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ABSTRACT 

Photocatalytic water splitting is a promising technique to produce H2 fuels from water 

using sustainable solar energy. To better design photocatalysts, the understanding of 

charge transfer at surfaces/interfaces and the corresponding structure change during the 

reaction is very important. Local structural and chemical information on nanoparticle 

surfaces or interfaces can be achieved through characterizations on transmission electron 

microscopy (TEM). Emphasis should be put on materials structure changes during the 

reactions in their “working conditions”. Environmental TEM with in situ light 

illumination system allows the photocatalysts to be studied under light irradiation when 

exposed to H2O vapor. A set of ex situ and in situ TEM characterizations are carried out 

on typical types of TiO2 based photocatalysts. The observed structure changes during the 

reaction are correlated with the H2 production rate for structure-property relationships.  

A surface disordering was observed in situ when well-defined anatase TiO2 

rhombohedral nanoparticles were exposed to 1 Torr H2O vapor and 10suns light inside 

the environmental TEM. The disordering is believed to be related to high density of 

hydroxyl groups formed on surface oxygen vacancies during water splitting reactions. 

Pt co-catalyst on TiO2 is able to split pure water producing H2 and O2. The H2 production 

rate drops during the reaction. Particle size growth during reaction was discovered with 

Z-contrast images. The particle size growth is believed to be a photo-electro-chemical 

Ostwald ripening.  
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Characterizations were also carried out on a more complicated photocatalyst system: 

Ni/NiO core/shell co-catalyst on TiO2. A decrease of the H2 production rate resulting 

from photo-corrosion was observed. The Ni is believed to be oxidized to Ni2+ by 

OH· radicals which are intermediate products of H2O oxidation. The mechanism that the 

OH· radicals leak into the cores through cracks on NiO shells is more supported by 

experiments.  

Overall this research has done a comprehensive ex situ and in situ TEM characterizations 

following some typical TiO2 based photocatalysts during reactions. This research has 

shown the technique availability to study photocatalyst inside TEM in photocatalytic 

conditions. It also demonstrates the importance to follow structure changes of materials 

during reactions in understanding deactivation mechanisms.  
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CHAPTER 1 

GENERAL INRODUCTION 

1.1 Introduction to Photocatalytic Water Splitting.  

The generation of secure, sustainable and clean energy has been widely accepted as one 

of the most important scientific and technical challenge in this new century.  With a 

continuously increasing population and economy, total primary energy consumption is 

projected to grow by 8.6 quadrillion Btu (8.9%), from 97.1 quadrillion Btu in 2013 to 

105.7 quadrillion Btu in 2040. Most of the energy consumption is still from fossil fuels, 

coal, oil and natural gas. The growth of the energy consumption is in natural gas and 

renewables, while renewables contribute less than 10% to the total consumption [1].  

Even though the abundance of fossil fuels is sufficient to meet the demand for this 

century, the cumulative CO2 as the product of combustions of fossil fuels brings climate 

change problems [2, 3]. In addition to this, pollution from impurities in fossil fuels like 

sulfur oxide and nitric oxide also drive the demand for clean energy sources.  

         Among all the clean renewable energy sources, solar energy is the most abundant 

but the least utilized source so far. The demand of large solar harvesting areas and the 

high cost to manufacturer high efficiency thin-film solar panels limit solar electricity’s 

ability to compete with electricity generated by conventional power sources [4]. Besides, 

solar electricity generated in remote areas has to be transferred without much loss. The 

electricity has to be stored for night usage which demands reliable and efficient energy 

storage systems. To find a sustainable fuel source is compatible to today society’s energy 
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consumption system which depends on combustion of fuels. Converting solar energy 

directly into chemical energy stored in fuels is one of the most promising techniques to 

overcome those difficulties for producing fuels with sustainable solar energy.  

         There are several techniques to produce fuels in sustainable pathways. The one that 

has been mostly commercialized is biofuels.[1] Biofuels are produced mainly from plants 

through agriculture anaerobic digestion process. They are hydrocarbon-based fuels and 

the combustion of these fuels still releases CO2. However, CO2 in the atmosphere will be 

retaken into the biological cycles when growing plants for biofuels production. 

Traditional biofuel production through crops has a large impact on agriculture through 

large usage of farm land, fertilizer and water. Alternatively, algae has become promising 

with advantages of easy growth and much less impact on agriculture [5, 6]. However, 

there is still a long way to go to have algae as a commercial available source of biofuels 

before algae can be efficiently grown in a comparatively large scale to meet the energy 

need.  

         Another pathway includes solar water splitting for H2 production. H2 has very high 

energy density compared to other fuels and is completely clean energy source with H2O 

the only combustion product [7].  H2 fuels generated from solar energy can be transferred 

easily and consumed anywhere anytime. Solar water splitting can be realized by different 

techniques: thermal-chemical process, photo-voltaic (PV)/electrolyser, 

photoelectrochemical cells and photocatalysts. A thermal-chemical water splitting 

process can be carried out to produce hydrogen and oxygen at 500-2000ºC temperatures 

gained from concentrated solar light or waste heat of nuclear power stations. With the 
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help of reducible oxide materials like Ce(IV)O2/Ce(III)2O3, O2 and H2 can be released 

during the oxygen depletion/refill cycles on the materials when being heated up to 

2000ºC and cooled down to 500 ºC. The durability of the reactant materials and the 

design of safe and reliable high-temperature reactors are the main engineering challenges 

for this technique [8].  

          Solar water splitting can also be done through the electricity produced by photo-

voltaic panels. PV modules are coupled to electrolyser to provide voltage for H2 and O2 

generation. The generic electrolyser requires an ideal 1.9V for water splitting which gives 

a maximum efficiency 1.23/1.9=65% conversion at the electrolyser [9]. The final solar to 

hydrogen efficiency would be the PV efficiency times this 64%. For a multicrystalline Si 

PV/electrolysis system, 9% solar to hydrogen efficiency is expected. Solar water splitting 

can alternatively be done without the step of electrolyser. A semiconductor can be 

directly used as an electrode to take photons generating electrons and holes for redox 

reactions in electrolyte. The electrons or holes are transferred through connections to the 

counter electrode made with a metal or another semiconductor to do the other half 

reaction. This technique is called photoelectrochemical cell water splitting. Or it can be 

even simplified by using photocatalyst nanomaterials where electron-hole pairs are 

generated on the semiconductor material and diffused to some sites of the material for 

hydrogen evolution and another sites for oxygen evolution. Compared to PEC and 

PV+electrolyser, the photocatalyst nanoparticle suspension technique is much less 

expensive.[10] The PEC or photocatalytic water splitting techniques put high 
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requirements on semiconductor materials stability, bandgaps, band positions and catalytic 

properties.  

        It was first discovered in 1972 that semiconductors like TiO2 can take photons and 

generate electron-hole pairs which can be used for reduction/oxidation of H2O producing 

H2 and O2 [11]. The reactions can be done at much lower temperatures thus in a safer 

circumstance. It does not need sophisticated design of reactors and mirrors. However, the 

most stable and efficient photocatalysts discovered so far are very much limited to UV 

light absorption. The commercialization of this technique depends on the efficiency of 

the photocatalyst to utilize larger range of solar light. This thesis is focused on 

understanding some fundamental science problems in photocatalyst during photocatalytic 

reactions.  

1.1.1 Mechanism of Semiconductor Photocatalytic Water Splitting 

The mechanism of photocatalytic water splitting is illustrated in Figure 1.1. 

2𝐻2𝑂
𝑝ℎ𝑜𝑡𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 >1.23𝑒𝑣
⇔                 2𝐻2 + 𝑂2 

 

When a photon is absorbed by a photocatalyst semiconductor, an electron is excited into 

conduction band leaving a hole in the valence band.  Photoexcited electrons and holes are 

then taken to reduce H+ to H2 and oxidize OH- to O2 respectively. The band gap of the 

semiconductor which can do photocatalytic water splitting has to be larger than 1.23eV, 

the energy difference between the hydrogen reduction level 𝐸𝐻2/𝐻2𝑂 and the water 

oxidation level 𝐸𝐻2𝑂/𝑂2 [12].  The bottom of the conduction band of the semiconductor 
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has to be more negative than 𝐸𝐻2/𝐻2𝑂and the top of the valence band has to be more 

positive than 𝐸𝐻2𝑂/𝑂2. Besides the requirements of band structure, the semiconductors 

used as photocatalysts have to be stable in water under photoreaction conditions. For 

example, CdS with proper band structure cannot be used directly as a photocatalyst 

without hole scavengers because of photo-corrosion issue: CdS+h+
 Cd2++S [13]. 

Metal-oxide semiconductors such as TiO2 are widely researched as photocatalysts for its 

abundance and stability. The main difficulties restricting photocatalyst from high energy 

conversion rates are [14]:  

i. High e-h recombination rate: electron and hole pairs generated from photon 

excitation can recombine very fast if not separated efficiently and taken by 

absorbates for redox reactions. 

ii. High back reaction rate: H2 and O2 produced from water splitting is 

thermodynamically preferred to recombine forming H2O again. It is critical to 

have H2 and O2 produced at different sites and separated efficiently.   

iii. Most of the stable photocatalyst substrates are metal oxide which have large 

band gaps only taking UV light. Solar energy utilization is low if the 

photocatalyst can only work in UV range. According to Shockley-Queisser 

limit, the theoretical maximum solar conversion efficiency of a semiconductor 

with bandgap 3.0 eV is only about 5%. Even within this 5%, only 1.23eV/3eV 

is converted into producing H2 and O2 making the efficiency too low.  A 

photocatalyst with proper bandgap closer to the 1.23eV will dramatically 

increase the solar conversion efficiency.  
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        Regarding the issues mentioned above, different techniques have been developed to 

better modify photocatalysts towards real industry applications. TiO2, as one of the most 

stable and abundant oxide semiconductors, shows relatively good photocatalyst 

properties in UV range. It has been widely accepted as basic photocatalyst for further 

modification to overcome the issues mentioned above. The following discussion will be 

focused on TiO2 and modifications to TiO2 as typical examples of major methods to 

improve efficiency of photocatalysts for H2 production. 

1.1.2 Photocatalyst Modification Techniques.  

One of the key factors influencing catalysts’ properties is surface area. Small particles 

with high surface area to volume ratios help absorb reactants at high surface energy sites. 

Besides, electron-hole pairs travel less distance to reactants reducing the chance of 

recombination. Wang et al discovered an increase of photocatalytic activity of TiO2 with 

particle size dropping from 21nm to 11nm and a decrease of activity with further size 

decrease from 11nm to 6nm [15,16]. Their explanation was that small particle size helps 

reduce bulk e-h recombination while too small particle size results in surface e-h re-

combination happening much faster than interfacial charge transfer from TiO2 to 

reactants. 

        Innovative nanostructures including mesoporous TiO2, TiO2 nanowires and TiO2 

nanotubes have been prepared to achieve better performance of TiO2 photocatalysts. 

Gong et al. developed the technique of potentiostatic anodization of titanium to prepare 

highly ordered, vertically oriented TiO2 nanotube-arrays - a material architecture that 

offers a large internal surface area without decrease in geometric and structural order 
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[17]. Liu et al. fabricated the innovative TiO2 nanorods grown on transparent conductive 

glass fluorine-doped tin oxide (FTO) using a hydrothermal method [18]. This 1-

dimensional highly oriented nanostructure on conductive glass substrate is suitable for 

electro-photocatalytical water splitting and allows light illumination from the back side of 

the electrode close to the connections.  

         Besides the innovation of novel nanostructures, TiO2 is also commonly coupled 

with metal co-catalysts for better photocatalytic properties. As shown in Figure 1.2, a 

metal co-catalyst is believed to help attract photo-generated electrons therefore reducing 

e-h re-combinations [19].  The metal particles, such as Pt, also act as reduction catalysts 

via electron transfer to adsorbed protons, reducing them to H2 which then desorbs from 

the surface [20]. Anpo et al. have applied electron spin resonance (ESR) to study the 

electrons transferred from TiO2 to Pt. It was found that the amount of Ti3+ is increased if 

there is no loading of Pt. The loading of Pt absorbs photo-excited electrons from TiO2 

preventing reduction of Ti4+ [21]. Usually noble metals such as Pt, Au and Pd work the 

best as metal co-catalyst because of the work function, electron affinity and hydrogen 

absorption/desorption energy [22]. Efforts have been put into developing less expensive 

metal co-catalyst like Cu and Ag [23, 24].  

         Semiconductor coupling is also used to better separate the electron-hole pairs and 

utilize visible light for hydrogen generation. A common design is to have TiO2 coupled 

with a smaller band-gap semiconductor which has a more negative conduction band. The 

electrons excited in small bandgap semiconductor will be transferred to TiO2 conduction 

band and therefore separated from recombination. For example, So et al. have applied 

CdS/TiO2 composite semiconductor for photocatalytic hydrogen production [25].  
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However, most of the small band-gap semiconductors are not resistant to 

photocorrosions. Hole scavengers like Na2S have to be added to protect the CdS from 

photocorrosion [13]. Another example for the semiconductor coupling is TiO2 coupled to 

SiC and WO3 [26]. Excited electrons are transferred from SiC to TiO2 and then to WO3 

according to their conduction band positions. Even though the semiconductor composites 

show an increase in the photocatalytic oxidation of methylethylketone because of charge 

separation efficiency, they cannot be applied for H2 production because the CB of WO3 is 

not more negative than the H2O/H2 redox potential.  

           Efforts have also been made to combine different modification techniques into one 

system. Domen et al. developed the Ni-NiO core-shell structure on SrTiO3 

semiconductors by reduction-partial oxidation method. This structure has shown 

enhanced H2 production rate [27, 28]. The mechanism was later proposed to be that the 

protons were reduced at the Ni sites and H2O oxidized at the NiO sites. Electrons transfer 

to Ni while holes transfer to NiO thus helping separate e-h pairs. Also since the H2 and 

O2 were produced at different sites, this system suppresses the back reactions [29].  

Similarly, Maeda et al. prepared noble metal/Cr2O3 core/shell structure on (Ga1-xZnx)(N1-

xOx) photocatalysts and observed enhanced water splitting under visible light [30, 31]. 

Yoshida et al. performed in situ infrared reflection absorption spectroscopy (IRAS) on 

electrodes prepared with noble-metal/Cr2O3 co-catalyst and discovered Cr2O3 is 

permeable to protons and hydrogen but not oxygen. The shell helps to prevent back 

reactions of H2 and O2 which is the reason for higher production of hydrogen [32]. 

Besides the innovative morphology of TiO2, the loading of metal co-catalyst and the 

coupling of other semiconductors, other techniques such as dye-sensitization, doping of 
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ions and adding electron/hole scavengers have also been applied in an effort to improve 

photocatalytic properties [33-35]. All those modifications are targeted at resolving the 3 

main issues about photocatalysis: e-h recombination, H2 and O2 back reaction, and visible 

light response.  

1.1.3   Understanding fundamentals of photocatalysts during reactions using TEM. 

While substantial improvements in performance have been realized for photocatalytic 

water splitting, better design of the photocatalyst requires more understanding of 

fundamentals in charge transfer to the catalyst surfaces or between co-

catalyst/semiconductor interfaces, absorption/desorption of reactant molecules and 

corresponding surface structure changes. Photocatalytic properties are compared with 

limited discussion of materials microstructures and structure evolution during the 

reactions [12, 14, 36]. Domen et al. have used X-ray photoelectron spectroscopy (XPS) 

and extended X-ray absorption fine structure (EXAFS) to determine the NiOx 

compositions on SrTiO3 after different heat treatment and found evidence of Ni(OH)2 on 

the co-catalyst surface [27]. Henderson et al have used temperature programmed 

desorption (TPD) and high resolution electron energy loss spectrum (HREELS) to study 

the water absorption and dissociation on TiO2 (110) surfaces [37]. These spectroscopy 

studies provided valuable information about material compositions and reactions on 

surfaces. Such analysis usually provide averaged information on nanomaterials but it 

would be useful to combine these approaches with visualization of local structural 

information on nanoparticles. Bikondoa et al. and Wendt et al. have performed valuable 

research for direct visualization of water dissociation on TiO2 (110) using scanning 

tunneling microscopy (STM) [38-40]. STM research usually requires bulk single crystal 
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materials with flat terminated facets. Localized information, on nanoparticles with high 

surface, corresponding to specific facets or surface features like steps or vacancies are not 

available through such characterizations. Besides, these characterizations are usually 

done at high vacuum or with very small amount of water molecules which may not 

represent the real reaction conditions. Characterization using transmission electron 

microscope (TEM) overcomes these limitations providing localized information at the 

nanoscale. Environmental TEM can provide a photo-reaction conditions allowing the 

photocatalyst to be characterized in its “working conditions”.  

