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ABSTRACT 
 

 Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide 

bond-generating enzyme that represents the ancient fusion of two major thiol-disulfide 

oxidoreductase gene families: thioredoxin and ERV. QSOX1 was first linked with cancer 

after being identified as overexpressed in pancreatic ductal adenocarcinoma (but not in 

adjacent normal ductal epithelia, infiltrating lymphocytes, or chronic pancreatitis). 

QSOX1 overexpression has been confirmed in a number of other histological tumor 

types, such as breast, lung, kidney, prostate, and others. Expression of QSOX1 supports a 

proliferative and invasive phenotype in tumor cells, and its enzymatic activity is critical 

for promoting an invasive phenotype. An in vivo tumor growth study utilizing the 

pancreatic tumor cell line MIAPaCa-2 containing a QSOX1-silencing shRNA construct 

revealed that QSOX1 expression supports a proliferative phenotype. These preliminary 

studies suggest that suppressing the enzymatic activity of QSOX1 could represent a novel 

therapeutic strategy to inhibit proliferation and invasion of malignant neoplasms.  

The goal of this research was to identify and characterize biologically active small 

molecule inhibitors for QSOX1. Chemical inhibition of QSOX1 enzymatic activity was 

hypothesized to reduce growth and invasion of tumor cells. Recombinant QSOX1 was 

screened against libraries of small molecules using an enzymatic activity assay to identify 

potential QSOX1 inhibitors. Two lead QSOX1 inhibitors were confirmed, 2-phenyl-1, 2-

benzisoselenazol-3-one (ebselen), and 3-methoxy-n-[4-(1 pyrrolidinyl)phenyl]benzamide. 

The biological activity of these compounds is consistent with QSOX1 knockdown in 

tumor cell lines, reducing growth and invasion in vitro. Treatment of tumor cells with 
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these compounds also resulted in specific ECM defects, a phenotype associated with 

QSOX1 knockdown. Additionally, these compounds were shown to be active in 

pancreatic and renal cancer xenografts, reducing tumor growth with daily treatment. For 

ebselen, the molecular mechanism of inhibition was determined using a combination of 

biochemical and mass spectrometric techniques. The results obtained in these studies 

provide proof-of-principle that targeting QSOX1 enzymatic activity with chemical 

compounds represents a novel potential therapeutic avenue worthy of further 

investigation in cancer. Additionally, the utility of these small molecules as chemical 

probes will yield future insight into the general biology of QSOX1, including the 

identification of novel substrates of QSOX1.  
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CHAPTER 1 

INTRODUCTION 

 Oxidative protein folding is a critical process in all cells, responsible for the 

introduction of structural disulfide bonds in proteins as well as maintenance of cellular 

redox homeostasis [1]. Without proper pairing of thiols in proteins to form disulfide 

bonds, proteins would not assume a structure that allows them to correctly function. Thiol 

oxidations are performed by a wide variety of enzymes including protein disulfide 

isomerases (PDI), thiol-disulfide oxidoreductases and various chaperone proteins [2]. 

Due to the strongly reducing nature of the cytoplasm favoring the persistence of thiols 

[3], disulfide bond formation is typically (though not always [4]) relegated to more 

oxidative environments such as the endoplasmic reticulum (ER) and mitochondrial 

intermembrane [5]. In the ER, PDI acts in conjunction with ER oxidoreductase 1 (Ero1) 

to accomplish the tasks of disulfide formation and thiol-disulfide exchange reactions [6, 

7]. In reduced proteins, PDI oxidizes sulfhydryls in client substrates via a redox-active 

CXXC motif in its thioredoxin (Trx) domain [8], transferring electrons to Ero1 through 

disulfide exchange, which ultimately completes the redox cycle via the reduction of 

molecular oxygen by its bound FAD cofactor [6]. Thus the generation of disulfide bonds 

by PDI and sulfhydryl oxidases like Ero1 requires their coordinated function.  

 Quiescin sulfhydryl oxidases (QSOX), by contrast, are a unique class of enzymes 

that can complete the entire oxidative cycle of disulfide formation through intramolecular 

electron transfer. QSOX’s, of which there are two members in humans (QSOX1 and 

SOXN/QSOX2[9]), are characterized by the ancient fusion (>1 billion years ago) of Trx 
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and ‘essential for respiration and vegetative growth’ (ERV) [10], a yeast mitochondrial 

sulfhydryl oxidase similar to the mammalian ‘augmenter of liver regeneration’ (ALR) 

[11, 12]. QSOX1, the most widely studied quiescin sulfhydryl oxidase is highly 

conserved; it is expressed in all eukaryotic multicellular organisms analyzed and several 

protists including those of the genus Trypanosoma [13], but not in fungi [10]. QSOX1 

contains an active amino-terminal thioredoxin-like domain with the canonical CXXC 

motif characterized by the thioredoxins (Figure 1); it also contains a second, degenerate, 

thioredoxin domain that does not contribute to its redox activity. The sulfhydryl oxidase 

ERV portion of the enzyme contains two CXXC motifs and the FAD cofactor [14]. 

Given its dynamic modular structure, QSOX is the only class of enzyme capable of de 

novo disulfide generation and intramolecular disulfide transfer. QSOX1 has two major 

isoforms, a long (747 a.a.) form (QSOX1-L) that contains a transmembrane domain, and 

a short form (604 a.a.) generated from alternative splicing. QSOX1 is localized to the 

golgi apparatus, ER, and in secretory vesicles, but it has been demonstrated that both 

isoforms are secreted and are potentially dimerized [15].  

QSOX1 was initially discovered as a gene upregulated as fibroblasts exit the 

proliferative cycle and enter reversible quiescence [10]. It was rapidly recognized as a 

secreted enzyme active extracellularly; QSOX1 is found in chicken egg white [16, 17] 

and in conditioned medium from fibroblasts [18]. However, QSOX1 does have 

intracellular activity, capable of reversing the lethality of a total knockout of Ero1 when 

ectopically expressed in yeast [19]. 
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The biochemical mechanisms underlying QSOX1 enzymatic activity are well-

studied [13, 14, 19-29]. Similar to PDI, the CXXC motif (C70-C73) in the first 

thioredoxin domain oxidizes reduced substrates, followed by intramolecular transfer of 

electrons to the FAD-proximal CXXC (C459-C462) in the ERV domain [26]. This 

transfer is facilitated by a conformational change that brings the thioredoxin and ERV 

domains into close proximity [20, 21]. Electron transfer between the thioredoxin and 

ERV CXXC motifs is promoted by a mixed disulfide intermediate that creates a charge 

transfer complex with FAD, overcoming thermodynamic barriers that would otherwise 

disfavor the electron transfer [24]. While a third CXXC in the ERV domain (C519-C522) 

was once proposed to be involved in the catalytic cycle of human QSOX1 based on 

studies utilizing avian QSOX1 [26], molecular and biochemical studies have shown that 

it is not required in the human QSOX1 disulfide relay system [23, 29].  

While the enzymology of QSOX1 activity is well-characterized, its biological 

functions are poorly understood. An early study reported that QSOX1 protects cells 

against the induction of apoptosis after cellular exposure to Fe(III)-hydroxyquinoline or 

hydrogen peroxide, and is upregulated in response to such treatments [30]. QSOX1 

expression was also induced in Nkx3.1-deficient hyperplastic prostatic epithelia and 

prostatic intraepithelial neoplasias lacking Nkx3.1 (but not cells with normal morphology 

lacking this tumor suppressor), suggesting a role for QSOX1 in the development of 

prostate cancer [31]. 

The link between QSOX1 and cancer was further strengthened by the detection of 

a peptide from QSOX1-L in plasma from patients with pancreatic ductal 
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adenocarcinoma, but absent in healthy donor plasma [32]. Staining of matched pancreatic 

adenocarcinoma and normal adjacent tissue microarrays with a QSOX1 antibody showed 

strong expression of QSOX1 in tumor cells but not in normal ductal epithelia and 

surrounding non-malignant stroma [33]. The same study detected robust QSOX1 

expression in pancreatic tumor cell lines by Western blotting, demonstrating a link 

between a circulating antigen from QSOX1 with its overexpression in pancreatic ductal 

adenocarcinoma. 

Following up on the overexpression of QSOX1 in pancreas cancer, Katchman and 

colleagues adopted a “hallmarks of cancer [34]” approach to characterize the cellular 

biology of QSOX1 as it relates to tumorigenic processes. Using shRNA-mediated 

suppression of QSOX1 protein in pancreatic tumor cell lines, QSOX1 was shown to 

promote a proliferative and invasive phenotype in vitro [35]. Furthermore, QSOX1 

expression was associated with increased activation of matrix metalloproteinases 

(MMPs) -2 and -9 [35], proteolytic enzymes involved in degradation of the basement 

membrane during tumor cell invasion [36]. The induction of QSOX1 expression by 

hypoxia-inducible factor-1 (HIF-1) was demonstrated to promote the invasion of 

pancreatic tumor cells; this effect was inhibited by QSOX1 silencing, supporting the 

crucial role of QSOX1 in mediating invasion [37]. 

These studies were expanded to breast cancer, showing a similarly increased rate 

of growth and invasive activity in breast tumor cell lines overexpressing QSOX1 [38]. 

Importantly, this study also identified the enzymatic activity of QSOX1 as critical to the 

pro-invasive effect of QSOX1, evidenced by rescue of the invasive phenotype after 
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addition of exogenous enzymatically active, but not inactive, recombinant QSOX1 

(rQSOX1). Analysis of the Gene Expression-Based Outcome for Breast Cancer Online 

(GOBO) database revealed that patients diagnosed with the luminal B subtype of breast 

cancer whose tumors expressed elevated QSOX1 levels had significantly poorer relapse 

free and overall survival than luminal B patients whose tumors expressed low levels of 

QSOX1. QSOX1 expression is also associated with higher tumor grades [38]. The 

overexpression of QSOX1 in breast cancer and its association with advanced tumor grade 

is corroborated by a serial analysis of gene expression (SAGE) analysis of cDNAs 

derived from clinical samples of breast cancer [39]. One conflicting study, however, links 

overexpression of QSOX1 in breast cancer cell lines with reduced growth and invasion as 

well as improved clinical prognosis [40]. These results are in direct conflict with the 

findings of Katchman et. al [38], but analysis of the composition of their clinical samples 

casts doubt on their data [41]. While a consensus is building in support of the pro-growth 

and invasive properties of QSOX1 in cancer, additional research is warranted to clarify 

this discrepancy. 

The composition of the extracellular matrix (ECM) is recognized to play a major 

role in the regulation of normal cellular functions [42, 43], and modulation of the ECM 

by cancer cells may enhance tumorigenesis [44]. Since QSOX1 is a secreted catalyst of 

disulfide bond formation whose activity has been shown to affect the structure of the 

ECM [35], identification of its extracellular substrates has important implications in our 

understanding of the normal and pathological role of ECM dynamics. A recent study 

identified laminin α4 as substrate for QSOX1 whose incorporation into the ECM was 



6 
	
  	
  

defective in cells with reduced QSOX1 expression through shRNA-mediated knockdown 

[45]. α4 laminins are associated with an invasive phenotype in cancer and decreased 

adhesion [46, 47], linking a demonstrated QSOX1 substrate with increased tumor 

aggression. Loss of QSOX1 increases the concentration of ECM sulfhydryls [45], 

demonstrating a rich source of potential novel substrates. 

With mounting evidence supporting a pro-tumorigenic role for QSOX1 whose 

enzymatic activity is required for its invasive and extracellular modulatory activities, it 

was hypothesized that inhibition of QSOX1 has anti-tumorigenic effects with important 

clinical significance. Early work to address this hypothesis has shown promising results. 

