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ABSTRACT 

Agricultural supply chains are complex systems which pose significant challenges 

beyond those of traditional supply chains. These challenges include: long lead times, 

stochastic yields, short shelf lives and a highly distributed supply base. This complexity 

makes coordination critical to prevent food waste and other inefficiencies. Yet, supply 

chains of fresh produce suffer from high levels of food waste; moreover, their high 

fragmentation places a great economic burden on small and medium sized farms. 

This research develops planning tools tailored to the production/consolidation level 

in the supply chain, taking the perspective of an agricultural cooperative—a business model 

which presents unique coordination challenges. These institutions are prone to internal 

conflict brought about by strategic behavior, internal competition and the distributed nature 

of production information, which members keep private. 

A mechanism is designed to coordinate agricultural production in a distributed 

manner with asymmetrically distributed information. Coordination is achieved by varying 

the prices of goods in an auction like format and allowing participants to choose their 

supply quantities; the auction terminates when production commitments match desired 

supply. 

In order to prevent participants from misrepresenting their information, strategic 

bidding is formulated from the farmer’s perspective as an optimization problem; thereafter, 

optimal bidding strategies are formulated to refine the structure of the coordination 

mechanism in order to minimize the negative impact of strategic bidding. The coordination 

mechanism is shown to be robust against strategic behavior and to provide solutions with 

a small optimality gap. Additional information and managerial insights are obtained from 
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bidding data collected throughout the mechanism. It is shown that, through hierarchical 

clustering, farmers can be effectively classified according to their cost structures. 

Finally, considerations of stochastic yields as they pertain to coordination are 

addressed. Here, the farmer’s decision of how much to plant in order to meet contracted 

supply is modeled as a newsvendor with stochastic yields; furthermore, options contracts 

are made available to the farmer as tools for enhancing coordination. It is shown that the 

use of option contracts reduces the gap between expected harvest quantities and the 

contracted supply, thus facilitating coordination. 
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1 PROBLEM DEFINITION 

1.1 Introduction 

The recent increase in consumption of fresh agricultural products has been 

impressive; nearly 25 percent from 1970 to 1997 (Jones Putnam & Allshouse, 1999) and a 

further increase of 16 percent between 1998 and 2008 (Stewart, 2010). Fresh produce now 

accounts for an industry worth over $122 billion in sales for the US alone (Cook, 2011). 

Likewise, crop yields improved remarkably throughout the last century. Nonetheless, 

significant challenges remain in this industry; two of which are: socioeconomic issues 

arising from the decline of small and medium sized farms, and environmental issues 

resulting from overconsumption and waste of resources (Hazell & Wood, 2008).  

With respect to environmental issues, we cannot solve these simply by increasing 

agricultural production--especially considering those that could adversely affect food 

supply in the future (Millennium Ecosystem Assessment, MEA, 2005). The case of fresh 

produce stands out as a prime example, which requires a “cold supply chain” and for which 

product loss reaches an astonishing 30% of total production before reaching the consumer 

(Gustavsson, 2011). This loss of production is the result of several factors, chief among 

them a lack of coordination in the supply chain.  

On the socioeconomic front, food producers suffer from significant economic 

pressure (Jang & Klein, 2011). Unfavorable supply chain practices, low consolidation, and 

their position at the bottom of the supply chain, where margins are thin, make it difficult 

for these enterprises to thrive. These problems are further aggravated for small and medium 

sized growers of fresh produce, for whom short shelf lives make it harder to store their 

products and tolerate swings in supply/demand and price (Makeham & Malcolm, 1993). If 
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an excess of product exists, farmers will generally have no choice but to sell for a lower 

price, many times at a loss. The immediate result is a high level of food waste, lower profits 

for the farmer and higher prices to consumers. This issues take a toll on already thin 

margins in a supply chain where only 20% of the revenue generated goes to producers in 

the U.S. (Cook, 2011). 

It comes as no surprise that farmers in the US are now starting to form tighter 

relationships and seek to expand their operations vertically through the establishment of 

cooperatives and consolidation centers (James Matson, Martha Sullins, & Chris Cook, 

2010). Thus a tendency of vertical consolidation is in place; this is similar to the case of 

European farmers, where cooperatives of growers expanded into marketing and retail 

(Bijman & Hendrikse, 2003). The emergence of these groups of collaboration allow 

farmers to obtain economies of scale, provide a steady stream of products, and expand their 

operations downstream while increasing the efficiency of the supply chain (James Barham 

& Debra Tropp, 2012). This is particularly true for small and mid-sized farmers, since they 

have the greatest difficulty competing successfully with larger producers (Stevenson, 

2008). 

To make a collective marketing point successful, it needs to coordinate the 

production of its members, its customers and outside suppliers. Unfortunately, the 

production across many farms remains, for the most part, uncoordinated and without 

sophisticated planning; decisions are not necessarily made with the efficiency of the overall 

system in mind. Moreover, despite more small and medium sized farmers becoming 

associated, there is no evidence in the literature of structured planning mechanisms used in 

these organizations. Unfortunately, conflicting objectives within the cooperative often 



3 

 

limit the success of these joint ventures (Diamond & Berham, 2012). In fact, a lack of 

cost/production information sharing within partners in the cooperative is prevalent, despite 

its central role for collaboration (Bahinipati, 2014). The association of small farmers is a 

trend which will allow them to compete with larger operations; however, for this to become 

a reality, the necessary tools for coordinated planning must be in place. 

In response to these trends, this document presents a tactical level planning tool to 

coordinate the supply chain, such that the production decisions of individual members 

of a cooperative are aligned and planned supply is matched to projected demand. We 

explore three sequential paths of research necessary to coordinate these organizations: 

(1) we use auctions as tools for information discovery and transparent assignment of 

seasonal production plans; (2) we show that auction mechanisms coordinate the supply 

chain in spite of strategic behavior from farmers; and (3) we explore the impact of 

stochastic yields to the risk of farmers once production contracts are assigned and the 

repercussion of yield risk on the extended supply chain. 

The proposed research considers various factors which are relevant to the fresh 

produce industry, such as resource requirements, labor considerations, price dynamics, 

perishable inventories and associated costs. Moreover, the proposed research also 

addresses an important issue, which hampers coordination and which is commonly 

overlooked in agricultural supply chains: The limited availability of information and the 

reluctance of participants to share private information. This research is vital for emerging 

cooperatives as their situation warrants a tool specially tailored for coordinating multiple 

parties at the same level.  
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1.2 Problem Definition 

Agricultural supply chains (ASCs) are the collection of activities, from production 

to distribution, that bring agricultural products from the farm to the table (Aramyan, 

Ondersteijn, Kooten, & Oude Lansink, 2006). However, unlike traditional supply chains, 

planning agricultural production and distribution is hindered by the limited shelf life of 

products, variable yields, variable market prices (Makeham & Malcolm, 1993) and the long 

lead times from planting until the time of harvest (Lowe & Preckel, 2004). All of these 

issues, create a complex and risky planning environment (Fleisher, 1990). Moreover, 

within ASCs, specialty horticultural products are the most susceptible to disturbances in 

supply; this is because, in addition to all of the aforementioned issues, these ASCs must 

also deal with food quality, safety and higher weather related variability (Salin, 1998). 

Thus, the focus of this dissertation is on ASCs of highly perishable crops, as these are likely 

to reap the most benefits from increased coordination. 

Since the problem at hand is complex, we focus here on a critical element of the 

modern fresh supply chain--the interface between the farmer and the first marketing 

echelon of the fresh supply chain, which usually takes the form of a consolidation/packing 

facility (CF). We assume that this CF is structured as a farming cooperative (co-op) that is 

in charge of the marketing and distribution of the products and which must assign 

production contracts to the various farmers. Furthermore, we focus our attention on tactical 

planning (developing a planting plan for the upcoming season), rather than strategic and 

operational issues, which are generally less problematic from the cooperation standpoint.  

In order to consolidate and coordinate production, considering all aforementioned 

issues is paramount; however, a new layer of complexity is added if production decisions 
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must be made without complete visibility of all components of the system. In practice, an 

enterprise seeking to coordinate production among multiple farmers cannot know with 

certainty what the comparative advantages (and disadvantages) of the growers it seeks to 

coordinate are. To overcome this issue and gain efficiencies, centralized supply-chain 

control is ideal; however, this is neither feasible nor practical in most cases. On the other 

hand, decentralized coordination becomes a significant challenge due to concerns of fair 

contract allocation, internal competition and sharing of private information (Karina, 

Bamber, & Gereffi, 2012).  

Table 1.1 – Conflicting Objectives between Farmers and the Consolidation Facility 

  Farmer Consolidation Facility 

Operations 

 Growing a set of crops and 

selling them to the food hub or 

open market 

 Consolidating crops from farmers and 

selling products to retailers 

Objective 

 Making the best planting 

allocation such that costs and 

risk are minimized and income 

is maximized 

 Maximizing profit by matching supply 

and demand with efficient sourcing and 

marketing 

Decision 

Variables 
 Planting, harvesting and 

resource usage  

 Purchasing, storing and marketing of 

crops 

Constraints  Land, labor, capital and climate 
 Supply, demand and available 

infrastructure 

Conflicting 

Objectives 

 Obtaining best prices for its 

crops 

 Planting most profitable sets of 

crops 

 Influencing food hub decisions  

 Giving fair prices and contracts to 

growers 

 Obtaining highest profit from selling 

crops 

 Efficient contract allocation 

Risk 

Exposure 

 Exposed to high risk from 

variable yields and market 

prices 

 Can pool risk of yields across suppliers 

 Can mitigate price risk through storage 

and higher bargaining power 

 

If we take the perspective of an enterprise seeking to coordinate multiple farmers, 

access to information is critical; unfortunately, farmers are unlikely to reveal their complete 

and true information, as such actions could result in a weakening of their own positions. 
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Therefore, as part of the research, we must view the coordination problem from its two 

main perspectives: (1) The perspective of a farmer and (2) the perspective of the CF. We 

must also recognize that conflictive objectives will exist due to the two perspectives being 

considered; some of these conflicting are illustrated in Table 1.1 above. 

1.3 Research Contribution 

For over 50 years, decision support tools and optimization models have aided 

decision making in agriculture (Glen, 1987). Nonetheless, there still exists a lack of 

research on optimization models for production and supply chain planning of perishable 

crops (Ahumada & Villalobos, 2009a). Most models for agricultural planning have a 

limited scope, and fail to capture all relevant features from these complex systems (A. J. 

Higgins et al., 2009); these missed features include a variety of simultaneous decisions and 

objectives for all competing and collaborating participants. 

The fresh produce planning problem, from the single farmer’s perspective with 

centralized control of production and distribution, has been addressed by Ahumada & 

Villalobos (2009a, 2009b) and Ahumada, Villalobos, & Mason (2012). Building on 

previous efforts, this research goes further by developing coordination models that take 

into consideration the needs and actions of the different actors in the supply chain, without 

compromising assumptions of independent decision-making; thus, the analytical results are 

much more relevant and applicable to real world decentralized decision problems. 

Our first research contribution is a direct enhancement of planning tools for the 

coordination of the agricultural supply chains. This mainly includes capturing key 

interactions between growers and buyers, and as a result, extending the scope of traditional 

models into various echelons of the supply chain. Moreover, the proposed research 
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develops more realistic models by better approximating the dynamics of the agricultural 

supply chain and considering game theoretic aspects of the decision-making process. 

Our research also advances the knowledge of the scientific community in various 

fields. First and foremost, it provides an analytical decision-making framework for the 

planning and coordination of farmers working as a group. We contribute, additionally, to 

horizontal coronation research using auction mechanisms when no single party has all 

relevant production information; this is a problem of great relevance, not only in 

agriculture, but also other industries. Furthermore, this research increases our 

understanding of auctions as coordination tools and the design considerations that allow 

them to work effectively, despite deviation from the ideal information sharing assumptions. 

Finally, our research analyzes the consequences of production yield-risk on agricultural 

cooperatives, and the additional challenges it poses for coordination and supply contract 

fulfillment.  

1.4 Benefits of the Research 

This research provides better tools for small and medium size farms to collectively 

market their products. Currently, large farming operations tend to dominate the business 

because they can better withstand the large swings in market prices, as well as use 

economies of scale to their advantage. Having access to efficient tools for planning and 

collaboration will put the individual farmers on a more level playing field. However, the 

ultimate beneficiary of the proposed research would be the final consumer of fresh produce, 

since a more efficient participation of the small and medium farmers will result in reduced 

food waste and more stable, lower prices for the general population.  
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This research also provides more robust and realistic models which can be 

implemented in practice. The models developed are grounded in economic theory and 

designed to be robust against deviations from the ideal behavior of the members of the 

supply chain. For instance, even if farmers attempt to strategically misrepresent their 

information, the auction mechanism still allows the greater system to reach coordinated 

and efficient outcomes. This presents a major advance on current agricultural planning 

models, which fail to represent the true dynamics of the system. 

Finally, to the best of our knowledge, this is the first decentralized coordination 

mechanism to be implemented at the producer level in an ASC. Moreover, the research is 

also groundbreaking on the introduction of iterative auction mechanisms as viable 

coordination tools for ASC’s; this advance highlights the importance of broader disciplines 

such as mechanism design to the coordination of supply chains.  

1.5 Thesis Overview 

The remainder of this doctoral dissertation is structured as follows: In Chapter 2, we 

present a brief description of the related literature on coordination tools in supply chains 

and their application to ASCs; we also analyze the literature on mechanism design and 

bidding problems to create a context for our proposed mechanism. In Chapter 3, we detail 

the methodology for the research activities and the outcomes of the dissertation. In Chapter 

4, we develop the mathematical models for tactical planning under centralized and 

decentralized supply chain management; we show that the decentralized model can be 

formulated as an auction and be made to converge to the centralized solution. In Chapter 5 

we identify the weaknesses and failure points of the auction used for tactical coordination. 

We focus on the decision problem of bidders acting strategically and not revealing truthful 
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information to the consolidation facility, at the expense of system wide profits; thus, 

changes on the mechanism structure are made to address this problem. As a continuation 

to the design approach, in Chapter 6 we address the problem of maintaining coordinated 

outcomes in the presence of stochastic yields. In this chapter, we resume our analysis 

assuming that production assignments have been made through the auction mechanism and 

focus on the farmer decision of how much to plant in order to fulfill his/her commitments. 

In Chapter 7, we provide an extension to our research--exploring the information contained 

in the bids for production placed by farmers; here we are concerned on the potential 

inferences that can be made about the various farmers based on their behavior throughout 

the auction. Finally, in Chapter 8, we provide a brief summary of the dissertation results 

and discuss opportunities for future research. 
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2 LITERATURE REVIEW 

Developing a coordination mechanism for an agricultural cooperative business 

model is a task with higher complexity than the usual problems recognized in agricultural 

planning. Addressing this problem requires expanding the scope of the problem beyond 

production and into the supply chain context. As a result the problem has to be addressed 

from multiple perspectives simultaneously; mainly from a production perspective, as well 

as marketing and consolidation. Moreover, if we consider the conflicting objectives 

between the supply chain integrants, then we must combine the disciplines of supply chain 

management, agricultural planning, optimization, game theory and the theory behind 

mechanism design and coordination. 

As a result, the current literature review addresses the coordination problem from the 

perspective of agriculture, as well as supply chain management and mechanism design. 

Specifically, the review starts by addressing the research that has been done for supply 

chain optimization models with a focus on agriculture; for that we focus only on 

agricultural planning problems which involve more than one echelon in the supply chain 

(Section 2.1). Thereafter, we look exclusively at coordination mechanisms in supply chain 

management, focusing on horizontal coordination and multilateral information asymmetry 

(Section 2.2). Additionally, we draw on basic research and relevant findings from the 

mechanism design field and the general intuition and modeling tools that can be applied to 

agricultural coordination problems (Section 2.3). Finally, in Section 2.4, we draw 

conclusions and from our review and identify the gaps in research which we fill throughout 

this dissertation. 
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2.1 Management of ASCs 

Numerous operations research models for agriculture and agricultural supply chains 

exist in the literature starting with (Glen, 1987; Lowe & Preckel, 2004). These reviews 

cover decision models for agricultural planning, which date back to 1954, where most of 

the focus lies on models of a limited scope for small sections of the overall supply chain. 

Later, a compilation of a broader scope focusing on strategic decisions was compiled by 

Lucas & Chhajed (2004), who focus on location analysis in agriculture.  

A more detailed compilation of optimization models focused primarily on 

agricultural supply chains was later provided by Ahumada & Villalobos (2009a), who 

provide the most comprehensive compilation focused in ASC planning. In this publication, 

ASC models are catalogued according to their scope as strategic, tactical and operational; 

furthermore, they are also organized further by their focus on perishable or non-perishable 

items. Thereafter, Zhang & Wilhelm (2009) compiled a review with a more specific focus 

on optimization models for specialty crops. Both reviews conclude that supply chain 

management is becoming increasingly important for the fresh produce industry; yet 

insufficient attention is devoted to this emerging field. Finally, on a more recent review, 

Manish Shukla & Sanjay Jharkharia (2013) highlight the increased emphasis on fresh 

produce supply chain management and the difficulties of the industry on matching supply 

and demand. They emphasize the importance of information and collaborative forecasting 

across the supply chain; however, they fail to address the game-theoretic aspects of 

information sharing and seeking coordinated outcomes. 

Information sharing is important for achieving coordinated outcomes, and more 

recent case studies address coordination issues in agricultural supply chains, ranking 
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information sharing as the number one enabler of collaboration (Bahinipati, 2014). 

Moreover, optimizing ASCs requires an expanded scope and a significant increase in 

modeling efforts. For this new challenging context, it is not enough to optimize individual 

parts of this complex system, but rather we must take the extended supply chain into 

account (A. J. Higgins et al., 2009). Unfortunately, to do this, information sharing is not 

sufficient due to the complex, interdependent and competitive nature of supply chain 

participants. In supply chain management, we usually have conflicting objectives that must 

be addressed when modeling the interactions among supply chain participants (which we 

will refer to interchangeably as “agents”). Specifically, we must account for the key factors 

of competitive behavior and information asymmetry, which compromise the primary 

assumptions behind information sharing. This is a reality not only for agriculture, but also 

for any other supply chains (Albrecht, 2010). 

Although models for supply chain management in agriculture are well documented 

(Ahumada & Villalobos, 2009a; Zhang & Wilhelm, 2009), we take a more selective 

approach and review the more relevant models for supply chain coordination. These 

implies looking at models that observe more than supply chain echelon and which attempt 

to reach an optimal solution for the extended system. For this, we separate our findings 

into three main categories according to their scope: (1) Interactions and coordination 

policies between partners, (2) centralized optimization of supply chains and (3) extended 

supply chain modeling with stand-alone models for each participant. We will briefly 

discuss and give examples of research on each of these categories. 
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2.1.1 Direct Interactions and Coordination Policies 

These models have a limited scope and generally seek analytical solutions between 

only two entities; their value stems from deriving valuable intuition and frameworks in 

which conflicting interests can be addressed. Formulations are similar to the newsvendor 

problem for supply chains, but using applications specific to agriculture. Some examples 

include: Analysis of cost sharing contacts, which have the objective of ensuring proper 

ripeness of fruits at the retail level, maximizing customer satisfaction and revenues 

(Schepers & Van Kooten, 2006); and similar problems with the addition of freshness 

keeping efforts (Cai, Chen, Xiao, & Xu, 2010). Likewise, we find applications such as 

using of bonus/penalty contracts to reduce costs of returns from spoiled goods (Burer et al. 

2008). Similarly, we find the use of vendor managed inventory with stochastic demand of 

perishable goods to improve financial performance of a retailer and a producer who must 

plan ahead of the growing season (Lodree Jr. & Uzochukwu, 2008). In another case study, 

Nadia Lehoux (2014) modeled the decision process for collaborative planning, forecasting 

and replenishment (CPFR) and its impact on the profitability of the forest industry; in this 

research an incentive system is devised to share the benefits between partners to ensure 

collaboration.  

Another field to which much attention has been devoted is that of contract farming 

and its direct impact on risk (for growers and retailers). In this research topic, Huh & Lall 

(2013) quantify the impact of contract farming on production decisions for a given farmer 

when he/she must deal with stochastic yields; likewise, Wang & Chen (2013) consider the 

case coordination with options contracts but with deterministic yields. Finally, Huh et al. 
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(2012) show that a contract farming policy with possible reneging by producers may, under 

some circumstances, increase the profits of the retailer when producers are risk neutral.  

2.1.2 Centralized Optimization Models 

These models analyze optimization problems spanning multiple echelons and time 

periods. They do not consider interactions among agents or separate the objectives from 

each echelon, but rather assume centralized control by one single planner. For instance, 

handling, processing and distribution of perishable goods assuming full control of all 

operations throughout the supply chain was done by Gigler et. al (2002). Other models 

such as (Ahumada & Villalobos, 2009b, 2011; Ahumada et al., 2012; Kazaz, 2004; Kazaz 

& Webster, 2011; Rantala, 2004; Widodo, Nagasawa, Morizawa, & Ota, 2006; Wishon et 

al., 2015) model similar centralized decisions for more than one echelon, with their 

contributions varying from perishability modeling, to plant location and production 

planning. These models are generally tactical in nature, and their inclusion of multiple 

echelons simultaneously make them of particular relevance to our research. 

2.1.3 Extended (Multiple Agent) Supply Chain Models 

For this category of research, the scope is generally wider than that of the previous 

two categories, with considerations of large systems spanning several echelons and several 

stakeholders; in these models, each echelon has its own independent optimization model. 

These decentralized models, due to their complexity, must resort to metaheuristics to 

coordinate the actions of the various independent stakeholders. Some examples include the 

use genetic algorithms to coordinate 8 separate supply chain component models (Dharma 

& Arkeman, 2010). Other articles, in turn, use methods such as agent based simulation in 

order to obtain a solution. For instance, Higgins et al. (2004) used agent based simulation 



15 

 

to link stand-alone models for harvesting, transportation and machinery selection in the 

sugar mill industry. Similar research, where separate models are analyzed simultaneously 

was done by Frayret et al. (2008). Unfortunately, in these extended models, what is gained 

from an increased scope is lost in the capability of deriving analytical insights. 

Each of the aforementioned modeling approaches has its virtues, either by accounting 

for private information, conflicting objectives, explicitly analyzing collaboration, or by 

making comprehensive assessments of sections of the supply chain. However, there are 

significant opportunities for improvement by combining virtues from these categories. A 

model that assumes that each supply chain agent will have a private decision model is 

desirable; but also, such a model must be capable of providing results of analytical value 

without compromising assumptions of independence and self-interested behavior.  

We note that a common theme across all research categories is that of vertical 

coordination. Here, the objective is generally to coordinate the actions of one echelon with 

the next (i.e. supplier-retailer). However, little emphasis is placed on horizontal 

coordination, where the problem is to coordinate the actions of several players that provide 

similar products/services. In horizontal coordination, the potential for improvement is 

equally attractive, but the focus is on collaborating competitors. The lack of research in 

this area creates an opportunity and derive results of significant value for agricultural 

planning. In particular, research in horizontal coordination may be fruitful to small and 

medium enterprises, which can benefit the most form collaboration. 

2.2 Supply Chain Coordination Literature 

Although the topic of supply chain management has been researched in ASCs, it still 

lags behind from research for traditional manufacturing supply chains. In recent years, as 
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the business environment became more competitive, manufacturing firms were forced to 

seek improvements outside of their own borders (Christopher, 2005). This ongoing 

tendency converted supply chain management into a rapidly emerging field. Ultimately, 

what used to be improvement within a firm has evolved into improvement for the supply 

chain as a whole, taking competition to the enterprise level (Stadtler, 2008).  

Collaboration within a supply chain has been proven to provide competitive 

advantages to all involved parties both empirically and theoretically; in particular, models 

of collaboration such as the Efficient Customer Response movement (ECR) or the 

Collaborative Planning, Forecasting and Replenishment (CFPR) introduced by Wal-Mart 

have been prominent (Skjoett-Larsen, Thernøe, & Andresen, 2003). As a result, it is 

worthwhile to analyze how firms are able to collaborate and achieve coordinated outcomes 

such that similar success stories can be created in agricultural supply chains. 

2.2.1 Coordination 

Because supply chain management deals with multiple firms, one central theme is 

how to coordinate these various players and overcome difficulties presented by their 

conflicting objectives. Here, it is central to understand what is meant by coordination. To 

this end we say that a supply chain is coordinated if, as compared to a baseline performance 

measure, applying a set of rules results in a tangible positive change (Albrecht, 2010).  

Such rules can be simple guidelines such as information sharing, or they can be more 

involved economic incentives. For instance, sharing information is a simple and intuitive 

measure, and it has been proven to play a significant role in reducing the bullwhip effect 

(H. L. Lee, Padmanabhan, & Whang, 1997), as well as other improvements in supply chain 

efficiency. However, there exist other more sophisticated approaches to coordinate supply 



17 

 

chains including buyback, revenue sharing and options contracts (Simchi-Levi, Kaminsky, 

& Simchi-Levi, 2003). These more sophisticated approaches use economic 

decisionmaking and don’t necessarily rely on assumptions of reliable information being 

shared; for instance, buyback contracts operate by reducing the risk for a retailer, thus 

creating an economic incentive to order additional units (Simchi-Levi et al., 2003). 

Among the set of tools which can be utilized to coordinate a supply chain, we focus 

our attention on a specific type: coordination mechanisms, which we define as: 

“A set of rules which, when enforced, create a game for which the implementation 

of the optimal strategies by decentralized, self-interested parties may lead to an improved 

outcome and neither violates individual rationality nor budget balance for the 

participating parties” (Albrecht, 2010). 

 

In the context of the previous definition, we find two relevant concepts: Individual 

rationality (IR), defined as allowing agents to participate without obligation, expecting to 

gain something from participating in the game (Sandholm, 1999); and budget balance 

(BB), meaning that the mechanism requires no external subsidies to be implemented (Chu 

& Shen, 2006).  

In other words a mechanism indirectly shapes the behavior of various agents through 

incentives. Under this framework, the actions of supply chain participants are not explicitly 

dictated or imposed by the mechanism; but rather, the mechanism provides an environment 

that shapes the strategies and the decisions made by profit-maximizing agents. Here, we 

fall within the field of cooperative game theory, where a coordination mechanism is one 

which implements a Bayesian game for which the Nash Equilibrium coordinates the 

system; where Nash Equilibrium is a state in which all players act strategically and no 

player stands to gain by changing their strategy (Cachon & Lariviere, 2005).  
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2.2.2 Difficulties of Horizontal Coordination 

As stated earlier, a basic tool for coordination is information sharing, which allows 

parties throughout the supply chain to improve overall system efficiency. This simple 

observation highlights the importance of transparent information in a supply chain. 

Unfortunately, even when information is shared, concerns may arise regarding the veracity 

of the information. For instance, if supply is uncertain, some players may overstate their 

demand in order to secure supply later in time; this would create a rationing game where 

demand forecasts can no longer be trusted (H. L. Lee et al., 1997). This is a clear example 

that, although information sharing is necessary, it may not be sufficient to achieve a 

coordinated outcome. 

Although the aforementioned problem is in the context of vertical coordination, the 

problems relating to information sharing are no less relevant for the horizontal coordination 

problem. However, the main difference when dealing with horizontal coordination is not 

demand uncertainty, but rather the uncertainty on the comparative advantages and 

disadvantages of the firms being coordinated. This arises from the fact that, when you seek 

to coordinate horizontally, you may need to work with you direct competitors. Under this 

setting, supply chain participants may be reluctant to share their true information as 

revealing information to their competitors may weaken their own competitive positions. 

This creates a game theoretic problem; specifically, it is a problem of cooperative game 

theory with multilateral information asymmetry (Albrecht, 2010; Cachon & Lariviere, 

2005; F. Chen, 2003).  

We thus observe that a key factor in cooperative games, and in particular for the farm 

coordination problem, is guaranteeing the veracity of information provided. Unfortunately, 
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self-interested behavior and strategic thinking may lead participants to misrepresent their 

true costs; therefore, unless truthful revelation is in the best interest of each individual 

participant, the mechanism outcome may be a failure. Thus, we introduce two new 

concepts which will be central to our analysis: Incentive compatibility (IC), which is the 

property of a mechanism to elicit truthful information by making it a dominant strategy to 

bid ones true valuation1 (Myerson, 1981). And we also define efficiency as the property of 

allocating goods to the parties which value them the most such that the overall system 

utility is maximized. 

In the remainder of this section, we analyze some of the coordination mechanisms 

which are of interest to us. It is worthwhile to note that the set of all possible coordination 

mechanisms is very broad and varied. For a thorough review of various supply chain 

coordination mechanisms we refer the reader to (Albrecht, 2010). Hereafter, we focus on 

a reduced set of all coordination mechanisms; those designed to facilitate the efficient 

allocation of goods under a multilateral information asymmetry, where each player knows 

its own valuations but is uncertain on the valuations of all its competitors. These 

mechanisms are generally structured as simple auctions, or iterative multiunit auctions.  

2.2.3 Coordination Mechanisms for the Procurement of Goods 

When a transaction must be carried out and goods have to be moved along the supply 

chain, many times it is necessary to assign a value to these items. Generally, we can assume 

that prices are given by the market and that buyers simply take prices as given. However, 

                                                 
1 We treat “valuations” and “goods” as general concepts, where they could be the typical perspective for how 

much an agent may be willing to pay for a specific item; but it could also be a production contract which 

some agent may be willing to sign given its own production costs and the expected revenue from the contract. 
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at times when these prices are unknown, a mechanism is necessary. This problem was 

addressed by Vickrey (1961), who analyzed the dynamics of various auction formats and 

whose findings became the centerpiece to modern auction theory. 

In supply chain management, it is not uncommon to see the implementation 

procurement auctions (where suppliers compete against each other on the price of their 

bids) for maximizing the profit of the buyer, or to better utilize the resources of the supply 

chain. Auctions are generally emphasized in these problems because they have a rich 

theoretical backing and their mathematical structure makes them suitable for application in 

operations research. In particular, implementing auctions generally gives a good basis to 

make decisions where optimality can be strived for. We will briefly detail some cases 

where auctions or other mechanisms are used in a supply chain context. 

2.2.3.1 Single Product Type 

Some of the research on auctions has been done in procurement auctions for a single 

type of item; for instance (Chen, 2007) proposes an auction mechanism for supply contracts 

in when suppliers compete with one another and must make newsvendor-like decisions. 

Likewise, Chen et al. (2005) proposed the use of auctions which include transport costs on 

suppliers bids; this internalizes the costs and increases the efficiency of procurement. These 

are straightforward procurement auctions, where the products being auctioned are of a 

single type. 

2.2.3.2 Multiple Product Types 

The most interesting research in supply chain coordination occurs with auctions for 

multiple goods. Here, valuations for one good are no longer independent of the valuation 

for another good; moreover, one addition that greatly enriches the problem of coordination 
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is when suppliers have limited capacity, which must be allocated between multiple types 

of items. This consideration creates interdependence between suppliers and emphasizes the 

need for coordination. In particular, unlike procurement auctions for a single product, when 

capacity restrictions are added the auction cannot be efficiently solved in a single round 

and an iterative approach must be formulated. For instance, Gallien & Wein (2005) use 

discrete bidding and allocation rounds in order to properly account for the capacity of the 

bottleneck resource. Likewise, new variants of auctions for multiple products have been 

implemented by Mishra & Veeramani (2007), who use an auction with strictly increasing 

prices. 

2.2.3.3 Multiple Product Types with Extended Constraints 

If in addition to multiple products types and capacity constraints we include more 

variables (such as a time component, inventories and production schedules), then the 

coordination problems become increasingly multidimensional and efficiency becomes 

even elusive. Due to their size and scope, mechanisms for these problems must emphasize 

on rapid convergence to a good solution. Due to their complexity, decomposition methods 

are many times utilized to model these detailed problems (Albrecht, 2010). 

For the research done in this area, the focus is finding an efficient solution fast and 

through means of automatic negotiations; therefore, not all methods are structured as 

auctions. For instance, Arikapuram & Veeramani (2004) use the L-shaped method as a way 

to quickly link a distributed supply chain, where each integrant solves its sub-problems and 

communicates its constraints. Similarly, Dudek & Stadtler (2005, 2007) propose a 

negotiation based mechanism to coordinate a supply chain, contrasting the negotiation 

approach with simple upstream communication of forecasts. 
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In this setting, auctions modeled through dual decomposition have the greatest 

prominence. Some implementations include Ertogral & Wu (2000), who solved a lot sizing 

problem for multiple facilities using an auction mechanism; likewise, Kutanoglu & Wu 

(1999) used an auction mechanism for a scheduling application. In a later implementation, 

Karabuk & Wu, (2002) solved a decentralized resource capacity allocation problem on the 

semiconductor industry using an auction mechanism; the main contribution was the 

addition of a quadratic term to account for uncertainty in the problem.  

Unfortunately, when developing approaches to coordinate the supply chain, 

implementing a mechanism is often insufficient, as agents may act strategically and 

compromise the efficiency of the system. Among few examples of research that explicitly 

address incentive compatibility we have Guo, Koehler, & Whinston (2007). They designed 

a mechanism where a centralized auctioneer facilitates bidding and resource exchanges to 

determine market clearing prices for multiple goods; in this research, a claim is made that 

the mechanism is robust to cheating by analyzing computational results. Likewise, Fan et 

al. (2003) designed an auction mechanism to allocate bundles of items through a double 

auction; in their research, analytical results are provided to argue the incentive 

compatibility of the proposed mechanism. 

2.3 Mechanism Design and its Role on Coordination 

It is our aim, by immersing ourselves in the mechanism design theory, to better 

understand the important design considerations required to create a mechanism for the 

coordination of agricultural production. Mainly, we seek to understand what a mechanism 

can achieve under this setting and what factors will determine a successful implementation. 
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We start by mentioning some of the most important results in mechanism design, followed 

by an analysis of the context in which we address our coordination problem. 

2.3.1 Overview of Mechanism Design and Auctions 

In mechanism design, we start form the seminal paper by Vickrey (1961), who 

proposed a sealed bid auction where the highest bidder gets the item but pays the price of 

the second highest bid; it results that this mechanism is both incentive compatible and 

maximizes revenue for the seller. Moreover, Vickrey generalized this result stating that for 

an auction where bidders state their demand schedules for all possible quantities, and where 

the winner pays the lowest possible winning bid, it is in the best interest of bidders to state 

their true valuations.  

Thereafter, the results of Vickrey were further generalized by Clarke (1971) and 

Groves (1973), which gave birth to the “Vickrey-Clarke-Groves (VCG) mechanism.” In 

their generalization, they stated that for a mechanism in which bids are submitted for all 

possible combinations of goods and where the payments are as in the Vickrey auction, it is 

still a dominant strategy for bidders to state their true valuations. This gave birth to a 

theoretically interesting, yet highly impractical mechanism: The combinatorial auction. In 

brief, for small subsets of items, bidders would be able to place bids for all possible 

combinations; however, as the quantity of items grows, the combinatorial nature of the 

problem makes this computation prohibitively complex. 