         Considerable less work has been mentioned about materials deactivation in the 

review papers in this area [12, 14, 36]. Many researchers have developed new 

photocatalysts and tested their performance. The characterizations are emphasized on 

photocatalyst initial structures with less attention on structures during the reactions. This 

thesis summarizes comprehensive research work carried out by TEM to study typical 

photocatalysts during the reactions. The structure evolution during reactions were 

followed by ex situ and in situ TEM characterizations. The observed structure change is 

correlated to the photocatalytic properties of H2 production. Working and deactivation 

mechanisms are revealed which shine light on a better understanding of fundamentals of 

photocatalytic water splitting and better design of photocatalyst.  

1.2 Introduction to Environmental Transmission Electron Microscopy 

Transmission electron microscope (TEM) was invented in 1932 by Ruska [41]. Since 

then transmission electron microscopy has been applied to achieve structural and 

chemical information of materials which could not be obtained by light or low energy 
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beams. The information that can be obtained includes not only the general microscopic 

morphologies like particle sizes and shapes, but also surface/interface atomic structure 

and chemical composition [42]. The atomic scale information at surfaces/interfaces are 

the most critical information for analysis of catalysts. However, the information achieved 

in a regular TEM at room temperature in vacuum may not be the same as the information 

in a reaction atmosphere.  To design a better catalyst, the structure and chemical 

compositions of catalysts have to be studied when they are actually catalyzing reactions 

in “working conditions”. This requires the presence of reactants and a proper temperature 

(enough to activate the reaction but not too high to challenge the instrument and materials 

stability). For photocatalysts, it also requires the light illumination. Those requirements 

can be met by utilizing environmental TEM (ETEM) in in situ experiments.  

            “In-situ” means “in the place” in Latin.  In the “in situ” experiments, stimuli are 

applied to materials, the structural and chemical response of materials are characterized 

in the TEM. TEM sample holders are modified to introduce external stimuli such as 

heating, cooling, gas or liquid reactants, mechanical strains, electrical bias and light etc. 

[43-45]. However, due to the limited space and high stability requirement, it is an 

engineering challenging to apply both the reactants and more than two stimuli at a time 

on a single holder. Specific holders are restricted to a few specific experiments. 

Alternatively, TEM can also be equipped with environmental pumping cells to provide 

gas reactants around the sample materials. Certain temperature can be provided by hot-

stage sample holders or cryo holders. For the in situ characterization of photocatalysts, a 

light illumination system was designed and attached to the environmental TEM FEI 

Tecnai F20 [46]. 



12 
 

A regular TEM works in high vacuum condition (10-6 to 10-10 Torr) so as to avoid 

electron-gas scattering and the electron source being attacked by gas molecules. To view 

the in-situ reactions, gas reactants have to surround the TEM sample but must be 

confined only to the small spacing around the sample. Otherwise, gases will disturb the 

vacuum system and the electron gun. This configuration can be achieved by 

incorporating window cells into TEM sample holders [47-49]. The gas is injected from 

small tubes in the holder into the window cell with the TEM sample encapsulated 

between electron-transparent thin membranes. With this method, pressures even larger 

than ambient atmosphere can be achieved [50]. However, the membrane can significantly 

affect the quality of the high-resolution image.  

        An alternative technique is to build an environmental cell in the microscope around 

the sample stage [51-53]. As shown in Figure 1.3, the environmental cell is a special 

chamber which allows a certain gas pressure around the TEM sample. The electron beam 

goes through the pumping aperture on the upper and lower pole pieces. Gases are injected 

into this chamber and pumped through differential pumping systems. 20 Torr of gas can 

be accumulated around the sample material by controlling the pumping speed and 

optimizing the sizes of pumping apertures. This setup allows a reasonable gas pressures 

without sacrificing the spatial resolution [54, 55]. There will be some scattering of 

electrons by gas molecules affecting the resolution. However the effect is much smaller 

than the interactions with window materials for window cells. The environmental cell is 

usually very reliable for handling different gas atmospheres for different types of 

experiments. One other advantage is that gases can be sufficiently mixed before they are 

allowed into TEM columns with precise valves.  
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1.3 Outline 

Chapter 2 introduces the main experimental methods used in this dissertation including 

the main characterization and instrumentation. Following that, examples of different 

types of TiO2 based materials are discussed for their structure evolutions during the 

photocatalysis reactions characterized by in situ and ex situ experiments. Chapter 3 

discusses the surface amorphization observed on pure TiO2 anatase particles when 

exposed to H2O vapor and light. After achievements of knowledge on basic TiO2 

materials, Pt/TiO2 as an example of noble metal co-catalyst on TiO2 is studied. Chapter 4 

describes the light-induced Ostwald ripening of Pt on TiO2 which is a special case of 

Gibbs-Thompson effect of noble metals on semiconductor. Then additional research is 

carried out on more complicated photocatalyst system-Ni/NiO core shell co-catalyst on 

TiO2. Chapter 5 discusses the photo-corrosion of Ni/NiO core/shell structure on TiO2 

under light irradiation in liquid H2O. Chapter 6 summarizes the research work and 

describes the future direction of this work. Graphene liquid cells are being prepared and 

the surface electronic structures of TiO2 based photocatalyst can be explored using the 

ultra- high energy resolution electron energy-loss spectrum equipped on monochromated 

NION microscope.TiO2 optical data together with the photon absorption calculation are 

discussed in Appendix I. Discussion of radiation damage is provided in Appendix II.  

Research work on CdS nanodots on TiO2 nanorods and Ag nanoparticle coarsening are 

discussed in the appendix III and IV.  
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Figure 1.1 Schematic drawing of the photocatalytic watersplitting mechanisms 

[12]. Ni et al. Copyright 2007, Renewable Sustainable Energy Review  
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Figure 1.2 Schematic drawing of working mechanism for metal co-catalyst.  
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Figure 1.3 Schematic drawing of the construction of environmental cell in TEM.[52] 
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CHAPTER 2 

INSTRUMENTATION AND EXPERIMENTAL METHODS 

2.1 Introduction   

Since this dissertation includes heavy characterization work, some detailed introduction 

of the main characterizations and instrumentations will be given in this Chapter. 

Photocatalytic reactions were carried out in a self-designed photo reactors. The products 

were measured in a Varian 450-GC Gas Chromatography (GC). The structural change of 

photocatalyst materials were carried out in situ in an environmental transmission electron 

microscope FEI Tecnai F20. Ex-situ experiments were carried out in a JEOL 2010F using 

TEM and STEM techniques for observation of structural change. Chemical information 

like reduction/oxidation states, surface band structures were explored using electron 

energy loss spectrum (EELS) on JEOL ARM 200F and NION UltraSTEM 100. X-ray 

photoelectron spectroscopy (XPS) was also applied to detect the valence states of surface 

atoms. Inductively coupled plasma mass spectrometry (IPS-MS) is applied to detect ions 

in water to understand photo-corrosion.  

2.2 Catalytic Property Measurements 

2.2.1 Photocatalysis Reactors 

The self-designed photoreactor is shown as in Figure 2.1. The glass reactor is a 1.5 inch 

diameter cup with a 1/8 inch diameter inlet connected to a carrier gas tank and a 1/8 inch 

diameter outlet connected to a gas chromatography system. A 2 inch diameter quartz 

window together with an O-ring is clamped to the reactor to seal the top. Light is 

illuminated through the quartz window vertically from the top. The water suspended with 
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phototcatalysts was kept stirred during all the photocatalysis reactions. A 450W xenon 

research arc lamp house (Newport Inc.) was used as the light source for ex situ 

photocatalysis reactions. A 350nm to 450nm mirror together with a heat sink was used to 

filter off infrared light so the output port of the lamp house and the reactor did not get 

heated to high temperature. The light intensity can be calculated knowing the spectrum of 

the light bulb, the geometry and the reflectance of the filter. It was calculated to be 

50mW/cm2. The light intensity was also checked with Si-biased photo detector 

(THORLABS DET10A) to be consistent with the results from calculation.  

2.2.2 Reaction Products Measurements.  

The products of the photocatalysis reactions were measured by gas chromatography. Gas 

chromatography is a chemical analysis instrument which allows different components in 

a gas mixture to be separated and analyzed based on chromatographic separation 

principles. In gas chromatography, there are mobile and stationary phases. The mobile 

phase is usually an inert or unreactive carrier gas such as He, N2 or Ar. The stationary 

phase is a layer of liquid or polymer on an inert solid support, inside a piece of glass or 

metal tubing called a column. When the gaseous compounds pass through the columns, 

they interact with the walls of the columns coated with stationary phases. Different gases 

pass through the columns in different time depending on the interactions between the gas 

and the column. This time is called the retention time of each gas. The gases having 

higher affinity to the surface of the stationary phase will pass the column in a longer 

retention time compared to gases with less affinity to the stationery phase. When the gas 

https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Liquid
https://en.wikipedia.org/wiki/Polymer
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Glass
https://en.wikipedia.org/wiki/Metal
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chromatograph is plotted, the horizontal axis represents the retention time. Each different 

gas corresponds to a peak position along the -axis.  

          The intensities of the gases are measured by detectors in the GC. There are 

different kinds of detectors used in GC, such as thermal conductivity detector, flame 

ionization detector, mass spectrometer (MS) etc. Both TCD and FID were available on 

the Varian 3900 Gas Chromatography we used for our H2 production rate measurement. 

TCD was used for our experiments. The TCD has two pathways, a sample path and a 

reference path. It measures the thermal conductivity difference from the sample side to 

the reference side. Carrier gas is continuously flowed through the reference path while 

different gases pass the sample path at a sequence dependent on the speed each gas is 

eluded from the column. The thermal conductivity of the carrier gas has to be very 

different from the gas needed to be measured. The thermal conductivity of different gases 

is summarized in Table 2.1 [1]. Ar was chosen as the carrier gas for H2 detection while 

He was used for O2 detection. For the gas chromatograph plotted from the GC, vertical-

axis represents the intensity of different gases and the area under each peak is 

proportional to the amount of each gas. However, the peak areas cannot be directly 

interpreted as the amount of the gas because the thermal conductivity difference of each 

gas to the carrier gas gives different peak intensity ratio. The measured results has to be 

multiplied by a correction factor gained by the calibration from a known partial pressure 

of that pure gas mixed in the carrier gas. For H2 detection using 3 cc/min Ar carrier gas, 

the integration of the area under the peak should be multiplied by correction factor 0.018 

to get the real H2 production rate with unit μmol/h.  
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2.3 Nanoscale Characterization 

2.3.1 Observing structural changes using TEM and STEM 

In a transmission electron microscope (TEM), high energy electron beam is transmitted 

through an ultrathin sample, interacting with materials, providing structural, chemical and 

electronic information of the sample materials. The first TEM was built by Max Knoll 

and Ernst Ruska in 1932 for the purpose of observing specimen smaller than the 

resolvable scale of the optical microscope [2]. A high-energy electron beam is used to 

illuminate the sample. An electromagnetic field was applied as lenses to focus or expand 

the beam and change the magnification. After interaction of the electron beam with the 

sample, the image is formed on a screen made with fluorescent materials or on a CCD 

camera.  

        Figure 2.2 shows the main components of a basic TEM. The electrons are emitted 

from electron guns. There are two kinds of electron gun-the thermionic gun and field 

emission gun (FEG). The thermionic guns are usually made with tungsten filaments or 

lanthanum hexaboride (LaB6) crystals. The filament is heated to a high enough 

temperature to overcome the natural barrier preventing them from leaking out from the 

surface. The field emission gun tip is made of tungsten needles with sharp points so a 

high electric field E =
𝑉

𝑟
 can be applied on to the tip with a very small radius r under a 

high voltage V. Field emission guns compared to thermionic guns have much better 

coherence and brightness which are critical to high-resolution TEM. Accordingly, the 

FEG is most popular on recent microscopes [3]. For FEG electron source, high extraction 

voltage is applied to pull out electrons from the tip and another ultra-high (usually 60kV-
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300kV) voltage is applied to accelerate the electrons forming high energy electron beams. 

The electron beam is then adjusted by the condenser aperture and condenser lenses for 

needs of different intensity and convergent angles.  

       The electron beam will then pass the image forming system-objective lens and be 

transferred through intermediate lenses and projector lenses. The objective lens forms the 

first image and is thus most important for a good quality TEM image. The intermediate 

lenses change the magnifications and the projector lens transferred the image onto the 

screen or the camera. The images are projected onto a fluorescent screen for direct 

observation, or they can also be viewed and recorded on CCD cameras under the screen. 

There are two main types of TEM images-amplitude-contrast images and phase-contrast 

images, although they usually both contribute to one image [4]. The amplitude contrast 

results from the variation of mass or thickness of uniform samples, or when the objective 

aperture is used to form bright-field or dark-field images. At thicker areas where the 

beam interacts more with the materials, there will be more scattered beam and less 

transmitted beam than in thinner areas. When a bright field (BF) images is formed using 

the direct beam, thicker areas or areas with more mass of materials show darker contrast 

in the image. When a diffracted beam is used to form dark field (DF) images, the thicker 

areas will look lighter. The amplitude contrast allows us to distinguish material shapes, 

defects and morphology features. The phase-contrast images results from phase 

difference of the electron waves scattered by the thin specimen. For example, when a 

crystal material is oriented close to Bragg scattering angle for its certain crystal plane, 

electron beams which have gone through the Bragg’s scattering interfere with (000) beam 
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and will form fringes with the distance of the d-spacing of the crystal planes. The phase 

contrast can be exploited at high magnifications for atomic structure of the samples. To 

detect the atomic phase contrast, it requires the microscope instrument to have optimum 

parameters so sufficient resolution can be achieved. For example, a common accepted 

information limit r = 0.66𝐶𝑠
1

4λ
3

4 relies on the spherical aberration Cs and the wavelength 

of the electron beam λ [5,6]. One may observe details in the scale smaller than this 

resolution but this resolution represents the interpretable resolution within which the 

image features can be trusted. This is related to the contrast transfer function (CTF). At a 

fixed Cs and optimum defocus (Scherzer defocus), the information limit corresponds to 

the first crossover of the CTF on the x axis.  

        Shown by the ray diagram of TEM image mode and diffraction mode in Figure 2.3, 

when the image plane of the objective lens is chosen as the objective plane of the 

intermediate lens, TEM images are formed on screen. TEM is used in diffraction mode 

when back focal plane of the objective lens is chosen as the objective plane of the 

intermediate lens. By measuring the distance between the diffracted spots to the center of 

the pattern, lattice spacings can be calculated knowing the wavelength and the camera 

length. Crystal structures can be determined with diffraction patterns. The lattice spacings 

achieved from the diffraction patterns can be compared with the lattice spacings of 

standard bulk materials for information of strain and impurities.  

          Another important mode of TEM is scanning transmission electron microscopy 

(STEM) which uses a focused electron beam probe to scan the specimen in a raster. The 
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electron beam is focused to a convergent probe and shifted across the sample by scanning 

coils located between condenser lens and the objective pole pieces. Bright-field or dark-

field STEM images can be formed depending if the detector is placed to take un-scattered 

electrons or scattered electrons. High-angle scattered electron signals include more 

contribution from the scattering with heavier atoms. When a high-angle annular detector 

is used to capture scattered electrons, the heavy atoms show brighter contrast in the 

corresponding STEM images. This is so called the Z-contrast images where Z represents 

the atom number. Z-contrast images are very suitable for studying noble metal catalyst on 

supports [7, 8]. STEM is also preferred for studying localized chemical composition and 

electronic bonding with the help of energy-dispersive X-ray (EDX) spectroscopy and 

electron energy-loss spectocopy (EELS) techniques. The resolution of the STEM image 

depends on the probe size which relies on an optimum combination of electron source 

brightness, the convergent angle and spherical aberration [9]. The ex-situ study of Pt size 

distribution during the photocatalytic reactions using STEM was carried out with the 

JEOL JEM 2010 operated at 200kV with spherical aberration Cs=0.5mm.  

        Similar to the optical microscopes, resolutions of TEM/STEM are limited by the 

imperfections of electron beam source and electron lenses. There are many different 

aberrations but two important ones are chromatic aberration Cc and the spherical 

aberration Cs. The chromatic aberration results from the spread of the wavelength of 

electron beams. It is greatly improved by using monochromators with slits to filter or 

narrow the spread in wavelengths [10]. Spherical aberration is corrected by a set of 

specially designed auxiliary "lenses" which are called aberration correctors [11, 12].  
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These correctors produce negative spherical aberration cancelling out the positive 

spherical aberration of the objective lens. Some of the ex-situ characterization TEM 

images were taken on image-aberration-corrected FEI Titan. 

2.3.2 In-situ Characterization in Environmental TEM 

To better design photocatalyst we would like to understand charge transfer at 

surfaces/interfaces and the resulting structure changes that take place under working 

conditions. Different TiO2-based photocatalysts were characterized in situ in FEI Tecnai 

F20 environmental TEM equipped with a light illumination system.   