Small molecule inhibition of QSOX1 by the glutathione peroxidase mimic ebselen, for 

example, was shown to have in vitro and in vivo activity in tumor cells consistent with 

QSOX1 knockdown including growth inhibition, suppression of invasion, and a reduction 

in tumor size in nude mouse xenografts [48]; these results are discussed in depth in 

Chapter 3. Other groups have taken a different approach. A single-chain antibody 

directed against the thioredoxin 1 domain of QSOX1, for example, was shown to inhibit 

enzymatic activity and invasion of a lung tumor cell line across a fibroblast monolayer 

[22]. Another group has explored the potential for arsenic-based compounds in inhibition 

oxidative protein folding by QSOX1 and PDI chemotherapeutically, but reports non-

specificity in their preference for free cysteines [49]. The development of specific 

inhibitors for QSOX1 is therefore required to elucidate the effectiveness of chemical 

targeting of QSOX1 versus antibody-based inhibition in a clinical setting. 
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The goal of this research was to identify and characterize small molecule 

inhibitors for QSOX1 as lead compounds for eventual clinical utility. It was hypothesized 

that a chemical compound capable of inhibiting the enzymatic activity of QSOX1 would 

decrease the growth and invasion of tumor cells and modulate ECM structure and 

function, consistent with in vitro observations. Using a cell-free activity assay, rQSOX1 

was screened against two small molecule libraries in collaboration with Sanford Burnham 

Prebys Medical Discovery Institute, identifying 24 potential inhibitors. Of these, 2 

compounds (2-phenyl-1, 2-benzisoselenazol-3-one (ebselen), and 3-methoxy-n-[4-(1-

pyrrolidinyl)phenyl]benzamide) (SBI-183), were shown to both inhibit QSOX1 and 

growth inhibitory properties. In the subsequent chapters, the biological and biochemical 

characterization of these molecules are discussed. 
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Figure 1. Structure of QSOX1. QSOX1-L (top) and QSOX1-S (bottom) shown. 
Thioredoxin domains shown in blue. ERV domain shown in green with the location of 
the FAD cofactor represented by three hexagons representing the isoalloxazine ring. 
CXXC motifs shown as inverted red triangles. Not to scale.  
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CHAPTER 2 

METHODS TO CHARACTERIZE SMALL MOLECULE INHIBITORS FOR QSOX1 

 

Overview: 

In collaboration with Sanford Burnham Prebys Medical Discovery Institute, 

rQSOX1 was screened against two small molecule libraries: the Library of 

Pharmacologically Active Compounds (LOPAC1280) and an in-house 50,000 compound 

library, utilizing a RNAse A substrate-based cell-free activity assay. Hits identified in this 

screen were confirmed using a homovanilic acid activity assay with a DTT substrate, and 

then subjected to a biological screen to identify compounds with growth inhibitory 

effects. Mass spectrometry, molecular, and biochemical assays were utilized to determine 

the mechanism of inhibition of QSOX1. Tumor cell lines were treated with compounds, 

and their effects on the growth of tumor cell lines and invasion were quantified compared 

to vehicle controls. Nude mice were implanted with tumor cell line xenografts and then 

treated with compounds to determine their effects on tumor growth compared to control 

mice. Compounds were also analyzed for their effects on modulation of the extracellular 

matrix through sulfhydryl quantitation and defects in laminin incorporation. 

 

Materials and methods: 

Cell culture.  

All cells were cultured in a humidified incubator at 37 °C with 5% CO2. Media 

was supplemented with 5% fetal bovine serum (Gibco, Carlsbad, CA USA) and 100 
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µg/ml penicillin/streptomycin (Gibco)  Pancreatic tumor cell lines MIAPaCa-2 and 

BXPC3 were maintained in Dulbecco’s Modified Eagle Medium (DMEM), (Gibco). 

Renal cancer cell line 786-O was cultured in RPMI 1640 (MediaTech, Manassas, VA 

USA). Renal cancer cell line UOK117 was cultured in DMEM, supplemented with 1X 

MEM nonessential amino acids (Mediatech). Peripheral blood mononuclear cells 

(PBMC) were isolated from whole blood from a normal donor in accordance to an 

approved IRB protocol using Ficol-Paque (GE Healthcare) and maintained in Iscove’s 

Modified Dulbecco’s Medium (IMDM, MediaTech). All cells were passaged regularly at 

a confluency of 70% and all experiments were performed using sub-confluent cultures. 

786-O cells were cultured from frozen stocks purchased from Sigma-Aldrich and were 

authenticated by STR analysis after thawing. UOK117 cells were received from the 

Linehan laboratory at the National Cancer Institute and experiments performed from 

early passage stocks. MIAPaCa-2 and BXPC3 cells were cultured from frozen stocks that 

underwent independent STR testing 12/2012. 

 

QSOX1 knockdown.  

Lentiviruses packaged with short hairpin RNA (shRNA) constructs specific for 

human QSOX1 (sh528, sh742) or a nonspecific scrambled sequence (shScr) were 

produced in 293T cells as reported by Katchman et al. [35]. Knockdown of QSOX1 in 

MIAPaCa-2 was confirmed by western blotting using anti-QSOX1 antibody (Protein 

Tech, Chicago, IL USA).  
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Nude mouse-human tumor xenograft model.  

Stably transduced MIAPaCa-2 cells (shScr, sh742, and sh528) were harvested 

from subconfluent cultures after brief exposure to Cell Stripper (Corning, Corning NY). 

Cell suspensions were counted, washed once in ice cold serum-free RPMI and 

resuspended in cold 1xPBS. 2.4x107 total cells were mixed in a 1:1 ratio with Matrigel 

(BD Biosciences) according to manufacturer specifications. Cells were kept on ice 

throughout the procedure. Female athymic Foxn1nu mice (Harlan, Indianapolis, IN USA) 

were injected with 1x106 MIAPaCa-2 cells in Matrigel. Mice were housed in a barrier 

facility on HEPA-filtered racks. All experiments were conducted with strict adherence to 

aseptic technique and IACUC regulations. Each mouse was subcutaneously injected with 

200µl of cell suspension into the right hind flank using a 21-gauge needle. Mice were 

examined every other day to determine the volume of the tumor using calibrated calipers. 

Real-time tumor volume was measured as V = 0.5 x length x width2. When the tumors 

reached a volume of 1500-2000 mm3 the mice were sacrificed and the tumor was excised, 

measured and weighed. 

For ebselen treatment of nude mice, three groups were tested: 1) 20% DMSO 

(vehicle), 2) 160 µg/day ebselen, and 3) 640 µg/day ebselen. 160 and 640 µg ebselen 

represent an equivalent dose of 150mg and 600mg for a 70 kg human, respectively. 1x106 

MIAPaCa-2 cells were injected subcutaneously into each mouse as before, and tumors 

were allowed to grow for 3 days. Ebselen was then administered once daily through oral 

gavage for 28 days. Real-time tumor volume was determined through caliper 

measurement of tumors over the course of the study [50]. Error is represented as SEM. 
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Statistical significance was determined using two-way analysis of variance (ANOVA), 

comparing drug-treated with vehicle-treated mice. Corrections for multiple comparisons 

were made using Dunnett’s Test. 

For renal cancer xenografts treated with SBI-183, 6-8 week female nude mice 

were injected subcutaneously with 1x106 UOK117 or 786-O cells in a 100 µl 1:1 

matrigel:SFM suspension in the right hind flank using a 23 gauge needle (n =5 x 3 

groups). Mice were monitored daily for tumor growth and, 7 days after injection, daily 

oral gavage of SBI-183 was begun. Mice received 400 µg (100 µl) of SBI-183, dissolved 

in DMSO vehicle to a concentration of 13.5 mM, or 100 µl DMSO vehicle every 24 

hours. Tumors were also measured in a group that did not receive treatment. Regular 

caliper measurements were taken, measuring the length, width, and depth of growing 

tumors. Real-time tumor volume was monitored as stated previously. At the conclusion 

of the study, mice were euthanized by CO2 asphyxiation, weighed, and tumors excised 

for histological analysis. Insufflated lungs, livers, and the adjacent inguinal lymph nodes 

were also saved. All tissues were fixed in 10% formalin for 48 hours, and preserved in 

70% ethanol. 

 

rQSOX1 expression and purification.  

rQSOX1 was produced and purified according to the method of Heckler [23]. 

Rosetta-gami B (DE3) cells (Novagen, Billerica MA USA) were transformed with 50 ng 

pET15b containing truncated QSOX1-S. The rQSOX1 construct contains an N-terminal 

poly-histidine tag and encodes amino acids 33-546 of QSOX1-S. The activity of the 
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recombinant enzyme verified as described below using a dithiothreitol (DTT) substrate 

[25]. The elution profile for rQSOX1 and MALDI/LC-MS2 analysis of trypsin-digested 

rQSOX are shown in Figures 2 and 3, respectively. 

 

rQSOX1 small molecule screen.  

A HTS assay was developed using reduced denatured RNAse A substrate [51]. 

Hydrogen peroxide produced in the QSOX1 reaction was detected using ROS-Glo kit 

(Promega, Madison WI) as a primary assay and HyPerBlu (Lumigen, Southfield MI) as a 

secondary assay per manufacturers instructions. Assays were optimized and reaction 

kinetic parameters were determined. The assays were miniaturized to final volume of 2 

uL. HTS was also performed using the ROS-Glo assay with a substrate concentration of 

80 uM RNAse A (that is close to Km value of 122 µM). rQSOX1 protein was utilized at 

10 nM concentration, >20-fold over the limit of assay detection yet still on the linear 

portion of the enzyme-dependent activity. rQSOX1 was screened against compounds 

from the LOPAC1280 library (Sigma-Aldrich, St. Louis MO USA) at 12.5 µM compound 

concentration, or an “in-house” 50,000 compound library at Sanford Burnham Prebys 

Medical Discovery Institute. Compounds that demonstrated >50% inhibition were re-

tested using single-concentration in triplicate wells, followed by concentration-dependent 

confirmation in the primary and secondary QSOX1 assays. A luminescent assay for 

glucose oxidase (GOx) was used as a counter-screen. The GOx assay utilizing glucose as 

a substrate was detected using ROS-Glo. Active and selective compounds were  
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purchased in dry powder form, dissolved in DMSO and reconfirmed in the assays before 

use in the confirmatory assays utilizing the GOx counter-screen. 

 

rQSOX1 activity assay.  

The sulfhydryl oxidase activity of rQSOX1 was confirmed using DTT and 

RNAse A substrates and a fluorogenic hydrogen peroxide indicator, homovanilic acid 

(HVA) [25]. In this assay, 150 nM rQSOX1 was added to 600 µM thiols from reduced 

DTT or RNAse A, 1 mM HVA, 1.4 µM HRP, and 300 µM EDTA in PBS at 25 oC, pH 

7.5. Assays were performed in black 96-well plates with a final reaction volume of 150 

µl. Fluorescence signal was measured over 10 minutes at λex 320 nm and λem 420 nm 

using a FlexStation spectrophotometer (Molecular Devices, Sunnyvale CA USA). 

Readings were taken in 20 second intervals after the addition of rQSOX1. Ebselen was 

added to reactions at least 10 minutes prior to the addition of rQSOX1 at concentrations 

ranging from 250 nM – 4 µM. 

 Results for the HVA-based activity assay for rQSOX1 and ebselen are shown in 

Figure 5. 

 

Compounds.  

2-phenyl-1,2-benzisoselenazol-3(2H)-one (MW = 274.18 g/mol), ebselen (Sigma-

Aldrich), was dissolved in tissue culture-grade DMSO (Sigma-Aldrich, St. Louis, MO.) 

to a stock concentration of 10 mM and stored at -20 °C protected from light. 3-methoxy-

N-[4-(1-pyrrolidinyl)phenyl]benzamide (“SBI-183,” MW = 296 g/mol) was purchased 
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from ChemBridge Corp. (San Diego CA). Compound stocks were dissolved in tissue 

culture-grade DMSO (Sigma-Aldrich) at a concentration of 10 mM for in vitro studies, 

and 13.5 mM for in vivo studies. 

 

Growth kinetics of ebselen-treated tumor cells.  

1x104 cells/well MIAPaCa-2, BXPC3, 786-O, and UOK1117 were plated in 

duplicate in 24-well plates. Cells were adhered overnight prior to the addition of fresh 

media (untreated), vehicle (0.15% DMSO), or 5 µM – 15 µM ebselen. Cells were counted 

using a hemacytometer and Trypan Blue exclusion to assess viability. Cells were counted 

on days 3 and 5, and “floaters” (disadhered and dead cells) were saved for determination 

of overall viability. Media was replaced on day 3 for the 5th day time point; floaters were 

saved and added back to each well for counting on day 5. Viability was determined as [1-

(# dead cells / (# live cells + # dead cells))*100]. Error is represented as the standard 

error of the mean. Significance was determined using paired T-testing for each time point 

compared to vehicle-treated cells. 

 

Trans-well invasion assays.  

2x104 MIAPaCa-2, BXPC3, 786-O, or UOK117 cells were seeded in rehydrated 

24-well invasion assay inserts containing 8 µm pores overlaid with Matrigel (Corning) in 

serum-free media; cells were adhered for 1 hour prior to addition of ebselen, SBI-183, or 

vehicle. Inserts were incubated in wells containing complete media for 20 hours at 37 oC. 

Non-invading cells were removed with cotton swabs and membranes were fixed with 100 
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% methanol and mounted on slides with DAPI (Life Technologies). The total number of 

invading cells was determined by manual counting of DAPI-stained nuclei. 

 

Electrospray Ionization Mass Spectrometry.  

2 µM rQSOX1 was incubated with 20 µM ebselen (10-fold excess) with or without 

10 mM DTT substrate (added 5 minutes prior to mass analysis). For SBI-183 studies, 12 

pmol rQSOX1 was incubated with vehicle or 5 µM SBI-183. Samples ere analyzed intact 

by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) on a 

Dionex Ultimate 3000 HPLC equipped with a 1:100 flow splitter connected to a Bruker 

Maxis 4G quadrupole-time-of-flight (Q-TOF) mass spectrometer. A trap-and-elute form 

of LC-MS was carried out in which 15 µL samples were loaded at 10 µl/min in 80/20 

water/acetonitrile containing 0.1% formic acid (loading solvent) onto a Bruker-Michrom 

protein captrap configured for bi-directional flow on a 6-port diverter valve. The trap was 

then rinsed with the HPLC loading pump at 10 µl/min for 40 min to completely remove 

PBS buffer salts. The flow over the captrap was then switched to the micropump, set at 2 

µL/min, and ramped over 5 minutes from 80% water containing 0.1% formic acid 

(Solvent A) / 20% acetonitrile (Solvent B) to 90% acetonitrile and held for 3 min. 

