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ABSTRACT

Embedded assessment constantly updates a model of the student as the student works

on instructional tasks. Accurate embedded assessment allows students, instructors

and instructional systems to make informed decisions without requiring the student

to stop instruction and take a test. This thesis describes the development and com-

parison of several student models for Dragoon, an intelligent tutoring system. All the

models were instances of Bayesian Knowledge Tracing, a standard method. Several

methods of parameterization and calibration were explored using two recently de-

veloped toolkits, FAST and BNT-SM that replaces constant-valued parameters with

logistic regressions. The evaluation was done by calculating the fit of the models to

data from human subjects and by assessing the accuracy of their assessment of sim-

ulated students. The student models created using node properties as subskills were

superior to coarse-grained, skill-only models. Adding this extra level of representa-

tion to emission parameters was superior to adding it to transmission parameters.

Adding difficulty parameters did not improve fit, contrary to standard practice in

psychometrics.
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Chapter 1

INTRODUCTION

This thesis addresses the problem of creating a student model (embedded assess-

ment) for Dragoon, which is an intelligent tutoring system for teaching students how

to construct models of dynamic systems. The assessment will be used to recom-

mend problems to students. However, the choice of a recommendation policy is not

part of this thesis and, for testing purposes, problems were presented to the student

randomly.

Several student modeling methods were developed and compared. They were

evaluated in two ways. First, the fits of the model to human data was measured.

Second, the methods assessed synthetic students, and their accuracy was measured.

See the table of contents for a brief overview of the thesis chapters.
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Chapter 2

DRAGOON: INTELLIGENT TUTORING SYSTEM

Dragoon is an example-tracing tutor (Koedinger et al., 2004) which means that it

compares a student step to steps authored by a human expert, and uses this compar-

ison to provide feedback to the student. Thus, Dragoon’s inner loop (VanLehn, 2006)

is rather simple and will not be described here. Dragoon currently has no outer loop,

which means that it can only coach a student through solving a problem and cannot

recommend or select a problem for the student to do next. In order to do adaptive

task selection or recommendation, it needs to have a student model. Thus, this thesis

is on the critical path for improving Dragoon.

Dragoon teaches students how to create models of dynamic systems. A system is a

part of the real world, and a dynamic system is a system which changes with time. A

record of the system’s change as a function of time is called its behavior. A model is an

expression in a modeling language that can be interpreted by a computer. Executing

a model generates its behavior. An accurate model will generate predictions that

match the target system’s actual behavior VanLehn et al. (forthcoming).

This chapter explains Dragoon in detail. First, it talks about the interface and

the notation. Then it presents the step analyzer as well as hints and feedback given

to the students. The third section explains the knowledge components in detail.

2.1 Interface and Notation

Dragoon is a step-based tutoring system. In order to construct a model, students

construct nodes, and in order to construct a node, students enter a step into a node

editor. Students get feedback on each step, and after several failed attempts at a
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step, Dragoon shows the person how to do the step by doing the step itself. Thus,

the raw input to the student modeling component is a series of steps attempted by

the student, each annotated with whether the student got the step right on the first

try.

To understand this process in detail, let’s take an example problem. The following

is a system description that is given to the student:

In the year 2013, the population in the city of Phoenix was 1.51 million.

Every year the population grew by 1.67%. Create a model for the population

of the city and see how much it has increased by the year 2050, assuming

that growth rate remains constant in that time.

The students are asked to create a model of this system using Dragoon. Figure

2.1 shows the screen after a model has been constructed.

In Dragoon, the quantities that comprise the model are represented as Nodes.

Nodes are of three types:

1. Parameter - is a constant variable. For example, as the population growth rate

does not change throughout the time period, so it will be a parameter in the

model. In figure 2.1, diamond signifies a parameter.

2. Function - corresponds to a mathematical relationship between nodes, like net

growth in population = Population * Growth Rate. In figure 2.1, circle signifies

a function node.

3. Accumulator - as the name suggests, this is where the value of a quantity gets

accumulated. After each time slice the value of the node updates based on its

value in the previous time slice and the relationship with other quantities. Like

in the presented problem, new Population = old Population + net growth in

Population. In figure 2.1, square signifies an accumulator.

3



Figure 2.1: Completed Model for Population Problem in Immediate Feedback Mode

A node has five properties which are used to define the quantity that it represents.

Values are set in the node editor by either selecting the correct value from a dropdown

menu or by entering it through the keyboard. Setting a property corresponds to a

step. The properties are:

1. Description - name of the node

2. Type - node type as described above.

3. Initial value - The value of the node at the start of time. Only for parameter

and accumulator nodes.

4. Units - units of the quantity represented by the node.

5. Equation - relation with which the node is related to other nodes in the model.

Only for function and accumulator nodes.

Figure 2.2 shows the node editor used in Dragoon. All the properties that the student

needs to fill are shown with question marks which provide help to student to fill the

node completely explaining what these properties are.

4



Figure 2.2: Node Editor in Dragoon

On the user interface, arrow-like links show the inputs to function and accumulator

nodes. After completing the model, a student can click on the “Graph” and “Table”

buttons to see the model behavior. For the above problem, they would show an

increase in population as a function of time, for the years 2013 to 2050. Figure

2.1 shows the completed model. It also shows the interface of Dragoon in which we

present the problem on the right and on the left student creates his model. At the top

there are buttons like Graph and Table to check the behavior of the model student

has constructed.

5



2.2 Problems in Dragoon

Figure 2.1 also shows the interface of Dragoon. Any problem in Dragoon requires

a student to construct nodes using node editor shown in figure 2.1. Student completes

all the node properties to completely define a node, which are joined together to form

schemas which will be explained in section 2.4. These join together to form a complete

problem in Dragoon. Figure 2.3 shows the complete flow for a problem in Dragoon

while constructing a model.

Figure 2.3: Model Construction Through Problems in Dragoon

2.3 Feedback and Hints

Feedback and hints in Dragoon depend on the mode in which the student solves

a problem. There are three modes available -

• Immediate feedback - gives minimal feedback to the student after each step.

The feedback is given by showing green color for correct solution, red color for

a wrong solution and yellow color if the answer is given by Dragoon.

6



• Delayed feedback - does not give any feedback after each step. When a stu-

dent opens the graph and table values, then they are told whether their model

matches the author solution or not.

• No feedback - does not give any feedback.

There is no hint button in Dragoon, but it does provide the correct entry for a

step (a “bottom out” hint) if the student has entered several incorrect attempts. This

hint is provided only in the immediate feedback mode.

2.4 Knowledge Components

Constructing a Dragoon model when given a succinct description of a system is

nearly the same as solving a mathematical word problem, that is, constructing an

equation or set of equations when given a succinct description of the system. The

knowledge required for solving word problems can be represented as schemas, where

each schema pairs something that matches the system description with something that

output an equation or set of equations. Marshall et al. (1989), found that single-step

arithmetic problems could be divided into 5 fundamental schemas: Change, Group,

Compare, Restate, and Vary. Mayer (1981), found that the algebra word problems

in 10 textbooks could be covered by about 90 schemas. For instance, there were 10

schemas for river crossing problems, 5 schemas for interest problems and so forth.

A complex arithmetic or algebra word problem may require applying two or more

schemas.

Dragoon assumes that its students’ knowledge can be represented as schemas.

Each schema has a part that matches the system description as a template for a

model. The template consists of a set of nodes, but the initial values, names, descrip-

tions and units have not been filled in. The types and equations have been filled in.

7



To apply a mentally held schema, the student notices that it can be applied, then

enters the appropriate nodes into Dragoon, filling in the missing information (names,

descriptions, values and units) as the nodes are constructed. For example, the model

shown in figure 2.1 is an instance of the exponential growth. The only difference

between the schema and the model of figure 2.1 is that the model has specific in-

formation from the problem entered into the description, value, units and equation

properties of the nodes.