2.3.2.1 Environmental TEM 

The environmental TEM FEI Tecnai F20 is a field-emission TEM operated at 200kV 

with an information limit 0.14 nm. Besides TEM, STEM and EELS capabilities, the F20 

is equipped with gas handling and light illumination systems. The gas handling system is 

shown in Figure 2.4. It is composed with a gas mixing tank, a gas inlet to the TEM 

chamber and two outlets from first and second level differential pumping. The water is 

evaporated from a glass container on a branch of the gas inlet. The gas pressure is 

precisely controlled by a leak valve on the inlet to the chamber. The FEI Tecnai F20 is 

equipped with a differential pumping system shown in Figure 2.5. The gas is injected 

from the inlet at the same level of the sample. The leaking of gas into the remainder of 

the TEM column is controlled by the first and second level differential pumping apertures 

so the specimen can be surrounded by sufficient gas pressure while the gas will not be 

released to degrade the vacuum system and destroy the gun. The gas pressure which the 
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pumping system can handle is dependent on the weight and affinity of different gas 

molecules. For H2O gas, in situ observation can be performed even with saturated H2O 

vapor pressure at room temperature which is around 18 Torr. To avoid contamination and 

also generate a condition close to a practical vapor-phase water-splitting condition, a 

moderate heating of the sample to 150 °C was performed for some of the in situ 

experiments. Different heating holders can only be used with certain gases and 

temperatures. For example, heating holders with furnaces made of Ta cannot be used in 

strongly oxidizing gas mixture at high temperature. Some heating holders need water 

cooling above 500°C. The temperature at the sample is measured by the thermocouple on 

the holder. The temperature is controlled by changing the current running into the furnace 

under the specimen.  

           A very important factor to the success of in situ experiments is to minimize the 

contamination problem. Contamination could be any unwanted gas which may disturb the 

results of in situ experiments. A common contamination is hydrocarbon gases depositing 

amorphous carbon layers on samples under electron beam. The carbon contamination 

film will degrade the visibility of fine crystal structures and reduces the contact of surface 

atoms with reactant gases. There are multiple sources of contamination. The connections 

and valves of the gas-handling system may have leak problems exposing the system to 

air. Installation of the light illumination system requires venting the chamber also 

exposing the chamber to air. Very small amount of hydrocarbon in the air could cause 

serious carbon contaminations. Complex gas precursors may have been used for 

experiments like in situ characterization of Si wire or carbon tube growth [13-15]. The 
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precursors could stick to the walls of the chamber and the lines as a contamination source 

for later experiments. “Bake-out” is a regular procedure to deal with contamination. The 

lines and valves of the gas handling system are wrapped with heating tapes. When 

running a bake-out, electric current runs through the tapes, heating the gas handling 

system to 150°C- 200°C. Cooling water is cut off for the TEM column and the current 

running through the coils of the electro-magnetic lenses heats the column to about 80°C. 

The baking of the whole system helps to detach the residual contaminants from the walls 

and are then pumped out with all the valves open. It is important to keep both the gas-

handling system and the microscope warm so contaminants baked out do not redeposit at 

cooler places. The contaminants will be greatly reduced after the bake-out. Further 

cleaning can be done with plasma cleaners generating an oxidative plasma to decompose 

the contaminants. The water and the water container which were exposed to air could 

also contain contaminants. Before in situ experiments, H2O vapor is always bypassed 

from the TEM chamber and directly pumped for over 30mins before it was let into the 

TEM chamber. This procedure is to ensure that the initial accumulated contaminants 

attached to the container or dissolved in the liquid water get pumped out first. 

2.3.2.2 In situ Light Illumination System. 

In order to set up reaction conditions for in situ characterization of photocatalyst, light 

illumination is required. Not many works have been reported developing light 

illumination systems on TEM. Yoshida et al. developed a light illumination system where 

10mW/cm2 UV light was directed through an optical fiber from an outside light source 

onto the TEM sample. Photodecomposition of pre-deposited hydrocarbons on TiO2 thin 
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films was observed when exposed to UV light [16]. With the same light illumination 

system, a single crystal to poly-crystalline transformation on TiO2 thin films with oxygen 

release was observed during photocatalytic oxidation of hydrocarbons on TiO2 [17].  

Cavalca et al. developed a light illumination system on a TEM sample rod with a lens-

based and a fiber optics-based design [18]. The lens-based design includes a laser diode 

along the axis of a feedthrough slightly above the sample plane. The light was focused 

and directed by lenses onto the bent TEM grid. The lens-based design has the advantage 

of high intensity and easy operations. However, it is limited to the narrow wavelength 

dependent on the laser diode which is hard to change once mounted on the holder and 

aligned. The fiber-based design allows light from an outside source to be directed through 

an optical fiber mounted with feedthrough in the TEM holder. The outside light source 

can be a white light source with broadened wavelength. The flexible light source allows 

photocatalysts with different band gaps to be studied under different wavelength. Both of 

the two designs have some restrictions on sample tilting which is very important in the 

study of single crystal materials. Photodegradation of Cu2O in H2O vapor and 

photodeposition of Pt on GaN:ZnO were observed under light illumination [18,19]..   

          A different light illumination system totally separated from the TEM holder was 

designed by Miller et al. at Arizona State University [20]. The idea of this design is to 

allow the full ability of tilting and heating since the light illumination system is separated 

from the holder. This illumination system is attached to an FEI Tecnai F20 ETEM. It 

utilizes a port which was for installation of an energy-dispersive X-ray spectrometer. The 

port where the optic fiber goes through is perpendicular to the TEM sample rod axis.  As 

shown in the drawing in Figure 2.6, the sample is sitting in the center of the 5.4mm 
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spacing between the upper and lower pole pieces. The fiber is directed through a brass 

tube slightly bent so the fiber can be brought as close as possible to the TEM sample 

from below. The reason that light is illuminated from below the sample stage is because 

the heating wires of the hot stage furnace block some sample areas and cause shadowing. 

A 600 μm silica core, silica clad, and solarization resistant optical fiber is used. It is clad 

with aluminum to avoid being charged by secondary and backscattered electrons. Ideally 

vertical illumination is desired to avoid shadowing from the hot stage furnace edges. In 

fact, due to the limiting spacing between pole pieces and the shallow angles of the pole 

pieces, the fiber is bent 15° against the horizontal level so that the most intense area of 

the light beam falls onto the center of the optic axis of the TEM column as shown in 

Figure 2.7. The front of the fiber is cut to 30º to refract more light onto the TEM sample. 

The fiber is centered with a manipulator constructed with bellows in xyz directions. With 

micrometer manipulators on different directions, the position of the fiber can be 

optimized to the best position where the highest intensity falls on the center along the 

axis of the electron beam. The manipulator also provides vacuum feedthrough where the 

inside fiber is coupled to an outside fiber then to the external light source.  

One of the advantages of this design is that any light source can be adapted to this light 

illumination system with an optical fiber. At present, the ASU system employs a 

broadband laser-driven Xenon lamp light source from Energetiq Technology Inc. The 

intensity distribution of the output of the light is plotted in Figure 2.8. 90% of the 

intensity is focused in the “hot zone” 0.2 X 0.4 mm large. The highest intensity is about 

1400 mW/cm2 which is about 10 suns. The optimum position of the optical fiber is 

checked by a photomultiplier tube (PMT) shown in Figure 2.9. Instead of connection to a 
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light source, the optical fiber is connected to a PMT. Fluorescent nanoparticles ZnS (P22) 

are used to emit light under excitation of the electron beam. According to reversibility of 

the optical path, PMT should capture more emitted light from fluorescent nanoparticles 

when closer to the optimum position. The electron beam can be focused on tiny area on 

fluorescent materials making it a spot light source. The PMT read out is thus very 

sensitive to the position change of the end of the optical fiber. In this way, the position at 

which the fiber gives maximum intensity of light to the center of the electron beam axis 

can be precisely adjusted.  

2.3.3 Analysis of Chemical and Electronic States Using XPS and EELS  

To understand mechanisms behind structure change, chemical information such as 

elemental composition, chemical state and electronic state have to be achieved by 

spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) is applied for 

determining the chemical state of Ti on TiO2 surfaces after photocatalytic reaction water 

splitting. XPS spectra are obtained in high vacuum (P ~ 10−8 millibar) or ultra-high 

vacuum (P < 10−9 millibar) atmosphere conditions. Material is exposed to a beam of x-

rays and electrons are excited and escaped from the top 0 to 10 nm of material. The 

kinetic energy and number of electrons are analyzed simultaneously. The binding energy 

can be calculated knowing the energy of the incident X-ray 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 , the measured 

kinetic energy of the excited electron and the work function ϕ, which is usually a constant 

depending on the instrument and the material: 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 − (𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + ϕ). The 

numbers of electrons per unit time are plotted against the binding energy of the electrons 

detected. Each element with certain chemical state is correlated to a characteristic peak 

https://en.wikipedia.org/wiki/Bar_%28unit%29
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Nanometre
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set of certain binding energies, and the number of electrons represent the amount of that 

element and its chemical state. The percentage of the element should be corrected by 

dividing the signal by a relative sensitivity factor and normalized over all the elements 

[21].  

          Since XPS technique uses a spot size in the range of 150-1000 μm, it is considered 

gentle and does not damage materials with strong interactions. However, it only interacts 

with the first 10nm surface of the material. It also does not have sufficient spatial 

resolution which allows atomic-level local chemical information to be detected. Electron 

energy-loss spectroscopy (EELS) technique available in many TEMs is used to explore 

atomic-scale local elemental composition, chemical bonding information and electronic 

structure. When electron beam is transmitted through thin specimens, it can interact with 

material with elastic and inelastic scattering. During inelastic scattering which is usually 

electron-electron collision, energy will be transferred from the incident electron beam to 

excite the inner shell or outer shell electrons of the material. As shown in Figure 2.10, 

after interaction with the specimen, the transmitted electron beam is selected by a 

variable entrance aperture. The electrons passing through the entrance aperture travel 

down a “drift tube” through the spectrometer and are deflected over 90° by the magnetic 

field [4]. The ones with more energy loss are deflected less than the ones with less energy 

loss. A spectrum is then formed on a dispersion plane with electron intensity versus 

energy loss.  
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          The EELS can be divided into two regions, the core-loss region and the low-loss 

region. The core-loss spectrum is composed with electrons that have ionized the inner-

shells of the atom. The near-edge structure in core-loss region spectrums can be exploited 

to determine valence and bonding states. The low-loss region is usually within ~50 eV of 

the zero-loss-energy peak (ZLP). It contains information from interactions of outer-shell 

electrons with the electron beam. This part reflects the dielectric response of the 

specimen to high-energy electrons and reveals the electronic structure and bonding 

information of the specimen. With the innovation of monochromated aberration corrected 

NION microscope, extraordinary high energy resolution of less than 12meV can be 

achieved making very fine electronic structures detectable [22]. Recent paper has been 

published demonstrating the capability to detect localized phonon vibrations [22]. Core-

loss EELS was applied to determine Ti valence state on the TiO2 surface after exposure 

to water and light. More details will be given in Chapter 3. Low-loss region with 

extraordinary high energy resolution is utilized to explore band gap and inter-band states 

on photocatalyst materials surface at atomic-scale level. Results are given in Chapter 6.  

2.3.4 Detection of Metal in Solution During Photocatalytic Reactions Using ICP-MS 

          To check if Ni or Pt metal co-catalyst have been ionized and dissolved into 

solution, the amount of Ni or Pt in the water before and after the reactions were 

determined by inductively coupled plasma mass spectrometry (ICP-MS). This is achieved 

by ionizing the sample with inductively coupled plasma and then using a mass 

spectrometer to separate the ionized element and measure its quantity. By measuring the 

resulting isotopic composition, it is possible to calculate the amount of the analyte present 

https://en.wikipedia.org/wiki/Ionization
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in the sample.  A deionized water blank and initial samples were acidified in ~0.32 M 

nitric acid with trace metal grade nitric acid. A series of water samples (1ml each) were 

taken every 30mins from the total volume 50mL solution during the photo-reaction over 

a period of 4hrs after turning on the light. The water samples were diluted five-fold to 

keep them within the instrument’s calibration range. Samples were analyzed by 

quadrupole ICP-MS (ThermoFisher Scientific iCAP Q, with CCT option). Ni, Pt and Ti 

were run in CCT-KED (“Collision Cell Technology-Kinetic Energy Discrimination”) 

mode with high purity He as the collision cell gas. Samples were measured with isotopes 

58Ni, 60Ni; 194Pt, 195Pt, 196Pt and 62Ni, 47Ti, 48Ti and 49Ti, respectively to monitor for 

interferences, but only data from 60Ni, 194Pt and 47Ti measurements are reported. These 

isotopes had the best detection limit and gave the most reliable and accurate results. 
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Table 2.1 Thermal Conductivity of different gases [1]. 
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Figure 2.1 Photocatalytic reactor. 

 

Figure 2.2 TEM components.   
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Figure 2.3 TEM ray diagram (a) Diffraction mode (b) TEM image mode [4].  
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Figure 2.4 Gas handling system for environmental TEM.  

 

Figure 2.5 Differential pumping system [23].  
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Figure 2.6 Schematic diagram of the overall geometry of in situ fiber illumination 

system [24].   

Figure 2.7  Cross sectional view of pole piece gap showing fiber orientation 

relative to upper and lower pole pieces. 
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Figure 2.8 Light intensity incident on the sample as a function of position [20].  

a b 

Figure 2.9 (a) Schematic diagram of checking the optimization position of optical fiber by 

using PMT. (b) Photograph showing the connections of the manipulator to the PMT. 
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Figure 2.10 Schematic drawing of ray paths through a magnetic prism spectrometer with 

the insertion showing similarity to the dispersion of white light by a glass prism [4].  
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CHAPTER 3 

STRUCTURE EVOLUTION OF HIGH SURFACE AREA WELL DEFINED TiO2 

ANATASE UNDER LIGHT IRRADIATION IN H2O. 

3.1 Introduction 

While substantial improvements in performance have been realized for photocatalystic 

water splitting, a viable technology based on light-induced water splitting is not yet 

available [1-3]. It is now recognized that atomic-level in situ observations of catalytic 

materials are critical for understanding the structure-reactivity in catalysts.  For many 

catalysts, the active form of the material may exist only under reaction conditions and must 

be characterized to develop a fundamental understanding of structure-reactivity relations. 

For photocatalysts, this requires that the system be observed not only in the presence of 

reactant and product species but also during in situ light illumination.  

        In this chapter, an in situ study of the surface for anatase nanoparticles under 

reaction conditions for vapor phase water splitting is reported. TiO2 is very stable and it 

can be functionalized with other semiconducting and metal particles to increase 

absorption in the visible and improve its catalytic performance [4-7]. We would like to 

study the pure semiconductor TiO2 with in situ characterization first and then expand to 

TiO2-based photocatalyst functionalized by other semiconductors or metal co-catalyst. 

        To better design nano-TiO2 for photocatalytic reactions, many fundamental studies 

have been carried out to understand the structure and photocatalytic property relationships 

[8]. For example, water dissociated at oxygen vacancies in ultrahigh vacuum conditions, 
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forming hydroxyl groups, were detected using temperature-programmed desorption (TPD), 

high resolution electron energy-loss spectrum (HREELS), and scanning tunneling 

microscopy [9-12]. However, most of these atomic surface studies were carried out on 

reduced (110) surfaces of bulk rutile crystals under UHV (10-10 Torr) conditions. To extend 

this understanding, it is necessary to perform in situ atomic level studies on nanoparticles 

under conditions more close to those present during photocatalytic reactions.  

           Here we employ atomic-resolution environmental transmission electron microscopy 

(ETEM) to study the structure of anatase nanoparticles subjects exposed to 1 Torr of water 

vapor and broad-band light illumination with a total intensity of 1430mw/cm2 and a UV 

part which can be absorbed by anatase (200nm-800nm) with intensity of 122mw/cm2. We 

show that significant changes take place in the first few monolayers of the anatase crystals 

in the presence of light and water vapor. This re-structured surface will be present on the 

anatase surface under reaction conditions relevant to photocatalytic splitting of water. This 

work was published in Nano Letters in 2013 [13]. 

3.2 Preparation of Well-Defined Anatase Particles.  

Pure crystallized and shape-controlled anatase particles were transformed from Evonik P25 

particles (80% anatase and 20% rutile) using a hydrothermal method [14, 15]. 2.5g of P25 

powder was mixed with 60ml 10M NaOH aqueous solution followed by heating in a Teflon 

lined autoclave at 180°C for 20hr. The resulting sodium titanate was then washed with 

0.1M HNO3 and water until the pH was close to neutral. The suspension was then subjected 

to another hydrothermal treatment in water with pH close to 7 at 180°C for 48hr. The 

resulting slurry was washed and dried, and XRD showed that the final product powder was 
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pure anatase. The anatase nanocrystals showed rhombic and rod morphologies with well-

defined {101} and {002} surface terminations. 

