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ABSTRACT

The power of science lies in its ability to infer and predict the existence of objects

from which no direct information can be obtained experimentally or observationally.

A well known example is to ascertain the existence of black holes of various masses in

different parts of the universe from indirect evidence, such as X-ray emissions. In the

field of complex networks, the problem of detecting hidden nodes can be stated, as

follows. Consider a network whose topology is completely unknown but whose nodes

consist of two types: one accessible and another inaccessible from the outside world.

The accessible nodes can be observed or monitored, and it is assumed that time series

are available from each node in this group. The inaccessible nodes are shielded from

the outside and they are essentially “hidden.” The question is, based solely on the

available time series from the accessible nodes, can the existence and locations of

the hidden nodes be inferred? A completely data-driven, compressive-sensing based

method is developed to address this issue by utilizing complex weighted networks of

nonlinear oscillators, evolutionary game and geospatial networks.

Both microbes and multicellular organisms actively regulate their cell fate de-

termination to cope with changing environments or to ensure proper development.

Here, the synthetic biology approaches are used to engineer bistable gene networks to

demonstrate that stochastic and permanent cell fate determination can be achieved

through initializing gene regulatory networks (GRNs) at the boundary between dy-

namic attractors. This is experimentally realized by linking a synthetic GRN to a

natural output of galactose metabolism regulation in yeast. Combining mathematical

modeling and flow cytometry, the engineered systems are shown to be bistable and

that inherent gene expression stochasticity does not induce spontaneous state tran-

sitioning at steady state. By interfacing rationally designed synthetic GRNs with

background gene regulation mechanisms, this work investigates intricate properties
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of networks that illuminate possible regulatory mechanisms for cell differentiation and

development that can be initiated from points of instability.
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Chapter 1

INTRODUCTION

1.1 Reconstruct and Control Nonlinear Networks

Complex network is actually a random graph, which however emphasize the rich

characteristics in its topology and nodal dynamics. Many of the complex systems

can be abstracted as complex networks, such social network[1], citation relationship

between scientists[2], metabolic process [3] and gene regularity [4] in biology systems.

These networks have varying degree distributions[5], or number of neighborhoods,

comparing to traditional random graphs. In certain networks, there exist some ’hub’

nodes having extremely large degree than the other nodes. Their dynamics are usu-

ally nonlinear, which can exhibit synchronization[6], cascading[7] and other collective

behaviors. There are many exist works focusing on how the network topologies will

affect their dynamical behaviors[8, 9].

Reverse engineering of complex networks to uncover network topologies from ex-

perimental time series of their dynamical behaviors, is a problem of tremendous in-

terest with significant applications [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

Earlier examples include reconstruction of gene regulation networks [11] from gene

expression data and identification of neuronal interactions based on spike classification

methods [12, 13, 14]. More recently, a number of methods for network reconstruc-

tion have been proposed, which include reverse engineering of coupled differential

equations [15], response-dynamics-based method for coupled phase oscillators [16],

phase-space reconstruction based on optimization [17], noise-induced scaling law [18],

noise-induced dynamical correlation [19], random phase resetting [20] and inner com-
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position alignment [21]. While these methods can successfully determine the network

structure, they are unable to determine two pieces of key information needed for pre-

dicting the emergence of synchronization: the interaction strength among nodes and

the nodal dynamical equations.

To address this challenge, compressive-sensing (CS) [22, 23, 24, 25, 26] based

method was proposed and it can uncover not only the full topology of the under-

lying network, but also the detailed nodal dynamics and link weights (interaction

strengths)[27, 28, 28, 29, 30].It has many unique features, such as: (1) it is com-

pletely data driven; (2) it can give an accurate estimate of all system parameters;

(3) it can lead to faithful reconstruction of the full network structure, even for large

networks; and (4) it requires a minimal data amount.

1.2 Compressive Sensing

1.2.1 Sparse Regression

The problem of CS can be stated as follows. Given a low-dimensional measurement

vector X ∈ RM , one seeks to reconstruct the much higher-dimensional vector a ∈ RN

according to:

X = G · a, (1.1)

where N ≫ M and G is an M × N projection matrix. A sufficiently sparse vector

a can be reconstructed by solving the following convex optimization problem [22, 23,

24, 25, 26]:

min ‖a‖1, s.t.X = G · a, (1.2)

where the ‖a‖1 =
∑N

i=1 |ai| is the l1 norm of vector a.

Here sufficiently sparse is defined by the Restricted isometry property (RIP), which

address the approximated orthonormality of a random matrix on sparse vectors[22].
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The given matrix G is said to statisfy RIP when there exist a constant δ, that:

(1− δ)‖a‖22 ≤ ‖Ga‖22 ≤ (1 + δ)‖a‖22, (1.3)

where vector y is an arbitrary given sparce vector with P non-zero terms.

1.2.2 Inaccurate Measurement

When the given measurement is not accurate, says, linear equation X = G ·a+ ξ,

and ξ is a Q-dimension random variable and satisfies Gaussian distribution of zero

mean and variance as σ, the stable recovery of the P -dimension sparse vector a is

achievable, according to [22]. If the unknown vector a is sufficiently sparse, we can

reconstruct it by solving the following l1 regularization problem:

min ‖a‖1, subject to ‖G · a−X‖2 ≤ ǫ, (1.4)

where the l2 norm is ‖X‖2 =
∑n

i=1 |x
2
i |. ǫ is the size of the error term ξ. The

reconstructed vector ā is proved to be within the noise level as ‖ā− a‖ ≤ C · ǫ, and

C is a constant.

1.2.3 Network Reconstruction Using Compressive Sensing

Now I will explain the general procedure to reconstruct network dynamics and

topologies from time series using compressive sensing[27, 28, 28, 29, 30]. Consider a

general dynamics for an isolated oscillator in the network, its dynamic can be written

as:

ẋi(t) = Fi[xi(t)] + Si(t), (1.5)

where xi ∈ Rm is an m-dimensional dynamical variable and Si(t) denotes the external

driving. Then the complete network equations can then be written as:

ẋi = Fi(xi) +
N
∑

j=1,j 6=i

Wij · [H(xj)−H(xi)] + Si(t), (1.6)

3



where Wij ∈ Rm×m is the weighted coupling matrix between node i and node j and

H is the coupling function.

Our goal is to reconstruct the nodal velocity field Fi and all of the coupling

matrices W using time series x(t) and the given driving signal S(t). First, we group

all terms directly associated with node i into F′
i(xi), by defining:

F′
i(xi) ≡ Fi(xi)−H(xi) ·

N
∑

j=1,j 6=i

Wij.

We have:

ẋi = F′
i(xi) +

N
∑

j=1,j 6=i

WijH(xj) + Si(t). (1.7)

Then, we choose a suitable base and expand F′(xi) into the following form:

F′
i(xi) =

∑

γ

ã
(γ)
i · g̃

(γ)
i (xi), (1.8)

where g̃
(γ)
i (xi) are a set of orthogonal and complete base functions, which are chosen

such that the coefficients ã
(γ)
i are sparse. While the coupling function H(xi), if it

is nonlinear, can be expanded in a similar manner, for notational convenience, we

assume that they are linear: H(xi) = xi. We then have:

ẋi =
∑

γ

ã
(γ)
i · g̃

(γ)
i (xi) +

N
∑

j=1,j 6=i

Wij · xj + Si(t), (1.9)

where all of the coefficients ã
(γ)
i and Wij are to be determined from time series xi

via CS. Specifically, the coefficient vector ã
(γ)
i determines the nodal dynamics, and

the weighted matrices Wij give the full topology and coupling strengths of the entire

network.

Suppose we have measurements of all state variables xi(t) atM different values of

t and assume further that for each t value, the values of the state variables at a slightly

later time, t + δt, are also available, where δt ≪ ∆t, so that the derivative vector ẋi
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can be estimated at each time instant. Equation (1.9) for all M time instants can

then be written in the following matrix form:

Gi =



















g̃i(t1) x1(t1) · · · xk(t1) · · · xN (t1)

g̃i(t2) x1(t2) · · · xk(t2) · · · xN (t2)

...
... · · ·

... · · ·
...

g̃i(tM) x1(tM) · · · xk(tM) · · · xN(tM)



















, (1.10)

where the index k in xk(t) runs from one to N , k 6= i, and each row of the matrix

is determined by the available time series at one instant of time. The derivatives at

different times can be written in a vector form as: Xi = [ẋi(t1), · · · , ẋi(tM)]T . The

coefficients from the functional expansion and the weights associated with all links in

the network, which are to be determined, can be combined concisely into a vector ai,

as follows:

ai = [ãi,W1i, · · · ,Wi−1,i,Wi+1,i, · · · ,WN,i]
T . (1.11)

where [·]T denotes the transpose. For a properly chosen expansion base and a general

complex network whose connections are typically sparse, the vector ai to be deter-

mined is sparse, as well. Finally, Equation (1.9) can be written in the standard CS

form as:

Xi = Gi · ai + Si(t), (1.12)

a linear equation in which the dimension of the unknown coefficient vector ai can be

much larger than that of Xi, and the measurement matrix Gi will have many more

columns than rows. In a conventional sense, this equation is ill defined, but since ai is

sparse, insofar as its number of non-zero coefficients is smaller than the dimension of

Xi, the vector ai can be uniquely and efficiently determined by CS [22, 31, 25, 26, 24].
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1.3 Nonlinear Gene Networks

Bistability and the binary decision-making it imparts have been widely observed

and hypothesized as one of the possible mechanisms for cell fate determination [32,

33, 34]. Previous studies of bistable systems have attributed this binary decision-

making to either (i) random and reversible state transitioning - cells spontaneously

and randomly switching back and forth between two states without environmental

perturbations [35, 36, 37, 38], or (ii) deterministic and irreversible state transitioning

- cells uniformly and irreversibly choosing one of two states in response to external

signals [39, 40, 41]. Few mechanisms, however, have been proposed to explain the

scenario of random and yet irreversible cell fate determination, commonly seen in

development and cell differentiation. Recent studies [42, 43, 44] show examples of

stochastic and irreversible cell differentiation in multicellular organisms, and have

identified that the central regulatory motif driving these stochastic differentiations

is a mutual inhibitory GRN, a common topological module that can generate bista-

bility. However, with neither fluctuating environmental cues nor spontaneous state

transitioning identified in these cases, an understanding of how cells differentiate

stochastically and irreversibly into distinct subpopulations remains elusive, especially

when under the tight control of GRNs.

Synthetic gene networks provide an effective platform to probe the otherwise in-

tractable properties of common network motifs and uncover novel mechanisms for

counterintuitive observations [4]. Such investigations are impossible in their natural

settings where the complex interconnectivity of native GRNs acts as a major barrier

to detailed analysis. Synthetic gene networks, on the other hand, are rationally de-

signed and constructed to realize core topological modules of GRN in vivo without

interference from auxiliary connections. They can therefore be studied in isolation
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at great detail to reveal novel insights into the design and working of biological sys-

tems and processes [45], such as gene expression noise [35, 46, 47, 48, 49, 50, 51],

multistability [39, 41, 52], oscillations [53, 54, 55, 56], intracellular signaling [57, 58],

intercellular communications [59, 60], and multicellular pattern formation [61, 62].
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Chapter 2

IDENTIFY CHAOTIC OSCILLATORS FROM NEURAL NETWORKS

In this project, we address the problem of the data-based identification of a subset

of chaotic elements embedded in a network of nonlinear oscillators. In particular,

given such a network, we assume that time series can be measured from each oscillator.

The oscillators, when isolated, are not identical in that their parameters are different,

so dynamically, they can be in distinct regimes. For example, all oscillators can be

described by differential equations of the same mathematical form, but with different

parameters. Consider the situation where only a small subset of the oscillators are

chaotic and the remaining oscillators are in dynamical regimes of regular oscillations.

Due to mutual couplings among the oscillators, the measured time series from most

oscillators would appear random. The challenge is to identify the small subset of

originally (“truly”) chaotic oscillators.

2.1 Background and Motivation

The problem of identifying chaotic elements from a network of coupled oscillators

arises in biological systems and biomedical applications. For example, consider a net-

work of coupled neurons that exhibit regular oscillations in a normal state. In such a

state, the parameters of each isolated neuron are in the regular regime. Under exter-

nal perturbations or slow environmental influences, the parameters of some neurons

can drift into the chaotic regime. When this occurs, the whole network would ap-

pear to behave chaotically, which may correspond to a certain disease. The virtue of

nonlinearity stipulates that the irregular oscillations at the network level can emerge

even if only a few oscillators have gone “bad”. It is thus desirable to be able to pin
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down the origin of the ill-behaved oscillators—the few chaotic neurons among a large

number of healthy ones.

One might attempt to use the traditional approach of time-delayed coordinate

embedding to reconstruct the phase space of the underlying dynamical system [63,

64, 65] and then to compute the Lyapunov exponents [66, 67]. However, since we are

dealing with a network of nonlinear oscillators, the phase-space dimension is high and

an estimate of the largest Lyapunov exponent would only indicate if the whole coupled

system is chaotic or nonchaotic, depending on the sign of the estimated exponent.

In principle, using time series from any specific oscillator(s) would give qualitatively

the same result. Thus, the traditional approach cannot give an answer as to which

oscillators are chaotic when isolated.

There were previous efforts in nonlinear systems identification and parameter

estimation for coupled oscillators and spatiotemporal systems, such as the auto-

synchronization method [68]. There were also works on revealing the connection

patterns of networks. For example, a methodology was proposed to estimate the

network topology controlled by feedback or delayed feedback [69, 70, 71]. Network

connectivity can be reconstructed from the collective dynamical trajectories using re-

sponse dynamics, as well [72, 73]. In addition, the approach of random phase resetting

was introduced to reconstruct the details of the network structure [74]. For neuronal

systems, there was a statistical method to track the structural changes [75, 76]. While

many of these previous methods require complete or partial information about the

dynamical equations of the isolated nodes and their coupling functions, completely

data-driven and model-free methods exist. For example, the network structure can

be obtained by calculating the causal influences among the time series based on, for

example, the Granger causality method [77, 78], the transfer-entropy method [79] or

the method of inner composition alignment [80]. However, such causality-based meth-

9



ods are unable to reveal information about the dynamical equations of the isolated

nodes. There were regression-based methods [81] for systems identification based on,

for example, the least-squares approximation through the Kronecker-product repre-

sentation [82], which would require large amounts of data. (Due to the L1 nature of

compressive sensing [23, 31, 25, 26, 24], the data requirement in our method can be

significantly relaxed.) The unique features of our method are: (1) it is completely

data driven; (2) it can give an accurate estimate of all system parameters; (3) it can

lead to faithful reconstruction of the full network structure, even for large networks;

and (4) it requires a minimal data amount. While some of these features are shared

by previous methods, no single previous method possesses all of these features.

Here, we develop a method to address the problem of identifying a subset of ill-

behaved chaotic elements from a network of nonlinear oscillators, the majority of

them being regular. The basic mathematical framework underlying our method is

compressive sensing (CS), a paradigm for high-fidelity signal reconstruction using

only sparse data [23, 31, 25, 26, 24]. The CS paradigm was originally developed to

solve the problem of transmitting extremely large data sets, such as those collected

from large-scale sensor arrays. Because of the extremely high dimensionality, direct

transmission of such data sets would require a very broad bandwidth. However, there

are many applications in which the data sets are sparse. To be concrete, say a data

set of N points is represented by an N × 1 vector, a, where N is a very large integer.

Then, a being sparse means that most of its entries are zero and only a small number

of k entries are non-zero, where k ≪ N . One can use a random matrixG of dimension

M×N to obtain anM×1 vector X: X = G·a, whereM ∼ k. Because the dimension

of X is much lower than that of the original vector a, transmitting X would require a

much smaller bandwidth, provided that a can be reconstructed at the other end of the

communication channel. Under the constraint that the vector to be reconstructed is
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sparse, the feasibility of faithful reconstruction is guaranteed mathematically by the

CS paradigm [23, 31, 25, 26, 24]. In the past decade, CS has been exploited in a large

variety of applications, ranging from optical image processing [83] and reconstruction

of nonlinear dynamical and complex systems [29, 30] to quantum measurements [84].

It has been shown in a series of recent papers [29, 30, 28, 85, 86, 87] that the

detailed equations and parameters of nonlinear dynamical systems and complex net-

works can be accurately reconstructed from short time series using the CS paradigm.

Here, we extend this approach to a network of coupled, mixed nonchaotic and chaotic

neurons. We demonstrate that, by formulating the reconstruction task as a CS prob-

lem, the system equations and coupling functions, as well as all of the parameters can

be obtained accurately from sparse time series. Using the reconstructed system equa-

tions and parameters for each and every neuron in the network and setting all of the

coupling parameters to zero, a routine calculation of the largest Lyapunov exponent

can unequivocally distinguish the chaotic neurons from the nonchaotic ones.

We remark on the generality of our compressive sensing-based method. Insofar

as time series from all dynamical variables of the system are available and a suitable

mathematical base can be found in which the nodal and coupling functions can be

expanded in terms of a sparse number of terms, the whole system, including all in-

dividual nodal dynamics, can be accurately reconstructed. With the reconstructed

individual nodal equations, chaotic neurons can be identified through routine calcu-

lation of the largest Lyapunov exponent.

2.2 Data Driven Method to Identify and Control Chaotic Oscillactors

Figure 2.1(a) shows schematically a representative coupled neuronal network.

Consider a pair of neurons, one chaotic and another nonchaotic when isolated (say 1

and 10, respectively). When they are placed in a network, due to coupling, the time
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series collected from both will appear random and qualitatively similar, as shown

in Figure 2.1b,c. It is visually quite difficult to distinguish the time series and to

ascertain which node is originally chaotic and which is regular. The difficulty is

compounded by the fact that the detailed coupling scheme is not known a priori.

Say that the chaotic behavior leads to the undesirable function of the network and

is to be suppressed. A viable and efficient method is to apply small pinning con-

trols [88, 89, 90, 91] to the relatively few chaotic neurons to drive them into some

regular regime. (Here, we assume the network is such that, when all neurons are

regular, the collective dynamics is regular. That is, we exclude the uncommon, but

not unlikely, situation that a network system of coupled regular oscillators would ex-

hibit chaotic behaviors.) Accurate identification of the chaotic neurons is thus key to

implementing the pinning control strategy.

Given a neuronal network, our aim is thus to locate all neurons that are originally

chaotic and neurons that are potentially likely to enter into a chaotic regime when

they are isolated from the other neurons or when the couplings among the neurons are

weakened. Our approach consists of two steps. Firstly, we employ the CS framework

to estimate, from measured time series only, the parameters in the FHN equation

for each neuron, as well as the network topology and various coupling functions and

weights. As will be shown below, this can be done by expanding the nodal dynam-

ical equations and the coupling functions into some suitable mathematical base, as

determined by the specific knowledge of the actual neuronal dynamical system, and

then casting the problem into that of determining the sparse coefficients associated

with various terms in the expansion. The nonlinear system identification problem

can then be solved using some standard CS algorithm. Secondly, we set all coupling

parameters to zero and analyze the dynamical behaviors of each and every individual
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Figure 2.1: (a) Schematic illustration of a small neuronal network, where the dy-
namics of each neuron is mathematically described by the FitzHugh–Nagumo (FHN)
equations. (b,c) Dynamical trajectories of two neurons from the coupled system, one
being chaotic when isolated and another regular, respectively. The trajectories give
little hint as to which one is originally chaotic and which one is regular, due to the
coupling. Specifically, Neuron 1 is originally chaotic (by setting parameter a = 0.42
in the FHN equation), while all other neurons are regular (their values of the cor-
responding parameter in the FHN equation are chosen uniformly from the interval
[0.43, 0.45]).

neuron by calculating the Lyapunov exponents. Those with positive largest exponent

are identified as chaotic.

A typical time series from a neuronal network consists of a sequence of spikes in

the time evolution of the cell membrane potential. We demonstrate that our CS-based

reconstruction method works well even for such spiky time series. We also analyze

the dependence of the reconstruction accuracy on the data amount and show that

only limited data are required to achieve high accuracy in reconstruction.

2.3 Simulation Results on FHN Networks

The FHNmodel, a simplified version of the biophysically detailed Hodgkin–Huxley

model [92], is a mathematical paradigm for gaining significant insights into a variety

of dynamical behaviors in real neuronal systems [93, 94]. For a single, isolated neuron,
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the corresponding dynamical system is described by the following two-dimensional,

nonlinear ordinary differential equations:

dV

dt
=

1

δ
[V (V − a)(1− V )−W ],

dW

dt
= V −W − b+ S(t), (2.1)

where V is the membrane potential, W is the recover variable, S(t) is the driving sig-

nal (e.g., periodic signal) and a, b and δ are parameters. The parameter δ is chosen

to be infinitesimal, so that V (t) and W (t) are “fast” and “slow” variables, respec-

tively. Because of the explicitly time-dependent driving signal S(t), Equation (2.1) is

effectively a three-dimensional dynamical system, in which chaos can arise [95]. For

a network of FHN neurons, the equations are:

dVi
dt

=
1

δ
[Vi(Vi − a)(1− Vi)−Wi] +

N
∑

i=1

cij(Vj − Vi)

dWi

dt
= Vi −Wi − b+ S(t), (2.2)

where cij is the coupling strength (weight) between the i-th and the j-th neurons

(nodes). For cij = cji, the interactions between any pair of neurons are symmetric,

leading to a symmetric adjacency matrix for the network. For cij 6= cji, the network

is asymmetrically weighted.

We consider the FHN model with sinusoidal driving: S(t) = r sinω0t. The model

parameters are r = 0.32, ω0 = 15.0, δ = 0.005 and b = 0.15. For a = 0.42, an

individual neuron exhibits chaos. The time series are generated by the fourth-order

Runge–Kutta method with step size h = 10−4. We sample three consecutive mea-

surements at time interval τ = 0.05 apart and then use a standard two-point formula

to calculate the derivative. Representative chaotic time series and the corresponding

dynamical trajectory are shown in Figure 2.2.
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We first present the reconstruction result for an isolated neuron, by setting to zero

all coupling terms in Eq. 2.2. Following the method introduced in Sec. I, Eq. 2.2 can

be written in the standard CS form as:

Xi = Gi · ai + Si(t), (2.3)

Where the vector ai to be determined then contains the unknown parameters associ-

ated with a single neuron only. We choose power series of order four as the expansion

base, so that there are 17 unknown coefficients to be determined. We use 12 data

points generated from a random starting point. The results of the reconstruction are

shown in Figure 2.3a,b for variables V and W , respectively. The last two coefficients

associated with each variable represent the strength of the driving signal. Since only

the variable W receives sinusoidal input, the last coefficient in W is nonzero. By

comparing the positions of nonzero terms and our previously assumed vector form,

gi(t), we can fully reconstruct the dynamical equations of any isolated neuron. In

particular, we see from Figure 2.3a,b that all estimated coefficients agree with their

respective true values. Figure 2.3c shows how the estimated coefficients converge to

the true values as the number of data points is increased. We see that, for over 10

data points, we can already reconstruct faithfully all of the parameters.