To represent a particular student’s competence at constructing Dragoon models,

this thesis assumes that every schema has a probability of mastery associated with it.

If a student has mastered a schema, then the student will apply the schema correctly

almost every time it is needed. The probability of making a mistake when apply a

mastered schema is typically low, e.g., 0.1, and called the slip probability. Different

schemas can have different slip probabilities.

Following Mayer (1981), Dragoon, schemas are grouped under schema families,

such as basic electronics, population ecology and kinematics. There is one such

schema family which needs a special mention here. It is called “Generic models

of dynamic systems.” This schema family contains schemas for the rate of change of

the values for quantities. For example, if a quantity increases linearly, then the asso-

ciated schema is called linear transfer; if the quantity increases exponentially, such as

in the problem presented in figure 2.1, its called exponential transfer. Other schemas

in this family are “Goal-seeking” “Equilibrating,” “Accelerating,” and “Epidemic.”

All the problems used in the study reported here are solved using just 3 schemas

from the “generic models” family: linear transfer, exponential transfer and accelerat-

ing transfer. Thus, a model of a particular student consists of just 3 numbers, each

between 0 and 1, representing the probability of master of each schema. It may seem
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simple to keep these three numbers up-to-date as the student works, but, as will be

shown below, it is anything but simple.

It is common for Dragoon problems to require multiple schemas for their solution.

When two schemas are applied to the same problem, they must share at least one

node. When a node belongs to two schemas, it is not clear how to interpret the steps

the student makes when constructing that node. This makes student modeling quite

difficult, as will be seen in a moment. Figure 2.4, shows node bus fleet which is part

of more than one schema that is linear growth and exponential decay.

Figure 2.4: Schema Overlap in Dragoon in Node Bus Fleet

Another problem is that schemas are a crude representation of the difficulties that

students face when reading and understanding the description of the system. For

instance, there may be “clue words” in the system description that strongly suggest

which schema needs to be applied. Here’s a second issue: although noun phrases

are used for most quantities in a model, sometimes quantities are only implied by

the system description and not mentioned explicitly. Thus, a problem may have

difficulty or easiness that is not reflected in the set of schemas needed for solving

it. This is another challenge for student modeling in the Dragoon context. These

9



difficulty parameters are defined by author while constructing a problem and defining

schemas applied in it. Figure 2.5, shows the interface to define a schema and the

checkboxes represent whether the schema application has those difficulty parameters

applicable or not.

Figure 2.5: Interface for Author to Define Schemas with Difficulty Parameters

Thus, given our description of Dragoon and the associated schema, the research

problem can be written as: For each schema in Dragoon, maintain a number which

defines the probability of mastery by the student for that schema, based on the right

or wrong entries given by the student as they construct nodes.
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Chapter 3

GRAPHICAL MODELS AND STUDENT ASSESSMENT

This chapter examines the problem of creating a student assessment. It first

reviews one of the techniques which is used for assessment and then elaborates on

it’s application for in Dragoon. It assumes that the reader is somewhat familiar with

Bayesian Networks and probability.

3.1 Dynamic Bayesian Networks (DBN)

DBN (Russell and Norvig, 1995) are Bayesian networks that represent the changes

in a system over time by duplicating the network once for each time slice. The

notation for representing such random variables is to write Xt which denotes the

variable’s value at time slice t

In the type of DBN used in student modeling, there are two types of variables

(see figure 3.1):

1. State variables (Xt): These define the state of the domain at time t, which is

assumed to be the current time.

2. Evidence variables (Et): These are the observations which are conditionally

based on the current state variable Xt.

These DBNs are based on the Markov assumption, which assumes that the whole

history of the process up to this point is summarized in a state variable. Thus, the

evidence at time t can be adequately predicted from Xt and knowing the values of

the earlier state variables provides no added information.
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Figure 3.1: Dynamic Bayes Network with X Hidden Variables and E Evidence Vari-

ables

In student modeling, we define state variables kq,t where q is the skill and t is

the current time. Every such variable has two values, “mastered” or “not-mastered.”

From here on, “skill” will be used for a piece of knowledge that can be learned and

applied independently of others. In the Dragoon context, a skill is a schema. The

evidence variables yt, represent whether a student gets a step correct or incorrect.

Plate notation is a handy way of portraying a DBN. It shows the parts of the

network that are duplicated at every time slice inside a rectangular plate, whereas

parts of the network that are not duplicated are shown outside the plate. The DBN

of Figure 3.1 is shown in Figure 3.2 using the plate notation. The state variables Xt

have been replaced by kq,t and emission variables have been replaced with yt to show

the DBN used for student modeling.

As usual in BN notation, each node represents not only a random variable but

also a conditional probability table, where the conditioning variables are indicated by

the incoming links. Thus, the kq,t nodes have a conditional probability table in them

12



Figure 3.2: A DBN for a Skill Used in Student Modeling Using Plate Notation

called the transition probabilities, and the evidence nodes have a table in them called

the emission probabilities.

3.2 Inference in Graphical Models

There are several common types of probabilistic inference used with DBNs, and

each has algorithms for carrying out the computations. Some of these inference

problems in DBN are used in student modeling:

1. Filtering: the process of finding the posterior distribution over the most recent

state given the complete emission sequence, that is calculate P (Xt|e1:t). That is,

given the students’ history of correct and incorrect steps up to time t, calculate

the probability of mastery of each still at time t.
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2. Prediction: the process of predicting the distribution after k epochs from the

current time given the emission sequence till now, that is calculate P (Xt+k|e1:t).

Not currently used in student modeling.

3. Smoothing: Given the emission sequence until time t, calculate P (Xt−k|e1:t) for

all k between 1 and t. This is used during the EM procedure (see below) for

calibrating a DBN given data from students.

4. Most likely explanation: the process of calculating the most likely sequence of

the state variable values given the emission variables, argmaxX1:tP (X1:t|e1:t).

Not currently used in student modeling.

3.3 Calibrating DBNs

Calibrating a DBN means figuring out the conditional probabilities (i.e., parame-

ters) that define the network. The basic technique to find the model parameters θ is

to calculate

argmaxθ
∏
D

P (D|θ) (3.1)

where, D is the data produced by the network in the form of all the observable

values and θ are defined as the conditional probability values for the network. The

product of probabilities is called the likelihood of the data given the network parameter

values. Since it is a product of probabilities (which are bound to be less than 1 and

their product is even smaller), we usually use the log values of the probabilities as a

maximizing function. It is called the log likelihood of the data. It is given by equation

3.2

L =
∑
D

log(P (D|θ)) (3.2)
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Because DBNs have latent (hidden) variables whose values cannot be observed di-

rectly, so calibration is usually done using a greedy search called Expectation Maxi-

mization (EM). It starts by assign random values to the conditional probabilities, θ.

Then their values are improved by repeating the following two steps until improve-

ment is negligible:

1. Expectation step: Smoothing. That is, we calculate the probabilities of mastery

of every skill at every time given the data, which consist of the correctness of the

students’ steps at every time. This uses θi, the current values for the parameters.

2. Maximization step: Calculating θi+1, by probability-weighted counting. That

is, we now have lots of slices, each with a probability of mastery of the skills and

an observation of the student’s step. We can update the emission probabilities

by seeing how frequently each observation occurs with each knowledge state,

weighed by the probability that the state occurs. Similarly, we can estimate the

transition probabilities by counting how often a subsequent knowledge state

occurs with a given prior state, weighted by both their probabilities.

3.4 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (Corbett and Anderson, 1994) is a simple DBN that

has been widely used for student modeling. It assumes, just as we did above, that

every skill has just two states: mastered and not-mastered, and the job of student

modeling is to infer the student’s probability of mastery for each skill given the

student’s behavior so far. It also assumes that every step is either correct or incorrect.