3.3 In-situ Study of the Structure Evolution of TiO2 Anatase under Light Irradiation 

in H2O Vapor. 

The samples were illuminated with UV and visible light from a bright, broadband source, 

via an optical fiber which directs the light onto the sample inside the ETEM (Figure 3.1). 

Technical details on the in situ light illumination were described in chapter 2. Here we 

summarize the more important characteristics of the system. The source produces a nearly 

blackbody spectrum, and so mimics the Sun’s spectrum reasonably well. On the TEM 

sample, the intensity is about 10 times that of the sun on the earth’s surface. Optical filters 

can optionally be used to specify a smaller wavelength range if needed for an experiment. 

The maximum intensity while using the full spectrum is 1460mW/cm2 with 90% intensity 

in a 0.2x0.4mm region around optical axis if aligned correctly. The region is large enough 

to cover about 4x8 grids close to the optical axis for 300 -mesh TEM grids.  High-resolution 

transmission electron microscopy (HRTEM) images were recorded using a Tecnai F20 

(FEI) ETEM equipped with a differentially pumped environmental cell operated at 200KV. 

To facilitate the TEM analysis, anatase powders were dispersed onto Stober silica spheres 

and the spheres were then dispersed over Pt grids using a drop casting method [16]. The Pt 

grid was loaded into a Gatan hot stage and the in-situ TEM characterization was performed 

at a temperature of 150°C to simulate the conditions for vapor phase water splitting.  

          Titania is well known to undergo radiolysis under electron-beam irradiation in the 

TEM [17, 18]. To extract accurate information about the active form of titania under 
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photoreactor conditions, it is important to minimize the electron dose and to fully 

understand the effects of electron irradiation during observation at temperature in the water 

vapor atmosphere.  Control experiments must be designed to ensure that changes in the 

material from electron irradiation are clearly identified and not mistakenly attributed to 

photon irradiation. Three different experiments (Table 3.1) were conducted in which the 

electron dose, reactive gas and light flux were varied.  In the first experiment (condition 

A), atomic-resolution TEM images were initially recorded with an electron dose of 3000e-

/Å2/s from selected anatase particles. The particles were then exposed to water vapor and 

subsequent images were recorded from the same particle after 1, 7, 20 and 40 hours. The 

electron beam was off during most of the experiment and was turned on only briefly to 

record images.  

A typical set of images from this experiment is shown in Figure 3.2. The initial 

particle was well defined and bounded mainly by the low energy {101} and shorter {002} 

surfaces. The particles appear crystalline on the surface and the surface is smooth and 

atomically abrupt. There was no obvious evidence for any structural change taking place 

during this initial observation. After 1 hour of exposure to H2O, the surface showed 

evidence for disorder and this effect became more pronounced after 7 hours with the 

particle showing significant disorder on the top monolayer.  The disordered layer thickened 

slightly with time. After 40 hours, the width of the ordered crystal along the [101] direction 

was observed to decrease from 9.70±0.05nm to 9.35±0.05nm during the growth of the 

amorphous layer.  This reduction of about 0.35 nm suggests that the top monolayer of each 

surface has become amorphous. This decrease in the width of the crystalline area was also 
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observed in samples irradiated with light and shows that the amorphous layer is not an 

overlayer of contamination.  

The electron beam diameter is rather small and the imaging is typically conducted 

with a beam less than 50 nm in diameter. Consequently, most of the TEM sample was not 

irradiated with electrons and thus we were able to acquire images from fresh, unirradiated 

areas for each of four water exposure times (1, 7, 20 and 40 hours). A typical image from 

one of the fresh areas exposed only to H2O for 40 hours is shown in Figure 3.2 f. These 

crystals showed clean crystalline (101) surfaces similar to the original starting materials 

and there was no evidence for any amorphous layer on the surface. This data shows that 

exposure only to 1 Torr of H2O at 150oC does not significantly impact the surface structure 

of the anatase. Disordered layers form only on crystals exposed to both the electron beam 

and water.  This suggests that the formation of the amorphous layer is caused by the 

combination of electron irradiation and the H2O atmosphere.  

Both the electrons and the photons can generate electron-hole pairs in the anatase 

which may lead to the formation of reaction centers for water dissociation [19-21]. It is 

useful to consider the energy deposited into an anatase crystal from both electron and 

photon irradiation under the conditions present in the ETEM.  The energy deposited from 

the electron beam can be determined by considering energy transfer associated with both 

elastic and inelastic scattering.  The inelastic scattering contribution, which causes 

radiolytic damage, can be determined from the electron energy-loss spectrum from a thin 

anatase particle. The probability of an electron transferring ΔEn into the specimen due to 

an inelastic collision is approximately the ratio of the In(ΔEn)/Itot where In(ΔEn) is the 

intensity in the electron energy-loss spectrum corresponding to energy loss Δ En and Itot is 
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the total integrated intensity in the spectrum [22]. We assume that only energy transfers 

greater than the band-gap energy Eg are important for exciting the anatase. With an electron 

fluence with number of Ne electrons/unit area, the total energy transferred per unit area can 

then be written as: 

                                                 𝐸 = ∑ 𝑁𝑒∆𝐸𝑛
𝐼𝑛

𝐼𝑡𝑜𝑡
 𝑛                                                     (3.1) 

The total electron flux employed to record five atomic resolution TEM images within a 

total 100s (20s to take each image including the time adjusting focus) is about 3 x 105 e-

/Å2 giving a final energy dose absorbed into the sample of about 3000 J/cm2. That is a 

deposition rate of 30 W/cm2. (The energy deposited by elastic scattering is small and is 

calculated to be about 0.65J/cm2 which is negligible compared to the ionization damage. 

The calculation of energy deposition due to elastic scattering is provided in Appendix II.) 

  A simple Beer’s law analysis can be used to show that the photon energy absorbed 

per unit surface area of anatase is given as  

                                               ∫ 𝐼𝜆[1 − exp (−𝛼𝜆𝑡)]𝑑𝜆                                             (3.2) 

where t is the thickness of the sample, 𝐼𝜆 is the photon intensity at wavelength λ and the 

integral is performed from 200 – 800 nm. 𝛼𝜆 is the corresponding absorption coefficient 

which is derived from the dielectric data of anatase [23]. The optical data is attached in 

Appendix I. Assuming a light intensity of 1460mW/cm2 (10 suns) gives an energy 

deposition rate of 55mW/cm2. For a light exposure experiment lasting 12 hours, this gives 

a total energy deposition of 2380 J/cm2. A summary of the various electron and photon 

irradiation parameters for these experiments is given in Table 3.2.  
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This calculation shows that even under moderate electron irradiation conditions, 

the energy deposition rate by the electron beam is about 3 orders of magnitude greater than 

the energy deposition rate from photon illumination at an intensity close to 10 suns. 

Moreover, the experimental measurements of Figures 3a to 3e show that, in the presence 

of 1 Torr H2O, this electron dose is sufficient to modify the surface structure of anatase. 

Consequently, if electron-beam effects are to be made negligible, it is not possible to follow 

the time evolution of individual anatase particles during photon irradiation. Instead, we 

take advantage of the relative uniformity of the anatase sample to look at the structure of 

different groups of anatase particles after a prescribed exposure to gas and light. After the 

initial period of light exposure, an initial set of anatase particles was examined. After a 

second period of light exposure, a second set of fresh anatase crystals, not previously 

exposed to the electron beam, was examined. This procedure (condition B from Table 3.1) 

was then repeated and allowed us to completely eliminate electron-beam effects during the 

in situ processing of the anatase.  

          Figure 3.3a shows results from experiments in condition B in which anatase particles 

were exposed to H2O vapor and light. Disordered monolayers were observed on the anatase 

(101) and (002) surfaces after 12hrs. The first one or two layers at the anatase surface show 

roughening and amorphization. Over 30 fresh areas which were not previously exposed to 

the electron-beam were checked and all showed some degree of surface amorphization and 

roughness. The surface transformation was similar to those observed during electron-beam 

irradiation in H2O suggesting that, at least in this case, the underlying transformation 

processes may be similar.  Indeed, the total energy deposition during the electron-

irradiation experiment and the extended irradiation in light were comparable.  
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Figure 3.4 shows the result of exposing anatase nanocrystals to light in a H2 

atmosphere.  Once again only fresh anatase crystals which had not been previously exposed 

to the electron beam were examined.  Even after 40 hours of light exposure, the crystal 

surface remained fairly smooth and showed no significant change in the surface 

crystallography.  This shows that water plays a critical role in the observed phase change 

on the anatase surface.  

3.4 Mechanisms of Surface Amorphization under Exposure to H2O and Light 

Spatially-resolved electron energy-loss spectroscopy on an aberration-corrected JEOL 

ARM 200F was performed to compare the oxidation state of the Ti in the center and surface 

of the anatase particle. The Ti L23 edges are shown in Figure 3.5a. The L23 edge from the 

center of the anatase shows the characteristic crystal-field splitting in which the L3 line at 

457 eV and L2 line at 459 eV are split into doublets corresponding to excitations of the 

2p3/2 and 2p1/2 subshells to unoccupied t2g and eg orbitals. The Ti L23 edge recorded from 

the surface layer shows pronounced broadening of the L3 and L2 lines and the relative peak 

height is consistent with Ti in the +3 oxidation state [24]. 

As a further check on the oxidation state of the anatase surface,  X-ray 

photoelectron spectroscopy (XPS) was performed on a sample first calcined at 300oC and 

then exposed to water vapor at room temperature (100% humidity) in a flux of 5mW/cm2 

of UV light (254 nm) for 2 hours.  As a control, XPS was also performed on the calcined 

sample without water and light exposure (Figure 3.5b). The XPS from the sample exposed 

to water and light showed a secondary peak corresponding to Ti in the +3 state whereas the 

unexposed sample showed mainly a +4 oxidation state. The sample exposed to water and 
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light also showed broadening of the Ti 2p and O 1s peaks suggesting an increased variation 

in the bonding environments at the surface and thus more dispersion in the bonding 

energies. This would be consistent with the introduction of disorder in the surface of the 

anatase. The XPS showed changes similar to those determined with EELS suggesting that 

similar changes have taken place on the surface of the anatase nanoparticles even on 

exposure to water vapor at room temperature at atmospheric pressure.    

The question arises about whether the observed amorphization is intrinsic to the 

hydroxylated layer or is a result of rapid electron-beam damage taking place during the 

time required to record the high-resolution image. To address this question, we make the 

assumption that it is possible to have an ordered hydroxilated structure on the surface of 

the titania. Electron-beam damage to the surface during imaging can occur either through 

radiolysis (inelastic collisions) or knock-on processes (elastic collisions). An analysis 

given in the appendix II shows that the cross section for radiolytic damage is many orders 

of magnitude greater than the cross section for knock-on damage. Moreover, if the ordered 

structure can be easily damaged by ionization with the electron beam, it will almost 

certainly be damaged by ionization with UV radiation. This suggests that the disorder 

structure observed by electron microscopy is not a consequence of electron irradiation but 

is caused by the combination of UV irradiation and water. 

The observed surface amorphization and roughness can be explained by the 

photogeneration of oxygen vacancies and the resulting dissociation of water at these defect 

sites. The initial mechanism is illustrated schematically in Figure 3.6.  For truncated TiO2 

surfaces, there are always 5-coordinated Ti sites and 2-coordinated bridging oxygen sites 

which are more reactive than the 6-coordinated Ti and 3-coordinated O sites in the bulk. 
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On exposure to UV light or high energy electrons, electron-hole pairs are generated which 

may diffuse to the crystal surface. The photogenerated electrons tend to reduce Ti4+ to Ti3+, 

while trapped holes neutralize surface oxygen leading to emission from the surface and 

leaving behind oxygen vacancies [25]. High-resolution electron energy-loss spectroscopy 

(HREELS) and temperature-programmed desorption (TPD), have confirmed that water 

molecules are dissociatively adsorbed filling the vacancies forming hydroxyl groups [26]. 

Scanning tunneling microscopy (STM) results and density functional theory (DFT) 

calculation suggests that one bridging hydroxyl group at the original vacancy site and 

another at the adjacent bridging oxygen position are formed [10-12].  

         With continued irradiation, the degrees of hydroxylation of the surface increase and 

eventually destabilize the crystallinity of the top layer leading to the formation of a 

continuous amorphous layer of hydroxilated titania. We also believe this observation is 

related to the photo-induced hydrophilic effect in which the surface OH groups help to 

attract more water via hydrogen bonding [27, 28]. No amorphous layer was observed to 

form during irradiation in the presence of hydrogen. In principle, hydrogen could directly 

react with surface oxygen leading to hydroxylation of the surface. However, apparently, 

the hydrogen is not activated on the bare titania surface at 150oC [29]. 

         Our observations show that this process is self-limiting because the thickness of the 

disordered layer remains constant under continuous exposure to water and light. This is 

reasonable because anatase is known to be a stable photocatalyst in an aqueous 

environment during exposure to light. Continued irradiation of the hydroxilated surface 

will presumably result in the generation of additional oxygen vacancies on the surface. 

Since the amorphous layer thickness does not significantly increase with time, this implies 
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that most of these vacancies are filled by additional dissociation of water from the gas 

phase rather than by diffusion of oxygen from the interior of the anatase particle. Thus, the 

underlying bulk structure of the anatase is preserved although our TEM images show that 

the TiO2 layer just below the surface is significantly perturbed by the amorphous top layer.   

3.5 Summary 

This chapter has summarized the first atomic-resolution study of the surface of anatase 

nanocrystals under conditions relevant to gas-phase photocatalytic splitting of water. The 

experiments were carried out in a modified environmental transmission electron 

microscope fitted with a high-intensity broadband light source.  When the titania is exposed 

to light and water vapor, the initially crystalline surface converts to an amorphous phase 

one to two monolayers thick.  EELS and XPS analysis show that the amorphous layer 

contains titanium in a +3 oxidation state. Similar changes were observed to occur under 

electron irradiation under conditions in which the total energy adsorbed in the anatase was 

held constant.  From the time evolution of the electron-irradiated crystal, we were able to 

show that the amorphous layer results from direct photoreaction between the top one or 

two monolayers of the anatase crystal surface and adsorbed water.  The amorphous layer 

appears to be stable and does not increase in thickness even after 60 hours exposure to 

reaction conditions. The surface layer shows no long-range order and is most likely a 

stabilized form of titania hydroxide. The amorphous layer is stable and does not increase 

in thickness with time and is heavily hydroxylated. This disorder layer will be present on 

the anatase surface under reaction conditions relevant to photocatalytic splitting of water. 
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In future work, we will investigate the changes taking place on functionalize titania and on 

other photocatalytic materials with enhanced absorption in the visible.   
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Experiments 

   

Temperature Atmosphere Light 

Condition A  150°C H2O gas (1 Torr) Absent 

Condition B 150°C H2O gas (1 Torr) Full spectrum 

1430mW/cm2 

Condition C 150°C H2 gas(0.5 Torr) Full spectrum 

1430mW/cm2 

         Table 3.1 Experiments conditions for in-situ characterization of anatase TiO2. 

 

Flux of electrons 3000 e-/Å2/s 

Flux of Photons (E>Eg) 390 photons/ Å2 /s  (18 photons/ Å2/s 

for E>Eg ) 

Incident Electron Power Density  1 MW/cm2 

Incident Photon Power Density  1430mW/cm2  (122mW/cm2 for 

E>Eg ) 

Electron Energy Absorbed 

(estimated acquisition time 100s) 

3000J/cm2   

Photon Energy Absorbed (exposure 

time 12hours) 

2820J/ cm2   

             Tabel 3.2 Table of Relevant Irradiation Parameters for in-situ experiments. 
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Figure 3.1. Schematic diagram on in situ TEM showing geometry of gases flows, light 

illumination and sample holder [13].   

Figure 3.2. Anatase particles at 150°C with/without 1 Torr water: (a)no water; (b)1hr 

water; (c)7hrs water; (d)20hrs water; (e)40 hrs water; (f) fresh area after 40hrs in water 

gas but not exposed to electron beam before.  
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Figure 3.4. Fresh anatase particles after 40hrs in H2 at 150 °C, with 20hrs light exposure.  
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Figure 3.3 (a) Fresh anatase particles after 40 hrs in H2O gas at 150 °C, light exposure 12hrs; 

(b) magnified images of the (101) & (002) surfaces after illumination.  
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Figure 3.5 (a)EELS spectra from surface and bulk of the irradiated anatase samples; (b) 

XPS spectra of the irradiated and un-irradiated anatase samples. 

