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ABSTRACT 

Online learning communities have changed the way users learn due to the 

technological affordances web 2.0 has offered. This shift has produced different kinds of 

learning communities like massive open online courses (MOOCs), learning management 

systems (LMS) and question and answer based learning communities. Question and answer 

based communities are an important part of social information seeking. Thousands of users 

participate in question and answer based communities on the web like Stack Overflow, 

Yahoo Answers and Wiki Answers. Research in user participation in different online 

communities identifies a universal phenomenon that a few users are responsible for 

answering a high percentage of questions and thus promoting the sustenance of a learning 

community. This principle implies two major categories of user participation, people who 

ask questions and those who answer questions. In this research, I try to look beyond this 

traditional view, identify multiple subtler user participation categories. Identification of 

multiple categories of users helps to provide specific support by treating each of these 

groups of users separately, in order to maintain the sustenance of the community. 

In this thesis, participation behavior of users in an open and learning based question 

and answer community called OpenStudy has been analyzed. Initially, users were grouped 

into different categories based on the number of questions they have answered like non 

participators, sample participators, low, medium and high participators. In further steps, 

users were compared across several features which reflect temporal, content and 

question/thread specific dimensions of user participation including those suggestive of 

learning in OpenStudy. 

 The goal of this thesis is to analyze user participation in three steps: 



 
 
 
 

ii 

a.   Inter group participation analysis: compare pre assumed user groups across the 

participation features extracted from OpenStudy data. 

b.   Intra group participation analysis: Identify sub groups in each category and examine 

how participation differs within each group with help of unsupervised learning 

techniques. 

c.   With these grouping insights, suggest what interventions might support the 

categories of users for the benefit of users and community. 

 This thesis presents new insights into participation because of the broad range of  

features extracted and their significance in understanding the behavior of users in this 

learning community. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION TO THE PROBLEM 

Learning has taken a whole new dimension since web 2.0. The pedagogical 

affordances the new web offered are content creation and modification through improved 

user interfaces, connectivity through social network applications, collaborative 

environments in the form of forums, discussion groups which imbibe notification systems 

using advanced web technologies and many more. This has allowed many new applications 

to see light in the learning domain [1] like  

•   MOOC’s (massive open online courses) which gave free access to variety of 

courses taught by academicians from elite institutions in the world like the MIT 

OpenCourseWare, Coursera and EDX.  

•   Learning management systems like Moodle which enabled new ways to manage 

courses by giving access to course content like quizzes, lectures as well as 

evaluating tests online to students irrespective of university or place.  

 This capability to create, share and consume content online has also paved way for 

another interesting pedagogy in learning: question and answer websites (Q and A 

communities).  Question and Answer communities are those online places which facilitate 

users to ask questions and allow others to answer questions. The way questions are 

answered is either by providing information or through discussions. The different type of 

question and answer communities are community/social Q and A, expert services, library 

reference services.  Community or social Q and A websites are the most popular type of 
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communities in this category [2].  They represent those online communities where users 

participate and contribute on a daily basis in wide variety of topics across different 

websites, blogs and forums. Some characteristic features of community Q and A websites 

are rich user interface, user ranking or incentives like medals, categorized questions, user 

profiles and communication facilitative features like tagging and notifications. Community 

Q and A websites form an important part of the internet world as evident from their 

popularity. Alexa.com, a service which ranks websites based on internet traffic has ranked 

some of the top question answer communities like Yahoo Answers, Stack Overflow both 

at rank 55, Stack Exchange at rank 165, Quora at rank 158 (http://www.alexa.com ).  

Question and Answer communities have been growing as repertoires of knowledge 

owing to large amount of question and answer content being generated in today’s web. 

They are centers of knowledge and information sharing. Yahoo answers alone has 300 

million questions as of 2012 with 7000 questions per hour and 21000 answers on an 

average [3].  They also form important part of search results in search engines. We can see 

search queries showing results on first pages from prominent Q and A sites like Yahoo 

Answers, Wiki Answers, and Quora. Such humongous data in addition to being a valuable 

resource to learn by catering needs of users on daily basis, also put forwards many 

challenges like question and answer quality, user contribution and commitment, spam data, 

irrelevant questions, depth of questions, repetitive questions, community lurkers and user 

expertise. These have been studied in literature extensively in various kinds of Q and A 

platforms and generally as well. 
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Understanding and quantitatively analyzing participation behaviors in online 

learning communities is an interesting topic to research because gaining deeper insights 

into participation patterns of users can help to introduce interventions in the communities 

which can help the community grow in various aspects like improved learning, longer life 

and serving users better. Question and Answer communities in web exist in different forms, 

different categories and different scales. For example, a Q and A website can be as huge as 

yahoo answers with hundreds of categories and subcategories or as simple as a 

mathematical discussion forum focused on calculus. This might indicate that as the nature 

and environment of each site varies possibly there are much more complicated types of 

users and mere count of question asking and answering might not be sufficient to 

understand how a user is participating in a particular community.  

In this research, I present a quantitative analysis of user participation behavior in 

an open social learning Q and A community called OpenStudy. OpenStudy’s learning 

model is described as open social learning, which blends in open content and an interactive 

learning community that asks questions and seeks answers [4]. It is a synchronous learning 

community given the availability of users who are ready to answer questions all the time, 

instant notification system which notifies users of the replies to their questions.  

OpenStudy is unique in terms of environment and the learning settings it offers. 

Some characteristic features of OpenStudy are 

•   OpenStudy’s primary motto is that users have to provide help but not answers.   

•   Code of conduct: enforces norms like users should provide help than answers, 

things which promote a positive environment [5]. 
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•   User base who visit the site are mostly high school level students. 

•   Smart Score System: measures the user performance by compiling skills of 

problem solving, engagement and teamwork.  

•   Titles: recognizes users with unique titles to motivate them. 

•   Instant notification system 

•   Social activities like fans, messaging 

I examine OpenStudy in a quantitative analysis of the temporal, content specific and 

question/thread specific features. These features provide a multi dimensional insight into 

user participation. Analyzing these features from all the users and comparing them helps 

to identify patterns of user participation in OpenStudy. Common patterns among a 

specific group of users can be used to support the group and thus overall community. 

1.2 MOTIVATION FOR THE PROBLEM  

 Sustenance of the community is the central agenda for any online learning 

community. User participation analysis, adaptation to the feedback by making necessary 

interventions is healthy for any community. While participation can be looked up in various 

dimensions, current research to the best of our knowledge is not broad in question and 

answer communities. Mere categorization of question askers and question answerers 

cannot help us provide support or motivate users to perform better. We try to define 

participation in broader terms in this research and apply unsupervised learning technique 

k means to find hidden patterns in user participation behavior. These patterns of users 

which give better insights into nuances of participation are the primary motivation for this 

research. On top of that we try to understand learning in OpenStudy from the participation 
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attributes we extracted. We are interested to study new user patterns who are actually trying 

to learn from the community. Though we do not define specific metrics for learning or 

analyze content to see if knowledge has been constructed in those question-answer threads, 

we try to analyze learning from participation point of view. This helps the community to 

identify learning oriented subgroups and can help them learn better which we discuss more 

in results section. This is the secondary motivation of the thesis. 

1.3 USER ANSWERING RANGES 

For the purpose of this research 5 answering ranges of users are defined. Before 

Listing out these ranges, in this section, importance of answering questions in participation, 

necessity to divide users in answering ranges and reasons for dividing users into 

“particular” ranges (listed in a table) are discussed. 

Analyzing user participation involves looking into all the actions user performs in 

the community. Some important user activities/actions in question and answer 

communities are  ask questions, answer questions, comment, reply, favourite, become fans, 

follow up, tagging, taking responsibilities etc. All the actions are follow up actions in the 

process of either asking or answering questions. Asking questions is motivated by user 

needs like learning, getting homework done or preparing for an exam. Question asking, 

though is an important participation activity, it is effortless as far as users are concerned 

and has no direct influence on community sustenance whereas getting these questions 

answered has direct influence on community sustenance. Not all users are motivated to 

answer questions in the community. Question answering process requires time and effort 

of a user. Quality answering and healthy community are key factors in a community’s long 
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life. So, in this research we focus primarily on question answering behavior to analyze 

participation. 

In this research we divide users into groups based on their answering range. 

Division helps for an in depth analysis compared to an overall study. Overall participation 

metrics like total number of questions asked, answered, total number of users and average 

time spent on each question gives an account of group nature and dynamics. Dividing users 

(in this case by answering ranges) and labelling them helps us to compare, contrast and to 

get a notion of how participation varies in each of these groups. For example, in 

OpenStudy, Non participators and Low participators were shown to be better 

conversationalists than higher answering groups using participation attributes and human 

observation of thread samples. These kind of insights are not very obvious from undivided 

and overall analysis of users. Also this kind of analysis helps to cater the needs of each 

group based on their behavior. In the next section, we explain the division into particular 

ranges starting with Non participators. 

First group under study is the Non participators, who have not answered a single 

question. Though, by definition Non participators are not answerers and full range of 

participation features for these users are non existent, these users can be looked in contrast 

with users in other answering ranges with the help of a small fraction of attributes from the 

data like questions asked, average replies got to their questions and total duration in the 

community. The next immediate task was to separate the other users who have answered 

at least one question. Plots of users and questions answered showed a very large gaps in 

user answering count as the count increased. 
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Figure 5: Distribution of Users and Questions Answered Count 

When clustering was used to this list of users, users in the last cluster which had 

high answerers had very low quality with shifting outliers. Increase in the number of 

clusters resulted in subclusters of high answerers which made the situation more 

complicated. So, separating high answerers to into a manually defined group has made the 

process easy and clusters with high quality. This manual separation of high answerers 

included several human observations of parameters , especially shift in duration from 40-

50 band answerers and 50-60 band answerers was 25 weeks, which is very high. So, above 

50 users were split as high participators. This split, interestingly proved healthy to cluster 

other groups and obtain high quality clusters. Following, 1-50 answering band was 

clustered using k means. Computing several iterations, we decided on clustering 

combination of (1112, 188 and 46 users) into 3 clusters with average silhouette width 0.78, 

which indicated a very good structure for these clusters.  The other combination was (1172, 

137, 37). Both of these combinations repeated in the several times we performed the 

experiment in. The first combination, which repeated itself several times was also fit into 

answering ranges of 1-5, 6-20 and 21-50. Thus, clustering was used to obtain these 3 ranges 
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in addition to non participators and high answerers discussed. Following figure shows the 

cluster plot. 

 

    Number of questions answered 

Figure 6: Cluster Assignments Based on Number of Questions Answered 

Summary of the ranges is as follows, we use them to describe research questions 

in the next section. 

 1.  Non participators(NP): User who have not answered a single question. 

2. Sample participators(SP): Users who answered less than or equal to 5 questions  

    in the community. 

3. Low participators(LP): Users who answered more than 5 questions and less than   

   or equal to 20 questions. 

4. Medium participators(MP): Users who answered more than 20 questions and  

   less than or equal to 50 questions. 

