figure B.1 shows the diagram to formulate the contact matrix. To the left is the
participant id and the average age of the individuals he contacted in a given day, the
column to the right is the participant key id and age.

Figure B.1: Diagram to Formulate Contact Matrix .

B.1 R0 Computation

Using the Next generation Operator we obtain:

F = [qSi

m∑
j=1

pij
Ij
Nj

] (B.1)

F =


qS1

p1
N1

qS1
p2
N2

qS1
p3
N3

. . . qS1
pm
Nm

qS2
p1
N1

qS2
p2
N2

qS2
p3
N3

. . . qS2
pm
Nm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
qSm

p1
N1

qSm
p2
N2

qSm
p3
N3

. . . qSm
pm
Nm



V =

 γ1I1

γ2I2

. . . . .
γmIm
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V =


γ1 0 0 . . . 0
0 γ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . γm



FV −1 =


qS1

p1
N1

γ1

qS1
f2
N2

γ2

qS1
f3
N3

γ3
. . .

qS1
pm
Nm

γm
qS2

p1
N1

γ1

qS2
p2
N2

γ2

qS2
p3
N3

γ3
. . .

qS2
pm
Nm

γm
...

...
...

. . .
...

qSm
p1
N1

γ1

qSm
p2
N2

γ2

qSm
p3
N3

γ3
. . .

qSm
pm
Nm

γm


Taking the maximum eigenvalue of FV −1 we obtain:

For 2 Age groups:

R0 =
q(p2γ1 + p1γ2)

γ1γ2

(B.2)

For 3 Age groups:

R0 =
q(p2γ1γ3 + p1γ2γ3 + p3γ1γ2)

γ1γ2γ3

(B.3)

For 4 Age groups:

R0 = q

∑4
i 6=j 6=k 6=l piγjγkγl∏4

n=1 γn
(B.4)

B.2 Final Epidemic Size

The expression for final size of an epidemic was computed using equations of the
system and the steps are as follows:

˙Si(t) = −qSi(t)
m∑
j=1

pij
Ij(t)

Nj∫ ∞
0

˙Si(t)dt = −
∫ ∞

0

qSi(t)
m∑
j=1

pij
Ij(t)

Nj

dt

∫ ∞
0

Ṡi(t)

Si(t)
dt = −

∫ ∞
0

q

m∑
j=1

pij
Ij(t)

Nj

dt (B.5)
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In this case we observe that Ri(∞)−Ri(0) = Zi = Si(0)− Si(∞) so we obtain

ln
Si(0)

Si(∞)
= −q

∫ ∞
0

m∑
j=1

pij
Ij(t)

Nj

dt

ln(−Zi) = −q
∫ ∞

0

m∑
j=1

pij
Ij(t)

Nj

dt (B.6)

Given that we have the integral of I we proceed to solve for ˙Ri(t) equation and
we obtain: ∫ ∞

0

˙Ri(t) =

∫ ∞
0

γIi(t)dt

Ri(∞)−Ri(0) =

∫ ∞
0

γIi(t)dt

Zi
γ

=

∫ ∞
0

Ii(t)dt (B.7)

Putting all back to the Susceptible equation we obtain:

ln(−Zi) = −q
∫ ∞

0

m∑
j=1

pij
Nj

Zj
γ
dt

ln
Si(0)

Si(∞)
= −q

m∑
j=1

pij
Nj

Sj(0)− Sj(∞)

γ
(B.8)

B.3 Algorithm to group Participants by their Age and Contacts

1. Construct age groups (say,. 0-25 26-50 51-100; 3 age groups)

2. Use the survey data provided and match the age of the participant with the
group division it belongs to (ie. an individual of age 22 can belong on the age
group from 0-25)

3. Use survey data and match the age of the individuals with whom the participant
had contact with

4. Store the information in a matrix that shows the number of contacts of indi-
viduals in one age-group with individuals that belong to a different age-group.