 

 
Figure 3.6. Schematic drawing of H2O molecules dissociatively absorbed on anatase 101 

planes forming hydroxyl groups. 
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CHAPTER 4 

PHOTOINDUCED OSTWALD RIPENING OF Pt CO-CATALYST 

NANOPARTICLES ON TiO2 FOR WATER SPLITTING  

4.1 Introduction  

With the success of in situ observation of just pure anatase samples, Pt co-catalyst as a 

good example for noble metal co-catalyst on seminconductor photocatalysts, will be 

explored for its structure evolution during photocatalysis reactions. Substantial efforts 

have been taken to improve the photocatalytic properties by functionalizing 

semiconductors with metal co-catalysts [1-3]. The metal co-catalysts can improve catalyst 

performance in two ways.  They may attract the photoelectrons generated in the 

semiconductor to impede electron-hole pair recombination if the Fermi level of the metal 

lies below the conduction band-edge of the oxide [4,5]. Metal particles such as Pt also act 

as reduction catalysts via electron transfer to adsorbed protons, reducing them to H2 

which then desorbs from the surface [6]. The noble metal co-catalyst was believed to be 

efficient and stable. However, our observation revealed they are not so stable at nano 

scale that they have undergone photo-induced coarsening with resulting drop of catalytic 

properties.  

         When Pt nanoparticles are used as catalysts, the high surface areas associated with 

excess surface energy makes the system susceptible to coarsening, leading to deactivation 

due to loss of surface area [7, 8].For example, Pt sintering at high temperature is a key 

factor in deactivation for autocatalyst dealing with vehicle exhaust [9,10]. Moreover, 
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coarsening caused by dissolution and re-deposition of Pt nanoparticles on both the 

cathode and anode of proton exchange membrane fuel cells (PEMFC) are considered the 

main reason for deactivation of low-temperature fuel cells [11, 12]. These applications 

have motivated a great deal of research on processes affecting Pt particle coarsening due 

to thermal effects at high temperature and electro-chemical Ostwald ripening of Pt on 

electrodes at room temperature [13-17]. These studies provide a fundamental 

understanding of the way in which ripening occurs under a variety of thermal and 

electrochemical reaction conditions and may suggest approaches to slow or mitigate de-

activation.  

Considerably less work has been carried out on coarsening effects taking place on 

co-catalyst under photoreaction conditions in water. Here we investigate the materials 

changes that take place on Pt/TiO2 photocatalysts performing water splitting with 

particular emphasis on the Pt-particle size evolution. TiO2 was selected as the light- 

harvesting component because it is stable under reaction conditions, the catalyst is 

reasonably active and the changes in the Pt co-catalyst can be followed with electron 

microscopy. A Pt loading of 2 wt% was selected to minimize back reactions and light 

shadowing by the metal [18, 19]. We employed aberration-corrected ex situ transmission 

electron microscopy (TEM) and in situ environmental transmission electron microscopy 

(ETEM) to follow the evolution of the catalyst under liquid and vapor-phase water- 

splitting conditions. The observed coarsening is interpreted in terms of an Ostwald 

ripening model and correlated with the drop in H2 evolution from the photocatalysts.   

4.2. Materials Preparation 
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2 wt % Pt on high-surface-area anatase TiO2 nanoparticles was prepared with a wet 

chemical impregnation method. The high surface area anatase particles were prepared 

following a hydrothermal method described in another paper [20]. The TiO2 particles 

were suspended into 20 ml calculated concentration PtCl4 (Sigma-Aldrich, 99.99%) 

aqueous solutions, stirred and dried. The particles were then calcined in air @500°C for 3 

hrs followed by a reduction in flowing 2% H2/Ar @500°C for 2 hrs.  

          The morphology of as prepared 2 wt% Pt on anatase was checked on aberration 

corrected FEI Titan microscope and is shown in Figure 4.1. Pt particles with 1-2 nm size 

are well dispersed on TiO2 nanoparticles. Lattice fringes of 2.27 Å are observed on the 

particles which match the Pt (111) fringes. The Pt particles are not uniformly or randomly 

distributed on the surfaces of the TiO2 support. Most of the Pt particles prefer to nucleate 

and grow at high surface energy sites including corners and steps as marked on the figure 

where suface support atoms are less coordinated.                     

4.3 Photocatalytic Performance 

20 mg of the as-prepared 2 wt% Pt/TiO2 materials were suspended in 50 ml de-ionized 

H2O for the test of photocatalytic H2 production. A 450W xenon lamp (Newport) with a 

350-450nm band pass mirror was used as the light source with the light coming vertically 

through the top quartz window of the reactor. According to the manufacturer’s manual, 

the incident light intensity into the reactor is about 50 mW/cm2 and this was confirmed 

by a Si-biased photo detector (THORLABS DET10A). H2 was detected using a gas-

chromatography (GC) (Varian 450-GC) system connected to the photoreactor with Ar as 

the carrier gas continuously flowing at 5 cc/ min.  
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The H2 production rate is plotted as in Figure 4.2. The maximum H2 production 

rate reaches about 29 μmol/hr/g in about 80 minutes. This relates to the fact that H2 has to 

reach saturation concentration, get released to the head space and then mix fully with Ar 

carrier gas. The photocatalyst starts to deactivate after the first 90 minutes with the H2 

production dropping fast in the following 2 hrs and then a more gradual drop to about 1/3 

of the maximum production rate after 9 hrs light irradiation. In a separate experiment 

using He as the carrier gas, O2 was detected proving the Pt/TiO2 is doing water splitting, 

producing both H2 and O2 from neutral de-ionized water.  

4.4 Structure Evolution during Reactions and Photo-induced Ostwald Ripening 

Figures 4.3 shows a high-resolution TEM image of Pt/TiO2 after 5 hrs light irradiation in 

pure water. The TiO2 particles have significant surface roughening because the surface 

has been heavily hydroxylated, as described in Chapter 3 [20]. The fast Fourier 

transformation (FFT) of the TEM image shows spots representing 2.27 Å lattice fringes 

belonging to Pt (111). The Pt particles have gone through an obvious coarsening 

comparing to the fresh as-prepared sample shown in Figure 4.1. 

          The drop in the photocatalytic H2 production rate may be simply related to the 

decrease of the Pt surface area due to coarsening. To achieve a quantitative surface area 

change from coarsening, high-angle annular dark-field imaging (HAADF) in a scanning 

transmission electron microscope (STEM) was employed to achieve more precise Pt 

particle sizes [21, 22]. This technique provides a clearer view of heavy metal Pt particle 

dispersion on a medium-atomic-number support like TiO2. HAADF images were taken 

on a series of samples for fresh material and materials after 3hrs, 7hrs and 12hrs of 
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photocatalytic water splitting. The coarsening is very obvious by comparing the image 

from the 12 hrs light exposure sample and the initial fresh sample as seen in Figure 4.4. 

Over 300 particle sizes were measured from 15 to 20 images for each sample and particle 

size  

           Histograms in Figure 4.5 show a gradual particle size growth during the total light 

exposure after 3hrs, 7hrs, and 12 hrs in pure H2O. The specific surface area (area per unit 

mass) for each sample was calculated by dividing the total surface area by the total mass 

of measured particles (each particle was treated as a hemisphere).  Particle sizes and 

surface areas for each sample are summarized in Table 4.1. The average particle size 

increases from value of 1.69 nm ± 0.05 nm to a final value in 12 hrs of 2.06 nm ± 0.09 

nm. (The error is taken to be three times the standard error in the mean).  The specific 

surface area drops by a factor of 1.3 compared to its initial value after 12 hours reaction. 

H2 production rate drops considerably faster with a factor of more than 3 after 9 hours of 

reaction. This suggests that, in addition to the surface area decrease, some other factors 

also contribute to the drop of photocatalytic properties.  

          Control experiments have also been carried out in the dark to prove that the 

coarsening is faster in the presence of light. The particle size distribution of a sample 

exposed to liquid water in dark for 12hrs is compared with a fresh catalyst and the result 

is shown in Figure 4.6. The particle size distribution is similar to the fresh sample with an 

average size to be 1.66 ± 0.05 nm. 

          Inductively-coupled plasma mass spectrometry (ICP-MS) was carried out to 

measure the time-dependent Pt concentration in solution. Combining the Pt concentration 
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determined by ICP-MS with the mass of catalyst used in the solution allows the 

percentage of the Pt2+ in solution to be calculated relative to the total mass of Pt. The 

results are summarized in Table 4.2 (in the table 100% is equivalent to 2 wt% Pt). The 

initial relative concentration of Pt2+ in solution is comparatively high, around 1 %, 

presumably as a result of residual soluble Pt chloride species from the chloride precursor 

which remained on the support even after the thermal reduction treatment. The Pt 

concentration drops quickly after the light is turned on because of photo-deposition and 

reaches less than 0.01% after 5 hours. The photo-deposition of the initial 1% relative 

concentration of Pt from solution onto the support cannot explain the observed particle 

size increase. To increase the mean particle size from 1.7nm to 1.8nm would require 20% 

additional mass deposition from solution, which is a factor of 20 higher than the 

measured Pt concentration. The concentration of the Pt2+ stays low and relatively constant 

after 5 hours during light irradiation which indicates that the particle size increase is not 

due to simple dissolution of small Pt particles. However, the observation of constant low 

concentration of Pt2+ in solution suggests a possible coarsening mechanism in which 

small Pt particles are initially oxidized to Pt2+ cations, and then re-deposited onto larger 

Pt particles. 

           Similar ageing experiments were performed on the same material using-vapor 

phase water.  An in situ characterization of this Pt/TiO2 sample in 17 Torr H2O vapor 

under prolonged light irradiation was conducted in our environmental TEM Tecnai F20 

with light irradiation system [20, 23]. Typical images showing the same area of the 

catalyst before and after exposure to water and light in Figure 4.7.  There was no obvious 
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difference in the average particles size after up to 11 hrs light exposure. The coarsening 

was not observed presumably because vapor-phase H2O cannot provide the pathway for 

Pt2+ to be transferred from small Pt to large Pt particles. In water-vapor Pt, mass transport 

cannot take place via dissolution, and presumably transport via diffusion across the TiO2 

surface is very slow under these photoreaction conditions.  

4.5 Mechanism 

The deactivation we observed is believed to result from the light-induced 

coarsening. The decrease of the surface area represents a decrease of surface reaction 

sites, which contributes to the drop of photocatalytic H2 production. An additional 

decrease of the photocatalytic activity may also arise because the large particles provide- 

less overpotential for charge transfer to reactants. We hypothesize that the coarsening 

mechanism is a photo-electro-chemical Ostwald ripening. Ostwald ripening is a particle- 

coarsening process involving thermodynamically less stable small particles that, via 

kinetic pathways such as surface diffusion, volume diffusion or dissolution/deposition, 

transform to large particles. The driving force for this is the particle-size dependent 

chemical potential set by the surface-to-volume ratio of nanoscale particles. From an 

atomistic view, particles with smaller size have a larger number of under-coordinated 

atoms so there is a higher probability that these atoms can detach from the particle 

surface and migrate across a support or dissolve into solution. This leads to a net transfer 

of atoms from the small particles to the large particles resulting in time-dependent 

increases in the average particle size.  
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The initial concentration of Pt detected by ICP-MS and the use of the chloride 

precursor suggests that there is PtCl4
2−

 in solution. As discussed in detail by Tang et al., 

for a finite-sized single-component solid of radius r in equilibrium with a fluid phase 

containing that component (e.g., Pt2+/Pt equilibrium), there is a difference in the chemical 

potentials of the component in the solid and fluid phases given by,   

𝜇𝑠 − 𝜇𝑙 = (𝑓 − 𝛾)Ω(2/𝑟)      (4.1) 

where f  is the solid/fluid interface stress (assumed isotropic), 𝛾 is the solid/fluid 

interfacial free energy (assumed isotropic) and Ω is the molar volume of the solid [24]. 

For the reaction, 𝑃𝑡𝐶𝑙4
2− + 2𝑒− = 𝑃𝑡 + 4𝐶𝑙−, (E=0.755 V., NHE),  the chemical 

potential of Pt in the liquid phase is given by 

 𝜇𝑙 = 𝜇�̅� (𝑃𝑡𝐶𝑙4̅̅ ̅̅ ̅̅ ̅2−) + 𝑅𝑇𝑙𝑛(𝑃𝑡𝐶𝑙4
2−/𝑃𝑡𝐶𝑙4̅̅ ̅̅ ̅̅ ̅2−),    (4.2) 

where the bar quantity indicates the saturation concentration associated with a planar 

(𝑟 = ∞) surface at equilibrium. The chemical potential of the Pt in the solid is given by 

 𝜇𝑠 = 𝜇�̅� (𝑃𝑡𝐶𝑙4̅̅ ̅̅ ̅̅ ̅2−) + 𝑓𝑃𝑡Ω𝑃𝑡(2/𝑟).      (4.3) 

Using the equilibrium condition of eq(1) we obtain, 

𝑅𝑇𝑙𝑛(𝑃𝑡𝐶𝑙4
2−/𝑃𝑡𝐶𝑙4̅̅ ̅̅ ̅̅ ̅2−)= 𝛾𝑃𝑡Ω𝑃𝑡(2/𝑟).     (4.4) 

The left-hand side of this equation is the Gibbs free-energy difference for Pt in the liquid 

phase surrounding a Pt particle of radius r and that for a planar surface.  Since Δ𝐺 =

−𝑛𝐹𝐸, we obtain  
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𝐸𝑃𝑡𝐶𝑙42−(𝑟) =  �̅�𝑃𝑡𝐶𝑙42− − 𝛾𝑃𝑡𝛺𝑃𝑡/𝐹𝑟   (4.5) 

where �̅�𝑃𝑡𝐶𝑙42− is the electrode potential for a planar surface; 𝐸𝑃𝑡𝐶𝑙42−(𝑟) is the electrode 

potential for a particle with radius r surrounded by liquid phase;  𝛾𝑃𝑡 is the surface 

energy ; 𝛺𝑃𝑡 is the molar volume of Pt and F is the Faraday constant [24]. From our ICP 

analysis, we estimate that the concentration of PtCl4
2- is ~ 10-7 giving a value of 

 �̅�𝑃𝑡𝐶𝑙42−~0.55𝑉 . Taking 𝛾𝑃𝑡 = 2.4 Jm-2, Ω𝑃𝑡 = 9.09 x 10-6 m3, we obtain  

𝐸𝑃𝑡𝐶𝑙42−(𝑟)~0.55 − 0.23/r                             (4.6) 

where r is in units of nanometers [25]. The extra term for small particles compared to the 

planar surface has a negative shift in the standard electrode potential of 0.23/r. The 

distributions of the negative potential shifts for each sample can be calculated from the 

particle size distributions and are plotted in Figure 4.8 for each reaction time. 

The electrode potential shift is plotted against particle size in Figure 4.9. For a 1 

nm diameter particle, the potential for initial dissolution of Pt is shifted down by 0.46V 

giving 𝐸(𝑟)~ + 0.1𝑉 which is low enough to make initial oxidation of small Pt particles 

possible. However, dissolution of Pt will be inhibited in the dark because charge transfer 

through the TiO2 is very slow (see Figure 4.10). When the light is turned on, electron-

hole pairs are generated in the TiO2 putting electrons into the conduction band and holes 

into the valence band increasing the titania conductivity. Without irradiation, the 

conductivity of anatase TiO2 is ~10-7 Ω-1m-1. It can increase to ~ 100 Ω-1m-1 under UV 

light irradiation [26, 27]. The number of electric charges can pass a distance L within time 

t under voltage V can be calculated as n = VσLt/e. Using 0.1V as the voltage difference 
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between small and large Pt particles, 10 nm as the distance, and 10-6 s as the life time for 

photo excited electrons before recombination, we can have ~103 electrons transferred 

from small particles to large ones under irradiation but negligible transfer in dark [28]. 

The conductivity and lifetime will vary depending on the incident light intensity and 

defect densities but greatly enhanced electron transfer will take place under illumination. 

We conclude that during illumination, the Pt particles are electrically connected via the 

TiO2 substrate which is similar to the Ag coarsening on conductive substrates reported by 

Redmond et al [29].  

         The potential shift due to the Gibbs-Thompson effect is different for particles of 

different sizes leading to a net difference in the electrochemical driving force of: 

 𝐸(r) −  𝐸(R) = 𝛾𝑃𝑡𝛺𝑃𝑡/𝑛𝐹𝑅 − 𝛾𝑃𝑡𝛺𝑃𝑡/𝑛𝐹𝑟 < 0                          (4.7) 

When small and large particles are connected by the photo-excited conducting TiO2 

substrate, thermodynamically, small Pt particles with more negative potential level will 

give electrons to large particles.  The Pt in the small particles is oxidized and to maintain 

charge neutrality, Pt2+ ions from the small particles travel through the electrolyte to the 

large particle.  Effectively, the two particles behave like the electrodes in a Galvanic cell 

as described by the schematic drawing in Figure 4.10. The driving force increases as the 

size difference increases. This photo-electrochemical Ostwald ripening process is the 

mechanism which leads to the observed coarsening of the particle size distribution. 