5. High participators(HP): Users who answered more than 50 questions in the  

    community. 
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Following graph shows the number of users in each of the answering ranges 

 

Figure 7: Histogram of Users in Different Answering Ranges 
 

1.4 RESEARCH QUESTIONS 

There are 3 research questions we would like to address in this work 

 1. What are the inter group differences between different category of users like non-

participators, samplers, low participators, medium and high participators. 

2. What are the intra group differences? What are the different kinds of user sub 

groups we can find in each major group and how do they vary among the 

participation attributes we describe in the document? 

3. What could be possible interventions we can make after analyzing each subgroup 

and possible design changes respectively so that user experience can be improved in 

terms of learning, contribution, and ultimately the sustenance of the community?  
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1.5 OUTLINE OF THE DOCUMENT 

The rest of the document starts with some background work on social Question and 

Answer communities which is most relevant category to the learning community we are 

experimenting on, then learning in online communities is discussed followed by detailed 

description of user participation problem, defining participation, importance of the 

participation and our take on participation. We conclude the background work with a 

review of educational data mining literature and the kind of problems the field addresses 

in online learning communities, then give a detailed description on k means clustering and 

silhouette cluster evaluation techniques which are the data mining concepts used for this 

study. 

The next half of document discusses OpenStudy data, participation attributes of 

OpenStudy, data extraction and preprocessing of OpenStudy data to relational database 

style structure followed by the exact method we used to extract participation subgroups in 

OpenStudy, then we try to present an overview of the results got from our study. 

We conclude the document with references for future work, interventions possible 

for steady community sustenance. 
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Chapter 2 

RELATED WORK AND BACKGROUND STUDIES 

 In this section we briefly cover ground on social Q and A’s from their origin, current 

research, learning in Social Q and A (specifically OpenStudy). We then move onto provide 

an overview of user participation, briefly discuss 2 background papers which inspired our 

work and finally conclude with an introduction to Educational Data Mining (EDM) and do 

a survey on usage of unsupervised learning technique in EDM literature.  

2.1 SOCIAL Q and A’s 

Social question and answer communities, sometimes called community Q and A’s 

are a Web 2.0 enabled systems where users create content collaboratively while they ask 

questions and answer other’s questions [6]. Users exploit social Q and A’s to feed their 

information needs across various topics/categories and in the process rate, comment and 

share the content. 

2.1.1 BACKGROUND OF SOCIAL Q and A’s 

Gazan has provided a detailed description on the evolution of social Q and A’s [6]. 

History of social Q and A’s dates back to purposes of basic web information processing 

systems. Search Engines were used to crawl and present relevant information based on user 

input in form of natural language (mostly English) key words. We can observe more or less 

similar phenomena in social Q and A’s in the current web era, retrieving similar questions 

based on user input keywords is an important part of these communities. These information 

retrieval systems were followed by some specific research on QA focused answer retrieval 

systems from the user queries. Then comes the precursors of today’s social Q and A’s that 

are the Usenet newsgroups.  
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Usenet system is a collection of discussions/messages from users across different 

world locations. They are similar to public bulletin board organized hierarchically. Usenet 

groups comprised of threaded user conversation in various topics. They were a popular 

internet service before the world wide web and were non commercial in nature. Usenet 

system was developed by Tom Truscott and Jim Ellis from the general purpose UUCP dial-

up architecture. They appear similar to today’s discussion forums on the web but 

principally contrast on the network architecture. Unlike today’s world wide web where 

information services or resources are held on a properly administered central server which 

we call websites, Usenet systems are non centralized and are distributed among a 

constantly changing conglomeration of servers that communicate within each other 

through news feeds. Users in order to post to a news group have to submit their messages 

to a local server which is connected into this conglomeration by an organization, internet 

service providers, university, employers etc. These systems were succeeded by an umbrella 

of applications which more or less resembled and built on Usenet systems which were 

made by possible by Web 2.0 [7]. 

With the advent of Web 2.0 there were many sites, systems and applications that 

reflect the central idea of community question and answering.  The idea of web based 

question answering community implies self evolved systems which gave certain 

capabilities to the users to post questions, add comments, give replies, sharing the 

questions, forming groups etc. all through a relatively rich user interfaces. Each community 

organized the systems in their own styles and imposed their very set of norms. For example, 

Yahoo Answers is a large community focusing on multiple categories whereas stack 



 
 
   
 

13 

overflow focusses on a more computer programming oriented community with strict rules 

in terms of question duplication, quality of question asking. Google answers was a paid 

site which provided remuneration to set of answerers unlike most of communities which 

are free and open to public. The first Social Q and A was launched by a South Korean 

company and was called Knowledge-iN while Answerbag was the first in united states. 

The notion of social Q and A became popular with the advent of Yahoo Answers which is 

the most widely used social Q and A. Other popular sites are Stack Exchange, Quora, Wiki 

Answers etc. 

2.1.2 RESEARCH IN SOCIAL Q AND A’s 

 Gazan identifies three primary areas of research in social Q and A, they are user 

motivation and behavior, information quality assessment, and design and technological 

factors impacting participation. Research review further continues in this work stressing 

on details of frame works to understand value of information, structuration theory-

communities of practice, meta discussions in social Q and A sites, central motivations for 

user participation on social information spaces, intrinsic and extrinsic motivations, user 

satisfaction, collaboration, user reputation. This work is a complete review of work in 

social Q and A and also proposes future research directions. 

2.1.3 LEARNING IN SOCIAL Q and A’s (OPENSTUDY) 

Understanding and quantitatively analyzing learning specific behaviors in online 

learning communities is an interesting topic. By definition “Learning is the act of 

acquiring new, or modifying and reinforcing, existing knowledge, behaviors, skills, values, 

or preferences and may involve synthesizing different types of information” [27]. Q and A 
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communities in web exist in different forms, different categories and different scales. For 

example, a Q and A website can be as huge as Yahoo Answers with hundreds of categories 

and subcategories or as simple as a mathematical discussion forum focused on calculus. 

So, in some communities learning is mere gaining of facts, sometimes it is discussion on 

certain opinions, events, sometimes it is more technical like in the case of Stack Overflow. 

So, learning is very subjective in various levels in Question and Answer websites.  

In this research we analyze Q and A participation behavior which are related to 

processes beneficial for learning. We present a quantitative analysis of user 

participation  behavior in an open social learning Q and A called OpenStudy. We do so by 

extracting various attributes of user participation which might be suggestive of learning. 

User participation behaviors like answering questions in detail, prompting high discussion 

while answering, trying to help more number of users, being consistent in helping users, 

not giving mere answers to homework questions, asking questions which prompt higher 

discussion, answering questions similar to asked questions and helping users in related 

topics could be more fruitful than just giving answers, answering questions by addressing 

more topics are all supporting behaviors of learning. Other way to look around is to keep a 

check on lurking behaviors, one-time site users, user who are inactive for major periods of 

duration, mere consumption, users who answer lot of questions in expert level with one or 

very few replies All these behaviors contradict the learning goal. Though these behaviors 

are quite natural in a community setting, identifying such behaviors in advance could help 

the site designers to propose interventions for recommendations or redesigns which we 

discuss more in conclusions and intervention section of this document. 
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In this research we try to identify such behaviors with the help of participation 

attributes extracted in an open social learning Q and A called OpenStudy. we do this by 

considering following features 

Temporal features:  

a. Total duration on the community,  

             b. Number of active weeks (time units) in the first year of answering,  

 Learning can be influenced by the user activity time and his duration on the  

community. People who stayed for longer duration are more likely to contribute more,  

though there are people who stay for longer duration but very less of contribution. The  

total duration and active weeks attributes help us to capture this information. 

c. Best participation point: the time unit where user has answered maximum  

number of questions on a scale of 0-1,  

d. percentage of questions answered (we call this best given).  

e. top week of participation and number of questions answered in that week 

Best participation point and best given features give us an idea of behaviors where  

users are peaking in their journey and what percentage of answers they give while  

peaking. Top week and performance in top week complement these features. We also  

collect previous and after performance metrics which reveal the consistency in user  

participation. 

Content specific feature:  

a. Topics addressed on an average in a week 

b. Similarity of topics in questions asked and answered. 

c. Number of words in the questions answered 

d. Number of words in replies given 
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While it is hard to grasp the semantics and the knowledge transfer in a thread, some 

quantitative features might help us to grasp this information on whole. For example, the 

number of topics across which user has been participating on an average in his duration 

might help. Less number of topics might imply focus on few and limited concepts while 

broader topic range indicates broader contribution, also similarity of questions asked and 

questions answered across topics might indicate and provide us a measure that user has not 

been answering randomly but has been asking questions and answering on relevant topics 

to an extent in association with other features like the total number of questions asked and 

answered.  

Question and thread specific:  

a. Questions asked: number of total questions a user has asked 
 
b. Replies got for the questions asked [Length of the thread]: average number of 

replies user has got to his questions 

c. Questions answered: number of total questions answered 

d. Average replies given to a question: average replies given in answering 
questions in the community. 

Thread specific content like number of replies generated from other users on a  

question user asked might indicate a higher discussion which is an essential indicator of  

knowledge  transfer or construction within the thread. Also number of replies a user is  

giving in association with question/answer complexity for which count of words are a  

potential measure while he answers a question might indicate his contribution towards a  

question. So, we extract the discussed features. 
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Summary of features pertaining to participation and learning 

 
Properties ( Features) Participation Learning 

Question asking 
behaviour  
(Questions Asked, 
average replies got)   

Questions asked and 
average replies got reflect 
the one important side of 
participation of question 
asking behavior 

Similarity of questions asked 
and answered might be an 
indicator of knowledge gained 
from community and learning 
behavior. 
 
High replies also indicate 
good conversationalist which 
depict user interest in learning 

Question answering 
behavior 
(Questions answered, 
average replies got, 
answer words) 

Question answering 
behavior using these 
attributes is the central 
participation behavior in 
this research. We use 
question answered to divide 
users into groups to further 
investigate participation. 
Good number of replies 
given in higher answer 
words indicate quality 
participation 

Quality participation might 
have learning implications. It 
reflects users commitment in 
contributing towards learning 
and not giving mere answers 

Consistent participation 
(Total Duration, Active 
weeks, 
Best participation 
point/ top performing 
week, best given/top 
performance in a week, 
previous and after 
participation 

Consistent participation can 
be identified by examining 
all these specific features. 
Identifying consistency 
helps to detect initial 
enthusiasm in participation, 
early and late participators, 
lazy participation. 

High consistency might be an 
indicative of learning but 
experts who have high 
consistency were also found 
to give mere answers in 
shorter replies  

Topical analysis 
(Average topics per 
week, topical similarity 
of questions asked and 
answered) 

Topical analysis can be used 
to detect high participation. 
Better participators 
answered in more topics in 
an average 

Topical similarity might be 
used to detect learning. As 
discussed in results section 
high similarity users were 
found to answer questions 
related to the one’s they asked 
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generally in high quality 
conversations. 

 

2.2 A REVIEW ON USER PARTICIPATION 

In this chapter, the primary goal is defining user participation and observing the 

importance of user participation. Background studies are reviewed briefly which have 

motivated this research. Later user participation in OpenStudy is discussed. 