The captrap eluent was directed to the mass spectrometer operating in positive ion, 

TOF-only mode, acquiring spectra in the m/z range of 300 to 3000 with a nominal 

resolving power of ~60,000 m/Δm FWHM. ESI settings for the Agilent G1385A 

capillary microflow nebulizer ion source were as follows: End plate offset -500 V, 

capillary -3500 V, nebulizer nitrogen 2 bar, dry gas nitrogen 3.0 L/min at 225 °C. Data 



17 
	
  

were acquired in profile mode at a digitizer sampling rate of 4 GHz. Spectra rate control 

was by summation at 1 Hz. 

rQSOX1 eluted over a period of about 1 minute; under the above conditions, rQSOX1 

ranged in charge state from +32 to +60. Raw mass spectra were averaged across this 

timeframe, baseline subtracted and charge deconvoluted with Bruker DataAnalysis 4.1 

charge deconvolution software to a mass range of 1000 Da on either side of any 

identified peak. 

 

Maleimide protection assay.  

2 µM rQSOX1 in 1X PBS (pH 7.5) was incubated with a 5-fold molar excess of 

ebselen or vehicle for 5 minutes at 25 oC. AlexaFluor488-C5-maleimide (Life 

Technologies, Carlsbad CA) was added to a final concentration of 100 µM. Reactions 

were incubated for 30 minutes at 37oC, protected from light. Protein from each reaction 

was resolved on 12% polyacrylamide gels in non-reducing conditions. Gels were washed 

twice for 5 minutes in ddH2O and imaged under UV light. Gels were then stained with 

Coomassie R-250 for 15 minutes. Band intensities were analyzed by ImageJ, and are 

represented as “percent signal” of rQSOX1 pre-incubated with vehicle. 

 

Cyanylation and ammonia-based cleavage at free cysteines.  

Free cysteines on rQSOX1 were identified by treatment of recombinant enzyme 

with the sulfhydryl cyanylating reagent 1-Cyano-4-dimethylaminopyridinium 

tetrafluoroborate (CDAP) followed by ammonia-mediated N-terminal cleavage and 
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analysis by MALDI-MS [52]. 100 pmol rQSOX1 was dissolved in 0.1 M citrate 

containing 6 M guanidine-HCl, pH 3.0. CDAP was added to a concentration of 25 mM 

from a freshly prepared 200 mM stock and incubated for 15 minutes at 25 oC. 

Trifluoroacetic acid (TFA) was added to a concentration of 0.2%, and protein was 

purified using C18 ZipTips (Millipore); purified rQSOX1 was eluted with 90% ACN 

with 0.1% TFA in MilliQ H2O. Samples were dried and reconstituted in 6 M guanidine-

HCl containing 1 M NH4OH, pH 11.5. Samples were incubated for 60 minutes at 37 oC. 

Reactions were quenched by reducing the pH to 3.0 with citric acid. Disulfide bonds were 

reduced in 100 mM TCEP dissolved in ddH2O for 30 minutes at 37 oC. 0.2% TFA was 

added, and C18 ZipTip purification was repeated as before. Samples were eluted with 3 

ul 90 % ACN/0.1 % TFA directly onto MALDI targets; 2 µl saturated sinapinic acid in 

33% ACN/0.4 % TFA was added and samples air-dried.  

 

MALDI Mass Spectrometry.  

Masses of cyanylation/ammonia-induced protein cleavage products of rQSOX1 

were determined by MALDI-MS on a Bruker Ultraflex-III MALDI mass spectrometer 

equipped with a Nd:YAG laser operating in positive-ion, delayed extraction linear mode, 

with ion source 1 at 25.00 kV, ion source 2 at 23.10 kV, lens at 7.50 kV, 150 ns delay, 

and 1 GS/s sample rate. Prior to acquisition of the mass spectra, the target mass range 

was externally calibrated using a mixture of calibrants obtained from Bruker Daltonics 

(Billerica, MA USA). 
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SBI-183 dose response.  

5x103 786-O or UOK117 cells, 1x104 HDFn, or 1x105 PBMC were plated in 

triplicate in 96-well tissue culture-treated plates the day before compound addition. 40 

µM – 39 nM SBI-183 in complete media appropriate for each cell type was added and 

plates incubated for 48 hours in a humidified incubator. For PBMC, cells were tested 

with or without the addition of 10 µg/ml phytohemagglutinin (PHA) to stimulate T-cell 

proliferation. Media was replaced with 100 µl/well 50 µg/ml 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) in phenol red-free media. Cells were 

incubated for 4 hours and lysed with 100 mg/ml sodium dodecyl sulfate (SDS) in 0.01M 

hydrochloric acid (HCl). Plates were incubated for 18 hours and the absorbance measured 

at 570 nm. 

 

SBI-183 proliferation assay.  

2.5x103 786-O or UOK117 cells per well were plated in a 96-well plates in 

complete media and allowed to adhere overnight. Media was replaced with complete 

media containing 10 µM  5 µM SBI-183, or vehicle (0.15% DMSO); each condition was 

performed in triplicate. 2 hours after addition of SBI-183 or vehicle, one plate for each 

cell line was used in an MTT assay to determine baseline absorbance (“Day 0”). 

Remaining plates were incubated in a humidified incubator, and MTT assays were 

performed at days 3 and 5 after the addition of SBI-183. Media was replaced at day 3 due 

to evaporation.  
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Extracellular matrix sulfhydryl quantitation.  

5x103 786-O or 7.5x103 UOK117 cells per well were plated in 96-well plates and 

allowed to adhere overnight. The following day, media was replaced with ebselen, SBI-

183 or vehicle-containing complete media and cells were incubated for 48 hours in a 

humidified incubator. Media was removed and plates were washed once with 1X PBS 

containing 1 mM EDTA. 50 µl 1% Triton X-100, 5 mM NH4OH in 1X PBS was added to 

wells and placed on a titer plate shaker for 30s to de-roof the cell monolayer and expose 

the ECM. To all wells that received SBI-183 (n=6 per concentration of compound) and 

one set of vehicle wells (n=6), 50 µl of 6 µM maleimide-PEG2-biotin (Molecular Probes) 

in 1X PBS (freshly made) was added. Remaining vehicle wells received either 100 mM 

dithiothreitol (DTT) or 100 µM N-ethyl maleimide (NEM) as a positive and negative 

control (n=6 per treatment). Plates were incubated with controls for 2 hours on titer plate 

shaker (all following incubation steps were performed on shaker); all wells were then 

washed twice with PBS/EDTA followed by the addition of 50 µl of 6 µM maleimide-

PEG2-biotin to control wells and 150 µl blocking buffer (1% BSA in 1X PBS). Plates 

were incubated for 2 additional hours. Control wells were washed twice and 150 µl 

blocking buffer was added per well; plates were incubated for 2 hours. Blocking buffer 

was replaced with 50 µl/well 1:10,000 streptavidin conjugated to horseradish peroxidase 

(HRP) in blocking buffer, and plates were incubated for 2 hours. Plates were washed 6 

times for 2 minutes each wash in 1X PBS containing 0.05% Tween-20. 100 µl/well 

3,3’,5,5’-Tetramethylbenzidine (TMB) substrate (BD, Franklin Lakes, NJ) was added per 

 



21 
	
  

well and after sufficient color development 50 µl/well 2N H2SO4 was added to quench 

the reaction. Absorbance was measured at 490nm. 

 

Immunofluorescence.  

1x104 cells/ml 786-O or UOK117 were plated in wells of a 24-well plate each 

containing a class coverslip pre-coated with poly L-lysine. Cells were adhered overnight, 

and media was replaced with complete media containing SBI-183 or DMSO vehicle. 

Cells were incubated for 48 hours. Coverslips were washed with 1X PBS, and then fixed 

in 250 µl/well 2% paraformaldehyde (PFA) in 1XPBS at RT. Cells were washed once 

with PBS, and permeabilized for 1 hour in 1% Triton X-100 in 1X PBS with gentle 

rocking. Coverslips were washed twice with PBS for 5 minutes with gentle rocking. 

Coverslips were then blocked with 1% BSA in 1X PBS for 1 hour at room temperature 

with gentle rocking. Primary antibodies in blocking buffer were added as follows and 

incubated overnight rocking gently at 4oC: 1:200 rabbit anti-LAMA4 (Novus, Littleton 

CO), 1:200 rabbit anti-LAMA2 (Novus). Coverslips were washed 3 times for 5 minutes 

each in 1X PBS on rocker, and 1:500 goat anti-rabbit conjugated to AlexaFluor 488 

(Molecular Probes) was added and coverslips were incubated, rocking, for 2 hours 

protected from light. 4 washes, 10 minutes each in PBS, were performed. Coverslips 

were then mounted in DAPI-containing mounting media (Life Technologies). 
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Figure 2. Purification of active rQSOX1  A) Elution profile of rQSOX1. SM = starting 
material (lysate), FT = NI-NTA column flowthrough, BW = binding buffer wash, W1 = 
wash #1, W2 = wash #2, E1-E13 = elution fractions. B) Activity of rQSOX1 reacted with 
varying DTT substrate concentrations. As described in methods section, 150 uM, 50 uM, 
37.5 uM, and 12.5 µM DTT was used in HVA-based activity assays with 150 nM 
rQSOX1. Total relative fluorescence was monitored over a 10 minute period. 
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Sequence coverage of trypsin-digested rQSOX1 (MALDI): 
MGHHHHHHHMSALYSPSDPLTLLQADTVRGAVLGSRSAWAVEFFASWCGHCIAFAPTWK
ALAEDVKAWRPALYLAALDCAEETNSAVCRDFNIPGFPTVRFFKAFTKNGSGAVFPVAG
ADVQTLRERLIDALESHHDTWPPA(C)PPLEPAKLEEIDGFFARNNEEYLALIFEKGGS
YLAREVALDLSQHKGVAVRRVLNTEANVVRKFGVTDFPS(C)YLLFRNGSVSRVPVLME
SRSFYTAYLQRLSGLTREAAQTTVAPTTANKIAPTVWKLADRSKIYMADLESALHYILR
IEVGRFPVLEGQRLVALKKFVAVLAKYFPGRPLVQNFLHSVNEWLKRQKRNKIPYSFFK
TALDDRKEGAVLAKKVNWIGCQGSEPHFRGFPCSLWVLFHFLTVQAARQNVDHSQEAAK
AKEVLPAIRGYVHYFFGCRDCASHFEQMAAASMHRVGSPNAAVLWLWSSHNRVNARLAG
APSEDPQFPKVQWPPRELCSACHNERLDVPVWDVEATLNFLKAHFSPSNIILDFPA 
 
Sequence coverage of trypsin-digested rQSOX1 (Orbitrap, LC-MS/MS): 
MGHHHHHHHMSALYSPSDPLTLLQADTVRGAVLGSRSAWAVEFFASWCGHCIAFAPTWK
ALAEDVKAWRPALYLAALDCAEETNSAVCRDFNIPGFPTVRFFKAFTKNGSGAVFPVAG
ADVQTLRERLIDALESHHDTWPPA(C)PPLEPAKLEEIDGFFARNNEEYLALIFEKGGS
YLAREVALDLSQHKGVAVRRVLNTEANVVRKFGVTDFPS(C)YLLFRNGSVSRVPVLME
SRSFYTAYLQRLSGLTREAAQTTVAPTTANKIAPTVWKLADRSKIYMADLESALHYILR
IEVGRFPVLEGQRLVALKKFVAVLAKYFPGRPLVQNFLHSVNEWLKRQKRNKIPYSFFK
TALDDRKEGAVLAKKVNWIGCQGSEPHFRGFPCSLWVLFHFLTVQAARQNVDHSQEAAK
AKEVLPAIRGYVHYFFGCRDCASHFEQMAAASMHRVGSPNAAVLWLWSSHNRVNARLAG
APSEDPQFPKVQWPPRELCSACHNERLDVPVWDVEATLNFLKAHFSPSNIILDFPA 
 
Figure 3. Mass spectral analysis of trypsin-digested rQSOX1. Peptides identified from 
A) MALDI, or B) LC-MS/MS analysis are bolded and underlined. Underlined (but not 
bolded) residues represent redox-active C-X-X-C motifs. Cysteines in parentheses, C165 
and C237, were identified as ebselen-binding cysteines (Figure 12). 
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CHAPTER 3 
 

EBSELEN INHIBITS QSOX1 ENZYMATIC ACTIVITY AND SUPPRESSES 

INVASION OF PANCREATIC AND RENAL CANCER CELL LINES 

Hanavan PD, Borges CR, Katchman BA, Faigel DO, Ho TH, Ma CT, Sergienko EA, 
Meurice N, Petit JL, Lake DF: Ebselen inhibits QSOX1 enzymatic activity and 
suppresses invasion of pancreatic and renal cancer cell lines. Oncotarget 2015, 
6:18418-18428.  
 
Overview: 

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-

generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity 

promotes the growth and invasion of tumor cells and alters extracellular matrix 

composition. In a nude mouse- human tumor xenograft model, tumors containing shRNA 

for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 

supports a proliferative phenotype in vivo. High throughput screening experiments 

identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen 

treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited 

invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% 

reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared 

to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically 

revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details 

the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The 

results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have 

clinical relevancy. 
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Results: 

QSOX1 expression drives increased tumor growth in vivo. 