Mechanism design theory was advanced with contributions by Myerson (1981) who 

further characterized incentive compatibility in mechanisms, revenue equivalence of the 

four basic auctions and particularly, the Revelation Principle, which states that “Given any 

feasible auction mechanism, there exists  an equivalent  feasible direct revelation  
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mechanism which gives to the seller and all bidders the same expected utilities as in the 

given [indirect] mechanism” (Myerson, 1981). Thus, there is no loss of generality from 

considering only direct revelation mechanisms2. 

The combination of the VCG mechanism and the revelation principle were thought 

to be a solution to the allocation problem, effectively reducing it to a computational, rather 

than an economic problem (Ausubel & Cramton, 2004). This gave rise to significant 

research on combinatorial auctions, their computational complications, the incentives 

created by the auctions and ways to design them to be effective. Further details for 

combinatorial auctions and their design can be found in the review by (De Vries & Vohra, 

2003). However, among the problems of dealing with a VCG mechanism we have issues 

such as susceptibility to shill bidding3, collusion4 and pathologies which can cause revenue 

to the seller to be zero (Ausubel & Milgrom, 2002); moreover, we also have the 

computational difficulties both for the bidders and the seller to determine values for 

packages as well as the winner determination respectively.  

Because very often it is prohibitively difficult to have a valuation for all possible 

bundles of goods, it is desirable to opt for an indirect mechanism instead of a direct 

revelation mechanism. The benefit is that agents remain in a solution space which is 

relevant for their valuations, thus drastically reducing complexity (Mishra & Parkes, 2007; 

Parkes & Kalagnanam, 2005). If the idea of computing valuations for many bundles is 

                                                 
2 A direct revelation mechanism is one in which the bidders simultaneously and confidentially announce their 

value estimates to the seller; and the seller then determines who gets the object and how much each bidder 

must pay. This is done in a single bidding round.  

An indirect mechanism in the other hand, will implement the outcome in several bidding rounds. 
3 To have a partner, acquaintance, friend or family bid on an item which is being sold in order to artificially 

raise the price of the item 
4 Working with other bidders to artificially lower the price of goods being purchased 
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taken to its extreme, we can relate the formulation of combinatorial auctions to that of 

auctioning infinitely divisible goods (Ausubel & Cramton, 2004). 

2.3.2 Pragmatic Mechanism Design and the Coordination Problem 

We find that applying a mechanism in an industrial setting is a task where multiple 

considerations must be taken into account. General theoretical solutions, albeit important, 

have to be translated into practice to achieve the greatest impact. In that sense, it is 

necessary for concepts from mechanism design to move from the theoretical to the practical 

without getting encumbered when basic assumptions are not met.  

We must begin to see mechanisms as an engineering tool which can be applied in 

many situations, each with its own nuances and requirements (Roth, 2002). Moreover, we 

must not be dissuaded from using a mechanism when it fails to meet the stringent 

requirements of IC, BB, IR and efficiency; mechanism design can in many settings take an 

evolutionary approach, where the mechanism is refined and perfected as bidders 

simultaneously develop their sophistication (Phelps, McBurney, & Parsons, 2009). Thus, 

in this section we seek to build a framework for bridging the gap between the economic 

theory and the desired implementation of a coordination mechanism. We use this intuition 

to apply mechanism design to the agricultural horizontal coordination problem. 

In the coordination problem, we can exploit the fact that we have self-interested 

individuals seeking to maximize some utility function. This means that a mechanism which 

efficiently allocates a set of continuous goods can be modeled as an optimization problem; 

and in particular, it may be modeled as a linear program (LP), which can be solved through 

primal or dual decomposition in an auction-like format (Albrecht, 2010; Vohra, 2011). 
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Therefore, we can rely on theoretical backing to appropriately design a mathematical model 

that implements the required coordination mechanism as an iterative auction. 

Unfortunately, except on the most trivial cases, auctions are complex multi-agent 

systems which require extensive game-theoretical analysis; they may not be amenable to 

exact solutions nor guarantee efficiency (Tesauro & Bredin, 2002). In order to implement 

a mechanism successfully, we need to properly analyze it in its wider context and directly 

address the most relevant roadblocks. For the farm coordination problem specifically, we 

can deduce that an indirect mechanism is required (i.e. an iterative auction). This 

mechanism, if allowed to continue for sufficient bidding iterations, should converge to the 

optimum (Ausubel & Cramton, 2004); however, in most real world cases this is not 

possible as bidders are only willing to commit a limited amount of time and effort to 

reaching a solution. This requirement will cause the number of iterations to be generally 

fewer than needed; in turn, this may reduce efficiency both from a computational 

standpoint as well as induce gaming behavior on the bidding process (Ausubel & Cramton, 

2004; Conen & Sandholm, 2001; Parkes & Ungar, 2000b). This strategic behavior from 

the bidders cannot be ignored, as its impact may be significant (Shen & Su, 2007); 

therefore, we must model and understand the strategic bidding problem independently. 

2.4 Conclusion and Recommendations for Research 

From the review of the literature, we find that several models have been designed for 

supply chain coordination under multilateral information asymmetry; however, none have 

been proposed in agriculture; this is particularly true for auction mechanisms. Although 

auctions have been used in agriculture for purchasing goods and establishing market prices 

once the product is available, the use of auctions to coordinate agricultural planting and 
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harvesting of crops will be the first of its kind. As such, the implementation of these models 

would be highly valuable as a means to establish efficient production plans before the 

growing and harvesting season. 

We also find that in agriculture the topic of supply chain coordination has been 

explored mostly from the perspective of contract driven vertical coordination. This 

perspective, although useful, grossly ignores a significant problem in agriculture: 

coordinating multiple small, heterogeneous and interdependent producers. Even when risk 

is reduced through contracted prices for crops, the coordination benefits may be 

insufficient. Thus, a mechanism which gives growers more flexibility to reach 

collaborative solutions will provide valuable improvements to the overall industry and in 

particular to the smaller producers. We argue that tools for horizontal rather than vertical 

coordination are of great importance, and their benefits can be numerous for producers and 

consumers alike.  

We also note that little research has been done for coordination mechanisms which 

also account for incentive compatibility. In our literature review we only find two examples 

which analyze mechanisms which are effective even under strategic behavior of bidders. 

Therefore, this dissertation fills another gap in research by explicitly considering the 

possibility of bidders behaving strategically for their own advantage. We develop a 

mechanism which exploits the structure of the problem from the consolidation facility point 

of view; this mechanism minimizes the incentives for agents to misrepresent their 

information. Here, the decision process of bidders is modeled as a dynamic program and 

the optimal strategic bid is found; thereafter, the mechanism is designed to minimize the 

differences between the truthful and strategic bids placed by farmers. This simultaneous 
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analysis of efficiency and incentive compatibility is performed through the use of 

mathematical modeling and computational results alike. 

Finally, the proposed research seeks to develop tools for risk reduction caused by the 

stochastic nature of yields. It was found that contract farming and supply chain 

coordination problems with stochastic yields are just beginning to take hold in agricultural 

planning. As a result, little research exists on the problem of coordination with stochastic 

yields. Furthermore, the results of this planning problem will be of great value for creating 

robust coordination mechanisms which can optimize contracts assignments as well as 

minimize yield risk for the consolidation facility and farmers alike. 
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3 METHODOLOGY 

3.1 Planning Process for Growers and Consolidation Facilities 

The focus of our research is to improve the decision-making capabilities of farmers 

and the extended supply chain of which they are part of. In particular, we want to improve 

the competitiveness of agricultural cooperatives composed of farmers and a consolidation 

facility (CF) by working on the coordination aspects of these associations. These 

cooperatives require extensive planning and communication at the operational, tactical and 

strategic level. However, for the purposes of this research we focus on tactical planning, as 

season plans are the most likely to benefit from a coordinated approach.  

 
Figure 3.1 – Scope of the Proposed Supply Chain Model 

We assume that there is a single consolidation facility, which sources product from 

a variety of growers. These growers have varying product offerings, production costs and 

resources available. The role of the consolidation facility is to observe downstream demand 

and to translate it into a procurement plan for the rest of the season. This procurement plan 

must be made in conjunction with growers such that an optimal outcome for the overall 
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system is obtained. The remainder of the supply chain is not considered, and its impact on 

the consolidation facility is reflected through a known and deterministic demand for the 

season (Figure 3.1). 

In the following sections we briefly detail the planning process for growers, the CF 

and for the combined system attempting to reach an optimal allocation. 

3.1.1 Grower 

Production planning for the entire season is a critical activity for farmers of fresh 

produce. During the planning (pre-season) phase a blueprint for the expected harvest 

generally exists before any planting is done. These plans encompass tactical decisions on 

how much land to use, the varieties to plant and the timing of planting, and are of great 

importance as they dictate the outcomes of each subsequent stage in the season (Ahumada 

& Villalobos, 2009b). Furthermore, all subsequent stages (planting, growing and 

harvesting) require varying amounts of resources (such as labor, fertilizers, insecticides) 

and generate an expected amount of revenue, which must be accounted for when making 

the full season plan. Moreover, due to the long production lead times inherent to 

agriculture, the expectation of future crop yields and market prices plays a crucial role in 

making decisions before planting (Figure 3.2). 

 

Figure 3.2 – Relevant Factors to the Farmers’ Planning Problem 
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To illustrate some of the information used by farmers to estimate their production 

quantities given their cost parameters and their goals, we present Table 3.1. Here we 

illustrate how the expected dates of harvest, the length of the harvest season and the 

expected yields vary as a function of the planting date. This is one of the central pieces of 

information used by farmers to plan for the season. With production and other market 

information, it is possible to make initial plans for the amount of each crop to plant and 

their planting dates in order to cover the market’s demand for the season.  

Table 3.1 – Production Estimates of a Tomato Crop as a Function of Planting Periods 

 

In the case of a single crop, planning for a full season may seem straightforward; 

however, note that the difficulty increases significantly if a farmer produces multiple crops. 

Depending on the expected yields and harvest dates, different amounts of land and labor 

are required throughout the season, making some planting schedules inherently better than 

others. To illustrate the impact of varying parameters on crop allocation, we show a 

sensitivity analysis for varying scenarios of labor availability (Figure 3.3). Here we observe 

that as labor becomes scarce, farmers seek to plant broccoli, cauliflower and iceberg lettuce 

as opposed to the more labor intensive romaine lettuce (Wishon et al., 2015). This shows 

the influence of external factors on the decisions of a single grower. As more factors add 

up, this multidimensional problem becomes exponentially hard for growers to solve. 

Date of Plant Production 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 %

15-Aug 1,662        5 5 10 10 10 10 9 9 8 8 8 8 100

30-Aug 1,828        5 5 10 10 10 10 9 9 8 8 8 8 100

14-Sep 2,373        5 5 6 10 10 10 10 10 9 9 8 8 100

29-Sep 2,564        5 5 10 10 10 10 9 9 8 8 8 8 100

14-Oct 2,698        5 5 10 10 10 10 9 9 8 8 8 8 100

29-Oct 2,684        5 5 10 10 10 10 9 9 8 8 8 8 100

13-Nov 2,896        5 5 10 10 10 10 9 9 8 8 8 8 100

28-Nov 2,837        5 5 10 10 10 10 9 9 8 8 8 8 100

13-Dec 2,337        5 5 10 10 10 10 9 9 8 8 8 8 100

28-Dec 2,183        5 6 10 20 22 10 8 7 6 6 100

12-Jan 1,794        4 5 10 15 22 10 9 9 8 8 100

27-Jan 1,385        7 7 13 13 18 18 9 9 4 2 100

11-Feb 1,200        7 7 21 21 15 15 5 4 3 2 100

26-Feb 948           6 6 16 17 12 12 8 8 8 7 100

Harvest by week

March April May JuneNovember December January February
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Figure 3.3 – Labor Sensitivity of Specialty Crops to Worker Availability 

Ultimately, one of the main parameters which influences the decisions of farmers is 

price (or expected price) for its crops. In particular, if a price is negotiated through supply 

contracts or if a price is expected from the open market, farmers can use this information 

to make their plans for the upcoming season. This discussion on purchase prices leads us 

to our next section: the consolidation facility. 

3.1.2 Consolidation Facility 

The second concern of this research is a consolidation facility (CF), whose primary 

objective is to secure enough product to satisfy demand. This is usually accomplished by 

working with many firms through the use of supply contracts and purchasing commodities 

from the open market. At this level, observed demand and prices are less variable than 

those observed upstream since variability is pooled from various sources and inventories 

are held in cold storage. Figure 3.4 shows how individual supply from farmers, once pooled 

by the CF, appears significantly more stable. The primary concern for the CF then becomes 

that of securing contracts at the lowest cost to satisfy demand throughout the season, while 

utilizing available resources such as inventories and transportation infrastructure.  
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Figure 3.4 – Consolidation Facility’s Planning Problem 

For the CF to accomplish its objectives, a stable and predictable delivery of products 

from the farmers to the CF is of great value; moreover, if the supply schedule is known 

before the harvest season starts, then the CF planning problem is greatly simplified. As a 

result, it is in the best interest of the CF to coordinate all farmers in the cooperative on the 

pre-season. Thereafter, once production assignments are made, the CF will be subject to 

the production outcomes from farmer contracts and from farmers honoring their 

commitments. Here, the CF may benefit from farmers overproducing, as this may prevent 

shortages; however, overproduction may also be in detriment of overall system 

coordination and therefore should be considered holistically. 

3.1.3 Tactical Coordination on the Pre-Season 

The above descriptions make no specific assumptions of cooperation or the lack of 

it. However, we can see that high transparency and availability of information would be of 

great benefit to the consolidation facility. Unfortunately, unless the entire enterprise (all 

growers and CF) were fully centralized and owned by a single individual, such detailed 

information is unrealistic. We have two main cases of collaboration in these supply chains: 
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On one hand, if we assume no collaboration, the consolidation facility can only make 

a limited amount of offers and negotiation rounds with each grower; this sequential 

negotiation approach is myopic in nature and presents multiple defects. Mainly, outcomes 

can be order dependent, with farmers at the different rounds having different treatment; 

likewise, from the farmer side, negotiation strategies may be restricted by pre-existing 

contracts, which reduce the requirements of the CF. Moreover, because on procurement 

the costs of one entity are the profits of the other, the incentives to collaborate and share 

information are hampered. 

On the other hand, even under a collaborative approach greater transparency and an 

improved collaborative plan will not necessarily be reached. In fact, only under well 

designed collaborative approaches can these objectives be addressed and optimal solutions 

can be attained. A well designed coordination mechanism should be able to coordinate the 

chain in spite of competitive behavior among growers and in the grower-CF interface. 

3.2 Envisioned Coordination Mechanism 

As we have noted above, the farm planning problem involves a complex set of 

decisions that make planning challenging for farmers. If we combine several growers with 

varying production profiles and attempt to coordinate their actions, we expect this problem 

to grow significantly larger. Moreover, attempts for coordination must consider the game 

theoretic aspects of information sharing and the additional interactions which this entails. 

In the supply chain literature, several approaches have been proposed for dealing 

with coordination when decisions span several echelons. These approaches show that using 

policies which align the incentives of suppliers and their customers (vertical coordination) 

the efficiency of the supply chain can be improved (Cachon & Lariviere, 2005; Simchi-
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Levi et al., 2003). However, in the case of the farming cooperative problem, we encounter 

the objective is horizontal (among farmers) rather than vertical coordination. Precisely, it 

is a problem of horizontal coordination with multilateral information asymmetry (Albrecht, 

2010), where no single player possesses all information for the full supply chain. For this 

coordination problem, a “marriage between an auction mechanism and a supply contract” 

is a viable research direction which can prove fruitful (F. Chen, 2003).   

To illustrate the potential for coordination, take the hypothetical example of two 

growers that have different weather and soil conditions and can therefore produce two 

crops throughout the year as shown in Figure 3.5. If each grower acts independently, they 

would produce where the greatest return is expected. Suppose that in this example Crop 2 

has the best margins for both farmers; the most likely scenario, under no coordination, 

would create oversupply of crop 2 in July-Dec, while being short in Crop 1. This option 

does not fare well in terms of supply stability and offering variety to downstream 

customers. Through a coordinated approach, a better solution which accommodates a more 

stable supply can be found; however, note that even with information sharing and goodwill, 

it is not always clear how a centralized planner should implement the best solution.  

 

Figure 3.5 – Illustration of Differing Production Profiles 
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For the case above, plain information sharing can be thought of as a naive solution; 

however, remember that these agents are also competitors caring for their best interest, so 

why would they reveal their cost information? Furthermore, even if information is shared: 

can there be guaranteed accuracy? At this point, gaming behavior such as seeking 

convenient allocations and ex-ante compensation for future production will appear, and 

revealing information may not be on the best interest of each agent (F. Chen, 2003). The 

issue of coordination is further complicated when the stochastic nature of crops yields and 

the decay of products are accounted for; specifically, as storage is restricted, the timing and 

quantities of harvest become a central piece of the decision process. These factors must be 

accounted for by the cooperative when a production assignment is made.  

Without a mechanism that elicits truthful information, any effort to make such an 

assignment from the side of the cooperative will be futile. Given this setting, we propose 

the use of a mechanism similar to an auction. The mechanism iteratively adjusts prices 

which are publicly announced by the CF; upon learning these prices, farmers respond with 

a public statement of their production plan. In this case, we create a new space of shared 

information which the cooperative can use to work towards a solution (Figure 3.6).  

CC private information:

Shared information:

Farmers private information:

F1

CCF2

F3

Negotiation:
Prices

Contracts

Quantity allocations

Timing of delivery

Seasonality
Production cost

Resources
Risk preferences

Seasonality
Production cost

Resources
Risk preferences

Seasonality
Production cost

Resources
Risk preferences

Demand 
information

Inventory 
costs

Space 
available

Customer 
preferences

 

Figure 3.6 – Information Components of the Coordination Problem 
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To illustrate the use of an iterative auction to coordinate supply and demand, we use 

the following example illustrated in Figure 3.7 below (where the x-axis on each figure 

represents consecutive production periods). In Iteration 1, the CF announces a price 

schedule for multiple products throughout the season; however, the aggregate response of 

farmers to these prices yields an erratic supply, which the CF struggles to manage by using 

inventory alone. The auction can then in a subsequent iteration (Iteration 2) modify the 

prices of all items such that growers revise their plans and their new announcement 

translates into a better outcome for the CF. Performing this procedure iteratively will 

converge to a better solution that matches supply and demand; when prices don’t change 

or when the desired allocation is reached, the auction terminates.  

 

Figure 3.7 – Illustration of Auction Iterations (Farmers’ and CF Perspective) 

This type of mechanism offers a structured approach to production planning, it’s 

intuitive and simple to understand, and its fairness should not be contested as the 

allocation decisions are made by farmers rather than a dictatorial/centralized planner. 

Moreover, this mechanism can be translated into tractable mathematical models, as it is 

shown in the following sections.  
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3.3 Objectives 

The goal of the proposed research is to develop decision tools for small and medium-

sized farmers to effectively coordinate their crop planning. In particular, we address the 

challenge of achieving coordination under incomplete/asymmetric information by 

developing an auction mechanism between retailer and suppliers. In this context, an 

optimal solution is obtained by allocating supply contracts to farmers while determining a 

fair compensation (based on internal prices) for their respective production. The auction 

mechanism is implemented by the consolidation facility, which acts as the institution in 

charge of consolidating demand information, negotiating with downstream customers and 

facilitating coordination; in other words, the CF is the global manager and auctioneer. To 

achieve this goal, we take the following steps: 

 

Figure 3.8 – Outline of Dissertation Objectives 

1. We develop a mathematical model to assist farmers and cooperatives in making 

tactical production and consolidation decisions for the upcoming season. The 

designed model is centralized in nature and assumes that all relevant information is 

available. In this model we include all relevant factors affecting growers and the 



39 

 

CF, such as production costs, resource availability and a known demand for the 

various products. Subsequently, the model is separated into various sub-problems 

representing the relevant players of the supply chain through the use of 

decomposition methods. 

2. We formulate an auction mechanism that is compatible with the distributed 

structure of the coordination problem. The auction mechanism uses the solutions to 

farmer sub-problems to derive price variations which are then communicated to 

growers; farmers, in turn, adjust their production plans as a response to price 

changes. The purpose of the auction is to guide the allocation of contracts towards 

a global optimal solution in an efficient, quick and transparent manner. 

3. We recognize possible pathologies that can result from the implementation of the 

mechanism. Mainly, we focus on the possibilities created for bidders to strategically 

manipulate the outcome of the auction by misrepresenting their true preferences 

and the impact of their behavior on system efficiency. Later, we re-design the 

auction parameters such that the negative impact of this behavior is minimized and 

the overall profitability of the supply chain is maximized. 

4. We design an extension to the production problem for farmers seeking to honor 

their commitments with the CF after production assignments are determined from 

the auction. This formulation considers the variability in yields which is intrinsic to 

agricultural supply chains and the risks that it creates for farmers. Moreover, we 

seek to understand how farmers deviate from their production commitments (either 

by under-producing or over-producing) and how these risks are reduced through 

the use of option contracts. 
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5. We implement the developed tools using actual food supply chain information at 

the packing-house level as a case study for each of the research objectives.   

To find a solution to this problem, we take a multidisciplinary approach, including 

agricultural science, operations research and mechanism design. Market mechanisms (such 

as auctions) have been historically utilized for discovering the value of an item when 

incomplete information and competitive behavior exist; furthermore, these mechanisms 

have a rich theoretical backing and a mathematical structure that is compatible with 

operations research. Thus, through these disciplines, the farming cooperative coordination 

problem can be modeled mathematically and solved in a decentralized manner despite 

incomplete information and self-interested agent behavior.  

3.4 Proposed Model for Centralized Supply Chain Optimization 

The full, centralized, decision model will be refined and adapted to take the 

perspective of a centralized planner as done by (Ahumada & Villalobos, 2009b). This 

idealization of the system gives a starting point for capturing all relevant features of the 

system and quantifying a “centralized optimal solution”. 

We begin by describing the problem as observed by a centralized planner 

(consolidation facility) which has control over the entire supply chain. The planner has the 

objective of maximizing supply chain profits for several farms, where each farm 𝒊 ∈ 𝑰 has 

its own characteristics such as production costs, available resources and size. Each farmer 

is able to produce a number of crops 𝒋 ∈ 𝑱 at multiple discrete time periods 𝒕 ∈ 𝑻 and is 

limited by his/her individual resources 𝒓 ∈ 𝑹.  
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The constraints limiting the overall planning problem are: (3-1) Planting quantities 

should not exceed land owned by each farmer; (3-2) makes the amount harvested (𝑯𝒕(𝒕𝒑)𝒋𝒊) 

in a given week dependent on the amount planted (𝑷𝒕𝒋𝒊) and the expected yield for each 

associated crop, time period and farmer (𝒀𝒕𝒑𝒕𝒋𝒊); (3-3) specifies the resource limitations to 

which each farmer is subjected (labor, water, capital); (3-4) ensures that the cooperatives’ 

warehouse consolidates what has been harvested; and (3-5) specifies weekly demand, with 

the possibility of holding inventory at the warehouses.  

∑ ∑ 𝑃𝑡𝑗𝑖𝑗𝑡 ≤ 𝐿𝑎𝑛𝑑𝑖 ∀  𝑖 ∈ 𝐼 (3-1) 

𝐻𝑡(𝑡𝑝)𝑗𝑖 = P𝑡𝑝𝑗𝑖 ∗ 𝑌𝑡𝑝𝑡𝑗𝑖   ∀  𝑡,  𝑡𝑝 ∈ 𝑇 , 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼  (3-2) 

∑ 𝑃𝑡𝑗𝑖 ∗ 𝑅𝑃𝑟𝑡𝑖𝑗 + ∑ 𝐻𝑡𝑗𝑖𝑗 ∗ 𝑅𝐻𝑟𝑡𝑖 ≤ 𝑅𝑒𝑠𝑟𝑡𝑖     ∀  𝑡 ∈ 𝑇 , 𝑟 ∈ 𝑅, 𝑖 ∈ 𝐼  (3-3) 

𝑊𝑡𝑗 ≤ ∑ 𝐻𝑡𝑗𝑖𝑖  ∀  𝑡 ∈ 𝑇 , 𝑗 ∈ 𝐽   (3-4) 

𝑊𝑡𝑗 + 𝐼𝑛𝑣𝑡𝑗 − 𝐷𝑒𝑚𝑡𝑗 = 𝐼𝑛𝑣𝑡+1,𝑗 ∀  𝑡 ∈ 𝑇 , 𝑗 ∈ 𝐽    (3-5) 

In order to include critical quality and shelf life considerations we use the approach 

of Ahumada & Villalobos (2009a), where perishability is modeled through discrete quality 

(ripeness) states 𝒒 ∈ 𝑸 and their respective shelf life 𝒔𝒍𝒒. These quality states constrain 

inventory balance by tracking the harvest period 𝒉 ∈ 𝑻 and quality for items arriving to the 

warehouse 𝑾𝒕𝒉𝒋𝒒; thereafter, constraints which use the additional information to construct 

a feasible space of perishable inventory balance are constructed in (3-6). We do not 

elaborate on this formulation as to keep the level of detail on the mathematical models at 

an appropriate scope for this section; however, for further detail we refer the reader to 

(Ahumada & Villalobos, 2009b; Mason & Villalobos, 2015; Rong, Akkerman, & Grunow, 

2011) and to Chapter 4 of this dissertation. 

∑ 𝑊𝑡ℎ𝑗𝑞ℎ + ∑ 𝐼𝑛𝑣𝑡ℎ𝑗𝑞ℎ − 𝐷𝑒𝑚𝑡𝑗 = ∑ 𝐼𝑛𝑣𝑡+1,ℎ𝑗𝑞ℎ         ∀  𝑡, 𝑗 , 𝑞 ;    ℎ ≤ 𝑡 − 𝑠𝑙𝑞  (3-6) 
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Finally, the objective (3-7) of the cooperative is to maximize supply chain profits 

from selling the products (first term in the objective function) taking into account the 

resource costs of each grower to produce and deliver each crop to the warehouse. 

∑ 𝑊𝑡𝑗𝑡𝑗  𝑃𝑟𝑖𝑐𝑒𝑡𝑗 − ∑ 𝑃𝑡𝑟𝑗𝑖𝑅𝐶𝑃𝑡𝑟𝑗𝑖𝑡𝑟𝑗𝑖 − ∑ 𝐻𝑡𝑟𝑗𝑖 𝑅𝐶𝐻𝑟𝑡𝑖𝑡𝑟𝑗𝑖 − ∑ 𝑊𝑡𝑗𝑡𝑗 𝑅𝐶𝑊𝑡𝑗    (3-7) 

3.5 Proposed Model for Decentralized Coordination 

Assuming that a centralized decision maker has control over the supply chain is 

seldom realistic. Therefore, we decompose the problem into two models in which the 

growers and the central buyer are modeled as separate entities with their own objectives 

and constraints. To show that the model can be decomposed effectively, we use Dantzig-

Wolfe decomposition (Dantzig & Wolfe, 1960). This is a tool which has been analyzed in 

the mechanism design literature for its interpretation as dividing a centralized problem into 

one of multiple agents whose actions are aligned through communication of “prices” for 

resources (Albrecht, 2010; Davies, 2005; Vohra, 2011).  
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Figure 3.9 – Decomposition of Centralized Model 

Before the decomposition we note that harvest quantities are directly proportional to 

planting decisions, which implies a linear equivalence between “planting” from the 
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growers’ perspective and “product quantities” from the consolidation perspective (3-10). 

Moreover, we express the resource and land constraints as a single set of inequalities for 

simplicity.  

The problem is now in a format which makes its applicability for decomposition 

readily apparent, with centralized demand constraints (3-10) and constraints applying to 

each farmer’s usage of resources (3-9): 

Max ∑ (∑ (Price′tj − RCPtrji
′ ) ∗ Ptpji  tj )ri      (3-8) 

St. ∑ Ptpji ∗ RPrtpi
′

j ≤ Resrti     ∀  t,  tp ∈ T , r ∈ R, i ∈ I   (3-9) 

 ∑ ∑ Ptpji ∗ Ytptjiitp = Dem′tj ∀   t ∈ T , j ∈ J   (3-10) 

 Ptpji ≥ 0    ∀  t,  tp ∈ T , r ∈ R 

The above problem is decomposed into a master problem (MP) and a set of sub-

problems (SPi), one for each farmer in the cooperative, where the master problem is given 

by the demand observed by the cooperative and the convex hull generated by the farmers 

planning problems; we use λiv to introduce columns into the master problem: 

Max  ∑ (∑ ∑ (Price′tj − RCPtrji
′ ) ∗ Ptpji ∗ λivtjri )v           (MP – 3-11) 

St. ∑ ∑ Ptpji ∗ Ytptji ∗ λivitpv = Dem′tj  ∀   t ∈ T , j ∈ J   

  ∑ λiv = 1                v  ∀   i ∈ I  

 Ptpji
v  ∈ Qi  , λiv ≥ 0        ∀   i ∈ I  

We obtain the extreme points of the feasible set of planting decisions through 𝐼 sub 

problems (SPi), which are used to generate columns in the master problem: 

Max ∑ ∑ (Price′tj − RCPtrji
′ ) ∗ Ptpjitjri − (∑ ∑ Ptpji ∗ Ytptjiitp ) ∗ y̅tj  (SPi – 3-12) 

St. ∑ Ptpji ∗ RPrtpi
′

j ≤ Resrti     ∀  t,  tp ∈ T , r ∈ R  

 Ptpji ≥ 0        ∀  t,  tp ∈ T , r ∈ R 
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Here, �̅�𝐭𝐣 are the values of the dual variables corresponding to the demand constraints 

derived from the master problem. The inclusion of this term into the farmers sub problem 

has a direct interpretation applicable to our application: Announce the price vector 𝒑, and 

then let each agent choose the planting schedule that maximizes his payoff; where the 

inclusion of the dual variables implies that for some vector 𝒑 and for farmers seeking their 

own best interest, the system is at its optimal point (Vohra, 2011). Moreover, due to the 

structure of D-W decomposition, under a finite number of iterations for price 

announcements, we will converge to the optimal solution. 

Unfortunately, by taking a closer look at the structure of the problem presented 

above, we find some implementation issues that may arise in practice.  

1. The number of auction iterations required for convergence may be high 

2. If the prices announced are allowed to both ascend and descend, the mechanism may 

be less attractive to the primary stakeholders 

3. Despite the existence of a mechanism based on iterative price announcements and 

allocation responses, there is no guarantee that farmers will bid truthfully  

The first issue can be addressed through fine tuning of parameters or a reasonable 

price initiation for the mechanism, while for the second issue Vohra (2011) provides an 

implementation procedure such that the algorithm can be implemented as an ascending 

price auction. Moreover, alternative formulations of the decomposition such as sub-

gradient optimization can be used; for sub gradient optimization, although structurally 

similar to D-W and also based on dual decomposition, is more akin to an auction and easier 

to interpret. Unfortunately, there is no clear cut solution for the third issue; in fact, some 

analysis of dual decomposition shows that “cheating” may be possible and advantageous 
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for subunits (Jennergren & Müller, 1973). To avoid cheating, a more detailed analysis is 

required which uses the concept of incentive compatibility, described in Section 3.6. 

3.6 Analysis of Incentive Compatibility 

In the realm of mechanism design, “extracting information” for its use in 

coordination of a supply chain is a major contribution. For this reason it is indispensable 

to understand whether the mechanism does in fact provide the right information. A 

mechanism which elicits agents to reveal their true information by making bidding 

truthfully their best response has a formal name in economics: Incentive compatibility 

(IC). In other words, if telling the truth is an ex-post Nash Equilibrium at each iteration of 

the game, then the mechanism is incentive compatible (Vohra, 2011). 

If incentive compatibility is met, the model converges to the centralized solution. 

However, in practice incentive compatibility is rarely met, and neglecting to consider 

incentive compatibility may lead to sub-optimal results and, in a worst case, the mechanism 

may fail altogether. Therefore, it is key to design a simple mechanism which the various 

players can understand, but it is also indispensable to be aware of how users will react to 

the Bayesian game created. Not all mechanisms are incentive compatible, nor is it possible 

to prove incentive compatibility for all mechanisms; however, in this dissertation we 

analyze and analytically quantify the extent to which truthful disclosure is fulfilled. 

To perform an analysis of incentive compatibility for any mechanism, one possible 

approach is to define and analyze the problem in a form similar to that of Myerson (1981). 

In his seminal work, which laid the foundations of mechanism design, Myerson 

characterizes incentive compatibility of a mechanism by using the concept of expected 

utility derived from a mechanism. Here he defines an incentive compatible mechanism as 
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one in which the utility obtained by any bidder from announcing his/her true valuation 𝒙𝒕 

is always greater than the utility of announcing any other valuation 𝒙𝒇. This, on its most 

simple terms is expressed as: 

𝑈(𝑥𝑡) ≥ 𝑈(𝑥𝑓) (3-13) 

Where 𝑈𝑖 is the expected utility for bidder 𝑖 as a function of stating a given valuation 

𝑥. In the case of an iterative auction, we can take the expected utility to be taken across all 

iterations as the utility obtained in each iteration multiplied by the probability of 

termination in each iteration. 

𝑈(𝑥) =  ∑ 𝑢𝑘(𝑥) 𝑝𝑘
𝑁
𝑘=1   (3-14) 

In the formulation of Section 3.5 we deal with a mechanism for the procurement of 

goods by a centralized consolidation facility which will auction supply contracts for which 

farmers will be the bidders. Here, the sub-problem for any specific bidder given in (SPi – 

3-12) is formulated as a mixed integer program which can be represented as: 

Max    𝑧𝑘 = 𝑐𝑘𝑥𝑘      (3-15) 

St   𝐴𝑥𝑘 = 𝑏   

𝑥𝑘 ≥ 0  

In the context of mechanism design, we can take this formulation to be the decision 

of how much to bid in a given iteration of the auction. Here, 𝑧𝑘 is the value for the truthful 

or incentive compatible objective function for bidder 𝑖, while 𝑥𝑘 is the vector of actual 

production bids. These production bids and objective function occur for one of many 

auction iterations 𝑘 ∈ 1. . 𝑁, all of which may or may not be incentive compatible. 

Suppose there is some other vector of feasible production bids �̌�𝑘 for some iteration 

𝑘 such that 𝑥𝑘 ≠ �̌�𝑘; furthermore, let �̌�𝑘 yield the objective function �̌�𝑘 = 𝑐𝑘�̌�𝑘 ≠ 𝑧𝑘. The 
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total utility that the bidding farmer obtains from the auction is equal to the sum of the 

objective functions for all iterations. To put this formulation in the context of incentive 

compatibility, we should relate the formulation from (3-15) in the context of the incentive 

compatibility condition (3-12). We state the mechanism proposed in Section 3.5 is 

incentive compatible if the following inequality holds: 

∑ 𝑧𝑘𝑃𝑘

𝑁

𝑘=1

≥ ∑ �̌�𝑘𝑃𝑘

𝑁

𝑘=1

                      (3-16) 

Where 𝑃𝑘 is the probability that the auction terminates at a given iteration. 