Next, we consider the network of coupled FHN neurons as schematically shown in

Figure 2.1a, where the coupling weights among various pairs of nodes are uniformly

distributed in the interval [0.3, 0.4]. The network is random with connection prob-

ability p = 0.04. From time series, we construct the CS matrix for each variable

of all nodes. Since the couplings occur among the variables V of different neurons,

the strengths of all incoming links can be found in the unknown coefficients asso-

ciated with different V variables. Extracting all coupling terms from the estimated

coefficients, we obtain all off-diagonal terms in the weighted adjacency matrix.
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Figure 2.2: (a) Chaotic time series of the membrane potential V and recovery
variable W from a single neuron for a = 0.42; and (b) the corresponding dynamical
trajectory.
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Figure 2.3: (a,b) Predicted coefficients from compressive sensing (CS) and a com-
parison with the actual parameter values in the dynamical equations of variables V
and W . The number of data points used is 12. (c) Predicted parameters for a single
neuron as the number of data points is increased. The sampling interval is ∆t = 0.05.
All results are averaged over 10 independent time series.
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Figure 2.4: For the network in Figure 2.1a, (a) the actual and (b) estimated weighted
adjacency matrix. The normalized data amount used in the reconstruction is Rm =
0.7.

To assess the reconstruction accuracy, we define Enz as the average normalized

difference between the non-zero terms in the estimated coefficients and the real values:

Enz =
1

Mnz

Mnz
∑

k=1

‖
c′k − ck
ck

‖,

whereMnz is the number of non-zero terms in the actual coefficients, c′k and ck are the

k-th nonzero terms in the estimated coefficients and the true one, respectively. For

convenience, we define Rm as the relative number of data points normalized by the

number of total unknown coefficients. Figure 2.4 shows the reconstructed adjacency

matrix as compared with the real one for Rm = 0.7. We see that our method can

predict all links correctly, in spite of the small errors in the predicted weight values.

The errors are mainly due to the fact that there are large coefficients in the system

equations, but the coupling weights are small.

Using the weighted adjacency matrix, we can identify the coupling terms in the

vector function F′
i(xi), so as to extract the terms associated with isolated nodal

velocity field Fi. We can then determine the value of parameter a and calculate

the largest Lyapunov exponent for each individual neuron. The results are shown in
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Figure 2.5: (a) Estimated values of parameter a for different neurons
(red circles), as compared with the actual values (black crosses). The
random network size is N = 20 with connection probability p =
0.04. The normalized data amount used in reconstruction is Rm = 0.7.
(b) The largest Lyapunov exponents calculated from the reconstructed system equa-
tions. The reference line denotes a null value.

Figure 2.5a,b. We see that, for this example, Neuron 1 has a positive largest exponent,

while the largest exponents for all others are negative, so 1 is identified as the only

chaotic neuron among all neurons in the network.

Next, we discuss the relationship between reconstruction error and data require-

ment. As shown in Figure 2.6, for different network sizes N , the reconstruction error

decreases with Rm. For Rm larger than a threshold, the normalized error Enz is small.

For N = 40, the threshold is about 0.6, and it is 0.5 for N = 60. That is because,

for fixed connection probability, a larger network will have more sparse connections,

requiring a smaller value of Rm for accurate reconstruction.

Finally, we study the performance of our method with respect to systematically

varying of network size and edge density. As with any method, larger networks require

more computation. We study networks of a size up to N = 100 nodes. Figure 2.7a

shows the normalized error associated with the nonzero terms, Enz, for different net-
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Figure 2.6: For neural networks of size N = 40 and N = 60, the normalized error
associated with non-zero terms, Enz, as a function of normalized data amount Rm.
The results are averaged over 10 independent measurement realizations.

work sizes N and normalized data amount Rm. For a given network size, similar to

Figure 2.6, Enz gradually decreases to a certain low level as the relative data amount

Rm is increased. We further observe that smaller values of Rm are required to recon-

struct larger networks of the same connecting probability P . Note that Rm is the rel-

ative data amount defined with respect to the number of unknown coefficients, so for

larger networks, the absolute data amount required actually increases. In Figure 2.7b,

we show the contour plot of values of Enz in the parameter plane (Rm, P ) for a fixed

network size (N = 60). We see that, for a fixed value ofRm, as P is increased, the error

Enz also increases, which is anticipated, as denser networks lead to a denser projection

matrix in

compressive sensing.

2.4 Conclusions

We develop a completely data-driven method to detect chaotic elements embedded

in a network of nonlinear oscillators, where such elements are assumed to be relatively
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Figure 2.7: (a) For a random network of fixed connecting probability p =
0.04, a contour plot of the normalized error associated with nonzero terms,
Enz, in the parameter plane (Rm, N). (b) For a random network of fixed
size N = 60, a contour plot of Enz in the parameter plane (Rm, P ). All
results are obtained from 10 independent network realizations. See the text
for explanations.

few. From a biomedical perspective, the chaotic elements can be the source of certain

diseases, and their accurate identification is desirable. In spite of being only a few, the

chaotic oscillators can cause the time series from other, originally regular oscillators to

appear random, due to the network interactions among the oscillators. The standard

method in nonlinear time series, the method of delay-coordinate embedding, cannot

be used to identify the local chaotic elements, because the method can give informa-

tion only about the global dynamics. For example, one can attempt to estimate the

largest Lyapunov exponent by using time series, either from a chaotic oscillator or

from an originally regular oscillator, and the embedding method would yield qualita-

tively or even quantitatively similar results. Our compressive sensing-based method,

however, overcomes such difficulties by generating an accurate estimate of all system

equations, which include the local dynamical equations of each individual node and

all coupling functions. Isolating the coupling functions from the local velocity fields,

we can obtain the original dynamical equations for each individual oscillator, enabling

efficient calculation of the Lyapunov exponents for all oscillators and, consequently,
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accurate identification of the chaotic oscillators. We illustrate this methodology by

using model networks of FHN neurons. One key virtue of compressive sensing, namely

the low data requirement, enables us to accomplish the task of identifying chaos with

short time series. Our method is generally applicable to any nonlinear dynamical

networks, insofar as time series from the oscillators are available.

Comparing with our previous works on compressive sensing-based nonlinear sys-

tem identification and reverse engineering of complex networks [29, 30, 28, 85, 86, 87],

the new technical features of the present work are the following. Firstly, we demon-

strate that the compressive sensing-based system identification is effective for spiky

time series that are typical of neuronal networks. Secondly, local velocity fields and

non-uniform weights of node-to-node interactions can be reconstructed accurately

for neuronal networks with both fast and slow variables in the presence of external

driving. Thirdly, the method works regardless of the ratio between the number of

originally chaotic and nonchaotic oscillators. The great flexibility, the extreme low

data requirement and high accuracy make our method appealing for various problems

arising from nonlinear system identification, especially in biology and biomedicine.

There are a number of limitations to our method. For example, for any accessible

node in the network, time series of all dynamical variables are required. If information

from one node or some of the nodes in the network is inaccessible, or “hidden” from

the outside world, it is not feasible to recover the nodal dynamical system of such

nodes and their neighbors [85, 87]. The “hidden dimensions” problem, in which

some dynamical variables are not given, is another obstacle to realistic applications.

Our compressive sensing-based method also requires reasonable knowledge about the

underlying complex system, so that a suitable mathematical base can be identified for

expansions of the various nodal and coupling functions. Further efforts are certainly

needed.

21



Chapter 3

PREDICT COLLECTIVE BEHAVIORS OF WEIGHTED OSCILLACTOR

NETWORKS

3.1 Introduction

The most amazing feature of a complex dynamical system consisting of a large

number of interacting units (or components) is the emergence of collective dynamics.

Indeed, it is this feature of “more is different” [96] which makes complex systems

extremely interesting and the study of collective dynamics fundamentally important

to many natural and technological systems. Given a complex system, if the underlying

mathematical rules or equations are completely known, then in principle the possible

types of collective dynamics in the system can be predicted and studied, and most

existing works on complex systems are of this nature. In realistic applications one

may encounter the situation where, for a complex system of interest, the local system

equations and the interactions among the components are not known a priori but

only a set of time series are available. Can one still forecast or anticipate whether a

certain type of collective dynamics can potentially occur in the system?

Even when the system equations of a complex system are known, it is still ex-

tremely challenging to predict, investigate, and explore the emergence and evolution

of collective dynamics. In order to address the issue of time-series based prediction

of collective dynamics, one must focus on a relatively well known class of such dy-

namics. We shall then consider synchronization [97, 98, 99]. Specifically, we shall

study coupled-oscillator networks[100], a paradigm for probing and understanding

the synchronous behavior of interacting units with nonlinear dynamics. When the
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system equations are known, a widely used tool to determine whether synchronization

can emerge physically is the master-stability function (MSF) articulated by Pecora

and Carroll [99, 100]. In the MSF framework, synchronization under various com-

binations of network structures and oscillator dynamics can be predicted[100, 101].

For example, given the nodal dynamical equations, possible states of synchronization

can be determined, which are basically the possible dynamics on the synchronization

manifold. The MSF is nothing but the largest Lyapunov exponent characterizing the

transverse stability of the synchronous dynamical state. For a typical nonlinear or

chaotic oscillator, there may exist an open interval in the space of some generalized

coupling parameter [101], where the MSF is negative so that any point in this interval

can lead to stable synchronization. When the network structure is given, the set of

eigenvalues of the underlying coupling matrix can be determined. For a network of

coupled oscillators, the phase-space dimension can be extremely high, so there can be

many transverse subspaces. The set of eigenvalues, after suitable normalization, gives

the set of effective generalized coupling parameters associated with all the transverse

subspaces. Network synchronization can occur only when all these parameters fall

into the interval of negative MSF.

In this project, we propose a general approach to forecasting the emergence of

synchronization in complex oscillator networks based on a complete set of time series

collected from all components of every oscillator. The specific setting of the problem

is, as follows. Assume that at the time of interest the oscillator network is in an

asynchronous state and time series from each node in the network can be obtained.

Assume further that there exists a parameter characterizing the average coupling

strength among the nodes. The question we ask is whether it would be possible to

predict that synchronization can or cannot occur when the coupling parameter is

allowed to change. Our method consists of two steps. Firstly, we reconstruct the full
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topology of the network, together with the coupling strengths and the nodal dynam-

ics, based solely on time series. This is accomplished by casting the prediction or

reverse-engineering [102, 103, 104] problem into the framework of compressive sens-

ing, a recently developed, powerful convex optimization paradigm [22, 23, 24, 25, 26]

for recovering sparse vectors based on very limited amount of data. Here the relevant

vector to be reconstructed originated from both nodal dynamics and topology, which

is typically sparse due to the sparsity of complex networks. Secondly, from the pre-

dicted nodal dynamics and network structure, we perform synchronizability analysis

by using the standard MSF approach. We validate our method by using random

weighted networks [105] of both continuous-time and discrete-time chaotic systems

(e.g., the classical Lorenz system [106] and Hénon map [107]). Our computation and

analysis indicate that with only small amount of measured data, the synchronization

regions in the parameter space as identified by MSF and the network structure can

be accurately predicted, rendering possible inference of synchronous dynamics. The

critical data requirement and sampling frequency for different network sizes and de-

gree distributions are studied in detail. The issue of the effect of measurement noise

on prediction accuracy is also addressed. In addition, the dependence of data require-

ment and computational time on the network size are studied. Finally, we speculate

on one potential application of our prediction method: controlling coupled oscillators

to bring the system to synchronization.

In Sec. 3.2, we describe our compressive-sensing based method for reconstructing

weighted complex oscillator networks and for estimating the MSF. In Sec. 3.3, a

detailed account of representative examples is presented, together with a systematic

analysis of the prediction accuracy, data requirement from different perspectives,

effects of network size and noise, and computation time. In Sec. 3.4, we discuss how

24



possible emergence of synchronous dynamics can be anticipated based on data. In

Sec. 3.5, a conclusion and discussions are provided.

3.2 Network System Reconstruction and Synchronizability Analysis

Our method is in fact a combination of two problems: compressive-sensing based

reverse engineering of complex networked dynamical systems [29, 30] and synchroniz-

ability analysis.

3.2.1 Reverse Engineering of Weighted Complex Networked Dynamical Systems

Reverse engineering of complex networks to uncover network topologies from ex-

perimental time series is a problem of tremendous interest with significant applications

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Earlier examples include reconstruction

of gene regulation networks [11] from gene expression data and identification of neu-

ronal interactions based on spike classification methods [12, 13, 14]. More recently,

a number of methods for network reconstruction have been proposed, which include

reverse engineering of coupled differential equations [15], response-dynamics-based

method for coupled phase oscillators [16], phase-space reconstruction based on opti-

mization [17], noise-induced scaling law [18], noise-induced dynamical correlation [19],

random phase resetting [20] and inner composition alignment [21]. While these meth-

ods can successfully determine the network structure, they are unable to determine

two pieces of key information needed for predicting the emergence of synchronization:

the interaction strength among nodes and the nodal dynamical equations. As will be

explained, our compressive-sensing [22, 23, 24, 25, 26] based method can uncover not

only the full topology of the underlying network, but also the detailed nodal dynamics

and link weights (interaction strengths), making it possible to forecast synchroniza-

tion.
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3.2.2 Stability Analysis for Synchronous Dynamics

After the nodal dynamics and the network structure have been uncovered from

time series, we can use the MSF framework to assess the emergence of synchronous

dynamics and its stability . For the network system, the synchronous state x1 = x2 =

· · · = xN = s, where ds/dt = F(s), is an exact solution. The time evolutions of small

variations from the synchronous state, δxi(t) ≡ xi(t)− s(t), are governed by

dδxi

dt
= DF(s) · δxi − ξ

N
∑

j=1

GijDH(s) · δxj , (3.1)

where DF(s) and DH(s) are the d×d Jacobian matrices of the corresponding vector

functions evaluated at s(t), and ξ is a parameter characterizing the global coupling

strength, which can be set to unity for convenience. We denote the eigenvalues of the

coupling matrix G as µ1, µ2, . . . , µN and the associated eigenvectors as e1, e2, · · · , eN .

While compressive sensing does not require network connectivity, it is meaningful to

explore synchronizability only when the underlying network is a single connected

component. Since the network is connected, there is only one zero eigenvalue, so

the eigenvalues can be sorted as 0 = µ1 < µ2 ≤ · · · ≤ µN . We then diagonalize

the coupling matrix to a block matrix form composed of all the eigenvectors: Q =

[e1; e2; · · · ; eN ], which can be used in the transformation, δx = Q · δy, to bring

Eq. (3.1) into the following block-diagonally decoupled form,

dδyi

dt
= [DF(s)−KiDH(s)] · δyi. (3.2)

where Ki = ξµi (i = 2, ..., N) are the coupling strength in the oscillator network.

For each Ki value, the corresponding MSF Ψ(K) is the largest Lyapunov exponent

of Eq. (3.2) [100]. If, for all possible values of Ki, the corresponding MSFs are all

negative, a small perturbation about the synchronous state will vanish exponentially

so that it is stable. Since MSFs do not depend on the specific network topology
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but on the coupling parameters, we can first infer the parameters from one set of

specific measurements and calculate the MSF for arbitrary K so that the emergence

of synchronous behavior can be anticipated. This can be done even when links are

added or removed, because of MSF’s independence of the network structure.

After the MSF is known, the synchronization behavior of the whole oscillator

networks can be assessed. For example, suppose the system is not currently in a

synchronous state, but there is a region of K, Ka < K < Kb, in which the MSF

satisfies ψ(K) < 0. We can find a suitable positive coupling strength ξ such that

Ka < ξµ2 < ξµN < Kb so as to drive the system into synchronization. This is

because, under the stretching/squeezing effect of ξ, all possible Ki’s can be brought

into the negative MSF region.

3.3 Examples

To illustrate our method to forecast synchronization, we first choose the Erdős-

Rényi (ER) type of homogeneous random network consisting of identical Lorenz os-

cillators as an example, and then extend to scale-free networks and discrete-time

nodal dynamics as well. In fact, similar results have been obtained for other network

topologies and different types of nodal dynamics besides the cases presented here.

The classical Lorenz system is given by [ẋ, ẏ, ż] = [σ(y−x), x(ρ− z)− y, xy−βz],

where we set σ = 10, ρ = 28, and β = 2 so that the oscillator is chaotic. Time-series

data are generated from 6× 106 numerical-integration steps with maximum step size

of 10−4. The Hénon map system is given by [xt+1, yt+1] = [1 − ax2t + yt, bxt], and we

set a = 1.4 and b = 0.3 so that the map exhibits chaotic dynamics, for which time

series of length TN = 100 are generated. However, the amount of measurement data

used in the compressive-sensing algorithm can be much smaller. Using an adjustable

sampling frequency 1/∆T (or iterative interval TN), we obtain sparse measurement
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data to reconstruct the nodal dynamics, coupling pattern and the network structure.

In a typical application, some physical knowledge about the underlying complex net-

worked system may be available. This can in fact help reduce the computational

complexity and increase the efficiency and accuracy significantly. For example, in the

case of Lorenz-oscillator networks, some preliminary understanding of the system can

facilitate the choice of the power-expansion order. To be illustrative, we apply the

constraint l1+ l2+ l3 ≤ 4 on the powers of the components x, y, z so that the number

of unknown coefficients can be reduced.

The Jacobian matrix of the Lorenz system is

DF =













−σ σ 0

ρ− z −1 −x

y x −β













. (3.3)

The Jacobian matrix of the coupling function, DH, for one specific node component, is

a 3×3 matrix with only one nonzero element at the corresponding position determined

by the coupling pattern. In order to compute the MSF, we need to reconstruct the

network structure, find coupling pattern, and determine the parameters characterizing

the nodal dynamics.

3.3.1 Predicting Weighted Networks

Figure 3.1 shows the results of predicting a small weighted Lorenz-oscillator net-

work. There are in total 122 terms in the coefficient vector a for each node, in which

the 1st to the 35th terms correspond to nodal dynamics vector bi and the rest to

the coupling vector ci with other nodes. The inferred coupling strengths of node

#1 with other nodes is shown in Fig. 3.1(a) where, with respect to the number of

power-expansion terms with nonzero coefficient values, the predicted coupling terms

with other nodes are marked in Fig. 3.1(b). The network structure with node degrees
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Figure 3.1: Results of detecting dynamical and coupling terms via compressive
sensing. The network used is the ER random network with N = 30 nodes and
connection probability p = 0.04. The network is weighted and the symmetric weights
are randomly distributed in [0.1, 1.0]. Panel (a) shows the prediction results for
all three components x, y, z of node #1, where the number of data points (after
sampling) used is 70% of the total number of the power-series coefficients assumed.
Terms with nonzero coefficients are marked by red circles, while others by blue plus-
signs. The first 35 terms are for nodal dynamical equations, and the rest are for the
coupling functions. In the first panel for component x, the data points surrounded
by the dashed box represent coupling-term coefficients from other node components
to component x of node #1, which is magnified in panel (b) with numbers above
data points indicating the nodes from which the couplings come. Panel (c) shows
the original ER network, where node #1 is highlighted in red, its nearest neighbors
are presented in green, and the thickness of the edges indicates the corresponding
coupling strength. One-to-one correspondence can be identified between the predicted
coefficients in panel (b) and the coupling strengths in panel (c) for each of node #1’s
neighbors.
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and link weights is shown in Fig. 3.1(c). We see that all existent couplings have

been successfully predicted, together with the corresponding link weights. Results of

prediction of all 122 terms in a for all three variables x, y, z in the coupled Lorenz-

oscillator network are presented in Fig. 3.1(a). Besides the nonzero coupling terms,

other nonzero terms represent various power-series terms in the nodal dynamics in

each variable. The related forms of the nonzero terms are remarked. For example,

10y−Cy is in fact a combination of nodal function and coupling. Based on the indices

of the coupling terms, we can identify that the couplings are from y to x, because

of the term
∑N

j=1Gij(yj − yi) in the equation of ẋ. Therefore, the term −Cy comes

from
∑

−Gijyi, which has been merged into the nodal dynamical equation. Since all

coupling terms are successfully identified, the −Cy term can be separated from the

combination, resulting in complete prediction of all power-series terms in the velocity

field and coupling function associated with node #1. We have also examined the

prediction results for all other nodes in the network and found excellent agreement

between the predicted and actual power-series terms governing the whole networked

dynamical system.

The efficiency of our method for reconstructing weighted networks can be assessed

by addressing the issue of data requirement and sampling frequency when nearly

perfect prediction accuracy is achieved. It is useful then to define prediction errors

in the coefficient vector a. Since a is sparse, i.e., most of its elements are zero, it is

necessary to calculate the errors for nonzero (existing) and zero (non-existing) terms

separately. In particular, the relative error of a nonzero term, Eterm, is defined as the

ratio to the true value of the absolute difference between the inferred and the true

values. The prediction error Enz of all nonzero terms in a component,

Enz ≡ 〈Eterm〉,
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is the average over them. For a zero term, a relative error cannot be defined. As

an alternative, we define the absolute error as the average value of the inferred zero

terms. The prediction errors can then be computed as functions of the amount

Rm of measurements, normalized by the total number of unknown coefficients to be

determined, i.e.,

Rm ≡
# of measurements

# of all unknown coefficients
,

and the sampling time interval ∆T , as shown in Fig. 3.2, where ∆T is the average

time interval between two pairs of data points, with each pair containing two nearby

data points for the purpose of estimating the corresponding derivative. In Fig. 3.2(a),

we see that, for sufficiently large values of Rm, Enz reduces essentially to zero with

extremely small error bars, indicating accurate reconstruction of both nodal dynamics

and network structures with complete information about the locations of the links

and their weights. From Fig. 3.2(b), we observe that a larger sampling interval ∆T

tends to facilitate prediction. This can be intuitively understood by noting that

suitably large ∆T values weaken the correlation between two adjacency data points,

from which reconstruction may be benefited. In both Figs. 3.2(a) and 3.2(b), the

Y component appears to be the most difficult one to be fully reconstructed, as the

required data amount is the largest. This is due to the presence of the ρx term

in the Y component, where the value of the coefficient ρ is much larger than other

nodal dynamical and coupling coefficients, requiring more measurements and larger

sampling intervals. Our experience indicates that, in general, the data requirement

for equations that involve relatively larger coefficients tends to be higher.

In order to assess the accuracy of the predicted weighted network, it is necessary to

reconstruct the adjacency matrix for any given coupling scheme. With all expansion

coefficients obtained from compressive sensing for all dynamical variables of each os-

cillator, we can readily form the matrix by using the terms associated with the various
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Figure 3.2: Prediction errors as functions of the normalized amount of measurement
Rm and sampling interval ∆T for a random symmetric weighted network of N = 60
Lorenz oscillators, where the connection probability is p = 0.04 and the weights are
randomly distributed in [0.1, 1.0]. There are possibilities that the generated networks
are disconnected, but in order to be able to consider synchronizability, we disregard
rare cases where the networks generated consist of isolated components. In (a), the
sampling interval is fixed at ∆T = 0.1, whereas in (b), the amount of measurement
is fixed at Rm = 0.6. In both panels, Enz is averaged over 10 independent network
realizations.
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Figure 3.3: Comparison of the reconstructed (a) and the original (b) adjacency
matrices for the weighted network shown in Fig. 3.1(c). The coupling scheme is
y → x and the normalized amount of measurements is Rm = 0.3.

coupling functions. For example, coupling coefficients from each node contribute to a

single row of the adjacency matrix, given any coupling scheme. Figure 3.3 shows, for

the y → x coupling scheme, the reconstructed and the original adjacency matrices.

