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ABSTRACT

Blur is an important attribute in the study and modeling of the human visual system.

In this work, 3D blur discrimination experiments are conducted to measure the just

noticeable additional blur required to differentiate a target blur from the reference

blur level. The past studies on blur discrimination have measured the sensitivity of

the human visual system to blur using 2D test patterns. In this dissertation, subjec-

tive tests are performed to measure blur discrimination thresholds using stereoscopic

3D test patterns. The results of this study indicate that, in the symmetric stereo

viewing case, binocular disparity does not affect the blur discrimination thresholds

for the selected 3D test patterns. In the asymmetric viewing case, the blur dis-

crimination thresholds decreased and the decrease in threshold values is found to be

dominated by the eye observing the higher blur.

The second part of the dissertation focuses on texture granularity in the con-

text of 2D images. A texture granularity database referred to as GranTEX, con-

sisting of textures with varying granularity levels is constructed. A subjective study

is conducted to measure the perceived granularity level of textures present in the

GranTEX database. An objective index that automatically measures the perceived

granularity level of textures is also presented. It is shown that the proposed granu-

larity metric correlates well with the subjective granularity scores and outperforms

the other methods presented in the literature.

A subjective study is conducted to assess the effect of compression on textures

with varying degrees of granularity. A logarithmic function model is proposed as a

fit to the subjective test data. It is demonstrated that the proposed model can be

used for rate-distortion control by allowing the automatic selection of the needed

compression ratio for a target visual quality. The proposed model can also be used
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for visual quality assessment by providing a measure of the visual quality for a target

compression ratio.

The effect of texture granularity on the quality of synthesized textures is

studied. A subjective study is presented to assess the quality of synthesized textures

with varying levels of texture granularity using different types of texture synthesis

methods. This work also proposes a reduced-reference visual quality index referred

to as delta texture granularity index for assessing the visual quality of synthesized

textures.
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Chapter 1

Introduction

The capabilities and the limitations of the human visual system (HVS) are used

in creating and consuming visual content. The perceived visual content evolves

from images where the three dimensional world is projected onto two dimensional

image frames with a finite sampling lattice. The HVS has a finite spatial resolving

power close to 1 arcminute (arcmin) [2–4], which is approximately equal to 1.75 mm

at a distance of 6 meters. This limitation is used to limit the spatial sampling

frequency and to sample at a high enough resolution to minimize the spatial aliasing

effects. Similarly, the perceived 2D video content results from displaying image

frames in quick succession. The limitations observed in the temporal resolving power

of the HVS [5] are considered in selecting video frame rates and display refresh rates.

Perceieved 3D views can result from 2D images [6], where the images for the left

and the right eye are rendered with horizontal parallax (disparity). The brain tries

to fuse these images which gives the perception of depth, which is the third spatial

dimension for the visual content. In this dissertation, the perceived visual quality and

its modeling are studied in the context of 3D and 2D viewing to better understand

the response of the HVS to selected physical stimuli.

The visual content is characterized by attributes such as color, texture, mo-

tion, blur, sharpness, contrast, depth, resolution and frame-rate. The usage of these

attribute depends on the application. In this research work, blur and texture at-

tributes are studied in the context of 3D and 2D visual content, respectively. The

first part of the dissertation focuses on 3D stereo images, and a thorough study of blur

discrimination for both the symmetric and asymmetric stereo viewing is presented.

The second part of the dissertation focuses on texture attributes in the context of 2D

images and a detailed study of texture granularity and its applications is presented.
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1.1 Blur Discrimination Experiments

The quality of experience of consuming visual content depends on many factors from

creation to distribution and to rendering of the content. Any artifacts or irregular-

ities introduced in the content processing chain will degrade the overall quality of

experience. Blur is an important attribute in characterizing the visual content. Blur

is associated with loss of information or high frequencies in the visual content. The

blur in the visual content is introduced by many factors including but not limited

to motion blur, optical aberrations, compression, format conversion and display sys-

tem limitations. In order to optimize the design of systems for applications such as

acquisition, compression, distribution, and display of visual media, it is important

to study and model the sensitivity of the human visual system (HVS) to blur. Blur

discrimination studies help us to understand the level of blur which is visible to the

HVS and helps in designing optimized systems along the video pipe.

In blur discrimination experiments, subjects are presented with two stimuli,

one with a reference blur level and the other with a reference plus an additional

blur referred to as target blur level. Using a Two-Interval Forced Choice (2IFC) or

Two-Alternative Forced Choice (2AFC) subjective test methodology, subjects are

asked to judge which stimulus has a larger blur. The threshold is measured as

the just noticeable additional blur required in order to discern the reference blur

level from the target blur level. In Figure 1.1, rectangular test patterns for a blur

discrimination experiment are shown. The subjects are asked to observe the central

vertical edge in order to judge which of the two test patterns has a larger blur.

Depending on the application, the simulated blur can be modeled using different

blur patterns such as Gaussian, rectangular and defocus blur. A Gaussian blur is

typically used in these experiments as a representative of different blurring functions.
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(a) Reference Pattern

(b) Target Pattern

Figure 1.1: Test stimuli with Gaussian blur for 2D blur discrimination experiments.

(a) Regular Texture (b) Hybrid Texture (c) Irregular Texture

Figure 1.2: Examples of texture regularity.

Blur discrimination in the context of 2D images has been extensively studied in the

literature. In this dissertation, blur discrimination studies are extended to the 3D

stereo viewing scenario.

1.2 Texture Attributes

Two-dimensional textures represent spatial variations in the pixel values of the visual

content. Textures are characterized by attributes such as regularity, directionality

and granularity. Texture attributes are used in various applications such as image
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(a) Low granularity (b) Medium granularity (c) High granularity

Figure 1.3: Examples of texture granularity.

retrieval, classification, synthesis and compression. Texture attributes can be charac-

terized based on the observed primitives. The primitives represent smallest repetitive

recognizable object in the texture. The texture regularity attribute provides infor-

mation about the arrangement of the primitives. If the primitives are arranged in a

very structured manner in terms of size, location, color, and shape then the texture

is said to have high regularity. In Figure 1.2, examples of highly regular to irregu-

lar textures are shown. The observed texture primitives in these images are black

circles, bricks and rice grains. It can be observed that the placement of these prim-

itives define the regularity of textures. The directionality of the textures provides

information about how the dominant structures or edges are aligned in the texture.

Texture granularity is another important attribute to characterize textures.

The granularity level can be quantified based on the size of the primitive [7] in the

texture. In addition, the spacing and density of the primitives can influence the

perceived granularity of a texture. In Figure 1.3, examples of low, medium and high

granularity level textures are shown. It can be observed that, for the low granularity

level textures, one can easily recognize the objects in the image (e.g.,tennis ball).

But, in the case of high granularity level textures, it is more difficult to discern the

smaller size primitives. The granularity of the textures depends not only on the local

4



(a) Stack of boulders (b) Surface of the boulder

Figure 1.4: Examples of global and local context of primitives for texture granularity.

but also on the global context of the primitive. In Figure 1.4, a stack of boulders

(Figure 1.4(a)) is shown along with the surface of the boulder (Figure 1.4(b)). In the

case of the stack of boulders (Figure 1.4(a)), the surface details of the boulder are

not that important compared to the outline of the different boulders. On the other

hand, if we are focusing only on the small patch of the boulders (Figure 1.4(b)), then

the details on the surface of the boulder are more important. Hence, a granularity

measure should consider the local as well as the global context of the primitives. In

this dissertation, a detailed study of perceived texture granularity is presented along

with an objective no-reference texture granularity index (TGI). The application of

the proposed objective granularity index for texture compression and synthesis is

discussed and demonstrated.

1.3 Contributions

In this dissertation one of the first psychometric experiments to measure the blur

discrimination thresholds using stereoscopic 3D test patterns is presented. Both sym-

metric and asymmetric stereo viewing cases are considered. The binocular disparity

is used as the only depth cue in the image. The 3D blur discrimination tests are

carefully designed taking into consideration factors such as stereoscopic 3D percep-

tion, binocular rivalry, display cross-talk and vergence adaptation to the disparity.
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The subjective test results indicate that the blur discrimination thresholds remain

almost constant as we vary the disparity value, which corresponds to varying the

object depth. This significant finding indicates that one can apply 2D blur discrim-

ination models for stereoscopic 3D blur discrimination. It is shown that the Weber

model provides a good fit to the subjective study measurements involving 3D stereo

blur discrimination.

The study of asymmetric 3D stereo blur discrimination results showed that

blur discrimination has a masking effect, in the sense that the eye observing the

larger blur masks the blur observed by the other eye. This further indicates that

asymmetric 3D stereo coding will introduce noticeable reduction in quality even if

the compression quality of one of the streams (left or right eye) is kept higher.

Another significant contribution of this dissertation is to propose a no-reference

perceptual texture granularity index and demonstrating its application for visual

compression. This is the first ever work that quantifies the perceived granularity

in textures. A texture database, referred to as GranTEX, is created consisting of

texture images with different granularity levels. A subjective study is presented

to quantify the perceived granularity level of the textures present in the GranTEX

database. The presented database is useful in comparing the performance of objec-

tive granularity measures. It is demonstrated that the proposed Texture Granularity

Index (TGI) correlates well with the perceived granularity level obtained from the

subjective study. It is also shown that the proposed TGI outperforms other objective

granularity measures published in the literature, including the one proposed for the

MPEG7 standard.

In order to demonstrate the application of the proposed TGI for visual com-

pression, a subjective study is conducted to assess the effect of compression on tex-

tures with varying degrees of granularity. It is found that, for a similar visual quality,
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one can achieve almost double (∼1.8) the compression for the low granularity textures

as compared to the high granularity textures, and around 1.5 times the compression

for the medium granularity textures as compared to the high granularity textures.

A logarithmic function model is proposed as a fit to the subjective test data. It is

demonstrated that the proposed TGI metric and the proposed model can be used

for rate-distortion control by allowing the automatic selection of the needed com-

pression ratio for a target visual quality. The proposed model can also be used for

visual quality assessment by providing a measure of the visual quality for a target

compression ratio.

Finally, the effect of texture granularity on the quality of synthesized textures

is presented. For this purpose, subjective studies are conducted to assess the quality

of synthesized textures with different levels (low, medium, high) of perceived texture

granularity using different types of texture synthesis methods. The results of the

conducted subjective studies indicate that the non-parametric patch-based texture

synthesis method outperforms other well-known parametric and pixel-based methods.

This work also proposes a reduced-reference visual quality index referred to as the

delta texture granularity index for assessing the visual quality of synthesized textures.

1.4 Dissertation Outline

The organization of the dissertation is as follows. The necessary background related

to this work is presented in Chapter 2. This includes details on psychometric experi-

ments, 3D video technologies and image texture models. A detailed study of 3D blur

discrimination for stereo images is presented in Chapter 3. The proposed perceptual

granularity metric is discussed in Chapter 4. An application of the proposed texture

granularity index for visual compression is presented in Chapter 5. The relationship

between texture granularity and synthesis quality is presented in Chapter 6. Conclu-
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sions summarizing the contributions of this thesis and future directions are presented

in Chapter 7.
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Chapter 2

Background

In this chapter, the background material related to this work is presented. A review

of the QUEST [8] adaptive psychometric procedure is first presented. The QUEST

procedure is used in the blur discrimination experiments. A broad overview of 3D

technologies is presented next, which includes details on 3D visual perception, 3D

video processing pipe and subjective quality assessment for 3D stereo content. The

second part of this chapter focuses on image textures and provides a review on texture

models, texture synthesis methods and the visual quality assessment of synthesized

textures.

2.1 Adaptive Psychometric Experiments

In a psychometric experiment, the relationship between a physical stimulus and the

subjective responses [9] is studied. The applied physical stimulus would stimulate

the senses such as visual, hearing and touch. In a psycho-visual experiment, the

visual stimulus is presented to the subject and the response of the Human Visual

System (HVS) is studied. The response of the observer is obtained by varying the

strength of the stimulus. In a yes/no experiment, the subjects are asked to judge

the presence or absence of a signal. In a forced choice experiment, the subjects are

asked to identify the stimulus in n-given alternatives. In the specific case of two-

alternative-forced-choice (2AFC) method the subjects are asked to choose between

the two alternatives. The selection of strength of the physical stimulus can be varied

either in non-adaptive or adaptive steps. In a non-adaptive method, the stimulus is

presented at predefined locations in the physical stimulus domain or in a predefined

step sizes in an ascending or descending order. In an adaptive method, the stimulus

strength in the physical domain is selected based on the previous responses from

9



(a) Linear x-axis

(b) Logarithmic x-axis

Figure 2.1: Weibull function plotted with linear and logarithmic x-axis.

the subject. The adaptive methods [10] tend to be more efficient in providing good

convergence.

A plot of the correct response against the strength of physical stimuli results

in a psychometric function, which describes the relationship between the physical

measure of stimulus and the probability of a particular physical response. In the

general form, a psychometric function [9] is given by the following equation:

ψ(x;α, β, γ, δ) = γ + (1 − γ − δ)F (x;α, β) (2.1)
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where F (x;α, β) represents a two-parameter function which is typically a sigmoid

function. The function F (x;α, β) is usually chosen to have a range [0, 1] and is

represented by functions such as Weibull, logistic, or cumulative Gaussian. The

parameter γ gives the probability of correct detection in the absence of the stimulus

signal. For an n-alternative forced choice experiment this is usually fixed at 1
n

where n

is the number of choices (which is 0.5 for 2AFC method). The parameter δ represents

the observer lapse, which is the probability of incorrect detection irrespective of the

strength of the stimulus signal. Hence (1 − δ) gives the upper bound for the curve

representing the psychometric function.