Finally, the variation in overpotential with particle size will also influence the 

overall catalytic activity of the system. The smaller particles have a larger potential shift 

resulting in greater overpotentials for electrons to transfer from Pt to protons. The change 
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in the H2 production rate taking both surface area and overpotential effects into account 

can be quantitatively estimated as follows. The rate of electron transfer is proportional to 

the factor 𝑒
−𝐸𝑏+𝑞𝑣

𝑘𝑇  where 𝐸𝑏 is the energy barrier for electrons to transfer from a bulk Pt 

surface to adsorbed protons; q is the charge of electron; v is the electrode potential shift 

of Pt particles compared to bulk Pt (i.e. the Gibbs-Thomson term in eq(4.5); k and T are 

Boltzmann’s constant and temperature. The H2 production rate (per unit mass) is thus 

proportional to  

                                                   
∑𝐴𝑛∗𝑒

−𝐸𝑏+𝑞𝑣𝑛
𝑘𝑇  

∑𝜌𝑉𝑛
                                                     (4.8) 

where 𝐴𝑛,  𝑣𝑛, and 𝑉𝑛 are the surface area, electrode potential shift, and volume of 

particle n respectively and 𝜌 is the density of Pt.  𝐴𝑛, 𝑣𝑛 and 𝑉𝑛 can all be calculated 

according  to the particle sizes determined from STEM images. If we compare the ratio of 

H2 production for the initial and final particle size distributions, the term involving Eb 

cancels and we find that the H2 production rate drops by a factor of 1.8 over 12 hours.  

This is larger than the factor of 1.3 obtained by considering only the surface area decrease 

and is closer to the experimentally observed drop of a factor of 3. 

4.6 Summary 

We have observed H2 production rate dropping for Pt/TiO2 photocatalyst due to 

significant surface area decrease from Pt coarsening. This coarsening was studied by 

series of STEM images showing particle size distribution shifting from average 1.69 ± 

0.05 nm to 2.06 ± 0.09 nm. The surface area per mass was accordingly calculated to have 

dropped by a factor of 1.3. Very small concentrations of Pt2+ were detected by ICP-MS 
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suggesting the particle size-shifting is not due to small particles dissolution but Ostwald 

ripening.  In situ experiments in H2O vapor showing no coarsening also suggest the liquid 

H2O provides the pathway for transferring Pt ions. This light-induced coarsening in water 

is believed to be a photo-electro-chemical Ostwald ripening effect. Quasi-equilibrium is 

achieved in dark when no charge transfers are available through semiconducting TiO2. 

The equilibrium will be broken by light when photons excite electrons and holes turning 

TiO2 connecting small Pt particles and larger ones more conductive. Large Pt particles 

keep on growing at the sacrifice of small ones through Pt ions transferring due to the Pt 

electrode potential difference between different size particles. This understanding could 

also be applied to other metal co-catalyst on semiconductors. (See Appendix V for Ag 

nanoparticle coarsening) 
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Table 4.1. Average particle sizes and surface areas per mass during different time 

period of irradiation.  

Table 4.2. Pt2+
 

concentration in H2O during different time periods of light 

irradiation.  
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Figure 4.1. TEM image of as prepared 2 wt% Pt/TiO2. 

Figure 4.2.  H2 production rate vs light irradiaton time.  
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Figure 4.3. HRTEM image of 2%wt Pt/TiO
2
 after 5 hrs light irradiation in 

pure H
2
O with the insertion FFT of the TEM showing Pt (111) lattice fringes.  

Figure 4.4 HAADF-STEM image of a) initial sample and b) after 12hrs light 

exposure in H2O.  
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Figure 4.5. Particle distribution of samples after different lengths of time under 

irradiation.  
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Figure 4.6. Particle size distribution of fresh sample and sample after 12hrs in 

H2O in dark.  

Figure 4.7. TEM images from in-situ experiments: a) fresh material; b) after 5hrs 

light exposure in 17 Torr H2O vapor; c) after 11 hrs light exposure in 17 Torr H2O 

vapor.  
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Figure 4.8. Electrical potential shift distribution of samples after different 

lengths of time under irradiation.  

Figure 4.9. Electrical potential shift of Pt against particle size. 
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Figure 4.10. Schematic drawing of photo-electro-chemical Ostwald ripening 

progress.  
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CHAPTER 5 

PHOTOCORROSION OF Ni/NiO CORE/SHELL STRUCTURES ON TiO2 FOR 

WATER SPLITTING 

5.1. Introduction 

Following the study of structure evolution of pure TiO2 anatase and metal/TiO2, this 

chapter describes a study of structure-property relationship for TiO2 modified with 

Ni/NiO core/shell co-catalyst. Simple oxide semiconductors like TiO2 alone are poor 

photocatalysts for water splitting. The rate of water splitting can be increased by adding 

co-catalysts such as noble metals or coupled semiconductors [1-4]. Factors such as band 

positions, density of reactive sites, separation of electron-hole pairs and reverse reactions 

have critical impact on water-splitting efficiencies. Adding metal co-catalysts and 

coupling with other semiconductors can positively impact these factors by, for example, 

reducing e-h recombination and providing more reactive sites [5-10]. Among all the 

photocatalytic water-splitting co-catalyst systems, Ni-based co-catalysts have been 

extensively applied and show good photocatalytic properties [11-16].  It is also attractive 

because Ni is considerably less expensive than noble metals for water splitting and Ni has 

been extended to many different semiconductor such as oxides of Ti, Nb and Ta 

photocatalysts [17-19]. Ni/NiO core-shell structures have been shown to be one of the 

most active co-catalyst for water splitting [20]. The Ni/NiO core/shell structure has been 

shown to be more active than pure Ni metal, pure NiO or mixed dispersion of Ni metal 

and NiO nanoparticles (but not in a core/shell structure) [21, 22]. When first discovered, 

it was believed that the H2 evolution site was NiO and the O2 evolution site was SrTiO3 
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[23]. Metallic Ni was believed to facilitate electron transfer by forming an Ohmic contact 

between the semiconductor and NiO, thus enhancing catalytic properties [19]. Following 

new experiments, this mechanism was recently revised to suggest that Ni metal is the co-

catalyst for H2 evolution and NiO is the O2 evolution site [22]. 

         One advantage of the core-shell structure is that it may inhibit the reverse reaction 

from taking place by preventing oxygen from reaching the metal surface.  It has been 

hypothesized that it is easy for protons to diffuse through the NiO shell to reach the 

buried interface and the metal sites where reduction can take place.  H2 can then diffuse 

through the NiO multi-crystal domains shell and escape.  On the other hand, NiO is well 

known as a good barrier for O diffusion [24, 25]. Thus, the NiO shell hinders the oxygen 

generated during water splitting from reacting with hydrogen on the metal surface and 

producing H2O. A similar mechanism is supposedly taking place in the core/shell noble-

metal/Cr2O3 system [26]. 

          To date there has been few investigations of the atomic level structure of the 

Ni/NiO core/shell structure and its structural and compositional evolution during the 

water splitting processing.  This structure-reactivity information can provide insight into 

likely mechanisms behind the functioning of the material and also provide details on the 

process for deactivation. There have been reports of H2 evolution in pure aqueous water 

but no stoichiometric water-splitting for NiOx on TiO2. O2 evolution was only observed 

with NaOH aqueous solutions or NaOH coated NiOx/TiO2 pretreated materials. The H2 

evolution also decreases very quickly [19, 27]. No report has been published following 

the catalytic materials’ structural evolution during the reaction to explain the absence of 
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O2 and the drop of H2 production. Photocorrosion is common in many non-oxide 

semiconductor co-catalysts which can result in rapid deactivation.   For example, some 

sulfide semiconductors like CdS can be oxidized in photo-reactions [28, 29]. AgCO3 

photocatalyst undergo photo-corrosion by photo-reduction of Ag2+ [30]. However, no 

report has discussed photo-corrosion of metal co-catalysts. 

         Structure evolution of Ni/NiO core-shell on TiO2 was studied with ex situ and in 

situ characterization in this chapter. Photocatalytic/photochemical property testing was 

performed under exposure to light from a xenon lamp in pure water. H2 production was 

observed to drop during the reactions and no O2 was detected. High-resolution 

transmission electron microscope (HRTEM) imaging was employed to investigate the 

structural changes taking place in the material during de-activation.   A core-shell to 

void-shell morphological transformation was observed to take place as hydrogen 

evolution declined. A simultaneous increase in the Ni2+ ion concentration was detected in 

the water as the reaction proceeded, showing that photocorrosion of Ni was occurring. 

Analysis of the Ni ion concentration and the hydrogen evolution proves that a 

photochemical reaction between Ni and H2O is primarily responsible for H2 evolution in 

this case. Photo-corrosion of Ni metal and the resulting loss of Ni metal is believed to be 

the cause of deactivation.  

5.2. Materials Preparation 

Three different samples were prepared to give core-shell, NiO and mostly Ni metal 

particles on the TiO2 support.  NiOx/TiO2 was prepared with NiO 1wt% using a dry 
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impregnation method. The calculated volume of 0.5M Ni(NO3)2·6H2O (99.999% Sigma-

Aldrich) solution was dropped  onto dry commercial anatase particles (99.8% Sigma-

Aldrich) with continuing mixing until all the pores were saturated by solution. The 

mixture was dried at room temperature and calcined at 450°C in air for 3 hrs.  The 

calcined powders were then transferred into a tube furnace and reduced in flowing 5% 

H2/Ar at 500°C for 2 hrs followed by partial oxidation in 100 Torr O2 for 1 hr at 200°C. 

This as-prepared material was labelled as R500-O200-TO. A second sample fully 

reduced in 5% H2/Ar at 500°C but not subject to the re-oxidation step was labelled as 

R500-TO. A third sample was fully oxidized at 500°C in air and labelled as O500-TO. 

           For characterization of the as-prepared samples, high-resolution TEM images were 

taken on an aberration-corrected FEI Titan operating at 300kV and chemical analysis was 

performed using electron energy-loss spectroscopy (EELS) in an aberration-corrected 

NION microscope operating at 60kV with 0.4 eV/channel. Figure 5.1 shows TEM images 

of the as-prepared Ni/NiO core/shell R500-O200-TO materials. The images show clear 

core-shell structures. The d-spacing of the lattice fringes gained by Fast Fourier 

Transformation (FFT) of the high-resolution TEM images is 1.49±0.02 Å at the shell 

which matches NiO (220), and 2.02±0.02 Å at the core matching Ni (111). The FFT of 

the whole core-shell structure shows spots matching Ni cubic (111) and (220) and NiO 

cubic (111) and (200) planes. Electron energy-loss spectroscopy (EELS) line scans were 

performed to determine the spatially-resolved elemental composition across the interfaces 

between TiO2, Ni and NiO, as well as confirming the core-shell structures as shown by 

Figure 5.2. A Ni L23 edge at 855 eV was observed from the shell to the core as expected 
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in Figure 5.2c. An EELS line scan showing the variation in the O K-edge intensity is also 

presented in Figure 5.2d.  It shows an enhancement in the oxygen signal at the particle 

surface and is consistent with the projected O signal associated with a core-shell 

morphology.  Interestingly, a Ti L23 edge was also observed on the surface of the shell 

(see Figure 5.2b). This is related to the strong metal-support interaction effect where in 

the H2 reduction atmosphere, TiO2 surface gets partially reduced by the proton from H2 

dissociation around Ni metal particles [31, 32]. The reduced TiOx becomes mobile and 

diffuses onto the Ni metal surface and gets re-oxidized in the partial oxidation process. 

Apparently even after re-oxidation of Ni metal to NiO, the TiOx remains on the outside of 

the NiO. The fresh R500-TO shows more rounded co-catalyst particles with fringes 

matching Ni metal but with a very thin NiO layer due to exposure to air.  

           The core-shell structured co-catalyst was uniformly dispersed among TiO2 anatase 

particles with the metal particles more or less wetting the TiO2. The length of the contact 

interface between the Ni metal is defined as the contact length. The metal/semiconductor 

contact length and the height of the particles are similar with average values of 15nm. 

5.3. Photocatalytic Performance  

0.2g of R500-O200-TO powders were sonicated, stirred and suspended in pure water in a 

self-designed photo reactor with a quartz window on top. A 450W xenon lamp (Newport) 

with a 350-450nm band-pass mirror was used as the light source with the light coming 

vertically through the top of the reactor. The incident light intensity into the reactor was 

calculated to be about 50mW/cm2 from the manufacturer’s manual and confirmed by a 
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Si-biased photo detector (THORLABS DET10A). H2 detection was performed using a 

gas-chromatography (GC) (Varian 450-GC) system connected to the photoreactor with 

Ar as the carrier gas continuously flowing at 5 cc/ min. Reaction products in the head 

space above the water were sampled every 10 minutes with the GC. The same 

experiments were also carried out on O500-TO and R500-TO.  

            The photocatalytic/photochemical reactivities of R500-O200-TO, O500-TO and 

R500-TO are shown in Figure 5.3. Only the Ni/NiO core-shell R500-O200-TO showed 

detectable H2 evolution in these experiments.  The material activated relatively quickly 

once light was turned on with the initial H2 being detected after 25 minutes. The 

maximum H2 production rate reached about 5.5μmol/hr/g in about 100 minutes. This is 

partially explained by the progress H2 reaching saturation concentration, being released to 

head space and then mixing fully with Ar carrier gas. After 100 minutes, the H2 

production rate started to fall as the catalyst began to deactivate with the rate dropping to 

about half of the initial value after 7 hrs. O2 production was always below the detection 

limit in this experiment in agreement with the work of others.  

5.4. Ni2+ concentration in H2O during Reactions 

The Ni2+ concentration in the water before and after the reactions were determined by 

inductively-coupled plasma mass spectrometry (ICP-MS) to check if the Ni metal cores 

dissolved into H2O during the photoreaction. A deionized water blank and initial samples 

were acidified in ~0.32 M nitric acid with trace metal grade nitric acid. A series of water 

samples (1ml each) were taken every 30mins from the 50ml total volume solution during 
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the photo-reaction over a period of 4hrs after turning on the light. The water samples 

were diluted five-fold to keep them within the instrument’s calibration range. Samples 

were analyzed by quadrupole ICP-MS (ThermoFisher Scientific iCAP Q, with CCT 

option). Ni and Ti were run in CCT-KED (“Collision Cell Technology-Kinetic Energy 

Discrimination”) mode with high purity He as the collision cell gas. Samples were 

measured at isotopes 58Ni, 60Ni and 62Ni, 47Ti, 48Ti and 49Ti, respectively to monitor for 

interferences, but only data from 60Ni measurements are reported here. This isotope had 

the lowest detection limit and gave the most reliable and accurate Ni determination. The 

initial pH of the solution was 7 rising to 7.5 after the photo reaction. 

          Figure 5.4 shows a steady rise of Ni2+ detected by ICP-MS in water and H2 

production detected by GC as a function of time during the reaction. Material which was 

suspended in the DI water, sonicated for 10mins and stirred for 20mins without the light 

exposure was used as the initial sample. The concentration of Ni2+ in this initial sample 

was below the detection limit. This shows that there was negligible loss of Ni without light 

indicating that the change is Ni photo-corrosion. The amount of Ni released into solution 

was compared with the total amount of H2 produced.  The amount of Ni in solution almost 

matched the H2 production.  

5.5. Structure Evolution during Reactions and Photocorrosion. 

To study the mechanism for the deactivation and build a structure-reactivity relationship, 

another experiment was carried out under similar conditions. The H2 production 

experiment was repeated without the reactor connected to gas chromatography. The 
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reactor was opened 3 times after 80mins, 120mins and 180mins of photo-reaction, 

suspensions of materials were taken from the reactor and dropped onto TEM grids to 

make a TEM sample. TEM images were taken in order to determine the structural 

evolution during activation/de-activation.  

            Figure 5.5a and 5.5b show two examples of the significant morphological changes 

that were observed in the core-shell material when close to 50% deactivation. Figure 5.5a 

shows that Ni metal has completely vanished from the center of the particle and that a 

void remains between the TiO2 and NiO shell. Figure 5.5b shows a partial void formed at 

the interface of the Ni metal and TiO2. In a partial void, some of the Ni metal remains but 

the contact area between the metal and the TiO2 semiconductor is reduced. The 

percentages of complete void and partial void structures were measured based on over 30 

different areas of each sample after 80 min, 120 min and 180 min of the reaction. The 

results are given in Table 5.1. The percentage of partial voids increased at the beginning 

and then decreased with longer exposure in water. The number of complete voids 

increased with light exposure time and reached 41% of the total areas checked after 180 

mins. This indicates that the partial void structures are early stages of complete void-shell 

structures. From the TEM images, the void first forms at the interfaces of Ni metal and 

TiO2 and then expands to replace the whole metal particle. Charge transfers from the 

TiO2 to Ni metal will be impeded by the voids formed at the interface of Ni metal and 

TiO2 semiconductors negatively impacting hydrogen production. The loss of contact 

between the Ni metal and TiO2 is believed to be one reason for deactivation. Morphology 

was also checked for materials stirred for 4hrs without light exposure.  No significant 
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voiding was observed which proves that the core-shell to void-shell conversion is a 

photo-induced change.  