The good agreement between the two suggests that, not only have the link locations

been predicted, but also the values of the corresponding weights.

To further address the practically important issue of data requirement in recon-

structing weighted networks, we define a quantity Rc, which is the critical amount

of data required for the prediction error Enz to fall below some predefined small
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threshold value (e.g., 0.01), namely,

Rc ≡ inf{Rm : Enz(Rm) ≤ 0.01}.

Although Rc depends on the choice of the threshold, the qualitative behavior of Rc is

insensitive to the network structure. For example, we can calculate Rc for different

ratios Rnz defined as

Rnz ≡
# of nonzero coefficients

# of all unknown coefficients
,

where Rnz can be adjusted by varying the network size while keeping the average de-

gree unchanged. Figure 3.4(a) shows Rc versus Rnz for different ER random networks.

We see that, as Rnz becomes smaller so that the network becomes more sparse, the

value of Rc tends to decrease, indicating that smaller amount of data is required to

achieve the same prediction accuracy. This is due to the merit of our compressive-

sensing based method in dealing with large networks, i.e., low data requirement. This

feature does not depend on the network topology either, as shown in Fig. 3.4(b) for

scale-free networks, where Rc is shown as a function of α, the power-law exponent

in the degree distribution. When the network size and the average degree are fixed,

a smaller value of α corresponds to a more heterogeneous network structure. In this

case, the value of Rc is relatively large. The reason is that for a more heteroge-

neous network, the probability of having dense sets of coefficients for the hub nodes

is larger, requiring more data. As α is increased so that the network becomes less

heterogeneous, Rc can be reduced.

Eigenvalues of the network coupling matrix can be calculated upon determining

the structural parameters of the network. It is thus useful to define another quantity

to characterize the accuracy of the reconstructed weighted network. Specifically,

we first define the eigenvalue interval that contains all the original eigenvalues as
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Figure 3.4: (a) For ER random networks, measure of critical data requirement Rc

as a function of the density of nonzero coefficients Rnz, where Rnz is adjusted by
fixing the average degree at k = 3 and increasing the network size from N = 20 to
N = 200. (b) For scale-free networks, Rc as a function of the power-law exponent α
in the degree distribution p(k) ∼ k−α. The network size is N = 60 with the minimal
degree kmin = 3. For both panels, the data points are results of averaging over 10
different network realizations.
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Figure 3.5: For the random Lorenz network under the coupling scheme y → x, ac-
curacy measure AE of the eigenvalue spectrum of the reconstructed network coupling
matrix as a function of the normalized data amount Rm.

R′
t = (K2, KN) and the predicted one as R′

p = (K ′
2, K

′
N). We then define the following

quantity AE to characterize the accuracy of the reconstructed eigenvalue spectrum:

AE =
R′

p

⋂

R′
t

R′
p

⋃

R′
t

=
min(KN , K

′
N)−max(K2, K

′
2)

max(KN , K ′
N)−min(K2, K ′

2)
. (3.4)

Here we use a continuous region instead of a set of individual eigenvalues of the cou-

pling matrix for the definition of the true region R′
t, because the necessary condition

for the system to be synchronizable is that all eigenvalues must be located in the

negative region of MSF Ψ(K). Since the MSF is not involved in the definition of AE ,

a convenient choice is to compare the region from the minimum nonzero eigenvalue

K2 to the maximum KN , which limits our discussion within the systems possessing

the type of MSF [see, e.g., Fig. 3.9(b)]. A representative plot of AE as a function of

Rm is shown in Fig. 3.5. We see that, the eigenvalue spectrum can be predicted accu-

rately when Rm exceeds about 35%, due to the low data requirement of compressive

sensing.
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Figure 3.6: For weighted, random networks of Hénon maps, prediction errors as
functions of the normalized data amount RM . The network size varies from 20 to
200, and all the networks tested have the same connection probability p = 0.04 with
weights distributed in [5 × 10−4, 10−3]. Each point is the result of averaging over
10 independent network realizations. The black solid line at ENZ = 0.01 is used to
indicate the critical data requirement RC for each case.

Similar results are obtained from networks of Hénon map systems. In the following

examples we discuss the effect of the network size and noise on system reconstruction,

and also the issue of computational time. To be illustrative, we assumed weighted

random networks with weights distributed in the range wij ∈ [5×10−4, 10−3] (so that

dynamical trajectories from the Hénon map do not diverge). The coupling function is

chosen to be linear, and it occurs between the x variables among the nodes. Applying

the compressive sensing algorithm allows us to infer the nodal dynamics and network

topology from the coefficients a.

The performance of our method with respect to different network size is an impor-

tant issue. As shown in Fig. (3.6), as the data amount Rm is increased, for different

network sizes ranging from N = 20 to N = 200, the normalized predicted errors Enz

approach zero, as indicated by the black solid line, suggesting that the system can be

reconstructed with high accuracy based on small amount of data, regardless of the
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Figure 3.7: For uniform measurement noise, prediction error Enz versus the normal-
ized data amount Rm, where the networks are the same as in Fig. 3.6. Each point is
the result of averaging over 10 different network realizations.

network size. While slightly more data are required for larger networks, the amounts

are still quite small, i.e., less than the total number of unknown coefficients in the

power-series expansion. We also find that the critical data ratio Rc, defined as the

relative data amount required to make the normalized predicted error Enz less than

a small threshold value (e.g., 0.01), decreases with the network size N . This is in ac-

cordance with the results in Fig. 3.4(a), since the degree of sparsity of the unknown

vector a increases with the random network size as the connection probability p is

fixed.

Another issue that we have studied is the effect of measurement noise on recon-

struction. In our framework, observations of the variable states in one measurement

are associated with the state of the system at the particular time, so measurement

noise can be quite important. Figure 3.7 shows the reconstruction result when addi-

tive noise of amplitude 5×10−5 is present. We see that compressive sensing is capable

of generating approximate solutions of the networked system even in the presence of
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Figure 3.8: For weighted, random networks of Hénon maps, (a) the average com-
putational time T (in an arbitrary unit) required for one variable on one node versus
the data ratio Rm, for fixed network size (N = 100), (b) T versus the network size
N for fixed Rm (0.75) for which accurate reconstruction can be achieved. For both
panels, 20 network realizations are used.

noise. The data amount required to reconstruct the network, however, tends to be

slightly larger than that in the case where no noise is present.

We have also considered the issue of computational time. In our method, the

main computational load lies in solving CS matrix optimization, which depends on

the number of unknown coefficients and the number of measurements. We first fix

the network sizes at N = 100 and record the computation time as the relative data
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amount Rm is changed. As shown in Fig. 3.8(a), the required time to reconstruct one

coefficient vector (for one variable of one node in the network) scales approximately

linearly with the data amount. Next we fix Rm and monitor the required computation

time as a function of the network size. For linear coupling, the number of unknown

coefficients is proportional to the network size N if it is sufficiently large. We set

Rm = 0.75 to ensure accurate reconstruction in each case, so the amount of data used

for reconstruction increases linearly with the number of unknown coefficients. Figure

3.8(b) shows the result, where the network size varies from N = 20 to N = 500. We

see that the required computation time indeed increases approximately linearly with

the number of unknown coefficients.

3.3.2 Prediction of Network Synchronizability from Data

A full reconstruction of nodal dynamics allows us to calculate the MSF Ψ as a

function of K ≡ ξµ for any given coupling scheme. To be illustrative, we calculate the

MSFs for four different coupling schemes (x → x, y → x, z → x, and z → z) for the

coupled network of Lorenz oscillators, as shown in Fig. 3.9. These coupling patterns

generate distinct behaviors of the MSF in terms of its number of zeros. If a region

of Ψ(K) < 0 exists, emergence of stable synchronization is likely for the oscillator

network, regardless of the network structure; otherwise synchronization is unlikely

for any network structure. In Fig. 3.9, for example, for the x → x coupling scheme,

there is a relatively large synchronization region for K beyond a critical value. For the

y → x scheme, a synchronization region exists but its size is not as large as that for the

case of x→ x coupling. For the z → z coupling scheme, there are in fact two separated

synchronization regions. In contrast, for the z → x coupling scheme, synchronization

is unlikely because Ψ(K) is positive for all values of K. A more systematic analysis

of the MSF behaviors for typical nonlinear oscillators can be found in Ref. [101]. The
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Figure 3.9: Comparison of MSFs calculated from predicted parameters (blue circles)
and from real ones (red lines) for the random Lorenz oscillator network. Panels (a-
d) are for coupling schemes x → x, y → x, z → x, and z → z, respectively. All
time-series data are generated by the same oscillator network as in Fig. (3.2).

excellent agreement between the true and predicted MSFs shown in Fig. 3.9 suggests

that our compressive-sensing based approach can lead to quite reliable estimate of

the MSF at a quantitative level. Likewise, the boundaries between synchronous and

asynchronous regions can also be precisely identified, rendering possible anticipation

of the emergence of synchronization in the underlying network system.

To quantify the performance of our method in identifying the synchronization

region, we define a measure of agreement, denoted by AM , between the predicted

and true synchronization region, as exemplified in Fig. 3.9(b) for the y → x coupling

scheme. Specifically, we denote the true synchronization region Rt by (Ka, Kb) in
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which the MSF is negative, and denote the predicted region Rp by (K ′
a, K

′
b). We thus

define

AM =
Rp

⋂

Rt

Rp

⋃

Rt

=
min(Kb, K

′
b)−max(Ka, K

′
a)

max(Kb, K
′
b)−min(Ka, K ′

a)
, (3.5)

where generally AM ≤ 1. Two extreme cases are AM = 0 when Rp

⋂

Rt = ∅, and

AM = 1 when Rp = Rt, which indicate perfect prediction. Results are shown in

Fig. 3.10, where AM approaches unity as the amount of measurement exceeds only

about 65% of the number of assumed coefficients to be predicted. For the case of

single intersection Ka of MSF with Ψ(K) = 0, as shown in Fig. 3.9(a) for the x→ x

coupling scheme, we can define an agreement measure in a similar way:

AM =
min(Ka, K

′
a)

max(Ka, K ′
a)
, (3.6)

where 0 ≤ AM ≤ 1. In cases where there are multiple synchronization regions, e.g.,

as happened for the z → z coupling scheme in Fig. 3.9 (d), the agreement measure

can be taken as the average of all measures, one calculated from each separate region.

3.4 Data-based Anticipation and Control of Network Synchronization

Based on the reconstructed network structure and dynamics, we now propose a

strategy to anticipate and control collective dynamics of complex oscillator networks.

The base of control is prediction of future behavior by decoding the available time

series at the present. If the natural dynamics in the future are undesirable, one can

implement certain control scheme to drive the system to avoid the undesirable state

before it occurs. This, however, requires relatively complete knowledge about the

networked dynamical system which, as we have demonstrated in Sec. 3.3, can be

achieved by exploiting the compressive-sensing paradigm.

To be concrete, we discuss the case where synchronization is a desirable state

of operation for the system, assuming that the system is not synchronized at the
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Figure 3.10: Measure of agreement of synchronization prediction AM as a function
of Rm for the MSF shown in Fig. 3.9(b), where the coupling scheme is y → x.

present. The first step is to determine, from currently available time series, whether

synchronization is intrinsically likely to emerge. An answer can be obtained by using

the reconstructed network structure and dynamics to estimate the network eigenvalue

spectrum and MSF. The answer can be affirmative, for example, if the MSF is pre-

dicted to be negative in an open generalized coupling-parameter interval. That the

system is not currently synchronized indicates that the normalized eigenvalue spec-

trum does not fall into the interval and, hence, suitable control can be applied to

rescale and shift the eigenvalue spectrum into the negative MSF interval. To illus-

trate this method, we use the network system of coupled chaotic Lorenz oscillators

in Sec. 3.3. Figure 3.11(a) shows some representative time series in a case where
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Figure 3.11: (a,b) Time series of y component for 10 of the N = 30 nodes in
two random networks of global coupling strength ξ = 1 and ξ = 1.6, respectively.
The network is not synchronized in (a) but there is synchronization in (b). Other
parameters are the same for both bases: connection probability p = 0.2 and the weight
distribution interval is [0.9, 1.0]. (c,d) Rescaled eigenvalues Ki(= ξµi) (denoted by
red circles) of the network coupling matrices with respect to the MSF (denoted by
black solid lines) inferred from the same nodal dynamics and coupling scheme from
the time series in (a,b), respectively.
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the network is not synchronized, and the corresponding MSF and eigenvalue spec-

trum calculated from the reconstructed network structure and dynamics are shown

in Figure. 3.11(c). We see that some values of K [data points in Figure. 3.11(c)],

the product between the coupling strength ξ and eigenvalues µ, are not located in

the synchronizable region as indicated by the MSF [curve in Figure. 3.11(c)]. Thus,

at the current parameter setting, synchronization cannot be realized in the system.

In order for synchronization to emerge, all K values must fall into a region where

the MSF is negative. A simple and practical way to manipulate K is to adjust the

coupling strength but to keep the nodal dynamics and network structure unchanged.

When the coupling strength ξ is modified, the network system can indeed achieve

synchronization, as shown by the synchronous time times in Figure. 3.11(b). Exami-

nation of the MSF and eigenvalue spectrum indicates that, indeed, in this case all K

values fall into the negative MSF interval. We stress that a prerequisite to this simple

control scheme is full knowledge of the network structure and dynamics which, as we

have demonstrated, can be faithfully reconstructed based solely on small amount of

data.

3.5 Conclusion and Discussion

Reconstructing dynamical systems based on time series is a problem of significant

interest with broad applications in many areas of science and engineering. However,

this problem has been outstanding in nonlinear dynamics because, despite previous

efforts [65] in phase-space reconstruction using the standard delay-coordinate em-

bedding method [63] to decode the topological properties of the underlying system,

how to accurately infer the underlying nonlinear system equations remains largely an

unsolved problem. In principle, a nonlinear system can be approximated by a large

collection of linear equations in different regions of the phase space, which can indeed
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be achieved by reconstructing the Jacobian matrices on a proper grid that covers

the phase-space region of interest [108, 109]. However, the accuracy and robustness

of the procedure are challenging issues, which include the difficulty associated with

the required computations. The recently emerged paradigm of compressive sensing

[22, 23, 24, 25, 26] provides a possible approach to addressing the dynamical-system

reconstruction problem [29, 30]. In particular, to be able to fully reconstruct dy-

namical systems using only time series data is based on the fact that the dynamics

of natural and man-made systems are determined by smooth enough functions that

can be approximated by finite expansions. The major task then becomes estimating

the coefficients in the series representation of the vector field governing the system

dynamics, for example, from a power-series expansion. In general, the power series

can contain high-order terms, and the total number of coefficients to be estimated can

therefore be quite large. This is a very difficult problem to solve, since large amounts

of data would be needed, making the computations extremely demanding. However,

most of these coefficients are either zero (or negligible), rendering sparse the vector

of coefficients and applicable of the compressive-sensing paradigm.

The main achievement of this paper is to extend our recently developed method

of reconstructing dynamical systems [29, 30] to complex weighted oscillator networks

and then to address the problem of forecasting collective dynamics. In general, to

predict the emergence of collective dynamics is an extremely difficult problem, and

it is necessary to focus on a relatively well understood type of collective dynam-

ics. We choose synchronization. We have detailed the basic principle of time-series

based prediction of synchronization in complex oscillator networks. We have also

demonstrated, using a prototype of oscillator networks with non-uniform coupling

strengths (so that the network is weighted), that our compressive-sensing approach

can indeed fully reconstruct the network structure and dynamics, based on which the
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emergence of synchronous dynamics can be anticipated. We have also articulated

and demonstrated a method, based on full reconstruction of complex networked dy-

namical system that is not yet synchronized, to make it synchronizable by parameter

adjustment.

We emphasize that a full reconstruction of a complex oscillator networked system

from time series is possible only when the system is not in synchronization, and the

information can then be used to forecast or anticipate synchronization in the future.

If the system is already synchronized, time series from different nodes are practically

identical so that it is not possible to reconstruct the network structure. However, there

may exist a solution to this problem. In particular, given a network system that is

already synchronized, we hypothesize using small, random, and rare perturbations to

disturb the system so that it desynchronizes temporally. Since the synchronization

state is stable, the system will settle back to being synchronous quickly. However,

the window of temporal desynchronization provides us with an opportunity to probe

the system structure. While the transient desynchronization phase may be short, our

compressive-sensing method can be particularly suitable because of the extremely low

data requirement.
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Chapter 4

DETECTING HIDDEN NODES IN COMPLEX NETWORKS FROM TIME

SERIES

4.1 Definition of Hidden Node Detection

The power of science lies in its ability to infer and predict the existence of objects

from which no direct information can be obtained experimentally or observationally.

A well known example is to ascertain the existence of black holes of various masses in

different parts of the universe from indirect evidence, such as X-ray emissions. In the

field of complex networks, the problem of detecting hidden nodes can be stated, as

follows. Consider a network whose topology is completely unknown but whose nodes

consist of two types: one accessible and another inaccessible from the outside world.

The accessible nodes can be observed or monitored, and we assume that time series are

available from each node in this group. The inaccessible nodes are shielded from the

outside and they are essentially “hidden.” The question is, can we infer, based solely

on the available time series from the accessible nodes, the existence and locations of

the hidden nodes? Since no data from the hidden nodes are available, nor can they

be observed directly, they act as some sort of “black box” from the outside world.

Despite recent works on uncovering network topologies [16, 17, 18, 20, 21, 29, 30],

to our knowledge, the problem of detecting hidden nodes in complex networks has

not been addressed. Solution of the problem, however, has potential applications in

different fields of significant current interest. For example, to uncover the topology of

a terrorist organization and especially, various ring leaders of the network is a critical

task in defense. The leaders may be hidden in the sense that no direct information
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about them can be obtained, yet they may rely on a number of couriers to operate,

which are often subject to surveillance. Similar situations arise in epidemiology, where

the original carrier of a virus may be hidden, or in a biology network where one wishes

to detect the most influential node from which no direct observation can be made.

In this paper, we present a completely data-driven, compressive-sensing based

[22, 31, 25, 26, 24] approach to inferring the existence and locations of hidden nodes

in complex networks. The general principle underlying our method can be understood

by referring to Fig. 4.1(a) where, for illustrative purpose, a network of 20 nodes with

directed interactions is shown. Suppose nodes No. 1−19 are accessible to the external

world, while node No. 20 (in gray) is hidden and thus inaccessible from the outside.

The hidden node has two neighbors: No. 9 and No. 18 (in green), and the remaining

17 nodes are marked as red. Every red node thus has the property that time series

from itself and all its neighbors are available, but for each green node, although

time series from itself is available, the same is not true for all its neighbors due to

its link with the hidden node. Generally, the time series can be regarded as being

generated by the combination of nodal and coupling dynamics, and one wishes to base

on the time series to predict the various dynamical equations so that the dynamical

processes on various nodes and the network topology can be uncovered. As we shall

demonstrate, for a given node, this can indeed be achieved provided that time series

from the node and all its neighbors are available. Referring to Fig. 4.1(a), this means

that the dynamical equations and the links from/to all red nodes can be predicted.

However, significant errors would arise in the prediction of the green nodes due to

incompleteness of information about their neighbors. By examining the prediction

errors of all accessible nodes, the ones that are connected to the hidden node will then

show anomalies, providing a way to infer its existence and location (e.g., connected

to the two green nodes in Fig. 4.1(a).
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4.2 Detect Hidden Node(s) Using Compressive Sensing

The paradigm of compressive sensing [22, 31, 25, 26, 24] aims to reconstruct a

sparse vector a ∈ RN from linear measurements M in the form M = G · a, where

M ∈ RK andG is anK×N matrix. The compressive sensing theory [22, 31, 25, 26, 24]

guarantees that, when most components in the unknown vector a are zero, it can be

reconstructed by fewer measurements than the number of components. The unknown

vector a can be solved, for example, by a convex optimization procedure based on L1

norm. Our recent work [29, 30] demonstrated that the problem of data-based network

reconstruction can be casted into the form of M = G · a.

We consider networked systems for which the nodal dynamics, described by the

vector function Fi(xi), can be separated from the interactions or coupling with other

nodes in the network, mathematically described by the coupling function Hij(xi,xj).

The system can then be written asMi = Fi(xi)+
∑N

j 6=iwijHij(xi,xj), whereMi is the

system response, either in discrete or continuous time. For example, for discrete-time

mapping system, Mi are the state variables at the next time step, while in continuous

systemMi are the derivatives of the corresponding variables. To illustrate our method

to detect hidden nodes in a concrete manner, we assume that the nodal and coupling

functions can be written as some series expansion, e.g., power or Fourier series. In

particular, we write: Fi(xi) =
∑

γ ã
(γ)
i g̃

(γ)
i (xi) and Hij(xi,xj) =

∑

β a
(β)
ij g

(β)
ij (xi,xj),

where g̃
(γ)
i are the expansion bases associated with xi only, and g

(β)
ij are with respect

to both xi and xj . Next we combine the bases g̃i(t) and gij(t) at time t into a row

vector, and the coefficients a
(α)
i and a

(β)
ij into a constant column vector. The time-

series vector of responses Mi(t) for node i can then be expressed by the product of
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the matrix Gi and the to-be-determined coefficient vector ai, with Gi given by

Gi =



















g̃i(t1) gi1(t1) · · · gij(t1) · · · giN (t1)

g̃i(t2) gi1(t2) · · · gij(t2) · · · giN (t2)

...
... · · ·

... · · ·
...

g̃i(tm) gi1(tm) · · · gij(tm) · · · giN(tm)



















, (4.1)

where g̃i(t) is the set of bases of Fi(xi), and gij(t) is the set of expansion bases of

Hij(xi,xj). Elements in the vector Mi(t) contain system response mi(t) at different t.

In particular, when the vector ai is determined by solving M = G · a, the dynamical

equations for the set of corresponding variables at all nodes become known. Note

that the vector ai contains all the coupling weights from other nodes to i as in gij(t)

and complete information about the nodal dynamical equations as in g̃i(t). Previous

works [29, 30] demonstrated that solutions to the compressive sensing problem can

be obtained but only when time series from all nodes are available, i.e., when there

is no hidden object.

To devise a compressive-sensing based methodology for detecting hidden nodes,

we consider the case of one hidden node (or one cluster of hidden nodes). Let node i

be one of the immediate neighbors of the hidden node. Due to lack of time series from

the hidden node, the form M = G ·a is violated for node i, despite the available time

series from other nodes in the network. That is, due to the missing time series from

the hidden node and consequently missing elements in a, it is not possible to obtain

the true solution of the dynamical equations of node i. If a node does not neighbor

any hidden node, time series from itself and all its direct neighbors are available,

rendering valid the form M = G ·a for such a node. The practical importance is that

the errors in the prediction of the dynamics of the immediate neighbors of the hidden

node will be much larger than those associated with nodes that do not have any

hidden node in their neighborhoods. The predicted characteristics of all neighboring
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(b)

(c) (d)

Figure 4.1: (a) Illustration of a complex network with a hidden node. (b) Represen-
tation of the true adjacency matrix, (c) reconstructed adjacency matrix elements for
nodes except the hidden node based on time series from these nodes. (d) Variance σ2

of the reconstructed coefficient vector a for all nodes, calculated by using 10 different
random segments from the available experimental time series. The variances of the
two green nodes (No. 9 and No. 18) are much larger than those of the red nodes,
indicating that they are the neighbors of the hidden node.
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nodes of the hidden node will then show significant anomalies as compared with those

of other nodes. The anomalies can then be used to identify all nearest neighbors of

the hidden node, which in turn imply its existence and its position in the network.