In the particular case of the Weibull distribution, F (x;α, β) is represented by

W (x;α, β) = 1 − exp

{
−
(x
α

)β}
(2.2)

where α is the position and β is the slope parameter. Plots of the Weibull distribution

for different values of α are shown in Figure 2.1. The β value is set at 3.5 in these

plots. It is observed from the plots that in the case of a linear x-axis (Figure 2.1 (a))

the slopes of the curves are different, but in the case of a logarithmic x-axis (Figure

2.1 (b)) the plots show similar slope values. This indicates that on a logarithm x-axis

the probabilities given by the psychometric functions are translations of one template

curve along the axis. This property is used in the QUEST psychometric procedure

described next.

2.1.1 QUEST Psychometric Procedure

QUEST is an adaptive psychometric procedure [8]. This method calculates the stim-

ulus strength (threshold) based on the most probable Bayesian estimate of the thresh-

old from the available information. The information is derived from the thresholds

observed in previous trials of the experiment and from the prior knowledge about

the experiment. The prior knowledge can include the shape of the psychometric
11



(a) Prior probability density function

(b) Likelihood function

(c) Posterior probability density function

Figure 2.2: Application of Bayes rule to the QUEST probability density function.
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function and the distribution of thresholds under study. This adaptive procedure

helps to quickly converge to the correct threshold values within a few trials.

The QUEST method makes the following assumptions [11]:

• The psychometric function has the same shape under all conditions, when

expressed as a function of log intensity.

• The subject’s threshold does not vary from trial to trial.

• Individual trials are statistically independent.

The initial range for the threshold values is assumed to be known on a log-

arithmic threshold scale. A graphical representation of how Bayesian inference is

applied for the QUEST method is shown in Figure 2.2. In Figure 2.2(a), a Gaussian

initial probability density function (pdf) is shown and the first stimulus intensity is

chosen corresponding to the mode of this pdf. The area under this curve sums up to

one. Baye’s rule is applied to find the maximum likelihood estimate of the threshold

for the next trial. Assuming availability of prior knowledge about the experiment

that the higher thresholds increase the probably of correct detection, two scenarios

are possible: 1) if the subject responds correctly then the threshold is probably to

the left of the current intensity (lower values) and the new pdf is skewed towards the

lower intensity values; 2) on the other hand, if the subject responds incorrectly then

the threshold is probably on the right side of the current intensity (higher values)

and hence the pdf is skewed towards the higher intensity values (as shown in Figure

2.2 (c)). The QUEST method is used in the psychometric experiments presented in

Chapter 3.
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2.2 3D Video Technologies

The world observed around us is three dimensional, hence visualizing the 3D content

gives us a sense of real presence. 3D visualization techniques mostly fall under stereo

viewing techniques where two different views are rendered to each eye with a hori-

zontal parallax between them. In this section an overview of 3D video technologies

is presented.

2.2.1 3D Visual Perception Basics

A brief description of 3D perception basics is provided here. The Human Visual Sys-

tem (HVS) perceives depth from monocular and binocular cues [6]. The monocular

cues are derived from a single image viewed by one eye or by each eye independently.

The monocular cues include head movement parallax, linear perspective, occlusion of

more distant objects by near ones, shading or texture illumination gradient and lens

accommodation (muscular tension to focus objects). For accurate depth estimation,

however, our brain uses binocular vision, which is based on the fact that we sense the

world through two 2D images that are projected on the retinas of the left- and the

right-eye. Since our left and right eyes are separated by a lateral distance, known as

the interpupillary distance (IPD), each eye sees a slightly different projection of the

same scene. Binocular vision corresponds to the process in which our brain computes

the disparity, which is the difference in distance between the center of fixation and

the two corresponding points in the retinal image of the left and right eye.

In the natural 3D stereo (binocular) viewing, the eyes fixate on the object of

interest through a process involving vergence and accommodation [12]. Since there

is a lateral shift between the two eyes, which creates a disparity between the left and

right eye images rendered onto the retina, the two eyes converge (inward movement)
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Figure 2.3: Stereoscopic vision.

or diverge (outward movement) in order to create a single retinal image called the

cyclopean image. This process is called vergence. At the same time, the eyes change

their focal length in order to create a sharper retinal image of the object of interest.

This process is called accommodation. It is widely accepted that the vergence [13] is

driven by the disparity and the accommodation is driven by the blur, and there is a

cross coupling between the two processes. In the case of natural stereo viewing, the

accommodation and vergence processes are coupled in order for the eyes to fixate and

focus on the object of interest. The disparity between the left- and right-eye retinal

images provides accurate depth information for the object of interest. The objects

which are not in focus appear blurred in the retinal image and are modeled as defocus

blur [14]. Defocus blur is an important depth cue for the brain providing relative

depths of the objects in the scene. Hence, blur and disparity are complementary

signals and they together provide accurate depth information to the brain.

The projection of images in stereo vision [6] is illustrated in Figure 2.3. The

images projected on the fixation center have zero disparity and they correspond to

15



Figure 2.4: Depth perception in stereoscopic displays.

objects on the fixation curve. Objects with positive or negative disparity appear

in front or behind the fixation curve, respectively. This binocular vision technique

is used in stereoscopic 3D displays, where the left-eye image is horizontally shifted

with respect to the right-eye image. The brain tries to fuse these horizontally shifted

images to create a sense of depth. As shown in Figure 2.4, depending on the disparity,

the object is perceived as near or far object. The rendered distance of the near object

from the display screen is given by:

DepthNear =
V ·DISP

(IPD +DISP )
(2.3)

where V is the viewing distance, DISP is the disparity between left- and right-eye

images, and IPD is the interpupillary distance. Similarly, the rendered distance of

the far object from the display screen is given by:

DepthFar =
V ·DISP

(IPD −DISP )
(2.4)

In the case of 3D stereo viewing, the left and right eye are always focusing on

the display screen, but because of the lateral shift in the left and right eye images,
16



(a) Comfort zone measured in diopters (b) Comfort zone measured in meters (Log-
Log scale)

Figure 2.5: Comfort zone region where binocular fusion is possible.

the brain perceives near or far object. If the disparity values are above a certain

threshold, the brain will not be able to create the cyclopean (single) image and hence,

the binocular vision breaks down. In Figure 2.5, the plots of comfort zone [15] are

shown in diopters (left panel) and in meters (right panel). On the horizontal axis the

vergence distance is shown and on the vertical axis the viewing distance is shown. The

black diagonal line shows the natural viewing condition where both the focal length

and vergence distance are the same. The lines with squares and circles represent

limits for near and far object regions, respectively, where a converged cyclopean

image can be observed. The region between these two lines is referred as comfort

zone. An object rendered outside this zone will lead to difficulty in fusing the left-

and right-eye images. It can be observed from the right plot (Figure 2.5(b)) that

the comfort zone gets wider as the distance from the screen gets larger. Rendering

the objects outside the comfort zone causes eye-fatigue and eventual loss of depth

sensation [16].
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2.2.2 3D Video Chain

The 3D video Quality-of-Experience (QoE) is affected by various factors along the de-

livery chain. A 3D video processing chain [17] consists of content acquisition/production,

compression, transmission, and display (shown in Figure 2.6). On the acquisition and

production side shooting conditions need to be managed to better assess the user ex-

perience [18]. Proper 3D shooting has to be aware of the final presence factor (ratio

of screen width and viewing distance). The presence factor depends on the displays,

and it is restricted as compared to the real 3D world. A set of 3D video acquisition

factors directly affects the QoE, such as overall depth range, convergence, binocular

rivalry. During the capture of multiple views of the scene, depending on the camera

set-up, there will be misalignments and differences in luminance and chrominance

values. These differences not only result in quality degradation, but also lead to

incorrect or loss of depth information [19]. The 3D video acquisition for stereoscopic

displays requires at least two views with a horizontal shift between them. A multi-

view capture system captures two or more full resolution videos. The challenges in

a capture system are temporal synchronization, camera calibration, matching white

balance and simultaneous storage. It is difficult to perfectly match the camera sys-

tems and achieve zero vertical parallax, which requires a post processing rectification

step. The video-plus-depth camera set-up consists of a high-resolution video camera

with a time-of-flight depth sensor [20]. The obtained depth data in these systems [21]

is very noisy and usually of very low resolution as compared to the acquired video

resolution. A post-processing step [22] is needed to generate a high-resolution depth

map. It is possible to convert between the video-plus-depth and multi-view video

formats. A conversion algorithm between these two formats is required to resolve

multiple correspondences and occlusion-uncovering regions [23]. Other possibilities
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Figure 2.6: 3D video chain showing content generation, distribution and consump-
tion.

for the generation of 3D content include 2D to 3D video conversion and 3D anima-

tion. A 2D to 3D video conversion algorithm makes use of information from motion

parallax [24] and other available monocular cues in mostly a learning-based frame-

work [25]. The 3D animation content is generated using 3D graphics and computer

generated imagery (CGI) principles [26]. The 3D animation techniques have been

very mature and are aiming for photo-realistic imagery.

The two or more views of a captured scene need to be stored or transmitted

through a broadcast chain. In order to reduce the required doubling of the bandwidth

for the left- and right-eye images, compression techniques are applied [27]. This can

result in artifacts such as blur, blockiness, graininess, and ringing. In asymmetric

video coding, one of the two video sequences (left or right) will be coded at a lower

bit-rate or resolution. Transmission errors can also cause degradations in quality.

As the impact of compression and transmission artifacts may be different on the

left- and right-eye images, spatial and temporal inconsistencies between the left- and

right-eye views can occur, which can result in eye-fatigue and loss of depth sensation.
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Finally, the 3D video signal needs to be rendered on a display. Depending on

the display technology, various artifacts can impair the perceived picture quality. A

reduction in spatial or temporal resolution, loss in luminance or color gamut, and

the occurrence of crosstalk are typical artifacts related to the display technologies.

Visual discomfort is a physiological problem experienced by many subjects when

viewing 3D video. There are many reasons leading to the visual complaints, but the

most important cause for discomfort is the accommodation-vergence conflict which

is discussed in Section 2.2.1.

2.2.3 3D Display Formats

The stereo 3D displays consume the video in two main formats, namely Frame Com-

patible and Frame Sequential. In the Frame Compatible format, the spatial resolu-

tion of left- and right-eye views is reduced in order to keep the overall spatial and

temporal resolution the same as the 2D video. This enables the use of existing infras-

tructures for compression and transmission. Depending on how the left- and right-eye

views are spatially mapped, Frame Compatible [28] formats can be classified as side-

by-side, top-bottom, row interleaved, column interleaved and checker-board patterns

(shown in Figure 2.7). Figure 2.8 illustrates the Frame Sequential format, where

alternating left- and right-eye views are displayed at full resolution in a time sequen-

tial manner. A display with a row-interleaved format is used in the psychometric

experiments presented in Chapter 3.

Stereoscopic displays [29] need two different perspective views simultaneously,

as described in Section 2.2.1. Several multiplexing methods can be used to carry the

light to the appropriate eye. In color multiplexed displays, two views are shown with a

different color each (e.g., red and cyan) and Anaglyph glasses with the corresponding

color filters are used to separate the left- and right-eye (L-R) view. This technique
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Figure 2.7: 3D frame compatible formats where left- and right-eye images are spa-
tially subsampled.

Figure 2.8: 3D frame sequential format where left- and right-eye images are tempo-
rally interleaved.
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is simple but the observed visual quality is poor. The colors observed between

the two views are different, which makes it tiring for the brain to match the two

views. In the case of passive retarder stereoscopic displays [30], the L-R views are

spatially multiplexed with different polarizations. This reduces the spatial resolution

in either the vertical or horizontal direction depending on the interleave pattern. The

polarized eye-wear does not need any synchronization with the display and it simply

filters the two polarized views for the left and right eye. A passive stereoscopic display

is used to render 3D stereo images in the psychometric experiments presented in

Chapter 3. Active stereoscopic displays project the L-R views in a frame sequential

format. The time-multiplexed L-R frames are filtered by the active glasses, which

are synchronized with the display. Active stereoscopic displays require a higher

frame rate for flicker free viewing. Auto-stereoscopic displays do not need specialized

eye-wear and are classified into direction multiplexed, holographic and volumetric

displays [31].

2.2.4 3D Subjective Quality Assessment

3D stereo imposes new requirements and consequently opens new perspectives for

quality assessment, as compared to 2D image and video quality assessment [17]. The

Quality of Experience (QoE) of 3D videos triggers multidimensional factors from the

human point of view. Numerous use cases require quality assessment for different

needs all along the content delivery chain (shown in Figure 2.6). The artifacts intro-

duced during each stage have different effects on the overall QoE. Separate methods

of quality assessment need to be developed for different application scenarios so that

current technologies can be improved.

Subjective quality assessment of 3D video is crucial in developing the 3D-TV

infra-structure, that will provide optimum 3D QoE. Subjective evaluation of 3D QoE
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Figure 2.9: 3D stereo quality of experience.

is multifaceted, and should include measurement of depth perception, visual comfort

along with 2D video quality (as shown in Figure 2.9). The 3D QoE tries to measure

the sense of ultimate reality or true presence, along with physiological issues such as

eye fatigue. 2D video quality is an important factor in the assessment of the quality

of 3D video. Methodologies for subjective quality assessment for 2D video have been

extensively studied, and were standardized as the ITU-T Rec.P.910 [32] and ITU-R

Rec.BT.500 [33] standards. 3D video subjective quality assessment followed similar

efforts and was standardized as the ITU-R Rec.BT.1438 [34] standard. But, these

efforts are not sufficient to capture the overall 3D QoE. Depth perception tries to

measure the added value of stereoscopic depth in 3D-TV systems. Subjective exper-

iments were conducted in the literature to predict the depth perception. In [35], the

relationship among the quality, depth perception, and naturalness is studied through

subjective assessment of 3D video. It was concluded that the depth perception de-

creases as the quality decreases. When the quality is low, the perceived depth of

the 3D video sequences gets closer to that of 2D video sequences. Visual discomfort

is important to measure the overall 3D QoE. In [36], experiments are conducted to

study visual fatigue in the context of multi-view acquisition. Standard subjective

quality assessment protocols are used, but requesting the observer to rate visual fa-
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tigue instead of overall quality. In these experiments, 8 to 10 seconds length video

clips are considered, which is quite short to stress the visual fatigue.