Most importantly, it assumes that every step involves just one skill, and that every

skill q has just five parameters that define its transition and emission probabilities:

1. Initial knowledge: P (kq,0), knowledge of a student at time t = 0.
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2. Learn: P (kq,t = mastered|kq,t−1 = notmastered), what are the chances that

student has mastered the skill q at time t given that the skill was not mastered

at time .

3. Forget: The converse of learning is forgetting, which is given by P (kq,t =

notmastered|kq,t−1 = mastered). Many models assume this value to be 0.

4. Guess: P (yq,t = correct|kq,t = notmastered), chances that student answers

correctly even if the he has not mastered the skill.

5. Slip: P (yq,t = incorrect|kq,t = mastered), chances that student answers incor-

rectly even if he has mastered the skill.

Here learn, forget are the transition probabilities and guess, slip are emission proba-

bilities and initial knowledge is the initial state of the student.

3.5 Feature Aware Student Knowledge Tracing (FAST)

FAST is a recent extension of Bayesian Knowledge Tracing (González-Brenes et al.,

2014). It replaces all five parameters with logistic regressions, based on the features

available for them. That is, in addition to being able to observe whether a step is

incorrect, it is assumed that we can observe the values of a set of features, such as

the difficulty of the step, whether the student paused a long time before responding,

and so on.

For example, suppose that we only need two features to adequately model a certain

skill, call them f1(t) and f2(t), where t denotes a step, indexed by its sequential time

of occurrence. These functions are binary, in that they return 1 if the feature is

present at step t and 0 if it is absent. Thus, instead of five constant values for Initial

knowledge, Learn, Forget, Guess and Slips, we have:
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• Init(t) = logistic(I(t)) where I(t) = bi,0 + bi,1 ∗ f1(t) + bi,2 ∗ f2(t)

• Slip(t) = logistic(S(t)) where S(t) = bs,0 + bs,1 ∗ f1(t) + bs,2 ∗ f2(t)

• Guess(t) = logistic(G(t)) where G(t) = bg,0 + bg,1 ∗ f1(t) + bg,2 ∗ f2(t)

• Learn(t) = logistic(L(t)) where L(t) = bl,0 + bl,1 ∗ f1(t) + bl,2 ∗ f2(t)

• Forget(t) = 0 (inherent assumption of FAST)

• Logistics(x) = 1/(1 + e−x)

Note that FAST still retains the assumption of Bayesian Knowledge Tracing

(BKT) that each step involves applying one and only one skill. It also retains the

assumption that parameter values are the same for all students over all steps, but

different skills can have different values for their parameters. With regards to allow-

ing the transmission and emission probabilities of BKT to vary across steps, different

authors have made different assumptions. Most BKT applications assume Learn and

Forget have the same value for all steps, but slip and guess can have different values

for different steps. FAST assumes that the regression parameters are the same for

all steps, and represents the variability due to steps by varying values output by the

features.

In order to find values for the parameters, both BKT and FAST typically split

data by student. For instance, given data from 100 students, they might calibrate

(i.e., find parameter values that best fit the data) against 90 students then test the

resulting model’s accuracy by predicting the behavior of the remaining 10 students.

This way of splitting the data into training and test sets relies on the assumption that

parameter values are the same for all students, and it reflects the way the models are

used in practice, which is to calibrate on an initial sample of students then use those

parameter values with all subsequent students.
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In the example above, we have provided more parameters to the model, namely

the 15 coefficients in the five regression equations. They replace the 5 parameters of

BKT. This means that we can expect FAST models to fit the data better, but there

is a risk of overfitting unless we have a huge amount of training data for calibration.

Fortunately, the EM algorithms can be modified to find values for regression coef-

ficients. The basic idea is the replace the M step with a standard gradient descent

method used for calibrating linear regression equations (Khajah et al., 2014).

3.6 BNT-SM

BNT-SM (Xu and Mostow, 2010) is similar to FAST in that it replaces constant

parameter values with logistic regressions. However, unlike FAST, it does not use

regularization to prevent over-fitting the data for logistic regression. Regularization is

the process of adding a penalty to variable values so that they do not overfit the data.

For example, if w are the weights that are being minimized, then the minimization

function is updated to add a penalty term α ∗ ||w|| where α is the regularization

parameter. This keeps a check on the value of w.

Like FAST, BNT-SM also uses EM for calibration.
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Chapter 4

STUDENT MODELING METHODS FOR DRAGOON

This section describes the several student modeling methods that were developed for

Dragoon. Their evaluations are described in subsequent sections.

As mentioned earlier, the skills in Dragoon correspond to schemas, and there are

only 3 schemas used in the studies described below. The schemas have between 2 and

4 nodes. Moreover, a step corresponds to entering a property of a node.

The technical challenge arises in meeting the assumption of BKT (and FAST

and BNT-SM) that every step addresses just one skill. When a student is solving

a simple problem that just requires applying one schema, then this assumption is

met trivially. The challenge occurs when two or more schemas are required, and the

student is entering a node that belongs to more than one schema.

To meet this challenge, we defined skills corresponding to schema combination.

Whenever it was possible for a node to belong to two schemas, S1 and S2, then we

defined a new skill S1 S2 that represents the competence of knowing how to construct

a node that is shared between the two schemas. Now sometimes two schemas can

share different kinds of nodes, so we actually defined two different extensions:

• Schema-type: A skill is defined to represent the combination of schema together

with the type of node. For example, if an accumulator node is shared between

the linear and exponential schemas, then it is covered by the skill exponen-

tial linear accumulator, whereas exponential linear parameter covers the case

of a parameter node being shared between the two schemas.
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• Schema-only: S1 S2 represents skill at constructing any node shared between

S1 and S2. For example, if an accumulator node is part of both a linear and

an exponential schema, then the skill will be exponential linear. If a parameter

node is part of both a linear and an exponential schema, then it too would be

covered by exponential linear.

The main difference between the two is how students understand model construc-

tion while interacting with Dragoon. Do students think in terms of schemas or in

terms the type of node in those schemas? In other words, is each node type part of

different skill or not?

The experiments below compare these two different ways of extending the basic

set of 3 skills.

4.1 Subskills

When editing a node, the student must enter its description, type, initial value,

units and expression. Each type of entry is a step, but they are vastly different in

terms of their difficulty, the chance of guessing correctly, and the chance of slipping.

Thus, it makes sense to use the features of FAST and BNT-SM to differentiate them.

This would essentially allow the different types of step to have different values to

represent slips, guesses, learning and forgetting. Similarly, accumulator nodes are

more complicated to define than function nodes, which in turn are more complicated

than parameter nodes, so perhaps we should have features distinguishing them as

well. In the literature, this use of features is often referred to as defining “subskills”

of the skill.

Recall that we have two extensions (schema-only, schema-type) to the original set

of 3 skills (linear, exponential and acceleration). For every extension, subskills can

be defined in three ways:
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• While constructing a node, the student must input five properties (Section 2.1);

each property becomes a sub-skill for the skill. For example, linear units is the

subskill for a student choosing the units of a node that is part of the linear

schema.

• The type of a node (function, accumulator, or parameter) is the sub-skill for

that schema. For example, linear accumulator is the subskill for an accumulator

node which is part of the linear schema. In this case, a node belongs to more

than one schema and constructing the node requires multiple sub-skills.

• The type of node together with one of the five properties (Section 2.1) is a

subskill for that schema. For example, linear accumulator type is the sub-skill

for the student choosing the type of a node that is an accumulator and is part

of the linear schema. This is the most specific subskill model.