Suppression of QSOX1 levels in tumors expressing shRNAs specific for QSOX1 

was hypothesized to slow their growth compared to controls, based on the results of in 

vitro studies. Tumors containing QSOX1 shRNAs (sh742 or sh528) grew at a reduced 

rate compared to shScr control and untreated MIAPaCa-2 xenografts (Figure 4A). Tumor 

masses on day 28 of the experiment showed that tumor growth was reduced by 77% in 

tumors transduced with sh742, and by 48% in tumors transduced with sh528 compared to 

shScr tumors (Figure 4B, C). These results indicate that QSOX1 expression promotes 

tumor growth in vivo and suggest that QSOX1 could be a target for potential anti-

neoplastic compounds.  

 

Ebselen inhibits rQSOX1 activity in vitro. 

A sulfhydryl activity assay similar to the one developed by Colin Thorpe’s group 

[25] was used to screen recombinant QSOX1 against a library of pharmacologically 

active compounds, LOPAC1280. In this enzymatic assay (Figure 5A), rQSOX1 oxidizes a 

reduced RNAse A or DTT substrate, producing H2O2 detected by a luminescent reaction. 

In the presence of a QSOX1 inhibitor, the sulfhydryl oxidase activity of QSOX1 is 

blocked, preventing disulfide bond formation and H2O2 production. The relative 

inhibitory activity of LOPAC1280 is plotted in Figure 5B. Ebselen (Figure 5C) was 

identified as an inhibitor of QSOX1 enzyme activity, with greater inhibitory activity 

against QSOX1 than GOx (Figure 5D); the IC50 for ebselen inhibition of QSOX1 and 
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GOx was determined to be 5.4 µM and 20.5µM, respectively. Confirmation of ebselen’s 

inhibitory activity was obtained by HyPerBlu luminescent detection (Figure 5D, middle 

plot) and HVA-based fluorescent assays showing decreased fluorescence as inhibitor 

concentration increases (Figure 6).	
  

 

Ebselen reduces tumor cell invasion. 

 One of the fundamental properties of malignant cells leading to metastatic disease 

is invasion. Since ebselen inhibits QSOX1, it was hypothesized that ebselen would 

suppress invasion of tumor cells similar to shRNA-mediated knockdown of QSOX1.  

 MIAPaCa-2, BXPC3, 786-O, and UOK117 cells were incubated in matrigel-

coated invasion chambers in serum-free media in the presence of ebselen or vehicle. 

Invading cells were quantified after 20 hours (Figure 7). Isogenic MIAPaCa-2 lines were 

generated that express shRNAs specific for QSOX1 (sh742 and sh528) or a nonspecific 

sequence (shScr) (Figure 7A). shScr cells exposed to 5 µM – 15 µM ebselen showed 

decreased invasion compared to DMSO vehicle-treated cells, with reductions of 91%, 

94%, and 98%, respectively. sh742 cells showed greater than 60% decreased invasion 

compared to shScr cells. Invasion was rescued to levels of vehicle-treated shScr wells 

when 50 nM active rQSOX1 was added to sh742 wells at the initiation of the assay 

(Figure 7A, sixth bar). rQSOX1 pre-incubated with 15 µM ebselen and  then added to 

sh742 cells, however, did not rescue invasion. These results suggest that one of the 

mechanisms by which ebselen suppresses invasion is through QSOX1 inhibition. 
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 Invasion was quantified for ebselen-treated BXPC3, 786-O, and UOK117 cells 

(Figure 7B-D). Ebselen suppressed invasion in these tumor cell lines in a concentration-

dependent manner. At 5 µM, BXPC3 invasion was reduced by 85%, 89% for 786-O, and 

40% for UOK117. 10 µM ebselen treatment decreased BXPC3, 786-O, and UOK117 

invasion by 95%, 97%, and 80% compared to vehicle-treated cells, respectively. Near 

total inhibition of invasion was observed for each cell line treated with 15 µM ebselen. 

These results were statistically significant in BXPC3 and UOK117 with p-values 

calculated at <0.05. Results for 786-O were not statistically significant (p = 0.08 – 0.09), 

but show a similar dose-response. 

 

Ebselen reduces tumor growth in vivo. 

Nude mice subcutaneously injected with MIAPaCa-2 cells were treated for 28 

days with ebselen by oral gavage at two clinically achievable doses to determine if 

ebselen suppresses tumor growth in vivo. As shown in Figure 8, daily treatment with 

ebselen at both high (640 µg) and low (160 µg) doses suppressed tumor growth in 

MIAPaCa-2 nude mouse xenografts. There was no difference in tumor size between high 

and low doses, but tumors in mice treated with 160 µg ebselen were ~56% smaller than 

vehicle-treated mice at day 28. There was no difference in the average masses of mice 

between the vehicle and ebselen-treated groups (Figure 9), suggesting that the observed 

difference in tumor growth were not due decreased appetite or decreased nutrient 

absorption in ebselen-treated mice. Taken together, these results suggest that ebselen 

decreases tumor growth in vivo. 
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Ebselen leads to increased ECM sulfhydryls and defects in laminin α4 deposition. 

 It was recently demonstrated that QSOX1 is required for the successful 

integration of specific laminin subunits into the extracellular matrix [45]. Suppression of 

QSOX1 expression causes an increases in sulfhydryls – QSOX1 substrates – in the ECM. 

Whether QSOX1 inhibition by ebselen resulted in these phenotypes was explored. 1x104 

MIAPaCa-2 cells were grown in the presence or absence of ebselen for a period of 48 

hours, and de-roofed the cell monolayer to expose the ECM. Wells were then treated with 

maleimide-PEG2-biotin and the relative quantity of sulhydryls present were quantified 

with SA-HRP and a TMB substrate. A significant increase in sulfhydryls from ebselen-

treated cells was observed, representing a 40% increase compared to vehicle-treated cells 

(Figure 10A).  

 The effect of ebselen treatment on the deposition of laminin α4 (an established 

QSOX1 substrate) in the extracellular matrix of 786-O cells was determined . 1x104 

cells/ml were plated on poly-L lysine-coated wells and subjected to ebselen or vehicle 

treatment for a period of 48 hours. Cells were then fixed and stained with anti-laminin α4 

antibodies and imaged. A marked decrease in laminin present in the ECM of ebselen-

treated cells was observed compared to vehicle-treated cells (Figure 10B), suggesting that 

inhibition of QSOX1 by ebselen led to the defective processing of this laminin chain. 

These results further strengthen previous results that ebselen inhibition of QSOX1 leads 

to functional defects associated with QSOX1 activity. 
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Ebselen covalently binds to QSOX1. 

Ebselen is reactive with reduced cysteines through the formation of a Se-S bond 

with target sulfhydryls [53]. It was therefore hypothesized that ebselen covalently binds 

with cysteines in QSOX1, which would suggest a mechanism for the inhibition of 

enzymatic activity. The formation of ebselen adducts would be expected to increase the 

mass of QSOX1 by the molecular weight of one or more ebselen molecules, 274.18 Da. 

LC-MS analysis was performed on untreated or ebselen-treated rQSOX1 in the presence 

or absence of DTT (an established substrate for QSOX1) [16, 22, 25] (Figure 11). 

Untreated rQSOX1 (Figure 11A, top spectrum) displays two prominent peaks with 

masses of 58 683 and 58 860 Da, designated “A” and “B,” respectively, corresponding to 

two post-translationally modified forms of rQSOX1. 

Treatment of QSOX1 with ebselen shows a mass shift corresponding to two 

ebselen adducts per peak (Figure 11A, middle spectrum). In the bottom spectrum of 

Figure 11A, rQSOX1 was also treated with ebselen in the presence of DTT substrate. The 

masses of unmodified rQSOX and rQSOX1 containing 1 or 2 ebselen molecules were 

detected simultaneously, suggesting that DTT can remove ebselen from QSOX1.  

A protection assay based on the sulfhydryl specificity of maleimide was used to 

determine the cysteine preference of ebselen (Figure 11B), blocking free cysteines in 

QSOX1 with ebselen pre-treatment followed by incubation with the thiol-reactive 

compound maleimide. Vehicle-treated rQSOX1 showed strong fluorescence at the 

expected MW of 58.8 kDa, but ebselen pre-treatment decreased resting QSOX1  
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fluorescence by >94%. These results suggest that ebselen binds to free cysteines in 

resting QSOX1.   

 

Identification of ebselen-binding cysteines in QSOX1. 

 A cyanylation strategy was employed to identify ebselen-binding cysteines in 

resting QSOX1, utilizing the reagent 1-cyano-4-dimethylaminopyridinium 

tetrafluoroborate (CDAP). CDAP cyanylates free, but not disulfide-bound, cysteines in 

proteins; they are then cleaved on the amino side of the CDAP-cysteine adduct when 

subjected to alkaline conditions [54-57]. MALDI analysis of CDAP-treated, cleaved and 

reduced rQSOX1 revealed 3 unique cleavage fragments (Figure 12A). Fragments 1, 2, 

and 3 had observed masses of 15 668, 8 063.1, and 35 242 Da, respectively (black arrows 

in Figure 12A). These masses correspond to cleavage with the expected iminothiazolidine 

formation [54-57] on the N-terminal side of cysteines 165 and 237 in QSOX1 as shown 

in the diagram in Figure 12B. Predicted versus observed molecular weights for these 

cleavage products are shown in Figure 12C. The cyanyl group increases fragment masses 

by 25 Da (fragments 2 and 3). 
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Figure 4. Growth of MIAPaCa-2 tumors in nude mice. A) Growth kinetics of MiaPaca-2 
tumors with QSOX1 knockdowns (sh742 triangles, sh528 circles), scrambled control 
(squares), or untreated (diamonds); n = 5 mice per group. B) Final tumor masses on day 
28. C) Images of shScr (top), sh528 (middle), or sh742 (bottom) tumors dissected from 
mice on day 28. Significance was determined by T-test; knockdowns were compared to 
vehicle-treated tumors. *p<0.05. Bar = 3mm. 
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Figure 5. High-throughput screen for QSOX1 inhibitors using LOPAC1280 identified 
ebselen as a QSOX1 inhibitor. A) Diagram of QSOX1 sulfhydryl oxidase activity 
reaction used in high-throughput screening and HVA activity assays. B) Distribution plot 
with primary HTS data showing positive (red bars) and negative (blue bars) controls, and 
compounds (green bars) at 12.5 µM concentration. Inset table summarizes plate statistics 
for HTS campaign. C) Structure of ebselen. D) Concentration-dependent inhibition 
curves for ebselen for QSOX1 (ROS Glo left,  HyPerBlu middle) and GOx (ROS Glo 
right). 
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Figure 6. Relative activity of 150 nM rQSOX1 with 300 µM DTT substrate in the 
presence of 250 nM – 4 µM ebselen. Ebselen was added to reactions at least 10 minutes 
prior to rQSOX1 addition. Reactions were monitored over a period of 10 minutes. 
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Figure 7. Ebselen inhibits invasion of pancreatic and renal cell cancer cell lines through a 
Matrigel basement membrane. A) Isogenic MIAPaCa-2 cell lines transduced with a 
QSOX1-specific shRNA (sh742) or a nonspecific sequence (shScr) were incubated for 20 
hours in invasion well inserts; cells were exposed to 5-15uM ebselen or vehicle +/- 50 
nM rQSOX1 (sh742 only). Invasion of B) BXPC3, C) 786-O, and D) UOK117 cells 
exposed to ebselen or vehicle. Vehicle was 0.15% DMSO. Error bars represent SEM. For 
(A), significance for ebselen-treated shScr cells was calculated for vehicle-treated shScr 
cells. For sh742 cells, significance is relative to sh742 cells treated with rQSOX1 alone. n 
= 3 fields averaged for all conditions. Statistical significance was determined by T-test. 
*p < 0.05, **p<0.01. 
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Figure 8. Ebselen treatment of nude mice bearing human tumors. A)  One million 
MIAPaCa2 cells were mixed with Matrigel and used to inoculate nude mice (5 
mice/group) on day 0. Mice were gavaged daily starting on day 3 with vehicle (20% 
DMSO, open circle), 160 µg/day ebselen (filled square) or 640 µg/day ebselen (filled 
triangle) in DMSO. Tumor measurements are shown for days 3, 6, 10, 13, 18, 22 and 28. 
Tumor volume is shown on the Y-axis and time in days is shown on the X-axis. 
Significance was determined by two-way ANOVA with Dunnet’s Test used to correct for 
multiple comparisons compared to vehicle-treated mice. * (p < 0.05), ** (p < 0.01), *** 
(p < 0.001). B)  Representative tumors from vehicle-treated and ebselen-treated mice. Bar 
= 2mm. 
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Figure 9. Average masses of nude mice pre- and post-ebselen treatment. Nude mice were 
weighed on a laboratory scale immediately prior to tumor implantation to the nearest 0.1 
g. Mice were weighed again at the conclusion of the study, immediately after CO2 
asphyxiation. N=5 per group, error bars represent standard deviation. 
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Figure 10. Extracellular matrix composition is altered by ebselen treatment. A) 
Extracellular matrix sulfhydryl quantitation performed on 1x104 MIAPaCa-2 cells 
exposed to vehicle or 10 µM ebselen for 48 hours. Error bars represent standard 
deviation. Significance determined by two-tailed T-test, comparing vehicle-treated to 
SBI-183-treated cells. n = 7 wells averaged per group. B)  Immunofluorescence of 
LAMA4 (left) on 786-O cells treated with either vehicle (top) or 15 µM ebselen (bottom). 
Images were obtained from identical exposures and were not enhanced. DAPI-stained 
nuclei are shown at right. Note: vehicle images same as in Figure 23 (both compounds 
run in same experiment with common control, but separated for the purpose of this 
document). 
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Figure 11. Ebselen binds covalently to rQSOX1 at cysteine residues. A) Charge 
deconvoluted ESI-LC-MS spectra of rQSOX (top spectrum) in the absence of substrate, 
rQSOX1 treated with 5 µM ebselen (middle spectrum), and rQSOX1 treated with 5 µM 
ebselen in the presence of DTT substrate (bottom spectrum). The mass of an ebselen 
adduct is 274.18 Da. The left shaded column indicates the mass range of unmodified 
rQSOX1. Peak A is the mass of rQSOX1 without the N-terminal methionine and peak B 
is the mass of rQSOX1 with N-acetyl Met. The middle shaded column represents the 
mass of rQSOX1 with a single bound ebselen molecule with peaks labeled A+1Eb and 
B+1Eb. The right shaded column represents the mass of rQSOX1 with two ebselen 
adducts (A+2Eb and B+2Eb). B)  QSOX1 pretreated with ebselen blocks the binding of 
fluoresceinated maleimide. A 5-fold molar excess of ebselen was added to 5 µg rQSOX1 
prior to maleimide addition. UV imaging of SDS-PAGE gels show that maleimide 
binding to rQSOX1 is blocked by the addition of ebselen. 
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Figure 12. Identification of ebselen-binding cysteines in QSOX1. A) Cyanylated rQSOX 
was cleaved by NH3 treatment and reduced with TCEP. Analysis by MALDI-MS 
identified two cleavage sites that produced QSOX1 fragments with masses of 15 668 Da 
(Fragment 1), 8 063.1 Da (Fragment 2), and 35 242 Da (Fragment 3). The top and bottom 
spectra panels in (blue) show untreated (blue) and CDAP-treated (red) QSOX1 peaks, 
respectively. Arrows indicate unique peaks appearing in CDAP-treated, but not untreated, 
rQSOX1 samples. B) Mapped QSOX1 CDAP cleavage fragments. Peak masses 
correspond to cysteines 165 and 237 in wild-type QSOX1. Cyanyl groups are depicted as 
white diamonds. Three redox-active C-X-X-C pairs are shown disulfide bonded. The four 
remaining disulfide-bonded cysteines are not shown. Cleavage of rQSOX1 by ammonia 
(black scissors) produced the three CDAP fragments observed in (A). C) Predicted and 
observed average m/z for cleavage at residues C165 and C237. The predicted masses for 
fragments 2 and 3 include an additional 25 Da from the cyanyl group. 
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Conclusions: 