Beside measurement methods, in order to conduct subjective quality assess-

ments of 3D video, one has to carefully consider the following factors:

1. Content selection: The content selection is very important in order to correctly

interpret the data obtained from the conducted 3D video subjective assessment

experiments. When shooting or generating the content, the camera baseline

width and disparity measurements will affect the comfortable viewing condi-

tions. These viewing conditions need to be matched during the conducted

subjective experiments. The viewing conditions here represent display size

and the viewing distance, and if needed the content has to be reauthored for

different viewing conditions.

2. Display technology: Currently, there are three main 3D display technologies

available for 3D-TV, including active, passive and auto-stereoscopic displays.

The underlying display technology affects factors such as spatial-temporal reso-

lutions, crosstalk level, comfortable viewing position, that need to be considered

in the subjective assessment.

3. 3D video pipe: The subjective quality assessment need to consider the under-

lying technologies in a 3D-TV video pipe. The selection of different formats

(frame compatible, full-frame), compression methods, distribution channels will

introduce different kinds of artifacts. These factors have to be defined and re-

flected in the subjective quality assessment.

4. Viewing conditions: Viewing conditions are strongly coupled with content se-

lection and display technology. Display size and viewing distance need to be
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defined based on the created content. Different luminance levels, lighting con-

ditions and display calibration have to be considered based on the display

technology.

There is a need for developing standardized subjective assessment methodologies

that would encompass the above factors to study the overall 3D QoE. The existing

subjective quality assessment methodologies for 3D video are largely the same as

those for 2D video, which do not measure the multifaceted nature of 3D video quality.

2.3 Image Textures

Image textures are important in conveying spatial arrangement or structure of the

scene. A low-level [37] representation of the image textures is described by the spatial

variations in pixel intensity values. At a high-level, image textures are described by

types of repetitive regions, referred to as primitives, and their spatial arrangements.

In this section a review of texture analysis methods is presented. A summary of

texture models is presented followed by a review of texture synthesis methods and

their quality assessment. Texture models are useful in representing the textures in a

compact form. Texture synthesis methods generate or synthesize the textures from

the compact representation such as higher order statistics or image patches.

2.3.1 Texture Models

The image textures represent intensity variations in the pixel values. The texture

models are used to characterize and analyze texture images. The textures are mod-

eled [37] using various approaches such as statistical, geometric, model-based and

signal processing based methods.

Statistical Methods

The statistical methods try to characterize the textures based on the spatial distribu-
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tion of pixel intensity values. In a co-occurrence matrix representation, the number

of occurrences of pair of gray levels which are at a distance d are calculated. The en-

tries in the co-occurrence matrix are used to calculate the second order statistics [37]

such as energy, entropy, contrast, homogeneity and correlation. These higher order

statistics are useful in inferring the characteristics of the textures. Textures exhibit

repetitive placement of patterns, which can be analyzed using autocorrelation fea-

tures. The autocorrelation function can be used to represent regularity and the level

of coarseness in the textures.

Geometrical Methods

The graphical methods model the textures as being composed of texture primitives.

The geometric properties of the primitives are used to analyze the textures. One of

the geometrical methods to represent the texture primitives is to use Voronoi tes-

sellations [37] . The texture primitives are first extracted, for example using image

gradients, and then tessellation is constructed to represent Voronoi polygons. Struc-

tural methods [37] are part of geometrical methods where primitives are extracted

and then spatial placement rules are created. These method are effective for highly

regular structures.

Model-based Methods

The model-based methods construct an image model to describe the textures. The

model parameters capture the essential structure of the texture. Markov Random

Field (MRF) based models [37] are popular way to model the textures. MRF models

assume that the intensity at a pixel location depends on the intensities of only the

neighboring pixels. Hence, MRF models capture the spatial contextual information

in the images. Fractals are another popular tool to represent textures [37]. Fractals

capture roughness and self similarity of the textures at different scales.
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Signal Processing Methods

Signal processing methods compute the texture features from filtered images. Spatial

domain filtering is a direct method to calculate the texture properties [37]. This

analysis can also be carried out in frequency domain [37], as there is evidence that

the human visual system analyzes frequency and orientation components. Fourier

domain filtering is an elegant tool to analyze the global properties of the textures in

the frequency domain. Gabor and wavelet filters are useful when there is a need for

analyzing both local and global properties.

2.3.2 Texture Synthesis Methods

Texture synthesis methods regenerate or synthesize the textures from small patches

or compact representations. Texture synthesis has many applications, including com-

pression [38], denoising [39] and hole filling [40]. Texture synthesis methods can be

broadly classified into parametric and non-parametric approaches. These methods

can be further classified into statistical and non-statistical based approaches.

In parametric based approaches, the texture is characterized and described

through a set of perceptually motivated parameters. These global parameters are

computed for the entire texture and are used for evaluating the similarity of the

synthesized texture to the input. In non-parametric approaches, a region of the orig-

inal texture called the “seed” or the “exemplar” is used. Non-parametric approaches

can be further classified into pixel-based approaches and patch-based approaches.

The pixel-based synthesis approaches [41–43] are slow since they synthesize only one

pixel at a time. Also, they might lead to a loss of local structure and to a grainier

texture compared to the original. The quality and speed of pixel-based approaches

can be improved by synthesizing patches rather than pixels at a time. This is be-

cause contiguous pixels belonging to a particular patch in the input texture are
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more likely to be contiguous in the output texture. However, in patch-based algo-

rithms [44–46], when patches overlap with each other, handling the conflicting pixels

in the overlapped regions becomes necessary. Blending the overlapped regions [46]

can cause blurry artifacts. Instead of blending [44,45] one can find an optimal bound-

ary between adjacent patches in the overlapped regions using methods such as graph

cut [45].

In statistical based approaches, the texture is characterized and described

through statistical features and statistical-domain transforms. Portilla and Simon-

celli [47] used pairwise statistics to improve synthesis results for structured textures

at the cost of a more complicated optimization procedure. Motivated by psychophys-

ical and computational models of human texture discrimination [48,49], Heeger and

Bergen [50] proposed a method to analyze texture in terms of histograms of filter

responses at multiple scales and orientations. Matching these histograms iteratively

was sufficient to produce very good synthesis results for stochastic textures. How-

ever, since the histograms measure marginal, not joint, statistics they do not capture

important relationships across scales and orientations; thus the algorithm fails for

more structured textures.

2.3.3 Texture Synthesis Quality Assessment

Subjective quality studies are important to quantity the fidelity of the synthesized

textures. These studies which encompass textures with different attributes are

needed to develop better objective quality metrics for texture synthesis quality. There

are very few studies in the literature which attempt to measure the quality of the syn-

thesized textures. In [51], a database is created which included 340 distorted images

(including JPEG2000 compression, white Gaussian noise, Gaussian blur, sub-pixel

shifts distortion types) extracted from 10 reference images, which were evaluated
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by a group of 20 human subjects. They evaluated several existing mainstream full

reference quality metrics with the help of a recently developed quality assessment

framework (IVQUEST). As shown in their work [51], traditional objective metrics

do not perform well on texture images and there is a need for specialized texture

quality metrics. The subjective study presented by Swamy et al. [1] considered syn-

thetic textures to measure the subjective quality of the synthesized textures. A

parametric model is also presented to objectively measure the perceived quality of

the synthesized textures.

In a practical setup it is important to conduct the subjective quality assess-

ment using natural textures observed in the objects found around us. In [52], a

subjective study using natural textures with different texture regularity attributes

to assess the perceived quality of the synthesized textures is presented. In order to

predict the quality of the synthesized textures, an objective metric based on texture

regularity is proposed. It is also shown that popular objective quality metrics do not

correlate well with the subjective scores. The main limitation of these methods is

that they rely on pixel-based matches which is not appropriate for the synthesized

textures. In this dissertation, the texture granularity attribute is used to investigate

how the quality of synthesized textures is affected.

29



Chapter 3

3D Blur Discrimination

In order to optimize the design of systems for applications such as acquisition, com-

pression, distribution, and display of visual media, it is important to study and model

the sensitivity of the human visual system to blur. In blur discrimination experi-

ments, subjects are presented with two stimuli, one with a reference blur level and

the other with a reference plus an additional blur referred to as target blur level. Us-

ing a Two-Interval Forced Choice (2IFC) or Two-Alternative Forced Choice (2AFC)

subjective test methodology, subjects are asked to judge which stimulus has larger

blur. The threshold is measured as the just noticeable additional blur required in

order to discern the reference blur level from the target blur level.

The motivation for the 3D blur discrimination study is two fold – firstly,

as a psycho-visual study we would like to understand how the artificial disparity

introduced in the 3D displays affects the perceived blur; secondly, as an application

of 3D video we would like to understand the relationship between disparity and

blur in 3D displays to optimize the design of 3D video systems. Under real world

viewing conditions, accommodation and vergence are coupled [53] in the sense that

blur and disparity are complementary signals [13] which helps the eyes converge the

focal and vergence lengths to almost the same value. In the case of 3D displays

the eyes will always focus on the screen and an artificial disparity is introduced

between the left and the right eye views, in which case the eyes try to compensate

by changing the vergence length. Hence, when a disparity is introduced, the focal

and vergence lengths will be different in the case of 3D displays. We would like

to measure the blur discrimination thresholds that result when non-zero (positive

and negative) disparity values are introduced in a 3D display viewing setup and

compare the obtained results to the zero disparity case. Similar to existing 2D blur
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discrimination studies, we adopt a Gaussian blur model. Gaussian blur was used

in most of the previous studies on blur discrimination to study blur in vision such

as detection and localization, and we are extending this to the 3D stereo viewing

scenario. In designing applications involving a 3D video chain, one needs to know

which attributes affect the visual quality. Disparity being one of the attributes of

3D video, we need to study how it affects the blur discrimination. One example

would be how disparity affects sharpness enhancement algorithms, since different

objects in the scene will be having different disparity or depth values. For example,

in order to design an enhancement algorithm that results in perceptually similar

levels of sharpness for all the objects in the scene, one needs to determine how blur

is perceived at different disparity values. It is also interesting to see how the two eyes

interact with each other when they are exposed to different levels of blur values. This

scenario can arise when the two streams of the stereo video are coded at different

quality levels. In this study we would like to answer some of these questions by

studying the relationship between disparity and blur discrimination thresholds using

symmetric and asymmetric stereo viewing cases.

One of the earlier studies [54] on blur discrimination reported that one can

easily differentiate the blur at higher contrast ratios than at lower contrast ratios.

Based on the hypothesis proposed in [55], the cue to measure blur in the edge is

proportional to the distance between the maximum and minimum in the second

derivative of the retinal stimulus. This hypothesis was proposed based on the blur

discrimination thresholds measured using static test patterns for three types of blur-

ring functions, namely Gaussian, rectangular and half-wave cosinusoidal. The study

of the effect of motion blur on blur discrimination thresholds [56] indicated that

motion produces equivalent spatial blur, and a motion deblurring model was pro-

posed using temporal integration. The study of blur discrimination thresholds using
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different blur levels and contrast values [57] indicated that the thresholds remain

constant at higher contrast ratios and increase for very low contrast ratios. In [58] a

review of past blur discrimination studies and a discussion of existing models for blur

discrimination is presented. In the current study we throughly investigate blur dis-

crimination in the presence of disparity cues for both 3D symmetric and asymmetric

viewing cases.

In the literature, different models have been proposed to characterize the 2D

blur discrimination thresholds. In [57] a divisible inhibition model is proposed, in

which the blur discrimination threshold is characterized using a difference of Gaus-

sian (DoG) operator between the two blur levels and a constant factor. In [58] the

visible contrast energy (ViCE) model is proposed, in which the blur discrimination

threshold is measured by calculating the contrast energy of edge differences after

filtering by the contrast sensitivity function (CSF). In [59] the Weber’s model is pro-

posed to characterize the 2D blur discrimination threshold. In this model, the blur

discrimination threshold is characterized by the total perceived blur and the Weber

fraction.

A subjective study presented in [13] indicated that defocus blur and disparity

are complementary signals to depth perception. The disparity is more precise at the

fixation, and defocus blur is more precise as we move away from fixation. In our

study, since the subjects are always focused on the display screen, defocus blur is

not considered. Blur adaptation experiments were conducted by [60, 61]. In these

experiments, the subjects were presented with an adaptation stimulus that is either

sharper or more blurred than the test stimulus. The subjects were then asked to judge

whether the test stimulus is sharper or more blurred. In these experiments [61], for

the first trial initial adaptation was kept for a 1-minute duration and, for subsequent

trials, the adaptations were kept for 3 seconds. It was found that the eye adapts to
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the adaptation stimulus and that the thresholds get lower or higher depending on

whether the adaptation stimulus is sharper or more blurred than the test stimulus.

In our experiments, we tried to avoid any adaptation to the reference blur stimulus

by keeping the stimulus times very small and by randomizing the reference and target

blur level ordering for every trial.

Asymmetric stereo encoding is used to reduce the bandwidth. In asymmetric

stereo image compression, two views are coded at different resolutions. The subjec-

tive studies conducted by [62] concluded that, if one of the views is coded at half the

resolution as compared to the other view, the stereo compression quality is accept-

able. Additional reduction in the resolution for one of the eyes, introduces a visible

drop in the visual quality. In our study, in addition to the symmetric viewing case,

we consider asymmetric stereo viewing by introducing different blur levels to each

eye for the target object.

The objective of this chapter is to present the results of blur discrimination

threshold measurements using stereoscopic 3D test patterns, and to compare these

with the 2D blur discrimination threshold measurements. Asymmetric stereoscopic

3D is also prevalent; hence, in this study, a comparison of symmetric vs. asymmetric

stereoscopic 3D blur discrimination thresholds is also presented. Finally, it is shown

that the Weber’s model can be used to fit the subjective study data obtained for the

symmetric viewing case.

3.1 Setup

The current study investigates blur discrimination in the presence of disparity cues.