3.6.1 Solution Approach for the Assessing the Strategic Decision Problem 

As the formulation above suggests, for the mechanism to be incentive compatible, 

the condition of (3-16) should hold across all iterations. To help us make the assessment 

of incentive compatibility, we need to take the perspective of the farmer participating in 

the mechanism and attempt to strategically optimize its bidding quantities. 

Specifically, for the auction formulated in this dissertation, the price vector 𝑐𝑘 for 

any of the auction iterations 𝑘 will be affected by the bids announced in the previous 

iteration 𝑘 − 1.  As a result, this new price vector 𝑐
(𝑐𝑘,   𝑥𝑘, 𝑤𝑘)
𝑘+1  can be calculated as a 

function of a farmer’s own bids 𝑥𝑘 and the random outcome of the bids from the other 

farmers 𝑤𝑘. If this decision problem is incorporated into the problem formulation detailed 

in (3-15) then we obtain an expanded problem given by (3-17) below: 

𝑀𝑎𝑥    𝑧𝑖
𝐵𝑅 = 𝑐𝑖𝑥𝑖 + ∑ 𝑐

(𝑐𝑘,   𝑥𝑖, 𝑤𝑖)
𝑘+1 𝑥𝑘+1

𝐾−1

𝑘=𝑖

                ∀  𝑖 < 𝐾 

𝑠𝑡:                             𝐴𝑥𝑖 = 𝑏                                                       

                                  𝑥𝑖 ≥ 0                    

(3-17) 
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For the case of computing the Best Response (denoted above by BR), each bidder is 

still subject to the same constraints 𝑨𝒙𝒊 = 𝒃 during all iterations. However, since the 

announced price vector changes at each point, then the bidder must account for this and 

may attempt to anticipate/influence these changes; thus, the objective function changes 

significantly. This change results in the farmers bidding problem now having a new 

formulation as a dynamic problem where 𝑐𝑘+1 represents the current state of the system 

and is a function of the current state 𝑐𝑘, the actions taken by the farmer 𝑥𝑘 and a random 

component  𝑤𝑘.  

It’s trivial to show that for the final iteration, where for any price announcement the 

auction terminates, the game is reduced to a single stage mixed integer program; here, the 

problem is incentive compatible. However, this result is not clear for iterations which do 

not finalize the game. That is, in previous iterations, farmers may have no incentive to bid 

truthfully. Ultimately, to prove incentive compatibility, we must show z∗ = zBR for all 

iterations in accordance to (3-16). In the likely case of encountering a negative result, the 

focus of the research will be to minimize the negative impacts caused by the lack of 

incentive compatibility and formulate an effective (rather than optimal) mechanism.  

The solution approach to this problem relies heavily on the use of dynamic 

programming, linear programming, quadratic programming, convex optimization and the 

use of heuristics. Moreover, due to the scope and difficulty of the problem we also have a 

heavy reliance on numerical methods and the intuition derived from computational results. 

3.7 Coordination Problem under Stochastic Parameters 

One of the greatest potentials of coordinated solutions for the agricultural supply 

chain lies in the possibility of reducing the exposure to risk of all the involved parties. This 
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implies that the farmers can be protected from the variability in yields and market prices, 

while the CF also protects itself from failing to meet its contracted demand. In order to do 

this, the random behavior of yields at each farming location and the behavior of market 

prices would have to be captured by the CF’s objective function. However, this additional 

consideration creates a significant increase in the modeling complexity due to the 

incorporation of stochastic variables to an already complex decision model.  

The consequence of stochastic yields means that production commitments made by 

the various farmers will not always hold. In fact, expected supply from each farm will vary 

around a mean, sometimes being higher and sometimes lower; however, the problem of 

variable yields is greatly aggravated if the farmer in question decides to overproduce or 

underproduce due to a misalignment of incentives. This problem can cause great conflict 

for the CF; in particular if the CF naively assumes that farmers will honor their production 

commitments after these are determined by the auction mechanism. 

Although the mechanism proposed in Section 3.5 can be incentive compatible and 

viable (Section 3.6), there are still problems to be addressed for coordination. Specifically, 

the mechanism proposed ensures that farmers are given a guaranteed price for their crops 

as given by the auction. This reduces the exposure to risk that farmers observe; however, 

if farmers decide do dishonor their commitments and no consequence or penalty is 

stipulated in the contract, then a moral hazard problem is brought about. Furthermore, even 

if farmers honor their commitments and plan to match demand exactly, they are still 

exposed to yield variability which may cause them to take a hit to their profits.  

As a result, we formulate a model for stochastic optimization of the planting 

quantities that a famer must undertake in order to minimize the risks of undercutting the 
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CF with those of overproducing and wasting their product. Moreover, we also analyze this 

decision problem from the perspective of the CF and find conditions under which the 

supply chain remains coordinated in spite of stochastic yields. 

Since the problem of stochastic optimization is complex, we limit the scope to the 

interaction between a single grower and the CF; we also limit the scope to planting a single 

crop for one production period. This simplification allows the sufficient level of detail to 

draw strong conclusions on the nature of the production problem and its implications for 

coordination; but it also provides the groundwork necessary to bring together the horizontal 

coordination problem with that of stochastic programming and mechanism design.  

3.7.1 Solution Approach for the Stochastic Yields Coordination Problem  

This model is formulated as a continuation to the tactical production planning 

problem and starts from the assumption that production contracts have been pre-

established. Thereafter, the production problem for the farmer is how much to plant such 

that the costs of overage and underage are balanced in a newsvendor fashion; downstream 

in the supply chain, it is assumed that costs for the CF are minimized when the expected 

harvest quantities match the established supply contracts. With this expansion we place 

special emphasis on the conditions that coordinate the two players and the supply chain. 

To solve this problem, we rely on two formulations: (1) A newsvendor problem with 

stochastic yields, and (2) an expansion with the possibility for the farmer to purchase option 

contracts as insurance to avoid the costs of overage and underage. For both formulations 

the conditions for optimality in the farmer’s objective function are derived, and the 

conditions under which the supply chain is coordinated by matching expected production 

to contracted supply are identified. 
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A summary of all relevant parameters and decision variables for the farmer decision 

problem are described below: 

Decision variables and outcome functions: 

 𝑞  = Quantity to plant for farmer (Acres) 

 𝑞𝑢  = Number of options for underage insurance to buy (Units) 

 𝑞𝑜  = Number of options for overage insurance to buy (Units) 

 𝜋𝐹  = Total profit obtained by farmer 

Parameters: 

 𝑆   = Pre-established supply quantity  (Units) 

 𝐻   = Amount harvested as a function of planting and random yield (Units) 

 𝑥   = Random variable for the stochastic yield (Units per Acre) 

 𝐹(𝑥)  = CDF for the stochastic yield 

 𝑓(𝑥)  = PDF for the stochastic yield 

 𝐸[𝑥]  = Expected yield  

 𝑝𝐹  = Unit price offered to the farmer 

 𝑐  = Cost of harvesting realizes production (Cost per unit) 

 𝑐𝑝𝑙  = Cost of planting (Cost per acre) 

 𝑐𝑢  = Unit cost of underage  

 𝑐𝑜  = Unit cost of overage  

 𝑜𝑢  = Cost of an option to under supply the CF 

 𝑜𝑜  = Cost of an option to sell above committed supply 

 𝑠𝑢  = Strike price for underage options (𝑠𝑢 < 𝑐𝑢 ) 

 𝑠𝑜  = Strike price for overage options (𝑠𝑜 < 𝑐𝑜) 

For the newsvendor problem with options we define the following profit function for 

the farmer: 

𝜋𝐹 = 𝑝𝐹 𝑚𝑖𝑛(𝐻, 𝑆) − 𝑐𝑢(𝑆 − 𝑞𝑢 − 𝐻)+ − 𝑐𝑜(𝐻 − 𝑆 − 𝑞𝑜)
+ − 𝑐𝑝𝑙𝑞 − 𝑜𝑢𝑞𝑢  

           −𝑜𝑜𝑞𝑜 − 𝑠𝑢(𝑆 − 𝐻)+ − 𝑠𝑜(𝐻 − 𝑆)+ (3-18) 

Where 𝑝𝐹 is the retail price for the crop, which is multiplied by the stochastic harvest 

quantity and is capped by the contracted supply. We subtract the costs of underage and 
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overage which begin taking place once farmers are no longer protected by the options 

which they purchased. These are followed by the costs of planting the crops, the underage 

and the overage options respectively. Finally, we have the special costs of underage and 

overage for which farmers are protected by the options purchased. 

This formulation is sufficiently flexible to model the decision problem in many 

forms. For instance, for positive 𝑠𝑢, 𝑠𝑜 we have a two cost system where farmers can avoid 

high penalty costs. However, 𝑠𝑢 and 𝑠𝑜 are allowed to take negative numbers, in which 

case these could act as yield insurance for 𝑠𝑢, or as a secondary purchase price for the case 

of 𝑠𝑜. The effectiveness of this method is tested through the use of computational results 

to gain intuition on the decision problem. 

3.8 Validation and Case Study 

The usefulness of the resulting decision support system is a critical outcome of the 

project. However, from previous experience, growers are not accustomed to using 

complicated planning models and avoid using them. Thus, a simple modeling approach 

and the use of case studies can go a long way in communicating the potential benefits of 

the coordination mechanism to the relevant stakeholders.  

Therefore, our aim is not only to have a mathematical model and planning tools; but 

our aim is also to derive useful results that are well presented, easy to interpret and which 

relate to the intuition of stakeholders. In order to do this, we work with real agricultural 

data and models which are validated and proven to reflect the behavior of actual 

agricultural systems. These datasets contain information about the amount of labor, land 

and other resources used, as well as their associated costs. We primarily use mathematical 

models from (Ahumada & Villalobos, 2009b; Wishon et al., 2015), which use tactical 
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planning tools modeled through mixed integer programming; moreover, we will use real 

world data from (Villalobos et al., 2012) to perform the necessary case studies. The various 

results obtained from this study, both theoretical and case specific, can be shared with 

industry partners in their respective sectors of production and consolidation and will be 

published in academic journals, where the impact of the academic aspects of agricultural 

decision-making can be showcased. 
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4 COORDINATION MECHANISM DESIGN AND CONVERGENCE 

4.1 Introduction 

In Chapter 1 we established the importance for specialized tools which allow growers 

of fresh produce to better compete with larger operations. In recent years, farmers of fresh 

produce in the US have begun to form tighter relationships and expand their operations 

through the establishment of cooperatives and consolidation facilities (CFs). These 

cooperatives appear as a response to the decline of small and medium sized farms, which 

have difficulty competing with larger operations (James Matson et al., 2010). Moreover, 

farming cooperatives also provide farmers with economies of scale, a steady stream of local 

products and help reduce waste in the supply chain (James Barham & Debra Tropp, 2012). 

Yet coordinating a supply chain is not trivial, and failure to do so can cause cooperatives 

to fail (Karina et al., 2012).  

It is clear that farmers operate in a complex and dynamic environment (Ahumada et 

al., 2012). Given this complexity, it is hard to expect a group of farmers to reach a joint 

solution and production plan through conventional methods; in particular, when we pose 

the following questions: How much should farmers get paid for their products? What 

should the CF charge for product handling and storage? How do we determine which 

farmer should produce which product and at what time? These questions are not trivial, as 

farmers will misrepresent their costs if they stand to gain from the outcomes of doing so. 

This complexity and competitive behavior highlight the urgency of designing 

coordination policies that work under incomplete information. Unfortunately, as we see in 

Chapter 2, there is no evidence in the literature of structured planning mechanisms 

currently used for horizontal coordination of agricultural production. Nonetheless, in 
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Chapter 2 we also find that coordination mechanisms can be applied successfully in supply 

chain practice, and that there exists and ample theoretical backing to guide us on the design 

of a coordination mechanism. 

In the remainder of this chapter we present the basic assumptions made and the 

proposed framework to build the coordination mechanism. Thereafter, we develop a model 

for agricultural planning which is representative of the farming cooperative and which can 

be solved through an auction mechanism. Finally, we provide computational results for the 

case of coordinating an agricultural cooperative; for this we use farming data from the 

region of Yuma, AZ which is representative of 4 crops in the region (broccoli, romaine 

lettuce, iceberg lettuce and cauliflower). 

4.2 Scope and Assumptions 

The coordination mechanisms and planning tools to be developed in this research are 

tactical in nature, meaning that solutions are relevant for a few weeks to several months 

(Simchi-Levi et al., 2003). In agriculture, a typical season from planning to end of harvest 

spans between six months to one year and the decisions made for planting are relevant to 

the operations of the farm for the following months (Ahumada & Villalobos, 2009b). In 

ASCs, among the relevant decisions at a tactical level we have: The quantities to plant of 

each crop, timing of the planting, projections for the amount of labor required and the 

harvesting/marketing decisions for the crops.  

Another assumption made to better reflect real world coordination problems is that 

farmers are different in their production profile, sophistication and quality of land. In 

practice, this is true as different individuals have different preferences and competitive 

advantages; moreover, even for farmland that is within close proximity, spatial variability 
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of soil properties may be significant (Nestor M. Cid-García, 2013). This variability causes 

yields, costs and risks observed in one farm to be different from other farms. To reflect 

farm heterogeneity, we assume that farmers have varying values for their most relevant 

parameters, including: Expected yields for each crop; size of their farmland; production 

costs (such as fertilizers, irrigation, access to capital, transportation costs, etc); likewise, it 

is also assumed that some farmers may have better access and management of resources 

such as water and hand labor. 

In addition to all the assumptions relating to farmers as individuals, we assume that 

information availability is asymmetrical, meaning that no single player in the supply chain 

knows all the parameters of the other players. Mainly, any farmer can know with certainty 

its own production information; but cannot estimate any other farmers’ costs or yields with 

complete accuracy. We also assume that the market prices and demand for crops are known 

for the upcoming season. Thus, even when production assignments have not been made to 

farmers, the CF knows the desired aggregate supply that is needed to satisfy demand. 

Finally, for the purposes of this chapter, we assume that farmers do not act 

strategically or lie about their production decisions during the auction; moreover, farmers 

do not engage in arbitrage, meaning that farmers will not find it profitable to purchase crops 

in the external market and sell them to the CF for a profit as if they were their own 

production. We will later see in Chapter 5 that the non-strategic behavior assumption can 

be relaxed without sacrificing efficiency. 

4.3 Model Structure 

We use a mechanism akin to an iterative auction, where instead of tangible goods, 

the items being auctioned are production contracts/commitments for the upcoming 
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harvesting season. This mechanism iteratively adjusts prices which are publicly announced 

by the CF; upon learning these prices, farmers respond with a public statement of their 

production plan. The production information is aggregated by the CF as to conserve 

farmer’s information private and no individual production plans are revealed until the 

conclusion of the auction. In this case, we create a new space of shared information which 

the CF can use to move towards a solution; i.e. to obtain a supply schedule appropriate for 

meeting estimated customer demand. Figure 4.1 below illustrates the iterative nature of the 

coordination mechanism. 

CF:

Computes 

difference between 

planned and 

contracted demand

Farmers:

Respond with a 

production 

schedule

CF:

Define a new price 

schedule to 

announce

Demand 

schedule 

met?

NO YES
Terminate 

Auction

Initialize 

Auction prices

 
Figure 4.1 – Envisioned Coordination Mechanism Procedure 

In order to formulate the overall coordination problem, as well as the mechanism 

required to coordinate production, we use a mixed integer programming (MIP) formulation 

of the farm planning problem. We begin by formulating the production problem as a 

centralized problem where all information is available and the CF has complete control 

over farming decisions (Section 4.4). This centralized formulation will serve as a tool to 

benchmark the efficiency of the coordination mechanism. In the following sections we 

illustrate how the centralized problem is equivalent and converges to the decentralized 

problem with asymmetric information (Section 4.5, 4.6). Finally, we quantify the 

efficiency of the mechanism through the computational results using the centralized 

solution as a benchmark (Section 4.7). 
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4.4 Centralized Mathematical Model 

For the centralized optimization problem we work on a variant of the model proposed 

by Ahumada, & Villalobos (2009), using a deterministic version of the tactical planning 

problem and limiting our focus on a single echelon. The mathematical formulation of the 

centralized model covers: The planting/harvesting decisions of growers, labor allocation, 

harvesting and consolidation of crops, inventory management, consolidation facility 

restrictions, costs of production and market prices. We also consider the perishability of 

crops using the formulation for discrete quality tracking provided by (Rong et al., 2011). 

The sets, parameters, variables, constraints and objective function are as follows: 

Indexes: 

𝑡  ∈   𝑇      : Planning periods (weeks) 

𝑝 ∈   𝑃, 𝑃(𝑗, 𝑙)  ⊆ T   : Set of feasible planting weeks for crop j in location l 

ℎ ∈   𝐻, 𝐻(𝑗, 𝑙)  ⊆ T  : Set of feasible harvesting weeks for crop j in location l 

𝑗  ∈   𝐽               : Potential crops to plant 

𝑞 ∈   𝑄          : Quality states of crops 

𝑙  ∈   𝐿              : Locations (distinct farms) available for planting  

General Parameters (Farmer): 

𝐿𝑎𝑛𝑑𝑙      : Land available at location l (in acres) 

𝐿𝑎𝑏𝑜𝑟𝑃𝑝𝑡𝑗       : Workers needed at period t for cultivating crop j planted period p (Men-

week/Acre) 

𝐿𝑎𝑏𝑜𝑟𝐻𝑗   : Workers needed for harvesting crop j (Men-week/Acre) 

𝑀𝑎𝑥𝐿𝑎𝑏𝑙   : Max number of workers that can be hired in location l 

𝑌𝑖𝑒𝑙𝑑𝑝ℎ𝑗     : Expected yield of crop j at time p and harvested in week h (%/Week) 
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𝑇𝑜𝑡𝑎𝑙𝑗𝑙        : Expected total production of crop j planted in location l (Cartons/Acre) 

𝑀𝑎𝑥𝐿𝑗   : Maximum allowed amount to plant of crop j during one week (Acres) 

𝑀𝑖𝑛𝐿𝑗         : Minimum allowed amount to plant of crop j during one week (Acres) 

𝑄𝑢𝑎𝑙𝐷𝑗𝑞𝑙      : Quality distribution q for crop j for farmer 𝑙 

∆𝑡𝑙𝑙      : Travel time from location l to facility 

∆𝑞𝑙𝑙𝑗    : Change in quality for product j traveling from location l to facility  

General Parameters (CF): 

𝑀𝑎𝑥𝐷𝑒𝑚ℎ𝑗   : Maximum demand of crop j at time h (Maximum open market) 

𝑀𝑖𝑛𝐷𝑒𝑚ℎ𝑗   : Minimum demand of crop j at time h (Contracted demand) 

𝑞𝑚𝑖𝑛𝑗  : Minimum quality accepted for crop j 

𝑊𝐻𝐶𝑎𝑝     : Total capacity of CF 

∆𝑞𝑗    : Change in quality for product j stored one week at CF 

Cost Parameters (Farmers): 

𝐶𝑝𝑙𝑎𝑛𝑡𝑗𝑙     : Cost per acre of planting and cultivating for crop j (exclude labor) 

𝐶ℎ𝑎𝑟𝑣𝑗𝑙   : Cost per acre of harvesting for crop j (exclude labor) 

𝐶ℎ𝑖𝑟𝑒𝑡 : Fixed cost to hire a seasonal worker at time t 

𝐶𝑙𝑎𝑏𝑡  : Variable cost to hire a seasonal worker at time t 

𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙 : Cost of transportation form location l to facility  

Cost Parameters (CF): 

𝐶𝑖𝑛𝑣𝑗     : Inventory cost for crop j  

𝐶𝑜𝑣𝑒𝑟𝑗    : Cost of overage for product j 

𝐶𝑢𝑛𝑑𝑒𝑟𝑗    : Cost of underage for product j 
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𝑃𝑟𝑖𝑐𝑒ℎ𝑗      : Expected price for crop j at time h 

Decision Variables (Farmers): 

𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙 : Area to plant of crop j in period p at location l 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙    : Harvest quantity of crop j in period h at location l 

𝑉𝑙𝑎𝑏𝑡𝑙     : Seasonal laborers employed at location l at time t  

𝑉𝐻𝑖𝑟𝑒𝑡𝑙     : Seasonal laborers hired for location l at time t 

𝑉𝐹𝑖𝑟𝑒𝑡𝑙     : Seasonal laborers dismissed from location l at time t 

𝑌𝑗𝑝𝑙 (Binary) : 1 If crop j  is planted at period p at location l   0 otherwise 

𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙 : Amount to transport from location l of crop j with quality q at time h 

Decision Variables (CF): 

𝑉𝑖𝑛𝑣ℎ𝑗𝑞     : Quantity to store of crop j with quality q at time h  

𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞  : Quantity of crop j to sell with quality q at time h 

𝑉𝑜𝑣𝑒𝑟ℎ𝑗  : Overage of crop j at time h 

𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗  : Underage of crop j at time h 

Objective Function: 

𝑀𝑎𝑥 𝑍𝐶𝑃  =   ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞  𝑃𝑟𝑖𝑐𝑒ℎ𝑗ℎ𝑗,𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
     (4-1) 

−  ∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞  𝐶𝑖𝑛𝑣𝑗   ℎ𝑗𝑞 −  ∑ 𝑉𝑜𝑣𝑒𝑟ℎ𝑗 ℎ𝑗𝑞  𝐶𝑜𝑣𝑒𝑟𝑗 −  ∑ 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 ℎ𝑗𝑞  𝐶𝑢𝑛𝑑𝑒𝑟𝑗     

 −  ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙  𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙  𝑙𝑗𝑞𝑡 − ∑ 𝑉𝐻𝑖𝑟𝑒𝑡𝑙 𝐶ℎ𝑖𝑟𝑒𝑡𝑡𝑙 − ∑ 𝑉𝑙𝑎𝑏𝑡𝑙 𝐶𝑙𝑎𝑏𝑡𝑡𝑙   

−∑ 𝑉𝑃𝑙𝑎𝑛𝑡𝑝𝑗𝑙 𝐶𝑝𝑙𝑎𝑛𝑡𝑗𝑝𝑗𝑙 − ∑ 𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙 𝐶ℎ𝑎𝑟𝑣𝑗ℎ𝑗𝑙   

The objective function (4-1) states that we must maximize profit, which results from 

revenues from selling crops minus the costs of inventory, overage/underage penalties, 

transportation, labor and planting/harvesting respectively. Here, deviations from 
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committed demand are penalized, either though the costs of wasted product or the costs of 

shorting downstream customers at the CF level. 

Farming Constraints:  

∑ ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙𝑝𝑗 ≤ 𝐿𝑎𝑛𝑑𝑙                                                        ∀ 𝑙 ∈ 𝐿  (4-2) 

𝑀𝑖𝑛𝑗   𝑌𝑗𝑝𝑙 ≤ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙 ≤ 𝑀𝑎𝑥𝑗  𝑌𝑗𝑝𝑙                                     ∀  𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿    (4-3) 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙 ≤ ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙  𝑌𝑖𝑒𝑙𝑑𝑝ℎ𝑗  𝑇𝑜𝑡𝑎𝑙𝑗𝑙𝑝                     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿   (4-4) 

(4-2) Restricts the total amount of land that farmers have. Constraint (4-3) states that 

if farmers decide to plant a crop in a given time-period, the planting must be done within a 

maximum and minimum limit. (4-4) Sets an equivalence between harvesting with planting 

decisions and the yield of crops. 

Farming Labor Constraints: 

𝑉𝑙𝑎𝑏𝑡𝑙 ≥ ∑ ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙 𝐿𝑎𝑏𝑜𝑟𝑃𝑝𝑡𝑗𝑗𝑝 + ∑ ∑ 𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙  𝐿𝑎𝑏𝑜𝑟𝐻𝑗𝑗ℎ=𝑡 ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (4-5) 

𝑉𝐻𝑖𝑟𝑒𝑡𝑙 − 𝑉𝐹𝑖𝑟𝑒𝑡𝑙 =  𝑉𝑙𝑎𝑏𝑡𝑙 − 𝑉𝑙𝑎𝑏(𝑡−1)𝑙             ∀ 𝑡 ∈ 𝑇,   𝑙 ∈ 𝐿  (4-6) 

∑ 𝑉𝐻𝑖𝑟𝑒𝑡𝑙𝑡 ≤ 𝑀𝑎𝑥𝐿𝑎𝑏𝑙                  ∀    𝑙 ∈ 𝐿  (4-7) 

(4-5) Ensures that during each time-period and for each location, there must be 

enough labor to cover all labor needs for harvesting and cultivating. Constraints (4-6) are 

the labor balance constraints for hiring and letting go of workers. Finally, (4-7) states that 

each location has a maximum amount of labor which can be hired during the season. 

Harvesting Quality Distribution: 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙 ∗ 𝑄𝑢𝑎𝑙𝐷ℎ𝑗𝑞𝑙 = 𝑉𝑡𝑟𝑎𝑛𝑠𝑙𝑗(𝑞−∆𝑞𝑙𝑙𝑗)(ℎ+∆𝑡𝑙𝑙)
                 ∀   ℎ, 𝑗, 𝑞, 𝑙     (4-8) 

Equation (4-8) establishes an equivalence between what is harvested and the quality 

of the crop for each farming location throughout the season. 
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Coupling Constraint: 

∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑙𝑗𝑞𝑙 = 𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞                                                        ∀   j, q, ℎ (4-9) 

Equation (4-9) creates an equivalence between goods transported from farming 

locations and arrivals to the CF. Although in the centralized formulation this constraint 

only serves the purpose of facilitating interpretation, in the decentralized formulation this 

constraint serves a key function as a coupling constraint for all sub-problems. 

Inventory Balance and Quality Tracking: 

𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞  +  𝑉𝑖𝑛𝑣ℎ−1,𝑗𝑞+∆𝑞𝑗
− 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞  =  𝑉𝑖𝑛𝑣ℎ,𝑗,𝑞        ∀   j, q, ℎ (4-10) 

Constraint (4-10) implements inventory balance at the CF from period to period with 

the addition of incorporating quality decay into the balance equation.  

Demand Constraints: 

𝑀𝑖𝑛𝐷𝑒𝑚ℎ𝑗 − 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 ≤ ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
             ∀   𝑗, ℎ (4-11.a) 

∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
≤ 𝑀𝑎𝑥𝐷𝑒𝑚ℎ𝑗 + 𝑉𝑜𝑣𝑒𝑟ℎ𝑗                ∀   𝑗, ℎ   (4-11.b) 

(4-11) States the minimum and maximum demand that must be satisfied for each 

crop during each week, restricting the demand fulfillment to acceptable quality states. 

Warehouse Capacity Constraint: 

∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞𝑗𝑞 ≤  𝑊𝐻𝐶𝑎𝑝                                                      ∀   ℎ  (4-12) 

Finally, (4-12) limits the capacity of the warehouse. 

This model provides a planting and harvesting schedule for all growers, which 

minimizes overall system costs and will be in sync with the operations of the CF, thus 

maximizing system wide profits. However, we have not yet addressed the concern of how 

to obtain a “centralized solution” without knowledge of all relevant parameters from each 
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section of the supply chain. To address this question, we reformulate the problem in a 

distributed manner and provide a framework to solve it in an auction like format. 

4.5 Decentralized Model Using WD Decomposition 

The above centralized problem is conceptually useful and provides a measure for 

system optimality. Moreover, the model can be decomposed into a master problem (MP) 

and a set of sub-problems (SPl) (one for each farmer) by using Dantzig-Wolfe 

decomposition. Here the master problem is given by the demand observed by the CF and 

the convex hull generated by the farmers planning problems; meanwhile, each of the sub-

problems is solved independently by only observing the parameters which are relevant 

locally for each farmer. 

In this formulation we introduce the variable 𝜆𝑙
𝑘, where 𝑘 is the iteration number, 

which is used to introduce local solutions from the farmers’ planning problem into the CF 

master problem through a convex combination of the corresponding corner point solutions. 

If implemented through DW decomposition, the mechanism consists of the CF announcing 

different prices for crops; thereafter, farmers announce tentative production plans to the 

CF.  Once a solution is provided by a farmer, the CF is able to keep this solution as part of 

a corner-point solution set; thereafter, these solutions are used to create a joint production 

plan dictated by the CF. Now we proceed to show the DW-reformulation of the problem 

and we define the new parameters and variables needed for implementation: 

4.5.1 Master Problem (MP): 

Parameters: 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑘 ,      𝑉𝐻𝑖𝑟𝑒𝑡𝑙

𝑘 ,     𝑉𝐹𝑖𝑟𝑒𝑡𝑙
𝑘 ,     𝑉𝑙𝑎𝑏𝑡𝑙

𝑘 ,     𝑉𝑃𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑘 ,    𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙

𝑘 ,     
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Variables: 

𝜆𝑙
𝑘   

Master Objective Function: 

𝑀𝑎𝑥 𝑍𝑀𝑃  =   ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞 ∗ 𝑃𝑟𝑖𝑐𝑒ℎ𝑗ℎ𝑗,𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
  (4-13) 

−  ∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞 𝐶𝑖𝑛𝑣𝑗ℎ𝑗𝑞 −  ∑ 𝑉𝑜𝑣𝑒𝑟ℎ𝑗 ℎ𝑗𝑞 𝐶𝑜𝑣𝑒𝑟𝑗 − ∑ 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗ℎ𝑗𝑞  𝐶𝑢𝑛𝑑𝑒𝑟𝑗    

−  ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑘  𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙 𝜆𝑙

𝑘  𝑙𝑗𝑞𝑡 − ∑  𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑘  𝐶ℎ𝑖𝑟𝑒𝑡 𝜆𝑙

𝑘
𝑡𝑙 − ∑ 𝑉𝑙𝑎𝑏𝑡𝑙

𝑘  𝐶𝑙𝑎𝑏𝑡 𝜆𝑙
𝑘

𝑡𝑐𝑙   

−∑ 𝑉𝑃𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑘  𝐶𝑝𝑙𝑎𝑛𝑡𝑗  𝜆𝑙

𝑘
𝑝𝑗𝑙 − ∑ 𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙

𝑘  𝐶ℎ𝑎𝑟𝑣𝑗  𝜆𝑙
𝑘

ℎ𝑗𝑙    

CF Constraints: 

∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑘  𝜆𝑙

𝑘
𝑙 + 𝑉𝑖𝑛𝑣ℎ−1,𝑗𝑞+∆𝑞𝑗

− 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞 = 𝑉𝑖𝑛𝑣ℎ,𝑗,𝑞           ∀   j, q, ℎ (4-14) 

𝑀𝑖𝑛𝐷𝑒𝑚ℎ𝑗 − 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 ≤ ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
                       ∀   𝑗, ℎ    (4-15) 

∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
 ≤  𝑀𝑎𝑥𝐷𝑒𝑚ℎ𝑗 + 𝑉𝑜𝑣𝑒𝑟ℎ𝑗                         ∀   𝑗, ℎ   (4-16) 

∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞𝑗𝑞 ≤  𝑊𝐻𝐶𝑎𝑝                                                                           ∀   ℎ  (4-17) 

∑ 𝜆𝑙
𝑘

𝑘 = 1                                                                                                     ∀ 𝑙  (4-18) 

Note that equation (4-18) is added to the master problem to ensure convexity of the 

sub-problem solution space; moreover, the new parameters defined for the MP correspond 

to solutions to farmer sub-problems. 

4.5.2 Sub-Problems (SPl): 

We obtain the extreme points of the feasible set of planting decisions through 𝐿 sub 

problems 𝑆𝑃𝑙  ∀ 𝑙 ∈ 𝐿, which are used to generate columns in the master problem. For the 

sub problems, the formulation of the constraints is the same as for the centralized problem; 

however, the objective function is augmented by the dual variables corresponding to the 

constraints of the master problem. Here, we use the dual variables 𝜋ℎ𝑗𝑞
1 , which is the dual 

for (4-14) and 𝜇𝑙, which is the dual for (4-18). 
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Parameters: 

𝜋𝑗𝑞𝑡
1 , 𝜇𝑙 

Sub-Obj (for all locations "𝒍" ): 

𝑀𝑎𝑥 𝑍𝑙 = −  ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙 ∗ 𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙   𝑗𝑞𝑡        (4-19) 

−∑ (𝑉𝐻𝑖𝑟𝑒𝑡𝑙 ∗ 𝐶ℎ𝑖𝑟𝑒𝑡)𝑡 − ∑ (𝑉𝑙𝑎𝑏𝑡𝑙 ∗ 𝐶𝑙𝑎𝑏𝑡)𝑡     

−∑ (𝑉𝑃𝑙𝑎𝑛𝑡𝑝𝑗𝑙 ∗ 𝐶𝑝𝑙𝑎𝑛𝑡𝑗)𝑝𝑗 − ∑ (𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙 ∗ 𝐶ℎ𝑎𝑟𝑣𝑗)ℎ𝑗   

−∑  𝜋ℎ𝑗𝑞
1 ∗ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑙𝑗𝑞ℎ𝑗𝑞 − 𝜇𝑙  

Subject to constraints:  

(4-2), (4-3), (4-4), (4-5), (4-6), (4-7), (4-8), (4-9)    

The inclusion of the dual variables 𝜋𝑙𝑗𝑞𝑡
1 , 𝜇𝑙 into the farmers sub problem have a 

direct interpretation: Announce the price vector corresponding the prices of the crops 

transported to the CF. Moreover, an encouraging result is that due to the structure of D-W 

decomposition, under a finite number of iterations for price announcements, the 

mechanism converges to the optimal solution. 

Unfortunately, having a guarantee of convergence and optimality is not sufficient for 

this mechanism to be viable in practice. The main problem with this formulation is that 

once farmers announce a solution to the CF, they themselves lose control over the final 

determination that the CF can make for production assignments. Ultimately, the CF will 

recombine the solutions farmers to achieve a convex combination which is optimal for the 

overall system; however, this reduced transparency coupled with the difficulty of farmers 

interpreting the concept of convex combination of the solutions makes this mechanism 

undesirable.  
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In order to escape the fallbacks of a mechanism based on the DW-decomposition of 

the problem, we present a formulation of the problem which provides a more robust 

solution approach. Mainly, we continue using dual decomposition; however, in this case 

we implement a method of sub gradient optimization akin to an auction mechanism. 

4.6 Decentralized Model Using Sub-Gradient Optimization (Auction) 

In this new formulation, instead of the CF recombining solutions, only the latest 

solutions for the sub-problems are used. In other words, the CF no longer combines 

solutions presented earlier and instead we limit the solution space to the latest bids placed 

by farmers. This mechanism is formulated through sub-gradient optimization by relaxing 

appropriate constraints and penalizing deviations in the objective function. The variables 

penalizing these deviations become prices for the shared resources. In our case, these prices 

become the auction prices which are announced by the CF in an iterative fashion. We now 

show the details on how to perform this decomposition and auction interpretation. 