The final model that we define is the ”Control” model; this model has no knowl-

edge of the schemas. Instead, the skill is just to create a node of type accumulator,

function or parameter and the associated five sub-skills are defined to be the five

properties (description, type, initial value, units, and equation) of those nodes.This

model corresponds to the case where students are not thinking in terms of schemas

and “mechanically” completed the nodes. We conjecture that this corresponds to a

shallow way of learning to model and when students eventually start to author models

of dynamic systems, they would encounter difficulties to create the basic structure of

the models.

Table 4.1 shows the models possible with the combination of skills and sub-skills.

It also gives them a name which will be used to present the results in the next chapter.
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PPPPPPPPPPPPPP
Skills

Subskills
Schema nodeType property (31) Schema nodeType (8) Schema property (14)

Schema and node type (15) Group1 Group2 Group3

Schema (9) Group4 Group5 Group6

Table 4.1: Skill and Subskill Combination Tried for Model Fitting in Dragoon. The

Numbers in the Bracket Show the Count of Skills and Subskills in the Data. ”Control”

Model Was Also Part of the Results Group.

4.2 Difficulty

As mentioned earlier, the way the text describes a system can make it harder

or easier to construct a model of the system. An even more accurate model of stu-

dent’s performance could perhaps be had if we associate a difficulty feature with each

problem. To test this hypothesis, 2 different models were created with Difficulty

parameters.

Originally in Dragoon, we define difficulty parameters for each schema and not

for the problem. Figure 4.1 shows the DBN which is based on this model. This was

the first model created to define difficulty parameters. Since each schema had its

own difficulty parameter, the steps where there were multiple schemas involved was

assumed to be separate steps with the similar student response. First model was

created by adding this separated model of difficulty to transition features model of

sub-skills.

Since, IRT model defines difficulty to effect the student emission probability, so

the difficulty parameter definition was updated to make it same parameter for the

complete problem. If any of the schema had the difficulty parameter value set to 1,

then it was assumed to be 1 for the complete problem. This new model, would have

ensured that we do not need to separate the steps to different steps when multiple
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schemas were active while constructing a node, as was the case in the first model.

Second model, was actually based on the results from previous FAST model fitting

parameters. To check if difficulty parameters had an effect on the parameters already

calculated, so they were added to the model with the better AUC (Area under the

curve) value.

Figure 4.1: DBN with Difficulty Parameters for Sub-Skills

4.3 Adding Features to Emission vs. Transition Probabilities

FAST allows one to add features to any of the five BKT probabilities. However,

González-Brenes et al. (2014) remark that it suffices to add features to either the emis-

sion probabilities (slip and guess) or the transition probabilities (learn and forget),

and that adding features to both types does not usually improve model fit. Because

González-Brenes et al. (2014), found that adding features to the emission probabilities

gave somewhat higher accuracy than adding them to the transition probabilities, we
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decided to add sub-skills to emission features as well. The original model of sub-skills

as transition features was proposed by Xu and Mostow (2010), where they had added

subskills as transition features only.

4.4 Implementation Detail

Rather than use FAST for all our experiments, we decided to use BNT-SM and

FAST to fit the models. The most important difference between the two is that FAST

uses regularization to prevent overfitting of the data.

Implementation of BNT-SM is largely dependent on Bayes Nets toolbox (Chang

et al., 2006). It needs three files:

1. Training data

2. Testing data

3. Property XML

Training and testing data are provided in tabular files which include skills, sub-

skills, user, and the observed student response. These are used to find and test the

parameters of the LR-DBN model. The difference between the two is that BNT-SM

calculates the chance that the student’s response would be correct for the training

data. These values will be used to calculate the ROC curve.

Property XML defines the DBN created and which column corresponds to the

node defined in the data files. It has four important parts. They are:

1. Input: This structure has the names of the training and testing file.

2. Output: This structure has the out files for analysis, such as the log file, pa-

rameter file, and inference results.
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3. Nodes: These have all the nodes that are present in the LR-DBN for the first

time slice only. LR-DBN refers to the implementation of Dynamic Bayesian

Networks using logistic regression. This is the implementation that BNT-SM

toolkit uses. The properties needed to define the node completely are: the

column which represents the value in data files, whether the node is observable

or latent, the connection to different nodes using “within” and “transition”

tags. For example, a knowledge node is latent so its value in the data column

was set to “NULL;” this column name is added to the node structure including

a connection to subskills and student outcome using the “within” tag and to

knowledge using the “transition” tag.

4. Eclasses: They have all the probability values for each connection. To define

this completely, exhaustive conditional probability variables are needed for every

node and parent node pair. The values are defined to be random based on the

starting value of 1 - probability value already defined.

The Inference result file was used to calculate the ROC curves and the AUC values.

FAST must be supplied with three files:

1. Training data

2. Testing data

3. Configuration

First two files are same but the column names are rigid in this case as there is

no XML file to describe these details. The structure of the nodes are fixed as well.

Two types of features are possible to define using configuration file, the transition

and emission features (Huang, Y., et.al, 2014). If a node is connected to knowledge,

then it is part of the transition features; otherwise, if a node is connected to a student
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response node, then it is part of the emission features. Figure 4.1 shows that subskills

are part of the transition features. This was used to implement two different types of

DBN:

• Subskills: It was similar to the DBN created for BKT. Knowledge/skill node

was made up of multiple sub-skills. Figure 4.1 shows the DBN structure where

only subskills were added to the model. The multiple subskills were added

as transition features (called emission constant models) and emission features

(called transition constant models) using the configuration files.

• Difficulty parameters: as explained in section 4.2, different models were created

where they were added as emission features to the already created subskills

models for FAST.

4.5 A BKT Model with Subjective Probabilities

Dragoon has 10 schema families and 108 schemas in them. Currently, 40% of these

schemas do not have application problems where students can learn to apply them for

modeling. Moreover, the data that we collected was for 3 schemas which fell under

1 schema family. So to create an embedded assessment using Bayesian knowledge

tracing for schemas which are not exactly part of the data, one needs to define the

parameters using a different process.

In order to apply BKT when calibration data is not available, it is customary to

estimate the emission and transition probabilities. For example, one might define

Guess to be 1/N for multiple choice solution with N answers. When a human guesses

a parameter value that is a probability, it is customary to call the value a “subjective

probability.” So this section describes a BKT model with subjective probabilities

instead of probabilities developed via calibration. This subjective probability model
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was used in only one of the two evaluations described later, namely the evaluation

with simulated students. This section describes how the values for guess, slip, learn,

forget and initial probability of mastery were chosen.

The guess parameter is the probability that the student answers a step correctly

given that they have not mastered the required knowledge. In Dragoon, this value

can be calculate for every property of a node. The values are:

1. Description - If there are total n nodes in the problem out of which, there are

m nodes which are not part of the solution model, then guess value for this is

(n−m)/n.

2. Type - its value is always 1/3 as we have three options in type dropdown out

of which one of them is correct.

3. Initial Value - if there are n parameters and m accumulators in a problem then

the guess parameter value for this is 1/(m+ n).

4. Units - if there are n different units for the node then the guess value will be

1/n.

5. Equation - this is based on the number of nodes in the expression and the

operator used between them. If there are 2 nodes in the equation and 1 oper-

ator of “+” in between them and there are n nodes in a problem. Then the

guess parameter is given by (2/n) ∗ (2/n) ∗ (1/4). If it is using function other

than the basic arithmetic operators like “max” then Dragoon has 29 such dif-

ferent functions and there are m different nodes in the operator thus the chance

guessing the answer will be given by (1/29) ∗ (m/n). The actual value here

was (1/29) ∗ ((m/n)m) but this value was going very small and was causing a
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very high increase in the student learning. To make the transition smoother the

exponent was removed.

The slip parameter is the probability that a student who has mastered the requisite

knowledge for a step nonetheless answers that step incorrectly. The slip parameter

essentially defines what mastery means - a low value for slip means that “masters” are

highly accurate and rarely make mistakes, whereas a high value means that “masters”

often makes mistakes and yet their competence (or lack thereof) is still acceptable for

“mastery.”