For this purpose, stereo 3D test pattern objects are rendered at different depths to

measure the blur discrimination thresholds. Blur in images provides a monocular

cue for depth perception. But in this study, we consider disparity as the only depth
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Figure 3.1: Setup of the experiment.

cue using synthetic stereoscopic test patterns. The experimental setup is shown in

Figure 3.1. The stimulus is rendered onto a passive stereoscopic 3D display (Model:

Hyundai S465D). The circular polarizing filter present in-front of the display screen

renders the left and right eye images with opposite polarity. The viewers are required

to wear passive polarized filter glasses, which will filter out appropriate images to

the left and right eyes. Consequently, in our passive stereoscopic viewing setup,

each eye will be exposed to view a different image. The image viewed by the left

eye is a shifted version of the image viewed by the right eye, resulting in a non-

zero disparity if the relative shift is non-zero. Positive and negative disparities are

introduced by introducing positive and negative shifts, respectively, between the left-

eye and right-eye images. It is important for the used polarized filter glasses to avoid

crosstalk between the left- and right-eye images [63]. The higher amounts of crosstalk

(greater than 2∼3%) can cause ghosting at the edges and result in inaccurate blur

discrimination threshold measurements.

The display screen has a resolution of 1920(w)x1080(h) pixels in the 2D mode

and 1920(w)x540(h) pixels in the 3D mode. The display has a refresh rate of 60
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frames per second, and is driven by a desktop computer. The viewing distance is

fixed at 3 times the display height, which is equal to 1718 mm. The display is

calibrated using PLUGE and Color-bar test patterns [64]. In the subjective testing

room, two 250-lumen lamps are used. The lamps are placed behind the TV screen so

that no reflection is observed on the display screen. The light meter measurement at

the viewer’s location is close to 50 lux. The luminance of the display is measured using

the SectraScan PR650 [65] colorimeter instrument. The display gamma is measured

to be 1.75. The display luminance measurements are taken without and with passive

stereoscopic glasses, placed in-front of the instrument. The measurements without

glasses are found to have a constant scale factor of 2.6 times measurements with

glasses. This indicates that the Michelson contrast ratio remains the same with and

without the glasses [66].

3.2 Stimulus

The stimulus used for the experiments is shown in Figure 3.2. A vertical edge is

formed by placing two boxes together, forming a rectangular object. The background

intensity is fixed at the average luminance value of 51 cd/m2. The dimensions of the

rectangular object rendered to each eye are 135.77(w)x33.95(h) arcmin. The left and

right eye images are displayed in a row interleaved format on the Hyundai stereo

display. The effective height of the perceived rectangular object after fusing the left

and right eye images corresponds to 67.90(h) arcmin. A parallel camera model [6]

is used to render the stereo images. In the parallel camera model the two lenses are

parallel to the screen and the optical axes of the two cameras overlap at infinity. The

binocular depth is introduced by shifting the left- and right-eye images in the opposite

directions; the shift value is equal to the desired disparity value. A negative disparity

corresponds to projecting the object in-front of the display screen, a positive disparity

corresponds to projecting the object behind the display screen, and a disparity value
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Figure 3.2: Stimulus presented to each eye.

of zero corresponds to projecting the object at the display plane. The disparity is

forced not to be zero by the stereoscopic display viewing setup when the introduced

shift between the left- and right-eye images is non-zero. Since positive and negative

disparities are introduced by shits in the left-eye and right-eye images, it is clear that

the subjects are not seeing just zero disparity. Furthermore, it was verified during

the experiments that the objects are in fact projected at different depths and that

the subjects are able to tell that the object appears to be in the front or in the back

of the display screen.

In order to generate the blurred edge, a Gaussian low-pass filter is applied

across the central edge along the horizontal direction. The strength of the filter is

specified by the standard deviation of the Gaussian filter. A 2IFC method is used

to present the stimulus. The stimulus is rendered onto the 3D display using the

Psychometric Toolbox (PTB) [67]. PTB is a MATLAB toolbox with support for

rendering stereo images onto the 3D displays. The left- and right-eye images for

the reference object are filtered using a Gaussian low-pass filter with a standard

deviation corresponding to the reference blur level. For every trial, the target object

is generated by further filtering the reference object with a Gaussian filter of standard

deviation equal to the additional blur level. The additional blur applied to the

target object is calculated using the QUEST method [8]. QUEST is an adaptive

psychometric method where the threshold for the current trial is calculated by the
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most probable Bayesian estimate. The details of the QUEST method are presented

in Section 2.1.1. The posterior probability density function is updated based on the

previous responses. In this study, a psychometric function based on the Weibull

distribution is used, as given below:

W (x) = 1 − δ − (1 − γ − δ) exp [−10(x−xTh)β] (3.1)

where x represents the log additional blur value under test and xTh represents the log

just noticeable additional blur threshold which needs to be measured. The parameter

β represents the slope of the psychometric function, γ represents the probability of

correct detection at the zero threshold value and δ represents the false negative rate.

The PTB toolbox has support for QUEST threshold estimation. The recommended

QUEST parameter values for the 2AFC method are used in our subjective tests:

β=3.5, γ=0.5, δ=0.01. The probability of success when x = xTh is obtained by

substituting the above parameters in Equation (3.1), and is equal to 0.8097. For

every experiment at least 40 trials are performed. Additional trials are added if the

standard deviation of the QUEST probability density function for the threshold is

greater than 0.1.

The presentation order of the stimuli is shown in Figure 3.3. For every trial,

the fixation frame is shown for an initial time of 1.5 seconds. It is followed by

the first stimulus, the anchor frame and the second stimulus, each separated by a

0.5-second interval. Finally, a blank frame is shown, and the subjects are asked

to choose the more blurred stimulus by pressing the left arrow (first stimulus) or

right arrow (second stimulus) key on the keyboard. The fixation frame has L-shaped

anchor marks and a central dot where the subjects need to focus before viewing

the stimulus. The anchor marks and fixation dot are projected at the same depth

as the stimulus. This provides the depth cue for the subjects before viewing the

reference and target objects. For each trial, the location of the fixation center is
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Figure 3.3: Display order for the stimuli.

slightly varied (within 16 arcmin) in the horizontal direction. In our pilot studies

we found this to be helpful in reducing eye strain, by not concentrating at the same

location. The shift in the central location needs to be small in order to avoid large

changes in the viewing angles between trials. The anchor frame has only the L-

shaped anchor marks, but no fixation dot is present at the center. The anchor

frame provides a depth cue between the two stimuli. This helps in avoiding the need

for accommodation time for the second stimulus. For every trial the display order

for the reference and target objects are randomized. The contrast direction of the

rectangular boxes (white—black or black—white) is also randomized from trial to

trial. Before starting the experiments, the subjects are given a trial session to get

familiar with the setup.

38



3.3 Symmetric Stereo Blur Discrimination

In the symmetric stereo viewing, both eyes will observe the same level of blur in the

target object. In this subjective study, five reference blur levels and three disparity

values are considered. This corresponds to a total of 15 combinations of reference

blur and disparity values resulting in 15 experiments. The five reference blur levels

considered are [0.0, 0.53, 1.06, 2.12, 5.30] arcmin. The reference blur level corre-

sponds to the standard deviation of the Gaussian low-pass filter in arcmin unit. The

three disparity values considered are [0.0, -21.22, 21.22] arcmin. The disparity value

of 0.0 arcmin represents the 2D viewing case, where there is no shift between the left-

and right-eye images. The disparity value of -21.22 arcmin represents projecting the

object in-front of the display screen, and the disparity value of +21.22 arcmin repre-

sents projecting the object behind the display screen. Applying the parallel camera

model and considering an average interpupillary distance of 64mm and a viewing

distance of 1718 mm, the projected distance of the object in-front of the display

screen is 244.11 mm (using Equation (2.3)) and the projected distance behind the

display screen is 341.02 mm (using Equation (2.4)). The Michelson contrast ratio

across the edge is fixed at 0.83, which is calculated as the ratio of the luminance

difference over the sum of luminance values across the edge.

Ten subjects volunteered to participate in this subjective study. The age

group of the subjects ranged from 22 to 34 years. Subjects were scanned for normal

visual acuity, color vision and stereo vision conditions. As indicated above, a total

of 15 experiments were conducted corresponding to five reference blur levels and

three disparity values. Each experiment consisted of at least 40 trials, and the target

blur level for each trial was calculated using the QUEST method. The threshold

that is obtained from the experiments represents the just noticeable additional blur
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(a) Disparity = 0.0 arcmin (b) Disparity = -21.22 arcmin

(c) Disparity = 21.22 arcmin (d) Comparison of threshold values for differ-
ent disparities

Figure 3.4: Threshold Vs. Reference blur (Log-Log scale, except near origin) plots
for symmetric stereo blur discrimination.

required to differentiate between reference and target blur levels. All the subjects

repeated each experiment four times in separate sessions; with the ten subjects every

experiment is repeated 40 times. For each experiment, the average value of 40

measurements is considered after removing the outlier threshold values which are

2σ distance away from the mean threshold value, where σ is the standard deviation

of the subjective scores for the considered experiment.
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Figure 3.5: Blur discrimination thresholds for reference blur = 5.3 arcmin.

In Figure 3.4, the plots for blur discrimination threshold versus reference blur

are shown. In Figure 3.4 (a)-(c), the plots of ten subjects for three disparity values

are shown. The average value of the blur discrimination threshold for ten subjects

is shown in solid lines. The vertical bars in the plots show the standard deviation

of the threshold values. In Figure 3.4 (d), a comparison of the blur discrimination

thresholds for three disparity values versus reference blur is shown.

It can be observed from the plots that the average threshold values for three

disparity values have a similar trend, and that the threshold values remain constant

or vary by a small amount across three disparity values. The vertical bars in Figure

3.4 (d) show the standard deviation of the threshold values for the three disparity

values. The obtained standard deviation values between three disparity values are

small and are equal to [0.04, 0.03, 0.04, 0.04, 0.15] for the considered five reference

blur values. A dip in the threshold value is seen around the reference blur level of 1.0

arcmin. This is attributed to the intrinsic blur level or resolving power of the human

visual system, which is close to 1 arcmin [2, 3]. This is consistent with the 2D blur
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Figure 3.6: Steps to create target blur stimulus for the asymmetric blur stereo ex-
periment assuming the right eye is the dominant eye.

discriminations studies. These plots signify that the blur discrimination thresholds

remain constant as we vary the binocular disparity value.

In order to confirm that the blur discrimination thresholds remain constant

with change in disparity values, another test was conducted with additional disparity

values. In this study we have used only one reference blur value (5.3 arcmin), but

added additional disparity values [-21.22, -10.61, 0, 10.61, 21.22] arcmin, resulting

in five experiments. Each experiment was repeated four times in separate sessions

and the average threshold value of the four sessions is considered. Four subjects

participated in this experiment. The plot of the blur discrimination threshold vs

disparity value is shown in Figure 3.5. It can be observed that the blur discrimi-

nation thresholds are almost constant for different disparity values with a standard
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deviation of 0.070. This further confirms that the blur discrimination threshold for

the symmetric viewing case is not affected by the disparity value.

3.4 Asymmetric Blur Discrimination

In the asymmetric stereo blur discrimination experiments, the left and right eye ob-

serve different levels of blur in the target object. The steps to generate the reference

and target images are shown in Figure 3.6. Based on the disparity value, the rect-

angular test object is shifted horizontally to obtain left- and right-eye test images.

The Gaussian low-pass filter with a desired reference blur level is applied to the

central vertical edge in each of the left- and right-eye test images. The objective of

applying the same level of reference blur in the two images is twofold: 1) we wanted

to model the reference blur as the natural blur observed in the scene, which is the

same level of blur for both eyes; 2) we wanted to compare the asymmetric case with

the symmetric case, hence we kept the same reference images for both the cases. An

asymmetric Gaussian blur of 0.53 arcmin was used in these tests. A similar value was

also used by [62] to generate images at half resolutions for asymmetric compression

applications; however, no blur discrimination experiments were performed in that

work. Finally, the target image is obtained by applying additional blur to both the

left- and right-eye images. The additional blur value is estimated using the QUEST

method. A dominant-eye test [68, 69] is carried out to determine the dominant eye

of the subject. The asymmetric blur is applied to the dominant eye in order to be

consistent across different subjects.

In the asymmetric blur discrimination experiments we have used reference

blur levels of less than 1 arcmin. For higher reference blur levels in order to see a

noticeable asymmetric blur difference, we have to apply a stronger Gaussian blur.

From our pilot studies we have observed that applying an asymmetric blur difference
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(a) Reference blur level = 0.0 arcmin (b) Reference blur level = 0.53 arcmin

Figure 3.7: Threshold Vs. Disparity blur plots for the asymmetric stereo blur dis-
crimination.

Figure 3.8: Comparison of symmetric and asymmetric stereo discrimination thresh-
olds.
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greater than 1.0 arcmin results in binocular rivalry and difficulty in fusing the left-

and right-eye images. Hence, we have not considered higher reference blur values in

this experiment.

In this subjective study six experiments were conducted which included two

reference blur levels and three disparity values. The two reference blur levels consid-

ered are [0.0, 0.53] arcmin and the three disparity values considered are [0.0, -21.22,

21.22] arcmin. The Michelson contrast ratio across the edge is fixed at 0.83, similar to

the symmetric blur discrimination experiment. Each experiment had at least 40 tri-

als, additional trials were added if the standard deviation of the QUEST probability

density function does not converge and is greater than 0.1.

Ten subjects volunteered to participate in this subjective study. The age

group of the subjects ranged from 24 to 34 years. The subjects were scanned for

normal visual acuity, color vision and stereo vision conditions. In Figure 3.7, the

plots of the threshold value versus disparity for ten subjects is shown for different

reference blur levels. Each subject repeated the 6 experiments four times, in separate

sessions. The average threshold values among the four sessions is considered. It can

be observed from the plots that the threshold blur values almost remain constant for

the three disparity values. The standard deviation between three disparity values is

equal to 0.02 and 0.04 for the considered reference blur levels 0.0 and 0.53 arcmin,

respectively.