B.4 Algorithm to Construct Mixing Matrix

The pseudocode for the extraction of the data from the survey data: Steps:

1. Initialize the average number of contact parameter for each of the age groups

2. Initialize the proportion of the population for each of the age groups.
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3. Write in the population proportion or weight for each age from the data

4. Initialize an age vector from 0-99

5. Initialize an age vector from 1-100

6. Construct a 0 matrix

7. Populate the matrix with the data from the survey times the proportion ( the
weight) of the population of each age

Matrixrecip =


C11w1 C12w1 C13w1 . . . C1mw1

C21w2 C22w2 C23w2 . . . C2mw2
...

...
...

. . .
...

Cm1wm Cm2wm Cm3wm . . . Cmmwm


8. Initialize the end points for each of the age groups

9. Sum all the weights of the population that is contained in the same age group
(ie. for a 2 age group example

∑20
j=0 wj for the age group [0-20] , and

∑100
j=10wj

for age group [21-100])

10. Make sure that reciprocity is taken into accounts (ie. contacts that kids have
with adults should be the same as the adults have with kids)

(a) Using the information stored in the Matrixrecip which contains all the 100
by 100 bins

i. Do a for loop i where you go over the starting point of age group i and
end at the starting point of the next age group(i.e. from vector 0-99
we want the group from 0-20 and 21-99 and from vector 1-100 we will
divide 1-21 and 22-100)

ii. Do a for loop j where you go over the starting point of age group j and
end at the starting point of the next age group

iii. Form a smaller matrix with each of the corresponding groups(From
our two age group example we obtain)

Matrixrecip =



C1,1 C1,2 . . . C1,20

...
...

. . .
...

C20,1 C20,2 . . . C20,20

 C1,21 C2,22 . . . C1,100

...
...

. . .
...

C20,21 C20,22 . . . C20,100


C21,1 C21,2 . . . C21,20

...
...

. . .
...

C100,1 C100,2 . . . C100,20

C21,21 C21,22 . . . C21,100

...
...

. . .
...

C100,21 C100,22 . . . C100,100




iv. Sum all the values in each of the smaller matrices and store [∑20

i=1

∑20
j=1 Ci,j

] [∑20
i=1

∑100
j=21 Ci,j

][∑100
i=21

∑20
j=1 Ci,j

] [∑100
i=21

∑100
j=21 C1,2Ci,j

]
v. Repeat until there are no more age groups
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(b) Divide each element of the matrix by its corresponding age weight: this
will be NewMatrix

NewMatrix =

[∑20
i=1

∑20
j=1 Ci,j∑20

i=1 wi

] [∑20
i=1

∑100
j=21 Ci,j∑20

i=1 wi

]
[∑100

i=21

∑20
j=1 Ci,j∑100

i=21 wi

] [∑100
i=21

∑100
j=21 C1,2Ci,j∑100
i=21 wi

]


(c) Divide the proportion of the population of age group i by the weight of
age group i and label as fractionPop

(d) multiply the NewMatrix by the fractionPop

11. Add all the new information on the matrix output
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APPENDIX C

CONTROL FRAMEWORK
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C.1 CDC Age Group Framework

The optimal control obtained from the model analysis are shown in the figures
below. the goal is to show the difference between models results when mixing matrices
was directly estimated from data (Mossong et al. 2008). The notation TN stands for
mean value of average number of contacts rates per age-groups where its distribution
is assumed to be Normal.
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Figure C.1: Control Output to Minimize Infection with 3 Age Groups and with each
Mixing Assumption.
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Figure C.2: Control Output to Minimize Infection with 4 Age Groups and with each
Mixing Assumption.
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Figure C.3: Control Output to Minimize Infection with 5 Age Groups and with each
Mixing Assumption.

The graph below shows the incidence curve using each one of the approaches.
For the case of the TNPM we took the average of all the replicates. We observe
that the incidence over time is very similar when we have two age groups divisions.
However as we increase the number of age groups we notice the incidence output
similarities between the Mossong grouping and the TNPM approach. We can infer
that the difference might decrease as we increase the number of age groups given the
reduction in the density of contacts.