Even though the slip parameter’s value is partially a pedagogical decision (i.e.,

what probability of error are we willing to tolerate from our “masters?”), it is also

affected by the complexity of the step. For instance, mistakes when entering an

equation are more likely than mistakes when selecting a type from a three-item menu.

Our idea for calculating slip values was taken from d Baker et al. (2008), where

they use the number of correct and incorrect solution history of a student to calculate

values for the slip parameter. Our method starts every schema with a slip value of

0.05. An increment of 0.002 was added to the slip parameter for the next time slice,

if the student’s current action was correct. There was an upper bound of 0.1 set to

this value. If the student saw the hint for a property then the slip parameter was

increased by a factor of 0.01. All the calculations were done only for the nodes in the

schema and not for the complete problem.

The initial probability of mastery was set to 0.1, the learn parameter was set to

0.05, and the forget parameters was set to 0. These probabilities are something that

would be added to schema definition as they depend on the author of the problem,

how much initial knowledge was provided. For now, for the testing purposes these

values have been used.

This student model assumes that learn and forget have the same value for all
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students, all problems and all times. The guess parameter has different values on

different problems, but has the same value for all students at all times. However, the

value for the slip parameter is allowed to vary across students, problems and times. If

the student is learning, and in the process he is entering correct responses, so to give

him credibility we increased the slip probability to recognize that his mistake could

have been an error.

Probability of mastery was defined at the level of schemas, where a schema is

defined as a group of nodes. On the other hand, the incorrect/correct data comes from

steps (student actions) which occur at level of node properties. So the implementation

had to take care of transferring the values from node properties to schemas.

The method used for this was to do a weighted sum over the change of knowledge

value for node properties and then do a weighted sum for each node to see the change

in the schema probability value. The weights were defined in the order equations >

type > units > initial value > description. For combining nodes the order of weights

was defined as accumulator > function > parameter. Finally the probability value

was added from node properties to single number representing the mastery of schema

using these weights. This granularity would be fit for suggesting problems to students.
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Chapter 5

RESULTS AND DISCUSSION

Previous chapter presented, some basic topics and implementation using FAST and

BNT-SM. This chapter presents the data collection and the results on the data. The

last section discusses the results and compares them to bring out various observations

from them.

5.1 Data collection

One way to evaluate a student model is to measure it’s fit to a collection of student

data. That is, part of the data are used to calibrate the model, then the accuracy of

its prediction of the remaining data is measured.

For this evaluation, data were collected during a lab study in Summer 2015. Par-

ticipants were a mix of undergraduate and graduate students at Arizona State Uni-

versity with a good background in Mathematics (at least high school algebra). They

were not asked for a background in modeling dynamic system for the study and only

their mathematical background was inquired. Students had to come for one session

where they had to finish fourteen Dragoon problems. There was no upper limit to

the time it would take. But on an average students were able to finish the study in

2 hours 11 minutes. Students were compensated with money for their work.

Two workbooks were created to teach students dynamic modeling. The first work-

book was for introducing Dragoon’s interface to students with its basics, like how val-

ues of quantities are changing. There were three Dragoon problems in this workbook,

with some multiple choice questions as well. The answers to multiple choice ques-

tions were not logged. The second workbook introduced students to the concept of
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schemas and how the values in dynamic models changed. The second workbook then

gave students ten Dragoon problems to solve. The order of first seven problems were

chosen randomly and last three were fixed. Although the problems could be arranged

by the level of difficulty, the problem order was randomly chosen to understand, the

role schema difficulty parameters played while students solved the problems. Next

three problems were always given in a fixed order. In table 5.3 you can see that they

were huge problems and with many schema applications, thus making them very dif-

ficult and were not part of the randomly chosen problems. After students finished

the 10 workbook problems, they were assigned an eleventh problem which was done

in delayed-feedback mode. This was like a post-test problem for Dragoon, to under-

stand if the students understood modeling. This was followed by a questionnaire to

ask whether they think they understood modeling any better and if the study was

useful in helping them.

We could not use the post-test problem in analysis as 47 out of 52 students did

the problem correctly. This ceiling effect led us to concentrate on other empirical

testing of using model fit to define its accuracy on test data.

52 students took part in the study; the log data for the student work was col-

lected. It had a total of 9336 steps, where each step involved making an entry in

the node editor. There were two primary schemas taught by the second workbook:

linear transfer and exponential transfer. In addition, there was a third schema, accel-

erating transfer, which was not explicitly presented to the students in the workbook.

Nonetheless, it was present in two out of the ten workbook problems. These two

problems were given to the students towards the end of the study. Table 5.1 shows

the number of solution steps where a student could apply a given schema. Students

were also asked to send the screen shot of their response for questions in workbooks.

These responses were not used in any way for the results.
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Schemas Application Opportunity Count (per student)

Linear transfer 86

Exponential transfer 115

Accelerating transfer 42

Table 5.1: Schema Counts per Student While Interacting with Dragoon.

Schemas
Application opportunity result count

Correct Incorrect (percentage)

Linear transfer 3971 722 (15.38)

Exponential transfer 4184 848 (16.85)

Accelerating transfer 1668 497 (22.96)

Total 7798 1538 (16.5)

Table 5.2: Total Count of Schema Application Opportunity Distribution for Cor-

rect/incorrect Student Response.

Distribution of correct/incorrect responses for each schema is shown in Table 5.2.

If a node belongs to more than one schema, then it was counted as a separate schema

application opportunity for both of them. Thus, the total application count does not

match the sum of all schema application numbers presented in the table.

Table 5.3 shows the number of nodes present in each of the ten problems. The

number on the right does not show the sequence of problems. It is rather one of the

sequence that a student had got. First seven problems were given randomly followed

by three problems which were in a fixed order. Each problem consisted of two to

three schemas with the last problem had seven instances of schemas.
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Problem # # of Nodes # of Schemas

1 5 2

2 4 2

3 3 2

4 3 2

5 5 3

6 6 3

7 3 2

8 5 2

9 4 2

10 12 7

Table 5.3: Number of Nodes and Schemas in the Problems Used for the Study.

5.2 Results using BNT-SM

As described earlier, we defined seven different assignments of skills and subskills

(see Table 4.1) and used two different modeling paradigms, a version that includes

only subskills (BNT-SM & FAST) and a version that includes subskills and difficulty

parameters (FAST). This section presents the results from fitting BNT-SM to the

data, and the next section presents results from fitting FAST to the data.

The BNT-SM model was calibrated separately for each of the seven definitions

of skills and subskills, then each of the seven calibrated models accuracy was tested

separately. The data were divided into 80% for training and 20% for testing.

The models did around random chance (AUC value around 0.5). The values guess
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and slip parameters for the schema and skill were either 0 or 1. Table 5.4 shows the

AUC value for all the skill and sub-skill model defined in the previous section.

Skill model name AUC

Group1 0.510

Group2 0.503

Group3 0.504

Group4 0.491

Group5 0.504

Group6 0.516

Control 0.515

Table 5.4: AUC Results for BNT-SM.

Figure 5.1: ROC Curve using BNT SM

As observed from the ROC curve we can see that the results are poor. There

was a very high amount of false positives for which the probability of mastery was
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calculated to 1. This result showed that the BNT-SM was over-fitting the data. Thus

it was not used anymore as all the variations that were tried were also over-fitting

the data, due to which the values were not added to the table as well.

5.3 Results using FAST

Although this model uses subskills in logistic regressions for the learn parameters,

just as BNT-SM did, subskills were also tested as logistic regressions for emission

probabilities (guess and slip). Then difficulty parameters were also added to the

emission model of subskill.