In Figure 3.8, a comparison of the obtained asymmetric and symmetric blur

discrimination thresholds is shown for the same reference blur values. It can be

observed that the asymmetric blur thresholds are smaller than the symmetric blur

thresholds.The difference between the symmetric and asymmetric blur discrimination

thresholds is almost constant for different disparity values. In the symmetric and
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asymmetric viewing cases, the reference blur levels presented to each eye remain the

same, but the target blur levels will be different in the two cases.

In the sysmmetric case, the target blur level is obtained by convolving two

Gaussian kernels with standard deviations equal to reference and threshold blur

values and is given by:

σsymtar =
√

(σref )2 + (σsymth )2 (3.2)

where σsymth is the blur discrimination threshold for the symmetric case. In the

asymmetric stereo viewing case, one of the eyes will observe a larger target blur

compared to the other eye because of the additional 0.53 arcmin Gaussian blur

applied to it. Hence, the target blur levels for the asymmetric stereo viewing case

are given by:

σasym+
tar =

√
(σref )2 + (σasymth )2 + 0.532, for the eye with addtional blur (3.3)

σasym−
tar =

√
(σref )2 + (σasymth )2, for the eye with no addtional blur (3.4)

where σasymtar is the blur discrimination threshold for the asymmetric case, σref is the

reference blur, and 0.53 arcmin is the additional blur applied to one the eyes in our

experiment.

The obtained blur discrimination threshold values for both the symmetric

and asymmetric stereo viewing cases are presented in Table 3.1 together with the

corresponding target blur levels. For the considered cases shown in Table 3.1, it

can be observed that the resulting asymmetric viewing target blur levels for the

eye observing the larger blur are very close to the symmetric viewing target blur

values. This indicates that the blur discrimination thresholds in the considered

asymmetric case are dominated by the eye observing the larger blur level. Based on

this observation, and using Equations (3.2) and (3.3), we obtain:

(σasymth )2 = (σsymth )2 − 0.532 (3.5)
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Table 3.1: Comparison of blur discrimination thresholds and target blur values for
symmetric and asymmetric viewing case. All the values are in arcmin units.

σref Disparity σsym
th σasym

th σsym
tar σasym+

tar σasym−
tar

0 21.22 0.8461 0.6966 0.8461 0.8753 0.6966
0 -21.22 0.9266 0.6965 0.9266 0.8752 0.6965
0 0 0.9568 0.7623 0.9568 0.9284 0.7623

0.53 21.22 0.9534 0.7267 1.0908 1.0440 0.8995
0.53 -21.22 1.0018 0.7835 1.1334 1.0843 0.9459
0.53 0 0.9177 0.7375 1.0598 1.0515 0.9082

(a) Blur discrmination treshold values mod-
elled as an addtive term

(b) Fitting of Weber’s model

Figure 3.9: Fitting of Weber’s model to the subjective study data (Log-Log plot,
except near origin).

3.5 Blur Discrimination Threshold Model

We are using Weber’s model [58, 59] to characterize the subjective data from the

symmetric stereo blur experiments. We show that this model provides a good fit to

our subjective study data. Let σperRef and σperTarget denote the perceived reference

and the perceived target blur levels. According to Weber’s model:

σperTarget = ωσρperRef (3.6)
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where ω is the Weber fraction, and the exponent ρ is a model parameter. In [59] the

total perceived blur is modeled to consist of two values, namely intrinsic blur (σintr)

and extrinsic blur (σextr) values. The extrinsic blur value corresponds to the actual

Gaussian blur value (expressed in terms of the standard deviation of the applied

blurring Gaussian function) that is applied to the considered visual pattern. In the

literature [58, 59] the blur discrimination threshold is modeled as an additive term

(σth add) to the reference blur (σref ). In this case, the extrinsic blur σextr can be

expressed as:

σextr = σref + σth add (3.7)

In our studies the blur discrimination threshold is measured as the standard deviation

(σth) of a Gaussian kernel convolved with the reference blur (σref ). Thus, in our case,

the extrinsic blur (σextr) is given by:

σextr =
√
σ2
ref + σ2

th (3.8)

Using Equations (3.7) and (3.8), we can remap our blur discrimination threshold

(σth) to an additive one (σth add) as follows:

σth add =
√
σ2
ref + σ2

th − σref (3.9)

In Figure 3.9 (a), the plots for the additive blur discrimination threshold

(σth add) are presented for the three disparity values. Three important observations

can be made: 1) the additive blur discrimination threshold values are in the same

range as other studies in the literature [55]; 2) the threshold plots show a dip around

reference blur level 1 arcmin; 3) the blur discrimination thresholds remain constant

for the three disparity values. The blur discrimination threshold σth add can be mod-

eled as follows [58]:

σth add = −σref +
√
ω2(σ2

intr + σ2
ref )ρ − σ2

intr (3.10)
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In Equation (3.10), σintr, ω and ρ are the free parameters, and σref cor-

responds to the standard deviation of the Gaussian blur applied to the reference

object. After fitting the model to the subjective study data, the values of the free

parameters σintr = 2.246, ρ = 1.037 and ω = 1.032 are obtained. It can be observed

from Figure 3.9 (b) that the Weber model provides a good fit to the subjective study

data measured for the three disparity values, with a mean square error (MSE) of

0.007.

3.6 Discussion

We have compared blur discrimination thresholds for 2D and stereo-3D viewing cases.

We also compared blur discrimination thresholds for symmetric and asymmetric

stereo-3D viewing cases.

3.6.1 Disparity Effect

As discussed in Chapter 2, under real-world viewing conditions, accommodation and

vergence are coupled [53]. When using 3D displays, the eyes will always focus on the

screen and an artificial disparity is introduced between the left- and right-eye views,

for which the eyes try to compensate by changing the vergence length. We con-

sidered both negative and positive disparity values, along with zero disparity which

corresponds to the natural viewing case in the sense that both accommodation and

vergence are in sync when the disparity is zero. If the decoupling between accommo-

dation and vergence had an effect on the blur discrimination threshold then the zero

disparity case would have had a different blur discrimination threshold as compared

to positive or negative disparity values. The subjective study results showed that

the blur discrimination threshold values remain constant as we vary the disparity

(or depth) of the synthetic test object. This indicates that the blur discrimination

thresholds depend on the retinal image formed from the focused object. The 3D
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blur discrimination threshold curves showed a dip around reference blur value of 1

arcmin, as also seen in the existing 2D blur discrimination experiments [58]. This

dip for smaller reference blur levels [59] (near zero arcmin) is attributed to the large

extrinsic blur values required to overcome the effect of intrinsic blur value. At higher

reference blur levels, the effect of intrinsic blur diminishes and hence a continuous

increase in the threshold blur is observed.

The past studies on blur discrimination have used an additive term to model

the additional blur that is applied to the reference blur. In our study the additional

blur is applied by convolving a Gaussian kernel with a standard deviation equal to

the additional blur with a Gaussian kernel with a standard deviation equal to the

reference blur. The mapping of our blur discrimination thresholds from a convolution

model to the corresponding additive term model, indicated that the blur discrimina-

tion thresholds from our study are in the same range as existing studies [58].

3.6.2 Masking Effect

In the asymmetric blur discrimination experiment, one of the eyes observes a greater

(0.53 arcmin) blur than the other. Comparing the blur discrimination thresholds

from this experiment with the symmetric case two possible extreme scenarios can

be expected – 1) If the discrimination threshold was determined only by the eye

with less blur, the blur discrimination thresholds would be identical to those ob-

tained in the symmetric viewing experiment; 2) If the discrimination threshold was

determined only by the eye with greater blur then the blur discrimination threshold

for the asymmetric viewing experiment would be lower than the symmetric viewing

experiment by the additional blur observed by one of the eyes. For the selected refer-

ence blur levels, the second scenario is being observed where the eye seeing the larger

blur is masking the blur observed by the other eye. The decrease in the threshold
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values for the asymmetric case as compared to the symmetric case depends on the

value of the additional blur applied to one of the eyes (Equation 3.5). This is a

strong indication that applying additional blur to one of the eyes is visible. In our

subjective measurements we have applied the additional blur to the dominant eye.

Our pilot studies showed that the threshold blur values remain the same even if we

apply the additional asymmetric blur to the non-dominant eye. This also indicates

that asymmetric coding applications using lower resolution for one of the eyes will

have lower visual quality.

3.6.3 Eye Fatigue

Stereoscopic 3D viewing can introduce eye fatigue, especially with asymmetric stereo-

viewing. In our experiments we have considered disparity values which are within the

stereo-fusion limits. During the pilot studies subjects would experience eye fatigue

if they are exposed to asymmetric stereoscopic-3D content. This effect was severe

for higher asymmetric blur differences. Hence, we chose a constant asymmetric blur

difference of 0.53 arcmin between left and right eye, which did not introduce eye

fatigue or strain.

3.6.4 Effect of Contrast

The Michelson contrast ratio across the vertical edge is fixed at 0.83. The effect of

contrast on blur discrimination thresholds has been studied in the literature for the

2D case. It is reported [55,57] that for contrast ratios > 0.1, the blur discrimination

thresholds do not vary significantly with the change in contrast values. Only for very

low contrast ratio values ( < 0.1), the threshold will be affected and tend to have

a higher value. Since we found that the change in disparity value does not affect

3D blur-discrimination thresholds, the effect of contrast should be similar to the 2D
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case. It would be interesting to confirm the effect of contrast on the 3D stereo blur

discrimination thresholds.

3.7 Conclusion

The blur discrimination thresholds using stereoscopic 3D test patterns are measured.

The binocular disparity is used as the only depth cue in the image. Both symmetric

and asymmetric stereo viewing cases are considered. The subjective test results

indicate that the blur discrimination thresholds remain almost constant as we vary

the disparity value, which corresponds to varying the object depth. These findings

further indicate that one can apply 2D blur discrimination models for stereoscopic

3D blur discrimination. We have shown that the Weber model provides a good fit to

the subjective study measurements. The comparison of symmetric and asymmetric

blur discrimination thresholds shows that blur discrimination has a masking effect

in the asymmetric case, in the sense that the eye observing the larger blur masks the

blur observed by the other eye. Furthermore, the decrease in the threshold values

for the asymmetric case as compared to the symmetric case depends on the value of

the additional blur applied to one of the eyes.
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Chapter 4

Texture Granularity

Textures represent spatial variations in the pixel values of the visual content. Tex-

tures can be characterized by different attributes such as granularity, regularity and

directionality [70]. Texture granularity is an important attribute to characterize

textures. The granularity level can be quantified based on the size of and spacing

between the primitives in the texture image [7]. The texture primitive is defined as

the smallest recognizable repetitive object in a texture.

In Figure 4.1, examples of low, medium and high granularity level textures

are shown. It can be observed that the textures with the high granularity level (Fig-

ure 4.1(c)) have smaller size primitives, while the textures with the low granularity

level (Figure 4.1(a)) have larger size primitives. In the low granularity level tex-

tures, one can easily recognize the objects in the image (e.g.,tennis ball). But, in the

case of high granularity level textures, it is more difficult to discern the smaller size

primitives.

The granularity of the textures depends not only on the local but also on the

global context of the primitive. For example, in the case of the stack of boulders

(shown in Figure 4.1(a)), the surface details of the boulder are not that important

compared to the boundaries and shapes of different boulders. On the other hand, if

we are focusing only on the image of a patch on the surface of the boulders, then the

details on the surface of the boulder become more important. Hence, a granularity

measure should consider the local as well as the global context of the primitives.

A granularity measure can be used in many applications such as texture clas-

sification, texture synthesis, texture compression and object recognition. Texture

granularity is used in image segmentation applications [71] for characterizing the
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(a) Low granularity level textures.

(b) Medium granularity level textures.

(c) High granularity level textures.

Figure 4.1: Sample textures in the GranTEX database.

texture properties. In segmentation applications, texture granularity is used along

with other properties to define a descriptor which can be used to discriminate among

different textures. In [71], the granularity is measured from gradient values in a small

neighborhood. Texture granularity was also used as a feature descriptor in classi-

fication applications [72, 73] and in texture synthesis applications [74, 75] to define

properties of the synthesized texture. In [75], neural network models are used to

synthesize high granularity synthetic textures. Texture granularity is also used in

the medical field [76–78] to diagnose and discriminate different medical conditions.

The granularity along with color measures [78] are analyzed to discriminate granu-
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larity in melanoma from similar areas in non-melanoma skin lesions. Texture feature

vectors [76] were used to diagnose ultrasound liver images. In all these applications

texture granularity is measured by quantifying image intensity variations within a

small neighborhood of image pixels.

The MPEG7 [70,73] standard provides the texture granularity level as one of

the attributes in the meta data. The textures can be queried based on the granularity

level of the images along with the regularity and the orientation information. One

granularity metric is calculated from the Gabor filter responses [79]. The outputs of

the Gabor filters from different bands are collapsed in the horizontal and vertical di-

rections. The peaks and valleys of the autocorrelation function are used to detect the

granularity of textures. A measure of texture granularity based on image particles

was proposed based on the mean shift segmentation algorithm [80]. The granularity

level obtained using this method is highly dependent on the correct segmentation

of objects in the image. Another granularity measure [81] was proposed based on

subtracting the mean gray level for the selected window location and then counting

the number of sign changes. This method can capture the local granularity but will

not be able to measure the global granularity property of the textures. Furthermore,

none of the existing methods were proposed to measure the perceived texture gran-

ularity and no existing subjective study was conducted to quantify the perceived

granularity of the textures.

This chapter is organized as follows. A database for texture granularity is

presented in Section 4.1. Details about the subjective study that is conducted to

measure the perceived granularity level of the textures are presented in Section 4.2.

In Section 4.3, a texture granularity index (TGI) is proposed to automatically mea-

sure the level of perceived texture granularity. The correlation between the subjective

granularity mean opinion scores (MOS) and the proposed objective TGI is also pre-
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sented. It is shown that the proposed TGI outperforms the two other granularity

metrics proposed in the literature. Conclusions are presented in Section 4.4.