2.2.1 DEFINING USER PARTICIPATION 

Defining participation in online learning communities is site specific in certain  

terms as it depends on the type of community, agenda/norms of the community, design  

etc. A simple example could be a comparative between Yahoo Answers and Stack  

Overflow [8][9].  

Yahoo Answers employs a system of points and levels. User’s actions measure 

user’s points/levels. Scoring and points are the information gathered from official yahoo 

answers website [8] details this system in the points and levels figure.  

 

Figure 1: Yahoo! Answers points and levels  
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Source: https://answers.yahoo.com/info/scoring_system 

It is obvious from their point and levels system that Yahoo Answers is more focused 

on users being active answerers. As asking question will reduce your score which shows 

the site motivates users to answer more. Also it notes that users can participate more as 

they get to higher levels scoring higher points. 

 Stack overflow on the other hand encourages users to be ask high quality questions 

and provide high quality answers. User participation metric in stack overflow called 

reputation is influenced by various factors as detailed in their official website [9]. 

 

Figure 2: Stack Overflow reputation system 

Source: http://stackoverflow.com/help/whats-reputation 

 While we do not go deep into participation metrics because the central idea is to 

make the point that each site measures participation differently according to their own 
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agenda/norms etc. These metrics are a motivation to user to participate on his end and 

check his progress with the community. 

Given the participation metrics, it is important to analyze in the real time how 

participation is affecting the community. Participation is a complex variable, it can be as 

simple as count of questions answered in a Q and A community, Number of home works 

finished in a MOOC or as complex as topic modelling of question/answer content 

generated, Longitudinal improvement metrics.  

2.2.2 ANALYZING USER PARTICIPATION 

Irrespective of how we choose to measure participation, analysis of participation 

helps in understanding hidden factors/patterns of user behavior which are not obvious from 

a user’s score and this requires examining the participation from various dimensions. 

Researchers have analyzed participation to understand sustenance/failure of a community, 

to propose interventions and redesign community, to expand the pre existing views of 

participation in literature, etc. 

2.2.3 IMPORTANCE OF USER PARTICIPATION 

(YAHOO ANSWERS vs GOOGLE ANSWERS) 

User participation model is core to the sustenance of a community and could decide 

the fate of the community. In their work shah et al [10] compare participation in Q and A’s 

as important as indexing, retrieval and ranking are to a search engine. They compare 

participation across yahoo and google answer sites and argue that google answers was a 

failure and has retired eventually because of their policy which controlled user 

participation. google answers is a paid community which has few answerers who were 
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experts and while user asked a question, he had to mention the amount he was willing to 

pay for the best answer. In contrast, highly popular and successful yahoo answers was more 

participation oriented and open. One striking thing about their analysis was that there was 

a huge imbalance of contributors and consumers in google answers. The number of people 

who asked questions were 100 times larger than the preselected 500 experts/contributors 

whereas the open participation model in yahoo answers showed a well balanced consumers 

and contributors. This has led to around 63 percent of questions being unanswered in 

google answers and eventually led to one time consumers and thus dis satisfaction with the 

service.  

Based on Grouping users into different levels of participation based on the metric 

yahoo answers created, authors have further delved into these groups to present some 

obvious and on other hand interesting results.  

a. High number of users in lower levels, compared to higher levels 

b. Average of questions answered to asked (contributed to consumed) is very high 

in higher levels and gradually decreases as the level falls which reflect maturity 

level yahoo proposes is highly correlated to user contribution.  

 c. Correlations between answers and points is too high (0.88) while question-

answer / question-points correlation is low (0.22 and 0.30)  

 The authors analyze that quality of participation in terms of stars a user’s question 

and answers have been given. When questions are considered they propose two metrics, 

the first one is the average number of stars for their questions and second one is the 

percentage of questions which received stars. Here the results are quite obvious that 
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higher level users had more stars on average and got more stars in terms of percentage as 

well but there was one interesting thing that level 5 users had more percentage of 

questions starred than level 6. 

 When answers are considered the metrics were average number of answers and 

average number of best answers through a single visualization which produced fairly 

obvious results that users in higher levels have answered more and got more starts to their 

answers. The other interesting metric in this category is the percentage of answers 

selected as best answers for users at various levels. This is a quite uniform graph given 

the number of answers given in lower levels is also low, but it is interesting that even 

those answers got the stars which was otherwise hidden if just the levels were the criteria.  

 The takeaway and motivation from this work for our work is mining deep into 

levels might give a new and different story about participation though quite a lot 

literature sees the users as contributors and consumers as far as question and answer 

communities go. Taking from the work we perform analysis among groups of users who 

were initially grouped by the number of answers they gave. We also expand on the 

longitudinal aspect of participation which the authors did not include in the current 

research and propose in future research. 

2.2.4 UNDERSTANDING USER ENGAGEMENT GROUPS IN MOOCs 

Participation analytics shed light on new categories of users in contrast to 

established conventions. For example, in Massive Online Open Courses(MOOC’s), 

according to Rene et al. [11] there was a monolithic view of participants that is users who 

have completed the course and users who discontinued. In their work Rene et al. propose 
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a classification method to discover new subpopulations and further propose interventions. 

The notable category of this work is users who merely engage in the community by 

watching videos but not completing assessment tasks among their trajectory analysis of 

engagement and disengagement. Using unsupervised learning in such scenarios where 

users come from different backgrounds and intentions due to the open nature of MOOC’s 

was motivated from similar clustering techniques performed in community colleges to 

understand user typologies. In order to perform interventions and decision changes along 

the design of instruction, content, assessment and platform features they compare learner 

characteristics and behavior. They choose three course in the levels of high school, 

undergraduate and graduate. The method they choose is giving labels to user participation 

in certain time intervals (typically weeks), 4 labels which they use are “on track”, auditing 

(viewing the video content but no assessment), “dis engage” (dis engagement), “out” (no 

participation). user’s labels might vary in the weeks to come in the course. For example, a 

user might be on track in first 2 weeks, then disengage for a while and then only might be 

auditing, so thus for each user a string of labels is generated, which are then represented 

numerically for the purpose of applying k means, a most commonly used clustering 

algorithm. Interestingly the results are similar to the engagement labels. User categories as 

per their description is Completing, Auditing, Disengaging and Sampling which are 

descriptive of their behavioral patterns of engagement. Their clustering has produced a 

good fit as reflected by silhouette width of 0.8 which is very good fit for users in each of 

the clusters. When they tried to increase k in their clustering, that is the number of clusters, 

the algorithm further found sub groups in samplers based on their sampling period. The 

high level clusters gave a good fit. They have also evaluated the clusters from an 
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educational perspective. They have also experimented with attributes like assignment 

grades, lecture counts but it seems clusters were not very informative of learning process 

and pedagogical improvements. Also in the final conclusion they say they would like to 

examine in terms of more nuanced measures of engagement, user information which we 

think might have given more in depth understanding of learner trajectories but the good fit 

could not have been possible. More categories of users might be implying more 

interventions and tools to support these users. Once they categorized users they try to 

understand and compare users across categories and courses in terms of survey 

demographics, geographical location, intention, overall experience, forum activity and 

streaming index. They present a statistical analysis of each of these features which reflects 

a deeper dig into user engagement and thus accordingly propose design strategies. For 

example, let’s paraphrase two scenarios. In case of auditing learners they could only be 

shown videos and avoid the frustrating messages about completing assessments which 

could disengage them or totally remove assessments. This could happen by predicting 

auditing learners early from their engagement patterns the clusters reflect. Analyzing the 

demographics, the dis engaging and sampling users told the reasons for disengagement 

were their personal commitments, work conflict and course loads. In this case authors 

suggest a slow pace course or an entirely self paced course work. Similar interesting 

analysis was made considering cross course and cross cluster comparisons.  

While the results are pretty interesting the takeaway from this work is using a data 

mining technique to dig deeper into user categories based on engagement categories and 

further analyzing and proposing interventions. We, in our work try to find hidden patterns 
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inside the clusters and across more broad and subtler attributes of engagement. We could 

connect to few attributes they used like the number of posts and comments the learners 

created in the posts. 

2.3 A REVIEW ON EDUCATIONAL DATA MINING AND UNSUPERVISED 
LEARNING 

2.3.1 INTRODUCTION TO FIELD OF EDM 

 Educational data mining is a new emerging field which focuses on application of 

data mining and machine learning techniques to the data generated from educational 

settings like online learning resources, learning management systems, universities, 

intelligent tutoring systems etc. [12].Increase of computing power and usage of educational 

technology using computer systems is generating large amounts of data in these settings 

and the potential of data mining techniques in education is being recently explored and 

experimented. Baker and Yacef identified four goals of educational data mining 

a.   predicting student learning behavior 

b.   discovering or improving domain models 

c.   studying the effects of educational support 

d.   Advancing scientific knowledge about learning and learners 

 
2.3.2 A REVIEW OF UNSUPERVISED LEARNING AND CLUSTERING IN        

EDUCATIONAL SETTINGS 
 

 We believe that in our work, where we use an unsupervised learning technique 

which is an important part of data mining algorithms to understand the participation 

behavior of users and suggest possible interventions to improve the experience of users in 

a learning community is more or less close to the second goal. EDM has broad range of 
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implications in various kinds of learning settings to address multiple problems, two survey 

papers from EDM community help us to understand the kind of work possible or being 

done in the field [13][14]. 

 We focus on clustering, an unsupervised learning technique from data 

mining/machine learning fields. Unsupervised learning has been used in outside 

educational applications like collaborative filtering, managing news documents and 

indexing them according to categories and subcategories, email activities etc.  we briefly 

discuss the kind of work that has been done in various educational settings, why we choose 

to apply a clustering technique called k means, further explore different type of clustering 

methods, k means and it’s implementation details. 

 Amershi and Christina propose a user modelling framework using supervised and 

unsupervised learning which reduces costs of building user models and facilitates 

transferability across applications. They apply this approach to an intelligent tutoring 

system which teaches AI algorithms and model student learning during interaction with a 

learning environment called Adaptive coach for exploration (ACE)[15]. 

 An exploratory learning environment facilitates learning which is student led while 

potential knowledge discovery happens through generating hypotheses, testing them, 

finding relevance, making generalizations, reaching conclusions etc. [20]. Pedagogical 

effectiveness which is influenced by distinguishing student characteristics and learning 

styles has been mixed in these environments because of the difficulty in finding patterns in 

unstructured environments. Manually constructing and evaluating student models is 

difficult, needs collaboration of various people involved and was not proved to be effective. 

Few researchers attempted to use supervised learning techniques where experts gave labels 
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based on desired exploratory outcomes. Though this improved the model accuracy it was 

error prone because humans had to code the labels. Amershi and Conati in their chapter in 

EDM text discuss various unsupervised learning as a solution in this context to identify 

common interaction behaviors through the algorithm generated groups and then apply these 

labels to train a user model [21]. 