In a high throughput screen of the LOPAC1280 chemical library utilizing 

recombinant QSOX1, ebselen was identified as an inhibitor of QSOX1 enzyme activity. 

An Aspergillus niger glucose oxidase (GOx) was utilized as a general counter-screen to 

ensure that inhibition was specific for QSOX1. Although both GOx and QSOX1 contain 

FAD as a cofactor, the former uses FAD as the initial electron acceptor [58], while FAD 

serves as terminal electron acceptor in the QSOX1 Erv1 domain. In addition, the 

sequence and structure of the two proteins are very different [14], sharing only 20% 

sequence identity. Thus the majority of genuine inhibitors are expected to show strong 

preference for QSOX1. As seen in supplementary Figure 5, GOx is inhibited by ebselen 

only at a concentration 4-fold higher than was observed for QSOX1.  

Since ebselen reacts with free cysteines and both QSOX1 substrates and its own 

redox activity are dependent on sulfhydryls, we were initially concerned that the 

interaction of ebselen with QSOX1 substrates DTT and RNAse A might make ebselen 

appear to inhibit QSOX1 spuriously through substrate depletion. Concentrations between 

150 and 2400-fold molar excesses of substrate thiols over ebselen were used in 

confirmatory activity assays to guard against this possibility (Figure 6). If the interaction 

of ebselen with substrate was extensive, even with total exhaustion of ebselen sufficient 

unreacted substrate would be available for QSOX1 oxidation. These conditions would 

allow for near-maximum signal to be detected, preventing the identification of 

compounds with an indiscriminate preference for free cysteines. Additionally, rQSOX1 

enzyme was always added last to reactions such that ebselen was present with substrate 
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before QSOX1 was added. Therefore the excess substrate would deplete available 

ebselen prior to the addition of active enzyme. 

Ebselen treatment of tumor cell lines resulted in significantly decreased invasion 

in trans-well invasion assays compared to DMSO vehicle-treated cells  (Figure 7). These 

results are consistent with decreased invasion in cells expressing QSOX1-specific 

shRNAs [35, 38, 45]. Importantly, rescue of invasion in QSOX1-knockdown cells was 

achieved with the addition of 50 nM exogenous recombinant QSOX1 enzyme (Figure 

7A, fifth bar). However, pre-incubation of recombinant enzyme with 10 µM ebselen prior 

to addition of QSOX1 to tumor cells did not restore invasive activity (Figure 7A, sixth 

bar), suggesting that ebselen inactivates QSOX1. In fact, tumor cell invasion was further 

decreased compared to the sh742 knockdowns, underscoring the incomplete  suppression 

of gene expression using a shRNA system. These results indicate that one mechanism by 

which ebselen decreases tumor cell invasion is via QSOX1 enzymatic inhibition. 

The growth modulatory effects of ebselen were investigated in pancreatic and 

kidney cancer cell lines (Figure 13). Ebselen was a poor inhibitor of growth in kidney 

cancer cell lines, but did significantly inhibit growth of pancreatic cell line MIAPaCa-2 at 

10 µM and 15 µM and BXPC3 at 15 µM. QSOX1 expression was similar for the cell 

lines tested by western blotting (Figure 14), thus QSOX1 expression alone fails to explain 

the growth effects observed. Viability determinations showed that ebselen is not 

cytotoxic to tumor cells (Figure 15), so decreased growth is therefore attributable to 

reduced proliferation. Ebselen treatment also causes tumor cells to “round up” (data not 
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shown). While anecdotal, this observation is consistent with the morphological changes 

observed when QSOX1 expression is suppressed by shRNAs [35, 38].  

Incubation of 15 µM ebselen with normal lymphocytes and non-malignant 

fibroblasts does not result in toxicity (~98% viability after 48 hours, data not shown). 

Additionally, ebselen has an established safety profile and dosing in humans in phase II 

clinical trials for cerebral infarct [59-61]. Patients in this 1998 clinical trial who received 

ebselen had no statistical increase in adverse events compared to placebo groups for new 

cerebral infarction, new hemorrhagic infarction, gastrointestinal bleeding, 

nausea/vomiting, or respiratory infection. The authors also note that ebselen treatment did 

not contribute to the death of any patient [61]. 

Daily oral gavage of ebselen in human pancreatic tumor xenografts resulted in 

slower tumor growth than vehicle controls. Ebselen appears to suppress invasion and is 

not directly cytotoxic, but none-the-less affects human pancreatic tumor cell growth in 

vivo as shown in Figure 8. While both low (160 µg/day) and high (640 µg/day) doses of 

ebselen decreased tumor growth in our xenograft model, differences in tumor volume 

were not observed between dosages. There may be no additional benefit to treatment with 

higher doses of ebselen beyond a certain threshold. While the mechanism of decreased 

tumor cell growth with ebselen treatment is unclear, reduction in the total mass between 

groups was not the reason for reduced growth, an effect that could be due to decreased 

appetite or malnourishment associated with ebselen treatment (Figure 9). One 

explanation for the decrease in tumor growth in mice treated with ebselen is the inhibition 

of QSOX1 activity in the extracellular matrix. QSOX1 is required for incorporation of 
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laminin α4 chains in the ECM [45]. Its inhibition may limit the ability of tumor cells to 

modify the ECM to promote tumor growth. QSOX1 also activates MMP-2 and -9, 

supporting the role of QSOX1 in forming a pro-tumorigenic microenvironment.   

Ebselen is a heterocyclic selenoorganic compound first identified as a glutathione 

peroxidase mimic and scavenger of organic hydroperoxides [62-64]. The intriguing 

enzyme-like activity of ebselen forms the basis for its pharmacological effects [65, 66] 

that include potent antioxidant and anti-inflammatory properties [53, 67]. Ebselen 

covalently binds to thiols and this has emerged as a mechanism for its activity [68]. 

Ebselen reacts via reduction of the Se-N bond in the selenazole ring structure, forming a 

sulfur-selenium bond with target cysteines [69]. Ebselen is shown to inhibit QSOX1 

activity through covalent modification of non-redox cysteines C165 and C237 in the 

extant thioredoxin-2 domain.  

Crystal structures of human rQSOX1 show that its cysteines exist as disulfide 

pairs in the resting enzyme except for cysteines 165 and 237 [20, 70]. How ebselen 

inhibits QSOX1 through interaction with these residues is unclear because they are not 

thought to participate in the accepted disulfide relay mechanism. There is no evidence 

supporting cysteines other than the redox-active C-X-X-C motifs in the Trx1 and Erv 

domains as contributing to QSOX1 activity [13, 14, 22, 23, 29]. C237 is likely protonated 

and relatively inert to redox reactions since there are no nearby basic residues to stabilize 

a thiolate anion [71]. The location of C165 in a predicted disordered region of QSOX1 

between the Trx1 and Trx2 domains, however, may allow for interactions with nearby 

basic resides [70]. A recently described mechanism proposes that the flexible domain 
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architecture of QSOX1 is critical in allowing Trx1 to come into close contact with Erv to 

transfer electrons to the C-X-X-C in this domain [20, 21]. Ebselen bound to C165 and 

C237 may interfere with the conformational change required for the interaction of the 

Trx1 and Erv domains. Another possibility is that these cysteines modulate the activity of 

QSOX1; C165 is conserved in QSOX1 among vertebrates but not invertebrates (Figure 

16) and may have evolved as a mechanism to regulate QSOX1 function. Further 

enzymatic and structural studies will address these hypotheses.  

Evidence is provided that the inhibition of QSOX1 activity by ebselen leads to 

significantly decreased invasion of tumor cell lines in vitro and reduced tumor growth in 

vitro, and in vivo, effects comparable to QSOX1 knockdown. Since metastasis is the 

cause of most cancer deaths, even partially suppressing invasive processes through 

QSOX1 inhibition may help prolong survival. This study further establishes QSOX1 as a 

tractable target for anti-neoplastic drugs. Future studies will identify more potent and 

specific inhibitors of QSOX1 that may decrease metastasis in vivo. 
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Figure 13. Effect of ebselen on growth of tumor cell lines. Cell numbers for tumor cell 
lines grown in the presence or absence of ebselen or DMSO vehicle are shown. Viable 
cell numbers were determined manually using Trypan Blue. Each time point was 
performed in duplicate, and error is represented as SEM. Significance was determined for 
ebselen-treated cells compared to vehicle-treated cells using paired T-tests. Growth 
kinetics are shown for A) MIAPaCa-2, B) BXPC3, C) 786-O, and D) UOK117. *p<0.08, 
**p<0.05. At 5 days incubation, 10 µM ebselen decreased MIAPaCa-2 cell number by 
70% compared to vehicle. For BXPC3, day 5 cell numbers were reduced by 38% for both 
15 µM and 10 µM ebselen. 786-O and UOK117 were more resistant to ebselen. 15 µM 
ebselen decreased 786-O growth 79% and 65% at days 3 and 5, respectively. UOK117 
growth was unaffected by ebselen treatment at all concentrations tested. It is important to 
note that the reduced cell numbers observed were not due to decreased viability from 
ebselen cytotoxicity (Figure 15). 
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Figure 14. Relative QSOX1 expression in pancreatic and renal cancer cell lines. 10 µg 
total protein loaded in 12% SDS-PAGE gels at 150 V. Proteins resolved and transferred 
onto PVDF membranes for one hour at 100 V. Membranes blocked for 1 hour with 1% 
BSA 0.1% TBST at room temperature on shaker. Membranes were incubated with 
1:1000 anti-QSOX1 (ProteinTech), or 1:1000 anti-BACTN (Cell Signaling) followed by 
1:10,000 goat anti-rabbit HRP for 1 hour at room temperature. 
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Figure 15. Viability of tumor cell lines treated with ebselen. Total viability was 
determined at days 3 and 5 by Trypan Blue exclusion with 2 counts performed per group. 
Viability was calculated as [1-(# dead / (# dead + # alive))]*100. Error bars represent 
SEM. A) MIAPaCa-2, B) BXPC3, C) 786-O, D) UOK117. No appreciable decrease in 
cell viability was observed up to 15 µM at days 3 and 5, except for 786-O (C) where 
viability at day 3 was 60%. 
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Figure 16. Multi-species alignment of region in the vicinity of C165 and C237 in human 
QSOX1. Protein sequences for QSOX1 were obtained from UniProt from Homo sapiens 
(O00391), Pan troglodytes (H2Q0P8), Gorilla gorilla (G3R3B5), Pongo albeii (H2N4I1), 
Macaca mulatta (F7HHU1), Mus musculus (Q8BND5), Rattus norvegicus (Q6IUU3), 
Bos Taurus (F1MM32), Gallus gallus (F1NYK2), Danio rerio (B0UXN0), Anolis 
carolinensis (G1K901), Xenopus laevis (A0JPG9), Ceratitis capitata (W8C0Z9); UniProt 
ID numbers in parentheses. Seqeuences were aligned using ClustalW2 [72]. Conserved 
cysteines at human positions C165 and C237 are bolded and colored blue. The cysteine at 
human position C165 is conserved in sequence from all vertebrate species analyzed, but 
not in the fruit fly Ceratitis capitata. Human C237 is less conserved, not present in 
vertabrates G. gallus, A. carolinensis, X. laevis, and the invertebrate C. capitata. 
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CHAPTER 4 

3-METHOXY-N-[4-(1-PYRROLIDINYL)PHENYL]BENZAMIDE (SBI-183) 

INHIBITS QSOX1 ENZYMATIC ACTIVITY AND EXERTS BIOLOGICAL 

EFFECTS CONSISTENT WITH QSOX1 KNOCKDOWN. 