4.1 GranTEX Database

The currently available image databases lack textures with different granularity levels

which can be used to quantify and benchmark granularity measures. A database

of image textures with different granularity levels is created, which we refer to as

GranTEX. The aim of creating the GranTEX database is to facilitate quantifying

the granularity levels of textures using subjective and objective metrics. A subjective

study is conducted to measure the perceived granularity levels of the textures present

in the GranTEX database.

The GranTEX database has 30 high resolution texture images which are rep-

resentative of textures found in natural and man-made objects seen around us. All

the texture images are cropped to a common size of 512x512 pixels. The images are

stored in 24 bits-per-pixel RGB format. The granularity of the selected textures in

the database can be classified into three levels namely low, medium and high. The

low granularity textures have primitives with large sizes and occupy less than 50

objects in a 512x512 image. In the medium granularity level textures the primitive

sizes occupy countable but many objects. In the case of high granularity level tex-

tures it is difficult to determine the texture primitive, and these have a large number

of very small objects or particles. Examples for each category of textures is shown

in Figure 4.1.

4.2 Subjective Study

A subjective study is conducted to measure the perceived granularity level of textures

present in the GranTEX database. We used a single-stimulus subjective testing

methodology where subjects are shown each texture image separately. The stimulus
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Figure 4.2: Subjective granularity mean opinion scores (MOS).

is presented on a desktop monitor with natural room lighting conditions. A MATLAB

based GUI program is used to display the stimulus, and the subjects are asked to

select appropriate radio button to quantify the granularity level of textures. A scale

of three levels is used, where 1 refers to low, 2 refers to medium and 3 refers to high

texture granularity. The display order of the texture images is randomized for every

subject.

In this study 15 subjects volunteered to participate in the subjective experi-

ment. Each subject was given a short training session to explain about the granularity

level and the texture primitives before conducting the experiment. The age group

of the subjects varied from 24 to 35 years. The subjects were checked for normal

visual acuity and color blindness conditions. In Figure 4.2, the plot of the average

granularity level subjective mean opinion scores (MOS) for 15 subjects is shown. It

can be observed that the granularity levels of the selected textures fall into three

categories – low, medium and high values. The images from index 1 to 10 have a
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low granularity level and represent larger objects as shown in Figure 4.1(a). The im-

ages from index 11 to 20 have a medium granularity level and represent objects with

medium sizes, as shown in Figure 4.1(b). The images from index 21 to 30 have a high

granularity level and represent objects with finer details, as shown in Figure 4.1(c).

4.3 Objective Metric

This section presents a no-reference Texture Granularity Index (TGI) that can auto-

matically quantify the perceived granularity level of textures. The wavelet transform

of the texture image is analyzed at multiple resolutions. The peaks in the horizon-

tal and vertical highpass subbands are identified. The average distance between

the peaks in the horizontal and vertical directions represents the pseudo-periodicity

of the primitives in the image. The pseudo-periodicity of peaks, at an adaptively

determined dominant scale, is used as a measure of granularity in the image.

A block diagram of the proposed Texture Granularity Index (TGI) is shown in

Figure 4.3. The input image is first divided into three undecimated wavelet subbands

[82] at every level, namely, low-low (LL), horizontal-high (HH) and vertical-high (VH)

subbands. The subband structure of the dyadic undecimated wavelet transform is

shown in Figure 4.4. For the LL-subband, a low-pass filter is applied in both the

horizontal and vertical directions. For the HH and VH subbands a high-pass filter

is applied in the horizontal and vertical directions, respectively. The highest level at

which the LL subband maintains important structural information is referred to as

the dominant scale and is used to calculate the pseudo-periodicity of the primitives

in the HH and VH subbands.

In order to determine the dominant scale, the structural similarity (SSIM)

index [83] is calculated between the LL subband at the current wavelet decomposition

level, and the original resolution image. If the SSIM index is above the empirically
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Figure 4.3: Block diagram of the proposed texture granularity index.

Figure 4.4: Wavelet subband structure.

59



Figure 4.5: SSIM index values for LL subbands for the Cashews image.

calculated threshold, the next level is computed and analyzed. If the SSIM index

is below the threshold, then the previous-level HH and VH subbands are used to

calculate the pseudo-periodicity of the primitives. In Figure 4.5, an example image

with LL subbands at multiple resolutions is shown along with the SSIM index. It

can be observed that the image is loosing most of its structures or edges starting

at the LL4 subband. An empirically calculated threshold value of 0.7 for the SSIM

index is used in our experiments to decide whether the image is retaining important

structures.
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Figure 4.6: Peaks in the HH subband at Level-3, Row 28 for the Cachews image
(border 20 columns are skipped on either side).

For computing the pseudo-periodicity, local peaks are detected by computing

the local maxima of wavelet coefficients magnitude (absolute value) along the rows

and columns of the HH and VH subbands, respectively. Outlier peaks due to noise

are removed by filtering out local maxima with small values. The average distance

between the peaks is calculated for every row (column) in the HH (VH) subband.The

average across all the rows (columns) gives the pseudo-periodicity of the primitives

in the horizontal (vertical) direction. An example showing detected peaks in the

Cashews image at the Level-3 HH subband, row-28, is shown in Figure 4.6. The

overall pseudo-periodicity for the considered texture image is calculated from the

average of pseudo-periodicities in the horizontal and vertical directions.

In Table 4.1, the pseudo-periodicity values are presented in column 4. The

perceived granularity level (MOS) and the pseudo-periodicity values are inversely
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Table 4.1: MOS scores and objective metric values for textures in the GranTEX
database.

Texture Name
MOS
Scores

Psuedo-
peridicity

Values

Proposed
TGI

1 rooftiles 1 164.0593 0.00006
2 bananas 1 138.21715 0.00426
3 pears 1 128.58435 0.00961
4 fruits 1.0667 127.502 0.01042
5 colorballs 1.0667 120.5704 0.01678
6 tennisballs 1 107.98985 0.03474
7 boulders 1 99.77255 0.05208
8 paving 1 87.97995 0.08670
9 mangoes 1 69.2237 0.17168
10 brickwalllarge 1.2 54.22375 0.27309
11 rooftilessmall 1.8 46.29905 0.34112
12 jackfruit 2.0667 38.1117 0.42330
13 leaves 2.1333 36.74265 0.43830
14 greenbeans 1.9333 35.94465 0.44722
15 corn 2.2 34.0991 0.46834
16 purpleflower 2.1333 32.6047 0.48596
17 peas 2.0667 29.9109 0.51891
18 pebbles 2.1333 29.1614 0.52835
19 cobra 2.0667 28.60415 0.53545
20 cachews 2.2 28.31205 0.53920
21 rug 3 21.6498 0.62989
22 fabric 3 17.3998 0.69313
23 concrete 3 11.91145 0.78136
24 lichen 3 11.2303 0.79284
25 curtain 2.9333 11.1699 0.79386
26 goldweave 3 10.27745 0.80910
27 palmhusk 2.9333 10.2216 0.81006
28 deadgrass 3 9.9611 0.81455
29 greengrass 3 9.6486 0.81996
30 snow 2.8667 7.82215 0.85210

proportional, and there is an exponentially decreasing relationship between the pseudo-

periodicity and the subjective granularity score values. The proposed texture gran-
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ularity index (TGI) is given by the pseudo-periodicity value normalized to be in the

0 to 1 range as follows:

TGI = (1 − Periodicity/MaxPeriodicity)β (4.1)

where MaxPeriodicity is a normalizing constant and Periodicity is the pseudo-

periodicity value calculated for the image as described previously. In our tests values

for MaxPeriodicity = 175 and β = 3.5 are used. Table 4.1 (column 5) shows the

TGI values for textures in the GranTEX database. The TGI metric scores are in the

range 0∼1, the smaller TGI scores indicate low granularity level textures and the

higher scores indicate high granularity level textures.

4.3.1 Performance Results

The performance of the proposed TGI in terms of correlation with subjective scores

is presented in this section in addition to comparison with the algorithm from the

MPEG7 standard [70] and the mean-shift segmentation-based algorithm [80].

We have implemented the algorithm proposed in the MPEG7 standard [70]

and used the recommended parameters in our tests. In this latter algorithm, Gabor

filter responses at multiple scales and orientations are used to detect the texture

granularity and the orientation. The parameters suggested in [70] are used, where

the low (Ul) and high (Uh) center frequencies are set to 0.04 and 0.5, respectively,

and the number of orientation parameter (K) is set to 6. The number of scales

(S) parameter is set to 3 in order to match the three levels of granularity. For the

mean-shift based algorithm [80], we used the implementation provided by the original

authors with the parameters set as suggested in [80] (hs = 30, hr = 30, deltaS = -3,

deltaR = -3). The number of layers for the analysis is set to 10.

In Table 4.2, the objective granularity metric values are presented. In col-

umn 3, the subjective granularity scores obtained from the subjective study pre-
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Table 4.2: MOS scores and objective metric values for textures in the GranTEX
database.

Texture
Names

Subjective
MOS

Range:[1∼3]

Proposed
TGI

Range:[0∼1]

MPEG7
Method [70]
Range:[1∼3]

Mean-shift
Method [80]
Range:[0∼1]

1 rooftiles 1 0.00006 1 0.0533
2 bananas 1 0.00426 1 0.019
3 pears 1 0.00961 2 0.0929
4 fruits 1.0667 0.01042 2 0.0799
5 colorballs 1.0667 0.01678 1 0.1024
6 tennisballs 1 0.03474 2 0.0962
7 boulders 1 0.05208 1 0.0611
8 paving 1 0.0867 1.5 0.0162
9 mangoes 1 0.17168 1 0.0444
10 brickwalllarge 1.2 0.27309 1 0.5089
11 rooftilessmall 1.8 0.34112 1.5 0.0198
12 jackfruit 2.0667 0.4233 1.5 0.002
13 leaves 2.1333 0.4383 1.5 0.1115
14 greenbeans 1.9333 0.44722 1.5 0.1349
15 corn 2.2 0.46834 1 0.1609
16 purpleflower 2.1333 0.48596 1 0.252
17 peas 2.0667 0.51891 1 0.0623
18 pebbles 2.1333 0.52835 1 0.1685
19 cobra 2.0667 0.53545 2 0.0554
20 cachews 2.2 0.5392 1.5 0.0528
21 rug 3 0.62989 1 0.1954
22 fabric 3 0.69313 2 0.002
23 concrete 3 0.78136 1 0.036
24 lichen 3 0.79284 1 0.366
25 curtain 2.9333 0.79386 1 0.0933
26 goldweave 3 0.8091 1.5 0.0124
27 palmhusk 2.9333 0.81006 1.5 0.002
28 deadgrass 3 0.81455 1.5 0.0044
29 greengrass 3 0.81996 1 0.0813
30 snow 2.8667 0.8521 2 0.002

sented in Section 4.2 are also shown. The subjective granularity scores are in the

range 1 to 3, where a score of 1 represents low granularity and a score of 3 represents
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Table 4.3: Correlation between MOS scores and objective metric values.

Pearson
Linear

Correlation
Coefficient
(PLCC %)

Spearman
Rank Order
Correlation
Coefficient

(SROCC %)

RMSE MAE

Porposed TGI 97.8 91.34 0.0004 0.0003
MPEG7
Method [70]

2.6 14.16 0.3904 0.3505

Mean-shift
Method [80]

16.05 15.05 0.1115 0.0763

high granularity. The proposed TGI metric values are shown in column 4, and its

values are in the range 0 to 1. The smaller values represent low granularity textures,

and higher values represent high granularity textures. In columns 5, the granularity

metric values obtained from the MPEG7 method [70] are given, and the granularity

values for this method are in the range 1 to 3. In column 6, the values of the mean-

shift based granularity metric [80] are presented. The granularity metric values for

this method are in the range 0 to 1.

In Table 4.3, the Pearson Linear Correlation Coefficient (PLCC) and the

Spearman Rank Order Correlation Coefficient (SROCC) are presented in order to

compare the correlation between the granularity MOS scores and the objective metric

values. From Table 4.3, it can be observed that there is a high correlation between

the proposed TGI and the subjective MOS scores with a PLCC value equal to 97.8%

and an SROCC value equal to 91.34%. The granularity level scores obtained from

the algorithm proposed in the MPEG7 standard [70] show a very poor correlation

with the MOS scores. The PLCC value for this latter method is equal to 2.6% and

the SROCC value is equal to 14.16%. The granularity levels obtained from the mean-

shift segmentation based algorithm [80] also show a poor correlation with the MOS
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scores. The PLCC value for the method of [80] is equal to 16.05% and the SROCC

value is equal to 15.05%. The algorithm proposed in the MPEG7 standard [70]

has also the limitation of not being able to handle irregular (in terms of shape and

placement) textures. The mean-shift segmentation based algorithm [80] requires a

reliable segmentation of the primitives, and hence can give incorrect results in the

case of over segmentation due to variations within the primitive regions. These results

indicate that the proposed TGI outperforms existing texture granularity metrics.

4.4 Conclusion

A novel no-reference perceptual texture granularity index (TGI) is proposed to pre-

dict the level of perceived granularity in a texture image. In the proposed Texture

Granularity Index (TGI), the texture is analyzed at multiple resolutions to find the

pseudo-periodicities of the primitives present in the texture. The estimated pseudo-

periodicities are used to calculate the perceived granularity. A texture database,

referred to as GranTEX, is created with images having varying levels of texture

granularity. The presented GranTEX database also includes granularity level Mean

Opinion Scores (MOS) for the textures present in the database. It is shown that the

proposed TGI achieves a high correlation with the subjective scores and outperforms

existing granularity metrics, including the algorithm from the MPEG7 standard.
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Chapter 5

Texture Granularity and Visual Compression

In this chapter an application of the proposed perceptual texture granularity in-

dex (TGI) for visual compression is presented. For this purpose, a subjective study

is conducted to assess the effect of texture granularity on compression in terms of

bit-rate and perceived visual quality. We show that a logarithmic model whose pa-

rameters adapt to the level of texture granularity, provides a good fit to the obtained

subjective data. The proposed logarithmic model is used for rate-distortion control

by allowing the automatic selection of the needed compression rate (bits per pixel)

for a target visual quality (MOS). The proposed model can also be used for au-

tomated reduced-reference visual quality assessment by providing a measure of the

visual quality for a target compression ratio.