The lagrangian relaxation of the problem needed for subgradient optimization and 

the implementation of the problem as an iterative auction is formulated below.   

Variables: 

𝜆ℎ𝑗𝑞 : unconstrained 

Objective Function: 

𝑀𝑎𝑥 𝑍𝑆𝐺  =   ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞 ∗ 𝑃𝑟𝑖𝑐𝑒ℎ𝑗ℎ𝑗,𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
  (4-20) 

−  ∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞 ∗ 𝐶𝑖𝑛𝑣𝑗   ℎ𝑗𝑞 −  ∑ 𝑉𝑜𝑣𝑒𝑟ℎ𝑗  ℎ𝑗𝑞 ∗ 𝐶𝑜𝑣𝑒𝑟𝑗      

−  ∑ 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 ℎ𝑗𝑞 ∗ 𝐶𝑢𝑛𝑑𝑒𝑟𝑗 −  ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙 ∗ 𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙   𝑙𝑗𝑞𝑡       

−  ∑ (𝑉𝐻𝑖𝑟𝑒𝑡𝑙 ∗ 𝐶ℎ𝑖𝑟𝑒𝑡)𝑡𝑙 − ∑ (𝑉𝑙𝑎𝑏𝑡𝑙 ∗ 𝐶𝑙𝑎𝑏𝑡)𝑡𝑙      

−  ∑ (𝑉𝑃𝑙𝑎𝑛𝑡𝑝𝑗𝑙 ∗ 𝐶𝑝𝑙𝑎𝑛𝑡𝑗)𝑝𝑗𝑙 − ∑ (𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙 ∗ 𝐶ℎ𝑎𝑟𝑣𝑗)ℎ𝑗𝑙    

+  ∑ 𝜆ℎ𝑗𝑞(𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞 − ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑙𝑗𝑞𝑙 )ℎ𝑗𝑞   
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Subject to:  

(4-2), (4-3), (4-4), (4-5), (4-6), (4-7), (4-8), (4-10), (4-11), (4-12), (4-13) 

Note that for the above formulation (4-9) is relaxed and placed in the objective 

function being penalized by 𝜆ℎ𝑗𝑞. Also note that with the relaxation of constraint (4-9), the 

mathematical model for the coordination problem becomes separable, and thus solving the 

full problem via sub gradient optimization becomes equivalent to solving the sub problems 

for all farming locations and the CF. We now present a formulation which is equivalent to 

solving the problem defined by the objective (4-20) and constraints (4-2 – 4-8) and (4-10 

– 4-13). Here, the decentralized formulation is given by the following sub-problems: 

4.6.1 Farmer Sub-Problems: 

Objective Function: 

𝑀𝑎𝑥 𝑍𝑙  = −  ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙 𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙  𝑙𝑗𝑞𝑡   (4-21) 

−∑ (𝑉𝐻𝑖𝑟𝑒𝑡𝑙 𝐶ℎ𝑖𝑟𝑒𝑡)𝑡𝑙 − ∑ (𝑉𝑙𝑎𝑏𝑡𝑙 𝐶𝑙𝑎𝑏𝑡)𝑡𝑙      

−∑ (𝑉𝑃𝑙𝑎𝑛𝑡𝑝𝑗𝑙 𝐶𝑝𝑙𝑎𝑛𝑡𝑗)𝑝𝑗𝑙 − ∑ (𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙  𝐶ℎ𝑎𝑟𝑣𝑗)ℎ𝑗𝑙    

−∑ 𝜆ℎ𝑗𝑞(∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑙𝑗𝑞𝑙 )ℎ𝑗𝑞     

Subject to:  

(4-2), (4-3), (4-4), (4-5), (4-6), (4-7)  

4.6.2 Consolidation Facility Sub-Problem: 

Objective: 

𝑀𝑎𝑥 𝑍𝐶𝐹  =  ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞 𝑃𝑟𝑖𝑐𝑒ℎ𝑗ℎ𝑗,𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
− ∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞 𝐶𝑖𝑛𝑣𝑗   ℎ𝑗𝑞  (4-22) 

−  ∑ 𝑉𝑜𝑣𝑒𝑟ℎ𝑗 ℎ𝑗𝑞  𝐶𝑜𝑣𝑒𝑟𝑗  −  ∑ 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 ℎ𝑗𝑞  𝐶𝑢𝑛𝑑𝑒𝑟𝑗     

+  ∑ 𝜆ℎ𝑗𝑞(𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞)ℎ𝑗𝑞   

Subject to:  

 (4-10), (4-11), (4-12), (4-13)  
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Note that the centralized problem is equivalent to that defined in Section 4.5. Here, 

the inclusion of the variables 𝜆ℎ𝑗𝑞 implies that there exist some vector 𝒑 corresponding to 

market clearing prices such that farmers seeking their own best interest will lead the system 

to an optimum (Vohra, 2011). Furthermore, in order to implement the coordination 

mechanism as an auction, we can use the constraint violation as a base for finding a 

“direction of improvement” such that 𝜆ℎ𝑗𝑞
𝑘+1 = 𝜆ℎ𝑗𝑞

𝑘 + 𝜃(∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑙𝑗𝑞𝑙 − 𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞); 

where 𝜃 is an appropriately chosen parameter. 

With this formulation we have a viable methodology to reach the centralized solution 

even under distributed and asymmetric information. The problem which we must address 

now relates to the implementation of the mechanism and understanding whether 

convergence can be achieved on few iterations. In the following section we provide this 

analysis through computational results and a case study. 

4.7 Practical Implementation of the Coordination Mechanism 

In previous sections we have shown the theoretical formulations and expected 

convergence results for the proposed coordination mechanism; however, it is also desirable 

to understand how the mechanism will act in practice. In this section we present 

computational experiments to understand the expected behavior of the mechanism; we 

compare the quality of solutions that can be obtained for the WD-decomposition 

mechanism of Section 4.5 and the auction mechanism of section 4.6. These are 

benchmarked to the centralized solution as given by the centralized model of section 4.4. 

For the data used in this case study, we use farming parameters drawn from a case 

study performed by (Wishon et al., 2015). In this study, Wishon et al. performed a study 

of the impact of labor availability on farming efficiency. The information used is 
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representative of a typical farm from the agricultural region of Yuma, AZ in the 

Southwestern United States.    

4.7.1 Definition of Parameters 

For the case study, all parameters defined in Section 4.4 were assigned values from 

the original research study of Wishon et al. (2015). However, the original study did not 

capture relevant differences between the various farming locations and instead focused on 

modeling a “typical farm” from the region. This creates an issue since the mechanism has 

to be tested under the setting of multiple, heterogeneous farmers. Nonetheless, obtaining 

such information is not possible through the limited data; moreover, collecting additional 

data is a non-trivial task that requires an extensive amount of resources. This difficulty of 

obtaining information arises from the very structure of the problem we seek to address 

since specific farmers are unlikely to reveal true cost information.  

Capturing additional cost information for multiple farms is an expensive and long 

process; therefore, the original data was modified to reflect a degree of variety of the 

various farmers. To do this, five parameters from the original dataset were adjusted: Land 

size, labor force, yield, spatial dispersion and planting costs. These parameters were 

modified within pertinent ranges to create various instances which correspond directly to 

having a number of different farmers. Moreover, in order to keep the generation of these 

“farmer-datasets” tractable and easily created, random variables were used to induce 

heterogeneity to the farming parameters. The random variables used for these parameters 

were as follows5: 

 

                                                 
5 Note that all variables are independent, except for Land/Labor which have a direct correlation (ρ=1). 
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 Labor:       [U~(18,52)] workers 

 Land:        [U~(150,250)] acres 

 Yield:        [U~(0.75, 1.35)]* Base yield per crop 

 Production costs:   [U~(0.75, 1.35)]* Base cost per crop 

 Transportation costs:  [U~(0.10, 0.30)]* Base cost  

Also note that in addition to the above parameters, the current model has the addition 

of shelf life for all four products through the constraint (4-10). This ensures that the 

products of broccoli and cauliflower can be stored for only one week, whereas romaine and 

iceberg lettuce can be stored for 2 weeks. No difference in value is accounted for in the 

objective function. 

Upon generating N different dataset, where N is the number of farmers, test instances 

could be run. For this, five different test instances were solved, going from N={1, 5, 20, 

50, 125} farmers. Also note that even though the information for all farmers was generated 

jointly, for the implementation of the coordination mechanism, the “private” information 

for all farmers remains hidden from the CF and other farmers to complete the asymmetric 

information requirement. The computational results for all test instances are illustrated 

throughout the remainder of this section. 

4.7.2 Computational Results (Auction vs D-W Decomposition) 

For the assessment of the computational results, there are three key metrics which 

are particularly relevant: (1) the optimality gap between the auction and the centralized 

solution, (2) the “centralized” optimal solution and the (3) speed of convergence. These 

metrics are relevant because a guaranty of efficiency is desired, but also to keep supplier 

effort at a reasonable level. We contrast the behavior of the D-W decomposition of the 

problem, which serves as an alternative to the auction mechanism. 



71 

 

Since the D-W decomposition of the problem treats the integer variables in the farmer 

sub-problem as continuous, we relax the integrality constraints in the farmer sub-problems 

for comparison purposes between the WD-decomposition and the sub-gradient 

optimization. We address these results in Figure 4.2 below. 

 

Figure 4.2 – Convergence and Optimality Gap for Various Problem Sizes 

As it can be observed, as we iterate in both mechanisms, the optimality gap can be 

rapidly closed by the W-D decomposition of the problem; nonetheless, our primary focus 

is in the convergence of the auction mechanism which albeit doesn’t converge as rapidly, 

it does approximate the optimal solution. On the other hand, we have the planning 

mismatch, which shows the difference between the desired supply by the CF and the 

aggregate deliveries planned by farmers; this metric also approximates zero as the auction 

converges. These results are further summarized in Table 4.1, which shows the optimal 

solution, the best solution achieved by the auction, the mismatch between desired supply 
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and the supply provided by farmers, optimality gap and the number of iterations required 

to reach a reasonable (80%) efficiency in the auction. 

Table 4.1 – Results for Auction Convergence and Optimality 

 

As it can be observed, the mechanism converges within a reasonable number of 

iterations up to a narrow optimality gap. This is an encouraging result for the practical 

implementation of the mechanism. Moreover, we see that the mechanism remains attractive 

for implementation even for organizations consisting of as few as 20 farmers. We also 

observe that the results obtained are consistent with economic theory, which states that 

fewer bidders will have a greater power to manipulate the market price; i.e. more elastic 

supply and less stable solutions.  

4.7.3 Computational Results (Integer Decision Variables) 

After understanding the results and convergence properties of the mechanism for the 

LP case, we proceed to restrict some relevant variables to further quantify what can be 

expected of the mechanism in a mixed integer programming formulation. For this, we 

restrict the variables 𝑉𝑙𝑎𝑏𝑡𝑙  and  𝑌𝑗𝑝𝑙 from the farmer sub problem back to integer and 

binary respectively in order to properly account for labor constraints and for the binary 

restriction of minimum planting quantities at each farming location. The results for 

convergence of the problem with integer variables are compared to the LP relaxation 

convergence in Figure 4.3 below. The figure shows the best integer solution, the 

Number of 

participants

Optimal 

Solution

Best Auction 

Solution

% Supply-

Demand 

Mismatch

% 

Optimality

Iterations 

to 80%

5 Farms 2,136,136$        1,020,037$        25% 48% -

20 Farms 8,156,519$        6,930,982$        14% 85% 17

50 Farms 22,395,199$      20,601,215$      8% 92% 10

125 Farms 55,567,789$      50,863,300$      8% 92% 11
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convergence of the auction in the LP relaxation and the more realistic convergence of the 

auction in the MIP case. 

 

Figure 4.3 – Convergence for LP Relaxed Problem and Problem with Integer Variables 

Surprisingly, the results obtained show that the auction converges faster and closer to the 

optimal solution for the case in which the farmer sub-problems use integer decision 

variables. The reason for this improvement is unclear, although it may be caused by 

removing flexibility from farmers, which in turn would limit the elasticity of supply. 

Nonetheless, this result provides further encouragement for the possibility of practical 

implementation of the mechanism, since the convergence properties of the mechanism 

appear to be strong despite assumptions or restrictions made at the farmer level. 

4.7.4 Additional Results 

Now that we have shown the convergence in an aggregate level, we show the 

behavior of individual variables in more detail. This gives us further intuition for what to 



74 

 

expect of the mechanism in practice. For this we review the behavior of specific variables 

such as total aggregate production, share of production throughout several farms, the share 

of profits by farmers and the price dynamics throughout the auction. We focus on one 

specific problem instance: a 20 farmer cooperative problem. 

In the previous section we observed how the total system profit progresses 

throughout the various auction iterations and showed that it converges rapidly towards the 

centralized optimum. Now analyze how total production behaves for each of the products 

under consideration (Figure 4.4). Here we observe that for the first two iterations it was 

unprofitable for farmers to produce given the announced prices; thereafter, in iteration 3, 

it was only profitable to produce reduced quantities of iceberg lettuce. Shortly after, 

production quantities rapidly increase and then stabilize to their long term optimal values. 

 

Figure 4.4 – Aggregate Production Commitments throughout the Auction 

If we observe this from the perspective of the price actions as they occur in the 

background we have a dynamic system where prices will adjust to incentivize the 

production of some goods over others. This is illustrated by Figure 4.5 which shows the 

price dynamics for a single week (production period) of the production season, while 

Figure 4.6 shows the price for each crop averaged throughout the entire season. 
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Figure 4.5 – Auction Prices for Week 27 

 

Figure 4.6 – Auction Price Averages for All Weeks during Harvest Season 

It is worth noting that while aggregate prices may be increasing and prices for week 

27 are also increasing, this does not mean that all prices behave similarly for all time-

periods. In practice, the devised mechanism will adjust to oversupply in any given week 

by decreasing prices, while adjusting to overdemand by doing the opposite. 

It is also worth noting that although average prices are increasing, this does not 

necessarily impact CF profits negatively; instead, by choosing how prices are raised in a 

scientific manner, overall supply chain profits are increased. We see this dynamic in Figure 

4.7, which illustrates what the projected profits of the supply chain are after each auction 
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iteration takes place6. Here we note that the CF remains grossly unprofitable due to the 

penalties incurred for not meeting projected demand; this situation remains true up until 

the 8th auction iteration, where supply and demand become aligned. In contrast, farmers 

get profitable outcomes much earlier. We also observe that for this case farmers keep 

roughly 30% of the profits from the supply chain, with the rest going to the CF.  

 

Figure 4.7 – Share of Supply Chains Profits for Farmers and Consolidation Facility 

Here we also have an interest in what are the share of profits by farmers for different 

problem sizes; therefore, this information is provided in Figure 4.8 which gives an 

overview of farmer profits as a percentage of the entire system profits. We emphasize that 

these profits for farmers are in the form of direct transfers resulting from their individual 

production. If the mechanism were implemented a cooperative where farmers are also the 

owners of the CF, then the individual profits of farmers would be higher once the profits 

of the CF are redistributed or reinvested.  

                                                 
6 In practice we will not be able to observe profits directly, since production costs remain private for all 

farmers; only projected revenues would be known. 
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Figure 4.8 – Share of Supply Chain Profits Going to Farmers for Different Problem Sizes 

Finally, another outcome that we are concerned about is the projected production for 

each farmer individually after the mechanism concludes. For this, we illustrate the total 

production that each farmer dedicates to each crop assuming that the mechanism shown 

above came to its conclusion at the 14th iteration (Figure 4.9). As we can see, for the case 

of 20 farmers at the 15th iteration, production schedules are highly heterogeneous, with 

most farmers specializing in one or two crops. 

 

Figure 4.9 – Total Production Allocation 

per Farm (14th Iteration) 

 

Figure 4.10 – Total Production Allocation 

per Farm (Optimal-Centralized Solution)

 

Unfortunately, we also find that in this solution for two farms (7 and 15) find it 

unprofitable to produce given current prices. This was not the case for the centralized-

optimal solution (Figure 4.10), where all farms could produce for the profitability of the 

group to be maximized. Ideally all farmers should participate in the final solution if it is in 
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fact optimal to have them do so. We recognize this to be a problem, but sustain that as the 

mechanism is allowed to progress and prices to rise, the two outcomes should be identical. 

4.8 Conclusions  

Throughout this research we have argued the importance of decentralized planning 

and coordination of the supply chain of fresh produce. Not only is this coordination 

desirable from an efficiency standpoint, but it is also indispensable for farmers which wish 

to thrive in a competitive environment. As a result, a model for coordinated production 

decisions among a group of farmers is formulated. 

Nonetheless, this coordination is not easy to achieve, in particular when internal 

competition and strategic behavior hampers the sharing of information and the incentives 

to collaborate. As a result, a more robust approach which can be implemented in a 

decentralized manner despite the unavailability of information is developed. For this, an 

auction mechanism assigns production quantities for an upcoming season, thus creating a 

coordinated tactical plan for the CF which has a theoretical backing that guarantees 

convergence to an optimal outcome.  

The proposed mechanism is shown to approximate the optimal solution within a 

reasonable number of iterations and to perform well for large problem instances. Moreover, 

the mechanism is shown to have good convergence properties under the common 

assumptions of integer labor numbers and the conditions of minimum required planting 

quantities on each period. These computational results show that this mechanism can be 

feasibly implemented in practice and that coupled with the appropriate planning tools for 

farmers and their consolidation facility the mechanism can provide a viable means for 

coordinated and efficient planning of agricultural production. 
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4.9 Future Work 

Although the mechanism has been shown to be feasible for implementation, there 

remain several questions which must be answered in order to make viable and improve this 

new framework. Mainly, the model developed makes the assumptions of a given customer 

demand which is known before the season, this assumption may not be true in practice. 

Furthermore, there is also the problem of defining a demand schedule which farmers agree 

to before the auction mechanism starts an iterative process to assign contracts. Also related 

to this is the problem of defining appropriate penalties for over/undersupply of a given 

product during the harvest season; such a problem may be addressed from the perspective 

of defining a cost for product wastage as well as the cost of demand not met with the next 

echelon of the supply chain. 

Finally, the more interesting problem which was not addressed directly in this 

chapter is that of strategic bidding. That is, despite the implementation of a mechanism, 

farmers may find it advantageous to misrepresent their information to gain a strategic 

advantage. In this research we present a mechanism which converges to the optimal 

solution under the assumption of farmers stating their production quantities truthfully. 

However, if such a mechanism is to be implemented, an in depth analysis of incentives and 

deterrents for strategic bidding must be performed in order to understand and minimize the 

negative impacts of such behavior. Thus, we emphasize the importance of quantifying the 

prevalence of strategic bidding and understanding its impact (if any) on the quality of 

solutions obtained by this framework. 
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5 STRATEGIC FARMER BIDDING AND ITS IMPACT ON EFFICIENCY 

5.1 Introduction 

In Chapter 4 we presented a tactical planning model for a cooperative composed of 

multiple farmers who have expanded vertically through the establishment of a 

consolidation facility (CF). We show the viability of creating a mechanism in the form of 

an iterative auction; this mechanism assigns contracts for production quantities ahead of 

the growing season, ensuring that supply is matched to demand. through this mechanism 

we also ensure that farmers produce according to their comparative advantages and that the 

overall production plan is cost effective and profitable for farmers. 

However, as we have stated earlier, a mechanism can exhibit severe flaws when 

implemented in practice. Mainly, if bidders deviate from truthful behavior or engage on 

strategies such as collusion, shill bidding or underbidding, then the efficiency of the 

mechanism is compromised. For this reason it is important that economic incentives are 

such that participants state their bids as close as possible to their true valuations and, if 

possible, to formulate the mechanism such that stating their true valuations is their best 

strategy. Not only does this help the efficiency of the mechanism, but it also reduces the 

computational burden on bidders. 

In Chapter 2, we formally define what a mechanism is intended to achieve. We stated 

that a mechanism implements a Bayesian game for which the Nash Equilibrium 

coordinates the system. Here, four properties are of great importance for any mechanism: 

Individual rationality (IR), defined as allowing agents to act freely and without obligation 

to participate (Sandholm, 1999); budget balance (BB), meaning that the mechanism 

requires no external subsidies to be implemented (Chu & Shen, 2006); incentive 
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compatibility (IC), or the property of mechanisms eliciting truthful revelation of 

information from participating agents (Myerson, 1981); and finally efficiency, or the 

allocation of goods such that the overall utility for all parties involved is maximized.  

Unfortunately, a mechanism that fully implements all four requirements is generally 

not attainable, even for simple cases; for instance, for the case of bilateral trade, it is shown 

that no mechanism exists which implements all four requirements (Myerson & 

Satterthwaite, 1983). For multilateral trade, practical implementation may show that at 

least one of these characteristics was not attained. As a result, a compromise between 

efficiency, IR, IC and BB may be necessary; for instance, efficiency may be purposefully 

forfeited in order to achieve IC. One example of this is (Babaioff & Walsh, 2005), where 

a mechanism is deliberately made inefficient (to a reasonable extent) in order to secure BB, 

IC and IR. 

Some mechanisms can be formulated to be viable for the allocation of goods while 

also obeying to the four properties mentioned above; one such mechanism is the Vickrey-

Clarke-Groves (VCG) mechanism. However, although Clarke and Groves were able to 

formalize the conditions for an efficient, IC, BB and IR mechanism, we find that 

implementing this is generally not feasible in practice (Rothkopf, 2007). Mainly, a VCG-

mechanism creates a momentous computational burden for calculating valuations as well 

as being highly susceptible other pathologies (Ausubel & Milgrom, 2002). Even under the 

positive results of the VCG-mechanism, in practice implementation isn’t always practical. 

Despite the difficulties detailed above, researchers have not shied away from 

proposing mechanisms to coordinate the supply chain. This problem does, however, 

highlight the importance of considering BB, IC and IR explicitly in order to minimize the 
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impact of deviations from the ideal assumptions of the mechanism. In particular, we place 

a strong emphasis on incentive compatibility, as it is the most elusive requirement and it is 

particularly important to the problem formulated in this thesis.  

Since the VCG mechanism is impractical, the coordination mechanism detailed in 

Chapter 4 is formulated as an iterative auction. The result is an iterative, multiunit, 

multiple-product auction which must terminate within a reasonable number of iterations. 

This however, creates many questions for the behavior of the mechanism; chief among 

them is to understand the bidding strategies that surface from the few discrete iterations in 

this mechanism (Ausubel & Cramton, 2004; Conen & Sandholm, 2001; Parkes & Ungar, 

2000b).  

It is our objective to understand the conditions under which strategic bidding occurs, 

as well as its prevalence and severity. For this, in the current chapter the characteristics of 

our proposed mechanism are analyzed by formulating the strategic bidding problem as a 

dynamic program. We look at the bidding problem from the perspective of a farmer whose 

objective is to maximize his/her own profit. Once a suitable strategy for each farmer as an 

individual is found, the impact of strategic bidding on the overall system is quantified and 

appropriate measures are taken to address the problem. This problem is assessed through 

theoretical, as well as computational results in a case study similar to that of Section 4.7. 

5.2 General Formulation of the Bidding Problem 

The algorithmic behavior of the mechanism is straightforward. Simply stated, a price 

vector is announced for all possible items under consideration; then bidders state their 

production plans for the prices announced. This process is carried out until demand is 

matched to supply, or until a pre-established stopping condition is attained (Section 4.3)  
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The mechanism is limited to a reduced number of iterations 𝑵. Here, we also have 𝑳  

bidders and one seller who takes the role of the auctioneer. The role of the auctioneer is to 

aggregate production announcements, evaluate them in the context of the CF, and then 

compute a new set of prices. Each bidder has its own private valuation and cost functions 

determined directly by their local constraints and production costs; moreover, no bidder 

knows the private production information held by others. Likewise, the CF has no 

knowledge of the private information of the participating farmers. 

We assume that price updates are given by the sub-gradient algorithm used to solve 

the decentralized problem (Section 4.6). Specifically, price adjustments on each iteration 

are given by: 𝝀𝒉𝒋𝒒
𝒌+𝟏 = 𝝀𝒉𝒋𝒒

𝒌 + 𝜽(∑ 𝑽𝒕𝒓𝒂𝒏𝒔𝒉𝒍𝒋𝒒𝒍 − 𝑷𝑽𝒂𝒓𝒓𝒉,𝒋,𝒒) where 𝜽 is a suitable scalar 

which defines the scale of price adjustments. We assume that the use of this function and 

the parameter 𝜽 are common knowledge for all bidders. Finally, we assume that although 

the auctioneer (CF) may be aware of strategic bidding by farmers, there is no 

counterspeculation from this player. By this we mean that the CF does not deviate from the 

stated pricing algorithm. 

The reason for limiting the ability of the CF to counterspeculate is twofold: First, we 

want to simplify the bidding process for farmers in order to limit the computational burden 

of strategic bidding. The second reason is that counterspeculation becomes a self-defeating 

measure, as farmers can account for this behavior and model it on their own decision 

problems. 

5.3 Theoretical Analysis and Intuition 

As it can be seen, the iterative auction is simple and easily implemented; however, it 

leaves room for manipulation of prices by sophisticated bidders. In particular, if a bidder 
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finds no risk (or little risk) on misrepresenting its production quantities, then he/she can 

announce production quantities which are deflated and increase the magnitude of price 

adjustments in subsequent iterations. As a result, understanding the decision process of 

bidders is the first step towards refining the mechanism.  

In order to analyze the above problem, we reformulate as a simplified version of the 

Chapter 4 decentralized problem in its generic form. In Section 4.6, the coordination 

problem has the form of a block angular matrix with a lagrangian relaxation on the binding 

constraints. By relaxing these constraints, the problem is decomposed to 𝑳 + 𝟏 sub 

problems, where we have 𝑳  bidders and one seller.  

We illustrate the decomposition of the problem below, where 𝒄𝒚, 𝑨𝒚, 𝒃𝒚, 𝒚 are the 

cost vector, constraint matrix, constraint vector and decision variables respectively for the 

seller; likewise, for each bidder 𝑙 we have: 𝒄𝒍, 𝑨𝒍, 𝒃𝒍, 𝒙𝒍 corresponding to the cost vector, 

constraint matrix, constraint vector and decision variables respectively.  

Max 𝑐𝑦 𝑦 + ∑ 𝑐𝑙 𝑥𝑙𝑙  (5-1) 

St   𝐴𝑦𝑦 = 𝑏𝑦              (5-2) 

𝑦 =  ∑ 𝑥𝑙𝑙    (5-3) 

𝐴𝑙𝑥𝑙 = 𝑏𝑙     ∀ 𝑙 ∈ 𝐿   (5-4) 

𝑥𝑙 ≥ 0     ∀ 𝑙 ∈ 𝐿    ;  𝑦 ≥ 0  (5-5) 

By relaxing constraint (5-3), we obtain the seller sub problem and the bidder sub 

problems. These are augmented by the price vector 𝝀 as seen below. These problems can 

be solved to optimality by sub-gradient optimization. Here, the update of the price vectors 

𝝀 is given by: 𝝀𝒌+𝟏 = 𝝀𝒌 + 𝜽(𝒚 − ∑ 𝒙𝒍
𝒌

𝒍 ), where 𝜽 is a suitable step size. 
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Seller sub problem 

Max    (𝑐𝑦 − 𝜆)𝑦 (5-6) 

St   𝐴𝑦 ∗ 𝑦 = 𝑏𝑦              

𝑦 ≥ 0  

Bidder sub problems 

Max    ∑ (𝒄𝒍 + 𝝀)𝒍 𝒙𝒍   ∀ 𝒍 ∈ 𝑳     (5-7) 

St   𝐴𝑙 ∗ 𝑥𝑙 ≤ 𝑏𝑙   

𝑥𝑙 ≥ 0       

In order to better understand strategic bidding, we pick one specific bidder’s sub-

problem for any given iteration 𝒌 in the auction. Let 𝒛𝒍
∗ be the cost of the optimal planting 

plan for a given price announcement. For simplicity, from this point forward we refer to 

only one specific bidder as bidder 𝒍′. We also state the cost vectors simply as: 𝒄𝒚 and 𝒄𝒍 

instead of (𝒄𝒚 − 𝝀) and (𝒄𝒍 + 𝝀) under the assumption that the price update is implicit in 

the price vector at any iteration. The simplified bidders sub problem in a given iteration 𝒌 

is given by: 

Max   𝒛𝒍′
∗ = 𝒄𝒍′

𝒌  𝒙𝒍′
𝒌        (5-8) 

St   𝐴𝑙′  𝑥𝑙′
𝑘 = 𝑏𝑙′    

𝑥𝑙′
𝑘  ≥ 0  

If we take the individual bidder sub-problem (5-8) and assume that the solution being 

provided is truthful, then the solution to the coordination problem is trivial; however, we 

don’t know that this will be generally true. More critically, the above representation of the 

bidder’s sub-problem is incomplete, since at each iteration the maximum utility that can be 

obtained by a bidder is affected by the expectation of future prices. Thus, the more 

complete representation for the bidding problem in iteration 𝒌 can be stated as: 

Max   𝒛𝑩𝑹 = 𝜶𝒌𝒄𝒌𝒙𝒍′
𝒌 +  𝑬 [∑ 𝜶𝒊+𝟏𝒄

(𝒄𝒊,   𝒙
𝒍′
𝒊 )

𝒊+𝟏 𝒙𝒍′
𝒊+𝟏𝑵−𝟏

𝒊=𝒌 ]                 𝒇𝒐𝒓  𝒌 < 𝑵 (5-9) 

St   𝐴𝑥
𝑙′
𝑥𝑙′

𝑖 = 𝑏𝑙′          ∀ 𝑖 ≤ 𝑁 

  𝑥𝑙′
𝑖 ≥ 0                 ∀ 𝑖 ≤ 𝑁  
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Here, 𝑐𝑖+1 is the expected price for the following iterations, 𝛼𝑖 is a discount rate7 and 

𝑧𝐵𝑅 is the best response objective function of a bidder. In this reformulation we note that 

the bidder’s problem becomes much larger; specifically, the number of variables in the 

problem grows by a factor of (𝑵 − 𝒌). Furthermore, the objective function is no longer 

linear since the price vector 𝑐𝑖+1 is a function of 𝑥𝑙′
𝑖 ; in fact, we have a relationship for 

prices from one iteration to the next given by: 𝑐𝑖+1 = 𝑐𝑖 + 𝜃(𝑦𝑖 − ∑ 𝑥𝑙′
𝑖

𝑙 ).  

To simplify this expression, we assume that the variables 𝑦𝑖 for the CF and  𝑥𝑙
𝑖   for 

all other bidders 𝑙 ≠ 𝑙′are random variables, and from the perspective of bidder 𝑙′ these 

variables are and independent of the local bidding problem. As a result, we can decompose 

the price adjustment as in equation 5.10 below: 

𝑐𝑖+1 = 𝑐𝑖 + 𝜃(𝑦𝑖 − ∑ 𝑥𝑙
𝑖

𝑙≠𝑙′ − 𝑥𝑙′
𝑖 )    (5-10) 

In this expression, let (𝑦𝑖 − ∑ 𝑥𝑙
𝑖

𝑙≠𝑙′ ) = 𝑤𝑖  where we can define 𝑤𝑖 as the 

outstanding balance for any given product being auctioned. Therefore, if the remainder of 

bidders create an oversupply of a product, then a price decrease can be expected for the 

following iteration; otherwise, a price increase proportional to the difference can be 

expected. Moreover, during each iteration the quantity 𝑤𝑖 will become known at the same 

time as 𝑥𝑙′
𝑖 , so 𝑤𝑖can taken as a random disturbance from the perspective of bidder 𝑙′. With 

this change we have: 

𝑧𝐵𝑅 = 𝛼𝑘𝑐𝑘𝑥𝑙′
𝑘 +  𝐸[∑ 𝛼𝑖+1(𝑐𝑖 + 𝜃𝑤𝑖 − 𝜃𝑥𝑙′

𝑖 ) 𝑥𝑙′
𝑖+1𝑁−1

𝑘 ]     ∀  𝑘 < 𝑁    (5-11) 

                                                 
7 This discount rate can be interpreted as a probability for early termination of the auction; then 𝛼𝑘 can be 

interpreted as the appropriate weight used by a bidder to determine the expected cost of the overall problem 
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Unfortunately, this objective function becomes a stochastic, nonlinear, multi-period 

optimization problem, which cannot be solved through mixed integer programming as the 

preceding (Chapter 4) problem was. Therefore, we resort to using dynamic programming 

instead to derive some analytical results and intuition for the behavior of the mechanism, 

as well as an approximate solution methodology.  

5.4 DP Formulation of the Bidder’s Sub-Problem 

We observe the problem can be analyzed in the context of dynamic program with 

little modification. From this perspective, we declare the components and variables as: 

𝑐𝑖:  Is the state vector for the system in iteration 𝑖 

𝑥𝑙′
𝑖 :  Is the control vector in iteration 𝑖 

𝑤𝑖:  Is a random disturbance  

In this system, we define the state transition (5-12) and cost function (5-13) as:  

𝑐𝑖+1 = 𝑐𝑖 − 𝜃𝑥𝑙′
𝑖 + 𝜃𝑤𝑖 (5-12) 

𝑔(𝑐𝑘) = 𝛼𝑘𝑐𝑘𝑥𝑙′
𝑘                 ∀  𝑘 ≤ 𝑁 (5-13) 

Under this context, the objective is to choose the appropriate control vectors 𝑥𝑙′
𝑖  

which maximize the overall profit in all iterations. We restrict the set of controls 𝑥𝑙′
𝑖  to the 

convex space 𝑋 defined by the system of equations 𝐴𝑥
𝑙′
𝑥𝑙′

𝑘 = 𝑏𝑙′;   𝑥𝑙′
𝑘 ≥ 0. Finally, we 

define the terminal cost function 𝐽𝑁 and the cost at stage 𝑁 − 1 as: 

𝐽𝑁(𝑐𝑁) = max
𝑥

𝑙′
𝑁∈𝑋

𝑐𝑁𝑥𝑙′
𝑁 (5-14) 

𝐽𝑁−1(𝑐
𝑁−1) = max

𝑥
𝑙′
𝑁−1∈𝑋

𝛼𝑁−1𝑐𝑁−1𝑥𝑙′
𝑁−1 + (1 − 𝛼𝑁−1)𝐸[𝐽𝑁] (5-15) 

More generally, we may represent the cost to go as: 

𝐽𝑘(𝑐
𝑘) = max

𝑥
𝑙′
𝑘 ∈𝑋

𝛼𝑘𝑐𝑘𝑥𝑙′
𝑘 + (1 − 𝛼𝑘)𝐸[𝐽𝑘+1]             𝑓𝑜𝑟  𝑘 < 𝑁     (5-16) 
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From this formulation, we can derive two valuable outcomes: 

Lemma 1: If the probability of termination is 𝛼𝑁 = 1, which signals with certainty 

the final iteration in the auction, then the best response is to bid ones true valuation. 