 

Overview: 

 QSOX1 activity is associated with a proliferative and invasive phenotype in 

tumor cells, and its enzymatic activity has been shown to be required for many of its 

biological functions. Previous work has shown that knockdown of QSOX1 leads to 

decreased tumor growth in vivo, and that inhibition of QSOX1 enzymatic activity with a 

single-chain antibody and a small molecule decreases tumor cell invasion. These results 

indicate that the QSOX1 inhibition is an attractive area of research from both a basic 

biological and clinical standpoint. Here we expand on previous work ,and identify ,3-

methoxpyrrolidinyl)phenyl]benzamide (SBI-183), as a new small molecule QSOX1 

inhibitor. This molecule decreases the growth and invasion of tumor cell lines, as well as 

the growth of two human renal cell carcinomas (RCC) in nude mouse xenografts, 

including a highly aggressive sarcomatoid subtype of RCC for which there is no effective 

treatment. Alterations in the composition of the extracellular matrix were also observed, 

with an increase in protein thiols and a dramatic reduction in laminin α4 in the ECM. 

While the inhibitory mechanism of this molecule is not yet known, its biological effects 

are consistent with QSOX1 knockdown and continue to support the idea that inhibition of 

QSOX1 has anti-tumorigenic properties in vitro and in vivo. 
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Results: 

Identification of 3-methoxy-n-[4-(1-pyrrolidinyl)phenyl]benzamide, SBI-0143183 (“SBI-

183”) as a lead QSOX1 inhibitor.  

A cell-free High Throughput Screening (HTS) assay was employed to identify 

chemical compounds that inhibited QSOX1 enzymatic activity. HTS was performed by 

Sanford Burnham Prebys Medical Discovery Institute to screen an in-house library of 

50,000 small molecules using a reduced RNAse A substrate of rQSOX1 as described in 

Chapter 2. Twenty hits were identified in the screen using glucose oxidase counterscreen 

as a control in a primary screen and a confirmatory assay (see Appendix A for IC50 data 

on these 20 compounds). A secondary confirmatory assay was performed using an HVA-

based activity assay using a DTT substrate (Figure 17). In the HVA assay, SBI-0143183 

(SBI-183) suppressed the activity of QSOX1 by 64.8% (Figure 17A) compared to a 

DMSO vehicle. As an additional control, it was determined that the reduced enzymatic 

activity observed was not due to the scavenging of H2O2 by SBI-183, a common issue in 

small molecule screens that quantify the production of H2O2 (Figure 17B). The structure 

of SBI-183 is shown in Figure 17C. 

 The 20 hit compounds were also screened for their growth inhibitory activity 

against tumor cell lines (Figure 18). Renal cancer cell line 786-O (Figure 18A), or 

pancreatic cancer cell line MIAPaCa-2 (Figure 18B) were exposed to 20 µM, 10 µM, or 5 

µM SBI-183 for 72 hours. Cells were analyzed by MTT and are represented as percent 

vehicle signal. SBI-0143183, SBI-0132719, SBI-0099708, and SBI-0132719 had the 

largest growth inhibitory effect on 786-O cells, while SBI-0143343, SBI-0143183, SBI-
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0137402, SBI-0132719, SBI-0035734, SBI-0099708, and SBI-0129659 were most active 

against MIAPaCa-2. Since SBI-183 showed both inhibition of rQSOX1 enzymatic 

activity and suppression of tumor cell growth in both 786-O and UOK117, it was selected 

as a lead compound for further analysis. 

 

Dose response curves for SBI-183 reveal a large therapeutic window.  

The IC50s for tumor cells and healthy donor lymphocytes were determined by 

MTT assay (Figure 19). 5x103/well 786-O, UOK117, and A498 (Figure 19A) or 1x105 

peripheral blood mononuclear cells (resting or stimulated with 10 µg/ml PHA (Figure 

19B), were treated with 2-fold dilutions of SBI-183 between 80 µM and 160 nM (in 

triplicate), and incubated for 48 hours and then analyzed. Potent inhibition of growth was 

observed for 786-O, UOK117, and A498, with IC50s of 1.25 µM, 2.86 µM, and 3.37 µM, 

respectively. PBMC were strongly resistant to SBI-183, with an IC50 of 81.25 µM for 

resting PBMC and 33.4 µM for PHA-stimulated PBMC. Based on these results, a 

conservative therapeutic window of 9.9-fold was estimated (based on the fold difference 

between PHA-stimulated PBMC and A498 cells). 

 

SBI-183 potently inhibits tumor cell growth in vitro.  

QSOX1 knockdown decreases tumor cell growth in vitro [35, 38]; it was 

hypothesized that SBI-183-treatment of tumor cell lines would result in reduced tumor 

cell growth over time. Tumor cell lines were treated for a period of 5 days with SBI-183 

and assayed cells for growth (Figure 20). 1.25x103 786-O and UOK117 cells per well 
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were added to plates and incubated overnight in 96-well plates. 5 µM, 2.5 µM, 1.25 µM, 

625 nM SBI-183, or 0.05% DMSO vehicle was added in triplicate and cells were 

incubated. Plates were analyzed at day 0 (baseline, before compound addition), day 3, 

and day 5. For 786-O (Figure 20A), 625 nM and 1.25 µM had modest, but significantly 

reduced growth by day 5, with 12% reduced growth each. 2.5 µM SBI-183 reduced 

growth by 35% at day 5, and 5 µM decreased growth 89.8% at day 5. UOK117 was more 

sensitive to the SBI-183, and cytotoxicity was observed at 2.5 µM and 5 µM (Figure 

20B). 1.25 µM SBI-183 reduced the growth of UOK117 by 91%, whereas 625 nM 

showed a 20% reduction at day 5. 

 

SBI-183 suppresses tumor cell invasion in vitro.  

QSOX1 knockdown decreases the invasive capacity of pancreatic and breast 

tumor cell lines. SBI-183 was tested for its ability to suppress tumor cell invasion in an in 

vitro trans-well migration assay (Figure 21). 2.5x104 786-O and UOK117 were plated per 

well in trans-well inserts in starvation media containing 10 µM and 5 µM SBI-183, or 

0.1% DMSO vehicle. Inserts were incubated in wells containing complete media for a 

period of 20 hours, after which the number of invading cells were quantified. Compared 

to vehicle treated cells, 10 µM and 5 µM SBI-183 treatment resulted in 70% and 54% 

reduction in 786-O invasion, respectively (Figure 21A). In UOK117 cells (Figure 21B), 

invasion was reduced by 70% with 5 µM SBI-183, and 87% with 10 µM. These results 

show that SBI-183 has anti-invasive properties in vitro, consistent with both QSOX1 
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knockdown as well as enzymatic inhibition by ebselen as reported previously [35, 38, 

48]. 

 

Daily oral gavage of SBI-183 retards the growth of 786-O and UOK117 xenograft 

tumors in a nude mouse model.  

Nude mice injected with MIAPaCa-2 tumors were treated daily with the QSOX1 

inhibitor ebselen show reduced tumor growth compared to untreated or vehicle-treated 

controls [48]. SBI-183 was tested determine whether it exhibited similar activity as 

ebselen and shQSOX1-expressing tumors in suppression of tumor growth [48] using 

nude mouse xenografts of renal cancer cell lines 786-O and UOK117 (Figure 22). As 

described in Chapter 2, 1x106 tumor cells were subcutaneously injected into the right 

hind flank and tumors were established for 1 week prior to initiation of daily oral gavage 

of 400 µg/mouse/day SBI-183 dissolved in 100% DMSO. Control mice receiving no 

treatment and those receiving vehicle alone were also tested. Regular length, width, and 

depth measurements were obtained using Vernier calipers at the intervals indicated in 

Figure 22. SBI-183-treated 786-O xenografts had average tumor volumes that were 

74.9% and 72.1% smaller than vehicle treated mice (Figure 22A). Similarly, mice treated 

with SBI-183 had significantly reduced UOK117 tumor volumes compared to vehicle, 

64.8% smaller on day 17, and 59.1% on day 19 (Figure 22B). There was no statistical 

difference in the tumor volumes of vehicle and untreated mice for either cell line. These 

results indicate that SBI-183 inhibits the growth of a human sarcomatoid renal cell 

carcinoma in an in vivo xenograft model. 
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SBI-183 treatment increases sulfhydryl concentrations and reduces the deposition of 

laminin in the ECM of tumor cell lines.  

Sulfhydryl groups on cysteines in reduced proteins may be substrates for QSOX1. 

While few specific substrates are known, it was shown recently that QSOX1 knockdown 

increases ECM thiols generally, and leads to defects in the incorporation of laminin α4 

into the ECM [45]. We sought to determine if QSOX1 inhibition by SBI-183 led to a 

similar phenotype (Figure 23). 1x104 MIAPaCa-2 cells per well were plated in a 96-well 

plate and grew them for 48 hours in the presence of 10 µM SBI-183. The cell monolayer 

was de-roofed, and sulfhydryls in the ECM were quantified using a maleimide-PEG2-

biotin probe (Figure 23A). Before labeling, control wells were treated with 100 mM DTT 

to expose a theoretical maximum of sulfhydryls through reduction of disulfide bonds, or 

with 100 mM N-ethyl maleimide for a control to quench exposed sulfhydryls. The 

binding of maleimide-PEG2-biotin to ECM sulfhydryls using streptavidin-HRP and 

developed wells using a TMB substrate. Compared to DTT-treated cells, vehicle-treated 

cells showed a 40% reduction in ECM sulfhydryls (p=0.0005). The sulfhydryl 

concentration in SBI-183-treated cell ECM was increased 61.5% compared to vehicle 

(p<0.0001), suggesting that SBI-183 inhibition of QSOX1 leads to an increase in ECM 

sulfhydryls, consistent with a QSOX1 inhibitor.  

786-O cells plated on poly-L lysine-coated coverslips were incubated for 48 hours 

with SBI-183 or DMSO vehicle, fixed, permeabilized and then stained with LAMA4 

polyclonal antibody. Images were captured showing the intensity of laminin staining in 

the ECM (Figure 23B). Significantly reduced LAMA4 was observed in SBI-183-treated 
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cells, suggesting that QSOX1 inhibition by SBI-183 results in observable defects in ECM 