 In the participation behavior section, we have explored a MOOC analysis of user 

engagement pattern from Stanford researchers. Based on this study a similar study was 

performed not on Coursera but on FutureLearn [22], a learning website which offers 

MOOC’s and according to Ferguson and Clow is underpinned by social constructivist 

strategy. The interesting part of this work is they performed k means clustering to identify 

engagement patterns across 4 courses. They found additional seven distinct patterns of user 

engagement which is more temporal oriented. The groups of users are one among 

Samplers, strong starters, returners, midway drop outs, nearly there, late and keen 

completers. We can recall that in the previous study, adding an additional cluster has sub 

clustered samplers along time of sampling [23].  

Researchers have also compared effectiveness of different clustering algorithms for 

a single data set or a similar educational setting. Shubhendu et al. explore the spectral 

clustering algorithm [17] in comparison with popularly employed k means algorithm [18] 

in a year’s school data collected from ASSISTments tutor in two schools at Massachusetts 

and predict student’s test scores from features derived from the tutor like number of 

problems done, correct percentage, correct percent on help questions, time spent, attempts, 

hints [16]. In another work Beijie et al. compare K means and Latent Class analysis on data 

from instructional architect, which is a digital library service to identify user groups. 
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Instructional architect is used by teachers in creating and sharing instructional activities. 

This work also identifies problems with using clustering in educational settings, they 

propose to justify the choice of algorithm used, compare with a competing algorithm, 

discuss about evaluation of the clustering results. This work is a good source of various 

clustering algorithms used in different problems, in terms of the problems they discussed. 

[19]    
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CHAPTER 3 

DATA DESCRIPTION AND METHODS EMPLOYED 

3.1 DATASET 
 
 Dataset was provided by openstudy.com (http://www.openstudy.com). They have 

given access to chunk of their data for research purposes where we used mongo commands 

on shell to access the data. In detail data description and processing will be dealt in 

following steps. 

 

Figure 3: A look of OpenStudy Mathematics page 

source: www.openstudy.com 

Original data format:  

This section gives basic account of original data format and how it was handled 

initially before starting the actual processing.  

Mongo DB: 

Data was originally stored in a non traditional database using Mongo DB which is 

categorized as a No SQL database [24]. Mongo DB is a document oriented database which 
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uses JSON (JavaScript object notation) based documents which have a dynamic schema 

and these are called BSON documents. BSON is a binary-encoded serialization of JSON-

like documents. It is intended for data storage and network transfer purposes by Mongo 

DB [25]. 

JSON vs BSON: 

 Mongo DB page on JSON and BSON [26] provides the following difference: 

JSON is an important open data interchange format widely used on web. JSON 

supports various data types like numbers, strings, and Boolean values including arrays and 

hashes. 

 BSON which stands for binary JSON on the other hand is an extension of JSON 

used by Mongo DB for binary encoding a JSON file such that it provides additional data 

types and efficiency for encoding and decoding within different languages. 

Understanding the data on Mongo DB:  

Mongo Db generally organizes the data into collections which are analogous to 

tables on a relational database system. collection implies a group of documents in the 

database. These documents are not enforced any particular schema and also need not have 

similar fields which reflect the central concept of a No SQL database. This section lists 

examples of few collections in the database and explains basic commands to execute few 

common operations. 

Collections in OpenStudy: 

 This section gives an idea on the data we had access to. Collections in OpenStudy 

are used to store various entities of the community data like 

  a. User profile information like first name, last name, date of joining etc. 
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b. User performance information like medals, smart scores, engagement, team and 

collaboration metrics. 

c. Questions content like body of question, time stamps , status, question askers etc. 

d. Reply content like body, timestamps, ownership of replies etc. 

e. Groups related data 

f. Notifications like medal announcements, reply notifications 

g. Other analysis data. 

OpenStudy, according to their privacy concerns made sure personal messages and 

users personal information is nullified and not used for any research purposes. 

This is what in a nutshell, collections in OpenStudy had to offer. In later sections 

of the document we clearly describe how feature set for analysis was formed from the data 

the collections had. 

   The following screenshot shows how a sample document inside the notification 

collection looks like. Information embedded in this particular document include  

a. ID of the notification 

b. Date 

c. From: who produced the notification 

d. To whom the notification was delivered 

e. Content  

f. Status 

g. Class of the notification 
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Figure 4: sample document inside a Mongo DB collection, source: OpenStudy 
 

3.2 DATA PREPARATION 

 Data preparation refers to that process of collecting, cleaning, and consolidating 

data into one file or data table for use in analysis. In our case of preparing data for analysis 

we break into 3 distinctive steps for better understanding  

Step 1: Data transporting  

Step 2:  Data restructuring 

Step 3: clean, consolidate and simplify for analysis 
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In this section we explain each step with necessary detail to get an idea of how data was 

transformed into convenient format which is ready to analyse  

Step 1:  

Data Transporting:  

 Data transporting implies moving the data from server onto a local machine in the 

process of simplification for analysis. Transporting involves  

Creating data dumps of collections on the server in BSON formats:  

As discussed mongo provides capabilities of creating BSON dumps for 

transportation facilitation. Secure copying the files onto a local machine which also hosts 

a local Mongo DB server. Recreating the Mongo DB on local machine after re converting 

them to JSON formats. 

Final steps in this process points to writing scripts which query the data and creates new 

SQL tables, a new format for representing the data for various conveniences. Further 

restructuring will be briefed in step 2.  

Step 2:  

Data Restructuring: 

Data restructuring simply means creating a new schema for relational database to 

be created. All necessary data was put into users table Questions table and replies table 

 This step helped to find basic trends in the data which gave us sense of the nature 

of community. For example like number of users who asked one question only , number of 

users who answered more than 50 questions to get a sense of relation between percentage 

of contributions and user count. 
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Step 3:  

Clean, consolidate and data simplification:  

 Users who were removed from the community due to various reasons were also 

deleted from the new SQL database. All the dependent data items like questions, replies 

were removed to preserve the consistency.  We filtered out the whole database to create 

smaller tables which corresponded to chemistry subgroup of OpenStudy. In terms of 

simplification, this helped the scripts to run faster and made the data processing handy 

because the primary database was huge to process in feasible times.  We then created a final 

table with the attributes chosen to perform the analysis which we describe as follows   

3.3 DATA ATTRIBUTES DESCRIPTION 

1. Questions asked: total number of questions each user has asked in the period of his first 

year  

2. Average Replies got: average replies user has got on his questions excluding his replies 

to his own thread. we divided the total replies by total number of questions asked  

  Average replies got = total replies got ÷ total questions answered  

3. Questions answered: total number of questions user has answered in the chemistry 

subgroup  

4. Average Replies given: average number of replies user has given excluding replies to 

his own questions  

  Average replies given =total replies given ÷ total questions answered 

5. Total duration: total lifetime of user in the group. we calculated this by sorting out user 

activity timestamps to get first activity and last activity timestamps  
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6. Active weeks: In the first year of participation, out of those 52 weeks, the count of the 

weeks user has answered at least one question. Looping in first activity timestamp plus 

week timestamp has given us the number of active weeks.  

7. Question words: average total number of words in the questions user has answered  

  Question words = total question words ÷ questions answered 

8. Answer words: average total number of words in the replies user has given  

  answer words =  

total words from all replies given to a question ÷ questions answered 

9. Best participation point: point from scale of 0 to 1 when user has given his best in the 

first year.      BPP = top week/duration  

10. Best given: percentage of best given in the top week  

  BG = questions answered in top week/total questions answered 

11. Previous performance: total number of question answered before the top week  

12. After performance:  total number of questions answered after the top week  

13. Top week: week where highest questions were answered  

14. Performance in top week: number of questions answered in top week  

Topics per week: average number of topics user has addressed in his answering life per 

week  

15. Similarity: cosine similarity between topical vector of questions asked and questions 

answered.  

Topic modelling method and cosine similarity will be discussed along the methods 

section along with clustering methods. 
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DATABASE DESCRIPTION:  

 The database under description, OpenStudy, was not completely used in this 

research. Only a chunk of this data, “chemistry” subject group was utilized. All the 

questions, replies, users and other information pertaining to chemistry was extracted for 

the purpose of this study. Some important chemistry data statistics are  

Number of questions asked: 9047 

Number of users: 3863 

Users who answered at least one question: 1378 

Users who asked at least one question: 3102 

3.4 METHODS 

3.4.1 CLUSTERING 

 Clustering is the process of grouping similar objects in the data to groups/sub 

groups. This in turn helps to find the structure otherwise not implicit in the data. Unlike 

classification where the label is known pre hand and data is trained accordingly, clustering 

completely starts without any labels and groups data using various types of algorithms.  

 Clustering has application in various domains like biology, astronomical data, 

health, education, social network analysis, e commerce, recommendation systems, climate 

and other time series data.  

Various clustering techniques are presented in literature [27]. prominent categories 

are present based on the approach of clustering the objects. 

a. Connectivity based clustering 

b. Centroid based clustering 

c. Distribution based clustering 
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d. Density based clustering 

 For the purpose of this research we employ a widely used algorithm called k 

means which is a centroid based clustering technique, which is reviewed in detail in the 

following section. 

3.4.2 K-MEANS: AN OVERVIEW 

 K-means clustering is most popular and frequently used method in cluster analysis. 

As seen in the background section K means has broad range of application. Kumar et al. in 

their data mining cluster analysis book present an excellent and simple overview of k 

means, it’s limitations and extensions [27]. 

We start with initially choosing k centroids while k is a user specified number. 

selection of k can be done with various methods like using scree plot, sometimes it is 

subjective, tried and tested based on domain knowledge. Once k is chosen, k random 

centroids are initialized and each point in the dataset is assigned to the closest centroid. 

The centroid is updated based on the points assigned to the cluster and this process is 

repeated until convergence , that is there are no more points changing across clusters and 

the centroids remain intact. following we describe algorithmic steps described in most 

standardized source 

 Algorithmic steps:  

1. Select k initial centroids 

2. Repeat 

3. Form k clusters by assigning each point to its closest centroid. 

4. Re compute the centroid of each cluster. 

5. until centroids remain intact 
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Note: 3 and 4 are repetitive steps 

While the condition is that points do not change clusters often restrictions are laid 

practically like n percentage of points change clusters. 

An important part of this algorithm is point assignment to the centroid, for which a 

distance metric has to be chosen. The most commonly used is the Euclidean distance in the 

Euclidean space (higher dimensional space in our case). Other similarity metrics used are 

Manhattan distance, cosine similarity, Jaccard similarity. we used the simple Euclidean 

distance in our case. 

 Re computing the centroids is another key step in k means algorithm, in re 

computing generally an objective function is laid like minimizing the sum of squared 

distances of points to the closest cluster centroids. In case of Euclidean distance sum of 

squared error (SSE) can be used as the objective function to be minimized. mathematically 

SSE is represented as follows: 

 SSE = !
"#$ 𝐿2(𝑐𝑖, 𝑥)-.∈0"  

L2 is the Euclidean distance between points in the Euclidean space. 

one problem of k means is we have to perform multiple runs to choose the most apt  

solution that is assignments which are frequently into same clusters. This is because of the 

initialization of centroids issue in k means.we use Hartigan and Wong implementation of 

k means which is a default method in R statistical tool. 
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3.4.3 CLUSTER QUALITY EVALUATION: SILHOUETTE INDEX 

Another important part of clustering is determining the quality of clusters. For cluster 

quality determination various methods have been suggested. Two types of cluster quality 

evaluation metrics are present 

Internal evaluation metrics  

Internal evaluation metrics are those when we use the same data clustered to verify 

the quality of the clustering, generally through a score assigned. popular internal evaluation 

metrics are Silhouette index, Davies Boulden index, Dunn index etc. 