This chapter is organized as follows. In Section 5.1, a subjective study is

presented to assess the effect of compression on textures with varying degrees of

granularity. In Section 5.2, a logarithmic function model is proposed as a fit to the

subjective test data. In Section 5.3, it is demonstrated that the proposed model can

be used for rate-distortion control to select the compression ratio and for objective

no-reference visual quality assessment of the compressed textures. Conclusions are

presented in Section 5.4.

5.1 Subjective Study

Textures in images are important for the perceived visual quality. It is important for

image and video compression algorithms to optimize the visual quality of textures for

a given bit-rate. The texture granularity provides a measure of perceptually relevant

details present in the image, which can be used to select the compression ratio for

a given visual quality. In this work, subjective experiments are conducted to assess
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the effect of compression on the visual quality of textures with different granularity

levels. In this section the subjective study on the relationship between perceived

texture granularity and compression quality is presented.

5.1.1 Motivation

This work investigates the effect of texture granularity on the visual quality of

JPEG2000-compressed textures. The subjective study results are used to derive

a model that can be used for the automatic selection of the needed compression

rate (bits per pixel) for a target visual quality (MOS), and for objective reduced-

reference visual quality assessment by providing a measure of visual quality for a

target compression bit-rate.

5.1.2 Experiments

The subjective study is conducted using a five-point double stimulus impairment

scale [33] (DSIS). The stimulus is presented on a desktop monitor with natural room

lighting conditions. A MATLAB GUI program is used to render the side-by-side

images onto the display. A total of 135 image pairs were used and the stimulus order

was randomized for every subject. The subjects were asked to score the visual quality

of images using a 5-point scale, where 1 represented poor quality and 5 represented

excellent quality. A total of 15 subjects volunteered to participate in this subjective

study. The age group of the subjects ranged from 21 to 38 years. The subjects were

screened for normal visual acuity and no color-blindness conditions.

5.1.3 Results

The plots of the compression rate in bits-per-pixel (bpp) versus the mean opinion

score (MOS) for three granularity levels (low, medium and high) are shown in Fig-

ure 5.1. It is observed from the plots that as the granularity level of the texture
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Figure 5.1: Mean opinion scores (MOS) for JPEG2000 compressed texture images.

increases the MOS decreases for the same compression ratio, and gets saturated at

higher bit-rates. It is also observed from the plots that for a similar visual quality,

we can achieve almost double (∼1.8) the compression for low granularity level tex-

tures as compared to the high granularity level textures, and around 1.5 times the

compression for medium granularity textures as compared to the high granularity

level textures. In the next section, we propose a logarithmic model as a fit to the

observed subjective study data.

5.2 A Logarithmic Model for Texture Compression Quality

The subjective study results from the previous section indicate that, for the same

compression rate, the visual quality of the textures varies with the texture granularity

level. In this section we present a logarithmic fit to the subjective data to model the

relationship between compression rate (bpp) and visual quality (MOS). It is shown

that a constant visual quality can be achieved by adjusting the compression rate of

the JPEG2000 encoder based on the granularity level of the textures.
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Figure 5.2: Logarithmic function model for subjective MOS vs rate (bpp) for three
granularity levels.

In order to model the relationship between the compression rate (bpp) and

the visual quality (MOS), the following logarithmic function is proposed:

MOS = min(max(b log(a r), 1.0), 5.0) (5.1)

where r is the compression rate in bits per pixel (bpp), MOS is the mean opinion

score and (b, a) are the model parameters. The MOS value is clipped within the valid

range [1.0-5.0] using the min and max functions. The estimated model parameters for

low, medium and high granularity level textures are given in Table 5.1. In Figure 5.2,

the plots for the logarithmic fit to the subjective test results are shown.

We can rewrite Equation (5.1) to find the inverse relationship in order to

determine the compression rate (bpp) that is needed to obtain a desired visual quality

(MOS). This inverse relationship takes the form of an exponential function as given

below:

r = (1/a) exp(MOS/b) (5.2)
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Table 5.1: Logarithmic function model parameters.

Granularity Level Parameter b Parameter a
Low 0.914 186.637

Medium 1.186 38.095
High 1.27 20.66

Figure 5.3: Exponential function model to fit rate (bpp) vs subjective MOS for three
granularity levels.

In Figure 5.3, the plots for the exponential function model given by Equation (5.2)

are shown to provide a good fit for the compression rate in terms of the subjective

MOS for low, medium and high-granularity textures.

5.3 Rate Distortion Control for Texture Compression

It is observed from the subjective study results that the perceived visual quality of

JPEG2000 compression varies with the granularity level of textures. In Section 5.2,

a logarithmic function model and a corresponding exponential function model for the

inverse relationship are proposed and can be used to predict the relationship between
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Figure 5.4: Constant-quality variable-rate compression scheme.

Figure 5.5: Reduced-reference visual quality assessment of compressed textures.

the compression visual quality and compression ratio for a given texture granularity

level. In this section, the proposed texture granularity index (TGI) metric and the

proposed models are used to demonstrate rate-distortion control for constant visual

quality compression, while achieving bit-rate savings for low and medium granularity

level textures as compared to high granularity level textures.

A block diagram of constant visual quality compression using rate-distortion

control based on texture granularity is shown in Figure 5.4. The proposed no-

reference TGI is calculated for the input texture image. The compression rate r

(bits per pixel) that is needed to achieve a desired visual quality (MOS) is calculated

using Equation (5.2) with the parameters a and b determined as shown in Table 5.1

based on the texture granularity given by TGI. Alternatively, the logarithmic model
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(a) Original textures

bpp=0.24, MOS=3.48 bpp=0.24, MOS=2.62 bpp=0.24, MOS=2.03
(b) JPEG2000 fixed compression rate

bpp=0.240, MOS=3.48 bpp=0.49, MOS=3.48 bpp=0.75, MOS=3.48
(c) JPEG2000 variable compression rate

Figure 5.6: Comparison of fixed vs. variable JPEG2000 compression rates for low,
medium and high granularity level textures.
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given by Equation (5.1) can be used to predict the visual quality (MOS) of the

compressed texture for a given rate as shown in Figure 5.5.

A visual comparison of fixed versus variable compression rates using the pro-

posed scheme is shown in Figure 5.6. In Figure 5.6(a), three original textures are

shown with low (column 1), medium (column 2) and high (column 3) granularity

levels. In Figure 5.6(b), the textures of Figure 5.6(a) are compressed using a fixed

compression rate. It can be observed that the low granularity level texture (column 1)

exhibits a better visual quality as compared to the medium and high granularity level

textures. For the medium (column 2) and high (column 3) granularity level textures,

some details are lost and edges show jagged artifacts. For the selected bit-rate (0.24

bpp), the estimated MOS values (using Equation (5.1)) for the low, medium and

high granularity textures are 3.48, 2.62 and 2.03, respectively.

In Figure 5.6(c), variable compression rates are used for a target visual quality

of MOS equal to 3.48. To achieve this target quality, the compression rates are

calculated using Equation (5.2) resulting in r = 0.240, 0.4923 and 0.747 bpp for

the low, medium and high granularity textures, respectively. From Figure 5.6(c), it

can be seen that the variable compression rates for the considered textures achieve

similar visual quality. In addition, it can be seen that the proposed scheme results

in bit-rate savings of 0.51 bpp and 0.25 bpp for the low and medium granularity

textures, respectively, as compared to the high-granularity textures.

5.4 Conclusion

An application of texture granularity to visual compression is presented. A subjective

study was conducted to assess the visual quality of JPEG2000 image compression for

textures with varying levels of granularity (low, medium and high). A logarithmic

model whose parameters are adapted based on the level of texture granularity, is
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proposed to fit the subjective study results allowing the prediction of the perceived

visual quality of compressed textures for a target bit-rate. The inverse exponential

model can be used to determine the bit-rate needed to achieve a target visual quality.

The proposed Texture Granularity Index and models were used to demonstrate rate-

distortion control to achieve constant visual quality and reduced-reference visual

quality assessment of compressed textures.
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Chapter 6

Texture Granularity and Synthesis Quality

Texture synthesis algorithms are used to generate or synthesize textures from small

patches or from compact representations of textures. Texture synthesis algorithms

are used in many applications including compression, noise reduction and view syn-

thesis. Textures are very good candidates for lowering the bit-rate due to their high

spatial frequencies. The texture-based image/video codecs attempt to save on bit-

rate by synthesizing the texture regions at the decoder such that the synthesized

regions perceptually resemble the original texture. This is achieved by sending a

sample texture patch or synthesis parameters that represent the original textures,

and that are typically very small in size as compared to the original image. In the

view synthesis and hole filling applications texture synthesis techniques are used to

extrapolate the texture regions using neighboring pixel values.

In this chapter the visual quality of synthesized textures for textures with

different granularity levels, is studied. In order to compare texture synthesis ap-

proaches five different algorithms are selected. Finally, a reduced-reference objective

delta texture granularity index is presented to measure the quality of the synthesized

textures.

6.1 Subjective Study

In this section a subjective study is presented to measure the visual quality of texture

synthesis algorithms for different granularity level textures. The texture synthesis

methods produce different types of visual artifacts that lead to a loss in fidelity of the

synthesized textures compared to the original. These artifacts include misalignment,

blur, tiling and loss in periodicity of the primitives. The various parametric ap-

proaches [47,50], and non-parametric approaches [41,42,44,45], differ in their speed,
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perceptual quality, and the amount of side information needed for synthesizing tex-

tures.

6.1.1 Motivation

This study focuses on the effect of texture granularity on the quality of synthesized

textures. Specifically, we would like to quantify how the granularity level of a texture

has direct impact on the perceived loss in fidelity of the synthesized textures and

how this loss in fidelity varies from one synthesis method to another. In other

words, for synthesizing a texture of a given granularity, one method may have a

perceptually better performance compared to another. For this purpose, subjective

studies are conducted to assess the quality of synthesized textures with different

levels (low, medium, high) of perceived texture granularity using different types of

texture synthesis methods.

6.1.2 Selected Texture Synthesis Methods

A brief description of five algorithms used in this study are presented here. In

Algorithm-1 (Alg1), Efros et al. [44] developed a non-parametric patch-based texture

synthesis algorithm called ’image quilting’. For every new patch to be synthesized

and stitched, the algorithm first searches the source texture and chooses one can-

didate patch that satisfies the pre-defined error tolerance with respect to neighbors

along the overlapped region. As mentioned already, patch-based approaches often

introduce unwanted visual artifacts along overlapped boundaries. To disclose the

minimum error path through the overlapped region, the minimum error boundary

cut (MEBC) method is applied to smooth the transition between the overlapping

boundaries of adjacent patches.
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In Algorithm-2 (Alg2), Efros et al. [41] developed a non-parametric method

that enforces statistics locally one pixel at a time to synthesize textures, which is more

suitable for high granularity textures. The conditional distribution of each pixel,

given all its neighbors synthesized so far, is estimated by searching the sample image

and finding all similar neighborhoods. The texture is modeled as a Markov Random

Field (MRF). This implies that the probability distribution of intensity values for

a pixel, given the intensity values of its spatial neighborhood, is independent of the

rest of the image.

In Algorithm-3 (Alg3), Wei et al. [42], extended Efros et al. [41]’s approach to

multiple frequency bands and used vector quantization to speed up the processing.

In their method instead of matching neighborhood pixels from a single image, they

perform the matching based on two adjacent levels in Gaussian pyramids. They also

apply tree structured vector quantization (TSVQ) to accelerate the algorithm by two

orders of magnitude. They visit the pixels in a raster scan order as well as using

a multi-scale framework. The method [42] works well for most of the textures. As

shown in this paper, this method specifically works better for textures with high and

medium granularity levels.

In Algorithm-4 (Alg4), Portilla et al. [47] proposed a parametric statistical

model based on matching wavelet coefficients of multi-scale oriented filter responses.

The parameters include the first and second order statistics of the filter coefficients

of the neighboring orientation and scale. This method describes any texture through

few parameters and thus achieves a very compact representation of textures. In this

paper, this algorithm is shown to work well for textures with high granularity and

good regularity.

In Algorithm-5 (Alg5), Galerne et al. [84] proposed a parametric texture syn-

thesis method. The method [84] is based on properties of two sample-based tex-
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ture models namely random phase noise (RPN) and asymptotic discrete spot noise

(ADSN). It is shown in this work that the method [84] works well for high-granularity

textures.

6.1.3 Experimental Setup

We have selected 21 reference textures from the GranTEX database, seven from

each granularity level (low, medium and high). In Figure 4.1, examples for low,

medium and high granularity textures are shown. A low granularity texture will have

large primitives (objects) as compared to medium and high granularity textures.

For high granularity textures the primitive sizes are very small. The subjective

study was conducted on 105 synthesized textures generated using 5 texture synthesis

algorithms [41, 42, 44, 47, 84] which span the parametric, non-parametric, statistical,

and non-statistical methods. The details of these algorithms are presented in Section

6.1.2. Since all the algorithms did not support synthesis of color images, the grayscale

images were used in these experiments. All the algorithms used 64 × 64 size image

patches as the input and generated 512×512 images as the output. The synthesized

images for low, medium and high granularity textures are shown in Figures 6.1, 6.2

and 6.3, respectively.