Figure C.4: Output of The Incidence Over Time of Infected Individuals from Age Group
1 to 6 using the 3 Different Approaches.
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The graph below shows the incidence over time for each particular approach. We
plotted all the age groups simulations. Given that age group 2 was very high, we
plotted the rest of the incidence by age excluding age group 2. With the Mossong
approach and the SDPM approach we observed that we have the same qualitative
behavior among all age groups.

Figure C.5: Output of Infected Individuals Separated by Case.

The graphs below show the replicates of the incidence plots over time using the
TNPM approach when two age-groups are considered in the model. We present
graphs as we increase the age groups from 2 to 6.
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Figure C.6: Output of Infected Replicates for Age Group 2 .

Figure C.7: Output of Infected Replicates for Age Group 3 .
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Figure C.8: Output of Infected Replicates for Age Group 4 .

Figure C.9: Output of Infected Replicates for Age Group 5 .
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Figure C.10: Output of Infected Replicates for Age Group 6 .

C.2 Lee et al. Age Group Framework

The graph below we show the relative cost difference when we follow the age group
arrangement for Lee et al. The relative cost difference in both cases increases as we
increase the number of age groups. The trend can be appreciated from the graph to
the right. The difference using the SDPM vs Mossong regroup data is smaller in the
first 4 age groups divisions.
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Figure C.11: Relative Cost Difference Between Models using Contact Matrix from
Mossong et al. and Contact Matrix that uses Proportionate Mixing Formulations.

Figure C.12: Output of Infected Individuals Separated by Case.
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Figure C.13: Output of Infected Individuals from Age Group 1 to 7 using the 3 Different
Approaches.

Figure C.14: Output of Infected Replicates for Age Group 2 .
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Figure C.15: Output of Infected Replicates for Age Group 3 .

Figure C.16: Output of Infected Replicates for Age Group 4 .
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Figure C.17: Output of Infected Replicates for Age Group 5 .

Figure C.18: Output of Infected Replicates for Age Group 6 .
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C.3 Isoperimetric Constraint

In this case we will evaluate the case when we have limited resources for example,
the Objective Function is:

min
ui

∫ T

0

m∑
i=1

(Ii + u2
i

W

2
)dt (C.1)

Subject to the state equations

Ṡi = −uiSi − qSi
m∑
j=1

fij
Ij
Nj

İi = qSi

m∑
j=1

fij
Ij
Nj

− γiIi − σiIi

Ṙi = uiSi + γiIi
(C.2)

and the isoperimetric constraint (limited vaccines)∫ T

0

m∑
i=1

(Siu
2
i

W

2
)dt = B (C.3)

In this case B is the maximum amount of vaccines available.

In order to be able to analyze the optimal control problem with the constraint
we cannot use the Pontryagins Max principle. So we introduce an additional state
variable z, where ż is

ż =
m∑
i=1

uiSi

z(t0) = 0

z(tF ) = B

(C.4)

Using the Pontryagin’s Maximum Principle [79]. This principle converts ODE
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Systems and Constraints into minimizing the Hamiltonian H given by

H =
m∑
i=1

[Ii(t) +
Wi

2
u2
i (t)] (C.5)

+
m∑
i=1

λSi
[−uiSi − qSi

m∑
j=1

fij
Ij
Nj

]

+
m∑
i=1

λIi [qSi

m∑
j=1

fij
Ij
Nj

− γiIi − σiIi]

+
m∑
i=1

λRi
[uiSi + γiIi]

+
m∑
i=1

λzuiSi

where m is the number of age groups.

∂H

∂Si
= −[(−ui − qiSi

m∑
j=1

fij
Ij
Nj

)λSi
+ (qiSi

m∑
j=1

fij
Ij
Nj

)λIi + uiλRi
+ uiλz]

∂H

∂Ii
= −[1− (qiSi

fii
Ni

)λSi
+ (qiSi

fii
Ni

− γi − δi)λIi + γiλRi
+ δiλDi

]

∂H

∂Ri

= 0

∂H

∂z
= 0 (C.6)

The Hamiltonian H is minimized with respect to the control (at the optimal
control). We differentiate H with respect to u on the set Ω and arrive at the following
optimality condition:

∂H

∂µi
= uiW − λSi

Si

µi∗ = λSi

Si
W

(C.7)
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