 External evaluation metrics 

External evaluation metrics are those when we have data other than the data used 

for clustering like bench marks or pre labeled data (human experts). Popular external 

evaluation metrics are Jaccard index, F measure, Rand measure etc. 

In this research, we use silhouette width as cluster quality metric which is further  

explained as follows: 

Silhouette index:  

 Silhouette index is a function of average distance to points within same cluster and 

average distance to points in neighboring clusters. Mathematically silhouette index can be 

represented as follows. Let a(i) be the average dissimilarity of i with points in the same 

cluster, while b(i) be the average dissimilarity of i with points in neighboring clusters. 

silhouette index s(i) can be defined as follows 

s(i)=(a(i)-b(i)) ÷ max{a(i), b(i)}. Silhouette index falls in the range of -1 to 1 
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While silhouette index close to 1 indicates a high cluster, in other words average 

s(i), the average of silhouette indices of points in a cluster if near to 1 indicates that points 

are more nearer to each other within cluster and far away from other clusters. if silhouette 

is close to 0 it implies a point is on border of two clusters or outliers. 

we use the silhouette function from R statistical package to compute the silhouette 

information of a cluster fit/clustering assignment. inputs to the function are clustering 

assignments of each data point produced by the clustering algorithm used and the second 

important input is the distance/dissimilarity matrix of the data. This function returns an 

object of class silhouette in R . silhouette objects are used to generate a silhouette plot 

which indicates average silhouette width of each cluster and whole assignment. 
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Chapter 4 
 

RESULTS AND INTERPRETATION 
 
 In the results section we initially do inter group participation analysis, which 

compares the users’ in different answering ranges like the sample, low, medium, high and 

non participators using one way analysis of variance and Tukey HSD statistical tests. In 

the following section we examine each specific group separately, cluster the users using 

the feature set and present subtler subgroups of participation in each of the user groups. 

 
4.1 INTER GROUP PARTICIPATION 

 This section discusses results from comparing all answering groups across each 

feature. One way analysis of variance has shown that all the 15 attributes are significant in 

separating the groups. Table 1 presents the F value and p value for each feature from one-

way ANOVA. 

 

Feature F value     p value 

Questions Asked 29.24        <2e-16 

Avg Replies Got 9.547       1.12e-07 

Avg Replies Given 828.1        <2e-16 

Total Duration 512.8       <2e-16 

Active Weeks 2375         <2e-16  

Question Words 1151         <2e-16  

Answer Words 473.9        <2e-16 

Best Participation Point 3130         <2e-16  

Best Given 12552       <2e-16 
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Previous Performance 451.1        <2e-16  

After Performance 550.3        <2e-16 

Top week  24.82        <2e-16 

Performance in top week 1957         <2e-16 

Average topics per week 2258         <2e-16 

Similarity 286.9        <2e-16 
 
Table 1: F and p values for each feature across user answering ranges from analysis of 
variance.  
 
 In the following section mean and standard deviation of each feature across the 

groups are presented in a comparative fashion to get a sense of participation inside each 

group. Further to examine pairwise relationship between groups post hoc analysis is 

performed using Tukey HSD test. 

Questions asked:  

 Mean and SD of questions asked by users in each answering range 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

2.21 {3.97} 1.82 {4.45} 4.44 {11.26} 8.97 {30.61} 7.75 {15.90} 

 

 Users in relatively higher answering ranges asked higher questions but there is no 

significant difference in question asking behavior of medium and high participators, or non 

participators and samplers. 

Average replies got:  

 Mean and SD of average replies got for their questions by users in each answering 

range 
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Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

2.29 {3.13} 1.72 {4.36} 2.63 {4.81} 3.59 {5.13} 4.14 {5.42} 
 
 Tukey test showed sample participators are different from all the other groups in 

getting replies to their questions more on the lower side. Also non participators differed 

from high participators for the replies they got. All other groups showed no differences. 

Average Replies given: 

 Average replies gives the average of the total number of replies in which a user 

answers a question. Means and Standard deviations of each subgroup for average replies 

given as follows 

 
Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 1.59 {1.43} 2.01 {1.44} 2.76 {2.88} 2.29 {1.25} 

 
 Low participators - high participators and medium participators - high participators 

did not show significant difference between their means in Tukey test while interestingly 

medium participators tend to give higher replies on an average. 

Total duration and active weeks:  

 Means and Standard deviations of each subgroup for total duration and active 

weeks as follows. These two core temporal features are directly proportional to 

participation and Tukey showed a clear distinction between each group.  

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

1.66{5.93} 5.03 {12.03} 19.83 {26.22} 31.38 {26.22} 74.20 {43.13} 
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Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 1.23 {0.56} 3.48 {2.13} 7.58 {3.86} 17.0 {10.68} 

 

Question words and Answer words: 

 The count of number of words in question content and replies content. Question 

words were not much different across all answering ranges. In case of answering words 

there was no significant difference between low-medium and medium-high answering 

ranges whereas samplers answered in relatively low words compared to other users. 

question words 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 23.80 {19.14} 23.98 {9.24} 25.99 {6.78} 26.22 {4.13} 
 
answer words 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 37.53 {50.06} 51.20 {35.25} 59.05 {42.61} 69.96 {43.73} 

 

Best participation point and top week: 

 Best participation point is the instance in user time period where he answers highest 

number of questions. Top week attribute is the week number where user answers highest 

number of questions. Best participation point depends on the top performing week directly 

and duration inversely. Below are means and SD’s of best participation point and top week. 
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We can see that in lower answering ranges though the top week is early, best participation 

point is high which is due to low durations given where as it is exactly opposite in higher 

answering ranges where the best participation points are low though the peak week is high 

because of relatively higher durations. There is no significant difference in best 

participation points of low and medium participators. 

best participation point table 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 0.81 {0.33} 0.45 {0.37} 0.38 {0.32} 0.17 {0.17} 
 
top week table 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 2.43 {5.46} 5.35 {9.39} 10.08 {13.29} 12.87 {16.44} 
 

Best given and performance in peak week. 

 Best given is the percentage of answers given in the top week and performance in 

peak week is the number of answers given in top week. Below are the mean and SD’s of 

these features. Best given is high in lower answering ranges comparatively because of less 

persistence of users in these groups and low activity periods and vice versa in higher 

answering ranges where the persistence and activity are high. 

best given 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 0.92 {0.18} 0.63 {0.25} 0.45 {0.26} 0.26 {0.13} 
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performance in top week. 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 1.56 {0.93} 6.19 {3.04} 14.08 {9.68} 33.56 {23.31} 

 
Previous and After performances:  

 previous performance is the number of questions answered before best participation 

point/top week, while after number of questions answered after best participation point/top 

week. On an average for all the groups previous performances are low compared to after 

performance. 

Before performance  

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 0.05 {0.27} 1.09 {2.08} 5.60 {6.20} 50.59 {73.63} 

 

 There is no significant difference in previous performances of lower 3 answering 

ranges especially Tukey showed high overlap in non participators and sample participators, 

this is due to the zero previous participation in samplers. 

after performance 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 0.19 {0.52} 2.85 {2.76} 10.67 {8.28} 75.56 
{100.19} 

 
 After performance of samplers and non participators has high overlap indicating 

that samplers were mostly one timers mostly and showed no persistence. 
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Average topics per week:  

 Average of the count of topics users addressed each week. higher answering ranges 

addressed higher topics compared to relatively lower user groups on an average. 

 
Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 4.73 {3.04} 9.47 {4.77} 10.56 {4.04} 14.06 {3.42} 

 

Similarity of questions asked and answered: 

 Topical cosine similarity of questions asked and questions answered. There was not 

much significant difference in topical similarity in answering ranges, This could be due to 

the fact that low answerers were also low question askers and vice versa. Tukey showed a 

significant difference only among samplers and low participators. 

 

Non 
participators 

Sample 
participators 

Low 
participators 

Medium 
participators 

High 
participators 

0 {0} 0.27 {0.41} 0.21 {0.33} 0.30 {0.31} 0.26 {0.26} 
 
Post hoc analysis using Tukey HSD test is presented in Appendix. 

4.2 INTRA GROUP PARTICIPATION 

 In this section, we will discuss the sub groups in each of the answering ranges 

starting with high answerers. The goal of this section is to examine participation differences 

within answering ranges across the feature set extracted. 
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4.2.1 HIGH PARTICIPATORS 

 High participators/answerers are those users who have answered more than 50 

questions. This answering range is the widest which contains users who have answered 654 

questions. This range is also the smallest but most contributive one. 

 Clustering results of these high participators revealed 4 low quality clusters. The 

average silhouette width of multiple k means clustering assignments was between 17 to 20 

percentage, which indicates that they are very loosely bound and no strong pattern exists 

when all the attributes are considered together but thanks to statistical tests which gave 

some interesting results on few attributes which separated the groups well. These few 

attribute differences form characteristic of these sub groups.  

 Before describing each subgroup, one way ANOVA shows that for the subgroups 

replies given, question and answer words, answers in peak week do not vary significantly. 

The table highlights these attributes and values. 

Questions Asked 14.68 6.21e-06 

Avg Replies Got 12.07   
 

3e-05 

Avg Replies Given 0.815   
 

0.496 

Total Duration 5.353  
 
 

0.00484 

Active Weeks 9.276 0.000201 
 

Question Words 2.025   
 

0.133 
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Answer Words 2.214   
 

0.109 

Best Participation Point 22.14  
 

1.5e-07 

Best Given 13.64  
 

1.14e-05 

Previous Performance 4.011  
 

0.0171 
 

After Performance 3.109 
 

0.0423 

Top week  40.1  
 

2.87e-10 
 

Performance in top week 0.644 
 

0.593 
 

Average topics per week 3.8   
 

0.021 

similarity 5.105  0.00607 
 
Table 2: F and p values for each feature across high answerers from analysis of 
variance.  
 
User subgroups in high answerers are 

Group 1:  High answerers with short life and less consistency 

 They asked less questions, stayed for lower durations and were active for very less 

time compared to other high answerers. They peaked/performed best in their initial weeks 

and gradually declined in participation. These users answered 40 percent of their answers 

in peak week. Additionally, their average topics per week is relatively highest among all 

user groups. In the following mean and SD tables we highlight the key features which 

reflect the group nature. 
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Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

4.60{5.08
} 

3.01{3.3
} 

2.11{0.79
} 

40.07{26.3
8} 

6.90{2.94
} 

28.67{4.46
} 

72.5{38.02
} 

 
B.P.P: best participation point      B.G: best given   PWP : peak week performance 

B.P.P B.G peak 
week 

PWP  previous 
performan
ce 

after 
performan
ce 

topics 
per 
week 

similarit
y 

0.07{0.0
7} 

0.41{0.1
1} 

1.5{0.67
} 

37.2 
{12.85
} 

10.9 
{16.70} 

49.4 
{16.74} 

16.74 
{2.65
} 

0.38 
{0.32} 

 

Group 2: Consistent high answerers and early performers 

   Low question askers. They stayed for longer durations and activity period is high 

as well. They too peaked initially as we can see from their best participation point but were 

quite consistent as from their previous and after performances. Their top 3 weeks of 

participation were 5-10 weeks which implies their major participation was in early stages. 