While our general idea of detecting hidden nodes can be formulated using differ-

ent types of dynamical systems, to be concrete we describe how this can be done

using evolutionary-game type of dynamics. Such dynamical processes can be used

to model generic agent-to-agent interactions in economical, social, or even certain

biological networks [110, 111]. In an evolutionary-game system, the neighbors of

the hidden node can be identified by utilizing the stability criterion with respect to

different measurements. More specifically, in an evolutionary-game system, at any

time a player can take on one of two strategies: cooperation (C) or defection (D),

mathematically represented as S(C) = (1, 0)T and S(D) = (0, 1)T , respectively. The

payoffs of the two players in a game are determined by their strategies and the payoff

matrix P. For example, for the classical prisoner’s dilemma game (PDG), the matrix

elements are P11 = 0, P12 = 0, P21 = b, and P22 = 0, where 1 < b < 2 is a parameter

characterizing the temptation to defect. At each time step, all agents in the network

play the game with their neighbors simultaneously and gain rewards. For agent i, the

reward is mi =
∑

j aijS
T
i PSj, where Si and Sj denote the strategies of agents i and

j taken at the time and aij is the coupling strength between them. After obtaining

its payoff, an agent updates its strategy according to its own and neighbors’ payoffs,

attempting to maximize its payoff at the next round. We assume that the strategy

and payoff data of agents are available except those of the hidden node. In particular,

we choose gij(t) = ST
i (t) · P · Sj(t) and ignore g̃i, the payoff of node i at different

time t can be expressed as Mi(t) = Gi · ai, where Gi is to be constructed as speci-

fied in Eq. (4.1), and the vector ai to be determined contains all interaction strength
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between nodes i and other accessible nodes in the network. The network structure is

uncovered after a’s for all nodes are determined.

4.3 Locate Hidden Node(s) in Social Networks

As an example, we present results of experimentally detecting a hidden node from

a social network hosting evolutionary-game dynamics. In the experiment, 20 par-

ticipants from Arizona State University played the prisoner’s dilemma game (PDG)

iteratively, with a pre-specified payoff parameter. The player with the highest nor-

malized payoff (total payoffs normalized by their degrees) summed over time was the

winner. The players can gamble with all their nearest neighbors in the pre-existing

social network [Fig. 4.1(a)]. The network was determined by surveying the friend-

ships among those participants, and it exhibits some typical properties of real social

network, such as the much larger degree in some hub nodes. During the experiment,

the strategies of each player and the gained payoff were recorded in all the 32 rounds,

except for the hidden node No. 20. The true adjacency matrix of accessible nodes is

represented in Fig. 4.1(b), and the predicted matrix is shown in Fig. 4.1(c). We see

that the links of the two neighboring nodes (No. 9 and No. 18) of the hidden node

No. 20 cannot be predicted. Especially, the two nodes are predicted to have links

with almost all nodes in the network, which is highly unlikely for a random network

that is typically sparse. While the predicted loss of sparsity of certain nodes is an

indication that they might be in the neighborhood of some hidden node, the condition

is not sufficient in general, because of the existence of hub nodes with significantly

more links than average in a complex network. Other conditions must then be sought

in order to identify the neighbors of the hidden nodes. Our idea is to exploit the

stability of the predicted solution with respect to different measurements used for

compressive sensing. In particular, for the neighboring nodes of the hidden node,
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due to the lack of information needed to solve the underlying compressive-sensing

problem, when different segments of the time series are used, the algorithm will yield

different coefficient vectors a. However, for a node not in the immediate neighbor-

hood of the hidden node, the predicted vector a should be the same for different

data segments, for the corresponding coefficients with the hidden node are zero. As

shown in Fig. 4.1(d), the variances in a of nodes No. 9 and No. 18 from a number

of predictions are much larger than those (essentially zero) of other nodes. Violation

of sparsity in combination with the instability of the predicted solution then allows

us to identify all neighbors of the hidden node, and consequently itself, with high

confidence.

To systematically characterize the accuracy and efficiency of our method to detect

hidden nodes, we calculate the prediction error of links of all nodes (except the hidden

node and its neighbors) in terms of the amount of required data. For an individual

node, the prediction error is defined as the ratio of the absolute difference between the

true adjacency matrix elements of all links associated with this node and the predicted

elements to the nonzero true element values. The average over all nodes, excluding

the neighbors of the hidden node, gives the total prediction error Enz. To explore

the effect of network size, we study networks of systematically varying size, ranging

from 20 to 200 nodes. Figure 4.2 shows, for networks of 60 nodes and 100 nodes,

Enz as functions of the required data, which are the number of measurements Nm

normalized by the number of terms Nnz +Nz in the unknown vector a. We see that,

for the network of 60 nodes, when the measurement ratio exceeds 0.4, Enz is close to

zero, demonstrating that 40% data is sufficient to reconstruct the links and detect the

location of the hidden node. For the network of 100 nodes, the data requirement is

slightly smaller because the unknown coefficient vector is sparser. To further explore

the relation between the data requirement and Nnz/(Nnz +Nz), the sparsity measure
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Figure 4.2: For directed, weighted random networks of 60 nodes and 100 nodes,
prediction error Enz as a function of the ratio Rm. The ratio Rc as a function of the
ratio Rnz ≡ Nnz/(Nnz+Nz) is shown in the inset. The average connecting probability
of the network is p = 0.04, and the link weights are uniformly distributed between 1
and 6. The error bars are calculated from 20 independent network realizations.

of the vector a to be predicted, we define a threshold of normalized measurement

Rc required for full reconstruction of the network dynamical system when the error

Enz is less than 10−2. The sparsity measure can actually be adjusted by varying the

network size while keeping the average node degree unchanged. As shown in the inset

of Fig. 4.2, we observe that, as a becomes more sparse, the measurement threshold

Rc is reduced accordingly. This also demonstrate the efficiency of our method for

different network scales. These results illustrate the power of our compressive-sensing

based method to locate hidden nodes with low data requirement.
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Figure 4.3: For a random network of 60 nodes in the presence of noise, prediction
error Enz as a function of normalized measurements Rm, after excluding neighbors of
the hidden node. Inset shows, for Rm = 0.5 as the arrow indicates, the variances of
the coefficient vectors for all the nodes. There is only one hidden node in all cases
and its neighborhoods are node No. 4, No. 14 and No. 30, which correspond to
the tall bars. Uniform noise of amplitude 1% is added to the payoff vector and the
measurement matrix.

We now address the effects of noise. As shown in Fig. 4.3, for a network of 60

nodes, the prediction errors decrease with the amount of the measurement data, with

relative error of about 10% in the weights of the existing links. In this case, the

links for all nodes except the neighborhoods of the hidden node are still predictable.

The variances of the predicted vectors, as shown in the inset of Fig. 4.3, are larger

compared with those in noiseless situation, but the neighborhoods of hidden node

still have significantly larger variances than the others, indicating that the hidden
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node can still be detected reliably when the noise amplitude is weak as compared

with the coupling strength of the hidden node. It is also possible to distinguish the

effects due to noise and hidden node. The idea is that, when a hidden node is present,

its influences on other nodes in the network are distinct, while the effect of noise on

different nodes is statistically uniform and independent.

While we have demonstrated the principle of detecting hidden nodes using the

setting of evolutionary-game dynamics, our formulation is general and applies to

other types of network dynamics. For example, we have applied our method to

detecting hidden node in networks with continuous-time oscillatory nodal dynamics

by expanding g̃i and gij into power series and obtaining a similar matrix G, where

the system response is the derivatives of the corresponding variables [29, 30]. The

unknown coefficients vectors a can then be solved, giving rise to full knowledge about

the nodal and coupling dynamics. By examining the variances in a, we can confirm

and locate precisely the location of the hidden node in the network. We have applied

our method to both continuous- and discrete-time oscillatory dynamics. Extensive

numerical tests indicate that the method is robust with respect to different complex-

network structures such as random, scale-free and clustered topologies, and large

variations in the network size as well.

4.4 Conclusion

In summary, we have developed a completely data-driven approach to detecting

hidden nodes in complex networks, which are inaccessible to external observation or

measurement. The basic idea is to locate the immediate neighbors of the hidden node

through reconstruction of the dynamical processes on these nodes that generate the

time series or data. Because of their direct links with the hidden node, information

used for the reconstruction is incomplete, leading to anomalies and instabilities in the
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prediction of their dynamics, which can then be used to infer that they are in the

immediate neighborhood of the hidden node. Our reconstruction process is based on

compressive sensing. Detecting hidden or black-boxed objects is an extremely chal-

lenging but fascinating task in science, and our work opens an avenue to addressing

this problem in complex network science and engineering.
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Chapter 5

INFERRING HIDDEN NODES IN COMPLEX NETWORK IN THE PRESENCE

OF NOISE

5.1 Hidden Node Detection in Noisy Environment

When dealing with an unknown complex system that has a large number of com-

ponents organized hierarchically and interacting with each other, curiosity demands

that we ask the following question: are there hidden objects that are not accessible

from the external world? The problem of inferring the existence of hidden objects

from observations is quite challenging but it has significant applications in many

disciplines of science and engineering. Here by “hidden” we mean that no direct

observation of or information about the object is available, and so it appears to the

outside world as a black box. However, due to the interactions between the hidden

object and other components in the system which are observable, it may be possible

to utilize “indirect” information to infer the existence of the hidden object and to

locate its position with respect to objects that can be observed. The difficulty to

develop effective solutions is compounded by the fact that the indirect information

on which any method of detecting hidden objects relies can be subtle and sensitive

to changes in the system or in the environment. In particular, in realistic situations

noise and random disturbances are present. It is conceivable that the “indirect” in-

formation can mix with that due to noise or be severely contaminated. The presence

of noise thus poses a serious challenge to detecting hidden nodes, and some effective

“noise-mitigation” method must be developed.

60



Figure 5.1: An example of a complex network with a hidden node. Time series from
all nodes except hidden node #20 can be measured, which can be detected when its
immediate neighbors, nodes #3 and #7 are unambiguously identified. Nodes #7,
#11, and #14 are driven by local noise sources.

To formulate the problem in a concrete way and to gain insights into the devel-

opment of a general methodology, we note that the basic principle underlying the

detection of hidden objects is that their existence typically leads to “anomalies” in

the information that can be directly accessed from the system. Simultaneously, noise,

especially local random disturbances applied at the nodal level, can also lead to large

variance in the directly available information. This is so because, a hidden node is

typically connected to a few nodes in the network that are accessible to the external

world, and a noise source acting on a particular node in the network may also be

regarded as some kind of hidden object. Thus, the key to any detection methodology

is to identify and distinguish the effects of hidden nodes on observable information

from those due to local noise sources.
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In this project, we focus on complex networks and develop a general method

to differentiate hidden nodes from local noise sources. This problem is intimately

related to the works on reverse engineering of complex networks, where the goal is

to uncover the full topology of the network based on simultaneously measured time

series [10, 11, 12, 13, 14, 15, 16, 17, 112, 18, 19, 20, 21, 104, 30, 27, 113]. Our method

to distinguish the effects of hidden node and local noise sources is based on the recent

work [85] on utilizing compressive sensing [31, 22, 114, 25] to detect hidden nodes

in the absence of such noise sources. To explain our method in a concrete setting,

we use the network configuration shown schematically in Fig. 5.1, where there are

20 nodes, the couplings among the nodes are weighted, and the entire network is

in a noisy environment, but a number of nodes also receive relatively strong random

driving. We assume an oscillator network so that the nodal dynamics are described by

nonlinear differential equations, and that time series can be measured simultaneously

from all nodes in the network except one, labeled as #20, which is a hidden node.

Detecting the presence and locating the position of the hidden node are equivalent

to identifying its immediate neighbors, which are nodes #3 and #7 in Fig. 5.1.

Note that, in order to be able to detect the hidden node based on information from

its neighboring nodes, the interactions between the hidden node and its neighbors

must be directional from the former to the latter or be bidirectional. Otherwise, if

the coupling is solely from the neighbors to the hidden node, the dynamics of the

neighboring nodes will not be affected by the hidden node and, consequently, time

series from the neighboring nodes will contain absolutely no information about the

hidden node, which is therefore undetectable. The action of local noise source on a

node is naturally directional, i.e., from the source to the node.

Our recent work [85] demonstrated that, when the compressive-sensing paradigm

is applied to uncovering the network topology [30], the predicted linkages associated
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with nodes #3 and #7 are typically anomalously dense, and this piece of information

is basically what is needed to identify them as the neighboring nodes of the hidden

node. However, the predicted linkages associated with the nodes driven by local

noise sources can exhibit behaviors similar to those due to the hidden nodes, leading

to significant uncertainty in the detection of the hidden node. To address this critical

issue is essential to developing algorithms for real-world applications, which is the aim

of this paper. Our main idea is to exploit the principle of differential signal and explore

the behavior of the predicted weights as a function of the amount of measurement.Due

to the advantage of compressive sensing, the required amount of measurement can

be quite small and, hence, even our method requires systematic increase of the data

amount, it will still be reasonably small. We shall argue and demonstrate that, when

the ratio of the predicted weights, which is essentially a kind of differential signal, is

examined, those associated with the hidden nodes and nodes under strong local noise

will show characteristically distinct behaviors, rendering unambiguous identification

of the neighboring nodes of the hidden node.

5.2 Methods

5.2.1 Compressive-sensing Based Method to Uncover Network Dynamics and

Topology.

We consider the typical setting of a complex network of N coupled oscillators in

a noisy environment. The dynamics of each individual node, when it is isolated from

other nodes, can be described as ẋi = Fi(xi) + ξηi, where xi ∈ Rm is the vector of

state variables, and ηi are an m-dimensional vector whose entries are independent

Gaussian random variables of zero means and unit variances, and ξ denotes the noise
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amplitude. A weighted network can thus be described by the following equation:

ẋi = Fi(xi) +
N
∑

j=1,j 6=i

Wij · [H(xj)−H(xi)] + ξηi, (5.1)

where Wij ∈ Rm×m is the coupling matrix between node i and node j, and H is the

coupling function. Defining

F′
i(xi) ≡ Fi(xi)−H(xi) ·

N
∑

j=1,j 6=i

Wij,

we have

ẋi = F′
i(xi) +

N
∑

j=1,j 6=i

WijH(xj) + ξηi, (5.2)

i.e., we have grouped all terms directly associated with node i into F′
i(xi). We can

then expand F′(xi) into the following form:

F′
i(xi) =

∑

γ

ã
(γ)
i · g̃

(γ)
i (xi), (5.3)

where g̃
(γ)
i (xi) are a set of orthogonal and complete base functions, which are chosen

such that the coefficients ã
(γ)
i are sparse. While the coupling function H(xi) can

be expanded in a similar manner, for simplicity we assume that they are linear:

H(xi) = xi. We then have

ẋi =
∑

γ

ã
(γ)
i · g̃

(γ)
i (xi) +

N
∑

j=1,j 6=i

Wij · xj + ξηi, (5.4)

where all the coefficients ã
(γ)
i and Wij need to be determined from time series xi. In

particular, the coefficient vector ã
(γ)
i determines the nodal dynamics and the weighted

matrices Wij’s give the full topology and coupling strength of the entire network.

Suppose we have simultaneous measurements of all state variables xi(t) and xi(t+

δt) atM different t values at interval ∆t apart, where δt≪ ∆t, so that the derivative

vector ẋi can be estimated at each time instant. Equation (5.4) for all the M time
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instants can then be written in a matrix form with the following measurement matrix:

Gi =



















g̃i(t1) x1(t1) · · · xk(t1) · · · xN (t1)

g̃i(t2) x1(t2) · · · xk(t2) · · · xN (t2)

...
... · · ·

... · · ·
...

g̃i(tM) x1(tM) · · · xk(tM) · · · xN(tM)



















, (5.5)

where the index k in xk(t) runs from 1 to N , k 6= i, and each row of the matrix is

determined by the available time series at one instant of time. The derivatives at

different time can be written in a vector form as Xi = [ẋi(t1), · · · , ẋi(tM)]T , and the

coefficients from the functional expansion and the weights associated with all links in

the network, which are to be determined, can be combined concisely into a vector ai,

as follows:

ai = [ãi,W1i, · · · ,Wi−1,i,Wi+1,i, · · · ,WN,i]
T . (5.6)

where [·]T denotes the transpose. For properly chosen expansion base and a general

complex network whose connections are typically sparse, the vector ai to be deter-

mined is sparse as well. Finally, Eq. (5.4) can be written as

Xi = Gi · ai + ξηi. (5.7)

In the absence of noise or if the noise amplitude is negligibly small, Eq. (5.7) represents

a linear equation but the dimension of the unknown coefficient vector ai can be much

larger than that of Xi, and the measurement matrix will have many more columns

than rows. .

5.2.2 Recovering Signal from Noisy Measurement with Compressive Sensing

Algorithm.

Conventional wisdom suggests then that the previous linear equation is ill defined.

However, since ai is sparse, insofar as its number of non-zero coefficients is smaller
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than the dimension of Xi, the vector ai can be uniquely and efficiently determined

by the compressive-sensing paradigm [31, 22, 114, 25].

In this linear equation X = G · a + ξ, the stable recovery of the P -dimension

sparse vector a is achievable, according to [22]. Here vector X ∈ RQ×1 and matrix

G ∈ RQ×P are given, but P ≪ Q. ξ is a Q-dimension random variable and satisfies

Gaussian distribution of zero mean and variance as σ. If the unknown vector a is

sufficiently sparse, we can reconstruct it by solving the following l1 regularization

problem:

min ‖a‖l1 , subject to ‖G · a−X‖l2 ≤ ǫ, (5.8)

where the l1 norm for a vector x is defined as ‖x‖l1 =
∑n

i=1 |xi|, and its l2 norm is

‖x‖l2 =
∑n

i=1 |x
2
i |. ǫ is the size of the error term ξ. The reconstructed vector ā is

proved to be within the noise level as ‖ā− a‖ ≤ C · ǫ, and C is a constant.

5.2.3 Detection of Hidden Node.

To motivate our consideration, we note that, a meaningful solution of Eq. (5.7)

based on compressive sensing requires the derivative vector Xi and the measurement

matrixGi be entirely known which, in turn, requires time series from all nodes. In this

case, we say that information required for reconstruction of the complex networked

system is complete. In the presence of a hidden node, for its immediate neighbors,

i.e., the nodes that are directly connected to it, the available information will not be

complete in the sense that some entries of the vector Xi and the matrix Gi become

now unknown. Let h denote the hidden node. For any neighboring node of h, the

vector Xi and the matrixGi in Eq. (5.7) now contain unknown entries at the locations

corresponding to the index h. For any other node not in the immediate neighborhood

of h, Eq. (5.7) is unaffected. When compressive-sensing algorithm is used to solve

Eq. (5.7), there will then be large errors in the solution of the coefficient vector ai
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associated the neighboring nodes of h, regardless of the amount of data used. In

general, the so-obtained coefficient vector ai will not appear sparse. Instead, most of

its entries will not be zero, a manifestation of which is that the node would appear to

have links with almost every other node in the network. In contrast, for nodes not in

the neighborhood of h, the corresponding errors will be small and can be reduced by

increasing the data amount, and the corresponding coefficient vector will be sparse. It

is this observation which makes identification of the neighboring nodes of the hidden

node possible in the noiseless or weak-noise situations [85].

To appreciate the need and the importance to distinguish the effects of hidden

node from these of noise, we can separate the term associated with h in Eq. (5.4)

from those with other accessible nodes in the network. Letting l denote a node in the

immediate neighborhood of the hidden node h, we have

Xl = G′
l · a

′
l + (Wlh · xh + ξηl), (5.9)

where G′
l is the new measurement matrix that can be constructed from all available

time series. While background noise may be weak, the term Wlh · xh can in general

be large in the sense that it is comparable in magnitude with other similar terms in

Eq. (5.4). Thus, when the network is under strong noise, especially for those nodes

that are connected to the neighboring nodes of the hidden node, the effects of hidden

node on the solution can be mixed up with those due to noise. Also, if the coupling

strength from the hidden node is weak, it will be harder to identify the neighboring

nodes. For example, hidden node in a network with Gaussian weight distribution

will be harder to detect, since the couplings to its neighbors are very likely small

thus the variances induced by it will be unsignificant, comparing to those induced by

background noise. See SI for details.
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5.2.4 Method to Distinguish Hidden Nodes from Local Noise Sources - a

Mathematical Formulation.

For simplicity, we assume that all coupled oscillators share the same coupling

scheme and that each oscillator is coupled to any of its neighbors through one com-

ponent of the state vector only. Thus, each row in the coupling matrixWih associated

with a link between node i and h has only one non-zero element. Let p denote the

component of the hidden node coupled to the first component of node i, the dynamical

equation of which can then be written as

[ẋi]1 = [
∑

γ

ã
(γ)
i · g̃

(γ)
i (xi)]1 + [

N
∑

k 6=i,h

Wij · xj]1 (5.10)

+ w1p
ih · [xh]p + ξηi,

where [xh]p is the time series of the pth component of the hidden node, which is

unavailable, and wzx
1k is the coupling strength between the hidden node and node i.

The dynamical equation of the first component of neighbor j of the hidden node has

a similar form. Letting

Ωij = w1p
ih/w

1p
jh, (5.11)

be the cancellation ratio, multiplying Ωij to the equation of node j, and subtracting

from it the equation for node i, we obtain

[ẋi]1 = Ωij [ẋj ]1 +
∑

γ

ã
(γ)
i · g̃

(γ)
i (xi) +

∑

k 6=i,h

w1p
ik [xk]p

− Ωij

∑

γ

ã
(γ)
j · g̃

(γ)
j (xj)− Ωij

∑

k 6=j,h

w1p
jk [xk]p

+ (w1p
ih − Ωijw

1p
jh) · [xh]p + ξηi − Ωijξηj. (5.12)

We see that terms associate with [xh]p vanish and all deterministic terms on the

left-hand side of Eq. (5.12) are known, which can then be solved by the compressive-

sensing method. From the coefficient vector estimated from Eq. (5.12), we can iden-
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tify the coupling of nodes i and j to other nodes, except for the coupling between

themselves since such terms have been absorbed into the nodal dynamics, and the

couplings to their common neighborhood are degenerate in Eq. (5.12) and cannot be

separated from each other. Effectively, we have combined the two nodes together by

introducing the cancellation ratio Ωij .