Proof: As it can be seen from problem definition in equation (5-14), the final stage 

problem is identical to the farmer sub-problem with non-strategic bidding. Since the profit 

of the bidder depends only on the current prices offered, then the objective function is linear 

and the best response is to bid the true optimal production schedule. ∎ 

The outcome of this lemma is not surprising; in fact, a similar outcome was derived 

by Parkes & Ungar (2000b) who analyzed a limited set of bidding strategies for iterative 

auctions which they called “Myopic bidding strategies” (Parkes & Ungar, 2000a). In 

essence, they state that if a bidder were to calculate its best response by only looking at the 

outcome for the current operation, then the best response is to be truthful. Our first lemma 

is a special case of this, since in the final iteration there are no more iterations to 

contemplate and the solution is inherently myopic. 

Lemma 2: If iteration 𝑁 − 1 has a zero probability of terminating the auction, the 

best response of any bidder is to state his/her production plan as zero for all products in 

iteration 𝑁 − 1. Furthermore, if 𝑘 < 𝑁 consecutive iterations have a zero probability of 

termination, then the best response is to state a production plan of zero for all products in 

all 𝑘 iterations. 

Proof: Take the cost to go function for iteration 𝑁 − 1: equation (5-15); note that if 

the probability of termination 𝛼𝑁−1 = 0, then it would be expected for the bidder to assign 

a value for the iteration 𝑁 − 1 down to zero. Thus the cost function becomes only the 

terminal cost:  
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 𝐽𝑁−1(𝑐
𝑁−1) = max

𝑥
𝑙′
𝑁−1,𝑥

𝑙′
𝑁∈𝑋

𝛼𝑁−1𝑐𝑁−1𝑥𝑙′
𝑁−1 + (1 − 𝛼𝑁−1)𝐸[𝐽𝑁]  

= max
𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁∈𝑋

0 + 𝐸[𝑐𝑁]𝑥𝑙′
𝑁  

= max
𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁∈𝑋

𝐸[(𝑐𝑁−1 + 𝜃𝑤𝑁−1 − 𝜃𝑥𝑙′
𝑁−1)]𝑥𝑙′

𝑁   

Since 𝑥𝑙′ ≥ 0, it is optimal to declare any variable being multiplied to 𝑥𝑙′
𝑁 equal to 

zero  (𝑥𝑙′
𝑁−1 = 0) for all values of the state variable 𝑐𝑁−1. More formally, the sub-gradient 

obtained by taking the derivative on 𝑥𝑙′
𝑁−1 is always negative and finding improvement on 

the objective function with decreasing values of 𝑥𝑙′
𝑁−1. Now we analyze the cost function 

for 𝑁 − 2 where 𝛼𝑁−2 = 𝛼𝑁−1 = 0 . 

𝐽𝑁−2(𝑐
𝑁−2) = max

𝑥
𝑙′
𝑁−2∈𝑋

𝛼𝑁−2𝑐𝑁−2𝑥𝑙′
𝑁−2 + (1 − 𝛼𝑁−2)𝐸[𝐽𝑁−1]  

= max
𝑥

𝑙′
𝑁−2,𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁
𝛼𝑁−1𝑐𝑁−1𝑥𝑙′

𝑁−1 + (1 − 𝛼𝑁−1)𝐸[𝐽𝑁]   

= max
𝑥

𝑙′
𝑁−2,𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁
𝐸[(𝑐𝑁−1 + 𝜃𝑤𝑁−1 − 𝜃𝑥𝑙′

𝑁−1)]𝑥𝑙′
𝑁   

= max
𝑥

𝑙′
𝑁−2,𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁
𝛼𝑁𝐸 [((𝑐𝑁−2 + 𝜃𝑤𝑁−2 − 𝜃𝑥𝑙′

𝑁−2) + 𝜃𝑤𝑁−1)] 𝑥𝑙′
𝑁   

By the same analysis, it can be seen that it is optimal to state 𝑥𝑙′
𝑁−2 = 0 for all values 

of the state variable 𝑐𝑁−2. It can be shown by induction that the case will generalize for 

all 𝑥𝑙′
𝑁−𝑘. ∎ 

This result gives us some limited intuition for how to implement a mechanism while 

avoiding the most relevant pathologies of the formulation. Mainly, we can observe that in 

order for the mechanism to be incentive compatible and practically feasible, there must be 

some positive probability of termination before the final iteration. Unfortunately, gaining 

intuition for the case where iterations with a zero probability of termination precede some 

iteration 𝑁 − 𝑘, becomes more elusive. In order to better address this problem, we 
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elaborate a generic form of the problem that expands the expectation of future iterations 

cost functions.  

5.4.1 Deriving a More Generic Cost-to-Go Function 

For the reformulation of the bidding problem, we first assume the price adjustments 

for each iteration are known and given by 𝜃𝑘. Given this change, we expand the terms for 

the cost functions in all iterations such that the overall decision problem considers multiple 

stage decisions in a single iteration with expectation of the random shocks to the system. 

We expand the expectation of 𝐸[𝐽𝑁(𝑐𝑁)] in the expression for  𝐽𝑁−1(𝑐
𝑁−1). 

𝐽𝑁−1(𝑐
𝑁−1) = max

𝑥
𝑙′
𝑁−1∈𝑋

𝛼𝑁−1𝑐𝑁−1𝑥𝑙′
𝑁−1 + (1 − 𝛼𝑁−1)𝐸[𝐽𝑁(𝑐𝑁)] 

𝐽𝑁−1(𝑐
𝑁−1) = max

𝑥
𝑙′
𝑁−1, 𝑥

𝑙′
𝑁∈𝑋

𝛼𝑁−1𝑐𝑁−1𝑥𝑙′
𝑁−1

+ (1 − 𝛼𝑁−1)(𝑐𝑁−1 + 𝜃𝑁−1𝐸[𝑤𝑁−1] − 𝜃𝑁−1𝑥𝑙′
𝑁−1)𝑥𝑙′

𝑁 

If we continue the recursive expansion for state 𝐽𝑁−2(𝑐
𝑁−2), we obtain:  

𝐽𝑁−2(𝑐
𝑁−2) = max

𝑥
𝑙′
𝑁−2∈𝑋

𝛼𝑁−2𝑐𝑁−2𝑥𝑙′
𝑁−2 + (1 − 𝛼𝑁−2)𝐸[𝐽𝑁−1(𝑐

𝑁−1)] 

𝐽𝑁−2(𝑐
𝑁−2) = 𝑚𝑎𝑥

𝑥
𝑙′
𝑁−2,𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁
𝛼𝑁−2𝑐𝑁−2𝑥𝑙′

𝑁−2

+ 𝛼𝑁−1(1 − 𝛼𝑁−2)(𝑐𝑁−2 + 𝜃𝑁−2𝐸[𝑤𝑁−2] − 𝜃𝑁−2𝑥𝑙′
𝑁−2)𝑥𝑙′

𝑁−1

+ (1 − 𝛼𝑁−1)(1 − 𝛼𝑁−2)(𝑐𝑁−2 + 𝜃𝑁−2𝐸[𝑤𝑁−2] − 𝜃𝑁−2𝑥𝑙′
𝑁−2 + 𝜃𝑁−1𝐸[𝑤𝑁−1]

− 𝜃𝑁−1𝑥𝑙′
𝑁−1)𝑥𝑙′

𝑁 

However, this problem notation can be greatly simplified by redefining some 

parameters. First, rather than looking at the 𝑘th iteration, we change notation to see iteration 

𝑁 − 𝑘 instead, meaning that we have 𝑘 iterations left before the cutoff of the auction. This 

will simplify the notation as we expand relevant terms in the problem description. We also 

simplify notation and represent 𝐽𝑁−𝑘(𝑐
𝑁−𝑘) simply as 𝐽𝑁−𝑘. Finally, we let  𝑝𝑖

𝑁−𝑘 be the 
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conditional probability of advancing exactly 𝑖 iterations given that we are currently in 

iteration 𝑁 − 𝑘, where 0 ≤ 𝑖 ≤ 𝑘 < 𝑁; here  𝑝𝑖
𝑁−𝑘 is given by: 

𝑝𝑖
𝑁−𝑘 = {

𝛼𝑁−𝑘+𝑖  ∏(1 − 𝛼𝑁−𝑘+𝑗−1)

𝑖

𝑗=1

            ∀  𝑖 > 0, 𝑖 ≤ 𝑘 

𝛼𝑁−𝑘 ∀  𝑖 = 0          

 (5-17) 

We note that in this normalized notation ∑ 𝑝𝑖
𝑁−𝑘 = 1𝑘

𝑖=0 . Now we can proceed to 

express the cost for iteration 𝑁 − 2 as: 

𝐽𝑁−2 = max
𝑥

𝑙′
𝑁−2,𝑥

𝑙′
𝑁−1,𝑥

𝑙′
𝑁
𝑝0

𝑁−2𝑐𝑁−2𝑥𝑙′
𝑁−2 + 𝑝1

𝑁−2(𝑐𝑁−2 + 𝜃𝑁−2𝐸[𝑤𝑁−2] − 𝜃𝑁−2𝑥𝑙′
𝑁−2)𝑥𝑙′

𝑁−1

+ 𝑝2
𝑁−2(𝑐𝑁−2 + 𝜃𝑁−2𝐸[𝑤𝑁−2] − 𝜃𝑁−2𝑥𝑙′

𝑁−2 + 𝜃𝑁−1𝐸[𝑤𝑁−1] − 𝜃𝑁−1𝑥𝑙′
𝑁−1)𝑥𝑙′

𝑁 

By looking at this pattern, we can generalize the cost for any iteration 𝑁 − 𝑘 as: 

𝐽𝑁−𝑘 = 𝑚𝑎𝑥
𝑥

𝑙′
𝑁−𝑘… 𝑥

𝑙′
𝑁
𝑝0

𝑁−𝑘𝑐𝑁−𝑘𝑥𝑙′
𝑁−𝑘 + ∑𝑝𝑖

𝑁−𝑘

𝑘

𝑖=1

(𝑐𝑁−𝑘 + ∑ 𝜃𝑗(𝐸[𝑤𝑗] − 𝑥
𝑙′
𝑗
)

𝑁−𝑘+𝑖−1

𝑗=𝑁−𝑘

)𝑥𝑙′
𝑁−𝑘+𝑖 (5-18) 

From this formulation, we can see two important outcomes: (1) The magnitude of 

multipliers for the linear terms of all future iterations are solely determined by 𝜃𝑗, 𝑐𝑁−𝑘 

and by 𝐸[𝑤𝑗]; and (2) the quadratic terms in the objective function (those resulting from 

the multiplication of 𝑥
𝑙′
𝑗

 and 𝑥𝑙′
𝑁−𝑘+𝑖) are always negative; therefore the quadratic 

components act as penalizing terms for the objective function, weighted down by the 

vectors 𝜃𝑗 and 𝑝𝑖
𝑁−𝑘. More importantly, from the second outcome we can infer that the 

variables 𝑥𝑙′  of greater and most consistent size will be most significantly penalized in the 

objective function. 

Now that we have a compact representation of the decision problem, from equation 

(5-18), we derive one more lemma and a theorem: 
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Lemma 3: For any iteration which has a zero probability of terminating the auction, 

the best response of any bidder is to state his/her production plan as zero for all products. 

Proof: This lemma can be regarded as a more generic form of Lemma 2; the result 

is directly derived from the cost to go function for iteration 𝑁 − 𝑘. Here we can see that if 

𝑝𝑖
𝑁−𝑘 = 0 for some 𝑖 < 𝑘, then the linear component vanishes to zero; moreover, the first 

derivative on 𝑥𝑙′
𝑁−𝑘+𝑖 will always be negative, signaling a direction of improvement 

decreasing on  𝑥𝑙′
𝑁−𝑘+𝑖. Therefore, the optimal bid for production on iteration 𝑁 − 𝑘 + 𝑖 is 

zero. If it is the current iteration which has a zero probability of termination 𝑝0
𝑁−𝑘 = 0, 

then the solution degenerates to announcing a bid of zero. ∎ 

Theorem 1: The mechanism proposed is not incentive compatible. Furthermore, the 

best response for any iteration other than the last will involve underbidding. 

Proof: The result is directly derived from the cost to go function where all quadratic 

components can be seen to have a negative sign, and thus penalize the objective function. 

Thus, for those products which are most likely to be produced by any bidder, the penalty 

will be correspondingly higher. ∎ 

This theorem simply reflects the intuition provided by (Ausubel & Cramton, 2004). 

In brief, for an iterative auction with a limited number of iterations, some bidders will 

engage in a “snake in the grass” strategy, which consists of keeping lower bids only to 

rapidly raise their production quantities once higher prices are observed.  

The outcomes found from Theorem 1and Lemmas 1, 2, 3 give us some intuition for 

how to design the final mechanism; however, they do not give us the full answer for the 

exact design we ought to use, nor will they give an estimate for the final efficiency of the 

mechanism. For a better understanding of this formulation, we must rely on computational 
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results and further expand the bidder’s sub-problem. For this, we formulate a solution 

methodology which can be used by bidders to determine their best response in practice. 

Once the problem is solved computationally from the bidder’s perspective, we can quantify 

the efficiency of the mechanism being implemented.  

The approach in the remainder of the section is consistent with the ideas of 

evolutionary mechanism design (Phelps et al., 2009), where instead of seeking a 

mechanism which is perfectly IC, BB, IR and efficient (an arguably impossible outcome), 

we seek to design a simple mechanism. With this simple mechanism we can anticipate 

strategic behavior by solving the bidding problem computationally and then refine the 

mechanism’s properties.  

5.5 Computationally Solving the Bidder Sub-Problem 

Note that given the significant size of the problem, any bidder seeking to act 

strategically will be faced with a decision problem of high complexity only to present what 

should otherwise be a straightforward bid. This is on itself a non-trivial decision problem, 

and must be carefully formulated to better understand strategic bidding behavior. 

Specifically, we anticipate the following rationale for each bidder: 

1. A bidder wishes to present a proposal 𝑥𝑙′
𝑘  at time 𝑘. Clearly it is of importance for 

the bidder to know what the impact of his/her response will be on future prices 

𝑐𝑘+1, in order to exert influence without compromising the profitability of the 

current iteration. 

2. However, it is also of interest to have a plan for what the bids of upcoming iterations 

 𝑥𝑙′
𝑘+1, 𝑥𝑙′

𝑘+2, 𝑥𝑙′
𝑘+3 could be. Nonetheless, the more iterations a bidder seeks to plan 

ahead for, the bigger and more complex the decision problem becomes. 
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3. Most bidders weigh the gain that they obtain from making long term estimations; 

if this gain is small, they may resort to a simplified decision problem formulated 

through a limited look ahead policy.  

To give bidders the flexibility to consider a subset of all the upcoming bidding rounds 

in the current iteration, we formulate the decision problem as one in which the bidder looks 

ahead 𝑆 iterations into the future. The lookahead 𝑆 can be as small as planning one iteration 

ahead, or large enough to account for all iterations until the auction terminates.  

For strategic planning, we follow two approaches for optimizing the bidder sub-

problem: (1) A quadratic optimization limited look ahead approach, and (2) a heuristic to 

solve the quadratic programming formulation. 

5.5.1 Approximate Quadratic Programming Formulation 

We proceed with the quadratic cost expansion from equation (5-18). Under this 

framework, we create the quadratic cost expansion for all upcoming iterations or for a 

subset of all upcoming iterations (a limited lookahead approach). For a robust formulation 

of the limited lookahead approach, we redefine the quadratic cost function as:  

𝐽𝑁−𝑘 = max
𝑥
𝑙′
𝑁−𝑘… 𝑥

𝑙′
𝑁−𝑘+𝑠

𝑝0
𝑁−𝑘𝑐𝑁−𝑘𝑥𝑙′

𝑁−𝑘     + ∑𝑝𝑖
𝑁−𝑘

𝑠

𝑖=1

(𝑐𝑁−𝑘 + ∑ 𝜃𝑗(𝐸[𝑤𝑗] − 𝑥
𝑙′
𝑗
)

𝑁−𝑘+𝑖−1

𝑗=𝑁−𝑘

)𝑥𝑙′
𝑁−𝑘+𝑖 

                        + ∑ 𝑝𝑖
𝑁−𝑘

𝑘

𝑖=𝑠+1

�̃�[𝐽𝑁−𝑘+𝑆+1] 

(5-19) 

Where the parameter 𝑺, is the number of lookahead periods used. We also define 

�̃�[𝐽𝑁−𝑘+𝑆] as an approximation to the cost-to-go function after the limited look ahead.  

The quadratic program is still constrained on each iteration to the solution space 

defined by 𝐴𝑥
𝑙′
𝑥𝑙′

𝑖 = 𝑏𝑙′ . If the objective function is convex, then the overall problem is 
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convex and can be solved with ease. Therefore, we begin our analysis by determining 

whether the objective function is convex/concave. In order to make the structure of the 

objective function more apparent, we reorganize the terms as seen in equation (5-20) 

below.  

𝐽𝑁−𝑘 = max
𝑥

𝑙′
𝑁−𝑘… 𝑥

𝑙′
𝑁−𝑘+𝑆

𝑝0
𝑁−𝑘𝑐𝑁−𝑘𝑥𝑙′

𝑁−𝑘 + ∑𝑝𝑖
𝑁−𝑘

𝑠

𝑖=1

(𝑐𝑁−𝑘 + ∑ 𝜃𝑗𝐸[𝑤𝑗]

𝑁−𝑘+𝑖−1

𝑗=𝑁−𝑘

)𝑥𝑙′
𝑁−𝑘+𝑖

− ∑𝑝𝑖
𝑁−𝑘

𝑠

𝑖=1

( ∑ 𝜃𝑗𝑥
𝑙′
𝑗

𝑁−𝑘+𝑖−1

𝑗=𝑁−𝑘

)𝑥𝑙′
𝑁−𝑘+𝑖 + ( ∑ 𝑝𝑖

𝑁−𝑘

𝑘

𝑖=𝑆+1

)�̃�[𝐽𝑁−𝑘+𝑆+1] 

(5-20) 

From the rearranging of terms in the objective function we see that the problem is 

non-linear and non-separable; however, the problem conforms to the format of a quadratic 

program, with a linear and a quadratic section corresponding to the production problem 

and the bidding penalties respectively. However, from this equation we have one additional 

term which poses a problem: �̃�[𝐽𝑁−𝑘+𝑆+1], which does not have a tractable definition. 

To take care of this problem and remove the term �̃�[𝐽𝑁−𝑘+𝑆+1], we assume that the 

final iteration 𝑁 − 𝑘 + 𝑆 is representative of upcoming iterations in the value of the 

objective function such that �̃�[𝐽𝑁−𝑘+𝑆]~�̃�[𝐽𝑁−𝑘+𝑆+1]~�̃�[𝐽𝑁−𝑘+𝑆+2]~… With this 

assumption in place, the decision variables for 𝑥𝑙′
𝑁−𝑘+𝑆 dictate the expected cost to go 

beyond 𝑁 − 𝑘 + 𝑆 such that 𝑥𝑙′
𝑁−𝑘+𝑆~𝑥𝑙′

𝑁−𝑘+𝑆+1~𝑥𝑙′
𝑁−𝑘+𝑆+2. Moreover, with this 

assumption we can also redefine the probabilities of termination at the lookahead 𝑆 

as 𝑝𝑆
𝑁−𝑘 = ∑ 𝑝𝑗

𝑁−𝑘𝑁
𝑗=𝑆 , meaning that the probabilities of termination for all iterations 

beyond the lookahead period are collapsed into the last period being considered. With this 

assumption and correction in the objective function in place, the term �̃�[𝐽𝑁−𝑘+𝑆+1] can be 

dropped to yield the new cost-to-go quadratic function (5-21) below: 
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𝐽𝑁−𝑘 = max
𝑥

𝑙′
𝑁−𝑘… 𝑥

𝑙′
𝑁−𝑘+𝑆

𝑝0
𝑁−𝑘𝑐𝑁−𝑘𝑥𝑙′

𝑁−𝑘 + ∑𝑝𝑖
𝑁−𝑘

𝑠

𝑖=1

(𝑐𝑁−𝑘 + ∑ 𝜃𝑗𝐸[𝑤𝑗]

𝑁−𝑘+𝑖−1

𝑗=𝑁−𝑘

)𝑥𝑙′
𝑁−𝑘+𝑖

− ∑𝑝𝑖
𝑁−𝑘

𝑠

𝑖=1

( ∑ 𝜃𝑗𝑥
𝑙′
𝑗

𝑁−𝑘+𝑖−1

𝑗=𝑁−𝑘

)𝑥𝑙′
𝑁−𝑘+𝑖 

(5-21) 

Unfortunately, the objective function is not convex. This can be shown by expanding 

the quadratic terms of equation (5-21) in matrix form as: 

=
1

2
[

𝑥𝑙′
𝑁−𝑘

⋮

𝑥𝑙′
𝑁−𝑘+𝑠

]

′

[
 
 
 
 
 

0 𝑃1
𝑁−𝑘

𝑃1
𝑁−𝑘 0

𝑃2
𝑁−𝑘

𝑃2
𝑁−𝑘+1

⋯       𝑃𝑠
𝑁−𝑘

⋯       𝑃𝑠
𝑁−𝑘+1

𝑃2
𝑁−𝑘 𝑃2

𝑁−𝑘+1 0 ⋯              ⋮      

⋮ ⋮
𝑃𝑠

𝑁−𝑘 𝑃𝑠
𝑁−𝑘+1

⋮
⋯

⋱ 𝑃𝑠
𝑁−𝑘+𝑠−1

𝑃𝑠
𝑁−𝑘+𝑠−1 0 ]

 
 
 
 
 

[

𝑥𝑙′
𝑁−𝑘

⋮

𝑥𝑙′
𝑁−𝑘+𝑠

]   (5-22) 

Where we define the probabilities of termination in matrix form as: 

𝑃1
𝑁−𝑘 = 𝑝1

𝑁−𝑘  𝜃𝑁−𝑘 I ,      𝑃2
𝑁−𝑘 = 𝑝2

𝑁−𝑘 𝜃𝑁−𝑘  I ,      𝑃2
𝑁−𝑘+1 = 𝑝2

𝑁−𝑘  𝜃𝑁−𝑘+1 I ,     … 

𝑃𝑖
𝑁−𝑘+𝑗

= 𝑝𝑖
𝑁−𝑘  𝜃𝑁−𝑘+𝑗 I       ∀ 𝑖 ≤ 𝑠;   𝑗 < 𝑠 

Here, I is the identity matrix, which is used in order to make the price adjustments in 

future iterations solely dependent on the decision variables for the same product in 

accordance to the structure of the subgradient algorithm and with equation (5-22). From 

the representation of the quadratic components of the objective function, we can easily 

extract the hessian matrix. 

Lemma 4: The bidding problem for any farmer is quadratic and non-convex in the 

objective function. 

Proof: The Hessian matrix on (5-22) has a distinct structure with a diagonal 

composed of only zeroes, making it fall into the category of "hollow matrices." We can 

disqualify the Hessian matrix from being positive semi-definite (PSD) on negative semi-

definite (NSD) by noting that for any matrix, the sum of the eigenvalues will always be 
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equal to the trace of the matrix. For the matrix in (5-22) to be PSD/NSD, we would need 

all the eigenvalues to be zero; yet, we find that for any hollow matrix of size 𝑛 > 2 with 

all non-diagonal elements being strictly positive, there are always at least two non-positive 

eigenvalues (Charles, Farber, Johnson, & Kennedy-Shaffer, 2013) thus forcing the 

existence of at least one positive/negative eigenvalue and by consequence causing the 

Hessian matrix to always be indefinite. ∎ 

Solving non-convex quadratic optimization problems creates an added level of 

complexity; nonetheless, obtaining near-optimal solutions is usually possible in practice 

through the use of commercial solvers. We find two problems with solving a non-convex 

optimization problem: 

1. Because of this structure, it is usually impossible to guarantee if a given solution 

found by a commercial solver is globally optimal or simply locally optimal.  

2. A solution can be grossly sub-optimal, yet it may conform to KKT conditions for 

local optimality; this causes difficulty for the solver on distinguishing the globally 

optimal solution. 

In fact, it will be shown in section 5.7.2 that these problems are highly prevalent 

when using commercial solvers, and can cause difficulties in finding an optimal solution. 

5.5.2 Heuristic DP Formulation 

In order to reformulate the optimization problem in a way that makes the solutions 

easily attainable, we develop a heuristic approximation to obtain the solution to the 

quadratic problem. For this, we take the quadratic programming expansion and refer back 

to dynamic programming and the structural characteristics of the strategic bidding problem.  
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In order to define a sound heuristic for the bidding problem we refer back to equation 

(5-21), and take the case of the last iteration, which yields the cost  𝑱𝑵; we know this 

iteration is the only incentive compatible iteration of the mechanism; moreover, the 

objective function is linear and convex on 𝑥𝑙′
𝑁 and its optimal solution is given by: 

𝐽𝑁 = max
𝑥

𝑙′
𝑁

𝑐𝑁𝑥𝑙′
𝑁   

Unfortunately, we cannot know with certainty the price vector 𝑐𝑁 as it depends on 

the mismatch for all previous iterations. Nonetheless, assuming that we are at iteration 𝒌, 

the final price vector is given by: 

𝐸[𝑐𝑁] = 𝑐𝑁−𝑘 + ∑(𝜃𝑖𝐸[𝑤𝑖] − 𝜃𝑖𝑥𝑙′
𝑖 )

𝑁−1

𝑖=𝑘

 (5-23) 

As in previous formulations, the vector 𝑤  is an independent random variable which 

can be estimated at any iteration through 𝐸[𝑤𝑗]. Moreover, let’s assume for now that a 

solution to all previous iterations 𝑖 < 𝑁 has been estimated and is represented by �̂�𝑙′
𝑖 ; under 

this assumption, 𝑐𝑁 is estimated and a solution to the final iteration can be found. 

Furthermore, since we assume that all previous solutions have been initialized at some 

arbitrary feasible value �̂�𝑙′
𝑖  ∀ 𝑖 ∈ [𝑁 − 𝑘,𝑁 − 1]. Then the parameter 𝑐𝑁 as well as any 

other 𝑐𝑖 are known in expectation and the solution to the last stage of the dynamic program 

is a simple linear programming problem. The solution to the last stage is then used to update 

the solution estimate �̂�𝑙′
𝑁. 

Knowing that the solution to the last iteration complies with IC and using Bellman’s 

principle of optimality, we can reformulate the one iteration lookahead for 𝐽𝑁−1 as a linear 

program using similar assumptions, where 𝐽𝑁−1 is given by: 
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𝐽𝑁−1 = max
𝑥

𝑙′
𝑁−1

𝑝0
𝑁−1𝐸[𝑐𝑁−1]𝑥𝑙′

𝑁−1  + 𝑝1
𝑁−1(𝐸[𝑐𝑁−1] + 𝜃𝑁−1𝐸[𝑤𝑁−1] − 𝜃𝑁−1𝑥𝑙′

𝑁−1)�̂�𝑙′
𝑁      

𝐽𝑁−1 = max
𝑥

𝑙′
𝑁−1

𝑝0
𝑁−1𝐸[𝑐𝑁−1]𝑥𝑙′

𝑁−1  + 𝑝1
𝑁−1(𝐸[𝑐𝑁−1] + 𝜃𝑁−1𝐸[𝑤𝑁−1])�̂�𝑙′

𝑁 − 𝑝1
𝑁−1(𝜃𝑁−1𝑥𝑙′

𝑁−1)𝑥𝑙′
𝑁 

In this formulation, �̂�𝑙′
𝑁 is treated as a constant, making the second term 

𝑝1
𝑁−1(𝑐𝑁−1 + 𝜃𝑁−1𝐸[𝑤𝑁−1])�̂�𝑙′

𝑁 a constant as well. This term is now removed from the 

objective function, leaving a simple linear program.  

To differentiate the heuristic objective functions from those of the quadratic program, 

we use the notation 𝐻𝑁−𝑘 for the cost-to go heuristic approximation objective functions. 

With this change of notation, we show the heuristic cost-to-go for iteration 𝑁 − 1: 

𝐻𝑁−1 = max
𝑥

𝑙′
𝑁−1

𝑝0
𝑁−1𝑐𝑁−1𝑥𝑙′

𝑁−1  − 𝑝1
𝑁−1(𝜃𝑁−1𝑥𝑙′

𝑁−1)𝑥𝑙′
𝑁 

Rearranging some terms, the result for stage 𝑁 − 1 now becomes: 

𝐻𝑁−1 = max
𝑥

𝑙′
𝑁−1

(𝑝0
𝑁−1𝑐𝑁−1 − 𝑝1

𝑁−1𝜃𝑁−1�̂�𝑙′
𝑁)𝑥𝑙′

𝑁−1 

Where 𝑐𝑁−1 can also be estimated on expectation from the solution estimations for 

�̂�𝑙′
𝑖  ∀ 𝑖 ∈ [𝑁 − 𝑘,𝑁 − 2]; this allows a better estimate of �̂�𝑙′

𝑁−1 to be obtained recursively 

in the same form as �̂�𝑙′
𝑁; a process that can be generalized for all �̂�𝑙′

𝑖 . 

More generally, we now perform this procedure of linear estimations for any iteration 

 𝑖 ∈ [𝑁 − 𝑘,min (𝑁,𝑁 − 𝑘 + 𝑆)] and keeping the assumption that bidders may limit their 

lookahead policy to 𝑺 iterations, the expression for the linear approximation for any 

iteration is given by equation (5-24) below:  

𝐻𝑖 = max
𝑥

𝑙′
𝑖

(𝑝0
𝑖 𝑐𝑖 − 𝜃𝑖 ∑ 𝑝𝑔

𝑖  𝑥
𝑙′
𝑖+𝑔

𝑠

𝑔=1

 ) 𝑥𝑙′
𝑖  (5-24) 
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Where 𝑐𝑖 = 𝑐𝑁−𝑘 + ∑ (𝜃𝑗𝐸[𝑤𝑗] − 𝜃𝑗�̂�
𝑙′
𝑗
)𝑖−1

𝑗=𝑘  and where �̂�
𝑙′
𝑖+𝑔

 are the solution 

estimates obtained recursively using the Bellman’s principle of optimality. Furthermore, if 

we sum across all the objective functions from the heuristic, we obtain an approximation 

to the objective function of the quadratic programming approximation to the problem. 

Note that we have assumed that �̂�𝑙′
𝑖  were arbitrary starting solutions. For this reason 

we will continue to perform this procedure using better, updated, estimates for all variables 

�̂�𝑙′
𝑖  ∀𝑖 < 𝑁 to calculate the price vector 𝑐𝑁−𝑖 until no further refinement is needed. With 

this change, the recursion has a higher degree of accuracy; from this point, the optimal bid 

can be refined using better estimates for the anticipated auction prices. The final structure 

of the heuristic is as in Table 5.1 below. 

Table 5.1 – Heuristic Pseudocode for the Quadratic Problem Approximation 

Heuristic pseudocode for iteration 𝑵 − 𝒌: 

1. Initialize 𝑥𝑙′
𝑖  ∀ 𝑖 ∈ [𝑁 − 𝑘,𝑁] at some arbitrary feasible solution 

2. For all 𝑖 ∈ [𝑁 − 𝑘,min (𝑁,𝑁 − 𝑘 + 𝑆)] recursively do: 

a. Solve: 𝐻𝑖  

b. Obtain optimal solution 𝑥𝑙′
𝑖 ∗

 

c. Let �̂�𝑙′
𝑖 = 𝑥𝑙′

𝑖 ∗
 

3. If  (𝑎𝑏𝑠 (𝑥𝑙′
𝑖 − 𝑥𝑙′

𝑖 ∗
) < 𝛿   ∀ 𝑖)  then stop. Otherwise, return to Step 2 

 

Unfortunately, we cannot guarantee optimality for the final solution obtained once 

the heuristic terminates; nonetheless, the heuristic method has been shown to have good 

convergence properties and to have characteristics that make it more desirable than the 

quadratic programming formulation as it will be shown in Section 5.7.2 through 

computational results. 
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5.6 Farm Coordination Optimization Model 

In the remainder of this chapter we explore the application of the derived models to 

the farm coordination problem of Section 4.6. We now provide a formulation of strategic 

bidding in accordance to the models of (5-21) and (5-24) above. For this, we first define 

the additional parameters and decision variables required for the expanded formulation. 

Thereafter, we define the constraints and objective function, as well as a redefinition of the 

consolidation facility and farmer sub-problems. 