 

Question
s asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

2.61{3.5
8} 

2.98{4.3
5} 

2.04{0.7
8} 

84.26{35.4
2} 

20.30{6.4
6} 

25.45{3.4
6} 

56.34{23.4
4} 

 
B.P.P: best participation point      B.G: best given  PWP : peak week performance 

B.P.P B.G peak 
week 

PWP  Previous 
performan
ce 

after 
performan
ce 

topic
s per 
week 

similarit
y 
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0.08{0.0
8} 

0.19{0.0
5} 

5.53{4.5
3} 

36.61 
{31.46
} 

38.30 
{38.20} 

134.00 
{133.15} 

13.00 
{3.14
} 

0.18 
{0.18} 

 
Group 3:  Consistent high answerers and later performers 

 Low question askers with highest durations in the group, their activity period was 

also high. These users peaked comparatively later in their lifetime. These high answerers 

were consistent through their lifetime in the community and had high previous performance 

in exact contrast to group 2 users who had high after performance and low previous 

performance. Their top 3 weeks of participation were 30-40 weeks which implies their 

major participation was in later stages. 

Questio
ns asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

1.2{2.4} 0.96{1.93
} 

2.83{2.49
} 

116{43.03
} 

18.4{10.6
5} 

25.3{3.80
} 

111.19{72.8
2} 

 
B.P.P: best participation point      B.G: best given  PWP : peak week performance 

B.P.P B.G peak 
week 

PWP  Previous 
performa
nce 

after 
performa
nce 

topics 
per week 

similarit
y 

0.38{0.
12} 

0.24{0.
09} 

40{11.
36} 

29.6{18.
35} 

112.6{11
2.4} 

8.8{8.42
} 

13.15{3.
62} 

0.01{0.
02} 

 

Group 4: High question askers who were consistent and showed higher similarities 

 These users were high question askers and produced high conversations in their 

questions, which is their most distinctive feature among other high answerers. They like 

other high answerers were active for long and stayed in the community for higher durations. 

They peaked in the later stage of their participation, they were consistent in participation 
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like other high answerers. Though the average topics they addressed is low, their 

similarities between questions asked and answered is highest. 

 
Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

40.5 
{25.93} 

14.74 
{2.98} 

2.9 
{0.51} 

74.6 
{36.42} 

29.75 
{12.61} 

23.65 
{2.34} 

56.2 
{18.35} 

 
B.P.P : best participation point      B.G: best given  PWP : peak week performance 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.4 
{0.12} 

0.14 
{0.00} 

31.2 
{13.38} 

19.5 
{4.09} 

112.2 
{8.38} 

34.5 
{24.45} 

11.95 
{0.70} 

0.52{0.09} 

 

Post hoc analysis using Tukey HSD test is presented in Appendix. 

4.2.2 MEDIUM PARTICIPATORS 

Users who have answered in the range of (20,50] are medium participators. we 

found total 46 users in this range. Like high answerers the cluster quality was low 

(silhouette width around 20 percent for multiple k means iterations) but statistical tests has 

shown some interesting participation patterns within medium participators. Total 3 sub 

clusters are studied 

Before we discuss each subgroup we present the one ANOVA results of each 

feature for the clustered populations. All the highlighted features, that is the questions 

asked, replies given, replies got, duration, question words, answer words, similarities had 

no significant difference in separating the groups. We can observe that mostly temporal 

features played part in distinguishing these groups. 
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Feature F value     p value 

Questions Asked 1.68          0.198 

Avg Replies Got 1.609        0.212 

Avg Replies Given 0.233        0.793 

Total Duration 1.517        0.231 

Active Weeks 17.03       3.57e-06 

Question Words 2.635       0.0833 

Answer Words 2.225       0.12 

Best Participation Point 16.22       5.64e-06 

Best Given 44.81       3.05e-11  

Previous Performance 40.44        1.32e-10 

After Performance 22.94        1.66e-07 

Top week  32.64        2.38e-09  

Performance in top week 65.12        9.75e-14 

Average topics per week 24.18         9.2e-08 

similarity 1.222         0.305 
Table 3: F and p values for each feature across medium participators from analysis of 
variance 
    
Group1:  Late Medium answerers  
 

These Users stayed active for high time. They peaked later in their duration , gave 

around one third percent of their answers in the peak week. Their top 3 weeks of 

participation were 10-20 weeks which implies their major participation was in later stages. 
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Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

10.38 
{11.38} 

4.57 
{4.68} 

2.62 
{2.35} 

41.35 
{22.64} 

9.46 
{3.75} 

25.9 
{5.48} 

50.01 
{24.55} 

 
B.P.P : best participation point      B.G: best given  PWP : peak week performance 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.70 
{0.25} 

0.36 
{0.17} 

26.38 
{13.9} 

10.00 
{4.88} 

13.30 
{4.26} 

4.53 
{3.65} 

8.44 
{2.11} 

0.42 
{0.31} 

 

Group 2: Early medium answerers 

 These group of users are similar to group 1 of users in most features but show a 

contrast when it comes to peaking. They have peaked in initial stages in the community. 

They showed high after performance unlike high previous performance of group 1 users. 

Their top 3 weeks of participation were 1-6 weeks which implies their major participation 

was in early stages. 

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

2.5 
{5.22} 

4.08 
{5.79} 

3.02 
{3.44} 

30.40 
{30.24} 

8.50 
{2.78} 

24.41 
{6.05} 

71.11 
{50.45} 

 
B.P.P: best participation point      B.G: best given   PWP: peak week performance 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.21 
{0.16} 

0.33 
{0.14} 

4.66 
{5.45} 

9.91 
{4.30} 

3.54 
{3.96} 

16.37 
{6.80} 

9.49 
{2.51} 

0.24 
{0.23} 
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Group 3: Least active medium participators 

 These group of users were least active among the medium participators. They 

peaked at 40 percent of their journey but gave 90 percent of their answers in a one shot 

time period that too in their first week, also strengthened by zero previous performance. 

Their after performance was too low suggesting one time performance and a quick dilution 

in participation. Striking thing is they dealt very high topics in the range of high answerers. 

 
Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

24.22 
{64.68} 

0.88 
{1.26} 

2.26 
{1.55} 

19.58 
{29.34} 

2.44 
{1.25} 

30.35 
{8.26} 

39.95 
{27.43} 

 
B.P.P: best participation point      B.G: best given   PWP: peak week performance 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.39 
{0.36} 

0.89 
{0.12} 

1.00 31.11 
{5.92} 

0 4.33 
{5.20} 

16.46 
{4.01} 

0.29 
{0.42} 

 

Post hoc analysis using Tukey HSD test is presented in Appendix. 

4.2.3 LOW PARTICIPATORS 

 Low participators are those users who have answered more than 5 questions and at 

most 20 questions. Clustering low participators gave 5 sub groups. Anova across these 

subgroups showed that replies given, question words and answer words have no 

significance and are not predictors of sub groups.  

Feature F value     p value 
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Questions Asked 8.254  3.84e-06 

Avg Replies Got 24.36  3.58e-16  

Avg Replies Given 0.6        0.66 

Total Duration 10.94  5.61e-08 

Active Weeks 66.34  2e-16  

Question Words 1.624   0.17 

Answer Words 1.033   0.391 

Best Participation Point 156.1   2e-16 

Best Given 113      2e-16 

Previous Performance 41.18    2e-16 

After Performance 54.58    2e-16 

Top week  40.48    2e-16  

Performance in top week 23.75   7.77e-16 

Average topics per week 59.06    2e-16 

Similarity  161.6   2e-16  

Table 4: F and p values for each feature across low participators from analysis of 
variance 
 
Group 1 (low participators with high similarity)  

 These users asked high questions and got high replies. They were active were low 

periods and gave their ¾ th of best in one time unit with very low previous and after 

performances. Interesting feature is high similarity of questions asked and answered. These 

users have given low percentage of their duration in answering questions. 

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

12.08 7.69 2.12 15.70 2.79 23.6 46.44 
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{14.34} {7.06} {1.29} {24.6} {1.40} {9.6} {45.22} 
 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.34 
{0.29} 

0.69 
{0.19} 

2.50 
{3.69} 

6.29 
{2.39} 

0.52 
{1.00} 

2.5 
{1.95} 

9.77 
{3.60} 

0.83 
{0.16} 

 

Group2 (low participators who addressed high topics and least active):  

  They asked very low questions, peaked in the end and gave 90 percent of 

their best and have least active weeks and duration. They were highly enthusiastic in the 

week they contributed and never came back. 

 

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

0.03 
{0.17} 

0.13 
{0.71} 

1.98 
{1.90} 

0.64 
{0.69} 

1.06 
{0.24} 

25.99 
{10.99} 

56.05 
{35.85} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.98 
{0.05} 

0.98 
{0.03} 

1.13 
{0.56} 

8.56 
{2.70} 

0.03 
{0.17} 

0.03 
{0.17} 

16.71 
{4.81} 

0 

 
Group 3 (low participators with longest life): 

 These users are low participators who stayed for long durations, asked high 

questions got good replies, they were also highly active in terms of active weeks, they 
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peaked initially, quite sustained compared to others. Irrespective of high durations their 

contribution was low indicating high gap in their journey. 

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

7.33 
{17.17} 

4.53 
{5.07} 

1.97 
{0.76} 

38.91 
{25.3} 

6.27 
{2.02} 

21.42 
{7.75} 

49.72 
{21.46} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.14 
{0.16} 

0.31 
{0.09} 

5.5 
{7.23} 

3.5 
{1.67} 

1.2 
{1.90} 

6.3 
{2.25} 

5.32 
{1.91} 

0.2 
{0.24} 

 
Group 4 (laziest low participators):  

  These users asked low number of questions, got low replies, addressed 

medium topics. But they are too lazy as they stayed for high durations in the range of 20 

weeks with low active period of 2 weeks. So they have not used their duration for either 

asking or answering questions which implies this time they might have stayed out of 

community.  

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

0.82 
{3.66} 

0.44 
{1.19} 

1.83 
{1.28} 

19.10 
{29.9} 

2.0 
{1} 

24.48 
{8.79} 

56.83 
{34.63} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.22 
{0.16} 

0.68 
{0.14} 

1.68 
{3.86} 

7.43 
{3.08} 

0.22 
{0.76} 

3.22 
{2.08} 

9.50 
{3.01} 

0.018 
{0.07} 
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Group 5 (late low participators): 

These users are medium question askers. They stayed for long durations with decent 

active life. They peaked much later in their life at almost end. They answered 50 percent 

of questions in the peak week. Their 3 peak weeks were in the end of their journey and give 

the long journey, they are late in answering. 