composition normally associated with QSOX1 activity. 
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Figure 17. HVA-based QSOX1 activity assay confirms SBI-183 as a QSOX1 inhibitor. 
A) The activity of rQSOX1 exposed to 10 µM each of 20 hit compounds from an initial 
high throughput screen was determined compared to 0.1% DMSO vehicle. Shown is the 
total fluorescence after 10 minutes, represented as relative fluorescence units (RFU). 
Green star indicates rQSOX1 activity with exposure to SBI-183. B)  Assays performed in 
the absence of rQSOX1 were supplemented with 5 µM H2O2 to ensure that scavenging of 
H2O2 or inhibition of HRP did not yield false positives. C)  Structure of SBI-183.  
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Figure 18. Variable growth of tumor cell lines exposed to 20 hit compounds from high 
throughput screen for inhibitors to QSOX1 confirms anti-proliferative effect of SBI-183 
on renal cancer cell line 786-O (A), and pancreatic tumor cell line MIAPaCa-2 (B). Cells 
were exposed to compounds in complete media after overnight adherence and incubated 
for 72 hours followed by MTT analysis. Green star indicates cells treated with SBI-183. 
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Figure 19. SBI-183 dose responses for tumor cell lines and healthy donor lymphocytes. 
A)  Renal cancer cell lines 786-O, UOK-117, and A498 or B) Primary donor 
lymphocytes (either resting or stimulated with 10 µg/ml PHA) were exposed to 
compound for 48 hours and analyzed by MTT. For lymphocytes, the bottom of the curve 
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was determined from incubation of cells with 10 µM Staurosporine (B, right). Error bars 
represent standard deviation. C) IC50 values for SBI-183. IC50s for PBMC were 
determined using Staurosporine control. 
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Figure 20. SBI-183 decreases the rate of tumor cell growth. 1,250 cells per well of A) 
786-O, or B) UOK117 were plated in triplicate in 96-well plates and adhered overnight. 
At the time of compound addition, an MTT assay was performed to determine the 
baseline (“Day 0”) signal for each condition. Media containing SBI-183 at the indicated 
concentrations (or vehicle, 0.05% DMSO) was then added. Plates were analyzed by MTT 
at days 3 and 5 after compound addition. Error represents standard deviation. 
Significance was determined by 2-way ANOVA, * p<0.05, **p<0.01, ****p<0.0001. 
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Figure 21. SBI-183 decreases invasion of renal cancer cell lines in a transwell migration 
assay. 2.5x104 A) 786-O or B) UOK117 cells were adhered for 2 hours in serum-free 
media in transwell inserts and then exposed to 5 µM or 10 µM SBI-183 for 20 hours. 
Invasion was quantified as the average number of invaded cells per 20X field, n=3 unique 
fields counted per group. Significance was determined by two-tailed T-test, comparing 
SBI-treated cells to vehicle. Error bars represent standard error of the mean, **p<0.01, 
****p<0.0001. 
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Figure 22. Growth kinetics of xenografted tumors in nude mice treated with SBI-183. 
1x106 A) 786-O and B) UOK117 were subcutaneously injected into nude mice and 
tumors were established before initiation of daily oral gavage of 400 µg/day SBI-183 or 
100% DMSO vehicle. Real-time tumor measurements were taken at regular intervals, 
measuring length, width, and depth. Untreated mice are represented as closed circles, 
vehicle treated mice as closed squares, and SBI-treated mice as closed triangles. For 786-
O, n=5 mice per group except SBI-183 (n=4). For UOK117, n=5 mice per group, except 
vehicle (n = 4). Error bars represent standard error of the mean. Significance was 
determined by two-way ANOVA. *p<0.05, ***p<0.001, ****p<0.0001. 
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Figure 23. Extracellular matrix modulation by SBI-183. A) Extracellular matrix 
sulfhydryl quantitation performed on 1x104 MIAPaCa-2 cells exposed to vehicle or 10 
µM SBI-183 for 48 hours. Error bars represent standard deviation. Significance 
determined by two-tailed T-test, comparing vehicle-treated to SBI-183-treated cells. n=7 
wells averaged per group. B)  Immunofluorescence of LAMA4 (left) on 786-O cells 
treated with either vehicle (top) or 15 µM SBI-183 (bottom). Images were obtained from 
identical exposures and were not enhanced. DAPI-stained nuclei are shown at right. 
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Conclusions: 
 

 In collaboration with Sanford Burnham Prebys Medical Discovery Institute, 

rQSOX1 was screened against an in-house 50,000 compound library in a high-throughput 

enzymatic activity assay modified for luminescent output from an assay developed by 

Colin Thorpe’s group [25]. Twenty compounds were identified as potential QSOX1 

inhibitors (Appendix A). These compounds were obtained and re-tested at a 

concentration of 10 µM using an HVA-based assay (Figure 17). In this assay, most 

compounds showed modest inhibition of QSOX1 (Figure 17A), but no apparent 

scavenging of hydrogen peroxide or HRP inhibition (Figure 17B). The differences 

observed between the primary and confirmatory assays may reflect a difference in 

inhibitory capacity with respect to QSOX1 substrate preference; Sanford Burnham 

Prebys used a reduced RNAse A substrate whereas the confirmatory assay was performed 

using a model QSOX1 substrate, DTT. In future screens and structural optimization 

studies it may be therefore useful to utilize a validated QSOX1 substrate from the ECM 

to obtain inhibition data informative of QSOX1 activity in a more realistic context. An 

additional possibility for this discrepancy could result from inherent differences in 

measuring the activity of potential inhibitors using these enzymatic assays. For example, 

in the initial small molecule screen for ebselen [48], ROS Glo and HyPerBlu assays 

yielded different IC50 values (1.0 versus 5.4 µM, respectively), underscoring the need for 

confirmatory assays to lend confidence in moving forward with potential lead 

compounds; SBI-183 was active in multiple QSOX1 activity assays. The use of 

biological screens is also critical, as determining a biological phenotype consistent with 
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inhibition of the target enzyme is a powerful and necessary confirmation of target 

specificity. SBI-183, for example, showed growth inhibitory effects (Figure 17B) 

consistent with QSOX1 knockdown [35, 38]. While other compounds from the screen 

also showed growth inhibition, further enzymatic studies should be performed before 

proceeding with their full characterization, such as oxygen consumption assays or 

biological target modulation, to add confidence in their potential utility. 

 The growth inhibitory effect of SBI-183 was determined for several kidney cancer 

cell lines (Figure 19A): 786-O, UOK117, and A498, as well as a normal control cell type: 

peripheral blood mononuclear cells from a healthy donor (Figure 19B). A potent 

inhibitory effect of SBI-183 was observed in the tumor cell lines, with IC50’s of 2.86 

µM, 1.25 µM, and 3.37 µM for 786-O, UOK117, and A498, respectively. Remarkably, 

the IC50 for PBMC’s were 81.25 µM for resting PBMC and 33.4 µM for PHA-stimulated 

cells (Figure 19C). The large difference between these potencies suggest a reasonable 

therapeutic window, conservatively estimated at 9.9-fold when comparing the IC50’s of 

A498 and PHA-stimulated lymphocytes. It is of note that resting lymphocytes do not 

express QSOX1 and PHA-stimulated lymphocytes express extremely low levels of 

QSOX1-S [73], suggesting that the difference in relative potency of SBI-183 could be 

due to the high expression of QSOX1 in tumor cells. 

 Building upon the relative growth inhibitory effect on tumor cells after acute SBI-

183 exposure, the growth kinetics of 786-O and UOK117 were studied with extended 

SBI-183 treatment. Reduced growth rates in cells were observed, commensurate with 

their IC50 values. For 786-O, significantly reduced proliferation was observed with all 
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concentrations tested: 12% for 625 nM and 1.25 µM, 35% with 2.5 µM, and 89.8% with 

5 µM. Cytotoxicity was observed in UOK117 at higher concentrations, with cell death 

observed with 5 µM and 2.5 µM. 1.25 µM SBI-183 reduced UOK117 proliferation by 

91%, and 625 nM 20%. Both cell lines express similar levels of QSOX1 (Figure 14), so 

the differences observed in growth may be more complicated than a QSOX1 mechanism 

alone. Perhaps the cell lines differ in their expression of the targets of QSOX1 in the 

ECM. Ebselen, a documented inhibitor for QSOX, also showed variable growth effects 

presumably due to the fact that ebselen inhibits other proteins, and complex pathways 

interact to regulate cell growth and progression through the cell cycle [74]. Of note is the 

fact that the specific mechanism of how QSOX1 reduces tumor cell growth is 

uncharacterized. 

 Promotion of an invasive and migratory phenotype is a well-documented and 

compelling phenotype associated with QSOX1 activity having important implications in 

tumorigenesis [22, 35, 38, 48, 75]. It was shown previously that the selenium-containing 

small molecule ebselen exhibited potent anti-invasive activity with a QSOX1-dependent 

mechanism (Figure 7)[48]. The activity of SBI-183 was similarly tested in a trans-well 

migration assay using the renal cancer cell lines 786-O and UOK117 (Figure 21). A 

significant reduction in invasion of these cell lines was observed with SBI-183 treatment, 

70% and 54% for 786-O and 87% and 70% for UOK117 with 10 µM or 5 µM, 

respectively. These results emphasize the potential utility of small molecule inhibitors of 

QSOX1 in mediating anti-tumorigenic properties associated with its enzymatic activity.  
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Our in vivo renal cancer xenografts showed a statistically significant reduction in 

tumor growth for SBI-183-treated mice harboring both 786-O and UOK117 tumors. 

UOK117 vehicle-treated and untreated tumors grew very rapidly, reflecting of their 

sarcomatoid renal cell carcinoma lineage [76, 77], showing an increase in tumor volume 

of 40.3% in only 2 days for vehicle-treated mice, whereas tumor volume in SBI-183-

treated mice increased just 14% in the same period (Figure 22B); the final average tumor 

volumes of SBI-183-treated mice was just 40.8% of vehicle-treated. Similarly for 786-O 

tumor-bearing mice, in a 4 day period vehicle-treated mice had an average tumor volume 

increase of 40% in 4 days, while the average tumor volume increased just 9.4% at the 

same time for SBI-183-treated mice, with a final average tumor volume just 27.9% of 

vehicle-treated tumors. In both cases, however, tumor growth was not totally inhibited 

and tumors did continue to grow, albeit at a reduced rate. This was also observed for both 

ebselen treatment of nude mice bearing MIAPaCa-2 tumors as well as those with reduced 

QSOX1 expression from shRNA-mediated knockdown. 

 The extracellular matrix is an important regulator of normal cellular processes, 

providing the structural characteristics that support specific cell lineages [42]. The ECM 

also contains a broad signaling capacity that regulates cellular function and fate, and 

these properties are intrinsic to the local composition of cellular ECM [43]. Tumor cells 

modulate the local tumor microenvironment to promote dedifferentiation, growth, 

invasion, and immune evasion [44]. For example, in renal cell carcinomas and other 

cancers, laminins that contain α4 chains normally expressed by mesenchymal tissues to 

promote migration of inflammatory hematopoetic cells (like laminin-411 and laminin-
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421). Laminins are upregulated in tumors and have de-adhesive properties that promote 

tumor cell invasion [47]. In fact, downregulation of α4 laminins leads to decreased 

invasion of glioma cells [46]. Laminin α4 is an established QSOX1 substrate, and 

decreased expression of QSOX1 leads to defects in its deposition in the ECM of tumor 

cells [45]. SBI-183 treatment of 786-O renal cancer cells resulted in a marked defect in 

laminin α4 observed by immunofluorescence staining (Figure 23B), supporting the anti-

invasive properties of the compound through QSOX1 inhibition. 

QSOX1 knockdown also increases cysteine thiols in the ECM compared to 

control cells [45], representing potential QSOX1 substrates that are not currently known. 

Treatment of MIAPaCa-2 cells with SBI-183 markedly increased the incidence of 

sulfhydryls in the MIAPaCa-2 ECM (Figure 23A), suggesting that it has potential utility 

in discovering new QSOX1 substrates leading to a better understanding of QSOX1 

biology and its role in tumorigenic processes. 

The precise mechanism by which SBI-183 inhibits QSOX1 is not known, but 

future studies aim to address this important question. Mass spectrometric analysis of 

rQSOX1 did not result in the detection of stable adducts (Figure 24) like in the case of 

ebselen [48]. rQSOX1 alone was detected at the expected molecular weight of 58.8 kDa 

(Figure 24A); rQSOX1 exposed to SBI-183 did not result in an increase in the molecular 

weight of rQSOX1 (Figure 24B), indicating that the compound does inhibit QSOX1 

through covalent interaction. 
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Figure 24. Mass spectrum of 12 pmol recombinant QSOX1 A) alone, or B) exposed to 5 
µM SBI-183 and analyzed by LC-MS. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

QSOX1 is an emerging target in tumor biology that promotes tumor cell growth, 

invasion, and the alteration of extracellular matrix composition [22, 35, 37-39, 45]. 

Extracellular QSOX1 acts directly in the ECM to enhance tumorigenic processes as a 

consequence of its enzymatic activity. Deposition of a pro-invasive laminin subunit is 

inhibited by the suppression of QSOX1 in conjunction with an increase in ECM 

sulfhydryls [45]. The activity of the proteolytic enzymes like MMPs -2 and -9 are 

increased with elevated expression of QSOX1, suggesting a possible mechanism for the 

invasive properties exhibited by tumor cells expressing QSOX1 [22, 35, 38, 48]. While 

the in vitro effects of QSOX1 inhibitors have shown early promise in providing target 

specificity and demonstrate functional effects consistent with a QSOX1 knockdown 

phenotype, further investigation of these inhibitors including their pharmacokinetic and 

pharmacodynamic properties are needed. The optimization of inhibitor binding through 

rational model-based structural augmentation may, additionally, lead to greater 

specificity and increased biological potency [78, 79]. Such studies in conjunction with 

pre-clinical models will help to determination of the potential therapeutic efficacy of 

these compounds. Inhibition of QSOX1 in the clinic has the potential to decrease growth 

and invasion of tumors, possibly containing primary growth and increasing survival.  

Here we establish that QSOX1 promotes tumor growth in vivo, strengthening the 

connection between elevated QSOX1 expression and tumor aggression [31, 38, 39]. 

MIAPaCa-2 tumor xenografts with stable QSOX1 knockdowns grew in nude mice at 
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significantly reduced rates compared to controls (Figure 4). These data support other 

studies demonstrating a pro-tumorigenic role for QSOX1 [22, 31, 33, 35, 37-39, 45]. 

The enzymatic activity of QSOX1 is essential for its roles in invasion and regulation of 

extracellular matrix composition [38, 45]. Active, but not inactive, recombinant QSOX1 

rescues an invasive phenotype in tumor cells with reduced QSOX1 expression [38]. Also, 

an inhibitory single-chain antibody developed by the Fass group blocks QSOX1 activity 

and reduces the invasion of tumor cells across a fibroblast monolayer [45]; these results 

support the idea that directly targeting QSOX1 enzyme activity has anti-invasive 

properties. Thus, small molecule inhibition of QSOX1 may have therapeutic efficacy or 

reveal novel pathways in QSOX1 biology. 