5.6.1 Farmer Strategic Sub-Problem Quadratic Approximation 

Indexes: 

𝑖  ∈   𝐼 = (1…  𝑁)  : Auction iterations 

Parameters: 

𝑁     : Maximum allowed number of iterations for the auction 

𝑆     : Number of look ahead steps for farmer planning  𝑆 ≤ 𝑁 − 𝑘 

𝐾     : Current iteration  

𝛼𝑘     : Probability of terminating at any particular iteration 𝑘 

𝑝𝑖
𝑁−𝑘 : Probability of terminating in 𝑖 iterations given that are at iteration 𝑁 − 𝑘 

𝜃𝑖   : Price adjustment parameter declared for iteration 𝑖 

𝑤ℎ𝑗𝑞
𝑖    : Expected total mismatch between supply and demand for iteration 𝑖 

𝜆ℎ𝑗𝑞
𝑖   : Current auction prices for iteration 𝑖 

Decision variables (Farmers): 

𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑖  : Area to plant of crop j in period p at location l 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑖    : Harvest quantity of crop j in period h at location l 
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𝑉𝑙𝑎𝑏𝑡𝑙
𝑖      : Seasonal laborers employed at location l at time t  

𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑖      : Seasonal laborers hired for location l at time t 

𝑉𝐹𝑖𝑟𝑒𝑡𝑙
𝑖      : Seasonal laborers dismissed from location l at time t 

𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑖  : Amount to transport from location l of crop j with quality q at time h 

Subject to: 

Farming Constraints ∀ 𝒍 𝝐 𝑳, 𝒊 𝝐 [𝑵 − 𝒌,𝑵] :  

∑ ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑖

𝑝𝑗 ≤ 𝐿𝑎𝑛𝑑𝑙                                                             ∀ 𝑖 ∈ 𝐼 (5-25) 

𝑀𝑖𝑛𝑗 ∗ 𝑌𝑗𝑝𝑙 ≤ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑖 ≤ 𝑀𝑎𝑥𝑗 ∗ 𝑌𝑗𝑝𝑙                                    ∀  𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼    (5-26) 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑖 ≤ ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙

𝑖 ∗ 𝑌𝑖𝑒𝑙𝑑𝑝ℎ𝑗 ∗ 𝑇𝑜𝑡𝑎𝑙𝑗𝑙𝑝                     ∀ ℎ ∈ 𝐻, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (5-27) 

Farming Labor Constraints: 

𝑉𝑙𝑎𝑏𝑡𝑙
𝑖 ≥ ∑ ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙

𝑖 𝐿𝑎𝑏𝑜𝑟𝑃𝑝𝑡𝑗𝑗𝑝 + ∑ ∑ 𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑖 𝐿𝑎𝑏𝑜𝑟𝐻𝑗𝑗   ℎ=𝑡   ∀ 𝑡, 𝑖 ∈ 𝐼 (5-28) 

𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑖 − 𝑉𝐹𝑖𝑟𝑒𝑡𝑙

𝑖 =  𝑉𝑙𝑎𝑏𝑡𝑙
𝑖 − 𝑉𝑙𝑎𝑏(𝑡−1)𝑙

𝑖                            ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼  (5-29) 

∑ 𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑖

𝑡 ≤ 𝑀𝑎𝑥𝐿𝑎𝑏𝑙                                                            ∀ 𝑖 ∈ 𝐼 (5-30) 

Harvesting quality distribution: 

𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑖 ∗ 𝑄𝑢𝑎𝑙𝐷ℎ𝑗𝑞𝑙 = 𝑉𝑡𝑟𝑎𝑛𝑠𝑙𝑗(𝑞−∆𝑞𝑙𝑙𝑗)(ℎ+∆𝑡𝑙𝑙)

𝑖                    ∀   ℎ, 𝑗, 𝑞, 𝑖     (5-31) 

Note that all the constraints for the new, strategic formulation are identical to those 

of the original formulation, with the distinction that we have expanded our constraint space 

to all iterations 𝑖 rather than a single one. The greatest distinction in the strategic 

reformulation lies on the objective function and the solution methodology for each 

problem. We now detail the objective function (5-32) for the quadratic formulation: 
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𝑀𝑎𝑥 𝑍𝑙 = ∑ 𝑝𝑖
𝑁−𝑘 [−  ∑𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙

𝑖 ∗ 𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙  

𝑗𝑞𝑡

− ∑(𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑖 ∗ 𝐶ℎ𝑖𝑟𝑒𝑡)

𝑡

𝑁−𝑘+𝑆

𝑖=𝑁−𝑘

 

−∑(𝑉𝑙𝑎𝑏𝑡𝑙
𝑖 ∗ 𝐶𝑙𝑎𝑏𝑡)

𝑡

− ∑(𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑖 ∗ 𝐶𝑝𝑙𝑎𝑛𝑡𝑗)

𝑝𝑗

− ∑(𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑖 ∗ 𝐶ℎ𝑎𝑟𝑣𝑗)

ℎ𝑗

] 

+∑(𝜆ℎ𝑗𝑞
𝑁−𝑘𝑝0

𝑁−𝑘(𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑁−𝑘) + ∑𝑝𝑖

𝑁−𝑘 (𝜆ℎ𝑗𝑞
𝑁−𝑘 + ∑ 𝜃𝑔𝐸[𝑤ℎ𝑗𝑞

𝑔
]

𝑁−𝑘+𝑖−1

𝑔=𝑁−𝑘

)𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑁−𝑘+𝑖

𝑆

𝑖=1

)

ℎ𝑗𝑞

 

       −∑∑𝑝𝑖
𝑁−𝑘

𝑆

𝑖=1

∑ 𝜃𝑔 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑔

𝑁−𝑘+𝑖−1

𝑔=𝑁−𝑘

𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑁−𝑘+𝑖

ℎ𝑗𝑞

 

(5-32) 

 

 

 

The above objective function is non-convex, as shown in lemma 4, and for this reason 

it will be hard to solve. In fact, computational results detailed in upcoming Section 5.7 

show that solving the quadratic approximation directly by using commercial solvers 

generally yields solutions which are highly variable and can be grossly sub-optimal. For 

this reason, we also provide a formulation of the strategic problem which is solved through 

a heuristic method. 

5.6.2 Farmer Strategic Sub-Problem Heuristic Approximation 

In order to implement this heuristic, we reformulate the objective function as detailed 

in equation (5-24), where we formulate the decision problem for the current iteration 𝑖, but 

where the projected solution to all upcoming iterations are found iteratively. As a result, 

the LP approximation for iteration 𝑖 is given by the following objective function (5-33). 

Where, 𝜆ℎ𝑗𝑞
𝑖 = 𝜆ℎ𝑗𝑞

𝑁−𝑘 + ∑ (𝜃𝑔𝐸[𝑤ℎ𝑗𝑞
𝑔

] − 𝜃𝑔𝑉𝑡𝑟𝑎𝑛𝑠̂
ℎ𝑗𝑞𝑙
𝑔

)𝑖−1
𝑔=N−𝑘  and 𝑉𝑡𝑟𝑎𝑛𝑠̂

ℎ𝑗𝑞𝑙
𝑖  are the 

current best estimates for previous and upcoming iterations. The feasible space for this 

problem is given by (5-25 - 5-31). 
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𝑀𝑎𝑥 𝑍𝑙
𝑖 = 𝑝0

𝑖 [−  ∑𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑖 𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙

𝑗𝑞𝑡

− ∑(𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑖  𝐶ℎ𝑖𝑟𝑒𝑡)

𝑡

− ∑(𝑉𝑙𝑎𝑏𝑡𝑙
𝑖  𝐶𝑙𝑎𝑏𝑡)

𝑡

 

−∑(𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑖 ∗ 𝐶𝑝𝑙𝑎𝑛𝑡𝑗)

𝑝𝑗

− ∑(𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑖 ∗ 𝐶ℎ𝑎𝑟𝑣𝑗)

ℎ𝑗

] + 𝑝0
𝑖 ∑𝜆ℎ𝑗𝑞

𝑖 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑖

ℎ𝑗𝑞

 

−∑𝜃𝑖 ∗ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑖 ∑𝑝𝑔

𝑖

𝑆

𝑔=𝑖

𝑉𝑡𝑟𝑎𝑛𝑠̂
ℎ𝑗𝑞𝑙
𝑖+𝑔

ℎ𝑗𝑞

 

(5-33) 

 

Note that if we sum across the objective function of all iterations in the heuristic 

approximation from [𝑁 − 𝑘, 𝑁 − 𝑘 + S] through the formula ∑ 𝑍𝑙
𝑣𝑁−𝑘+S

𝑣=N−𝑘 , then we obtain 

an approximation to the quadratic approximation’s objective function.  

5.6.3 Consolidation Facility Sub-Problem 

For the case of the consolidation facility, the reformulation of the sub-problem is not 

necessary as we have assumed no counter speculation from the auctioneer. Moreover, since 

the CF only observes the bids for the current iteration, the formulation remains limited to 

one iteration at a time. In this case, the CF can only observe part of the solution space for 

each farmer 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑁−𝑘; where, 𝑁 − 𝑘 is the current auction iteration. The constraints, 

objective function and price adjustments are as in Section 4.6. We restate the CF objective 

function and constraints to facilitate reference to the reader: 

Objective: 

𝑀𝑎𝑥 𝑍𝐶𝐹  =  ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑃𝑟𝑖𝑐𝑒ℎ𝑗

ℎ𝑗,𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗

− ∑𝑉𝑖𝑛𝑣ℎ𝑗𝑞𝐶𝑖𝑛𝑣𝑗  

ℎ𝑗𝑞

 

                   −∑𝑉𝑜𝑣𝑒𝑟ℎ𝑗

ℎ𝑗𝑞

𝐶𝑜𝑣𝑒𝑟𝑗 − ∑𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 

ℎ𝑗𝑞

𝐶𝑢𝑛𝑑𝑒𝑟𝑗 +  ∑𝜆ℎ𝑗𝑞(𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞)

ℎ𝑗𝑞

 

(5-34) 
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Subject to:  

Coupling constraint: 

∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙
𝑁−𝑘

𝑙 = 𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞                          ∀   j, q, ℎ (5-35) 

Inventory balance and quality tracking: 

𝑃𝑉𝑎𝑟𝑟ℎ,𝑗,𝑞  +  𝑉𝑖𝑛𝑣ℎ−1,𝑗𝑞+∆𝑞𝑗
− 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞  =  𝑉𝑖𝑛𝑣ℎ,𝑗,𝑞                    ∀   𝑗, 𝑞, ℎ (5-36) 

Demand Constraints: 

𝑀𝑖𝑛𝐷𝑒𝑚ℎ𝑗 − 𝑉𝑢𝑛𝑑𝑒𝑟ℎ𝑗 ≤ ∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
       ∀  𝑗, ℎ (5-37) 

∑ 𝑉𝑠𝑒𝑙𝑙ℎ𝑗𝑞𝑞𝑚𝑎𝑥𝑗≥𝑞≥𝑞𝑚𝑖𝑛𝑗
≤ 𝑀𝑎𝑥𝐷𝑒𝑚ℎ𝑗 + 𝑉𝑜𝑣𝑒𝑟ℎ𝑗           ∀  𝑗, ℎ (5-37) 

Warehouse Capacity Constraint: 

∑ 𝑉𝑖𝑛𝑣ℎ𝑗𝑞𝑗𝑞 ≤  𝑊𝐻𝐶𝑎𝑝                                       ∀   ℎ  (5-38) 

5.7 Farm Coordination Case Study Computational Results 

As stated before, due to the high complexity of the proposed mechanism, the 

analytical results that we can obtain are limited. Therefore, if we need to understand the 

efficiency that we can expect in practice, we have to rely on computational results. These 

results build on top of the analytical findings of Section 5.3 and give us further intuition 

for practical design and implementation of the coordination tool.  

5.7.1 Definition of Parameters and Assumptions 

We perform a case study similar to that of Chapter 4, where data from an agricultural 

supply chain is used to test the coordination capabilities of a horizontally integrated 

cooperative. In practice, it is expected that bidders will speculate and will thus have a 

decision model for this purpose; therefore, we assume that the models of Section 5.6 are 

representative decision models for both the farmers and the consolidation facility.  
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The parameters for costs, yields and the production capabilities of each farmer used 

are the same as those of Chapter 4. One adjustment was made to the dataset, which consists 

of an upward adjustment of the prices paid by external customers to the CF; this is done to 

make these prices more representative processed products8, rather than point of first sale 

prices9 (USDA, 2014). A test instance with 20 farmers is used and a comparative analysis 

with larger problem instances is performed in the later sections. 

In addition to the parameters used in Chapter 4, four other parameters are required: 

the estimation of mismatch between supply and demand 𝜔ℎ𝑗𝑞
𝑖 , the probabilities of 

termination 𝛼𝑁−𝑘, the magnitude of price adjustments 𝜃𝑖 and the starting prices for the first 

iteration 𝜆ℎ𝑗𝑞
1 . It is assumed that the parameters 𝜆ℎ𝑗𝑞

1 , 𝜃𝑖 and 𝛼𝑁−𝑘 are known a-priory and 

are common knowledge. For the probabilities of termination 𝛼𝑁−𝑘: we make this 

assumption since they can be estimated from past history or made available from 

consensus. We chose to make the parameter 𝛼𝑁−𝑘 explicitly stated by the auctioneer.  

For the parameter 𝜔ℎ𝑗𝑞
𝑖 , it is also assumed that the general behavior of the auction 

can be predicted by bidders based on previous experience. In our case, the predicted 

behavior is based on the results of the non-strategic auction for the same parameters 𝜆ℎ𝑗𝑞
1  

and 𝜃𝑖 (Section 4.7). From the Section 4.7 output, the mismatch between supply and 

demand 𝜔ℎ𝑗𝑞
𝑖  is modeled/predicted through regression10. For simplicity, our case study 

                                                 
8 Products at the consolidation center which have been sorted, washed and packaged 
9 Prices paid to farmers for recently harvested goods “at the field” 
10 Note that the mismatch starts at a point which is higher than 100%. This occurs because of the sub-gradient 

formulation of the decentralized problem; here, given low prices, the CF will demand more products that 

farmers are capable of providing in the first iterations. This behavior is later corrected as prices are adjusted 

to be higher. 
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uses a simple regression line for the aggregate mismatch between supply and demand 

(Figure 5.1). Thus, the estimation of mismatch is given by: 𝜔ℎ𝑗𝑞
𝑖 = 0.9601 ∗ 𝜔ℎ𝑗𝑞

0 𝑖−0.325. 

 

Figure 5.1 – Aggregate Mismatch between Supply and Demand 

The parameters stated above allow us to limit our scope and to experiment with the 

mechanism under a simplified framework. Given this framework, we can better modify 

specific parameters to develop an intuition on the likely behavior of this coordination 

scheme. In the following sections we describe the computational results obtained. 

5.7.2 Algorithms, Heuristics and Solvers Used 

As it was stated earlier on this chapter, due to the non-convex nature of the bidding 

sub-problem there is a possibility that the decision problem, under its quadratic 

formulation, fails to find a good quality solution. More critically, it is possible that the 

solution encountered by the commercial solvers greatly underperforms by finding a local 

optimum. In order to account for this possibility and to ensure good quality solutions, test 

instances were run to benchmark the capabilities of a commercial solver, as well as the 

capabilities of finding a solution through the heuristic developed. 

In this research, three algorithms from a commercial solver were utilized. The solver 

used was KNITRO 9.0 (Ziena Optimization LLC, 2014), which is benchmarked as the best 
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commercial solver for nonlinear programming problems (Mittelmann, 2015). Three 

algorithms provided by KNITRO to solve non-linear optimization problems were used: 

Interior/Direct algorithm, Interior/CG algorithm and Active Set Algorithm11. Together 

with the heuristic proposed, a total of 4 algorithms are tested for each test instance of the 

auction with speculating bidders12. The results for the four algorithms are benchmarked 

with regard to two performance measures: (1) The objective function for the bidding sub-

problem in Table 5.213 and (2) the percent underbidding as compared to the truthful 

solution (𝑆 = 0) at each iteration in Table 5.3.  

Table 5.2 – % Relative Optimality of Various Algorithms 

 
Table 5.3 – Percent Underbidding of Algorithms Compared to Truthful Solution 

 

                                                 
11 The Active Set Algorithm relies on a starting solution being provided. For our implementation, the best 

results were obtained when the provided solution was the solution to the non-strategic bidding problem. 
12 Note that the heuristic developed solves the quadratic optimization problem, and its final solution is directly 

comparable to the other algorithms. 
13 All four algorithms are run simultaneously for every combination of: Auction iteration 𝑘; lookahead 

parameter 𝑆; and farmer index 𝑙. The best solution from all four algorithms is taken and announced as a bid, 

and the mechanism continues. For every combination of 𝑆, 𝑘, 𝑙 the best solution is given a value of 100% and 

the remaining solutions are scaled according to their gap. 

Direct CG Active Set Heuristic

0 100.0% 100.0% 100.0% 100.0%

1 90.6% 33.8% 99.6% 100.0%

2 82.8% 32.6% 99.8% 99.9%

5 66.7% 54.7% 93.4% 99.7%

10 55.1% 73.2% 99.8% 99.2%

14 53.4% 71.8% 96.6% 98.8%

AlgorithmLookahead 

S

Direct CG Active Set Heuristic

0 0.0% 0.0% 0.0% 0.0%

1 100.0% 53.3% 0.4% 0.3%

2 100.0% 31.1% 0.2% 0.4%

5 100.0% 13.2% 0.2% 1.1%

10 100.0% 9.7% 0.2% 1.9%

14 100.0% 10.1% 0.2% 2.3%

Lookahead 

S

Algorithm
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The results are averaged across a subset of the auction iterations (2 to 14)14 and 

detailed for six different values of the lookahead parameter 𝑆. Note that for Table 5.2, on 

average, the heuristic outperforms all other algorithms. Moreover, note that from Table 5.3 

we observe that the heuristic is more aggressive than the Active Set method in 

underbidding; this is likely because the Active Set method relies heavily on being given an 

initial solution which, throughout the experiment, was the truthful bid.  

As it can be observed, the heuristic developed in Section 5.5.2 has a superior 

performance. We can also see that for a lookahead of zero iterations all solutions are 

equivalent; this is an intuitive solution, as for 𝑆 = 0 the problem becomes a LP which 

implicitly assumes that the auction is immediately terminating. This result provides a 

generalization of lemma 2, showing that for any iteration with a probability of termination 

𝛼𝑁−𝑘 = 1, the solution is the same as the incentive compatible solution. This is also 

supported by Parkes & Ungar (2000a) on their analysis of myopic bidding strategies. 

As for the Direct and CG methods, their poor performance is attributed to the non-

convex nature of the problem. By further exploring the solutions to these algorithms we 

note that their objective functions are positive despite them having large amounts of 

underbidding; however, the cause of this apparent contradiction is that the solution places 

all the bidding weights in the variables corresponding to upcoming iterations, making the 

current iteration zero. This strategy minimizes the quadratic penalty component in the 

objective function; however, it fails to give sufficient weight to the linear component, thus 

leading to pathologies in the solution.  

                                                 
14 Iterations 1 and 15 are removed because in iteration 15 all bids are identical due to incentive compatibility 

and in iteration 1 most bids are of zero due to the low initial price 
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This pathology is further exemplified in Table 5.3 which shows the allocation of 

production for an instance of the mechanism using the CG method with 𝑆 = 5. In this 

depiction, the main diagonal corresponds to the aggregate bid being placed in a given 

iteration, while the cells below the main diagonal are the strategic projections for future 

iterations.  

Table 5.4 – Pathological Solution Returned by CG Method in KNitro 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0

2 0 0

3 0 163 2292

4 0 1485 890 2833

5 41.4 1205 179 534 2068

6 3318 436 0 12.8 1287 2878

7 56.2 0 0 1.46 481 3035

8 0 0 0 0 329 2716

9 0 0 0 0 647 3071

10 0 0 0 0 289 3364

11 0 0 0 0 0.26 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0

14 0 0 0 0 0 0

15 0 3368 3365 3364 3359 3359

Auction Iteration

Lo
o

ka
h

ea
d
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er

at
io

n

 

Finally, we summarize some of the main advantages of the developed heuristic: 

 On average, it has both a higher objective function and is more aggressive in 

underbidding than the Active Set Algorithm  

 Has a greater simplicity derived from solving a series of linear programs rather 

than a quadratic program 

 From a computational standpoint, the heuristic has a rapid convergence which 

takes on average only 3 (and no more than 7) revisions to the solutions before 

stabilizing (Figure 5.2) 
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Figure 5.2 – Convergence Speed of Heuristic 

 The heuristic can find a solution from any arbitrary starting point; in contrast, the 

Active Set Algorithm relies on being provided a good starting solution 

 The proposed heuristic does not exhibit significant pathologies of underbidding or 

improperly weighting the importance of components of the objective function 

5.7.3 Impact on Farmers Profits 

Finally, in order to verify that the heuristic solution method is up to desired standards, 

we test whether the incorporation of speculation to the farmer’s sub-problem improves the 

profits observed by farmers. In other words, failure to speculate correctly can create more 

harm than good if it is incorrectly formulated, so we must verify that on expectation, 

farmers obtain a greater profit if they speculate.  

For this, we ran an instance of the mechanism where all farmers engage in speculative 

behavior to test its impact computationally. The experiment was performed using a 

parameter  𝛼𝑖 = 0.1 for all iterations and 𝛼15 = 1.0, meaning that there is a cutoff at the 

15th iteration. In order obtain the expected value of the mechanism, unbiased by the 

quadratic penalty terms, we compute an indirect measure of farmer profits for each 

iteration, which is the profit that each farmer would realize if the auction were to terminate 

immediately; we call this the un-penalized profit 𝑍𝑁−𝑘
𝐼 , which is given for each farmer by: 
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𝑍𝑁−𝑘,𝑙
𝐼 = − ∑ 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙

𝑁−𝑘𝐶𝑡𝑟𝑎𝑛𝑠𝑗𝑙
𝑙𝑗𝑞𝑡

− ∑(𝑉𝐻𝑖𝑟𝑒𝑡𝑙
𝑁−𝑘𝐶ℎ𝑖𝑟𝑒𝑡 − 𝑉𝑙𝑎𝑏𝑡𝑙

𝑁−𝑘𝐶𝑙𝑎𝑏𝑡)

𝑡𝑙

 

−∑𝑉𝑝𝑙𝑎𝑛𝑡𝑝𝑗𝑙
𝑁−𝑘𝐶𝑝𝑙𝑎𝑛𝑡𝑗

𝑝𝑗𝑙

− ∑𝑉ℎ𝑎𝑟𝑣ℎ𝑗𝑙
𝑁−𝑘𝐶ℎ𝑎𝑟𝑣𝑗

ℎ𝑗𝑙

+ ∑𝜆ℎ𝑗𝑞
𝑘 ∑𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑞𝑙

𝑁−𝑘

𝑙ℎ𝑗𝑞

  

(5-39) 

In Figure 5.3 below, we graph the difference in aggregate farmers’ profits between 

the truthful solution and the speculative solution at each iteration 𝑖 ∈ [1, 15]. Here, we can 

see the difference in profits between instances in which the farmers speculate with a 

different time horizon 𝑆.  

As it can be seen, the decision problem with the greatest lookahead capabilities (𝑆 =

14) outperforms other lookahead policies, as well as the non-strategic bidding; in 

particular, we note that speculating with a longer time horizon allows bidders to make 

sacrifices in their objective function in the first iterations in exchange for a better outcome 

for the overall mechanism. 

 

Figure 5.3 – Difference in Profit vs. Non-Strategic Solution for Various 𝑆 Values 

If we take a closer look at this speculative behavior, we see that farmers also tend to 

shift their production quantities between crops, rather than simply under-producing. This 

behavior reduces the risk of losing contracted production, while increasing the price of 
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more profitable crops. This behavior is better illustrated by Figure 5.4 below, which plots 

the aggregate difference between the strategic and truthful production bids for iterations 

one through nine (in X-axis); therefore, a higher value implies that farmers are overbidding, 

while negative implies underbidding.  

 

Figure 5.4 – Truthful vs Strategic Bids Difference (Iterations 1-9) 

It can be observed that in aggregate farmers tend to underbid in each iteration, and 

favor specific crops. Moreover, it can also been seen that as the auction progresses, the 

difference between the strategic and truthful solutions is reduced, converging to the 

incentive compatible solution at termination.  

The dynamic shown by the underbidding on certain crops in combination with the 

positive difference in profits observed shows that farmers are attempting to obtain higher 

profits through strategic manipulation of their bids; moreover, it shows that the mechanism 

is not incentive compatible and creates avenues for personal gain. However, this behavior 

does not show the complete picture nor the significance of the expected increase in farmers 

profits; in order to verify that the mechanism does benefit farmers and to what scale, we 

refer to the expected profit for the entire auction rather than the profit for each iteration.  
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To calculate the expected profit for the entire auction, we note that we have already 

calculated 𝑍𝑁−𝑘
𝐼  (the profit at each iteration if the auction were terminated immediately). 

By computing this value, we can also compute the total expected profit for the entire 

auction for each farmer as given by the following equation:  

∑ 𝑝𝑖
1 ∗ 𝑍𝑖+1,𝑙

𝐼  

𝑁−1

𝑖=0

       ∀  𝑙 ∈ 𝐿 (5-40) 

Assuming that an instance of the mechanism has been run and that all relevant 

information has been recorded, equation (5-40) allows us to numerically calculate the 

expected profits for any given mechanism configuration. Also note that the same principle 

behind equation (5-40) can be applied to calculating the expected profits for the entire 

system; the expected objective functions off all farmers and the CF are given by: 

∑ ∑ 𝑝𝑖
1 ∗ 𝑍𝑖+1,𝑙

𝐼  

𝑁−1

𝑖=0𝑙

+ ∑ 𝑝𝑖
1 ∗ 𝑍𝑖+1,𝐶𝐹 

𝑁−1

𝑖=0

 (5-41) 

Having defined the expected farmer profits (5-40) and the expected system profits 

(5-41), and having observed the solutions at each iteration, we proceed to assess the 

performance of the optimization model. The aggregate expected profits for all farmers and 

for the system for each lookahead case can be seen in Table 5.5 below, where speculation 

is built into the decision problem of each participating farmer. Clearly, speculating has a 

benefit for farmers as a group, who capture a higher percentage of supply chain profits 

through speculative bidding. Moreover, a larger speculation time horizon 𝑆 appears to 

increase expected profits for farmers. We also observe that farmers capture a higher 

percentage of supply chain profits at the expense of system-wide efficiency.  
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Table 5.5 – Expected Aggregate Farmer Profits (All Farmers Speculating) 

 

The previous example assumes that all farmers are speculating simultaneously and 

following the same strategy; however, if we test the algorithm for the case where one single 

bidder engages in speculation, the results can be much different. In the case where a single 

bidder speculates we observe that speculation may have a negative impact on the strategic 

bidder as seen in Table 5.6 below, which shows the expected profits for a single farmer 

who speculates and the other 19 farmers taking part on the auction for varying time 

horizons. As it can be seen, the expected profits are decreased significantly for the single 

speculator, but more critically, the expected profits of all other farmers are also affected 

negatively.  

Table 5.6 – Expected Profits (Single Farmer Speculating) 

 

This result highlights the risk take by a farmer who speculates, where despite having 

a well formulated decision problem, the final outcome of the auction could be inferior. 

Lookahead
Expected Farm 

Profit
% Change

Expected System 

Profit
% Change

S=0 8,019,867$              30,363,253$            

S=1 8,244,187$              2.8% 30,422,610$            0.2%

S=2 8,370,202$              4.4% 29,430,174$            -3.1%

S=5 8,473,268$              5.7% 29,499,614$            -2.8%

S=10 8,496,337$              5.9% 28,927,619$            -4.7%

S=14 8,563,302$              6.8% 29,052,975$            -4.3%

Lookahead Expected Profit % Change Expected Profit % Change Expected Profit % Change

S=0 395,153$               7,624,714$           30,363,253$         

S=1 377,172$               -4.6% 7,581,386$           -0.6% 30,695,454$         1.1%

S=2 378,477$               -4.2% 7,594,551$           -0.4% 30,632,438$         0.9%

S=5 380,136$               -3.8% 7,589,282$           -0.5% 30,503,616$         0.5%

S=10 380,221$               -3.8% 7,592,873$           -0.4% 30,499,323$         0.4%

S=14 380,883$               -3.6% 7,597,575$           -0.4% 30,656,137$         1.0%

Speculating Farmer
Remaining (non-

speculating) Farmers
Overall System Profits
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The reason for the behavior observed in Table 5.6 can have multiple explanations. 

For instance, the decision problem for a single farmer may fail to capture the expected 

behavior of all other bidders. Likewise, recall that the parameter 𝜔ℎ𝑗𝑞
𝑖  was calculated using 

a simple linear model and is a generalized formula for all crops; it is likely that by having 

each farmer calculate this parameter with greater accuracy the outcome of the speculation 

problem could be enhanced. Finally, despite having a well-developed decision problem, 

the bidding problem developed optimizes profits for farmers, on expectation, leaving the 

possibility for bad outcomes open. 

5.7.4 Sensitivity of Speculation to Auction Design Parameters 

Now that we have developed a viable model for speculative behavior on the side of 

bidders we can test the impact of various mechanism configurations to the expected 

efficiency of the system. We are concerned about this issue due to the iterative nature of 

the mechanism, which presents the risk of terminating at a sub-optimal solution. 

Nonetheless, as we have noted in Lemma 3, there must be a positive probability of 

termination in all iterations to ensure that bidding does not exhibit pathological behavior. 

This presents a tradeoff between (1) early termination with sub-performing solutions, 

and (2) late termination with pathological bids at the start of the mechanism. For this 

reason, a more detailed analysis is performed to determine which are the most effective 

mechanism configurations. 

5.7.4.1 Mechanism Benchmarking through Varying Termination Probabilities 

When designing a mechanism, many parameters can be changed including the 

allocation rules, probabilities of termination, starting auction prices and the directions of 

price changes. Different combinations of these parameters make instances of the 
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mechanism with varying properties. In our formulation, we have made explicit assumptions 

about allocation rules; however, we have not made explicit decisions for starting prices, 

probabilities of termination, magnitude of price adjustments or direction of price changes, 

all of which are left as open parameters. In order to facilitate experimentation and gain a 

better understanding we focus on the impact of the probabilities of termination, leaving all 

other parameters fixed.  

The initial price 𝜆ℎ𝑗𝑞
1   and the magnitude of adjustment 𝜃𝑖  ∀ 𝑖 < 𝑁, will be kept 

unchanged across all trials. We also chose to focus only the case of the 20 farmer 

cooperative as this was the smallest problem which showed a stable behavior (Chapter 4). 

Thereafter, while these parameters are held constant, the probabilities of auction 

termination 𝛼𝑁−𝑘 ∀ 𝑘 < 𝑁 are modified. The rationale for using the probabilities of 

termination as a means for coordination is in hope that they induce sufficient risk aversion 

in bidders to entice truthful bidding; at the same time, a mechanism which is likely to 

terminate later (when prices are likely to be closer to the market clearing price) is more 

desirable, as the objective function is likely to be higher at the end of the auction. 

In order to have a structured approach to understanding the effect of 𝛼 on the 

efficiency and behavior of the mechanism, we define six vectors for 𝛼. The instances for 

the vector 𝛼 which are of interest to us are detailed in Table 5.7 below. These are labeled 

as “constant” where the probability of termination is the same at each iteration but is 

abruptly terminated at iteration 15. Likewise, we have instances where the probabilities of 

termination are increasing linearly and terminating at iteration 15; finally, we test 

geometrically and exponentially increasing probabilities of termination.  
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Table 5.7 – Probabilities of Termination for Experimental Trials 

 

Note that the table above details the probabilities 𝛼𝑁−𝑘, or probability of terminating 

once the iteration has been been reached. On the other hand, the probability of terminating 

the auction exactly 𝑖 iterations ahead given that we are already at iteration 𝑁 − 𝑘 is given 

by 𝑝𝑖
𝑁−𝑘 as defined by equation (5-17). To illustrate the behavior of 𝑝𝑖

𝑁−𝑘 as opposed to 

𝛼𝑁−𝑘, we use the parameters from the second column in Table 5.7 and calculate the 

corresponding parameter 𝑝𝑖
𝑁−𝑘 in Table 5.8 below. 

Now that we have outlined the test instances we seek to illustrate, we proceed with 

the computational results. We focus on the impact of the mechanism configuration on 

aggregate farmer profits and system wide-profits as given by equations (5-40) and (5-41) 

respectively. We initially illustrate the mechanism behavior and thereafter compare the 

various probabilities of termination as given in Table 5.7. 

Iteration Constant 1 Constant 2 Arithmetic 1 Arithmetic 2 Geometric Exponential

1 10% 5% 10% 2% 1% 1%

2 10% 5% 14% 4% 1% 1%

3 10% 5% 18% 8% 2% 2%

4 10% 5% 22% 13% 3% 3%

5 10% 5% 26% 18% 4% 4%

6 10% 5% 30% 23% 6% 5%

7 10% 5% 34% 28% 8% 7%

8 10% 5% 38% 33% 12% 10%

9 10% 5% 42% 38% 17% 14%

10 10% 5% 46% 43% 23% 19%

11 10% 5% 50% 48% 33% 26%

12 10% 5% 54% 53% 47% 37%

13 10% 5% 58% 58% 67% 51%

14 10% 5% 62% 63% 95% 72%

15 100% 100% 100% 100% 100% 100%
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Table 5.8 – Conditional Probabilities of Termination for Constant αi = 0.1 for 𝑖 < 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.1 0.100

2 0.1 0.090 0.100

3 0.1 0.081 0.090 0.100

4 0.1 0.073 0.081 0.090 0.100

5 0.1 0.066 0.073 0.081 0.090 0.100

6 0.1 0.059 0.066 0.073 0.081 0.090 0.100

7 0.1 0.053 0.059 0.066 0.073 0.081 0.090 0.100

8 0.1 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

9 0.1 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

10 0.1 0.039 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

11 0.1 0.035 0.039 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

12 0.1 0.031 0.035 0.039 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

13 0.1 0.028 0.031 0.035 0.039 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

14 0.1 0.025 0.028 0.031 0.035 0.039 0.043 0.048 0.053 0.059 0.066 0.073 0.081 0.090 0.100

15 1 0.229 0.254 0.282 0.314 0.349 0.387 0.430 0.478 0.531 0.590 0.656 0.729 0.810 0.900 1.000

Current 

iteration (N-k)

 

In Figure 5.5 below we provide a graphical representation of system-wide profits at 

each iteration for a mechanism with probabilities of termination corresponding to the 

constant 1 case. As it can be observed, the total allocation of contracts converges towards 

a centralized optimal solution. Moreover, we observe that the rate of convergence towards 

the optimal remains attractive and very close to that of the non-strategic solution (𝑆 = 0). 

Nonetheless, we also observe that on expectation, this mechanism has an expected 

objective function much below the centralized optima, which occurs due to the risk of early 

termination; and has an optimality gap of roughly 31%. 

 

Figure 5.5 – System Profits per Iteration for αi = 0.1 
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Fortunately, the CF has indirect control over this gap through appropriate design of 

the coordination mechanism. This can be done by balancing the risk of termination and the 

induced level of underbidding by controlling the probability of termination. This parameter 

can be stated explicitly by the CF, just as it can be left for bidders to estimate individually; 

nonetheless, if we assume that 𝛼𝑖 is explicitly stated, then we can use the scenarios detailed 

in Table 5.7 to computationally assess the expected efficiency.  

We present the results corresponding to the overall behavior of the auction in Figure 

5.6 below, where we detail the expected value of the mechanism (given by equation 5.41) 

as a function of the mechanism design and the number of lookahead iterations considered. 

Note that the non-strategic solution is kept as an “ideal” solution for benchmarking, 

keeping in mind that it is unlikely to be achieved in practice. 

 

Figure 5.6 – Expected System Profits for Different Probabilities of Termination 

The best solutions correspond to the geometric and exponential probabilities of 

termination. The defining feature of these two cases is that the probabilities of early 

termination are low, leading the initial and most undesirable iterations to be weighted down 

significantly. The end result is having a mechanism configuration for which the system 
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wide efficiency is significantly improved. It can be seen from Figure 5.6 that the optimality 

gap is reduced from 31% to 10%. 

As an additional result, we also show the effect of probabilities of termination on the 

share of system profits which farmers obtain from engaging on the mechanism. These are 

shown in Figure 5.7 below. 

 

Figure 5.7 – Expected Farmer Profits for Different Probabilities of Termination 

From these results, we infer that the probabilities of termination have an impact on 

system and farmer profits alike; moreover, engaging in speculation also has a positive 

impact on farmer’s profits for most mechanism configurations. Similarly, profits tend to 

increase with the number of lookahead periods considered 𝑆. 

The results depicted above give us good intuition for what factors cause a 

coordination mechanism to operate successfully in practice. Moreover, through this 

research we have also shown that the mechanism is both effective and desirable for 

achieving coordinated outcomes.  