              For the materials used in the reactions, 27 µmol of Ni was present on the TiO2 in 

the form of both the NiO shell and Ni metal core. Based on the TEM image, the volume 

ratio of NiO and Ni is close to 1.5:1 and the density of NiO to Ni is about 0.75:1. So the 

ratio of Ni in NiO and in Ni metal is 1.15. That means there is 13 µmol of Ni metal in the 

material. According to the TEM observations, 41% of the 13 µmol (5.3 µmol) has been 

converted to Ni2+. According to ICP, the amount of Ni2+ in solution after 180 mins 

reaction is 4 µmol. Thus, the TEM and ICP results are in reasonable agreement. .  

TEM images were also taken on R500-TO and O500-TO before and after 4hrs Xenon 

lamp irradiation in liquid water as shown in Figure 5.6. Figure 5.6a and 5.6b show 

rounded Ni metal particles on TiO2 and the morphology is maintained after irradiation. 

NiO particles look more faceted and are more irregular in shape. The NiO morphology is 

unchanged before and after irradiation. HRTEM confirmed the particles are still Ni metal 

and NiO after irradiation for R500-TO and O500-TO respectively. The fact they do not 

show a structural change is consistent with the absence of photo-reaction activity. 

             Ni metal on R500-TO does not show the coarsening phenomenon observed on 

Pt/TiO2 samples. The main reason for this could be because the average size of these Ni 

particles is about 20nm with which the electrode potential shift due to the Gibbs-

Thompson effect is very small. There is not as much potential difference between the 

small and large Ni particles. Secondly, Ni metal after full reduction is easily to be 
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oxidized and forms thin NiO layers when exposed to air. The NiO layer protects Ni from 

dissolving into H2O. 

5.6. Mechanism 

The microscopy, catalytic and ICP measurements suggest a possible mechanism for the 

photocorrosion of Ni. Hydroxyl radicals OH· are known as major reactive species in photo 

reactions [33-35]. The standard reduction potential E(Ni2+/Ni) is -0.257V and E(OH·/OH-

) is 2.02V. So the Ni will be easily oxidized by OH· to Ni2+ [36]. This is consistent with 

the results from ICP-MS. A possible reaction pathway for the mechanism is: 

TiO2+hνTiO2+e-+h+ 

2H++2e-
H2 

H2O+h+
OH·+H+ 

2H++Ni +2OH·Ni2+ + 2H2O 

This mechanism shows why the concentrations of Ni2+ and H2 match.  It also explains the 

absence of O2 because most of the light-induced holes are used to oxidize the Ni to Ni2+ 

via the OH radical reaction. As shown in Figure 5.7 a, the OH· radicals relevant to the Ni 

photocorrosion are produced from the holes accumulated in the NiO shell. These OH· 

radicals are produced in the vicinity of the Ni metal core. The much slower 

photocorrosion on the pure Ni sample highlights the importance of locally generated 

radicals. Those results also reflect the fact that Ni/NiO core/shell structures are critical to 
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catalyze the photoreactions.  The observation and reaction mechanism show that H2 is 

produced by a photochemical reaction. This reaction is not catalytic with respect to the Ni 

because Ni is consumed during the reaction.  

             There are two possible pathways Ni metal could be contacted by OH· radicals 

and get oxidized and dissolved into the H2O. One way is that OH· radicals enter through 

cracks on NiO shell. The other one is that Ni diffuse through the NiO in a Kirkendall 

effect. Both of these two pathways are depicted in Figure 5.7 b.  

5.6.1 Photocorrosion through Cracks on NiO Shell.  

The examination about the partial void structures which is the early stage of the structural 

change suggests that the voids mostly nucleate at Ni, NiO and TiO2 triple points. 

Analysis of the morphological evolution indicates that core-shell structure conversion to 

void-shell structure is more likely on particles having large height/length ratio and high 

contact angles, i.e. particles which are more weakly bonded to the TiO2. It is possible that 

cracks or openings may occur at these weakly bonded interfaces which allow water to 

directly contact Ni metal facilitating the Ni oxidation reactions. However, among the 

many images recorded, not many obvious cracks can be directly observed. 

           To confirm or even locate the existence of cracks on NiO shells, it is critical to 

find an etchant solution which only etches the Ni core but does not react with the NiO. 

Then if similar void/shell structures were observed after submersing the materials in this 

etchant in the dark, that shows proof there are cracks on NiO shells allowing the contact 

of the Ni metal core to the etchant solution. Otherwise, the NiO shell should protect the 
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Ni core from being etched away. We have carried out experiments looking for a best 

recipe of etchant which would dissolve Ni wires but not Ni wires with a condensed NiO 

layer formed when heated to high temperature in air. After repeated experiments, a 

suitable recipe of 0.07M H2O2 + 0.07M HCl was found to be able to etch away a 0.12g 

Ni wire within 24 hrs while not change the weight of the same amount of Ni with a NiO 

layer developed at 700ºC for 1hr in air. The R500-O200-TO materials were submersed in 

this etchant for 15mins in dark and then checked under TEM. Figure 5.8 shows the 

void/shell structures similar to what have been observed during photo-reactions. This 

serves as evidence of cracks on NiO shells through which etchant can reach Ni metal 

core. However, there is still a significant amount of Ni/NiO core/shell structure 

maintained due to good protection from NiO shells which have less cracks.  

5.6.2 Photocorrosion through Ni Diffusion.  

The void/shell structures look similar to the morphology we observed during thermal 

treatment of Ni metal on silica at 400°C in oxidative atmosphere [37]. Ni metal diffuses 

several orders of magnitude faster than O along the NiO grain boundaries at elevated 

temperatures [38].That results in a Kirkendall effect where Ni diffuses from the core 

through the NiO shell resulting in vacancy formation on the Ni metal which then coalesce 

and form voids. For this photoreaction, based on measurements of the thickness and outer 

diameter of NiO layers as a function of time, no change of the thickness of the NiO shell 

was observed in this case. If there is Ni diffusion through NiO, the Ni metal atoms are 

oxidized outside the NiO shell dissolved into H2O.  
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          However, the thermal diffusion rates of Ni and O through NiO are both very low at 

room temperature under which the photoreactions were performed. One possible 

explanation is that the light absorbed in the Ni particle results in local heating which can 

drive the Ni diffusion process.  The temperature rises ΔT =
𝐼∗𝐴

𝐶𝜌𝑣
., where I is the flux of the 

UV light 50mW/cm2; A is the cross area of a Ni particle; C is the thermal capacity of Ni 

(0.44J/gºC), 𝜌 is the density of Ni and 𝑣 is the volume of the particle. Taking a radius of 

10nm particle, the absorption of light can result in a theoretical local temperature rise of 

~103 K/s in an isolated Ni particle.  However, all this excess heat is rapidly conducted 

away. The distance it requires to drop from 1000 K to 30 K is calculated to be: d =
𝐼∗𝐴

𝜎∗970
 

where  𝜎 is the thermal conductivity for Ni 90.9Wm-1K-1. d is calculated to be ~ 10-18m 

which is negligible small. Thus most of the local heat will be conducted very fast without 

resulting a local heat. Accordingly, it is preferable to believe that the OH· radicals enter 

through the cracks on NiO shells and oxidize the Ni to Ni2+.  

5.7. Summary 

Ni/NiO core/shell on TiO2 was prepared and tested for photocatalytic/photochemical 

reactivity. H2 evolution was detected but no O2 was produced. The H2 production rate 

gradually dropped because the core-shell structures transformed to hollow NiO shells. 

The loss of Ni metal from the core was believed to be the primary reason of deactivation. 

ICP-MS was utilized to determine Ni2+ concentration in the solution before and after 

reactions An increase of Ni2+ in the water was detected and matched the amount of H2 

produced. Thus, the void formation was the result of Ni oxidation and dissolution during 
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light illumination.  This photocorrosion is now believed to occur due to Ni oxidized by 

OH· radicals from direct contact with the water through cracks. Although the core/shell 

structure of Ni/NiO was effective in decreasing the back reaction and raising the H2 

production rate, it was not able to protect the Ni metal core from photocorrosion. The H2 

evolution was generated by a photochemical reaction which involved photocorrosion of 

Ni metal. To design a better photocatalyst with this core/shell structure, a layer resistant 

to both O diffusion and the metal diffusion should be considered.  
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Time of Reaction in liquid 

water under light 

% of partially voids  % of fully voids 

Initial  0% 0% 

80mins  7% 5% 

120mins 2% 11% 

180mins 2% 41% 

 

        Table 5.1. Percentage of void/shell areas during deactivation of materials.  
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Figure 5.1. a) and b)1wt% NiO/Ni 

core/shell on TiO2 initial material 

showing core-shell structure.c) fast 

Fourier transform of image showing 

spots matching Ni cubic (111) and 

(220) and NiO cubic (111) and (200) 

planes.   
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Figure 5.2. a) STEM Image of Ni/NiO core/shell structure on TiO2; b) Ti L-edge peaks at 

the shell position; c) EELS Ni L-edge; d) O K-edge intensity as a function of position 

along line scan. The left side is interface with the vacuum and the right side in the 

interface with TiO2.  
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Figure 5.3. H2 production rate versus time for three different materials.  Ni and NiO 

overlap with zero H2 production.   

 

 

Figure 5.4. Plot of amounts of Ni2+ in 50ml water and H2 producted during reaction 
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Figure 5.5. a). Partial void-shell structure areas of deactivated materials show cleavages 

in between TiO2 and Ni metal b). Void/shell structures after 50% deactivation 
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Figure 5.6. TEM images of R500-TO and O500-TO before and after light irradiation in 

water: a) initial R500-TO; b) R500-TO after 4 hrs light irradiation in liquid water; c) 

initial O500-TO; d) O500-TO after 4hrs light irradiation in liquid water.  
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Figure 5.7. Schematic drawing of a) band diagrams, b) the mechanism for core-shell to 

void-shell conversion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. (a) Morphology of R500-O200-TO photocatalyst after 15mins 

submersed in etchant (b) zoom in of one of the core/shell structure generated from 

etching. 

a b 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1. Summary 

This thesis has summarized extensive nanoscale research on typical types of 

photocatalyst nanomaterials of their structure evolution during water splitting using 

TEM. The photocatalysts being studied included pure TiO2 anatase, Pt onTiO2 and 

Ni/NiO core/shell structures on TiO2. Those materials serve as important examples of 

photocatalysts of oxide semiconductor, metal on semiconductor and more complicated 

metal/semiconductor on semiconductor photocatalysts. With the help of TEM, this 

research has provided structural and chemical information to the nanoscale level 

corresponding to high-surface-area nanomaterials, especially under water-splitting 

reaction conditions For example, oxide semiconductors like TiO2 and noble metal co-

catatalyst like Pt are well known as stable catalysts under reaction conditions. For the 

first time in this thesis, it is revealed that these materials are not so stable at the 

nanoscale. They have gone surface phase change or coarsening which affect the 

photocatalytic properties. Photo-corrosion was also observed on Ni/NiO core/shell on 

TiO2. These structural evolutions explained the corresponding de-activation of 

photocatalytic properties. Structure changes observed are summarized by: 

Photo-induced Surface Amorphization of Pure Anatase TiO2 

Well-defined anatase TiO2 with rhombohedral or rod shapes terminated mostly by (101) 

and (001) facets were prepared using hydrothermal method. The nanoparticles were 

characterized in the environmental TEM exposed to 10 suns light intensity and 1 Torr 
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H2O vapor. 1 to 2 surface monolayers of ordered TiO2 were observed to change to 

disordering on particles exposed to hours of light and H2O. Reduced Ti states 

accompanied with oxygen vacancies were found using XPS and EELS on the TiO2 

surfaces. The surface amorphization is believed to be related to the surface hydroxyl 

groups formed at the surface oxygen vacancies during the water-splitting reactions. The 

thickness of amorphization layers does not increase with longer exposure time. This 

suggests the density of surface hydroxyl groups reach to an equilibrium state in which the 

adsorption/desorption of dissociated H2O is the same, and the dissociated H2O will not 

penetrate the amorphous surface monolayers. In this sense, the TiO2 materials are 

considered stable without the collapse of the bulk materials. 

Photo-induced Ostwald Ripening of Pt Nanoparticle Co-catalyst on TiO2 

Pt is a very common noble metal co-catalyst for many different catalysis reactions. When 

it is used as photocatalyst, it helps to separate e-h pairs and lower the barrier for proton 

absorption and H2 desorption. A drop of H2 production rate to 1/3 after 9 hrs was 

observed when using 2%wt Pt on TiO2 doing water splitting in DI water. Photo-induced 

coarsening of Pt nanoparticles was discovered by comparing their particle sizes in the 

ADF-STEM images taken from samples during different reaction periods. The average 

particle size grows from 1.69±0.05nm to 2.06±0.09nm. The deactivation is partially 

because of the surface area decrease and also the less overpotential for electron transfer 

from larger size Pt particles to the reactants. According to Gibbs-Thompson effect, the 

electrical potential is shifted to more negative potential when the particle size is smaller. 

Smaller Pt particles with more negative electrode potential are more likely to be oxidized 
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compared to larger particles. When exposed to light, small Pt particles are connected to 

larger Pt particles through more conductive TiO2 as cathode and anode. Pt gets oxidized 

from small particles, dissolved into H2O and redeposited on larger particles. Electrons are 

transferred from small Pt particles to larger ones in the mean time.The oxidation and 

reduction of Pt cannot happen in dark when TiO2 is highly insulating. This photo-induced 

coarsening may also apply on other metal co-catalyst such as Ag (see Appendix) and 

result in some degradation of the catalytic activities.  

Photo-induced Corrosion of Ni Metal on Ni/NiO Core/shell Co-catalyst on TiO2 

The Ni/NiO core shell structure co-catalyst is an important system which has been 

applied to many semiconductor photocatalyst and show good activities. It is beneficial for 

e-h separation and for inhibiting the H2 and O2 back-reaction. When coupled with TiO2 

and tested for H2 production in DI water, a deactivation was observed during reactions 

with the H2 production rate, dropping to half of the highest value after 7 hrs irradiation. 

Samples were prepared and characterized in TEM after different time periods during the 

water-splitting reaction. An increase of void/shell structures in which the Ni was etched 

away was observed as the reaction proceeded. Experiments in which the material was 

exposed to light and water vapor during in situ TEM characterizations showed no 

void/shell structures. This suggested that the Ni metal was oxidized to Ni2+ and dissolved 

into water.  An increase of the number of Ni2+ ions in solution was detected by ICP-MS 

which matches the number of H2 molecules produced. This proves the reduction half-

reaction of H2 production happened with the Ni metal oxidation as the other half-reaction 

rather than O2 production. The Ni metal is believed to be oxidized by the OH· radicals 
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generated by OH- taking photo excited holes from the photocatalyst. The OH· radicals in 

H2O may have reached the Ni metal cores through cracks in the NiO shells. This was 

confirmed using a H2O2+HCl water solution which only etched Ni but not NiO. Similar 

void/shell structures were observed for samples submersed in this etchant in dark proving 

the existence of cracks on NiO shells allowing the contact of the oxidative etchant and 

the Ni core. A better protection layer has to be prepared for this system to overcome Ni 

being etched by the oxidative species.  

6.2 Future Work 

6.2.1 In situ Characterization of Liquid-phase Water Splitting Using Graphene Film 

Liquid Cells. 

Several examples have been shown in which significant structure changes happen in 

liquid-phase water with the solid metal dissolved into H2O in forms of ions. In situ TEM 

characterizations was carried out in vapor-phase H2O. Same structural changes for 

Pt/TiO2 and Ni/NiO on TiO2 in ex situ experiments in liquid phase H2O were not 

observed. To better study the mechanisms, it is critical to observe the structure evolution 

happening in situ in liquid-phase H2O atmosphere. A convenient cell with thin liquid 

layers allowing high resolution is required. Liquid cells on TEM grids can be prepared by 

enclosing liquid between two graphene films as shown in Figure 6.1 [1]. Free-floating 

graphene films were prepared by etching away the Cu substrates. Another graphene film 

deposited on TEM grids with nanoparticle/H2O suspension on top was attached to the 

free-floating graphene film. The two films stick together by van de Waals forces. Liquid 

can thus be trapped in small pockets between two graphene films. Liquid cells with 
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suspensions of photocatalyst nanomaterials in water have been prepared following this 

procedure. Some preliminary results are shown in Appendix V. 

6.2.2 Detection of Local Band-gap and Surface States on Photocatalyst Nanoparticles 

Using Monochromated EELS.  