To give a concrete example, we consider the situation where each oscillator has

three independent dynamical variables, named as x, y and z. For the nodal and cou-

pling dynamics we choose polynomial expansions of order up to n. The x component

of the nodal dynamics [F′
i(xi)]x for node i is:

[F′
i(xi)]x =

n
∑

lx=0

n
∑

ly=0

n
∑

lz=0

[alxly lz ]x · x
lx
i y

ly
i z

lz
i ,

and the coupling from other node k to the x component can be written as

Cx
ik = wxx

ik · xk + wxy
ik · yk + wxz

ik · zk,

where wxy
ik denotes the coupling weight from the y component of node k to the x

component of node i, and so on. The nodal dynamical terms in the matrix Gi are

[g̃i]x = [x0i y
0
i z

0
i , x

1
i y

0
i z

0
i , · · · , x

n
i y

n
i z

n
i ],

and the corresponding coefficients are [alxlylz ]x. The vector of coupling weights is

[Wij]x = [wxx
ij , w

xy
ij , w

xz
ij ]. Equation (5.12) becomes



















ẋi(t1)

ẋi(t2)

...

˙xi(tM)



















≈ G ·







































Ωij

c

ã′
i

−Ωij · ã
′
j

wxx
i1 − Ωijw

xx
j1

...

wxz
iN − Ωijw

xz
jN







































, (5.13)
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where G has the following form:

G =



















ẋj(t1) 1 [g̃i(t1)]x [g̃j(t1)]x x1(t1) · · · zN(t1)

ẋj(t2) 1 [g̃i(t2)]x [g̃j(t2)]x x1(t2) · · · zN(t2)

...
...

...
...

... · · ·
...

ẋj(tM) 1 [g̃i(tM)]x [g̃j(tM)]x x1(tM) · · · zN (tM)



















, (5.14)

and c is the sum of constant terms from the dynamical equations of nodes i and j,

and ã′
i is the coefficient vector to be estimated which excludes all constants. Using

compressive sensing to solve Eq. (5.13), we can recover the cancellation ratio Ωij and

the nodal dynamic of node i. When Ωij is known we can then recover the dynamics

of node j from the coefficient vector −Ωij · ã
′
j
.

We further discuss the extension of this method to system of different nodal dy-

namics and of multiple hidden nodes, in the SI. We show that, our method can

manipulate systems of different nodal dynamics, even the derivatives are not defined.

For example, evolutional games on complex networks. We show in the SI that we can

use similar procedure, by replacing the derivatives to the observations, or the agent

payoffs, to exam the cancelling factors and further differentiate the hidden nodes from

local noise sources. We also show that when some requirements about the couplings

between two or more hidden nodes and their neighborhood are satisfied, we can in-

fer the canceling factors for their neighboring nodes, although they are affected by

multiple hidden nodes at the same time.

5.3 Results in Coupled Oscillator Networks

We present our results by using coupled oscillator networks. Given such a net-

worked system, we use compressive sensing to uncover all the nodal dynamical systems

and coupling functions [30]. This can be done by expanding all the functions into

series and calculating, from available time series, all the coefficients in the expan-
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sion. The expansion base needs to be chosen properly so that the number of non-zero

coefficients is small as compared with the total number Nt of coefficients. All Nt

coefficients constitute a coefficient vector to be estimated. The amount of data used

can be conveniently characterized by Rm, the ratio of actual numberM of data points

used in the reconstruction, to Nt. See Methods.

Our idea to develop an effective procedure to distinguish the effects of hidden

node and local noise sources is based on the following observation. Consider two

neighboring nodes of the hidden node, labeled as i and j. Because the hidden node

is a common neighbor of nodes i and j, the couplings from the hidden node should

be approximately proportional to each other, with the proportional constant deter-

mined by the ratio of their link weights with the hidden node. When the dynamical

equations of nodes i and j are properly normalized, the terms due to the hidden node

tend to cancel each other, leaving the normalization constant as a single unknown

parameter that can be estimated subsequently. We name this parameter cancellation

ratio and denote it by Ωij . As the data amount is increased, Ωij tends to its true

value. Practically we then expect to observe systematic changes in the estimated

value of the ratio as data used in the compressive-sensing algorithm is increased from

some small to relatively large amount. If only local noise sources are present, the ratio

should show no systematic change with the data amount. Thus the distinct behaviors

of Ωij as the amount of data is increased provides a way to distinguish the hidden

node from noise and, at the same time, to ascertain the existence of the hidden node.

A mathematical formulation of this general principle can be found in Methods.

We test our method to differentiate hidden nodes and noise using random networks

of nonlinear/chaotic oscillators. To be concrete, we choose the nodal dynamics to be

that of the Rössler oscillator, one of the classical models in nonlinear dynamics [115],
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which is given by

[ẋi, ẏi, żi] = [−yi − zi, xi + ayi, b+ zi(xi − c)],

where a = 0.2, b = 0.2, and c = 5.7 so that the system exhibits a chaotic attractor.

The size of the underlying network varies from 20 to 100, and the probability of

connection between any two nodes is 0.04. The network link weights are equally

distributed in [0.1, 0.5] (arbitrary). Similar results are also achievable on systems

of different network sizes, weight distributions and topologies, as discussed in SI.

Background noise, denoted as ξ is applied (independently) to every oscillator in the

network, whose amplitude is from 10−4 to 5 × 10−3, which is weaker in magnitude

than the average coupling strength. The tolerance of compressive sensing ǫ is adjusted

in accord with the noise strength. Time series are generated by using the standard

Heun’s algorithm to integrate stochastic differential equations. To approximate the

velocity field, we use third-order polynomial expansions in the compressive-sensing

formulation.

5.3.1 Detecting Hidden Node from Time Series.

As a concrete example, we consider the network of coupled Rössler oscillators in

Fig. 5.1, where background noise is present. Linear coupling between any pair of

connected nodes is from the z-component to the x-component. From the available

time series (nodes #1-19), we can solve the coefficient vector using some standard

compressive-sensing algorithm [116]. In particular, for node i, the terms associated

with couplings from the z-components of the other nodes appear in the ith row of the

coupling matrix. As shown in Fig. 5.2(a), when the amount of data is Rm = 0.7, the

network’s coupling matrix can be predicted. The predicted links and the associated

weights are sparse for all nodes except nodes #3 and #7, the neighbors of the hidden
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Figure 5.2: For the network in Fig. (5.1), (a) predicted coupling matrix for all nodes
except node #20. Time series from nodes #1 to #19 are available, while node #20 is
hidden. The predicted weights are indicated by color coding and the amount of data
used is Rm = 0.7. The abnormally dense patterns in the 3rd and 7th rows suggest
that nodes #3 and #7 are the immediate neighbors of the hidden node. (b) Variance
σ2 of predicted coefficients of all the accessible nodes, which is calculated using 20
independent reconstructions based on different segments of the data. The variances
associated with nodes #3 and #7 are apparently much larger than those of the other
nodes, confirming that these are the neighboring nodes of the hidden node. Their
gap can be illustrated with two dash lines in panel (b).
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node. While there are small errors in the predicted weights due to background noise,

the predicted couplings for the two neighbors of the hidden node, which correspond

to the 3rd and the 7th row in the coupling matrix, appear to be from almost all other

nodes in the network and some coupling strength is even negative. Such anomalies

associated with the predicted coupling patterns of the neighboring nodes of the hidden

node cannot be removed by increasing the data amount. However, it is precisely these

anomalies which hint at a strong possibility that these two “abnormal” nodes are

connected with a hidden node.

While abnormally high connectivity predicted for a node is likely indication that

it belongs to the neighborhood of the hidden node, in complex networks there are hub

nodes with abnormally large degrees, especially for scale-free networks [5]. In order

to distinguish a hidden node’s neighboring node from some hub node, we can use the

variance of the predicted coupling constants, which can be calculated from different

segments of the available data sets. Due to the intrinsically low-data requirement

associated with compressive sensing, the calculation of the variance is feasible because

any reasonable time series can be broken into a number of segments, and prediction

can be made with respect to each data segment. For nodes not in the neighborhood

of the hidden node, we expect the variances to be small as the predicted results

hardly change when different segments of the time series are used. However, for the

neighboring nodes of the hidden node, due to lack of complete information needed to

construct the measurement matrix, the variances can be much larger. Figure 5.2(b)

shows the variances σ2 in the predicted coupling strength for all 19 accessible nodes.

We observe that the variances for the neighboring nodes of the hidden node, nodes

#3 and #7, are all above as the upper dash line and significantly larger than those

associated with all other nodes, which are all below the lower dash line. This indicates

strongly that these are indeed the neighboring nodes of the hidden node. The gap
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between these two dash lines represents the significance of the effects brought by

hidden nodes. The larger the gap is, the more unequivocal it is to distinguish the

neighbors of hidden nodes from the normal nodes. The results in Fig. 5.2 thus indicate

that the possible location for hidden node(s) can be easily identified even in the

presence of weak background noise. The significance of hidden node will vary among

different systems. The variances introduced by hidden nodes are mainly determined

by the coupling strength from them, as it is shown in Fig.S? in SI. It is less relevant

to system sizes and coupling topologies as they are shown in SI.

The hidden node significance is also depended on the successful reconstructions of

all nodes that are not in the neighborhood of hidden nodes, which determine the lower

dash line. To quantify the reliability of the reconstruction results, we investigate how

the prediction error in the link weights of all accessible nodes except the predicted

neighbors of the hidden node changes with respect to data amount. For an existent

link, we use the normalized absolute error Enz, the error in the estimated weight with

respect to the true one, normalized by the value of the true link weight. Figure 5.3

shows the results for N = 100. All links take weights uniformly from [0.1, 0.5], and the

background noise is ξ = 10−3. The tolerance for compressive sensing is ǫ = 0.5, which

is the optimal when noise strength ξ = 10−3. Details about how to determine the

optimal tolerance for system of different noise strength be found in S.I. and Fig. S?.

We see that for Rm > 0.4, Enz decreases to the small value of about 0.01, which is set

by background noise. As Rm is increased, the error and the variance exhibit similar

values, indicating that the reconstructed results are stable. Although the value of

Enz does not decrease further toward zero due to noise, the prediction results are

reliable in the sense that the predicted weights and the real values match with each

other, as shown in the inset of Fig. 5.3, a comparison of the exact weights and the

predicted results for all existent links, illustrated by the x-axis and y-axis of dots in
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Figure 5.3: For random networks of 100 nodes and uniform weight distribution
in [0.1, 0.5], prediction error Enz associated with nonzero coefficients of dynamical
equations of all nodes except for the neighboring nodes of the hidden node, as a
function of normalized data measurements Rm. The background noise strength is
ξ = 10−3 for all nodes. All data points are obtained from 10 independent simulations.
Inset is a comparison of real and predicted weights for all existent links. Each dot
represents one existed link, and its x-axis is the real weight while the y-axis is the
corresponding predicted result. The color for each dot is determined by the dot
density around it, while the hot color represents high density. The arrow indicates
the value of Rm used for calculating the comparisons. The tolerance of compressive
sensing algorithm is ǫ = 0.5.
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the inset. We see that all the predicted results distributes around the real value, since

all dots stay around the diagonal curve y = x . The central region of dot distributions

have hotter color than the marginal part, which further confirm that the majority

of predictions are quite accurate, and only a small portion of predictions fall off the

real value. We further show in the SI that, stable reconstruction can be achieved on

various network sizes, connection topologies and weight distributions, when sufficient

measurement data are given.

5.3.2 Differentiating Hidden Node from Local Noise Sources.

When strong noise sources are present at certain nodes, the predicted coupling

patterns of the neighboring nodes of these nodes will show anomalies. (Here by

“strong” we mean that the amplitudes of the random disturbances are order-of-

magnitude larger than that of background noise.) We now demonstrate that our

proposed methodology based on the cancellation ratio is effective at distinguishing

hidden nodes from local noise sources, insofar as the hidden node has at least two

neighboring nodes not subject to such disturbances. To be concrete, we choose a

network of N = 61 coupled chaotic Rössler oscillators, which has 60 accessible nodes

and one hidden node (#61) that is coupled to two neighbors: nodes #14 and #20,

as shown schematically in Fig. 5.4. Assume a strong noise source is present at node

#54. We find that the reconstructed weights match their true values to high accuracy.

We also find that the reconstructed coefficients including the ratio Ωij are all con-

stant and invariant with respect to different data segments, there is strong indication

that the pair of nodes are the neighboring nodes of the same hidden node, thereby

confirming its existence.

When there are at least two accessible nodes in the neighborhood of the hidden

node which are not subject to strong noisy disturbance, such as nodes #14 and #20,
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Figure 5.4: Schematic illustration of a hidden node and its coupling configuration
with its two neighbors in a random network of N = 61 nodes with 60 accessible nodes,
which will be used to demonstrate our scheme to distinguish hidden node from local
noise sources. A strong noise source is present at node #54.

as the data amount Rm is increased towards 100%, the cancellation ratio should also

increase and approach unity. This behavior is shown by the open circles in Fig. 5.5(a).

However, when a node is driven by a local noise source, regardless of whether it is in

the neighborhood of the hidden node, the cancellation ratio calculated from this node

and any other accessible node in the network will show a characteristically different

behavior. Consider, for example, nodes #14 and #54. The reconstructed connection

patterns of these two nodes both show anomalies, as they appear to be coupled with

all other nodes in the network. In contrast to the case where the pair of nodes are

influenced by the hidden node only, here the cancellation ratio does not show any

appreciable increase as the data amount is increased, as shown by the crosses in

Fig. 5.5(a). In addition, the average variance of the predicted coefficient vectors of

the two nodes exhibits characteristically different behaviors, depending on whether
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any one node in the pair is driven by strong noise or not. In particular, for the

node pair #14 and #20, since neither is under strong noise, the average variance will

decrease toward zero as Rm approaches unity, as shown in Fig. 5.5(b) (open circles).

In contrast, for the node pair #14 and #54, the average variance will increase with

Rm, as shown in Fig. 5.5(b) (crosses). This is because, when one node is under

strong random driving, the input to the compressive-sensing algorithm will be noisy

and its performance will deteriorate. In particular, compressive sensing can perform

reliably when the input data are clean, even when they are sparse. Increasing the

data amount beyond a threshold is not necessarily helpful, but longer and noisy data

sets can degrade significantly the performance. The results in Figs. 5.5(a,b) thus

demonstrate that the cancellation ratio between a pair of nodes, in combination with

the average variance of the predicted coefficient vectors associated with the two nodes,

can effectively distinguish a hidden node from a local noise source. If there are more

than one hidden nodes, or cluster of hidden nodes, the procedure to infer the cancelling

factors is similar but requiring additional information about their neighboring nodes.

The applicability of the cancelling factor method can be extended to systems other

than continue oscillatory networks, such as evolutional game systems. See S.I. for

details.

5.4 Discussion

Our program to differentiate a hidden node from local noise sources and then to

infer its existence can be summarized into the following steps:

1. collect time series of all dynamical variables from accessible nodes;
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Figure 5.5: For the network described in Fig. 5.4, (a) Predicted values of the
cancellation ratio Ωij obtained from the differential signal of two neighboring nodes
of the hidden node (#14 and #20, indicated by circles) and from the differential signal
of nodes #14 and #54, where the latter is driven by noise of amplitude ξ = 10−2

(crosses). (b) Average variances of the predicted values in the coefficient vectors for
the two combinations. The background noise amplitude is ξ = 10−5. The results are
obtained from 20 independent realizations.
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2. hypothesize suitable expansion bases for nodal dynamics and coupling func-

tions taking advantage of physical understanding of the underlying networked

dynamical system;

3. construct the measurement matrix and derivative vector from time series, and

solve the expansion-coefficient vector using compressive sensing;

4. identify all nodes with abnormally dense connections, and calculate the corre-

sponding variances using independent segments of the available time series to

pick out the hub nodes in the network (for those nodes the variances will be

much smaller than those of the neighboring nodes of the hidden node or nodes

under strong local noise);

5. for all the remaining nodes with abnormally dense connections, calculate the

cancellation ratio for all possible node pairs and also the average variance of the

predicted coefficient vectors using independent time-series segments for a series

of systematically increasing values of the data amount Rm;

6. identify the neighboring nodes of the hidden node as those whose cancellation

ratios approach unity and the average variances tend to zero as Rm is increased.

For those pairs whose cancellation ratio does not increase and/or the average

variances do not decrease with Rm, one node in the pair is under the driving of

a local noise source.

Although our method can be applied to diverse network structure, coupling weight

distribution, and different dynamical system, there are still a number of limitations

with it, as follows.

1. for any accessible node in the network, time series of all dynamical variables are

required;
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2. reasonable knowledge about the underlying complex dynamics is needed, ren-

dering feasible choosing of a suitable expansion base such that the resulting

expansion-coefficient vector is sparse;

3. there must be only a single hidden node or a cluster of hidden nodes with

common neighborhoods. If multiple hidden nodes exist, each with its own set

of neighboring nodes, our method will work only if there is no overlap between

the neighboring sets. Otherwise it will fail.

4. There must be at least two nodes in the neighborhood of the hidden node which

are not subject to strong local noise.

Detecting hidden nodes in complex networks whose nodal dynamics, topology,

and coupling weights are unknown a priori has vast application potential, such as in

social and biological networks. While the limitations discussed above may present

a serious obstacle to applying our methodology in realistic situations of complex

dynamical networks, inferring the existence of hidden node in the presence of local

random perturbations is an extremely challenging problem. Our efforts represent a

small step forward in this area of research, where much further work is needed.
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Chapter 6

DATA BASED RECONSTRUCTION OF COMPLEX GEOSPATIAL NETWORKS

Complex geospatial networks, networks with components distributed in the real

geophysical space, are an important part of the modern infrastructure. Examples in-

clude large scale sensor networks and various subnetworks embedded in the Internet.

For such a network, often the set of active nodes would depend on time: the network

can be regarded as static only in relatively short time scale. For example, in response

to certain breaking news event, a communication network within the Internet may

emerge, but the network will dissolve itself after the event and its impacts fade away.

The connection topologies of such networks are usually unknown but in certain ap-

plications it may be desirable to uncover the network topology and to determine the

physical locations of various nodes in the network. Suppose time series or signals can

be collected from the nodes. Due to the distributed physical locations of the nodes,

the signals are time delayed. Is it possible to uncover the network topology, estimate

the time delays embedded in the signals from different nodes, and then determine

their physical locations? Another issue is the existence of hidden nodes, nodes from

which no signals can be collected. Can the existence of a hidden node be ascertained

and its location be determined?

Figure 6.1 illustrates a geospatial network. Assume there is a monitoring center

that collects data from nodes at various locations, but their precise geospatial coor-

dinates are unknown. The normal nodes are colored in green. There are also hidden

nodes that can potentially be the sources of threats (e.g., those represented by dark
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Figure 6.1: A schematic illustration of a complex geospatial network. The connec-
tion topology, the positions of the nodes in the physical space, and nodal dynamical
equations all are unknown a priori, but only time series from the nodes are available.
The challenges are to reconstruct the dynamical network, to locate the precise posi-
tion of each node, and to detect hidden nodes, all based solely on time series with
inhomogeneous time delays. The green circles denote “normal” nodes and the dark
circles indicate hidden nodes.

circles). The challenging task is to determine the network topology and to locate the

hidden nodes, based on time series or data only.

Data based reconstruction of complex networks in general is deemed to be an

important problem and has attracted continuous interest, where the goal is to un-

cover the full topology of the network based on simultaneously measured time se-

ries [12, 13, 11, 14, 117, 15, 16, 118, 17, 112, 18, 19, 113, 20, 21, 104, 119, 27, 120,

121, 122, 123, 124, 125]. For instance, methodology was proposed to estimate the

network topology controlled by feedback or delayed feedback [118, 119]. Network

connectivity can be reconstructed from the collective dynamical trajectories using re-

sponse dynamics [16, 104]. The approach of random phase resetting was introduced

to reconstruct the details of the network structure [20]. For neuronal systems, there

was a statistical method to track the structural changes [121, 123]. While many of

these previous works required complete or partial information about the dynamical

equations of the isolated nodes and their coupling functions, completely data-driven
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and model-free methods exist. For example, network structure can be obtained by

calculating the causal influences among the time series based on the Granger causality

method [117, 124], the transfer entropy method [122], or the method of inner com-

position alignment [21]. However, such causality based methods are unable to reveal

information about the nodal dynamical equations. There were also regression-based

methods [126] for systems identification based on, for example, the least-squares ap-

proximation through the Kronecker-product representation [82], which would require

large amounts of data.

In this project, we develop a methodology based on compressive sensing [25, 22,

114, 24] as a potential solution to estimating time delay and detecting hidden nodes in

complex geospatial networks. To be able to fully reconstruct dynamical systems using

only time series data is possible because the dynamics of many natural and man-made

systems are determined by smooth enough functions that can be approximated by

finite series expansions. The task then becomes that of estimating the coefficients

in the series representation of the vector field governing the system dynamics. In

general, the series can contain high order terms, and the total number of coefficients

to be estimated can be quite large. This is in general a very difficult problem to

solve. However, if most coefficients are zero (or negligible), the vector constituting all

the coefficients will be sparse. The problem of sparse vector estimation can then be

solved by the paradigm of compressive sensing [31, 22, 25, 26, 24] that reconstructs

a sparse signal from limited observations. Since the observation requirements can

be relaxed considerably as compared to those associated with conventional signal

reconstruction schemes, compressive sensing has evolved into a powerful technique

to obtain high-fidelity signals for applications where sufficient observations are not

available.
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The compressive sensing paradigm has recently been introduced to the field of net-

work reconstruction for discrete time and continuous time nodal dynamics [29, 30],

for evolutionary game dynamics [28], for detecting hidden nodes [85, 87], for predict-

ing and controlling synchronization dynamics [86], and for reconstructing spreading

dynamics based on binary data [127]. Differing from these existing works, the focus

of the present work is on estimating time delays of the dynamics on various nodes

using time series collected from a single location. While there were previous methods

of finding time delays in complex dynamical systems, e.g., based on synchroniza-

tion [128], Bayesian estimation [129], and correlation between noisy signals [120], our

compressive sensing based method provides an alternative approach that has the ad-

vantages of generality, low data requirement, and applicability to large networks. We

demonstrate that our method can yield estimates of the nodal time delays with rea-

sonable accuracy. After the time delays are obtained, the actual geospatial locations

of various nodes can be determined by using, e.g., a standard triangular localization

method [130]. We expect these results to be useful for applications such as identifying

and detecting/anticipating potential geospatial threats [131], an area of importance

and broad interest.

6.1 Results

Compressive sensing was developed to solve the following convex optimization

problem:

min ‖a‖1 subject to G · a = X, (6.1)

where a is a sparse vector to be solved, G is a (known) random projection matrix,

and X is a measurement vector that can be constructed from the available data, and

‖a‖1 =
∑N

i=1 |ai| is the L1 norm of vector a. Compressive sensing is a paradigm of

high-fidelity signal reconstruction using only sparse data [31, 22, 25, 26, 24], which
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was originally developed to solve the problem of transmitting massive data sets, such

as those collected from large-scale sensor arrays. In particular, because of the high

dimensionality, direct transmission of such data sets would require broad bandwidth.

However, there are common situations where the data sets are sparse. For example,

say a data set of N points is represented by an N × 1 vector, a, where N is a large

integer. Since a is sparse, most of its entries are zero and only a small number of k

entries are non-zero, where k ≪ N . One can use a random matrix G of dimension

M×N to obtain anM×1 vector X: X = G·a, whereM ∼ k. Because the dimension

of X is much smaller than that of the original vector a, transmitting X would require

much smaller bandwidth, provided that a can be reconstructed at the receiver end of

the communication channel.