 
Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

3.73 
{7.76} 

1.38 
{1.98} 

2.31 
{1.88} 

22.25 
{16.77} 

4.3 
{1.57} 

22.59 
{8.38} 

49.19 
{33.8} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.87 
{0.13} 

0.48 
{0.13} 

19.73 
{13.64} 

4.53 
{1.64} 

4.23 
{2.75} 

1.13 
{1.72} 

6.78 
{2.85} 

0.12 
{0.21} 

 

Post hoc analysis using Tukey HSD test is presented in Appendix. 

4.2.4 SAMPLE PARTICIPATORS 

In sample participators replies given, question words and answer words have no 

significance and are not predictors of sub groups. Their typical active answering time is 1-

2 weeks. 4 sub sample participators have been found which are explained as follows 

Group 1 (one time samplers with high similarity) 

 They asked good number of questions for the group. They answer very low (1-2) 

in peak week but similarity is 0.9 which says they answer relative to what they asked, 

implying more similar questions recommended would have had them stick. 
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Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

3.03 
{4.96} 

3.46 
{5.26} 

1.45 
{1.33} 

2.72 
{8.01} 

1.02 
{0.15} 

21.49 
{15.68} 

33.40 
{40.79} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.91 
{0.21} 

0.99 
{0.056} 

2.61 
{6.26} 

1.33 
{0.55} 

0.01 
{0.12} 

0.008 
{0.09} 

4.03 
{2.44} 

0.94 
{0.118} 

 

Group 2 (long livers with high inactivity):  

 They ask good number of questions and get good replies, stay for longer durations 

, peak initially and give 70 percent of their best(though they answer 1-2 questions), most 

of the time is non participative.  

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

4.01 
{6.60} 

2.80 
{5.10} 

1.70 
{1.45} 

17.03 
{18.61} 

1.92 
{0.79} 

23.36 
{15.48} 

34.86 
{35.97} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.21 
{0.18} 

0.66 
{0.24} 

2.41 
{5.00} 

1.43 
{0.62} 

0.05 
{0.23} 

0.90 
{0.82} 

4.10 
{1.95} 

0.21 
{0.30} 

 

 

 



 
 
   
 

61 

Group 3 (one time samplers who address high topics): 

They ask lower questions comparatively, stay for medium time period (on average 

5-6 weeks), they answer relatively high questions (3-4) and addressed higher topics in the 

one time unit. 

Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

1.07 
{2.59} 

1.25 
{3.55} 

1.58 
{0.95} 

5.06 
{12.29} 

1.39 
{0.69} 

25.52 
{13.66} 

44.73 
{38.01} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.88 
{0.25} 

0.90 
{0.16} 

3.81 
{7.99} 

3.49 
{0.89} 

0.27 
{0.62} 

0.14 
{0.39} 

9.14 
{3.58} 

0.19 
{0.34} 

 

Group 4 (typical samplers):  

lowest questions (0.5) asked, most of them answer one question and never come 

back. 

 
Questions 
asked 

Replies 
got 

Replies 
given 

Total 
Duration 

Active 
weeks 

Question 
words 

Answer 
Words 

0.54 
{2.62} 

0.58 
{3.25} 

1.60 
{1.56} 

1.16 
{4.55} 

1 24.59 
{22.87} 

38.58 
{60.68} 

 

B.P.P B.G peak 
week 

PWP  previous 
performance 

after 
performance 

topics 
per 
week 

similarity 

0.98 
{0.069} 

1 1.97 
{4.42} 

1.19 
{0.39} 

0 0 4.08 
{2.40} 

0.009 
{0.05} 
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ANOVA results 

Feature F value    p value 

Questions Asked 42.87  2e-16 

Avg Replies Got 31.82  2e-16 

Avg Replies Given 1.23    0.297 

Total Duration 120     2e-16 

Active Weeks 253.7  2e-16  

Question Words 1.898  0.128 

Answer Words 1.825  0.141 

Best Participation Point 1129   2e-16  

Best Given 393.1  2e-16  

Previous Performance 46.26  2e-16 

After Performance 296.6  2e-16 

Top week  4.236  0.00548 

Performance in top week 644.3  2e-16  

Average topics per week 168.5  2e-16  

Similarity 1297   2e-16 
 
Table 5: F and p values for each feature across sample participators from analysis of 

variance 

Post hoc analysis using Tukey HSD test is presented in Appendix. 

4.2.5 NON PARTICIPATORS 

This category had only 3 valid attributes that is the questions asked, replies got and 

total duration. The number of sub clusters are 6 and all three attributes could differentiate 

well in terms of clustering 
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Groups 1,2 (one timers): Two sub groups were one timers with low durations [<1 week] 

and asked around 1 question with little bit variance in replies got 

Mean[ques
_asked] 

STD[ques
_asjed] 

Mean[avg_re
plies_got] 

STD[avg_rep
lies_got] 

Mean[total_
duration] 

STD[total_d
uration] 

1.42 1.00 0.65 0.51 0.26 0.80 
 

Mean[ques
_asked] 

STD[ques
_asjed] 

Mean[avg_re
plies_got] 

STD[avg_rep
lies_got] 

Mean[total_
duration] 

STD[total_d
uration] 

1.45 0.98 3.30 1.53 0.31 0.86 
Group 3 (high question askers):  

These users were high question askers and stayed longer durations with around 3 

replies got an average. 

Mean[ques
_asked] 

STD[ques
_asjed] 

Mean[avg_re
plies_got] 

STD[avg_rep
lies_got] 

Mean[total_
duration] 

STD[total_d
uration] 

37.55 12.57 2.82 1.38 16.06 12.05 
 

Group 4 (highly conversationalists)  

These users asked less questions but produced very high conversations on their 

questions.  

Mean[ques
_asked] 

STD[ques
_asjed] 

Mean[avg_re
plies_got] 

STD[avg_rep
lies_got] 

Mean[total_
duration] 

STD[total_d
uration] 

2.07 2.63 14.55 7.29 1.01 2.61 
 
Group 5,6 (Lazy participators) :  

There are two variations of these users who are highly lazy and relatively less lazy. 

Both these categories of users stayed longer durations on average (38,9) but asked 6-7 

questions on average.   
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Mean[ques
_asked] 

STD[ques
_asjed] 

Mean[avg_re
plies_got] 

STD[avg_rep
lies_got] 

Mean[total_
duration] 

STD[total_d
uration] 

6.08 4.97 3.83 3.69 38.14 14.74 
 
Mean[ques_a
sked] 

STD[ques_a
sjed] 

Mean[avg_replie
s_got] 

STD[avg_replie
s_got] 

Mean[total_dur
ation] 

7.03 4.65 2.63 2.00 9.20 
 

ANOVA results:  

attributes F value p 

Question Asked 1350  <2e-16 

Replies Got 1010  <2e-16 

Total Duration 1705  <2e-16 
Table 6: F and p values for each feature across Non Participators from analysis of 
variance 

Post hoc analysis using Tukey HSD test is presented in Appendix. 

Summary of results:  Important patterns(properties) and corresponding groups 

[Relative observations] 

 

Pattern HP MP LP SP NP 

Initial Enthusiasts      

Early Participators      

Late Participators      

High askers and answerers      

High question askers      

High conversationalists      

One timers      
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Lazy participators      
 

4.2.6 PATTERNS AND INTERVENTIONS 

Pattern: Initial Enthusiasts  

 User patterns found in high and medium participators show a group of users who 

are initial enthusiasts. By initial enthusiasm, we mean that they have answered very high 

questions in single week (time unit) and could not sustain participation at all later. 

Participation in rest of the active time is either very low or no where comparable to their 

contribution in the initial weeks.  

This initial enthusiasm if sustained over the year, can improve overall participation. 

Similar patterns were found in low answering ranges making initial enthusiasm an 

important pattern which needs attention from community designers. 

This issue can be possibly dealt with some measures like motivating user with new 

user titles which reflect their swiftness and enthusiasm positively. This creates a status for 

such users in the community. For those users who never come back, sending reminders and 

recommending similar questions could help them to come back and contribute. 

Pattern: Experts who are also learners. 

 As seen from high answerers, most of the subgroups ask very little questions or 

none at all. These users are more focused on answering more. They tend to be only 

contributors. But, another pattern found in high answerers was that of users who asked high 

questions which is not typical of high answerers. This implies that these users have used 

the community to gain information from peers while contributing highly to the community 
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by answering in a sustained manner for long durations. These users are not typical experts 

and also learning oriented. 

 Routing the questions these users ask to the typical experts already existing might 

result in high quality discussions. This is good for both categories of users and for the 

community to create a vibrant expert base. Special titles given and correspondingly giving 

higher scores to these users than typical experts could motivate more users to actually use 

the community for learning.  

Pattern: Early and Late participators  

Some patterns found in medium and high participators show groups of users who 

are either early participators or late participators. These users either perform maximum of 

their best in initial part of their life or later part. This implies that at least half of their time 

has not been used well. The durations and active weeks of these users were pretty high 

attesting the pattern. 

This pattern of participation also needs the attention of community designers. These 

groups of users who have participated pretty steadily should be motivated to participate 

and contribute in their less active periods by some measures like decreasing scores, 

dropping titles. These activities reflect on their social fame and might get their attention. 

Patterns in lower answering ranges 

Higher conversationalists:  
 
 These users who produced very high discussions on few questions they asked 

remained as low participators. Their high conversational nature indicates their interest as 

well as their learning oriented behavior. These users prefer to get their questions answered 

in detail rather getting answers and leaving the community. 
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 Community designers should target such users and motivate them to ask more 

questions and also suggestions/recommendations to answer questions similar to the topics 

in which they asked. 

High topic addressers: 

 These low answering users have interestingly addressed very high topics in the 

range of high answerers but could not sustain. These users could be experts who did not 

sustain in the community. 

 Motivating such users could turn them to high contributors. These users could be 

identified in the initial stages by looking at their answering nature. Special titles, improving 

smart scores might motivate them to sustain in the community. 

4.2.7 KNOWN LIMITATIONS 

 The participation patterns found cannot be generalized to all of OpenStudy. This is 

because the study was performed only on single chemistry subject group. There are groups 

like physics and mathematics which are comparatively larger in size. This implies more 

number of users, especially in higher answering ranges. So the patterns found out might 

not be complete to describe users in all categories in all groups.  

 Participation itself is a very complex variable. It can be measured in several 

dimensions. In this study participation analysis can’t be a complete analysis owing to the 

fact that several unexplored dimensions exist like the quality of content contributed 

because it is very subjective and demands a comprehensive study which includes text, 

contextual and emotional aspects. Social networking aspect of participation is also un 

explored which might involve identification of influential communities of interaction, 

frequent collaborators etc.  
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 Personal messages were not open and a private content. Some part of personal 

messages including group chats might include some new participation patterns which are 

hidden like the informal interactions using internet emoticons, smileys etc. 

 This study could not make full use of the already existing participation/contribution 

metrics in OpenStudy for various reasons. The smart score of users currently in use is the 

combination of problem solving, team building and engagement scores. Since the details 

of calculation are abstract , that is we do not know what algorithms/factors decided problem 

solving exactly we did not consider to use them or to evaluate users based on their smart 

scores. Another reason we did not consider is we were not sure whether the initial database 

users smart scores and much recent ones are on a same scale.  