To perform bandgap engineering on photocatalysts for water splitting especially for 

visible light responsive water splitting, it is important to know the local band gap and 

interstates of the nanomaterials. With the recent achievements of monochromated STEM 

EELS, an ultra-high energy resolution of 15meV or better can be obtained in low-loss 

region [2]. Local band-gap changes at the interface can be determined by scanning the 

focused beam across the interface. Information about the band-gap and inter-band states 

at the surfaces are critical for photocatalytic reactions. They can be obtained using the 

ALOOF beam technique where the electron beam is parked several nm away from the 

surfaces of the sample when EELS is acquired. This technique tremendously minimizes 

the beam damage to the material. Some preliminary results are shown in Appendix VII.  
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APPENDIX A 

TIO2 OPTICAL DATA AND PHOTON ENERGY ABSORPTION 
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The Optical data of TiO2 is gained from the reference by Wang, Z. et al.  

 

According to the n, K shown in the above graph, the real part ε1 and imaginary part ε2 of 

the relative permittivity can be calculated and plotted as following: 
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Figure Appendix A.2.TiO2 anatase dielectric data. 

Figure Appendix A.1. Optical constants, n and K, of the 350°C annealed TiO2 thin film. 
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The absorption coefficient can thus be calculated by 𝛼𝜆=4πK/λ.  

∫𝐼𝜆[1 − exp (−𝛼𝜆𝑡)]𝑑𝜆 

 

where t is the thickness of the sample, 𝐼𝜆 is the photon intensity at wavelength λ  

𝐼𝜆 distribution is as follows: 
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More dielectric data can be found in following papers about the TiO2 rutile and anatase: 

Landmann, M.; Rauls, E.; Schmidt, W. G. The Electronic Structure and Optical Response 

of Rutile, Anatase and Brookite TiO2. J. Phys.: Condens. Matter, 2012, 24 195503 (6pp) 

Glassford, K. M., & Chelikowsky, J. R. (1992). Structural and electronic properties of 

titanium dioxide. Phys. Rev. B, 46, 1284−1897. 
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APPENDIX B 

IRRADIATION DAMAGE FOR IN-SITU CHARACTERIZATION 
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1. Calculation of the Energy Transfer Due to Elastic Scattering  

For a thin film, the elastically scatter signal Ie can be related to the elastic cross section σ 

through the equation  

                       Ie = IoNAσ      (1) 

where NA is the number of atoms per area. 

The probability Pe of this event occurring is then given by  

                         Pe = Ie/Io = NAσ     (2) 

The energy transferred by a series of elastic collisions involving Ne electrons can then be 

calculated using the formula: 

                                      E=Ne ∫ NA
dσ

dΔE
ΔE

Emax

0
dΔE     (3) 

where ΔE is the certain energy loss caused by elastic collisions. 

The quantity dσ/dΔE is the energy differential cross section for elastic collisions. Since 

the the elements of interest here are relatively light, we can ignore electron exchange 

effects and use a modified Rutherford cross section together with a simple Wentzel 

potential to take electron screening into account to get the form  (see for example, 

reference Egerton et al. for details). 

                       
dσ

dΔE
=

1

16𝜋𝜀0
2  
𝑍2𝑒4

𝑚2𝑐4
 
1−𝛽2

𝛽4
 

1

𝐸𝑚𝑎𝑥(
𝛥𝐸

𝐸𝑚𝑎𝑥
+𝑠𝑖𝑛2

𝜃0
2
)2

                                      (4)        

                                    Emax=2𝐸0(𝐸0 + 2𝑚𝑐
2)/𝑀𝑐2               (5) 
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𝜃0 = (2𝜋𝑘0𝑟0)
−1                                                      (6) 

𝐸0 is the energy of the incident electron. m is the rest mass of electron and M is the mass 

of the sample atom. 𝛽 is ration of the velocity of incident electrons relative to speed of 

light. Z is the atom number. 

𝜃0 is a chasracteristic angle of elastic scattering where 𝑘0 is the wavenumber of the 

incident electron beam and 𝑟0 is the screening radius where 𝑟0=𝑎0𝑍
−1/3. 𝑎0 is the Bohr 

radius which equals 0.529x10-10 m. 

This expression is sufficiently accurate for the current purposes.  For a 20nm thick 

anatase nanoparticle under a 200keV electron beam, the energy loss caused by elastic 

collisions is calculated to be 0.65J/cm2 and 0.81 J/cm2 for oxygen and titanium 

respectively.  The energy transfer of approximately 1.5 J/cm2 is negligible compared to 

energy transfers associate with inelastic scattering.  

2. Discussion of Possible Damage Processes 

The question arises about whether the amorphization that we observe is intrinsic 

to the hydroxylated layer or is a result of rapid electron beam damage taking place during 

the time required to record the high resolution image. To address this question, we make 

the assumption that it is possible to have an ordered hydroxylated structure on the surface 

of the titania. Electron beam damage to the surface during imaging can occur either 

through radiolysis (inelastic collisions) or knock-on processes (elastic collisions). We 

assume that if the energy transferred by the electron collision exceeds some fraction of 

the bond strength, denoted Emin (typical hydroxyl bond strengths are 4 – 5 eV), then 
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significant structural re-arrangements can occur. For knock-on damage due to elastic 

collisions, we can use the energy differential cross section expression in the previous 

section (eqn.(4)) and integrate it between Emin and Emax (given by eqn.(5)).  The 

probability for knock-on damage is then given by eqn.(2). For an anatase crystal 20 nm in 

thickness, taking Emin to lie in the range 1 – 2.5 eV gives a probability on the order of 10-5 

for primary collisions with hydrogen or oxygen. For damage due to ionization damage, 

most of the inelastic collisions result in energy transfers greater than 2.5 eV. 

Consequently, the energy-loss spectrum from a 10 nm crystal can be used to tells us that 

the probability of ionization occuring (=In/Io) is about 0.2. 

 This analysis shows that the probability of damage via radiolysis is about 4 

orders of magnitude higher than damage via knock-on regardless of the value of Emin. In 

reality, the surface amorphization may be triggered only by elastic or inelastic collisions 

with the surface layers. However, the cross section ratios for the elastic/inelastic 

scattering will not be very different from that calculated from the entire anatase 

nanocrystal. Consequently, radiolysis will be the dominant damage mechanism for 

surface amorphization.  

The above analysis shows that the most likely source of damage occuring during 

imaging is due to ionization. However, if the structure can be damaged rapidly due to 

ionization by the electron beam, then it will almost certainly be damaged by 10 hours of 

UV irradiation in water. This suggests that the disorder structure that is observed by 

electron microscopy is not a consequence of electron irradiation but is caused by UV 

irradiation. 
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APPENDIX C 

EX-SITU AND IN-SITU CHARACTERIZATION OF CdS ON TiO2 
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      CdS has been widely coupled to TiO2 for purpose of enhancing visible light 

harvesting and e- - h+ separations. CdS/TiO2 is an important photocatalyst system for 

visible light water splitting. We have prepared the CdS nanodots on TiO2 rutile nanorods 

grown on transparent conductive glass-Fluorine doped Tin oxide (FTO). Ex-situ and In-

situ characterizations were done on this sample. 

1. Preparation of rutile TiO2 nanorods.  

      Rutile TiO2 nanorods on FTO were prepared following the hydrothermal method 

invented by Liu B. et al. 25 mL of deionized water was mixed with 25 mL of 

concentrated hydrochloric acid (36.5%-38% by weight).The 50 mL mixture was stirred 

for 5 mins before 1 mL of titanium butoxide (97% Aldrich) was added and stirred for 

another 10 mins. The mixture was then put in a 80ml volume Teflon-lined stainless steel 

autoclave with a 1 in by 1 in FTO glass submersed in the liquid phase but lean against the 

inside wall of the Teflon container. The hydrothermal synthesis was conducted at 200 °C 

for 20 hrs. After synthesis, the autoclave was cooled to room temperature before the FTO 

substrate is taken out. The typical morphology of the TiO2 nanorods grown on FTO is 

shown in the SEM image below (Figure Appendix III.1): 

 

 

Figure Appendix C.1 SEM images of as-grown TiO2 nanorods on FTO: (a) top view (b) side 

view. 
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2. Preparation of CdS nano dots on TiO2 nanorods 

 

The CdS nano dots were developed on the TiO2 nanorods by sequential chemical bath 

deposition where the TiO2 on FTO was immersed in 0.05M Cd(NO3)2  aqueous solution 

for 30s followed by another immersion in 0.05M Na2S aqueous solution for 30s. 30 

cycles were repeated until the substrate becomes yellow. The TiO2 on FTO glass 

substrate after 30 chemical bath cycles is shown in Figure Appendix III.2 a. 

     

The sample was then calcined at 400º C in Ar for 3hrs. The nanorods were then scrapped 

off the substrate and characterized by TEM. The typical morphology of this material is 

shown in Figure Appendix III.2b. 

 

Figure Appendix C.2. (a). Photo of as-prepared CdS nano dots on TiO2 nanorods grown 

on FTO. (b). TEM image of CdS on TiO2 nanorod after calcination  
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Figure Appendix III. 3 shows CdS surfaces are smoothened and the aggregates become 

smaller after 12 hrs light exposure for the calcined CdS quantum dots on rutile TiO2 

nanorods. Besides surface smoothening CdS is wetting the TiO2 forming a stronger 

interaction. Such observation is probably because light-induced e-_h+ pair recombination 

generates thermal energy for atoms to move forming new shape with minimum energy 

state. And the excited holes can oxidize the CdS with the reaction: S2- + 2h+  S. This is 

very often called the photocorrosion may also cause the reshaping of the CdS particles.  

 

Liu, B., & Aydil, E. S. (2009). Growth of Oriented Single-Crystalline Rutile TiO2 

Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal 

of American Chemical Society, 131, 3985–3990  

 

 

 

Figure Appendix C. 3. CdS on TiO2 nanorods before and after 17hrs exposure to light and 1 

Torr H2O vapor. 
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APPENDIX D 

Ag COARSENING 
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Some metals like Ag show properties of plasma enhanced photo absorption which help 

utilize solar energy when used as co-catalyst on semiconductor photocatalysts. Ag 

nanoparticles were sputtered on continuous carbon film TEM grids and anatase particles 

for study of their structural evolution in water splitting.   

          Figure Appendix D.1 shows the images of as-prepared Ag particles on continous 

carbon film TEM grid and after 8hrs UV exposure in DI water. Significant coarsening was 

observed after the process.  

        A control experiment was carried out on another sample prepared with the same 

method only exposed to 10hrs UV light but no H2O. Resulsts are shown in Figure Appendix 

D.2. bellow: 

 

Figure Appendix D.1.  (a) Initial as sputtered Ag particles on continuous carbon film 

(b) After 8hrs submersed in DI H2O under UV exposure. 

 

 

Figure Appendix D.2. (a) Initial as sputtered Ag particles on continuous carbon film (b) 

After 10hrs UV irradiation in air. 

 

 

a b 

a b 
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           The TEM images of the sample after 10hrs UV irradiation without exposure to 

liquid water  look similar to the as-prepared sample. This characterization suggests the 

coersening requires the persistence of H2O. A further control experiment without light 

irradiation shows the coarsening does not even requires light irradiation. 

         Another as-prepared Ag on continuous carbon sample was placed on a stack of slide 

glass out of the liquid water in a Petri dish. The Petri dish is wrapped and sealed with 

aluminum foils so a 100% humidity buildup and the sample was kept in dark. The TEM 

after 20hrs in 100% humidity and air without light irradiation shows coarsening of Ag 

Figure Appendix D.3. (a) Initial as sputtered Ag particles on continuous carbon film 

(b) After 20hrs in 100% humidity and air without exposure to light. (Insets: Electron 

diffraction patterns) 

 

 

Figure Appendix D.4. (a) Initial as sputtered Ag particles on continuous carbon film (b) 

After 10hrs light exposure in 18 Torr water in TEM with insets particle size histograms. 

a b 

a b 
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particles. It suggests the coarsening of Ag on continuous carbon film does not require light 

irradiation nor immersion in liquid H2O. The water vapor may have been condensed on the 

carbon film in a saturated sealed atmosphere. The Ag particles are connected by thin layers 

of H2O molecules. When this experiment was repeated in-situ in the environmental TEM 

with 18 Torr H2O vapor flowing, a less significant coarsening was observed shown as in 

Figure D. 4. This is due to much less H2O condensation onto TEM grid under continuous 

flowing H2O vapor with simultaneous pumping.  

         All the results shown above are consistent with the Ag particles coarsening on 

conductive substrate reported by Redmond, P. L.et al. The continuous carbon on TEM grid 

is conductive so it avoids the charging issue for TEM characterizations. Ag particle size 

grows when exposed to pure water through an electrochemical Ostwald ripening 

mechanism. The small Ag particles have larger negative potential shift due to Gibbs-

Thompson effect so they are easier to be oxidized than larger Ag particles when connected 

by conductive carbon film. Ag is oxidized to Ag+ at small Ag particles and transferred to 

large ones through liquid H2O. The electrons were transferred through conductive carbon 

film from small Ag particles to large ones to maintain the charge neutral.  

The Ag was also sputtered on TiO2 anatase particles and characterized with or without light 

and H2O exposure. Figure Appendix D.5 shows significant coarsening of Ag particles on 

anatase after 17hrs UV exposure in 100% humidity. While after 10 hrs in dark in H2O, no 

significant coarsening was observed (see Figure Appendix D.6). This is consistency with 

what we have observed on Pt/TiO2 where the coarsening is a photo-induced 

electrochemical Ostwald ripening.  
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Another discovery is Ag is very sensitive to the contaminants in air. Analysis using electron 

diffraction found the as prepared sample was fcc Ag metal while the coarsened Ag particles 

show diffraction patterns of bcc AgS. There was a sewer gas leaking problem in the 

building of our lab. The AgS may result from the reaction of Ag with H2S in the sewer gas. 

The experiments on Ag coarsening have to be carried out in a controlled atmosphere.  

 

Figure Appendix D.5. (a) As sputtered Ag particles on anatase; (b) After 7hrs 

exposure to UV light in 100% humidity   

Figure Appendix D.6. (a) As sputtered Ag particles on anatase; (b) After 10hrs 

in liquid H2O in dark.   

a b 

a b 
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APPENDIX  E 

GRAPHENE LIQUID CELL 
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Yuk et al invents the method to prepare graphene liquid cell using two layers of graphene 

film to trap liquid in between directly on TEM. Wang et al has expanded this technique to 

study ferritin in graphene liquid cells. We followed Wang’s method which is written in 

details in the supplemental material of his paper. Some of the preliminary results have 

been obtained. 

        Figure Appendix E.1 shows a liquid cell before and after exposure to focused 

electron beam. Bubbles appear during electron irradiation which is a typical sign of H2O 

presence between the graphene sheets. As shown in Figure Appendix E.2, EELS acquired 

from the liquid cell shows O K-edge peaks further confirming the presence of H2O. 

However, even though liquid cells were successfully prepared, the reproducibility is very 

low. And the liquid cells always contain Fe, Cu and Cl ions from the copper etchant used 

for preparation of free floating graphene films which causes unwanted contaminations. 

Efforts are being made to increase the success rate and minimize the contamination.  

 

Figure Appendix E.1 Graphene liquid cell a) before focused electron beam; b) after focused 

electron beam.  
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Figure Appendix E.2 EELS taken on liquid cell show O-K edge peaks 
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APPENDIX  F 

PRELIMINARY DATA OF TIO2 LOCAL BANDGAP AND SURFACE STATES 
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The average measured value of TiO2 (High Purity) bandgap from more than 6 different 

spectra is 3.60 eV ± 0.01 eV. Figure Appendix F.1a insertion shows an example of how 

the bandgap is measured by extrapolating the straight portion of the fitted curve to the x 

axis. 3.60 eV, which may be the direct bandgap measurement, is larger than the well-

known ~3.2 eV indirect bandgap for anatase achieved from optical measurements. Figure 

Appendix F.1a also shows the bandgap of anatase shifts to 3.71 ± 0.03 eV as the Ti in the 

particle was reduced from Ti+4 to Ti+3 by the electron beam. Here beam-sample 

interaction was used to reveal bandgap structure change as the oxidation state of the 

material changed. On Figure Appendix F.1b, inter-band states were clearly observed 

when beam was on the surfaces of TiO2 on Ni/TiO2 (Low Purity) samples. Distinctive 

interstates peaks were at 2.08 eV, 2.37 eV and 2.85 eV for TiO2.Those states are believed 

to be related to the oxygen vacancies produced from the high temperature reduction 

and/or impurities segregated to surfaces in the commercial TiO2 after high temperature 

heat treatment. The energies of these inter-band states vary among different particles 

depending on their local morphology and impurity concentrations. Theoretical 

simulations are being carried out to interpret the experimental data.  
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a 

Figure Appendix F.1 a) Bandgap edge from anatase TiO2 (HP) before and after 

reduction by electron beam with insertion of curve fitting as example of how the 

bandgap is measured. b)  Inter-band states on surface of TiO2 from Ni/TiO2 (LP) 

sample. 

 