For our problem of reconstructing complex geospatial networks with time delay,

the task is to formulate the problem into the standard compressive sensing form

Eq. (6.1). This can indeed be done, e.g., for oscillator networks with weighted inter-

actions and inhomogeneous time delays. After obtaining the time delays, a standard

triangular localization method [130] can be employed to locate a large portion of

nodes in the network, given that the locations of a small subset of nodes are known.

A hidden node can also be detected. All the details can be found in Methods.

6.1.1 Reconstruction of Geospatial Networks Based on Compressive Sensing

To be concrete, we present results for continuous-time oscillator networks with

time delayed couplings [132, 133], where for every link, the amount of delay is pro-

portional to the physical distance of this link. Consider a link lij connecting nodes i

and j. The weight and time delay associated with this link are denoted as wij and τij ,

respectively. For a modern geospatial network, the speed of signal propagation is that

of light in a proper medium (e.g., optical fiber). The time delay can thus be assumed
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to be small and we can use the Taylor expansion to express the delay coupling terms

in the networked dynamical system to the first order, e.g., xi(t− τji) ≈ xi(t)− τjiẋi,

where ẋi is the time derivative. In a suitable mathematical basis, the nodal dynamical

equations, the coupling and time delayed terms all can be expanded into series, and

the our goal is to estimate all the expansion coefficients. In our formulation of the

compressive sensing framework (see Methods), the coefficients associated with the

nodal dynamical equations, the network link-weights, and time delays are contained

in the vector A = {Ai}, B = {Bi}, and C = {Ci}, respectively. The amount of data

required depends on the system size and the order of the series expansions, which

can be small as compared with the dimension of the coefficient vectors for properly

chosen mathematical base.

After obtaining the time delays, we proceed to determine the actual positions of

all nodes. If time series are collected simultaneously from all nodes, the estimated

coupling delay τij associated with the link lij is proportional to the physical distance

dij = dji of the link. However, in reality strictly synchronous data collection is not

possible. For example, if the signals are collected, e.g., at a location s outside the

network with varying time delays τsi, the estimated delays associated with various

links in the network are no longer proportional to the actual distances. As we explain

in Methods, the varying delays due to asynchronous data collection can be canceled

and the distances can still be estimated as dij = (c/2)(τij+τji), where τij is the signal

delay associated with node j from the reconstruction of node i, vice versa for τji, and

c is the signal propagation speed.

When the mutual distances between nodes have been estimated, we proceed to

determine the actual locations of the nodes, e.g., by using the standard triangular

localization algorithm [130]. This method requires that the positions of NB reference

nodes be known, the so-called beacon nodes. Starting from the beacon nodes, the
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Figure 6.2: Illustration of our method to reconstruct a complex geospatial network
from time series. (a) For any node, time series of its dynamical variables are collected
at w different instants of time. (b) The corresponding derivatives are approximated
using the standard first order Gaussian method, which are needed in constructing
the compressive sensing equations. (c,d) An example of link weights and time delays
obtained from the reconstructed coefficient vectors, respectively. (e) Given the posi-
tions of four beacon nodes (marked as red rectangles), the locations of the remaining
nodes (marked as black circles) are determined by using a standard triangularization
method. The blue arrows indicate the estimation errors, which point from the actual
to the estimated positions. The various coupling terms are illustrated using gray
lines. There are in total 30 nodes in the network, connecting with each other via the
scale free topology. The average outgoing degree is five. The amount of data used is
Rm = 0.5.

triangulation algorithm can locate all nodes that are connected to the beacon set

with more than three links. The beacon node set can then be expanded with the

newly located nodes. The process continues until the locations of all nodes have been

determined, or no new nodes can be located. See Methods.

Our numerical experiments are set up, as follows. We assume all nodes are dis-

tributed in a two dimensional square of unit length. The network topology can be

either scale free [5] or random [105], and the network size is varied. For proof of princi-

ple, we consider coupled nonlinear oscillator networks by placing, at each node, a non-

linear oscillator, e.g., the Rösseler oscillator, mathematically described by the follow-
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ing set of three first-order differential equations: [ẋ, ẏ, ż] = [yz, x+0.2y, 0.2x+z(x0.2)].

The coupling weights are asymmetric and uniformly distributed in the interval [0.1,

0.5]. We assign a small threshold to the estimated weight as w0 = 0.05 (somewhat

arbitrary), where if the estimated weight is larger (smaller) than w0, the correspond-

ing link is regarded as existent (nonexistent). We have dij = c · τij = c · τji and

choose c to be 100 (arbitrarily). Without loss of generality, we choose the coupling

functions to be linear and for a pair of connected nodes, the interaction occurs be-

tween the z-variable of one node and the x-variable of another. The time series used

to reconstruct the whole network system are acquired by integrating the coupled de-

layed differential-equation system [134] with step size 5 × 10−5. The vector fields

of the nodal dynamics are expanded into a power series of order lx + ly + lz ≤ 3.

The derivatives required for the compressive sensing formulation are approximated

from time series by the standard first order Gaussian method. To quantify the data

requirement, we define Rm as the ratio of the number of data points used to the total

number of unknown coefficients to be estimated. The beacon nodes are chosen to be

those having the largest degrees in the network, and their positions are assumed to

be known.

Figure 6.2 summarizes the major steps required for reconstructing a complex

geospatial network using compressive sensing. For illustrative purpose, we use a

network of N = 30 nodes that are connected with each other in a scale free manner.

Oscillatory time series are collected from each node, from which compressive sensing

equations can be obtained, as shown in Figs. 6.2(A) and 6.2(B). The reconstructed

coefficients for the nodal dynamical equations, as explained in Methods, contain the

coupling weights Bij = wij and the delay terms Cij = −wij × τij . The links with

reconstructed weights larger than the threshold w0 are regarded as actual (existent)

links, for which the time delays τij can be estimated as τij = −Cij/wij. Repeating this
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procedure for all nodes, we can determine the weighted adjacency matrix (that defines

the network topology) and the time delay matrix. The estimated adjacency matrix

and the time delays are displayed in Figs. 6.2(C) and 6.2(D), respectively, which match

well with those of the actual network. We note that the reconstructed time delays are

symmetric with respect to the link directions, as shown in Fig. 6.2(D), which is correct

as they depend only on the corresponding physical distances. With the estimated

time delays, we choose the four largest degree nodes, node #1 ∼ #4, as the beacon

nodes, so that the locations of all remaining nodes can be determined. The fully

reconstructed geospatial network is shown in Fig. 6.2(E), where red rectangles indicate

the locations of the beacon nodes. The black circles denote the actual locations of the

remaining nodes and the heads of the blue arrows indicate their estimated positions,

so shorter arrows mean higher estimation accuracy. The amount of data used is

relatively small: Rm = 0.5.

6.1.2 Performance Analysis with Respect to Weight and Time Delay Estimates

The performance of our compressive sensing based approach to reconstruction of

geospatial networks can be assessed by calculating the errors in the estimated weights

and time delays. We define two types of errors: those associated with nonzero terms

(existing links, denoted as Wnz and Dnz for weight and time delay, respectively), and

those associated with zero terms (non-existing links, Wz and Dz). In particular, Wnz

is the error between the estimated and the true weight for an existent link, normalized

by the latter, while Wz is the average absolute error associated with the original zero

terms in the coefficients. Similar meanings hold for Dnz and Dz.

We first study the general behavior of the estimation errors with respect to varying

data amount, Rm. Representative results are shown in Fig. 6.3 for Rm = 0.3 and

Rm = 0.5, where panels (A) and (B) are for errors in the weight and time delay
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Figure 6.3: Error analysis of network reconstruction and delay time estimation.
(A) Predicted incoming coupling strengths for all nodes for Rm = 0.3 and Rm = 0.5
on a logarithmic scale. The green and orange dots represent the weights of existent
and non-existent links, respectively. (B) Predicted coefficients for the nonzero delay
coupling terms Cij, marked as green dots, in comparison with the estimated values for
zero terms (marked as orange dots). (C) Errors in the estimate of the coupling weights
associated with existent and non-existent links, Wnz and Wz (inlet), respectively,
versus the data amount Rm. (D) Errors in the estimated time delays, where the terms
associated with non-zero delay coefficients Cij are normalized by the corresponding
weights Bij. The coefficients associated with zero terms (without normalization) are
shown in the inlet. The green and orange curves represent results obtained from
networks of size N = 30 and N = 60, respectively. All errors are obtained by
averaging over 20 independent network realizations. The black arrows indicate the
Rm value used to calculate the results in panels (A) and (B).
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Figure 6.4: Effect of the amount of time delay on reconstruction performance. For
networks with uniform time delays, errors of predicted weights (A) and delays (B)
versus the length of the actual time delay in the network. Shown in (A) are the
normalized errors associated with the nonzero terms in the weights, for several values
of Rm. In (B), the errors are associated with the time delays of the existent links.
Random networks of size N = 100 and connection probability of P = 0.04 are used.
The results are from three different time series segments, as marked with different
symbols. Each data point is the result of averaging over 10 network realizations.

estimation, respectively. For small data amount (left column), the gap between the

weights for existent and non-existent links are not well defined, especially for nodes

of large degrees. As Rm is increased, the two kinds of weights can be unequivocally

distinguished, making possible identification of the existent links (middle column).

Ensemble averaged errors in the estimated weights and time delays versus Rm are

shown in Figs. 6.3(C) and 6.3(D), respectively. Note that, in Fig. 6.3(D), the terms

associated with non-zero coefficients Cij are adjusted by the corresponding weights

Bij to compensate the actual coupling delays and the absolute errors associated with

the zero coefficients, as shown in the inlet of Fig. 6.3(D), are the averages of the

corresponding absolute values of the cij terms. A general observation is that the

various errors decrease rapidly as the data amount is increased, a distinct feature of

compressive sensing.
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In our mathematical formulation of the compressive sensing based method, the

terms containing the time delays are expanded to first order only. The methodology,

as it stands now, thus applies to systems with small time delays. To determine an

upper bound of the time delay, below which the whole system including various time

delays can still be reconstructed faithfully, it is necessary to assess the dependence

of the estimation errors on the amount of the time delay. Figures 6.4(A) and 6.4(B)

show, for the special case of uniform time delay, errors Wnz and Dnz versus τ , re-

spectively. We see that the weight errors increase monotonically with τ , especially

for τ > 10−2. However, the time delay errors reach minimum for τ ≈ 10−2 and begin

to increase as τ is increased further. For relatively large time delays, the first-order

Taylor expansion becomes less accurate, leading to large errors in the weight and time

delay estimation. For small delays, the error in Dnz is due to the finite step size used

in integrating the delay differential equations.

How does the performance depend on the network size and other characteristics

such as the link density? Figure 6.5 shows, for random networks of varying size N

and average connection probability P , the errors Wnz and Dnz. Specifically, for each

pair of nodes in the network, their connection probability is given by pij ∼ p0/d
2
ij,

where dij is the distance between them, and p0 is a normalization constant used to

fix the average connection probability as P . In this type of “normalized” networks,

nodes have a larger tendency to connect to the nearby nodes, as in a real geospatial

network. In Figs. 6.5(A) and 6.5(B), the network size varies from N = 30 to N = 100

while the connection density remains fixed at P = 0.04. The errors are illustrated

using different colors. When the data amount Rm is increased, the errors decrease

rapidly and approach a small constant value when Rm exceeds a certain critical value.

We find that optimal reconstruction performance can be achieved for smaller values

of Rm for networks of larger size than those of smaller size, indicating that accurate
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Figure 6.5: Effect of network size on reconstruction performance. (A,B) Errors
associated with nonzero terms of weights Wnz and time delays Dnz, respectively, as
the network size N is increased (left to right), for increasing data amount (bottom
to top). The networks are random with fixed link probability P = 0.04. Cold colors
represent small errors. (C,D) Errors in the weights (panel C) and delays (panel D)
versus the connection probability P for fixed N = 30. All results are obtained by
averaging over 20 independent network realizations.
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reconstruction of a larger network requires relatively smaller ratio of measurements

to the number of unknown coefficients, although the absolute data amounts are larger

than those for smaller networks. This is so because, as N is increased, the density of

nonzero terms in the dynamical equations and coupling functions decreases for fixed

connection density.

As the connection probability P is increased, e.g., from 0.02 to 0.2, for fixed

network size (e.g., N = 30), larger data amount is required for reasonably accurate

reconstruction, as shown in Figs. 6.5(C) and 6.5(D). This is consistent with previous

results on reconstruction of complex networks without time delays [29, 30], a feature

of the compressive sensing based method.

6.1.3 Error Analysis of Triangulation Algorithm for Nodal Positioning in the

Geophysical Space

To locate all nodes in a two-dimensional space requires knowledge of the positions

of at least three nodes (minimally four nodes in the three-dimensional space). Due

to noise, the required number of beacon nodes will generally be larger. Since node

positioning is based on time delays estimated from compressive sensing, which con-

tain errors, the number of required beacon nodes is larger than three even in two

dimensions. To quantify the positioning accuracy, we use the normalized error Mr,

defined as the medium distance error between the estimated and actual locations for

all nodes (except the beacon nodes), normalized by the distributed length L. Fig-

ure 6.6 shows Mr versus the fraction RB of the beacon nodes. The reconstruction

parameters are chosen such that the errors in the time delay estimation is Dnz ≈ 0.12.

For small values of RB, the positioning errors are large. Reasonable positioning errors

are obtained when RB exceeds, say, 0.2.
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Figure 6.6: Positioning errors. Normalized positioning error Mr, defined as the
medium absolute estimated distance error normalized by the distributed length L, as
a function of the fraction RB of the beacon nodes. The networks have the scale free
topology with the average outgoing degree k = 5. Two values of the network size
are used: N = 30 and N = 60. The beacon nodes are chosen as these having the
largest degrees. The time delays are estimated using the data amount Rm = 0.5, for
which the average error is Dnz ≈ 0.12. The results are obtained by averaging over 10
independent network realizations.
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Figure 6.7: Detection of hidden nodes in geospatial networks. For a random network
of N = 30 nodes, illustration of detecting a hidden node (#30). (A) Reconstructed
time delays using time series from 29 externally accessible nodes. (B) Average vari-
ance in the reconstructed incoming coupling delays calculated from different segments
of the available time series. (C) Estimated positions of all accessible nodes in com-
parison with the respective actual positions, and the location of the hidden node.
The triangles denote the beacon nodes, whose positions are known a priori. The
green circles denotes “normal” nodes without any hidden node in their immediate
neighborhoods, while the cross are direct neighbors of the hidden node. The actual
position of the hidden node #30 is marked as a dashed square.

6.1.4 Locating Hidden Node in a Geospatial Network.

To demonstrate the our compressive sensing based approach can be used to as-

certain the existence of a hidden node and to estimate its physical location in a

geospatial network, we use the model random network in Fig. 6.5. A node is re-

garded as “hidden” when no time series or other type of direct information can be

obtained from it. To detect a hidden node, it is necessary to identify its neighboring

nodes [85]. For an externally accessible node, if there is hidden node in its neighbor-

hood, the corresponding entry in the reconstructed adjacency matrix will exhibit an

abnormally dense pattern or contain meaningless values. In addition, the estimated

coefficients for the dynamical and coupling functions of such an abnormal node will

typically exhibit much larger variations when different data segments are used, in

comparison with those associated with normal nodes that do not have hidden nodes
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in their neighborhood. The mathematical formulation of our method to uncover a

hidden node can be found in Methods. Initially, there are only 29 time series, one

from each of the normal node, and it is not known a priori that there would be a

hidden node in the network. We proceed to reconstruct the network to obtain the

estimated weights and time delays, as shown in Fig. 6.7(A). From the results, we find

that the connection patterns of some nodes are relatively dense and the values of

weights and time delays are meaningless (e.g., negative values), giving the first clue

that these nodes may be the neighboring nodes of some hidden node. To confirm that

this is indeed the case, we divide the available time series into a number of segments

under the criterion that the data requirement for reconstruction is satisfied for each

segment. As shown in Fig. 6.7(B), we observe extraordinarily large variances in the

estimated coefficients associated with the abnormal nodes. Combining results from

Figs. 6.7(A) and 6.7(B), we can claim with confidence that the four nodes are indeed

in the immediate neighborhood of the hidden node, ascertaining its existence in the

network.

While the results from Figs. 6.7(A) and 6.7(B) confirm the existence of a hidden

node in the network, its geophysical location is still unknown. Note that each of the

neighboring nodes of the hidden node is connected to a number of “normal” nodes in

the network. We can then use the standard triangularization procedure to determine

the locations of all the “abnormal” nodes. Since a geospatial random network has

the property that nodes tend to connect with physically nearby nodes, we can deduce

that the hidden node must be in the geographical vicinity of the abnormal nodes. In

the example in Fig. 6.7, the hidden node (#30, represent by the red square) must

then stay near its neighboring nodes (nodes #2, #15, #20 and #27, represented by

red crosses), as shown in Fig. 6.7(C), where the normal nodes that are not in the

neighborhood of the hidden node are denoted by green circles.

99



6.2 Methods

6.2.1 Mathematical Framework for Reconstructing Coupled Oscillator Networks

with Time Delay.

As proof of principle, we present our reconstruction framework using continuous

time oscillator networks. There are N oscillators in the network, and the dynamical

process on each node is described by a set of coupled ordinary differential equations

(ODEs). (A similar framework can be formulated for other types of dynamical pro-

cesses, such as evolutionary games [28].) The system can be written as

ẋi = Fi[xi(t)] +

N
∑

j=1,j 6=i

Wij [xj(t− τij)− xi(t)], (6.2)

for i = 1, . . . , N , where xi ∈ Rm is them-dimensional state variable of node i, Fi[xi(t)]

is the vector field for its isolated nonlinear nodal dynamics, and the interaction weight

between nodes i and j is given by the m × m weight matrix Wij ∈ Rm×m with

its component wp,q
ij representing the coupling from the qth component of node j to

the pth component of node i. Let the time delay associated with the existent link

between nodes i and j be τij , regardless of the specific coupling channel between some

dynamical variable of node i and some variable of node j. For simplicity, we assume

linear coupling functions and causality so that all τij (i, j = 1, . . . , N) are positive.

We regroup all terms directly associated with node i into F′
i[xi(t)], where

F′
i[xi(t)] ≡ Fi[xi(t)]− xi(t) ·

N
∑

j=1,j 6=i

Wij, (6.3)

and we expand F′
i[xi(t)] into the following series form:

F′
i[xi(t)] =

∑

γ

α̃(γ) · g̃(γ)[xi(t)], (6.4)

where g̃(γ)[xi(t)] represents a suitably chosen set of orthogonal and complete base

functions such that the coefficients α̃(γ) are sparse. To proceed, we approximate
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xj(t− τij) as

xj(t− τij) ≈ xj(t)− τijẋj(t), (6.5)

so all the coupling terms with inhomogeneous time delays associated with node i can

be written as

[
N
∑

j=1,j 6=i

Wijxj(t− τij)]p ≡
N
∑

j=1,j 6=i

[bijxj(t) + cijẋj(t)], (6.6)

where bij = Wij and cij = −Wijτij . Equation (6.2) can then be written in the

following compact form:

ẋi(t) =
∑

γ

α̃(γ) · g̃(γ)[xi(t)] +

N
∑

j=1,j 6=i

[bijxj(t) + cijẋj(t)], (6.7)

which is a set of linear equations, where α̃(γ), bij and cij are to be determined. If the

unknown coefficient vectors can be reconstructed accurately, we will have complete

information about the nodal dynamics as represented by F′[x(t)], the topology and

interacting weights of the underlying network as represented by Wij, as well as the

time delays associated with the nonzero links because of the relations Wij = bij and

τij = −cij/bij .

As an illustrative example, we consider the case where each individual nodal dy-

namical system is three-dimensional with variables x, y and z. For the first component

xi of node i, we have the following series expansion at time t:

ẋi = (ãi)000 · x
0
i y

0
i z

0
i + · · ·+ (ãi)333 · x

3
i y

3
i z

3
i + (bi1)1x1 + (bi1)2y1

+ (bi1)3z1 + · · ·+ (biN)1xN + (biN)2yN + (biN)3zN + (ci1)1ẋ1

+ (ci1)2ẏ1 + (ci1)3ż1 + · · ·+ (ciN)1ẋN + (ciN)2ẏN + (ciN)3żN ,

where bii and cii are excluded. The formula contains three parts: the power series of

isolated nodal dynamics with coefficients ãi, terms of all other coupled nodes’ variables

with coefficients bij , and terms of derivatives of the coupled nodes as represented by
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cij . Assuming that measurements xi(t), yi(t) and zi(t) at a set of time instants

t1, t2, · · · , tw are available, we write

Ai(t) = [xi(t)
0yi(t)

0zi(t)
0, · · · , xi(t)

3yi(t)
3zi(t)

3],

Bi(t) = [x1(t), · · · , xN (t), y1(t), · · · , yN(t), z1(t) · · · , zN(t)],

and

Ci(t) = [ẋ1(t), · · · , ẋN(t), ẏ1(t), · · · , ẏN(t), ż1(t) · · · , żN (t)]

to obtain a compact expression

X = G · ai + ξ, (6.8)

where

X =



















ẋi(t1)

ẋi(t2)

...

ẋi(tw)



















=



















Ai(t1) Bi(t1) Ci(t1)

Ai(t2) Bi(t2) Ci(t2)

...
...

...

Ai(tw) Bi(tw) Ci(tw)































ãi

bi

ci













+ ξ, (6.9)

and ξ represents the error introduced by the series approximation.

In general, the connection pattern of a complex network is far sparser than the

all-to-all coupling configuration, so typically most elements of [ãi,bi, ci]
T are zero. In

addition, the error ξ is small and can be regarded as a noise term.

6.2.2 Compressive Sensing Algorithm in Presence of Noise

The compressive sensing algorithm can be used to solve a sparse vector a from

the ill-conditioned linear equation under noise: X = G · a + ξ, where ξ is a random

process. Reliable recovery of the sparse vector a can be achieved [31, 22, 25] by

solving the following l1 regularization problem:

min‖a‖l1 , subject to ‖G · a−X‖l2 ≤ ε, (6.10)
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where l1 norm for a vector x is defined as ‖x‖l1 =
∑n

i=1 |xi| (its l2 norm is ‖x‖l2 =

∑n

i=1 |x
2
i |) and ε is a threshold value determined by the noise amplitude. The recon-

structed vector ā lies within the range: ‖ā− a‖ ≤ C · ε, where C is a constant.

In order to apply the compressive sensing algorithm to solve Eq. (6.9), the re-

stricted isometric property must be ensured, which can be realized by normalizing

each column of the matrix G by the L2 norm of that column: (G′)ij = (G)ij/L2(j)

with L2(j) =
√

∑M

i=1 [(G)ij ]2. We thus have X = G′ · u′ with u′ = uL2. After u′ is

determined through some standard compressive-sensing algorithm, the coefficients u

are given by u′/L2. Substituting ai, bij and cij back into Eq. (6.7), we obtain the the

nodal dynamics, coupling weights and the delays associated with the first dynamical

variable of node i. For the remaining two variables for this node and all variables for

other nodes in the network, a similar procedure can be followed.

6.2.3 Triangle Localization Method

Given the positions of k reference nodes (or beacon nodes) (xk, yk), and their

distances di,1, di,2, · · ·di,k to the target node i, we can calculate the position of node i

using the triangular localization method [130], for k larger than the space dimension.