The data was divided into 80% (42 students) for training and 20% (10 students)

for testing. Like in BNT-SM a single set of parameters for each skill were found from

the complete dataset.

This algorithm showed better results than BNT-SM. Table 5.5 shows the AUC

with subskills emission constant features. Table 5.6 shows the AUC results with

subskills as emission features. The results are shown for all the groups presented in

section 4.1 as well as the control model. The curves are presented on the test data.

There is no overlap in training and testing data and the predictions were made over

all student observations in the test dataset.

The parameters are initial knowledge, learn, slip and guess. To get the count of

parameters in say, Group1 for transition features model over subskill we will have to

use the table 4.1. It has 15 skills, so for each skill had 4 parameters (init, learn, guess

and slip; forget is 0) would mean 60 parameters in total. But when we assume tran-

sition features, then 45 parameters are constant. The transition probability (learn)

is defined using logistic regression over subskills. It depends on the subskills that can

be active for a skill at any time, for example linear accumulator will depend on five

subskills (for each step) and thus 6 parameters will replace the transition probability.
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The increase in parameters from transition features model to emission features model

is due to the fact that, FAST assumes forget probability to be 0. Table 5.7 shows

addition of difficulty parameters to the subskill as an emission feature, which adds six

parameters (three for each, guess and slip) for every skill in the group. This increased

the feature count by 90 for Group1, Group2 and Group3 skill models and by 54 for

Group4, Group5, Group6 models. This has left some of the models with too many

parameters where there are up to 36 emission features for one skill and thus leading

to an underflow situation. In the Control model, the repetitive values of the same

skill and subskill created an infeasible problem for optimization using LBFGS (due

to repetitive values). Such scenarios are shown in the table with value “NaN”.

Figure 5.2 and 5.3 show ROC curves for FAST for emission constant model. Figure

5.4 and 5.5 show the ROC curves for FAST for transition constant models. The curves

are completely distinguishable as shown by the AUC values as well.

Skill model name AUC # of Parameters

Group1 0.700 116

Group2 0.699 81

Group3 0.698 132

Group4 0.702 132

Group5 0.684 132

Group6 0.686 132

Control 0.695 28

Table 5.5: AUC Results for FAST Algorithm with Subskills as Emission Constant

Features
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Figure 5.2: AUC Results for FAST Algorithm for Emission Constant Model for Skill

Defined as Schemas nodeType.

Figure 5.3: AUC Results for FAST Algorithm for Emission Constant Model for Skill

Defined as Schemas.
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Skill model name AUC # of Parameters

Group1 0.831 172

Group2 0.698 102

Group3 0.832 214

Group4 0.836 160

Group5 0.707 90

Group6 0.837 202

Control 0.813 38

Table 5.6: AUC Results for Fast Algorithm with Subskills as Emission Constant

Features

Figure 5.4: AUC Results for FAST Algorithm for Transition Constant Model for Skill

Defined as Schemas nodeType.
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Figure 5.5: AUC Results for FAST Algorithm for Transition Constant Model for Skill

Defined as Schemas.

Skill model name AUC # of Parameters

Group1 0.832 262

Group2 0.712 192

Group3 NaN 304

Group4 0.832 214

Group5 NaN 144

Group6 0.837 256

Control NaN 56

Table 5.7: AUC Results for Fast Algorithm with Subskills and Difficulty Parameters

as Emission Features.
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Figure 5.6: ROC Curve Using FAST for Difficulty Parameters and Subskills as Tran-

sition Features.

As explained in section 4.1, the result for the model for difficulty parameter was

also calculated where each step was separated into multiple steps with the same

response. This was done to use the original model (subskills as transition features)

with difficulty parameters as emission features in Dragoon. It showed promising

result, with AUC of 0.826. It was added to every model but it caused a very high

increase in parameters and none of the models couldn’t fit the data except for Group2.

Figure 5.6 shows the AUC curve for Group2 model.

5.4 Comparison of Transition and Emission Subskill Models

Table 5.5 and 5.6 show the difference between the AUC values for both the models.

This shows that when subskills are added as emission features they fit better to the

models (González-Brenes et al., 2014). This result helps us understand that guess

and slip factors for a skill are a logistic regressions over the subskills that are active
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for the step, and thus showing a relationship to the complexity due to node being a

part of multiple schemas.

From the AUC values in transition model, one can see that all the subskill models

perform at par with each other. But emission model presents a very important result

which is missing in the transition features. In skill model Group2 and Group5, where

subskill is defined as the complete node, AUC values turned out to be low. This gives

a clear indication that we should define the subskill to be based on each step, which

is to fill each property of the node.

In emission model, we can also check that the rest of the models (other than

Group2 and Group5) outperform the Control model, thus showing that students did

understand the schemas as the knowledge components. Thus, all our hypothesis can

be completely verified by the data.

If we look deeper into the values for transition and emission features we can make

a well informed guess as to why the AUC values are so different. Tables 5.8 and

5.9 provides the parameter values which were constant and not based on the logistic

regression.

As we see that in Table 5.8 that very high value of guess and slip effect the model

negatively, and we can hopefully infer that students were actually thinking on the

modeling problems. All the models show a very similar initial knowledge for the ex-

ponential schema. This is comforting as the workbooks did have an explanation of

the schema and students were taught to create an exponential models while teaching

them Dragoon notation. There are other skills as well that have initial knowledge pa-

rameter of 0.62 like accelerating, which cannot be explained by the above hypothesis,

as the students were given no information about this schema. But, this schema was

part of the problems which were done towards the end and thus we can assume that

student had learned modelling there by having a higher chance of correct results.
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Skill Model Skill Intial Knowledge Guess Slip

Group1 exponential function 0.552 0.556 0.099

Group2 exponential function 0.543 0.556 0.099

Group3 exponential function 0.553 0.556 0.099

Group4 exponential 0.218 0.918 0.366

Group5 exponential 0.526 0.627 0.075

Group6 exponential 0.526 0.626 0.075

Control accumulator 0.209 0.863 0.483

Table 5.8: Parameter Values from Fast for a Skill in Transition Features Subskill

Model.

Skill Model Skill Intial Knowledge Learn

Group1 exponential function 0.571 0.026

Group2 exponential function 0.622 0.016

Group3 exponential function 0.570 0.026

Group4 exponential 0.606 0.015

Group5 exponential 0.593 0.011

Group6 exponential 0.304 0.015

Control accumulator 0.620 0.017

Table 5.9: Parameter Values from Fast for a Skill in Emission Features Subskill Model.
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5.5 Comparing Schemas

The parameter values of guess is really high for transition subskill features model.

So, it would be futile to compare parameter values for the schemas using that model.

But, the emission subskill model presents an interesting result. The schemas which

are made as a combination of basic schemas have a high learn rate, and the basic

schemas have a high initial knowledge value. This would show that when the students

started they had a good understanding of the schemas, and when complex schemas

were introduced in the problems they were fluent with modeling. Table 5.10 shows

some values in the Group6 skill model with emission subskills.

Skill Initial knowledge Learn

Linear 0.260 0.011

Exponential 0.604 0.015

Accelerating 0.617 0.016

Exponential linear 0.127 0.020

Linear linear 0.014 0.0058

Table 5.10: Parameter Values for Skills in Group6.

The parameter values are very similar in Group1, Group3, Group4 and Group6,

showing that these models were able to fit the data in a similar pattern and thus

there AUC value is also very close to each other. Other thing that can be concluded

from this is that “Accelerating” was a relatively easier schema which student either

got a hang of or were able to understand the problem presentation well enough to

construct the model correctly.
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The regression factors for emission probabilities for each subskill vary a lot through-

out the result file. Thus, it is difficult to conclude anything from them.

5.6 Evaluation of the Addition of Difficulty Parameters

There were a lot of models tested to check the effect of difficulty parameters.