 An enzymatic activity assay utilizing recombinant QSOX1 and a reduced protein 

substrate was used by Sanford Burnham Prebys Medical Discovery Institute to screen 

two small molecule libraries, the LOPAC1280 and an in-house 50,000 compound library.  

Two small molecules, 2-phenyl-1, 2-benzisoselenazol-3-one (ebselen), and 3-methoxy-n-

[4-(1-pyrrolidinyl)phenyl]benzamide, were identified as lead compounds (Figures 5 and 

17) and analyzed further to determine their biological effects in tumor cells with elevated 

QSOX1 levels and for mechanistic determination of their inhibitory properties against the 

recombinant enzyme. Ebselen, a small heterocyclic selenium-containing molecule [80], 

potently inhibits QSOX1 decreasing tumor cell growth in vitro (Figure 13) and in vivo 

(Figure 8), similar to QSOX1 knockdown [48]. Invasion of pancreatic tumor cell lines 

MIAPaCa-2 and BXPC3, and renal cancer cell lines 786-O and UOK117, were decreased 

upon ebselen treatment (Figure 7). Importantly, ebselen reduces invasion specifically 
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through QSOX1 inhibition (Figure 7A, far right), overcoming the rescue phenotype 

associated with the exogenous addition of active enzyme (Figure 7A, second from right). 

This result is significant and agrees with other reports regarding the contribution of 

QSOX1 to invasion [22, 35, 38], an event in tumorigenesis intrinsically linked to 

modification of the tumor microenvironment that often precedes metastatic spread [81, 

82]. However, it has been reported that the genetic backgrounds of metastatic lesions are, 

in some cases, very different than that of the primary lesion [83-85]. It would therefore 

interesting to investigate the expression of QSOX1 by primary tumor sub-populations 

and metastatic lesions to determine if there is enrichment of QSOX1-expressing cells in a 

highly aggressive context; modification of extracellular matrix composition at pre-

metastatic niche to promote metastasis, for example, may suggest a role for QSOX1 in 

this process [86-88]. Additionally, the contribution of QSOX1 activity in the tumor 

microenvironment as it relates to the behavior of the complex stromal milieu, including 

cancer-associated fibroblasts and cancer stem cells, is of interest given that their tumor-

promoting activity are, in part, enhanced by remodeling of the extracellular matrix [89-

92]. This also underscores the critical importance of defining the catalog of QSOX1 

substrates, which will provide invaluable clues to its role in tissue remodeling promoting 

tumor growth and invasion.  

Treatment of nude mice with ebselen resulted in decreased tumor growth over a 

28-day period (Figure 4), suggestive that the enzymatic activity of QSOX1 may also be 

responsible for its in vivo growth inhibitory properties. Previous studies have not 

investigated the mechanism underlying decreased growth, but it is also important to note 
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that there may not be a direct effect by QSOX1; rather, involvement of an unknown 

QSOX1 substrate may enhance tumor growth. Ebselen itself is known to inhibit a variety 

of other enzymes [68, 69] and, given the large number of overlapping pathways that 

stimulate proliferation, the use of a promiscuous inhibitor to probe the exact mechanism 

of growth modulatory effects would be better performed in a controlled knockout 

scenario or with the use of an exquisitely specific inhibitor. Complicating results obtained 

for tumor cell growth in vitro was the observation that ebselen inhibited many, but not 

all, of the tumor cell lines investigated (Figure 13), even though the relative expression of 

QSOX1 was similar (Figure 14). UOK117, for example, showed robust QSOX1 levels 

but was unaffected by ebselen with respect to growth (Figure 13D) – it was, on the other 

hand, very responsive to the anti-invasion effects of ebselen in accordance with the 

demonstration of the QSOX1-dependent interaction of ebselen in suppressing this 

hallmark phenotype. However, the substrates of QSOX1 are poorly defined, and there are 

no reports of QSOX1 directly influencing the expression of downstream factors which 

may contribute to tumorigenic processes. So, while QSOX1 levels may be similar among 

tumor cell lines of different histological types, this does suggest that the abundance of 

different substrates influencing processes like growth and invasion are similar. In fact, 

this makes substrate determination paramount to future work defining the role of QSOX1 

in promotion of tumorigenesis since its most basic function is to contribute to the 

structural fidelity of client proteins. 

Using a combination of molecular and proteomic approaches, the mechanism by 

which ebselen inhibits QSOX1 was determined. Ebselen has been observed to bind to 
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sulfhydryls and, in some instances, this is the reported mechanism of inhibition of 

enzymatic activity [69]. Its binding forms a covalent bond between the sulfur atom in an 

unpaired cysteine with the selenium moiety in ebselen [53]. Such a modification would 

be expected to measurably increase the molecular mass of interacting partners of ebselen, 

and it was thus hypothesized that ebselen interacted with the redox active cysteines in 

rQSOX1, resulting in its inhibition. To probe this possibility, rQSOX1 was treated with 

ebselen and subjected the protein to mass spectrometric analysis by LC-MS (Figure 

11A). Increased mass of rQSOX1 treated with ebselen was observed (middle), compared 

to vehicle-treated QSOX1 (top); this mass increase corresponded to the molecular weight 

of exactly two molecules of ebselen binding to QSOX1. The identity of these cysteines 

were determined, as this has important implications in the pharmacodynamics of ebselen 

inhibition. Ammoinia-based cleavage of free cysteines following their labeling with 1-

Cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) identified ebselen-binding 

cysteines through molecular weight mapping of the cleaved products (Figure 12). This 

approach identified C165 and C237 in native QSOX1 as those responsible for binding. 

This result was surprising because these cysteines are not thought to participate in the 

accepted disulfide relay pathway of QSOX1 [23]. Nonetheless, the identity of these 

cysteines raised important questions worthy of further investigation: what, for example, is 

the function (if any) of these cysteines in native QSOX1?  One possibility is that they 

somehow participate in the QSOX1 reaction cycle and thus interrupt electron flow during 

intramolecular disulfide transfer. While this is unlikely, these cysteines are highly 

conserved in highly divergent taxa (Figure 16) suggesting, at least, that they may be 
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functional. More likely is another possibility. The Fass group has reported that a 

conformational change promotes the transfer of electrons between the thioredoxin and 

ERV domains, bringing their CXXC motifs into close proximity to facilitate this 

exchange [20, 21]. This conformational change is dependent on the flexible linker that 

exists between these domains, a predicted disordered region with no discrete secondary 

structure [26]; this region contains C165. We hypothesize that steric interruption of the 

proposed conformational change by ebselen binding to C165 may result in QSOX1 

inhibition, but future studies are required to address this hypothesis. 

A second small molecule screen identifying SBI-183 as a QSOX1 inhibitor was 

followed up with similar biological analyses of this molecule in tumor cell lines and in 

vivo. In renal cancer cell lines, SBI-183 was found to be highly active as evidenced by a 

dose response and kinetic data probing its growth inhibitory effects (Figures 19 and 20, 

respectively).  

Similar to ebselen treatment and with QSOX1 knockdowns, SBI-183 inhibited the 

invasion of tumor cell lines in trans-well migration assays, belaboring the involvement of 

QSOX1 in this process (Figure 21). In nude mice bearing renal cell tumor xenografts, 

daily gavage of SBI-183 markedly decreased tumor growth (Figure 22). This result is 

particularly exciting with respect to UOK117 (Figure 22B), since the sarcomatoid lineage 

of renal cell carcinoma is highly aggressive and few therapeutic options exist [76]. It is 

worth noting, however, that ebselen was not active against this cell line in vitro, 

suggesting the need for additional research to clarify the role of both QSOX1 and these 

lead inhibitors on tumor cell growth. 
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Extracellular matrix modulation by QSOX1 promotes an invasive phenotype and 

has been implicated in discrete pro-invasive components into the ECM. Given the 

dynamic regulatory capacity of the ECM, targeting the ability of tumor cells to modulate 

its composition has the potential to retard the tumorigenic process [44, 46, 47, 93]. Since 

QSOX1 was shown to directly contribute to laminin α4 deposition and has other likely 

targets, we sought to determine whether QSOX1 inhibition led to defects in the ECM. 

Both ebselen and SBI-183 were found to decrease the ability of laminin α4 to properly 

assemble in the ECM and led to a general increase in the presence of extracellular 

sulfhydryls, highly suggestive of the presence of QSOX1 substrates (Figures 10 and 22, 

respectively). This result both strengthens the association between these molecules and 

the inhibition of QSOX1 activity in a biological system, they also suggest potential utility 

for exploring the cell biology of QSOX1 using these molecular probes. 

It is clear from the results presented here that chemical inhibition of QSOX1 has 

enormous potential as an investigational therapeutic avenue. Future research should focus 

on the contribution of QSOX1 to metastasis in vivo. 90% of cancer deaths are caused by 

metastatic spread of tumors from the primary site [94]. Local invasion occurs prior to 

metastatic dissemination and is mediated, in part, by alteration of the extracellular matrix 

by tumor cells [95, 96]. Evidenced by the crucial role of QSOX1 to invasive processes 

described by multiple groups and by the results of this work showing its inhibition leads 

to a decrease in invasion, an in vivo metastatic model utilizing QSOX1 inhibitors is 

required.  
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The specificity of new inhibitors and those described here should also be 

explored, with an emphasis on the identification of new molecules through small 

molecule screening using defined biological substrates as well as the structural 

modulation of ebselen and SBI-183 (and new molecules) using rational design-based 

approaches like molecular modeling (reviewed in [97]). A more useful counterscreen 

should also be developed, such as the use of ALR and protein disulfide isomerase, since 

these proteins have similar biochemical activity to QSOX1 [27, 98, 99]. Molecules that 

preferably inhibit QSOX1 over structurally related enzymes is highly desirable. Such a 

screen may identify inhibitors that exploit the unique structural and biochemical 

characteristics of QSOX1. The identification and improvement of molecules that more 

specifically inhibit QSOX1 will yield superior biological insights and, in a clinical 

context, fewer off-target effects that may reduce toxicity and increase therapeutic value 

[100]. 

An extremely important avenue of future research involves the characterization of 

the intra- and extracellular substrates of QSOX1. While few protein substrates are 

currently known, their identities could reveal both novel biology and potential applictions 

to QSOX1 inhibition. Some research has been performed to identify substrates in a broad 

sense [28, 101], but the specific identification of discrete substrates by mass spectrometry 

would yield enormous insight into the role of QSOX1 in normal and pathological 

processes. This could be very simply accomplished in a number of ways. For example, 

one could take advantage of the increased sulfhydryls that result from QSOX1  
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knockdown and inhibition, label them with maleimide conjugated to biotin, trypsin 

digest, and affinity purify the labeled substrate peptides for mass spectrometric analysis. 

The results of this research provide proof-of-principle that the enzymatic 

inhibition of QSOX1 has potential therapeutic utility. Decreased growth and invasion in 

tumor cells, extracellular matrix modulation, and the in vivo activity of QSOX1 inhibitory 

compounds is a crucial first step into investigating QSOX1 as a true clinical target. With 

the limited number of targeted therapies currently available to physicians and the general 

lack of compounds that target invasive behavior, building on the work here may have the 

potential to save lives. 
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INHIBITION DATA FROM SMALL MOLECULE SCREENS 
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CompoundID BatchID Structure QSOX1 
IC50 (uM) Error ResponseCurve Hill 

Coefficient

SBI-0094088 SBI-0094088.0001 4.89 0.2 1.5

SBI-0093948 SBI-0093948.0001 20.3 0.9 1.2

SBI-0138526 SBI-0138526.0002 2.08 0.1 1.4

SBI-0094735 SBI-0094735.0001 17.0 0.6 1.2

SBI-0094400 SBI-0094400.0001 12.0 0.5 1.3

SBI-0139966 SBI-0139966.0001 12.6 0.5 1.3

SBI-0127912 SBI-0127912.0001 4.51 0.2 1.5
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SBI-0094401 SBI-0094401.0001 6.66 0.3 1.4

SBI-0143343 SBI-0143343.0002 11.7 0.5 1.0

SBI-0088453 SBI-0088453.0001 6.80 0.3 1.2

SBI-0143183 SBI-0143183.0002 12.3 0.6 1.1

SBI-0137402 SBI-0137402.0001 19.1 1.0 1.1

SBI-0125703 SBI-0125703.0001 17.6 0.9 1.1

SBI-0132719 SBI-0132719.0001 5.32 0.3 1.4
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Table 1. Raw data from small molecule screen of rQSOX1 against Sanford Burnham 
Prebys Medical Discovery Institute 50,000 compound library. 

SBI-0093213 SBI-0093213.0001 35.1 3.1 0.7

SBI-0035734 SBI-0035734.0001 40.8 2.6 0.9

SBI-0138068 SBI-0138068.0001 8.59 0.5 1.2

SBI-0099708 SBI-0099708.0001 20.0 1.2 0.9

SBI-0093856 SBI-0093856.0001 13.1 0.7 1.1

SBI-0129659 SBI-0129659.0001 15.9 0.8 1.0
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