Nonetheless, the results of this section focus only on changing one parameter: 

Probabilities/risk of termination. This is one of many parameters which could improve 

efficiency. Among other parameters that could be changed, we have: starting prices, 
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magnitude of price changes, number of iterations and restrictions on the direction of price 

changes. The combination of these parameters will yield mechanisms of varying 

effectiveness, which opens a new research question: What parameters values yield an 

“optimal mechanism”? Where we can define the optimal mechanism as one which 

maximizes system-wide profits when bidders use optimal bidding strategies. 

5.7.5 Applying a Robust Mechanism to Cooperatives of Varying Sizes 

From Section 5.7.4, we have learned of an effective mechanism configuration which 

yields desirable results for a cooperative of 20 farmers. However, it is of interest to know 

whether this mechanism has a similar effectiveness if applied to other problem sizes. In 

particular, if we have a cooperative composed of fewer farmers: Would the increased 

leverage of each individual be detrimental to the profitability of the group? And, if we have 

a cooperative with more farmers, will speculation become unattractive to farmers? 

To address these two questions, we use the mechanism which was shown to have a 

positive effect on both farmers’ profits and system wide efficiency: Geometrically 

increasing probabilities of termination. In this mechanism the magnitude of price 

adjustments 𝜃 is scaled accordingly to each problem size and the initial prices for the 

auction are kept unchanged. We test the behavior of the mechanism for problem sizes of 5, 

20, 50 and 125 farmers. Moreover, since the lookahead speculation of 5 iterations was 

shown to give good results we only focus on the case where 𝑆 = 5. 

In order to illustrate the differences between each case, we observe four different 

measures of interest as they progress throughout the auction: (1) Total system profits, (2) 

farmer profits, (3) average prices per crop, and (4) the gap between truthful and strategic 

bids. Each of these are analyzed below. 
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5.7.5.1 System Profits 

In Figure 5.8 below, we see the behavior of system profits as they progress on each 

iteration. Here the optimal centralized solution, system profits for the non-strategic case 

and system profits for the speculation case are plotted in each iteration. 

 

Figure 5.8 – Total System Profit for Various Problem Sizes 

As it can be observed, the behavior of the mechanism is as expected, where less 

bidders have an increased power on the cooperative, which in turn compromises system 

efficiency. This can be observed by the convergence properties of the solution, where 

convergence is slower and less stable for the case of 5 farmers. Furthermore, this result is 

further exemplified by looking at the expected values of the mechanism as shown in Table 

5.9 below. Note that as the number of bidders increases, the optimality gap decreases. 
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Table 5.9 – Total System Profits for Various Problem Sizes 

 

5.7.5.2 Farmer’s Profits 

The behavior of the mechanism is further exemplified by farmer’s profits. These 

show the leverage that bidders can achieve, as higher profits throughout the auction reflect 

a better bargaining position. These are shown in Figure 5.9 below, where for cooperatives 

of a smaller size, the increase in farmer’s profits for the strategic case outperforms that of 

the non-strategic formulation; here the impact is greatest for the smaller cooperatives. 

 

Figure 5.9 – Total Farmers Profits for Various Problem Sizes 

This behavior is further exemplified by observing the behavior of the expected 

farmer’s profits. As expected, it can be observed that the smaller cooperative has the 
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5 11,206,796$       10,232,257$       6,992,191$          38% 32%
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125 273,262,249$     252,029,020$     244,605,522$     10% 3%
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greatest leverage by farmers, whereas the largest shows the least benefit from speculation. 

Nonetheless, in all problem instances, farmers benefit from speculating (Table 5.10). 

Table 5.10 – Farmer’s Aggregate Expected Profits for Various Problem Sizes 

 

5.7.5.3 Behavior of Prices and Bidding Gaps 

Finally, the bids placed by farmers and the behavior of the prices of crops throughout 

the auction are illustrated. The average prices of each crop in the mechanism are observed 

in Figure 5.10 below.  

 

Figure 5.10 – Average Prices of Crops for Various Problem Sizes 

In all cases we see that as the auction progresses, prices tend to converge towards the 

market clearing prices. Here we can observe that the average prices also tend to be much 
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higher for the smaller cooperative sizes, where farmers have most leverage on the changes. 

Moreover, we also observe that prices changes are greatest in the smaller problem sizes. 

This increased strategic behavior is also illustrated by Figure 5.11, which shows the 

aggregate difference between truthful and strategic bids for each problem size15. 

 

Figure 5.11 – Difference in Strategic to Truthful Bids for Various Problem Sizes 

We observe that, as the auction progresses, farmers respond to risk by stabilizing 

their bids which are closer to their true valuations. Moreover, we also observe by looking 

at the scale of the graphs, that speculation is much greater for smaller problem sizes, 

reaching values close to 200% for romaine lettuce. This arises from cases in which it is be 

best to not produce romaine lettuce, but where production is sought in order to some keep 

                                                 
15 Note that the way in which the percentages are calculated is by taking the difference between the truthful 

and strategic solutions and then dividing the difference by the target demand set by the cooperative. Because 

the bidding difference is divided by a constant, the % mismatch can be greater than 100% 
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revenue while bringing up the prices of other crops. Specifically, by looking at the case of 

five farmers, it can be seen that significant underbidding occurs for iceberg lettuce, which 

also correlates with significant price increases for that same crop.  

5.8 Conclusion and Discussion 

Throughout this chapter, we have explored the practical feasibility of implementing 

a coordination mechanism in an agricultural cooperative. In this research, the coordination 

mechanism is formulated as an iterative auction where farmers place bids for production 

and standing bids at the iteration where the auction terminates become supply contracts. 

Farmers are free to bid any quantities throughout the auction and cannot be prevented from 

speculating or misrepresenting their bids. The objective of the chapter is to better 

understand speculative behavior, its impact on the efficiency of the overall system and to 

seek ways in which speculation can be minimized while maximizing profits. 

It was shown through a dynamic programming formulation of the bidder speculation 

problem that the mechanism is not incentive compatible and that misrepresenting bids has 

a positive impact on farmers’ profits. Pathologies of the mechanism were identified and 

forms to avoid them were detailed. Additionally, it was shown that the bidder speculation 

problem can be solved efficiently and in reasonable time. Finally, throughout the chapter, 

the impact of speculation on efficiency is illustrated computationally for a variety of 

mechanism configurations and for a variety of cooperative sizes. These results show that 

coordination mechanisms in agricultural cooperatives can be effective forms of 

coordination and that they have a high potential for obtaining good outcomes for farmers 

and the agricultural cooperative as a whole. 
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The research performed throughout this chapter provides a solid foundation for 

coordination of agricultural supply chains. Moreover, it also provides a foundation for 

mathematical analysis of coordination mechanisms. Nonetheless, these results also 

highlight the need for additional work regarding coordination in agricultural supply chains; 

two main avenues of research are devised: (1) We must compare this coordination 

mechanism with current contracting and coordination schemes used in agricultural supply 

chains; mainly, it is of great interest to benchmark this scheme against current contract 

farming practices and against production assignment based on pure negotiation. And (2) 

the design of the mechanism (as given by starting prices, probabilities of termination and 

magnitude of price changes) is also an optimization problem on itself. It is therefore 

necessary to explore the problem of maximizing system profits, using the mechanism 

parameters as the variables being optimized. 

Further avenues of research of great interest exist on this research. Some of these 

include the analysis of the mechanism for non-perishable crops or even looking at 

perishable crops with technological investments in production and storage. Likewise, it 

would be interesting to refine the data used for the case study to better reflect the changing 

costs of production that farmers observe depending on their size; this could shed some light 

on the profitability of the mechanism on cooperatives where the size of farmers is more 

heterogeneous.  
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6 ADDRESSING BIAS FROM STOCHASTIC YIELDS  

6.1 Introduction 

In the previous chapters we have shown that production in the supply chain for fresh 

produce can be coordinated in spite of its decentralized nature and conflicting objectives. 

Furthermore, it was shown that through careful implementation of coordination 

mechanisms, coordinated outcomes can be achieved robustly, even when agents misbehave 

or act strategically. However, for these results, the coordination problem is assumed to be 

deterministic in yields. Therefore, although this dissertation has addressed the solving of 

large scale problems through auction mechanisms, it has so far failed to capture the greatest 

difficulties brought about by the stochastic yields prominent in agriculture. 

Among the greatest problems of random yields are the difficulties created for 

matching the supply to the demand of agricultural goods. In particular, since agricultural 

goods have a long lead time, hedging supply or demand uncertainty cannot be done through 

the use of excess capacity, nor in many cases higher inventories as many of these products 

are perishable. This is particularly true for fresh produce, for which variability is greatly 

amplified (Fleisher, 1990). The stochastic nature of yields in fresh produce creates two 

main problems in the context of this research: 

1. Because of yield variability farmers find themselves in a delicate decision for how 

much to produce. They have to balance the risks of overproducing and risking 

product loss against the risk of shorting their customers (Cook, 2011) .This is a 

problem akin to the newsvendor problem. 

2. Under the assumptions of Chapter 5, the cooperative under which farmers operate 

will guarantee a price and quantity purchase from each farmer as part of the 
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contract. However, having such strong guarantees has game theoretic implications 

leading to a Moral Hazard Problem. Under this framework, it would be possible for 

farmers to dishonor their production commitments with the CF to their own benefit. 

For instance, they could hold back their bids in the auction in hope to raise prices 

and then expect the CF to purchase the balance at a good price. 

These two issues create risk for the CF, which should be aware of the implications 

of existing contractual agreements. From a coordination perspective, these agreements 

cannot be too stringent as they may harm farmers, but they cannot be too lax, as risk will 

be transferred disproportionately to the CF. For these reasons we choose to address the 

supply chain coordination problem with an emphasis on the gap between what is required 

from farmers and the expected value of their production. For the remainder of this chapter 

we use the term production bias to refer to the difference between production commitments 

(as made with the CF) and the expected value of production plans (as accounted for 

privately by farmers). Moreover, we bring to the reader’s attention that, by addressing 

production bias we are coming back to the familiar concept of Incentive Compatibility, 

which was strongly emphasized in Chapter 5. 

We formulate the farmer decision problem with stochastic yields and then determine 

the optimal production quantities which maximize farmer’s profits. Thereafter we analyze 

the implications of these production quantities in terms of the expected production bias 

which they induce. For this, we formulate the decision problem as a newsvendor model 

with stochastic yields and with the use of options contracts for farmers to hedge their yield 

uncertainty. Furthermore, we seek to use the options contracts as an indicator of variance 

for the CF and also as a tool to reduce bias in the production process. 
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6.2 Literature Review 

The problem of supply chain coordination using contracts has been extensively 

explored, showing that revenue sharing, quantity flexibility, buybacks or other 

arrangements can help coordinate the supply chain (Cachon & Netessine, 2004; Simchi-

Levi et al., 2003). These models many times rely on the familiar formulation of the 

production problem as a newsvendor model where the quantity of production is chosen to 

balance the risks of over/underproduction. From this model, several extensions have been 

proposed including the inclusion of pricing, stochastic demand, stochastic yields and the 

inclusion of multiple periods to the planning problem (Bollapragada & Morton, 1999; 

Petruzzi & Dada, 1999; Yao, Chen, & Yan, 2006).  

The newsvendor problem is a well-researched and developed topic, for which 

multiple reviews of the literature exist. For the newsvendor problem with stochastic yields, 

we refer the reader to Yano & Lee (1995), who take the closest look at planning with yield 

uncertainty. They show some of the earlier continuous and discrete time models for 

production planning as well as multiple period extensions. Nonetheless, in recent years 

newsvendor problem formulations have placed a much lower emphasis on yield 

uncertainty. These efforts have placed an increased emphasis on risk profiles, pricing 

decisions, marketing effort and supply chain coordination (Qin, Wang, Vakharia, Chen, & 

Seref, 2011); although Qin et al. also mention that coordination problems with stochastic 

supply and demand are now gaining traction. More recently, Inderfurth (2009) provides a 

compilation of studies geared towards addressing demand and yield uncertainty; although 

the focus is on inventory control rather than supply chain coordination. Overall, yield 

uncertainty has been addressed in many contexts; however, from the perspective of supply 
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chain coordination still little focus has been placed on quality and yield uncertainty (C. H. 

Lee, Rhee, & Cheng, 2013). 

We mention some of the research which is most relevant to our problem. The 

problem of unreliable supply quantities has been explored by Agrawal & Nahmias (1997), 

who look at stochastic supply from the perspective of supplier selection where the objective 

is to select a subset of suppliers and assign them production quantities. The supplier 

selection problem was then expanded by Burke et al. (2009). Likewise, for the problem of 

stochastic yields, responsive and dynamic pricing is explored by (Tang & Yin, 2007; Tang 

& Li, 2012); however, supply chain coordination is not addressed. Nonetheless, from the 

perspective of supply chain coordination, recent advances for modeling stochastic yields 

were made by Lee et al. (2013) who penalize quality uncertainty from the manufacturer 

from returned or unsold units. More recently, Xu & Lu (2013) explore the impact of yield 

uncertainty on price setting newsvendors for procurement and in house manufacturing. 

On the topic of supply chain coordination with stochastic yields, which is most 

relevant to us, we mention some of the most relevant and recent publications. For 

traditional manufacturing supply chains, Xu (2010) looks at supply chain coordination with 

uncertain yields and how the supply chain can be coordinated through the use of option 

contracts; in this research, the buyer has the option to exercise the options when demand 

materializes. Li, Li, & Cai (2012) model a distributor who faces random demand and 

stochastic supply; here they determine whether order quantities should be inflated or 

deflated in order to account for the stochastic supply. In a later publication, Li, Li, & Cai 

(2013) also explore the case of double marginalization with uncertain supply and sustain 

that supply shortages result from a lack of coordination; they propose a supply contract 
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with shortage penalties to coordinate the supply chain. More recently Güler & Keski˙n 

(2013) explore the use of various contract arrangements with stochastic supply; however, 

they don’t explore the use of options contracts. Finally, Luo & Chen (2015) consider a 

supplier-manufacturer supply chain with stochastic supply and options contracts where the 

options are exercised by the manufacturer who also has access to a spot market. 

From the previous compilation we see that newsvendor problems with supply 

uncertainty are being considered under multiple variations of the problem. In many cases, 

these formulations include the use of supply contracts and the use of options for supply 

chain coordination. However, in all of the aforementioned research, the party exercising 

the options is the downstream echelon on the supply chain (manufacturer/buyer); 

furthermore, all of these formulations are made considering the traditional manufacturing 

supply chain model.  

In some cases it may be most appropriate to formulate the options contract such that 

it is the supplier, rather than the manufacturer, who has the capacity to exercise the options. 

This can be the case of a grower of fresh produce who commits to a given supply quantity; 

yet, due to yield uncertainty the supply quantity may not be met. Under this framework, it 

can be the supplier who exercises the option rather than the manufacturer. Moreover, the 

framework used to model the exercise of options contracts from the supplier side can also 

be used to capture more general decision problems, such as purchasing insurance or 

committing to additional supply under a variable price framework.  

Among the decision problems in agriculture, Huh, Athanassoglou, & Lall (2012) 

consider the case of supply chain coordination using contact farming and possible supplier 

reneging; likewise Wang & Chen (2013) consider the case coordination with options 
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contracts but with deterministic yields. To our knowledge, no research has been done on 

the case of using options contracts from the perspective of the supplier with uncertain 

yields.  

From the review of the literature we see that there is an opportunity to fill a gap in 

research for decision problems with stochastic yields. This gap occurs in the space of 

supply chain coordination, where options contracts have not been studied as a tool for 

coordination exercised by the supplier and sold by the manufacturer. In particular, for the 

case of agriculture, no research exists for supply chain coordination with stochastic yields 

using option contracts. 

6.3 Model Formulation 

To model the decision problem we first provide the notation to be used throughout 

this paper. Thereafter the model is formulated for the case where no options are used, and 

for the use of options contracts. From these results we derive additional intuition which 

can be used from the perspective of supply chain coordination; we analyze the conditions 

for which production bias is reduced. 

We make some underlying assumptions. Firstly, we look at the decision process of a 

single farmer engaging in a contract with a CF. The demand for the consolidation facility 

is known and has been pre-determined. Moreover, this demand is communicated to the 

farmer through a negotiated supply quantity 𝑆, which can be the result of previous contract 

assignments such as those discussed in Chapters 4 and 5; moreover, the wholesale price 𝑝𝐹 

is also pre-established through similar mechanisms. Here, the farmer must honor his/her 

commitment with the CF. Likewise, we also assume that the agreed upon “supply quantity” 

coordinates the chain and minimizes the costs of the CF.  
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From the perspective of the farmer, we assume that the variance of production yields 

is constant and does not depend on the quantities planted; moreover, we assume that the 

farmer has spare capacity to plant more land if necessary and is not constrained by his/her 

land. Finally, in practice farmers may be able to sell or purchase produce from the open 

market; however, for this formulation we assume that farmers have a single buyer for its 

produce, prices are deterministic and arbitrage is not allowed. For the stochastic yields, the 

following assumptions apply: The quantity harvested 𝐻 is stochastic and directly 

proportional to the quantity planted by the farmer 𝑞; the realization of the harvest quantity 

is scaled by the stochastic yield random variable 𝑋.  

A summary of all relevant parameters and decision variables for the farmer are 

described below: 

Decision variables: 

 𝑞  = Quantity to plant for farmer (Acres) 

 𝑞𝑢  = Number of options for underage insurance to buy (Units) 

 𝑞𝑜  = Number of options for overage insurance to buy (Units) 

Parameters: 

 𝑆   = Pre-established supply quantity  (Units) 

 𝐻   = Amount harvested as a function of planting and random yield (Units) 

 𝑥   = Random variable for the stochastic yield (Units per Acre) 

 𝐹(𝑥)  = CDF for the stochastic yield 

 𝑓(𝑥)  = PDF for the stochastic yield 

 𝐸[𝑥]  = Expected yield  

 𝑝𝐹  = Unit price offered to the farmer 

 𝑐  = Cost of harvesting realizes production (Cost per unit) 

 𝑐𝑝𝑙  = Cost of planting (Cost per acre) 
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 𝑐𝑢  = Unit cost of underage  

 𝑐𝑜  = Unit cost of overage  

 𝑜𝑢  = Cost of an option to under supply the CF 

 𝑜𝑜  = Cost of an option to sell above committed supply 

 𝑠𝑢  = Strike price for underage options (𝑠𝑢 < 𝑐𝑢 ) 

 𝑠𝑜  = Strike price for overage options (𝑠𝑜 < 𝑐𝑜) 

We state the following additional assumptions on the parameters: For the farmer to 

have an incentive to purchase and use options, these should provide a form of insurance 

for under-overage; therefore we have that 𝑐𝑢 > 𝑠𝑢 + 𝑜𝑢 and 𝑐𝑜 > 𝑠𝑜 + 𝑜𝑜. Moreover, for 

farmers to have an incentive to produce we must also have 𝑝𝐹 >
𝑐𝑝𝑙𝑎𝑛𝑡

𝐸[𝑥]
+ 𝑐. Finally 

production quantity and purchase of options contracts must be positive 𝑞,  𝑞𝑢,  𝑞𝑜 ≥ 0. 

6.3.1 Farmer Decision Problem without Option Contracts 

We formulate the problem as a special case of the newsvendor problem with 

stochastic yields. It is assumed that the consolidation facility has a strict acceptance policy, 

for which production above committed supply is not accepted and becomes lost revenue 

for farmers. For this, we define farmer’s profits as the revenue obtained from selling crops 

minus the costs of underage, costs of overage and costs of planting respectively as seen in 

equation (7-1) below.  

𝜋𝐹 = 𝑝𝐹 min(𝐻, 𝑆) − 𝑐𝑢(𝑆 − 𝐻)+ − 𝑐𝑜(𝐻 − 𝑆)+ − 𝑞 𝑐𝑝𝑙   (6-1) 

Since 𝜋𝐹 is a function of stochastic yields, we take expectation with respect to 𝑥: 

𝐸[𝜋𝐹] = 𝐸[𝑝𝐹 𝑚𝑖𝑛(𝐻, 𝑆) − 𝑐𝑢(𝑆 − 𝐻)+ − 𝑐𝑜(𝐻 − 𝑆)+ − 𝑞 𝑐𝑝𝑙] 

= 𝑝𝐹 ∫ min(𝑞 𝑥, 𝑆) 𝑓(𝑥) 𝑑𝑥 
∞

−∞

− 𝑐𝑢 ∫ (𝑆 − 𝑞 𝑥)+𝑓(𝑥)𝑑𝑥 
∞

−∞

− 𝑐𝑜 ∫ (𝑞𝑥 − 𝑆)+𝑓(𝑥)𝑑𝑥 
∞

−∞

− 𝑞𝑐𝑝𝑙 

After taking some integrals and rearranging terms, the expected profits are: 
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𝐸[𝜋𝐹] = (𝑝𝐹 + 𝑐𝑢)𝐸[𝑥]𝑞 − 𝑐𝑢𝑆 + (𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜) 𝑆 (1 − 𝐹 (
𝑆

𝑞
))

− (𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜)∫ 𝑞𝑥𝑓(𝑥) 𝑑𝑥 − 𝑞𝑐𝑝𝑙

∞

𝑆

𝑞

 

(6-2) 

If we take derivatives and optimize with respect to 𝑞, we obtain the following: 

𝑑𝐸[𝜋𝐹]

𝑑𝑞
= (𝑝𝐹 + 𝑐𝑢)𝐸[𝑥] − (𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜)(∫ 𝑥 𝑓(𝑥)𝑑𝑥 

∞

𝑆

𝑞

) − 𝑐𝑝𝑙 = 0 

𝑑2𝐸[𝜋𝐹]

𝑑𝑞2
= −(𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜) (

𝑆2

𝑞3)  𝑓 (
𝑆

𝑞
) ≤ 0 

Therefore, the profit function is convex on 𝑞 ≥ 0 and an optimal solution 𝑞∗ can be 

found by the farmer which will obey the following equality.  

(𝑝𝐹 + 𝑐𝑢)𝐸[𝑥] − 𝑐𝑝𝑙 = (𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜)∫ 𝑥 𝑓(𝑥) 𝑑𝑥
∞

𝑆

𝑞

     
(6-3) 

This result resembles one illustrated in a review of newsvendor problems with 

stochastic yields by Yano & Lee (1995). 

6.3.2 Farmer Decision Problem with Option Contracts 

The previous formulation, although useful for the most common decision problem 

faced by a farmer, does not capture the general requirements of this research. For our 

purposes, we include the costs of option contracts and cost of exercising options to the 

above equations. For this, we define the profit function as the sum of (1) expected revenues, 

(2) expected penalty costs, including underage and overage costs, (3) fixed costs, which 

include the cost of planting and of purchasing options, and (4) option exercise costs. 

𝐸[𝜋𝐹] = 𝐸[𝑅] + 𝐸[𝐶𝑃] + 𝐸[𝐶𝑇] + 𝐸[𝐶𝑂] (6-4) 

Each of these costs is expanded below, where expected revenues reflect the strict 

acceptance policy of the CF. However, unlike the formulation of (6-1), the penalty costs 
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are deferred by the quantities chosen by the option contracts. As a result, a relationship can 

be formed between the cost of exercising the options and the regular costs of underage and 

overage. Here, the strike price of the options will be less than the penalty costs; however, 

once the options purchased run out, then farmers are faced with the higher penalty costs. 

In this formulation we note that 𝑐𝑢, 𝑐𝑜 must be positive and greater than zero; however, 

𝑠𝑢, 𝑠𝑜 need not be strictly positive; instead, 𝑠𝑢, 𝑠𝑜 can act as a form of insurance which will 

allow farmers to gain income despite yield risk.  

𝐸[𝜋𝐹] = 𝐸[𝑝𝐹 𝑚𝑖𝑛(𝐻, 𝑆)] − 𝐸[𝑐𝑢(𝑆 − 𝑞𝑢 − 𝐻)+ + 𝑐𝑜(𝐻 − 𝑆 − 𝑞𝑜)
+]    

              −𝐸[𝑐𝑝𝑙𝑞 + 𝑜𝑢𝑞𝑢 + 𝑜𝑜𝑞𝑜] − 𝐸[𝑠𝑢(𝑆 − 𝐻)+ + 𝑠𝑜(𝐻 − 𝑆)+] 
(6-5)    

Lemma 1: The farmer decision problem to determine optimal production and option 

contract quantities is concave on 𝑞,  𝑞𝑢,  𝑞𝑜 ≥ 0; moreover, since we have a maximization 

problem, any point satisfying the first order optimality conditions is guaranteed to be s 

global optimum. 

Proof. 

By taking expectation on yields, we obtain the following expression: 

𝐸[𝜋𝐹] = (𝑝𝐹 + 𝑠𝑢)𝐸[𝑥]𝑞 − 𝑠𝑢𝑆 + (𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜) 𝑆 (1 − 𝐹 (
𝑆

𝑞
))

− (𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜)∫  𝑞 𝑥 𝑓(𝑥) 𝑑𝑥
∞

𝑆

𝑞

− 𝑐𝑢(𝑆 − 𝑞𝑢) 𝐹 (
𝑆 − 𝑞

𝑢

𝑞
)

+ 𝑐𝑢 ∫ 𝑞 𝑥 𝑓(𝑥) 𝑑𝑥 

𝑆−𝑞𝑢
𝑞

−∞

− 𝑐𝑜 ∫  𝑞 𝑥 𝑓(𝑥) 𝑑𝑥 
∞

𝑆+𝑞𝑜
𝑞

+ 𝑐𝑜(𝑆 + 𝑞𝑜) (1 − 𝐹 (
𝑆 + 𝑞

𝑜

𝑞
))

− 𝑐𝑝𝑙𝑞 − 𝑜𝑢𝑞𝑢 − 𝑜𝑜𝑞𝑜 

From this equation, we can take derivatives with respect to the planning quantity 𝑞 

and the unit option purchases 𝑞𝑢,  𝑞𝑜 to obtain the first order optimality conditions given 

by the following first order optimality conditions: 
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(𝑝𝐹 + 𝑠𝑢)𝐸[𝑥] − (𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜) ∫ 𝑥𝑓(𝑥) 𝑑𝑥
∞

𝑆

𝑞

+ 𝑐𝑢 ∫ 𝑥𝑓(𝑥) 𝑑𝑥

𝑆−𝑞𝑢

𝑞

−∞

− 𝑐𝑜 ∫ 𝑥𝑓(𝑥) 𝑑𝑥
∞

𝑆+𝑞𝑜

𝑞

− 𝑐𝑝𝑙 = 0    (6-6) 

𝑐𝑢 𝐹 (
𝑆 − 𝑞𝑢

𝑞
) − 𝑜𝑢 = 0     (6-7) 

𝑐𝑜 (1 − 𝐹 (
𝑆 + 𝑞𝑜

𝑞
)) − 𝑜𝑜 = 0  (6-8) 

And similarly, we take the second derivatives to verify the concavity of the 

formulated decision problem. 

𝑑2𝐸[𝜋𝐹]

𝑑𝑞2
= −(𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜) (

𝑆2

𝑞3
𝑓 (

𝑆

𝑞
)) − 𝑐𝑢 (

(𝑆 − 𝑞𝑢)2

𝑞3
 𝑓 (

𝑆 − 𝑞𝑢

𝑞
)) − 𝑐𝑜 (

(𝑆 + 𝑞𝑜)
2

𝑞3
 𝑓 (

𝑆 + 𝑞𝑜

𝑞
)) 

𝑑2𝐸[𝜋𝐹]

𝑑𝑞𝑢
2

= −
𝑐𝑢

𝑞
 𝑓 (

𝑆 − 𝑞𝑢

𝑞
) ;           

𝑑2𝐸[𝜋𝐹]

𝑑𝑞𝑜
2

= −
𝑐𝑜

𝑞
 𝑓 (

𝑆 + 𝑞𝑜

𝑞
) 

𝑑2𝐸[𝜋𝐹]

𝑑𝑞𝑜𝑑𝑞
= 𝑐𝑜

𝑆 + 𝑞𝑜

𝑞2
𝑓 (

𝑆 + 𝑞𝑜

𝑞
) ;           

𝑑2𝐸[𝜋𝐹]

𝑑𝑞𝑢𝑑𝑞
= −𝑐𝑢

𝑆 − 𝑞𝑢

𝑞2
𝑓 (

𝑆 − 𝑞𝑢

𝑞
) ;          

𝑑2𝐸[𝜋𝐹]

𝑑𝑞𝑢𝑑𝑞𝑜

= 0 

We will have concavity of the profit function if the hessian matrix is negative 

definite. This holds if the determinant of the hessian is negative for all values of 𝑞,  𝑞𝑢,  𝑞𝑜. 

The determinant of hessian matrix is: 

= − [
(𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜)𝑆

2

𝑞3
𝑓 (

𝑆

𝑞
) +

𝑐𝑢(𝑆 − 𝑞
𝑢
)
2

𝑞3
𝑓 (

𝑆 − 𝑞
𝑢

𝑞
) +

𝑐𝑜(𝑆 + 𝑞
𝑜
)
2

𝑞3
𝑓 (

𝑆 + 𝑞
𝑜

𝑞
)]

𝑐𝑢𝑐𝑜

𝑞2
𝑓 (

𝑆 − 𝑞
𝑢

𝑞
) 𝑓 (

𝑆 + 𝑞
𝑜

𝑞
) 

+
𝑐𝑢

𝑞
𝑓 (

𝑆 − 𝑞𝑢

𝑞
) [𝑐𝑜

𝑆 + 𝑞𝑜

𝑞2
𝑓 (

𝑆 + 𝑞𝑜

𝑞
)]

2

+
𝑐𝑜

𝑞
𝑓 (

𝑆 + 𝑞𝑜

𝑞
) [𝑐𝑢

𝑆 − 𝑞𝑢

𝑞2
𝑓 (

𝑆 − 𝑞𝑢

𝑞
)]

2

 

Which will be negative as long as the following condition is satisfied: 

[
(𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜)𝑆

2

𝑞3
𝑓 (

𝑆

𝑞
) +

𝑐𝑢(𝑆 − 𝑞𝑢)2

𝑞3
𝑓 (

𝑆 − 𝑞𝑢

𝑞
) +

𝑐𝑜(𝑆 + 𝑞𝑜)
2

𝑞3
𝑓 (

𝑆 + 𝑞𝑜

𝑞
)]

𝑐𝑢𝑐𝑜

𝑞2
𝑓 (

𝑆 − 𝑞
𝑢

𝑞
) 𝑓 (

𝑆 + 𝑞
𝑜

𝑞
) 

≥
𝑐𝑢

𝑞
𝑓 (

𝑆 − 𝑞𝑢

𝑞
) [𝑐𝑜

𝑆 + 𝑞𝑜

𝑞2
𝑓 (

𝑆 + 𝑞𝑜

𝑞
)]

2

+
𝑐𝑜

𝑞
𝑓 (

𝑆 + 𝑞𝑜

𝑞
) [𝑐𝑢

𝑆 − 𝑞𝑢

𝑞2
𝑓 (

𝑆 − 𝑞𝑢

𝑞
)]

2

 

 

 



140 

 

By factorizing and eliminating some terms we obtain the following: 

(𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜)𝑆
2𝑓 (

𝑆

𝑞
) + 𝑐𝑢(𝑆 − 𝑞𝑢)2 𝑓 (

𝑆 − 𝑞𝑢

𝑞
) + 𝑐𝑜(𝑆 + 𝑞𝑜)

2 𝑓 (
𝑆 + 𝑞𝑜

𝑞
)

≥  𝑐𝑜 (𝑆 + 𝑞𝑜)
2𝑓 (

𝑆 + 𝑞𝑜

𝑞
) + 𝑐𝑢(𝑆 − 𝑞𝑢)2𝑓 (

𝑆 − 𝑞𝑢

𝑞
) 

And simplifying further we obtain the following condition: 

𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜 >  0  

This implies that the Hessian is negative definite and the decision problem is concave 

as long as the above condition is satisfied. ∎ 

Thus, if the unit returns from option contracts are larger than the revenue per unit, 

then the problem will cease to be concave. Throughout the remainder of this chapter we 

assume that the above condition is satisfied. 

6.3.3 Minimizing Production Bias  

From the perspective of supply chain coordination and in order to maintain incentive 

compatibility, it is desired that the planned production by farmers is as close as possible to 

the supply required by the CF. In other words, the right incentives should be put in place 

such that the planned harvest quantities match required supply; in expectation this means 

that 𝒒 =
𝑺

𝑬[𝒙]
. This, is possible both with and without using option contracts and applies to 

any arbitrary distribution; however, we recognize that some distributions may be different 

in terms of risk, which goes beyond expected value which is not captured by this 

formulation. In this section we derive the necessary conditions to facilitate the reduction of 

production bias with and without options for any general distribution. 
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6.3.3.1 Unbiased Solutions without Options 

From equation (6-3) we obtain a form in which the optimal planting quantity for 

farmers can be determined. However, to obtain a solution which is unbiased we may 

require a very particular combination of costs and incentives. The conditions can be derived 

from equation (6-3) by imposing the requirement that 𝒒 =
𝑺

𝑬[𝒙]
. This implies: 

(𝑝𝐹 + 𝑐𝑢)𝐸[𝑥] − 𝑐𝑝𝑙

(𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜)
= ∫ 𝑥 𝑓(𝑥) 𝑑𝑥

∞

𝑬[𝒙]

 

For illustration purposes, we assume that yields are normally distributed with 

𝑋~𝑁(𝜇, 𝜎). With this assumption we have the following equality16: 

(𝑝𝐹 + 𝑐𝑢)𝜇 − 𝑐𝑝𝑙

(𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜)
=

𝜇

2
+

1

√2𝜋
𝜎  

Moreover, we can use the difference between the two sides of this equality as a bias 

indicator we label 𝛤𝑏 for the base case without options. 

𝛤𝑏 =
(𝑝𝐹 + 𝑐𝑢)𝜇 − 𝑐𝑝𝑙

(𝑝𝐹 + 𝑐𝑢 + 𝑐𝑜)
−

𝜇

2
+

1

√2𝜋
𝜎              

 
(6-9) 

As a result it is optimal for farmers to state their production quantities truthfully only 

for a small subset of all possible combinations of 𝑐𝑝𝑙, 𝑐𝑜, 𝑐𝑢, 𝑐𝑜. We explore instances in 

which this condition is satisfied in Section 6.4 through computational results. 