Another OpenStudy metric we decided not to use to analyze participation was 

number of medals a user has. This is because it is not clear when , where and how a user 

can be granted a medal. We found instances where users actually offered medals to get 

their questions answered in their home works. Interestingly some real well answered replies 

did not receive medals. This was another limitation where we could not make use of an 

existing metric. 

 Few other metrics where we had similar issues of clarity were fans and titles. Users 

were offered being fans to them if they get their questions answered. User titles , though 

were interesting, it is hard to compare these titles and gauge the degree of all titles exactly. 

So, both these metrics were not used for evaluation purposes and also as features in our 

study. 

 In this study, weeks were used as time units to understand participation by treating 

each of them single unit. This decision has been made by considering that week’s time is 
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substantial to measure user’s instance of interaction with community. But it would be 

interesting to further explore how users participation vary within each week. This might 

give new views into participation.  

4.2.8 CONCLUSIONS AND FUTURE WORK 

To the best of our knowledge, past work in question and answer communities has 

not explored user participation across broad spectrum of attributes like it was explored in 

this thesis. Content specific dimensions like count of question words, answer words, 

average topics addressed in a week and similarity of questions asked and questions 

answered were addressed. Majority of studies in this area used topic modelling to 

recommend similar questions for answering, searching most relevant questions to user 

input and assess expertise. In this study we used to test the similarity in questions asked 

and questions answered to understand whether similarity might imply learning behavior. 

We also compared user groups and subgroups based on the count of topics they addressed 

in a week on average. Count of question words and answer words was used to understand 

whether length /size of the content is related to participation. We also explored temporal 

features in a new manner to figure out initial enthusiasm and sustenance in participation 

with the help of total duration, number of active weeks, top performing point/week, 

performance percentage in the top week(best given), previous and after performances. We 

also used questions specific participation attributes like questions asked, average replies 

got and average replies given. Previous work in Yahoo answers examined user 

participation across what yahoo calls maturity levels [10]. Few quality of participation 

metrics like percentage of answers which received stars, percentage of best answers were 

also analyzed. In this study, user levels were defined and various participation features 
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were analyzed across these groups to get a better sense of each user types discovered. Past 

work has also shown top angle/external views do not give a complete picture. For example 

MOOCs engagement patterns discovered with the help of clustering engagement labels in 

a timeline [11]. We were also motivated in similar lines , to get a better view of 

participation by exploring participation features across multiple dimensions and ended up 

studying various categories of interesting user patterns in an open question and answer 

based community. Like quite a few studies which used cluster analysis to throw light on 

hidden patterns in educational settings [15-17,19,21], we used K means clustering 

technique in user groups to find hidden sub patterns to get a deeper understanding of 

participation. While some the literature has explored more than one clustering algorithm to 

compare the efficiency, this study focused on single most popular K means algorithm as 

we concentrated more on comparing the user groups obtained. In future, there is a broad 

scope to test various classes of clustering algorithms to further expand understanding by 

obtaining better clusters. We found some interesting participation patterns which need the 

attention of community designers to help the community and users to sustain. We tried to 

discuss certain patterns and interventions possible like it was done in engagement pattern 

study in MOOCs. 

We have considered only chemistry community from OpenStudy which is 

comparatively less in size. In future, we will try to explore communities like mathematics 

and physics, which have larger user base. We will try to verify if similar user participation 

patterns are also found in other communities. 

We used k means algorithm to cluster users and find any hidden patterns. It is well 

studied in literature but has some inherent limitations in clustering complex data, especially 
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multi dimensional and non spherical clusters. We plan to use a better clustering algorithm 

like Expectation Maximization or Spectral clustering, which are getting more popular in 

this domain. Given more time we could have done a comparative study of clustering 

algorithms to evaluate the best algorithm which works in this work. 

 We also plan to expand on topic modelling process to form user models which store 

the topic variation with time, improvement in topic strengths of the user with time, most 

active topics. These information tells more about users and helps in getting deeper insights 

into learning processes in such communities. Topic evaluation by experts is another task 

which we could have done given more time. 

Despite some limitations in the study, given the broad scope of future research, 

especially in new subject groups, expanding on the clustering techniques and feature 

dimensions, we believe this work is a big step in understanding participation in question 

and answer communities, especially those with learning implications. 
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APPENDIX A 

POST HOC TESTING RESULTS 
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In this section we list Post hoc testing results of all the results discussed in the 

results and interpretation section. 

A.1 POST HOC TESTING USING TUKEY HSD FOR INTER GROUP 

PARTICIPATION 

 We use the following short form notations in this section, 

For users:  

NP = Non Participator 

SP = Sample Participator 

LP = Low Participator 

MP = Medium Participator 

HP = High Participator 

 LP-
HP 

MP-
HP 

NP-
HP 

SP-
HP 

MP-
LP 

NP-
LP 

SP-
LP 

NP-
MP 

SP-
MP 

SP-
NP 

Questions 
Asked 

0.03 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 

Avg Replies 
Got 

0.20 0.96 0.03 0.00 0.50 0.72 0.01 0.11 0.00 0.00 

Avg Replies 
Given 

0.46 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Duration 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Active Weeks 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Question 
Words 

0.80 0.99 0.00 0.70 0.77 0.00 0.99 0.00 0.63 0.00 

Answer Words 0.00 0.46 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 

Best 
Participation 
Point 

0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 
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Best Given 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Previous 
Performance 

0.00 0.00 0.00 0.00 0.00 0.20 0.29 0.00 0.00 0.99 

After 
Performance 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 

Top week  0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Performance in 
top week 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average topics 
per week 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

similarity 0.83 0.91 0.0 0.99 0.11 0.00 0.00 0.00 0.89 0.00 

 
Table 7: Tukey HSD test results for all answering ranges 
 

A.2 POST HOC TESTING USING TUKEY HSD FOR INTER GROUP 

PARTICIPATION 

For subgroups in High Participators 
 
 c2-c1 c3-c1 c4-c1 c3-c2 c4-c2 c4-c3 

Questions Asked 0.97 0.93 0.00 0.99 0.00 0.00 

Average Replies got 0.99 0.76 0.00 0.74 0.00 0.00 

Total Duration 0.03 0.00 0.40 0.37 0.96 0.35 

Active Weeks 0.00 0.06 0.00 0.96 0.19 0.18 

Best Participation point 0.98 0.00 0.00 0.00 0.00 0.85 

Best Given 0.00 0.01 0.00 0.66 0.75 0.31 

Previous Performance 0.75 0.04 0.06 0.16 0.22 0.99 

After Performance 0.15 0.85 0.99 0.07 0.26 0.97 

Top week 0.59 0.00 0.00 0.00 0.00 0.33 
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Performance in top week 0.03 0.16 0.06 0.99 0.93 0.93 

Similarity 0.19 0.03 0.73 0.49 0.06 0.01 

 
Table 8: Tukey HSD test results for subgroups in High Participators 

 

For subgroups in Medium Participators 

 c2-c1 c3-c1 c3-c2 

Active Weeks 0.62 0.00 0.00 

Best Participation Point 0.00 0.01 0.17 

Best Given 0.91 0.00 0.00 

Previous Performance 0.00 0.00 0.05 

After Performance 0.00 0.99 0.00 

Top Week 0.00 0.00 0.52 

Performance in top week 0.99 0.00 0.00 

Average topics per week 0.54 0.00 0.00 

 
Table 9: Tukey HSD test results for subgroups in Medium Participators 

For subgroups in Low Participators 

 c2-
c1 

c3-
c1 

c4-
c1 

c5-
c1 

c3-
c2 

c4-
c2 

c5-
c2 

c4-
c3 

c5-
c3 

c5-
c4 

Questions Asked 0.00 0.00 0.00 0.32 0.73 0.99 0.03 0.65 0.63 0.04 

Average Replies 
got 

0.00 0.00 0.00 0.00 0.83 0.99 0.00 0.73 0.01 0.00 

Total Duration 0.96 0.80 0.09 0.00 0.97 0.00 0.00 0.00 0.04 0.00 

Active Weeks 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Best 
Participation 
point 

0.01 0.00 0.00 0.00 0.00 0.00 0.31 0.13 0.00 0.00 

Best Given 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Previous 
Performance 

0.88 0.00 0.69 0.24 0.00 0.98 0.01 0.00 0.00 0.01 

After 
Performance 

0.43 0.02 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 

Top week 0.98 0.00 0.93 0.37 0.00 0.99 0.07 0.00 0.00 0.08 

Performance in 
top week 

0.22 0.04 0.00 0.00 0.00 0.26 0.00 0.00 0.48 0.00 

Average topics 
per week 

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.00 

Similarity 0.00 0.00 0.00 0.00 0.02 0.98 0.00 0.02 0.35 0.00 
 
Table 10: Tukey HSD test results for subgroups in Low Participators 
 
For subgroups in Sample Participators 

Post hoc analysis using Tukey HSD 

 c2-c1 c3-c1 c4-c1 c3-c2 c4-c2 c4-c3 

Questions Asked 0.06 0.00 0.00 0.00 0.00 0.54 

Avg Replies Got 0.34 0.00 0.00 0.00 0.00 0.32 

Avg Replies Given 0.24 0.80 0.49 0.87 0.84 0.99 

Total Duration 0.00 0.14 0.22 0.00 0.00 0.00 

Active Weeks 0.00 0.00 0.88 0.00 0.00 0.00 

Question Words 0.72 0.18 0.16 0.72 0.86 0.95 

Answer Words 0.98 0.13 0.54 0.26 0.79 0.56 

Best Participation Point 0.00 0.38 0.00 0.00 0.00 0.00 
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Best Given 0.00 0.00 0.80 0.00 0.00 0.00 

Previous Performance 0.33 0.00 0.84 0.00 0.00 0.20 

After Performance 0.00 0.00 0.99 0.00 0.00 0.00 

Top week  0.97 0.16 0.44 0.08 0.77 0.00 

Performance in top week 0.2 0.00 0.01 0.00 0.00 0.00 

Average topics per week 0.99 0.00 0.99 0.00 0.99 0.00 

similarity 0.00 0.00 0.00 0.85 0.00 0.00 

 
Table 11: Tukey HSD test results for subgroups in Sample Participators 
 
For subgroups in Non Participators 

 Questions asked Average Replies got  Total Duration 

c2-c1 0.00 0.00 0.00 

c3-c1 0.00 0.00 0.00 

c4-c1 0.00 0.00 0.00 

c5-c1 0.06 0.00 0.18 

c6-c1 0.99 0.00 0.99 

c3-c2 0.00 0.99 0.00 

c4-c2 0.00 0.37 0.00 

c5-c2 0.00 0.00 0.00 

c6-c2 0.00 0.87 0.00 

c4-c3 0.99 0.00 0.00 

c5-c3 0.00 0.00 0.00 

c6-c3 0.00 0.00 0.00 

c5-c4 0.00 0.00 0.00 

c6-c4 0.00 0.49 0.00 
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c6-c5 0.10 0.00 0.27 
 
Table 12: Tukey HSD test results for subgroups in Non Participators 
 

 

 
 