The implementation details in section 4.2 explain the engineering required to make

it work. There were few more changes needed while implementing it which were not

structural but more so due to the runtime errors faced. The issues were primarily

related to collinearity of the data. If we just used the difficulty parameters, then fast

algorithm would end up with search step undersize error mainly due to repeated data

rows which made the matrix (created for logistic regression) non-invertible. That is

the user working on the same node entered the correct answer for all the properties

and thus the rows were similar to the previous one. This led to adding difficulty

parameters to Group2 model (subskill as transition features), which improved the

AUC from 0.699 to 0.826 for the transition subskill features. A very significant

change thus showing promising results.

As González-Brenes et al. (2014) point out, most studies use a fixed or nearly

fixed order of problems because most instruction gradually increases the complexity

of problems as the students learn more. Thus, when a model that has one difficulty

parameter per problem is fit to such data, it cannot “see” the increase in difficulty

because the more difficult problems are only being done by more competent students.

However, our training problems were presented in random order. Thus, this is perhaps

the first study to de-confound learning and difficulty, and it appears to show that

adding difficulty parameters does indeed improve model fit.

Their effect was not very pronounced on the emission features model as can be

seen from the table 5.7. Although during the study there were a few students which
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had got all the difficult problems initially and they faced a lot of trouble to do the

problems, but the data is not significant enough to show that difference. This can

be seen when the difficulty parameters were added as another emission feature to the

emission feature subskill model in Table 5.7. It shows that difficulty parameters did

not have the desired effect on the student problem solving.

As explained in section 4.2, the difficulty parameters in Dragoon are defined for

each schema in the problem. When a node is part of more than one schema which

causes the difficulty to be defined by more than one value. To engineer the model we

needed, to break it into different steps, which is a boon as well as bane. The good thing

was the comparison could be done for each schema separately, but multiple steps had

led to collinearity issue as well. Thus it would not be unfair to conclude, the results

improvement is promising, but it needs a change of how difficulty parameters are

currently used in Dragoon. Mayer (1981) presented the idea of difficulty parameters

to define the difficulty of the item based on how the problem was presented. In

Dragoon, this is being used to define the difficulty for a schema for the problem.

Rather it should be a part of the problem itself. This change would also be in

accordance with IRT model definition of item difficulty. New proposed definitions

could be as follows:

1. Schema isolation - Problem has one (easy) or more than one schema (difficult)

application involved in the problem.

2. Presentation cues - If presentation explains all the schemas present in the prob-

lem (easy) or it does not (difficult).

3. Presentation noun phrases - If the presentation explicitly mentions or explains

the nodes required for making the model (easy) or it does not (difficult).
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There can be few more difficulty parameters, like how big is a model. If the model is

bigger than say 5 nodes we can call it a difficult problem. This difficulty can also be

defined using the number of function and accumulators in the model.

If one thinks about the parameters, then they can realize that the difficulty pa-

rameters do not define how the schemas would be, but rather they define how difficult

it is to apply those schemas in the problem after figuring them out. This is the ra-

tionale behind changing definitions of difficulty parameters. The updated DBN will

solve various purposes, first it will define the difficulty of the problem and in no way

difficulty of the schema, secondly it will be part of the emission probability features

only, thus their usage while implementing the embedded BKT will be clearly defined

which was not the case right now.

5.7 Summary

This chapter presented the results for both the algorithms. On one hand, the

results for BNT-SM were not at all convincing, as they were effected by overfitting

of the data, but FAST generated good results for emission features subskill model

with AUC greater than 0.8. There was a promising improvement for the difficulty

parameters, for the transition parameters model, but it moves towards a change in

understanding of their definition. On comparing models, some very useful results were

drawn, until now which were just assumptions. These results are bound to improve

with availability of more data after trying these on varying population of students

like for students from high-schools.
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Chapter 6

EVALUATION WITH SIMULATED STUDENTS

As mentioned earlier, there are three common methods for evaluating student

models. One is measuring the models fit to data, as was done in the preceding

chapter. Another is to use the student model of a student to predict the students

performance on a post-test (e.g., Anderson et al. (1990)). We could not do this,

because a post-test would need several model-construction problems and thus would

take too much time. We did include a one-problem post-test, but ultimately rejected

its data as too unreliable as 47 out of 52 students had completed the test problem

and the other 4 out of 5 had also created most of the nodes as well, with some

errors. So, the post-test problem turned out to be relatively easy and was not able to

classify the students correctly. The second method of evaluation was to define fit of

the model using human data. ROC curves and AUC values were used to define the

fit of the model. Results were presented in chapter 5. The third evaluation method

is to use simulated students (Vanlehn and Niu, 2001). Each simulated student has

partial knowledge, so it doesnt always answer correctly. The student model infers

the simulated student’s knowledge. The accuracy of its predictions against the actual

knowledge of the simulated student comprises the evaluation.

6.1 Defining the Simulated Students

Our simulated students were created by defining the values of initial knowledge,

learn, guess and slip. Since the assessment is embedded, the whole system was not

required to run and just the simulated response was sent to the student module. The

simulated response was calculated using P (yq,t = correct|θ). Here θ, represents the
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model parameters for the simulated student. A random number was generated and if

it was greater than this value then it was marked as incorrect and was marked correct

otherwise.

The values were generated based on the kind of experiment we wanted to run, but

there are some overall bound, presented in the literature, on the values of guess and

slip (van De Sande, 2013)

P (G) + P (S) < 1 (6.1)

where, P (G) is the guess probability, P(S) is the slip probability. There was an extra

check to make sure this bound was always true.

Simulated students ensures that we always know the unknown knowledge state of

the student, as we know the mastery of a schema using the simulated student model.

These values were used to test the reliability and validity of the assessment. Reliability

means, given the same sequence of correct/incorrect solution and assessment will

always assign the same level of mastery to the student. Validity means, assessment

will represent a value close to the student’s original value of learning. Reliability, is

trivially true for a BKT as same parameter values will be multiplied for the same

sequence of correct/incorrect responses. But to perform a better test of reliability, we

changed this definition. It will be presented in the next section. Validity was really

tricky to figure out, but again since we have the student model and we know how it

is changing we can use it to check the validity of the assessment as well. The results

for validity of assessment are presented in section 6.3.

Each simulated student was run for the same 10 problems which were used to

learn the parameters in chapter 5.

48



6.2 Reliability

Testing reliability using the original definition, is trivial in case of a BKT. Due to

the basic assumption of a DBN that is the parameter values do not change with time

we can safely assume that BKT will always provide the same value for the assessment

of a student. But we wanted to see if it is reliable when we use the same student,

that is with same student model and same learn, guess and slip values, how far does

the final assessment value varies. So, 100 students with 0.1 initial knowledge across

all schemas, 0.2 guess, 0.1 slip and 0.05 learn value were created. At every step the

correct or incorrect response was decided using the random number generator and

the probability value calculated at each step. After that the knowledge of the student

was updated assuming the response to be the actual response and student model in

assessment module was also updated.

Four models of skill and subskills were used using transition constant features,

which presented the best result in chapter 5. Table 6.1 shows mean and standard

deviation of the final assessment value for exponential schema. Important point to

note is the standard deviation as that shows how reliable the assessment was.

Skill model name Final Probability of Mastery

Group1 0.871 ± 0.0286

Group3 0.853 ± 0.0178

Group4 0.868 ± 0.0252

Group6 0.817 ± 0.0524

Table 6.1: Final Probability of Mastery for Exponential Schemas Using Assessment

Model, with Transition Constant Features.
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6.3 Validity

Validity was hard to define with BKT models, since it depends on the students

from which the parameters values were calculated. Thus we created simulated student

data for the same 10 problems, and used FAST with transition constant model to

find the parameter values. There were two sets of students created. Each set had

100 students (80 for training and 20 for testing using FAST). Then for each set of

students, 20 new students were created as test data for the embedded assessment.