In general, we will need to solve the least squares optimization problem H · xi = b,

where xi = [xi, yi]
T is the position of node i, and H = [x1,x2, · · · ,xk]

T is the position

vector corresponding to the set of beacon nodes, where b = 0.5 × [D1, D2, · · · , Dk]
T

and Dk = d2ik − y2k + x2k. Here [. . . ]T means transpose.

To locate the positions of all nodes in the network, we start with a small set of

beacon nodes whose actual positions are known and the distances associated with

all links in the network. Initially we can locate the nodes that are connected to at

least three nodes in the set of beacon nodes, insofar as the three reference nodes

are not located on a straight line. When this is done, the newly located nodes can
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be added into the set of reference nodes and the neighboring nodes can be located

by the new set of beacon nodes. We iterate this process until the positions of all

nodes are determined or no more qualified neighboring nodes can be found. For a

general network, such initial beacon sets may not be easily found. A special case

is scale free networks, for which the initial beacon set can be chosen as these nodes

with the largest degrees. For a random network, we can also choose the nodes of the

largest degree as the initial beacon node set, and use a larger beacon set to locate

most of the nodes in the network. If the network topology is not known, we use the

following simple method to select the set of beacon nodes: we estimate the distances

from one node to all other unconnected nodes using the weighted shortest distance

and then proceed with the triangular localization algorithm. There are alternative

localization algorithms based on given distances, e.g, the multidimensional scaling

method [135, 136].

6.2.4 Asynchronous Data Collection

In real applications, the requirement to collect time series simultaneously will

usually not be met. Consider the typical situation where the data are collected from

a fixed external node, denoted by s, which has varying distances to the signal sources.

The signals that arrive at the external node at time t were actually sent out by the

sources at time t− τis, where τis is the varying transmission delay associated with the

distances from node i to s. In general, τis is unknown a priori because the location

of node i needs to be determined.

In the reconstruction of the dynamical process and connections associated with

node i, the time series substituted into Eq. (6.7) are in fact xi(t− τis) and xj(t− τjs),

for j = 1, 2, · · · , N and j 6= i. The delay coupling terms can approximated as

xj(t− τis − τij) = xj(t− τjs − τis − τij + τjs) ≈ xj(t− τjs)− τ ′ijẋj(t− τjs),
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where τij is the actual delay, and τ ′ij is the estimated delay. From Taylor expansion

we have τ ′ij = τis − τjs + τij . Similarly, for node j, the estimated delay is τ ′ji =

τjs−τis+ τji. Because τij = τji, we can eliminate the effect of τis and τjs by averaging

the two estimated delays, as τij = τji = (τ ′ij + τ ′ji)/2. After we obtain the time-delay

matrix {τ ′ij}, we can convert its elements into the actual elements so as to obtain the

corresponding distances {dij}.

6.2.5 Locating a Hidden Node in a Random Geospatial Network

We proceed to reconstruct the network using our compressive sensing framework,

treating the system as if there was no hidden node. As demonstrated in Fig. 6.7,

the neighboring nodes of the hidden node will exhibit abnormally dense connection

patterns. We then use multiple time series segments to calculate the variance in the

reconstructed coefficient vectors for all nodes. In particular, the variance σi associated

with node i is defined as

σi =

√

√

√

√

1

T

T
∑

t=1

1

N

N
∑

k=1

(wik − w̃ik)2,

where T is the number of data segments used, N is the network size, w̃ij is the

average weights over T realizations. The variance associated with the time delays

can be calculated in a similar way. The neighboring nodes of the hidden node are

those with abnormally dense connection patterns and significantly larger variances

than others.

6.3 Discussion

Given that data are available from a large number of components of a complex

networked system which are distributed in the geophysical space, can the network

structure be reconstructed, the locations of all nodes be determined, and hidden
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nodes be detected and ascertained? We address these related issues by developing a

compressive sensing based approach. In particular, assume that time series or signals

from nodes in the network are collected at a single location. Our approach enables not

only the network topology to be reconstructed, but also the various time delays of the

signals from distinct nodes be estimated. A standard triangularization procedure can

then be used to determine the locations of the nodes in the geospatial network based

on the time delay estimates. We also demonstrate that the existence of a hidden

node, from which no signal or time series is externally accessible, can be inferred and

ascertained by identifying all nodes in its immediate neighborhood. The location of

the hidden node can then be estimated, as nodes in a geospatial network tend to be

locally connected.

We stress that, for data based reconstruction of complex geospatial networks, a

significant challenge is that the available time series are time delayed, due to the

finite speed of physical signals. One unique contribution of the present work, which

goes beyond those of previous works on compressive sensing based reconstruction of

complex networks [29, 30, 28, 85, 87, 127], is demonstration that inhomogeneous time

delays in a complex network can be estimated reliably using compressive sensing.

With information about the time delays, one can determine the geophysical locations

of the nodes.
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Chapter 7

CONTROL CELL FATE DIFFERENTIATION

7.1 Cell Fate Determination in Synthetic Gene Networks

Controlling nonlinear complex systems is an essential scientific problem that at-

tracted much attention. However, most works focus on the linear control scheme

which does not apply to nonlinear systems. In this article, we develop a nonlinear

control scheme in the light of the attractor network which depicts the hidden geom-

etry of the nonlinear dynamical system from the viewpoint of control utilizing bifur-

cation processes. We firstly identify a universal set of elementary controls associated

with temporary (or short-term) single parameter adjusting, each of which induces the

spontaneous transition of the system from one state (attractor) to the other through

bifurcation. Then, combining all the possible elementary controls together, we gener-

ate an attractor network of the system, in which each node corresponds to an attractor

and the weighted directed link between a given pair of attractors represents the ele-

mentary control that realizes the transition from the origin to the target. In the light

of a clear geometry of attractor network, the controllability of the system is vividly

visualized. Furthermore, the experimentally realizable control strategy to steer the

system among attractors can also be designed accordingly, which just requires tempo-

rary control signal upon parameters (rather than the unpractical direct interference

to the state of the system). Further interesting issues such as the efficiency or cost

of control paths, and the weighted-shortest path can also be evaluated. Examples

from paradigm model systems of gene regularity networks, real biosystems and the

related experiments all approve the effectiveness of our nonlinear control scheme.
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The attractor network framework provides a method to measure the controllability

of high-dimensional nonlinear systems, and moreover, supports as a realistic criterion

for nonlinear control to biosystem, technical system, or even social systems.

In a demonstration of how a GRN can be used to investigate an intricate network

property, here, we use synthetic biology approaches to explore possible mechanisms

for stochastic and irreversible cell fate determinations in a multistable system. First

we combined experimental characterization and mathematical modeling to calibrate

dynamic parameters of three different mutual inhibitory gene networks constructed

using our previously developed promoter library approach [39]. With the aim to

initialize the cell population on the basin boundary, we utilized the natural regulation

machinery for galactose metabolism in yeast to completely shut off the synthesis of all

proteins in the synthetic network in glucose-supplemented media, and hence initialize

the system close to the basin boundary. The predicted stochastic differentiation was

then experimentally verified in all three gene networks by moving the cells, after initial

growth to steady state in glucose-supplemented media, to galactose-supplemented

media with the TetR-inhibitor anhydrotetracycline (ATc) to ensure bistability.

7.2 Results

7.2.1 Bistable Regions Located by Showing Hysteresis

Each multistable gene network can be viewed as an energy potential landscape

with multiple local minima, each representing one specific cellular state, i.e. cell

fate [49]. Cells operate on these landscapes and eventually settle into one of the

minima, choosing their cell fates until they transition to another state in response to

a perturbation, signal, or even inherent noise. Which local minimum a cell settles

into depends largely on where the cell starts its growth on this landscape, i.e. its
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Figure 7.1: Bistable systems experimentally verified by showing hysteresis. A. When
fluctuations of movements (inherent noise) are small, initial conditions of free moving
marbles (colored dashed circles) on a bistable energy landscape can determine their
final steady states (solid circles, analogous to GFP ON and mCherry ON states of
our synthetic gene network). However, when the initial conditions are on the tip of
barrier between two local minima (black circle), the marble will drop into one of the
two local minima randomly (suggested by black arrows), even with minimal amount of
noise. B. The schematic diagram of an engineered yeast mutual inhibitory network.
LacI and TetR proteins repress each others expression. yEGFP and mCherry are
also under control of these promoters and hence indicate the abundance of LacI and
TetR proteins. ATc inductions can be used to block TetR (see SI for details).C. Left
bound (L) of the bistable region is plotted versus right bound (R) in log scale for
all three strains. Blue crosses represent experimentally observed values and colored
dots represent model fitted (red) or predicted (green) values. Each dot represents
a prediction by one parameter set. Overlap of dots and crossed shows accuracy
of predictions. D.E.F. Average green fluorescence of gated cells (pre-treated with
250 ng/ml ATc) at steady states are plotted as diamonds for three different strains.
Similarly, data for cultures first treated with no ATc are marked as circles. In all three
strains, there is a range where the same dose of ATc induction produces different levels
of yEGFP, the sign of hysteresis. Colored shaded regions indicate experimentally
observed (D) or model predicted (E, F) bistable region for each strain. In D, Red
arrows in point to two data points of TXLX with 8 ng/ml ATc induction, whose
full histograms are shown in Fig. 7.2B in purple and green. Choices of L and R are
illustrated on the x-axis.
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initial conditions. Typically when inherent noise is not too strong, such cell fate

determination is fairly predictable and deterministic, depending on initial conditions

(Fig. 7.1A, green and red circles). However, when the initial conditions happen to be

on the boundary between local minima, the eventual outcome of the cell could become

stochastic, regardless of how weak inherent noise is. This is analogous to uncertain

marble movements when placed on the top of the barrier between two local minima

(Fig. 7.1A, black circle). Such physical intuition has not, however, been observed or

realized in either natural or engineered biological systems.

To investigate the possibility of initial condition-dependent random cell fate de-

termination, we choose to use the simplest multistable biological systems, bistable

gene networks, to test this hypothesis in cells. Based on our previous work of an

engineered yeast GRN with a mutual inhibitory motif [39], three modified versions

were constructed with both yeast enhanced green fluorescent protein (yEGFP) and

mCherry red fluorescent protein as reporters for LacI and TetR (Fig. 7.1B and S1).

To verify bistability and determine the optimal dosage of inducer for balanced steady

states, we first tested the gene network TXLX. In this synthetic gene network, the

repressors, TetR and LacI, inhibit the expression of each other by binding to their

corresponding operator sites, Otet and Olac, placed within engineered GAL1 promot-

ers [39]. The promoters were chosen from our previously generated promoter library

[39]. In this library, a GAL1 promoter with Otet operator site (labeled TX) was

engineered to form the foundation of 20 variants (labeled T1 to T20). Similarly, a

library of LacI controlled promoters (labeled LX and L1 to L20) was also engineered.

All of these promoters can be regulated by corresponding repressors and only differ

in their maximal expression levels and leakage under repression. The choices of pro-

moter combinations therefore fully determine network characteristics. As readouts,

fluorescent protein reporters are under control of TX and LX promoters for all three
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strains tested so that they can track LacI and TetR dynamics and also generate strong

signals.

Two sets of experiments are designed to demonstrate that the system is capable of

hysteresis, an indicator of bistability [36, 41]. Because we previously showed that the

networks exhibit the default state of TetR ON (GFP OFF) [39] and IPTG would have

no effect at steady state, here we chose ATc inductions as the tuning parameters to

probe the systems bistability region. TXLX cultures treated with full ATc induction

(250 ng/ml) in galactose-supplemented media for 48 hours were re-diluted into media

containing 0, 2, 4, 6, 8, 10, 50, 100, and 250 ng/ml of ATc. Using flow cytometry, mea-

surements of yEGFP were taken after the fluorescence levels become stable in each

condition (diamonds in Fig. 7.1D. See SI for experimental details). It can be seen

that full ATc induction successfully tilts the balance towards LacI and produced LacI

dominant cell cultures (high yEGFP expression). It is also clearly demonstrated that

the cultures remain LacI dominant after growth in media with the ATc concentration

as low as 4 ng/ml, but fail to maintain the state with 0 and 2 ng/ml ATc induction.

Meanwhile, similar experiments were also carried out for cultures treated with no ATc

induction for 48 hours. Cells were also re-diluted into media containing various doses

of ATc and yEGFP expressions were measured (circles). It can be seen that with no

ATc induction, the gene network is TetR dominant (low yEGFP expression). Even

with increased doses of ATc induction, cell cultures with up to 10 ng/ml inductions

remains low on yEGFP expressions, while only demonstrate increased yEGFP ex-

pression with greater than 10 ng/ml ATc inductions. Taken together, it can be seen

that, with ATc inductions between approximately 3 and 13 ng/ml, the gene network

responds to ATc inductions in an initial condition-dependent fashion, demonstrating

hysteresis and hence verifying bistability (see also Fig. S4).
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Experimental data were used by the mathematical model to calibrate parameters

to accurately locate the bistable region (Blue cross and red dots in Fig. 7.1C. See sec-

tion II of SI for details about parameter fitting.). This fully quantitative description

of our gene networks makes it possible to predict bistable regions for other gene net-

works. Using calibrated parameters and only adjusting promoter strengths to reflect

different constructs, bistable regions are predicted for network T18LX (green dots

in Fig. 7.1C and shade in Fig. 7.1E) and T7L18 (green dots in Fig. 7.1C and shade

in Fig. 7.1F). To test the accuracy of model predictions, similar experiments were

conducted to test hysteresis and locate bistable regions for both constructs. As illus-

trated in Fig. 7.1E, the construct of T18LX shows a bistable region approximately

between 30 and 150 ng/ml ATc, while the construct of T7L18 show a bistable re-

gion approximately between 0.6 and 4 ng/ml ATc (Fig. 7.1F). The fact that both

experimental measurements are consistent with model predictions demonstrates the

predictive power of our model and also builds a solid foundation for further predictions

with gene expression stochasticity taken into account.

7.2.2 Model Predicts Ways to Achieve Stochastic and Irreversible Cell Fate

Determination

With parameters fitted against experimental data, the model is numerically mapped

into a quasi-potential that directs evolution of protein abundances (Fig. 2A). The

potential at each point is defined as the trajectory length from this point to its final

steady state without stochasticity [137]. Analogous to a marble moving in a land-

scape in response to gravity, protein abundance changes are directed by the vector

field (illustrated as white arrows, see SI and Fig. S7 for details), which is different from

gravitational forces as explained in [138]. This map visualizes a more complete picture

of a bistable landscape where the dark blue basin bottoms represent two stable steady
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states while other regions represent slopes directing the system to the steady states.

This saddle-like landscape has one ridge and one valley visualized as white dashed

and solid lines, which are known mathematically as the manifolds of this dynamical

system [139]. While the latitudes on the solid line form a double-well potential as

depicted in Fig. 7.1A, the dashed line is the basin boundary, mathematically termed

the separatrix, that divides the landscape into two basins with separate local minima.

Cells initialized within each basin should eventually settle into respective basin bot-

toms. The intersection of the ridge and valley (marked by a black arrow) corresponds

to the barrier tip in Fig. 7.1A, mathematically known as the unstable steady states

(USS) [139]. As hypothesized above, cells initialized at USS could show random cel-

lular state determination even with minimal level of stochasticity. However, such a

specific initial condition is difficult to realize experimentally despite careful parameter

calibrations because initialization at this point requires complete and accurate control

of protein abundances in a living cell, which is non-trivial to achieve using chemical

inductions.

The vector field ensures that trajectories initialized near the ridge will follow it

approaching the USS [139]. Therefore we hypothesize that, given some stochasticity,

cells initialized on or near the separatrix would first approach the USS along the ridge

and then diverge randomly to different cellular states. This eliminates the need to be

initialized exactly on the USS for stochastic differentiation. To computationally test

this hypothesis, the model was expanded to incorporate gene expression stochasticity

using the Gillespie algorithm [140] to simulate the temporal dynamics of cellular state

determination. It can be seen in Fig. 7.2A that two isogenic cells (illustrated as two

solid lines) starting from the same initial condition (no LacI and no TetR) near the

separatrix first follow similar trajectories approaching the unstable steady states and

then diverge onto distinct trajectories and finally different cellular states, two separate
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Figure 7.2: Model-predicted stochastic cell fate determination and experimental
verifications. A. Based on the ODE model with 8 ng/ml ATc induction, deriva-
tives of state variables are mapped onto an energy quasi-potential landscape that
directs the systems evolution. Altitude is color-mapped with cold color indicating
lower energy potential. The dashed and solid white lines illustrate the location of the
ridge and valley in the landscape. The black arrow indicates the location of unsta-
ble steady state. Trajectories of two identical stochastic simulations from the same
(0,0) initial conditions are superimposed onto this landscape as solid lines, which are
also color-coded to match corresponding single cell fluorescence signal as the cells
LacI and TetR concentrations evolve along the landscape. White arrows illustrate
the vector field. Landscapes with different doses of inductions are included in Fig.
S9. B. Simplified schematics of complete inhibition of GAL1 and UAS regulated
genes by glucose culturing. C. After initial growth in glucose-supplemented media to
reach log phase, cultures were grown in galactose-supplemented media without ATc
induction (pink) and with 250 ng/ml ATc (green) for 48 hours before being moved
into galactose-supplemented media with 8 ng/ml ATc until steady state. These two
cultures showed different levels of fluorescence, suggesting hysteresis, but similar ho-
mogeneous response with a unimodel distribution. Cells moved into the same final
condition directly from glucose-supplemented media, however, showed bimodal dis-
tribution (gray curve), suggesting an initially uniform population diverged into two
distinct populations with either low or high fluorescence outputs, consistent with
stochastic simulation predictions.

local minima colored in dark blue. The coloring of the solid lines representing changing

color of detectable fluorescence reporter signals. After reaching steady state, one cell

will emit a strong red fluorescence signal and the other cell will emit a strong green

fluorescence signal. This result computationally verified the hypothesis that as long

as initial conditions are on or near the separatrix, isogenic cells can randomly settle

into different cellular states even with low-level stochasticity.
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To further study cellular state determination when initial conditions are not in

close proximity to the basin boundary, stochastic simulations were carried out with

initial conditions further away from the basin boundaries. It is shown that, from

these initial conditions, distinct and isogenic cells always settle into the same steady

state despite the same model parameters and noise levels (Fig. S8). This prediction

is also consistent with experiments in the hysteresis experiments. Flow cytometry

data collected in Fig. 7.1D all illustrate uni-modal distributions, indicating all cells

homogeneously settled into one state (Fig. S10).

7.2.3 Experimental Validations Exploit Natural Yeast Metabolism Regulatory

Mechanisms

The challenge of testing our hypothesis is experimental realization of specific initial

conditions on the basin boundary. Imperfect regulation by inducers and some leaky

expression of all genes in the network when in galactose-supplemented media make it

difficult to realize such initial conditions. Here we choose to utilize the natural yeast

glucose-galactose metabolism switch mechanism to help us achieve the specific initial

condition of no LacI and no TetR in the cell, which is (0,0) on Fig. 7.2A and, based

on the model predictions, resides on the basin-boundary of the landscape.

The promoter library core to our GRN is based on the GAL1 promoter, which has

been characterized extensively by others [141] and has the ability of being tightly-

inhibited when glucose is present as the only carbon source. In the presence of glucose

and absence of galactose, galactose metabolism in yeast is completely turned off by

the natural GAL metabolic regulatory network, which coordinates expression and

repression of GAL promoters via upstream activating sequences (UAS) (Fig. 7.2B).

For our GRN, glucose strongly represses all promoters and results in no expression

of any gene within our engineered network. As experimentally illustrated in Fig.

115



S11, expression of yEGFP is fully-repressed, comparable to blank control, in the

presence of glucose as the only carbon source, with significantly reduced detection of

fluorescence compared to when repressed in galactose-supplemented media without

any ATc. Growing our engineered yeast constructs in glucose-supplemented media

therefore essentially places these systems on the (0,0) coordinate of LacI-TetR levels,

and this will become a point on the basin boundary when the cells are transitioned

into galactose-supplemented media with appropriate ATc induction concentrations.

In addition to galactose in the media, it is also shown in Fig. 7.1D that a specific

range of ATc concentrations are needed for our systems to be bistable. Numerical

simulations also suggest that the stochastic cell fate determination is the most pro-

nounced, i.e., with the highest possibility of being experimentally realized, when the

separatrix divide the whole LacI-TetR space into two basins with roughly equal ar-

eas. Such requirements typically can be achieved through tuning of levels of inducers.

Therefore, we chose 8 ng/ml as the ATc concentration to test the hypothesis because

it is about half way between lower and upper bounds of bistability. TXLX cells

initially grown in glucose-supplemented media were washed and directly moved into

galactose-supplemented media with 8 ng/ml ATc induction. Flow cytometry mea-

surements were taken after 60 hours growth (Fig. 7.2C, gray curve). It can be seen

that isogenic cells from the same initial conditions formed two distinct populations

expressing completely different levels of yEGFP, one with low expression and one

with high expression. In comparison, cells grown in galactose-supplemented media

with and without ATc inductions before being moved into galactose-supplemented

media plus 8 ng/ml ATc inductions only have homogeneous expressions of yEGFP

(Fig. 7.2C, green and pink histograms), demonstrating the irreversibility of cell fate

choices. Prolonged growths for all three strains were also carried out and further

verified the permanency of such cell fate decisions (Fig. S12). Despite the same in-
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ductions of galactose plus 8 ng/ml ATc for all three samples at the end, cells chose

clearly different states depending completely on their initial conditions. Starting from

high yEGFP expression, cells will remain in this state; starting from low expression,

cells will remain in the low state; starting from the basin boundary, cells will choose

high or low expression state stochastically.

To verify that this stochastic cell fate determination is not gene network depen-

dent, similar experiments were carried out for two other versions of the yeast bistable

gene network: T7L18 and T18LX. As suggested by hysteresis experiments and model

predictions, 1.5 ng/ml and 80 ng/ml were chosen for T7L18 and T18LX, respec-

tively, as ATc dosage to form bistable cell fate landscapes. Starting from (0,0) initial

conditions realized by growth in glucose-supplemented media, both networks showed

well-pronounced bimodal distribution after growth in galactose with respective ATc

dosages (Fig. S12), suggesting stochastic cell fate choices. This verifies that as long

as cells are initialized on the basin boundary of a multistable system, stochastic

cell fate determination can be robustly demonstrated. In addition, each network is

tested with ATc induction outside the bistability region and showed only uni-modal

distribution (Fig. S12). This verifies that a proper multistable landscape is also a

necessary condition for random cell fate choices. In addition, it can be seen that

even with large abundance of proteins, intracellular stochasticity can be amplified

to dictate cell fate due to the nature of initial conditions and underlying nonlinear

system. This complements the common theory of low molecule abundance caused

intracellular stochasticity KEBC:2005.