The subjects were presented both the original and synthesized textures side

by side on an Alienware monitor (model: AW2310). A total of 105 image pairs

were presented to every subject. The subjects were screened for normal visual acuity

and color blindness conditions. Seventeen subjects volunteered to participate in this

study. The display order was randomized from run to run. The experiments were

administered following the subjective quality assessment procedure given in the ITU

standard [32]. The subjects were asked to score the overall quality of the synthesized
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(a) Original Texture (b) Alg1 Synthesized Texture

(c) Alg2 Synthesized Texture (d) Alg3 Synthesized Texture

(e) Alg4 Synthesized Texture (f) Alg5 Synthesized Texture

Figure 6.1: Low granularity level texture synthesis results.
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(a) Original Texture (b) Alg1 Synthesized Texture

(c) Alg2 Synthesized Texture (d) Alg3 Synthesized Texture

(e) Alg4 Synthesized Texture (f) Alg5 Synthesized Texture

Figure 6.2: Medium granularity level texture synthesis results.
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(a) Original Texture (b) Alg1 Synthesized Texture

(c) Alg2 Synthesized Texture (d) Alg3 Synthesized Texture

(e) Alg4 Synthesized Texture (f) Alg5 Synthesized Texture

Figure 6.3: High granularity level texture synthesis results.
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(a) Low Granularity (b) Medium Granularity

(c) High Granularity (d) Comparison of average MOS scores

Figure 6.4: The MOS scores for low, medium and high granularity textures.

texture for each observed texture using a five-point scale from bad to excellent, where

a score of 1 represents the lowest quality and 5 represents the highest quality.

6.1.4 Results

The Mean Opinion Scores (MOS) obtained from the subjective study represent the

perceived quality of the synthesized textures when compared with the original tex-

tures. The plots for MOS versus algorithm index are shown in Figures 6.4 (a), (b)

and (c) for low, medium and high granularity textures, respectively. It can be ob-
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Table 6.1: MOS scores for low, medium and high granularity textures.

Granularity Alg1 Alg2 Alg3 Alg4 Alg5
LOW 2.4992 1.2294 1.8545 1.1150 1.0133
MED 3.7153 1.5004 2.5607 1.2143 1.0000
HIGH 4.1453 2.4706 3.7250 2.9129 2.1846

Average 3.4533 1.7335 2.7134 1.7474 1.3993

served that, for all the algorithms, the general trend is that the MOS is lowest for

low granularity textures and highest for high granularity textures.

The overall trend in the synthesized quality of the textures is Alg1 > Alg3

> Alg4 > Alg2 > Alg5. Alg1 [44] is a patch-based non-parametric method which

performs the best as compared to other methods. This method is able to preserve the

local structure of the object when the object sizes are small. The considered textures

in the database do not show regularity in the placement, hence it is important to

consider the local structure of the objects. Alg3 [42] is a pixel-based method but uses

a hierarchical approach and hence is able to capture some of the local structures in

the texture. Alg2 [41] is a pixel-based method and performs poorly for most of the

textures. Alg4 [47] and Alg5 [84] are parametric methods. Both of these methods

perform poorly, especially for low- and medium-granularity textures.

The comparison of average MOS scores for low-, medium- and high-granularity

textures is shown in Figure 6.4(d) and Table 6.1. Except for Alg1 (see Table 6.1),

the synthesis quality for low- and medium-granularity textures is very poor for all

the algorithms. These artifacts are caused because it is not possible to maintain the

structure of the objects with smaller input patches. A granularity measure can be

used to predict the smallest texture element or primitive size in the image and, thus,

optimize the parameters for texture synthesis in order to achieve improved visual

quality.
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6.2 Delta Texture Granularity Index

Textures can be characterized in many different ways such as regular, irregular,

stochastic, structured or grainy. The texture synthesis algorithms typically perform

well on subset of these characteristic textures. The aim of the texture synthesis

algorithm is to generate textures which are visually similar to the original textures,

without introducing any structural, blur or tiling artifacts. It is shown in earlier

studies [1] that many of the popular algorithms for objective visual quality assess-

ment are not suitable for the texture synthesis quality evaluation. In most of these

approaches a pixel-based or a local block-based statistical analysis is done which

does not capture the global properties of the texture. It is shown in [85] that texture

attributes can be used to quantify the quality of the synthesized textures. In this sec-

tion, the difference in the Texture Granularity Index (TGI) (presented in Chapter 4)

between the original and synthesized textures, which is referred to as delta-TGI, is

used to assess the texture synthesis quality.

In this study the texture database provided in [1] is used. This database

consists of texture images taken from the Brodatz database [86]. The provided

database includes Differential Mean Opinion Scores (DMOS) between original and

synthesized textures for 27 reference texture images. For this study, we selected two

best performing algorithms [44, 87] from the database. It should be noted that the

algorithm of [44] is the best performing Alg1 from the subjective study presented in

Section 6.1. The algorithm of [87] (Alg6) is based on the algorithm [42], where a

hierarchical approach is used to obtain per pixel texture synthesis. Each synthesized

pixel stores the coordinates of the exemplar texture. The algorithm of [42] is the

second best performing Alg3 from the subjective study presented in Section 6.1. In
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Alg6, this approach is extended to achieve speed-up by introducing parallel texture

synthesis.

The plots of delta-TGI and DMOS values for the two selected algorithms is

shown in Figure 6.5. A higher DMOS score or higher delta-TGI value indicates that

there is a higher visible difference between the original and synthesized textures. It

is observed from the plots in Figure 6.5 that for the majority of the textures the

delta granularity values show a good correlation with the DMOS scores. The Pear-

son Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation

Coefficient (SROCC) between the proposed delta-TGI and DMOS scores are given

in Table 6.2. For Alg1 [44], the proposed delta-TGI method gives a PLCC value

equal to 64.73% and a SROCC value equal to 48.12%. For Alg6 [87], the delta-

TGI method gives a PLCC value equal to 63.14% and SROCC value of 52.68. For

Alg1, the existing popular CW-SSIM index [88] gives a PLCC value equal to 64.12%

and a SROCC value equal to 13.98%. For Alg6, the CW-SSIM index [88] gives a

PLCC value equal to -42.58 % and a SROCC value of -36.55%. It is observed from

these results that even though the performance of the proposed delta-TGI and of

the CW-SSIM seem to be comparable for Alg1 [44] in terms of PLCC, the proposed

delta-TGI significantly outperforms CW-SSIM in terms of SROCC. Furthemore, for

Alg6 [87], the proposed delta-TGI significantly outperforms the CW-SSIM index in

terms of both PLCC and SROCC. In fact, for Alg6, CW-SSIM results in a negative

correlation (in terms of PLCC and SROCC) with the subjective DMOS values.

6.3 Conclusion

Textures are important in maintaining details in image and video content. Texture

synthesis methods can help to achieve high compression while maintaining the overall
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(a) Alg1 (b) Alg6

Figure 6.5: Comparison of Delta-TGI and DMOS for two texture synthesis algo-
rithms. The x-axis values represent the index of the texture images in the database
of [1].

Table 6.2: Comparison of texture synthesis quality metric values.

Pearson
Correlation
Coefficient
(PLCC %)

Spearman
Rank-order
Correlation
Coefficient

(SROCC %)

RMSE MAE

Delta TGI (Alg1) 64.73 48.12 0.07 0.06
Delta TGI (Alg6) 63.14 52.68 0.07 0.06
CW-SSIM (Alg1) 64.12 13.98 0.08 0.06
CW-SSIM (Alg6) -42.58 -36.55 0.15 0.12

fidelity of the image and video content. Subjective and objective metrics for texture

synthesis quality assessment are needed to design improved compression systems.

In this chapter we studied the visual quality of five texture synthesis algo-

rithms for textures with different levels of granularity. It is found that the majority

of the algorithms perform better for high granularity textures, as compared to low or

medium granularity textures. The non-parametric patch-based method [44] outper-

forms other well-known parametric and pixel-based methods. This method leverages

the local as well as global properties of the textures. The proposed texture granu-
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larity index can be used to decide the patch size of the non-parametric algorithm in

order to maximize the synthesis quality for a given granularity level.

A reduced-reference objective metric called delta texture granularity index

(delta-TGI) is proposed to measure the perceived visual quality of synthesized tex-

tures. The proposed metric is shown to outperform existing popular full-reference

visual quality metrics in terms of correlation with the subjective scores. However,

the proposed delta-TGI metric does not capture some of the structural irregulari-

ties observed in the synthesized textures. It would be interesting to combine other

attributes such as delta regularity values [52] in order to further improve the perfor-

mance of objective visual quality assessment of synthesized textures.
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Chapter 7

Conclusions and Future Research Directions

The research work presented in this dissertation focuses on the visual quality aspects

of 3D stereo and 2D texture images. This work contributes to the areas of 3D blur

discrimination, texture granularity analysis, visual compression, texture synthesis

and texture quality assessment. This chapter summarizes the main contributions of

this work, and provides few proposals for future research directions.

7.1 Summary of Contributions

• One of the important contributions of this work is the study of blur discrimi-

nation using 3D stereo test patterns. In this work, psychometric experiments

are conducted to measure the blur discrimination thresholds for stereoscopic

3D viewing, as all the existing studies use 2D test patterns. The binocular

disparity is used as the depth cue in these experiments. The subjective test

results indicated that the blur discrimination thresholds remain almost con-

stant as the disparity value is varied, which corresponds to varying the object

depth. From these findings, it can be concluded that one can apply 2D blur

discrimination models for stereoscopic 3D blur discrimination. It is shown that

the Weber model provides a good fit to the subjective study measurements.

• The 3D blur discrimination experiments are presented for both symmetric and

asymmetric stereo viewing cases. The comparison of symmetric and asymmet-

ric blur discrimination thresholds showed that the blur discrimination has a

masking effect in the asymmetric case, in the sense that the eye observing the

larger blur masks the blur observed by the other eye. These findings further

indicate that asymmetric 3D stereo coding will introduce noticeable reduction

in quality even if the compression quality of one of the streams (left or right
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eye) is higher. Furthermore, it is found that the blur discrimination threshold

values for the asymmetric case decrease as compared to the symmetric case and

that the amount of decrease depends on the value of the additional asymmetric

blur that is applied to one of the eyes.

• A GranTEX texture database is presented consisting of texture images with

different granularity levels. The GranTEX database has 30 images of textures

typically found in natural and man-made objects seen around us and their

corresponding subjective scores for the degree of perceived granularity. The

textures in the database are grouped into three categories – low, medium and

high granularity levels. Subjective raw (individual) scores and the mean opinion

scores (MOS) are obtained through a subjective study that is conducted to

quantify the perceived granularity level of the textures. The presented database

is useful in comparing subjective and objective granularity measures.

• A novel no-reference perceptual granularity metric is proposed. It is shown that

the proposed texture granularity index (TGI) has a much higher correlation

with the subjective granularity scores, as compared to existing methods that

attempt to quantify the granularity of textures, including the method proposed

in the MPEG7 standard.

• A subjective study is presented to quantify the relationship between the per-

ceived texture granularity level and the compression quality. The subjective

visual quality (MOS) for the JPEG2000 compressed textures with different

granularity levels is measured. The results of this study indicated that, for a

similar visual quality, one can achieve almost double (∼1.8) the compression

for the low granularity textures as compared to the high granularity textures,

and around 1.5 times the compression for the medium granularity textures as
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compared to the high granularity textures. These findings are useful in texture

compression and quality assessment.

• A logarithmic function model along with an exponential function for the in-

verse relationship is proposed to fit the subjective study results between visual

quality (MOS) and compression rate (bits per pixel). The proposed model can

be used for rate-distortion control by allowing the automatic selection of the

needed compression ratio for a target visual quality. The proposed TGI met-

ric and models are used to demonstrate variable bit-rate compression which

achieves constant visual quality for textures with different granularity levels

and at the same time achieves bit-rate savings for low and medium granularity

level textures. For a given bit-rate, the proposed model also enables objective

reduced-reference visual quality assessment for compressed textures based on

the granularity level of the corresponding original uncompressed textures.

• The effect of texture granularity on the quality of synthesized textures is pre-

sented. For this purpose, subjective studies are conducted to assess the quality

of synthesized textures with different levels (low, medium, high) of perceived

texture granularity using different types of texture synthesis methods. The

results of the conducted subjective studies indicate that the non-parametric

patch-based texture synthesis method outperforms other well-known paramet-

ric and pixel-based methods.

• A reduced-reference visual quality index referred to as delta texture granularity

index for assessing the visual quality of synthesized textures is proposed. The

preliminary tests indicate that the reduced reference delta texture granularity

index using the proposed TGI results in improved correlation with the differ-

ential mean opinion scores (DMOS) between original and synthesized textures,

as compared to well known full-reference image quality metrics.
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7.2 Future Research Directions

There are two potential tracks for the future research directions from this work -

1) focusing on the visual quality aspects of 3D video and 2) focusing on the visual

quality aspects of texture compression and synthesis. In this section, some of the

potential directions are proposed.

The 3D video technologies are still evolving, and display technologies which

will minimize eye fatigue and other side effects of the 3D stereo viewing will help to

propel this area of research. Based on the findings in this dissertation, the potential

future directions related to blur discrimination are as follows:

• 3D depth perception is affected by both monocular and binocular depth cues.

Understanding the blur discrimination performance in the presence of monoc-

ular depth cues along with the binocular depth cue (which is considered in this

work) will be useful.

• The depth component in 3D stereo adds the sense of reality and there is a need

to measure how this affects the quality of experience. These studies along with

blur discrimination experiments will be helpful in designing a 3D stereo pipe

with an improved Quality of Experience (QoE).

• The depth perception in 3D stereo varies for different color wavelengths [6].

The presented blur discrimination experiments using gray scale patterns need

to be extended for color signals.

Texture analysis is an active area of research. Some of the potential research

directions related to the work presented here are as follows:
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• The future image and video compression standards will be using texture syn-

thesis methods to reduce the bit-rate while maintaining a desrired visual qual-

ity. The existing well known image and video objective quality metrics will

not work for texture synthesis quality assessment. The presented delta texture

granularity index needs to be combined with other texture attributes to achieve

better prediction of texture synthesis quality.

• Application of the proposed texture granularity index can be extended beyond

visual compression and synthesis to other texture analysis tasks such as texture

segmentation and retrieval.

• The different texture attributes can predict the compressibility of the textures.

It would be interesting to combine multiple texture attributes in order to select

an optimal compression ratio that will maximize the visual quality.
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