Conditions created were student who had high initial knowledge (maximum of 0.75)

and students who had low initial knowledge (maximum of 0.20) on some skills. The

guess and slip were also picked randomly between 0.0 to 0.20 for guess and 0.00 to

0.10 for slip. Learn parameter was constant at 0.05.

This helped us perform two kind of analysis, first we could see how close were the

value FAST parameters to the actual mean of the parameters that were used to create

the data. Second was to calculate the total Root Mean square error for assessment

over all the student. Which would tell us how different were the parameters from the

actual student learning curve.

For exponential schema, the mean initial knowledge value was 0.39 ± 0.127 for

first set of student and was 0.13 ± 0.085. The guess and slip parameters were around

0.12 and 0.05. Only first model was used to calculate the parameters for the data

that is skills were defined as a combination of the schemas, and subskills were defined

as schema nodeType property, that is exponential accumulator type (Group1). The

parameter values calculated from the model were for set1 (high initial knowledge)

learn parameter 0.064, and Initial knowledge of 0.362. For set2 (low initial knowledge)

learn parameter was 0.079 and Initial knowledge was 0.162. The guess and slip

parameters could not be compared as they had logistic regression values over the
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subskills. The total Root Mean Square Error across 20 new students was 0.0521

for high initial knowledge students and 0.0316 for low initial knowledge students. All

these values are for exponential schema and the numbers are similar for other schemas

as well.

In a class students vary somewhere in between very high knowledge to low knowl-

edge. So we can safely assume that we have the upper and lower limits of the validity

from the RMS error using two different set of students. The actual parameters were

also calculated close to the mean value in both the cases. This was true for other

schemas as well.

So, to summarize we were successfully able to test the reliability and validity of

the assessment method and found it to be very convincing. This kind of analysis has

been called the sensitivity analysis (Vanlehn and Niu, 2001) in literature, which gave

us a better insight of the working of an assessment.
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Chapter 7

CONCLUSION AND FUTURE WORK

This thesis undertook the problem of creating a student model for Dragoon, which

is a new Intelligent Tutoring System for teaching modeling to students. There were

multiple steps involved while working on this thesis problem. First, log data was

gathered from students while interacting with Dragoon, then it was analyzed to un-

derstand what kind of knowledge tracing model would best suit to define the skills and

subskills in Dragoon, and finally the student models were implemented and evaluated

using two different modeling toolkits.

A total of 28 student models, based on 7 different ways skills and subskills could

be combined in Dragoon. They were added to a Bayesian Knowledge Tracing (BKT),

and the results were investigated:

• BNT-SM (7 models) modeled as logistic regression over subskills used as tran-

sition features. The results for this model were not that great as this was over

fitting the data. The results for AUC value were close to 0.5 which usually means

a random chance to decide whether student had mastered or not mastered the

skill.

• FAST-constant-emissions (7 models) - this assumes that slip and guess param-

eters are same for all steps, all students and all times, but they can be different

for different skills. This model showed better results than BNT-SM, but it

showed that all the models of skill and subskills were similar. Even control

model performed as well as other models which had no idea about the schemas.

• FAST-constant-transitions (7 models) - this assumes that learn and forget are
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the same for all steps, all students and all times, but can be different for different

skills. This was the model which was the best fit for the human data. The results

had an AUC values of around 0.83. It was also able to differentiate other models

from control model which had an AUC of 0.813. It showed that the subskill

which was defined as the complete node, was not a good way to understand the

models and thus we can conclude that our current model of defining subskills

as a property filling step in a node is correct. This was also used to infer a lot

of understanding about the how students usually interact with Dragoon.

• FAST-constant-transition-with-difficulty - on top of FAST-constant-transitions

model, difficulty parameters were added to see if could improve the already good

results shown by the previous model (FAST-constant-transitions). This was not

the case as it either performed at par with the constant-transitions models or

it just didn’t finish due to a very high increase in parameter numbers for skills.

Only four out of the seven original models were parameterized using Dragoon.

This analysis of models helped us realize a lot of basic understanding like students

do think about schemas as the control model was outperformed by constant-transition

models. This was comforting to see as a lot of teaching in modeling using Dragoon

was based on the schema which are the primary skills.

Simulated students were also created for the assessment models that we have

proposed. It was found to be reliable and valid and the difference in numbers was

primarily due to the randomness in the user response.

Going forward, first, we should look into the reasons as to why BNT-SM was

overfitting the data and FAST wasn’t. This would give us the clarity of checking

our hypothesis by two different types of modeling techniques, even though they use

expectation maximization to fit the data. The second thing one should look into is to
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construct models where number of parameters would decrease, and we can still have

similar AUC accuracy. This would decrease the overhead of storage as well as the

calculation due to higher number of parameters. One can also look at different ways

of defining a model of skill and subskills and can improve the fit over the data. The

new models can be defining subskills as skills and features as difficulty parameters.

This would give us a separate value for each step and can help is many different

comparisons.

The models proposed have increased the number of parameters used to define a

student model by combining skills when a node belongs to two or more schemas.

This can be a problem in future when we use schemas to decide next problems for

students as combination can increase the total schemas that we want student to learn.

For example, we have a knowledge value for linear and exponential. Then we have

one for combination as well which exponential linear. This new schema does not

tell us if the student’s learning for basic schemas has improved or not. There would

O(nm2) combinations possible where n is the number of schemas and m is number

of schemas to which a node can belong. So to teach all the schema combination

would mean more problems with similar combination of schemas. The new approach

would need some refining, to calibrate schemas from the combinations as well. For

subjective probability model, to calculate the knowledge learning probability, we had

a few assumptions like, equation, type, units, initial value, and description was the

order in which weight values were assigned. Similarly, weights were assigned to nodes

in the order of function, accumulator and parameter. These weight values can be

calculated using Machine Learning techniques which will remove our judgement from

it.

Time was not used for assessment or as a feature, but it has been realized to

have a correlation with learning. This correlation can be harnessed in Dragoon and
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it might improve the AUC value for the model. In Dragoon, students get a hint once

they provide a wrong solution twice. This does affect the student understanding of

the modelling and if logs can be analyzed in a way to figure out the effect on Slip

and Guess parameters, then even that can improve the Knowledge tracing values for

Dragoon.

As mentioned earlier, Dragoon has several student modes that vary in the feed-

back that they give students. It also has an authoring mode where students create

their own model instead of trying to create a hidden model. This thesis developed

student models for only one mode: immediate feedback. It would be interesting to

extend these student models to cover other modes as well. This would be especially

difficulty and perhaps impossible for authoring mode, because we cannot define cor-

rect/incorrect response of a student. To do this one can change the features that

define emission. For example, a student learns while checking how the values are

changing using Graphs in Dragoon. This can be seen as a positive sign of learning.

Time spent at where interaction points like nodes, graphs can be used as another

feature.

55



REFERENCES

Anderson, J. R., Boyle, C. F., Corbett, A. T., and Lewis, M. W. (1990). Cognitive
modeling and intelligent tutoring. Artificial intelligence, 42(1):7–49.

Chang, K.-M., Beck, J., Mostow, J., and Corbett, A. (2006). A bayes net toolkit for
student modeling in intelligent tutoring systems. In Intelligent Tutoring Systems,
pages 104–113. Springer.

Corbett, A. T. and Anderson, J. R. (1994). Knowledge tracing: Modeling the ac-
quisition of procedural knowledge. User modeling and user-adapted interaction,
4(4):253–278.

d Baker, R. S., Corbett, A. T., and Aleven, V. (2008). More accurate student modeling
through contextual estimation of slip and guess probabilities in bayesian knowledge
tracing. In Intelligent Tutoring Systems, pages 406–415. Springer.
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