7.2.4 Temporal Measurements Further Illustrate Unique Dynamics

To further verify that the evolution of fluorescence signals from our GRNs actually

follows the trajectories predicted in Fig. 7.2A, both flow cytometry and fluorescence
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Figure 7.3: Temporal dynamics of random cellular state differentiation demon-
strated using both flow cytometry and microscopy imaging. Flow cytometry mea-
surements (histograms) were taken at different time points after TXLX cultures were
moved directly into galactose-supplemented media with 8 ng/ml ATc media from
glucose-supplemented media. The population gradually increases its fluorescence sig-
nal homogeneously until after 36 hours it starts to differentiate into two distinct
populations. This observation is consistent with microscopic images taken at these
same time points. After 72 hours of growth in galactose-supplemented media with
8 ng/ml induction, cultured cells stably differentiated into two distinct populations,
evidenced by bimodal distribution of flow cytometry results and differently colored
cells in microscopic images. White arrows in the 12h microscopy image point cells
expressing significantly both GFP and mCherry.

microscopy measurements were taken at different time points after each strain was

moved into galactose-supplemented media. It can be seen that flow cytometry mea-

surements of TXLX at time 0h have very low yEGFP expression (Fig. 7.3 0h flow

cytometry and Fig. S14A black curve). This is consistent with the microscopy image

showing only background fluorescence (see SI for imaging details and parameters).

This time point represents the initial condition of no LacI nor TetR expression in our

cells. After 12 hours of growth in the right media, it can be seen that the whole pop-

ulation of cells show increased yEGFP expression in a homogeneous fashion (Fig. 7.3

12h flow cytometry and Fig. S14A green curve). The microscope image (Fig. 7.3,

12h) also illustrates increased signals for both yEGFP and mCherry. Interestingly,
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many cells emit both green and red fluorescence simultaneously at single cell level

(labeled by white arrows). These cells show a wide range of fluorescence levels but

cant be grouped into distinct populations. This also corroborates with the broad but

uni-modal distribution of flow cytometry data at 12 hours. This time point corre-

sponds to the time point in Fig. 7.2A where cells are approaching the unstable steady

state, where cells express increased amount of both mCherry and yEGFP and hence

result in a homogeneous population. The broad distribution and varied fluorescence

levels suggest that cells take different amount of time to travel from the beginning

to the USS due to stochasticity. By the time cells spent 36 hours in the media, the

pattern of two populations starts to emerge (Fig. 7.3 36h flow cytometry and Fig.

S14A blue curve). In addition, one of the peaks shows lower yEGFP expression than

24 hours ago. This clearly demonstrates that the cells start to diverge to different

steady states. Cells moving towards LacI dominant state keep increasing their yEGFP

expression, while cells moving towards TetR dominant state start to produce more

mCherry and inhibit production of yEGFP, eventually making its level to be even

smaller than 24 hours ago. This temporal non-monotonic expression of yEGFP by a

subpopulation verifies that cells indeed follow a trajectory of approaching the saddle

point and then diverging onto two distinct states. Microscopy image is consistent with

flow cytometry results, showing cells expressing either yEGFP or mCherry signals.

By the time of 72 hours of growth in galactose-supplemented media with 8 ng/ml

ATc, the cells clearly formed two populations, illustrated by the two peaks in flow

cytometry (Fig. 7.3 72h flow cytometry and Fig. S14A red curve). Correspondingly,

microscopy image also shows that cells express either yEGFP or mCherry strongly

in a mutually exclusively fashion. The corroboration between flow cytometry and

microscopy measurements further supports our predicted temporal dynamics of cells

that were started from the (0,0) initial condition on the basin boundary: namely the
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Figure 7.4: Plasmid maps for the switch construct (pTXLX is shown here) and
reporter construct (p714). These two plasmids were constructed separately using
standard cloning and linearised copies were sequentially integrated into the ura3 locus
of the S. cerevisiae YPH500 genome. pT7L18 and pT18LX are identical to pTXLX
except for the core promoter sequences of the modified GAL1 promoters..

transient nonmonotonic expression of both fluorescent proteins and eventual strong

but random expression of either one.

Temporal flow cytometry measurements were also carried out for T18LX and

T7L18. Both show a transient increase and then decrease of yEGFP expression of a

subpopulation (Fig. S14B and C), verifying that the unique dynamics is not strain

nor network dependent.

7.3 Materials and Methods

7.3.1 Yeast Strains and Plasmid Constructions

Three yeast strains were used in the experiments and contained either the TXLX,

T18LX, or T7L18 networks with the 714 red-green reporter construct. All were in-

tegrated into S. cerevisiae strain YPH500 (a, ura3-52, lys2-801, ade2-101, trp1D63,

his3D200, leu2D1) (Stratagene) with genomic integrations specifically targeted to the
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ura3-52 locus [39]. These strains produce yEGFP from the TX promoter, mCherry

RFP from the LX promoter (Fig. 7.4). The plasmid construction methods and plas-

mid maps are described in detail in SI.

7.3.2 Assembly of Gene Networks

The haploid S288C-based Saccharomyces cerevisiae strain YPH500 [142] was used

for all experiments. Components of the synthetic gene networks were assembled on

pRS-series shuttle vector plasmids [142], using classic restriction enzyme and ligation

cloning methods and propagating plasmids in Escherichia coli. All plasmids were

integrated into S. cerevisiae at the ura3 genomic locus, growing in synthetic dropout

media enabling auxotrophic selection. Colony PCR was used to verify single-copy

integration of all components.

Obtaining a yeast strain with a bistable switch controlling green and red fluo-

rescent protein reporters required sequential integration of two plasmids: the switch

plasmid (one of pTXLX, pT7L18 or pT18LX) followed by the reporter plasmid (p714).

Plasmid maps of these are shown in Supplementary Figure 1 and all have been de-

scribed previously [39]. The three different yeast strains used in this study, differ only

in their integrated switch constructs and these switch constructs themselves only dif-

fer in their core promoter regions of the GAL1-based promoters that control TetR

and LacI expression. These core promoters have been selected from two previously

generated promoter libraries that have been characterised and sequenced and have a

wide range of unrepressed and repressed expression levels [39].

7.3.3 yEGFP Induction Experiments

Single yeast colonies for each strain were picked from synthetic dropout selective

agar plates containing 2% glucose and were used to inoculate 3 ml of synthetic dropout
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media containing 2% glucose (GLU). Colonies were grown at 30 with 300 rpm orbital

shaking until reaching an OD600 of 1.0±0.2. A triplicate set of 3 ml cultures synthetic

dropout media containing 2% galactose (GAL) and anhydrotetracycline (ATc) at a

concentration range of 0 - 250 ng/ml was then prepared and incubated similarly,

inoculating from the initial GLU culture to give a starting OD600 of 0.1 - 0.2. All

liquid growth media was replaced with fresh media, sugar and ATc every 24 hours.

7.3.4 Flow Cytometry and Data Analysis

Flow cytometry data acquisition was performed with a Becton Dickinson FACScan

Analyzer. This machine is equipped for green fluorescence (GFP) measurements. The

detector for FSC used E00 channel with SSC at 378 and FL1 at 436 voltages. All data

were collected in a log mode. Samples were carried out on a medium flow rate until

100,000 cells had been collected. Data files were analyzed using Matlab with gating.

For the bistable region determination experiments, the fluorescence levels have been

monitored every 24 h until they become stable. For the stochastic cellular state

determinations, samples were taken every12 h for measurement until the fluorescence

levels were stable.

For each flow cytometry measurement, we collected data from 100,000 cells. Data

were analysed for FL1 fluorescence (measure of GFP level per cell) after first gating a

population based on forward scatter (FSC) and side scatter (SSC) in order to reduce

extrinsic sources of variation and only focus on cells of similar size, shape, and point

in the cell cycle. The gate boundaries used were FSC [650, 800] nm, and SSC [550,

700] nm, marked as a white rectangle in Fig. S2. Flow cytometry data files were

analyzed by using Matlab (The MathWorks, Natick, MA). The original log-2 binned

FL1 fluorescence intensity values were linearized, and mean values were calculated

for each sample.
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7.3.5 Model Construction

To model steady state behavior of our engineered networks, we focus on the mu-

tual inhibition between LacI and TetR, and construct a simplified model described

by differential equations. The translation and transcription processes of LacI are sim-

plified to be one constant, with the production rate being crl when the promoter is

repressed and cil when induced. Similar assumption is made for TetR, while the rates

are crt and cit, respectively.

To characterize the binding of ATc to TetR and preventing TetR dimer bind-

ing to DNA, we use a Hill function to describe the relationship between active ra-

tio of repressor TetR and the inducer concentration ATc: fI = ( KI

KI+[ATc]
)m, where

KI ≡ kATc[TetR]. We assume larger concentration of TetR will need more ATc to

deactivate and therefore make KI in proportion to the concentration of TetR. The

probability (or portion of time) of TX promoter not bound by TetR, as a function

of the concentration of TetR, can be described as pe,tet =
k
nt
t

k
nt
t +[TetR]nt

, where kt rep-

resent the TetR concentration needed to make this probability 50%, and nt describe

the nonlinearity of this inhibition. When TX is not bound by TetR, it is fully open

and therefore can promote downstream gene expression. Thus under the induction

of ATc, the active TetR decreases and probability of open promoter increases. The

equation can be expanded to pe,tet =
k
nt
t

k
nt
t +([TetR]·fI)

nt
, or

pe,tet =
knt
t

knt
t + {[TetR] · (1 + [ATc]kt

kATc[TetR]
)−m}

nt
, (7.1)

Similarly, the portion of time that LX is not bounded by LacI is

pe,lac =
knl

l

knl

l + [LacI]nl
, (7.2)

and kl represents the LacI concentration needed to make LX bound by LacI 50% of

the time, and nl describes the nonlinearity of this inhibition.
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So the production of LacI and TetR can be described by the following two ordinary

differential equations:

d[LacI]

dt
= crl + pe,tet(cil − crl)− δ · [LacI]

d[TetR]

dt
= crt + pe,lac(cit − crt)− δ · [TetR], (7.3)

where δ is the degradation rate, which is mainly caused by the volume expansion and

thus is approximated as δ = 0.002min−1. This rate corresponds to a cell doubling

time of about 6 hours, which is the doubling time of yeast in galactose media.

7.3.6 Parameter Fitting

For a specific strain we choose, the corresponding synthesis rates, crl, crt, cil,

cit, can be estimated from experiments by measuring their fully induced and fully

repressed gene expression [39]. And the Hill coefficient of induction of ATc, which is

the combination of m · nt, can be fitted from the dose response curves [39]. However,

the parameters in the binding equilibrium probability pe,lac and pe,tet, including nt,

nl, kt, kl and kATc, need to be fitted from their bistable regions.

Here, we first use randomly generated parameter combinations within a given

range to calculate bistable region of TXLX. Specifically, the parameter regions are

nt ∈ [1, 5], nl ∈ [1, 5], kt ∈ [1, 400], kl ∈ [1, 400] and kATc ∈ [0.01, 1], to make sure they

have biologically reasonable values. Parameter sets were generated uniformly within

the preassigned region and only the ones produce experimentally demonstrated bista-

bility regions within 10% relative error were kept. 200 filtered parameter combinations

for TXLX are presented in Fig. 7.5, where the diagonal plots are histograms of all 200

parameters while the others are scatter plot between any two parameters to demon-

strate their correlations. We can observe that nt tends to be slightly bigger than nl.

It reflects the inherently different induction dynamics for TetR and LacI with their
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Figure 7.5: Histograms and paired scatter plot for those five estimated parameters.
We show 200 filtered parameter combinations for TXLX that generate experimentally
demonstrated bistable regions. The candidate parameter combinations are randomly
generated within a given region and are kept only if they produce a bistable region
that has 10% or smaller relative errors to the experimental ones, which is [3,13].

repestive inducers. Also, kl tends to take larger values than kt, which are below 40 as

they are shown in the histogram. We aslo observe clear correlation between nl and

kl, and the one between nt and kt.

Using one randomly chosen combination in Fig. 7.5, for example, nt = 1.56,

nl = 3.35, kt = 11, kl = 264 and kATc = 0.94, we can plot the bifurcation curve, or

the steady state outputs, of LacI concentrations under different ATc concentrations

and verify its bistable region. As it is shown in Fig. 7.6, the red curve is the bifurcation

curve for TXLX. The solid lines correspond to the set of stable steady states, while

the dashed line corresponds to the set of unstable ones. We can see that between

[3,13] ng/ml ATc inductions, one ATc concentration corresponds to two stable steady
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Figure 7.6: Bifurcation curves using filtered (TXLX) or estimated (T7L18 and
T18LX) parameters. The parameters for TXLX are nt = 1.56, nl = 3.35, kt = 11,
kl = 264 and kATc = 0.94. These curves are generated using the software XPP-AUTO,
with standard steps and calculation parameters.

states and one unstable one, a sign of bistability. This ATc region is defined as bistable

region. If the ATc concentration is outside of this region, there would be only one

stable steady output for a specific ATc concentration.

Since the only difference between the three studied strains is the promoter, it

is reasonable to estimate the parameters for the other two strains from those in

TXLX. Based on the experimental results in [39], where all the strains have the

same normalized does response curve, we assume that all three strains have the same

nonlinearities on mutual binding and ATc induction, or the same quantities in all

Hill functions. However, the concentrations of LacI and TetR are different due to

varied promoter strength. So in our model, the parameters kt, kl and kATc need to be
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adjusted to normalize the concentration of LacI and TetR to the same values. First

we normalize the maximum LacI output. By dividing cil − crl to both side of the

system, we have:

d[LacI]′

dt
= c′rl + pe,tet − δ · [LacI]′

d[TetR]′

dt
= c′rt + r · pe,lac − δ · [TetR]′, (7.4)

where c′rl =
crl

cil−crl
, c′rt =

crt
cil−crl

and r = cit−crt
cil−crl

. Now all the stable maximum LacI

output for different strains have the same normalized value, [LacI]max = 1/δ ( since

crl/(cil − crl) ≪ 1), thus all strains can share the same kl. The maximum output of

TetR is [TetR]max = r/δ, so we use the following transformations

k′t =
r

r0
kt, and k

′
ATc =

r

r0
kATc, (7.5)

to replace the original parameter kt and kATc, and guarantee the TetR level in the

Hill functions are the same. Here r0 is from the original strain TXLX used to filter

parameters.

With fitted parameters for TXLX and adjusted model to account for strain differ-

ences, we can predict bistable regions for the other two strains, T18LX and T7L18,

without further parameter fitting. Using the same parameter combination as for

TXLX, we model the other two strains with different r according to Eq. 7.5. Then

we can draw the bifurcation curves for them and predict their bistable regions. The

bifurcation diagrams for the other two strains are shown in Fig. 7.6, and their bistable

regions are indicated on the top axis. These predictios are consistent with experi-

mental verifications shown in Fig. 7.1C. Similar to strain TXLX, when the ATc con-

centration is inside the bistable region, the strain will have two stable steady state

outputs.

To directly compare model predictions with the experimental hysteresis curves, we

numerically simulated the hysteresis experiments using our model with parameters
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mentioned above. We assume that the bistable region locates between ATc= 0 ng/ml

and 250 ng/ml for TXLX. Thus when ATc= 0ng/ml, the system will stay in low LacI

concentration, no matter what initial condition is, while with ATc=250 ng/ml the

system will have stable high LacI concentration. First we simulate the system with

0 ng/ml ATc until steady state, then change ATc concentrations to various levels

and simulate the system to its new steady state. This is essentially simulating yeast

cells moved into various doses of ATc induction after initial growth in galactose with

0 ng/ml ATc. This produced the dashed curve in Fig. 7.7 (A). The solid curve in

Fig. 7.7 (A) is generated similarly by starting the simulations from the stable steady

state corresponding to 250 ng/ml ATc and then change ATc inductions to various

doses. It corresponds to first grow the yeast cells in galactose with 250 ng/ml, and

then move them to galactose with different ATc concentrations. From the curves

we can identify the bistable regions, which are ATc region that corresponds to two

stable steady LacI concentrations. Similar procedures are repeated for the other two

strains. The simulated curves for all three strains are presents in Fig. 7.7(A) and the

estimated bistable regions are all similar to those ones from bifurcation analyses, and

both of them are close to the experimental results.

7.3.7 Robustness of Prediction

To evaluate the sensitivities of our predictions, we plot the estimated bistable

regions for all three strains using all 200 parameter combinations shown in Fig. 7.5.

As shown in Fig. 7.7(B), each point represents the bistable region generated by one

parameter set with x coordinate representing the lower bound and y coordinate repre-

senting the upper bound. The lower bound of bistable region is defined as the ATc con-

centration corresponding to the steady state LacI concentration equals to 0.7LacIMAX

on the curve initialed from ATc = 250ng/ml, while the upper bound corresponds to
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Figure 7.7: For all the three strains, simulated hysteresis curves of LacI concen-
tration with different concentration of ATc. The dashed lines represent simulated
LacI concentrations using the steady state of ATc = 0 ng/ml as initial conditions,
while the solid lines represent simulated LacI concentrations using the one of ATc =
250ng/ml as initial conditions. The parameters used to calculate the bistable regions
for TXLX are shown in Fig. S3, and then further transformed to parameters for
T18LX and T7L18. All the simulations are calculated with ode23 solver in Matlab,
and the steady state values are generated by simulating the system until t = 104s

the one equals to 0.3LacIMAX on the curve initialed from ATc = 0ng/ml. Since the

parameter sets are filtered for TXLX, the numerical bistable regions (black circles)

are distributed around the experimental one (black cross). For T18LX, the predicted

regions (red circles) are close to the experimental one (red cross), and similarly for

T7L18 (blue circles and cross). Fig. 7.7(B) shows that, with our transformation, we

can predict the bistable regions for the other two strains quite well by knowing r of

such strain and using the parameters estimated from those of TXLX. In addition, it

can be seen that all 200 predictions are narrowly distributed, indicating robustness

of our predictions.
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7.3.8 Definition of Quasi-potential

For our described as 7.3, the quasi potential P at specific state variables combina-

tion (L0, T0) is defined as the trajectory length from (L0, T0) to its final stable state,

as:

d[LacI]

dt
= crl + pe,tet(cil − crl)− δ · [LacI]

d[TetR]

dt
= crt + pe,lac(cit − crt)− δ · [TetR], (7.6)

dP

dt
= −

√

LacI2 + TetR2. (7.7)

So P can be calculated by integrating along the evaluationary of LacI and TetR

initialing from (L0, T0), as:

P (L0, T0) =

∫ t=∞

t=0

[

√

LacI(t)2 + TetR(t)2]dt+ PS, (7.8)

where PS is the quasi potential of stable static states (SSS). In system with more than

one SSS, the ’depth’ of each SSS, or the length of trajectory initialing very close to

the unstable static state (USS) and ending up to it, is usually different. So we choose

the deepest SSS as the reference point and define its quasi potential as 0, while the

other ’shallow’ SSS have quasi potential of Cd, which are the depth difference to the

reference point.

7.4 Discussion

Combining rational engineering and natural biological regulation, here we suc-

cessfully demonstrate synthetic stochastic and irreversible cell fate determination in

eukaryotic cells. Bistability, stochasticity, and the resulting binary cellular decision-

makings have been extensively studied [33, 34, 36, 37, 39, 41, 143, 144]. These stud-

ies illustrated both irreversible and uniform [36, 143, 144] and random yet reversible

[37, 145] binary decision-makings at single cell levels. However, the case of random
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and irreversible decision-making has not been studied or demonstrated. Guided by

stochastic simulations on a nonlinear potential landscape, we experimentally initial-

ized cell cultures on the separatrix of our engineered bistable system and demonstrated

the first stochastic and irreversible binary cellular state determination. Independent

cultures grown in the same condition but from different initial conditions showed com-

pletely different responses. This illustrates the complexity of dynamics of multistable

gene networks when the effects of initial conditions and stochasticity are taken into

account, more than just hysteresis.

With a more complete understanding of multistable gene networks, synthetic

GRNs can serve as topological prototypes for their natural counterparts and pro-

vide novel insights not easily available through the study of natural systems. By

demonstrating stochastic and irreversible cell fate determination, we have been able

to shed light on the role of stochasticity in cell differentiation [146, 147]. For ex-

ample, during fruit fly eye development, precursor cells in a specific area of the eye

differentiate into cells with two types of photoreceptor and maintain their cell fate.

It has also been reported that the differentiation of these photoreceptors are purely

stochastic and independent [42]. Recent studies [43, 44] have identified a mutual

inhibitory gene regulation motif as the core system driving the stochastic differentia-

tion, but the exact mechanism of the stochastic differentiation is still unknown. The

similarities between this natural system and our engineered system, both in terms

of observation and underlying GRN, suggest that stochastic and irreversible cellular

developments in the fruit fly eye could be due to initialization of cells near basin

boundaries of a multistable network. The initialization may well be regulated by a

metabolic event, like in our system, or by other mechanisms, such as epigenetics or

microRNA regulation.

131



Finally, this work also demonstrates the power of linking synthetic GRNs to the

outputs of the host cells natural GRNs. Much effort in synthetic biology has been

focused on using synthetic GRNs to drive natural GRNs towards desired responses

[57, 148]. Here by linking outputs of natural metabolism regulations to synthetic

GRNs, we were able to realize an initial condition that is difficult to achieve through

engineering alone. Such accurate initiation of the cell culture is the key to our demon-

strated stochastic and random cell fate determination. This concept of harvesting nat-

ural regulatory machineries to tune synthetic GRNs will greatly increases the quality

and quantity of possible perturbations that can be applied to engineered systems,

hence make it possible for the engineering of future biological devices that require

more sophisticated and accurate controls.
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[91] W. Yu, G. Chen, and J. Lü. On pinning synchronization of complex dynamical
networks. Automatica, 45:429–435, 2009.

[92] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physio.,
17:500–544, 1952.

[93] R. FitzHugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J., 1:445–466, 1961.

[94] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
simulating nerve axon. Proc. IRE, 50:2061–2070, 1962.

[95] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge,
UK, second edition, 2002.

[96] P. W. Anderson. More is different: broken symmetry and the nature of the
hierarchical structure of science. Science, 177:393–96, 1972.

[97] S. Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003.

[98] A. Pikovsky, M. Rosenblum, J. Kurths, and R. C Hilborn. Synchronization: A
universal concept in nonlinear sciences, volume 2. Cambridge University Press
Cambridge, 2002.

[99] L. M Pecora and T. L Carroll. Synchronization in chaotic systems. Physical
review letters, 64(8):821, 1990.

[100] L. M Pecora and T. L Carroll. Master stability functions for synchronized
coupled systems. Physical Review Letters, 80(10):2109, 1998.

[101] L. Huang, Q. Chen, Y.-C. Lai, and L. M Pecora. Generic behavior of master-
stability functions in coupled nonlinear dynamical systems. Physical Review E,
80(3):036204, 2009.

[102] MK S. Yeung, J. Tegnér, and J. J Collins. Reverse engineering gene networks
using singular value decomposition and robust regression. Proceedings of the
National Academy of Sciences, 99(9):6163–6168, 2002.

[103] D. di Bernardo, M. J. Thompson, T. S. Gardner, S. E. Chobot, E. L. Eastwood,
A. P. Wojtovich, S. J. Elliott, S. E. Schaus, and J. J. Collins. Chemogenomic
profiling on a genome-wide scale using reverse-engineered gene networks. Nature
biotechnology, 23(3):377–383, 2005.

139



[104] S. G. Shandilya and M. Timme. Inferring network topology from complex
dynamics. New J. Phys., 13:013004, 2011.
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