6.3.3.2 Obtaining Unbiased Solutions with Options 

In a similar way in which we derive conditions under which production bias is 

eliminated for the case of production contracts with options. To do this, we refer back to 

                                                 

16Note that we have used the conditional expectation formula: 𝐸[𝑋|𝑎 < 𝑋 < 𝑏] = 𝜇 +
∅(

𝒂−𝜇

𝜎
)−∅(

𝒃−𝜇

𝜎
)

𝛷(
𝒃−𝜇

𝜎
)−𝛷(

𝒂−𝜇

𝜎
)
𝜎, 

where ∅() is the standard normal probability density function and Φ() is its cumulative distribution function 
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the first order optimality conditions derived in section 6.3.2 and imposing the requirement 

that 𝒒 =
𝑺

𝑬[𝒙]
. This yields the following equations: 

(𝑝𝐹 + 𝑠𝑢)𝐸[𝑥] − (𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜) ∫ 𝑥𝑓(𝑥) 𝑑𝑥
∞

𝐸[𝑥]

+ 𝑐𝑢 ∫ 𝑥 𝑓(𝑥) 𝑑𝑥 
𝐸[𝑥]−

𝑞𝑢
𝑞

−∞

− 𝑐𝑜 ∫ 𝑥 𝑓(𝑥) 𝑑𝑥
∞

𝐸[𝑥]+
𝑞𝑜
𝑞

− 𝑐𝑝𝑙 = 0 

𝑐𝑢 𝐹 (𝐸[𝑥] −
𝑞𝑢

𝑞
) − 𝑜𝑢 = 0 

𝑐𝑜 (1 − 𝐹 (𝐸[𝑥] +
𝑞𝑜

𝑞
)) − 𝑜𝑜 = 0 

These conditions can be applied to any general distribution; however, assuming that 

yields are normally distributed with 𝑋~𝑁(𝜇, 𝜎) we may simplify the expressions to:  

𝛤𝑜 = (
𝑝𝐹 + 𝑠𝑢 − 𝑠𝑜

2
+ 𝑜𝑢 − 𝑜𝑜) 𝜇 −

(𝑝𝐹 + 𝑠𝑢 + 𝑠𝑜)

√2𝜋
𝜎 − 𝑐𝑢∅ (

𝜇𝑞𝑢

𝜎𝑆
)𝜎 − 𝑐𝑜∅(

𝜇𝑞𝑜

𝑆𝜎
)𝜎 − 𝑐𝑝𝑙         (6-10) 

Φ(−
𝜇𝑞𝑢

𝑆𝜎
) =

𝑜𝑢

𝑐𝑢

     (6-11) 

1 − Φ (
𝜇𝑞𝑜

𝑆𝜎
) =

𝑜𝑜

𝑐𝑜

  (6-12) 

Here, 𝛤𝑜 is the bias indicator for the production bias in the case where option contracts 

are made available. Unfortunately, without knowing the values of 𝑞𝑢 and 𝑞𝑜, there is no 

closed form solution for 𝛤𝑜 and therefore the value must be solved numerically, using 𝑞𝑢 

and 𝑞𝑜 given by equations (6-11) and (6-12); thereafter using their values to determine if 

equality can hold for the above expression. Note that equation (6-9), is a special case of 

equation (6-10), where 𝑞𝑢, 𝑞𝑜 , 𝑠𝑢, 𝑠𝑜 = 0. 

6.4 Computational Results 

To illustrate the results of the case study, we utilize a combination of input/output 

data obtained from Chapter 5. From the results of this previous case study, we have 

necessary information such as committed supply, wholesale prices, farmer costs and yields. 
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From the Chapter 5 results, we select the output from the 20-farmer cooperative with 

geometric prices of termination as seen in Section 5.7.4. From this output, we selected one 

specific farmer (Farmer 9) and the production of broccoli. The average weekly supply 

quantity and average production costs for that crop were used, as well as the average 

weekly wholesale price. These parameters were rounded to the nearest integer and the 

values which will be used from this study are: 

 Supply Quantity,  𝑺   = 9,000  Cartons 

 Random Yield,  𝑿  = 𝑁~(920, 50) Cartons per acre 

 Wholesale price,  𝒘  = 12  

 Cost of planting,  𝒄𝒑𝒍 = 2,730  Per acre 

 Cost of harvesting, 𝒄′   = 5  

 Effective price,  𝒑𝑭  = 𝑤 − 𝑐′  = 7  

The parameters above are held constant throughout the computational results, while 

𝑐𝑢, 𝑐𝑜,  𝑜𝑢, 𝑜𝑜,  𝑠𝑢, 𝑠𝑜 are varied according to the requirements of the analysis being 

performed. Two responses are primarily observed: the impact to farmer’s profits and the 

the impact to the expected production bias. 

In the remainder of this section we analyze the following test instances: In Section 

6.4.1 we run a base case for the decision problem without using options; thereafter, in 

section 6.4.2 a similar scenario is tested for the production problem using options and direct 

comparisons are made. In Section 6.4.3 we perform sensitivity analysis on the purchase 

cost of the options; this analysis is later expanded in Section 6.4.4 to include sensitivity 

analysis on the cost of options and the strike price of the options. Finally, in Section 6.4.5 

we perform a sensitivity analysis on the variance of the yields. 
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6.4.1 Sensitivity to Underage and Overage Costs Without Options 

In order to begin our analysis of the farmer decision process, we illustrate the impact 

of the quantity planted when the farmer has no access to options. For this, we graph the 

general behavior of the expected farmers costs and revenues as a function of the quantity 

planted (𝑞) (where 𝑐𝑜 = 3, 𝑐𝑢 = 1 and other parameters are as stated above). As it can be 

observed, the behavior of each component of the profit, as well as the final profits, have an 

expected convex behavior with one optimal value for the planting decision (Figure 6.1).  

 

Figure 6.1 – Expected Profit and Components Sensitivity to Planting Quantity 

For the following results, we use make a sensitivity analysis on the costs of overage 

(𝑐𝑜) and underage (𝑐𝑢) on the ranges of (-1, 5) and (0, 9) respectively. 

 

Figure 6.2 – Farmers Profits vs. Costs of 

Underage and Overage (No Options) 

 

Figure 6.3 – Production Bias vs. Costs of 

Underage and Overage (No Options) 
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In Figure 6.2 above we can observe the expected farmer profits and bias respectively. 

It can be appreciated that profits behave as expected, monotonically decreasing on costs. 

Moreover, in Figure 6.3 we also observe that bias appears to decrease on both  𝑐𝑢 and 𝑐𝑜; 

however, its behavior is not convex. Furthermore, we observe that bias will be equal to 

zero for a small subset of all combinations of 𝑐𝑢 and 𝑐𝑜, thereafter becoming negative. This 

behavior is consistent to that predicted by equation (6-9), which sustains that for some 

values of 𝑐𝑢 and 𝑐𝑜, the expected production bias of farmers should be zero. This behavior 

is further illustrated in Figure 6.4 below, where we detail the observed bias given by 

computational results against the bias conditions of equation (6-9). As it can be observed, 

both values intercept at the origin, signaling that the behavior of bias is consistent to our 

findings. 

 

Figure 6.4 – Behavior of Production Bias 

The results illustrated in this section provide a good overview for the base case 

without option contracts; however, they must be complemented with the results for the 
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6.4.2 Sensitivity to Underage and Overage Costs With Options 

As a continuation to the previous section, we provide an analysis on the same range 

of values for 𝑐𝑢 and co in order to better understand what the impact of options on the 

farmer decision problem are. For this we include the added decision variables of 𝑞𝑜 and 

𝑞𝑢, as well as the parameters for the cost of options and the strike price of the options. 

These parameters are: 𝑠𝑜 , 𝑠𝑢 = 0 and 𝑜𝑜 , 𝑜𝑢 = 0.2. With this expanded formulation we 

illustrate the modeled for the option contract case and make a simple comparison with the 

results of Section 6.4.1.  

For the case of expected farmer profit, we detail the total profits when the farmer has 

access to options in Figure 6.5 below; likewise, we compare these expected profits to those 

detailed in Section 6.4.1 in Figure 6.6. As it can be observed, the expected profits for the 

case where option contracts are available are strongly better than those of the no option 

case. 

 

Figure 6.5 – Farmers Profits vs. Costs of 

Underage and Overage (With Options) 

 

Figure 6.6 – Difference between Farmers 

Profits without Options - with Options 

For the case of production bias, the difference of the behavior with and without 

options is much different, and making inferences is difficult. As it can be observed from 

Figure 6.7 below, the production bias for the farmer decision problem when options are 
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available is mostly flat on 𝑐𝑢 and co. This indicates that the overall policy is more robust 

to bias; however, if we compare the production bias for this instance to that of Section 6.4.1 

we observe that bias may not always be minimized when options are used. For this, we 

take the difference between the absolute bias values of Section 6.4.1 and the current 

section, which are illustrated in Figure 6.8 below. As it can be seen, there are instances in 

which using options may yield a higher expected bias than its simpler counterpart without 

options. 

 

Figure 6.7 – Production Bias vs. 

Overage/Underage Costs (With Options) 

 

Figure 6.8 – Difference in Absolute Bias 

without Options - with Options

This result is further complemented by observing the behavior of the underage 

options 𝑞𝑢 and overage options 𝑞𝑜 as seen in Figure 6.9 and Figure 6.10.  

 

Figure 6.9 – Underage Options Sensitivity 

to Overage/Underage Costs (With Options) 

 

Figure 6.10 – Overage Options Sensitivity 

to Overage/Underage Costs (With Options) 



The above result suggests that the greatest impact to this variable will come from 

other contract parameters such as the cost of the options or the strike prices of the options. 

It appears that with a good choice of these parameters, profits can be increased, while 

production bias can also be decreased. In the remaining sections we make the necessary 

sensitivity analysis to understand these differences.  

6.4.3 Sensitivity to the Cost of Options 

As a continuation to our analysis, we provide a sensitivity analysis on the parameters 

𝑜𝑜 and 𝑜𝑢, which are varied in the range of (0.1, 1.15). For this result, the values of other 

parameters are kept as 𝑠𝑜 , 𝑠𝑢 = 0 while the values of 𝑐𝑜 and 𝑐𝑢 are varied in the ranges of 

(2, 5) and (3, 6) respectively.  

 

Figure 6.11 – Production Bias Sensitivity to Various Option and Penalty Costs 

As it can be seen in Figure 6.11 above, the variation caused by the cost of the options 

is large and by far outweighs the variation caused by the costs of overage and underage. 

This observation is facilitated by allowing each combination of option costs to be 

represented by a different marker in the scatterplot. Note that, within each category for 

option costs, there is a degree of variation in the observed values; this occurs because of 
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the different costs of underage and overage being tested for, which contribute to the smaller 

variations in the data. 

From Figure 6.11, it appears like the cost of options which minimizes the absolute 

production bias are given at the following combinations: ou = 0.8, oo = 1.15; ou =

0.45, oo = 0.8; ou = 0.1, oo = 0.45 for the parameter values of this experiment. 

Moreover, the values of other parameters being manipulated do not appear to have a great 

bearing on the sensitivity of the results. 

While Figure 6.11 gives us a general overview for what is the relative impact and 

importance of some cost parameters (mainly 𝑜𝑢, 𝑜𝑜, 𝑐𝑢, 𝑐𝑜), it does not show a complete 

picture for the behavior of bias and expected profits as we vary the costs of the option 

contracts. Because of this, we show additional for the sensitivity to changes in option costs. 

For the following Figures (6.12 through 6.15) we show a sensitivity analysis for 𝑜𝑜 and 𝑜𝑢 

on the range (0.1, 2.2) while we keep all other parameters constant. Note that for illustration 

purposes, the main axes on these figures have been sorted differently in each case. 

 

 

Figure 6.12 – Production Bias Sensitivity to 

Option Contract Costs 

 

Figure 6.13 – Underage Option Quantity 

Sensitivity to Option Contract Costs 
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Figure 6.14 – Farmer Profits Sensitivity to 

Option Contract Costs 

 

Figure 6.15 – Overage Option Quantity 

Sensitivity to Option Contract Costs 

As it can be seen in Figure 6.12, once again we can observe that there will be a subset 

of option price combinations for which production bias will be zero; however, we also note 

that the behavior of production bias changes together with the parameter ranges upon which 

the analysis is being performed, making this behavior harder to model that system profits 

(Figure 6.14). Likewise, we can also see that the behavior of option contract quantities also 

acts according to expectations, with more options being demanded when their respective 

prices are lowered.  

6.4.4 Sensitivity to the Cost and Strike Price of Options 

This analysis would not be complete without assessing the simultaneous impact of 

the strike price for the option contracts (𝑠𝑢, 𝑠𝑜) and their purchase cost (𝑜𝑢, 𝑜𝑜). In order to 

carry out this analysis, we perform a sensitivity analysis on all four variables 

simultaneously, with their corresponding ranges. The sensitivity analysis is performed on 

the range of (0.2, 2.7) for 𝑜𝑢 and 𝑜𝑜; at the same time we vary 𝑠𝑢 and 𝑠𝑜 on the (-2, 0) 

range. The negative values can be interpreted as the selling of insurance to farmers, who 

may still obtain revenue from failed or unsold crops; meanwhile, a strike price of zero 

would let farmers avoid penalty overage and underage costs.  
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The results are shown in Figure 6.16 below. Here we can observe that both option 

cost and strike price appear to have an impact on the magnitude and the location of the 

bias. However, it appears that strike prices will have the greatest effect on the magnitude, 

causing a greater dispersion when the subsidies are greatest; on the other hand, option costs 

have the same effect that was observed earlier, defining the location of the bias free zone 

on each graph.  

 

Figure 6.16 – Sensitivity of Production Bias to Option Cost and Strike Prices 

The results in this section are those which are most relevant from a practical 

standpoint. This is because the buyer (Consolidation Facility) usually has little control over 

the costs of overage and underage observed by suppliers (Farmers). Usually, these costs 

are given by economic conditions and can be manipulated only through penalties and 
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subsidies. On the other hand, the costs of options and the strike prices of these options can 

be defined by the CF with more liberty. 

6.4.5 Sensitivity to the Variability in Yields 

The last part of the analysis remaining is that of understanding the impact of yield 

variability to the decision of farmers. Unlike raising costs, whose impact can be predicted 

to some extent, the impact of variability is harder to predict and may depend on other cost 

parameters. Nonetheless, we expect to see the quantity of options for both overage and 

underage increasing with variability. This is the case demonstrated by Figure 6.17 below, 

which plots the expected harvest quantity, and the expected harvest within the range of the 

options purchased. Here we also show the target production required by the consolidation 

facility. 

 

Figure 6.17 – Production Quantities Sensitivity to Variance 

6.5 Discussion and Conclusions 

Throughout this chapter we analyzed the decision model of a farmer who has already 

committed to a given production quantity and needs to decide how much to plant in order 

to honor his/her commitment. As part of this decision, the farmer must balance the risks of 
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shorting his/her customer to those of overproducing. Thereafter, we include the possibility 

of allowing the producer to purchase option contracts which allow him/her to protect itself 

against the risk created by yield variability. Here, the options contracts serve as a flexible 

tool which establishes a secondary price for overproduction or as a form of insurance to 

the downside risk of lower yields.  

The problem is modeled in the same fashion as a newsvendor problem with stochastic 

yields, but unlike previous research, the option contracts are sold to the producer (farmer) 

rather than the manufacturer (the consolidation center). This is a formulation which is 

unique to agriculture, where lead times are too high for option contracts to lower risk for 

buyers. Nonetheless, the buyer can still use option contracts as a tool for supply chain 

coordination which aligns the incentives of farmers to those of the CF. In this respect, it 

was shown via computational results that using options can reduce the magnitude of 

production bias as observed by the CF; this is a useful outcome which can help improve 

the planning process of the CF. 

More important are the implications on future research opportunities. One of the 

simplest expansions to the problem could include the inclusion of external markets which 

farmers or the CF can buy/sell produce to. This problem would become of great interest if 

we consider stochastic prices realized at the time that harvest takes place. To make the 

decision model more accurate, one more expansion to this research can include the 

incorporation of risk preferences on the farmer decision problem. On this chapter we have 

assumed that farmers are risk neutral and thus we have not placed much emphasis on the 

shape of the pdf for the yield random variable. However, if bidders are assumed to be risk 

averse and to weigh losses from low yields more heavily, then the outcomes may differ.  
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Another possible expansion to this model comes from the fact that, in practice, the 

CF will work with a group of farmers rather than a single one. As a result, the CF can 

effectively reduce the variance of the aggregate supply from all farmers. However, having 

multiple suppliers, each with its own particular production costs, increases the difficulty of 

determining costs for options and strike prices. Even more important, we recall that the CF 

generally cannot observe the production parameters of farmers and therefore determining 

the best parameters that coordinate the chain proves elusive. On this context, we encounter 

the problem of designing a robust set of prices which minimize overall bias rather than the 

bias of a single supplier. 

Finally, for one of the most interesting research directions, we have set the foundation 

for developing coordination mechanisms that go beyond planning production 

deterministically. With the formulation developed in this chapter, we can think of an 

auction mechanism which coordinates the planning process of multiple growers in an 

agricultural cooperative. Such a mechanism would build on the results of Chapters 4 and 5 

by incorporating option contracts to the decision process of farmers. By awarding 

production contracts as well as selling options simultaneously, it would be possible for the 

CF to maximize profits while simultaneously minimizing risks; all this could be 

accomplished while preserving a good degree of efficiency and remaining nearly-incentive 

compatible. We propose that upcoming research in coordination mechanisms in agriculture 

can build on the results of this and previous chapters to create a robust, stochastic 

formulation of the horizontal coordination problem in agriculture. 
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7 A TOOL FOR FARMER GROUPING BY SIMILARITY 

7.1 Introduction 

In previous chapters we have established the difficulties of horizontal coordination 

focusing specifically on the implications of collaborating when internal competition is 

present. Among the greatest challenges of coordination, is the difficulty of obtaining 

relevant production information from the associated parties in order to make production 

decisions. Specifically, even if relevant data is requested from the collaborating parties, the 

veracity of the information may be questionable. In order to elicit truthful information and 

to better allocate resources, market mechanisms have been proposed as a solution. 

In Chapter 4 it was shown that coordination mechanisms structured as auctions can 

generate sufficient information to coordinate the cooperative and lead towards optimal 

outcomes. Thereafter, in Chapter 5 it was shown that these mechanisms, can elicit 

sufficient information to coordinate the supply chain with little loss of efficiency. The 

results of this dissertation are a step forward on ensuring the financial viability of an 

agricultural cooperative and its member farmers. The mechanism discussed both leads 

towards optimal outcomes and also simplifies the negotiation process.  

However, the managerial implications of running an agricultural cooperative go 

beyond the tactical production assignment and compensation from established contracts. 

Even if coordination problems are addressed, multiple issues persist, such as: 

 Forecasting future demand and production 

 Detecting and aiding underperforming farmers 

 Strategically deploying new technologies 

 Exploring new potential crops to be grown 

 Disbursement of emergency funds 
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In order to ensure the long term viability of a cooperative it is necessary to provide 

other services to member farmers (a practice which is already common in most 

cooperatives); but it is also necessary to prioritize the need for these services. Like any 

other institution, agricultural cooperatives need to use their limited resources and reinvest 

them internally on its members. To ensure the success of each partner it is paramount to 

understand which farm or groups of farms are struggling. More generally, understanding 

what farms are similar to each other, creating well defined groups of farms and 

understanding each group can be beneficial to the cooperative. 

Unfortunately, as the size of an agricultural cooperative grows, understanding the 

specific situation of each member becomes impractical. If surveys and measurements 

were taken on each farm, obtaining such information could become costly. Moreover, if 

the cooperatives leadership were to ask each member for their specific needs we newly 

encounter the longstanding problem of incentive compatibility. As a result, it is infeasible 

to rely on surveys to allocate resources. Thus, in order to reduce managerial complexity 

and overhead, an alternative way to make inferences about farmers must be devised.  

We recognize that at its core, assigning resources to farmers is a coordination 

problem akin to assigning contracts; however, in this Chapter we chose to follow a different 

approach for coordination. That is, instead of designing a mechanism for assigning 

resources, we use data that is readily available from contract assignments given by the 

auction of Chapters 4 and 5. 

In this Chapter we propose a novel framework for segmenting farmers into distinct 

groups such that the business problem of dealing with 𝑴 farmers can be reduced to dealing 

with 𝑪 farmer types, where 𝑪 ≪ 𝑴. Under this framework, the 𝑪 groups of farmers will be 
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sufficiently different from one another, while the members of each group will be 

sufficiently similar. In order to achieve this, a clustering approach is used in conjunction 

with linear regression methods to assess the quality of the clusters formed. Moreover, we 

perform this analysis using data which has already been generated from the auction 

mechanism, thus eliminating the need for additional data collection. 

7.2 Problem Definition 

The core problem is one of unsupervised classification. In this problem we have a 

group of entities whose primary characteristics are hidden and cannot be independently 

measured or verified; nonetheless, each of these entities can be subjected to alternative 

measurements to reveal a set of secondary characteristics. The secondary characteristics 

are not of direct interest; nonetheless, they can be measured consistently and also serve as 

an indicator of the primary characteristics. Within this problem, secondary characteristics 

can be measured by subjecting each entity to a specific environment or set of measurement 

parameters. In the context of the agricultural cooperative case study, these characteristics 

are: 

 Primary characteristics are core attributes of each farmer such as the production 

costs, yields, labor requirements, labor efficiency, profitability and others. These 

characteristics are critical for the success of individual farmers and also the 

cooperative at large. Moreover, these characteristics can be of use for determining 

which farmers get aid, technical assessment, emergency funds or even which 

farmers can be relied on to perform exploratory trials of new crops. For these 

primary characteristics, farmers cannot be asked directly as they will give 

subjective responses or misrepresent their information. 
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 Secondary characteristics are a reflection of each farmer’s technical expertise and 

skill. For this case study, these characteristics are the bids placed during each 

auction iteration. Since the measurements are quantitative, and approximate 

production preferences under similar circumstances (i.e. same price vector), then 

these can be compared directly. 

 Measurement parameters are the circumstances in which secondary characteristics 

are measured. In the problem at hand, these characteristics are the parameters of the 

mechanism as defined in each iteration. These are: The iteration number, the 

production period (week), the crop and the price offered for crops. 

7.2.1 Objective 

The problem objective consists on utilizing the secondary characteristics (bids of 

each farmer) to create clusters of farmers which consistently reflect the technical expertise 

within the cluster. Moreover, it is desirable that these clusters work as viable predictors of 

the yields, costs and even profitability of each farming operation. Within this framework, 

an assessment of the quality of the clusters is of great importance. Therefore an unbiased 

and quantitative assessment of cluster quality must be performed to determine the best 

solution for grouping farmers which balances complexity and misclassification error.   

7.3 Methodology 

7.3.1 Data structure: 

The data structure used consists of three main components: (1) Primary 

characteristics; (2) secondary characteristics and (3) measurement parameters. These three 

components of the data structure are closely interrelated and are better exemplified in Table 

7.1 below. As it can be seen, in Table 7.1 we are interested in measuring the primary 
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characteristics of farmers (shown on the horizontal labels); however, this is not directly 

measurable and thus we must measure the secondary characteristics which are the data 

populating the inner matrix (which is the data in the center of the matrix). Note also that 

primary characteristics have no direct relationship to the measurement parameters; but 

rather, secondary characteristics can be thought of as a function of the characteristics of the 

farmer and the measurement characteristics.  

Table 7.1 – Data Structure for Clustering Problem 

 

This description of the data also falls within the framework of the auction mechanism 

described in Chapters 4 and 5, where secondary characteristics consist of bids. Also note 

that, in practice, the primary attributes are privately held information; however, for this 

case study the primary attributes are known to us as researchers and are used for validation. 

These values were retrieved from the input data, which is simulated to create a variety of 

farmers as described in Section 4.7.1 and include: Size of the farm, labor, crop yields, 

production costs, transportation costs and also profitability. 

7.3.2 Performing Agglomerative Hierarchical Clustering 

In order to group the various farms, hierarchical clustering was utilized. This method 

of unsupervised clustering was chosen because it creates a taxonomy or dendrogram, where 

those farmers which are most similar to each other will be closer together, while those who 

are most dissimilar are clustered further apart. This methodology has two main advantages:  

Iteration …

Week … … …

Crop L R C B … L R C B … L R C B … L R C B

Entity Labor Yields Costs - - - - - - - - - - - - - - - - - - - -

Farm 1 XX /.. / XX YY /.. / YY ZZ /.. / ZZ - # # # # … # # # # … # # # # … # # # #

Farm 2 XX /.. / XX YY /.. / YY ZZ /.. / ZZ - # # # # … # # # # … # # # # … # # # #

Farm 3 XX /.. / XX YY /.. / YY ZZ /.. / ZZ - # # # # … # # # # … # # # # … # # # #

Farm 4 XX /.. / XX YY /.. / YY ZZ /.. / ZZ - # # # # … # # # # … # # # # … # # # #

K

1 W

Measurement Parameters

Primary Characteristics  …………                            …
1 W

1
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 From a managerial perspective, it is an intuitive way of looking at the grouping of 

farms. This allows managers to choose the number of clusters which are best suited 

to their objectives (for instance, assigning resources to a group no larger than 20% 

of the instances); moreover, this also allows for some flexible interpretation of the 

variety of groups observed. 

 From a validation standpoint, having a continuous spectrum of clusters allows for 

an assessment of error which is well behaved as the number of clusters is varied. 

More specifically, hierarchical clustering is deterministic and the clusters resulting 

from the algorithm remain consistent as we move through the taxonomy; this is not 

true for, other methods such as k-means clustering. This continuity will be 

important when we validate the clusters using quantitative methods, which are 

covered below. 

7.3.3 Validation Using Prediction Error 

In order to objectively and qualitatively determine the right amount of clusters to be 

used we formulate a method based on regression and prediction. Since all the values being 

clustered on (secondary attributes) are continuous and functions of the measurement 

parameters, a prediction model can be created; moreover, since all measurements are given, 

a measure of prediction error is calculated. 

Since the objective is to assess the prediction capabilities of each cluster, we resort 

to a method of Ordinary Least Squares (OLS) through which the secondary characteristics 

within the data matrix can be estimated as a function of the measurement parameters. For 

the case in which we start with 𝑴 farmers and 𝑪 = 𝑴 clusters, this implies that each farm 

will have its own least squares model. As for the case where 𝑪 < 𝑴, for a cluster that 
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contains 𝒌 farms, the measurements are concatenated without tracking which farm the 

measurements come from; this is equivalent to having 𝒌 replicates, and a single set of  

predicted values applicable to all farms.  

In mathematical form, for 𝒀𝒊 and 𝑿 having a length of length 𝑁; if each farm were a 

cluster in itself we have the regression model for a single farm 𝒊:  

𝑌𝑖 = 𝑋β𝑖  (7-1) 

However, suppose we have 𝒌 farms in some cluster 𝒄, then the model data 

resembles the concatenated vector and model below:  

𝑌1

𝑌2

⋮
𝑌𝑘

=

𝑋
𝑋
⋮
𝑋

 β𝑐  (7-2) 

This methodology could potentially require extensive calculations, recalculating a 

complete OLS model using the input data for each case; however, under some simplifying 

assumptions, we can make the complexity of the calculations significantly lower. The main 

assumption that we make is that for any entity and for any cluster, all parameters in the 

regression vector 𝛃 are relevant. This assumption yields models with a higher variance 

than is desirable; however, as our interest is on a rapid and consistent estimation of error 

and because we seek to assess the quality of the clusters rather than to make direct use of 

OLS model equations, we let this increase in variance be justified. 

Below we show that under the assumption detailed above, creating a predictive 

model for any arbitrary cluster is reduced to taking the simple average of the parameters 

from the OLS models of the cluster components. 
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Proof:  

For simplicity, we use the following notation, where: 

𝑌1

𝑌2

⋮
𝑌𝑘

= 𝑌𝐾       𝑎𝑛𝑑        

𝑋
𝑋
⋮
𝑋

= 𝑋𝐾   (7-3) 

Then we have from (7-2) and definition (7-3) the following notation for the 

regression equation: 

𝑌𝐾 = 𝑋𝐾β𝑐  (7-4) 

Here, we can perform the corresponding matrix operations: 

𝑋𝐾
′ 𝑌𝐾 = 𝑋𝐾

′ 𝑋𝐾β𝑐  

(𝑋𝐾
′ 𝑋𝐾)−1𝑋𝐾

′ 𝑌𝐾 = β𝑐  

Note here that  𝑋𝐾
′ 𝑋𝐾 = 𝑘 𝑋′𝑋  and  𝑋𝐾

′ 𝑌𝐾 = ∑ 𝑋′𝑌𝑖
𝑘
𝑖=1   where 𝑘 is a scalar; thus: 

(𝑋′𝑋)−1(∑ 𝑋′𝑌𝑖
𝑘
𝑖=1 ) = 𝑘 ∗ β𝑐  

∑ (𝑋′𝑋)−1(𝑋′𝑌𝑖)
𝑘
𝑖=1 = 𝑘 ∗ β𝑐  

∑
β𝑖

𝑘

𝑘
𝑖=1 = β𝑐     (7-5) 

And the prediction equation for cluster 𝒄 is: 

�̂�𝑐 = 𝑋β̂𝑐                 (7-6) 

Where the regression coefficient 𝛃𝒄 is the average of the regression coefficients from 

the components of the cluster. ∎ 

Therefore, the structure of the data allows for an easy aggregation of clusters and 

regression models which remains valid as long as the entities on each cluster are 

comparable. For our clustering application, as long as the entities being clustered together 

share enough similarity to one another, then aggregating linear models in this will be a 
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viable form of obtaining good prediction capabilities.  However, we would also expect 

prediction error to increase if we have a cluster in which the various components are 

significantly different from each other.  

If we are interested in measuring the goodness of fit for a particular farm 𝒊 in 

cluster 𝒄, we can compare the actual measurements of the bids from farm 𝒊 to the predicted 

values from the cluster 𝒄. The resulting comparison is expressed in a familiar form: 

𝑒𝑖 = 𝑌𝑖 − �̂�𝑐  (7-7) 

As a result, this methodology provides a viable way to assess the goodness of 

hierarchical clustering at various levels of clustering and to determine the number of 

clusters which is desirable using an objective measure of error. Moreover, due to the 

simplifying assumptions on the model structure for each farm, calculating a prediction 

model for each cluster is greatly simplified and consists only of simple arithmetic 

operations using the parameters of each independent farm 𝛽𝑖 as in formula (7-5). With this 

we can now calculate the error of prediction for each farm and for any number of clusters. 

Finally, we are able to quantify for any outcome of the hierarchical clustering algorithm 

the error of prediction for all farms; this can be done for any number of clusters ranging 

from 1 to 𝑀, where 𝑀 is the number of farmers. 

7.4 Results of Case Study 

7.4.1 Description and Pre-Processing of Data 

In this case study, we utilize data from Chapter 5 of the dissertation. Specifically, we 

use data obtained from running an instance of the coordination mechanism for a 

cooperative of 125 farmers across 𝑁 = 15 iterations, where the mechanism is tuned to 

perform close to its optimal behavior. We utilize the bids from each farm 𝑙 ∈ 𝐿. The bids 
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that are used for clustering are for 𝐽 crops, 𝐻 time-periods and for 𝑁 auction iterations and 

correspond to the vector 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑙
𝑖  as announced by bidders during each iteration.  

Although the data used for this case study is readily available, it has two main issues: 

Varying scales and high dimensionality. We discuss to ways in which we address these 

problems below. 

7.4.1.1 Data Scaling 

In order to make the data from all farms comparable, each farm bid vector is 

normalized by dividing all of the values by the size of the farm in acres17. Thereafter, in 

order to prevent distortions on the distance calculations from the clustering algorithm, 

range scaling is performed on each column according to the following formula:  

𝑋𝑖 =
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
  (7-8) 

7.4.1.2 Dimensionality reduction 

Given that each farm will place a bid for multiple products and multiple time-periods, 

the length of the feature vector used to cluster farms can grow significantly. This problem 

is aggravated if we utilize multiple iterations of the auction. For the case study under 

consideration, we have a feature vector (𝑉𝑡𝑟𝑎𝑛𝑠) of size |𝐻||𝐽||𝑁| = 20 ∗ 4 ∗ 15 = 1200, 

which is excessively large for hierarchical clustering using traditional distance based 

measured of similarity (Tan, Steinbach, & Kumar, 2006); therefore we explore methods to 

reduce the size of this vector. For this problem, we rely on the use of principal component 

analysis (PCA). Using the PCA approach, the total size of the feature vectors is reduced 

                                                 
17 Note that we can use farm size under the assumption that this is an easily verifiable or public information 
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from 1275 columns to 24 while preserving 95% of the variance. With this transformation 

on the data, we proceed to create the required clusters. 

7.4.2 Predictive Model for Farmer Bid Placement 

As described in Section 7.3.3, a predictive model for farmer bids is made for each 

individual farm, and through the use of equation (7-5), a predictive model for farmer bids 

can also made for every cluster. Nonetheless, making predictive models for farmer’s bids 

is a challenging problem even when information is readily available (as is the case in this 

case study). Mainly, if OLS is used to create a model for bid prediction, creating a model 

for each of the 125 farms in this study can be expensive and thus simplifying assumptions 

are made.  

To understand the structure of the model we first analyze the characteristics of the 

data; for the independent variables we have: 

 Iteration number (i): From the auction output, the bids placed throughout the full 

mechanism are of interest, thus all 15 iterations of the mechanism are used. This is 

a discrete categorical variable. 

 Crop type (𝒋 ∈ 𝑱): Includes four crops (broccoli, cauliflower, iceberg lettuce and 

romaine lettuce). Since these are four distinct products, then they are used as 

categorical variables. 

 Production period (𝒉 ∈ 𝑯):  For each farmer and crop, these periods have an 

ordinal or categorical nature. Their numerical value is on itself of little relevance to 

the model and as a result these are treated as categorical variables. 

 Price of Crop (𝒑𝒓𝒊𝒄𝒆 ∈ 𝑱 × 𝑯): Is the only continuous variable that is used for 

prediction. 
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Due to the characteristics of this data, the prediction is performed by using indicator 

variables for all combinations of crop and production periods. Moreover, in order to 

simplify the model building process, we assume independence between each of these 

categories; as a result, for each farmer we create the equivalent of 80 prediction models 

(|𝐻||𝐽| = 20 ∗ 4). Each of these 80 models is fitted to a regression equation of the same 

general form, where only the 𝛽 parameters change. By performing the necessary analysis 

it was found that the regression equation which best reflects the behavior of bids uses a 

transformation on the iteration number; the final form of the regression equation used is 

given in (7-8) below: 

𝛽0 + 𝛽1 ∗ 𝑖−1.8 + 𝛽2 ∗ 𝑝𝑟𝑖𝑐𝑒𝑗,ℎ = 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗
𝑖            ∀  𝑗 ∈ 𝐽;   ℎ ∈ 𝐻   (7-8) 

Moreover, because of the structural assumptions which we have made, the fitting of 

all 80 models can be done simultaneously through the use of a single design matrix 𝑋 which 

preserves the independence between crop and time period combinations. By making these 

assumptions, the problem of creating multiple prediction models at one time is simplified. 

For this, we let 𝐼𝑗ℎ be an indicator variable for each combination of crop and time period, 

where: 

𝐼𝑗′ℎ′ = {
0, 𝑗′ ≠ 𝑗 𝑎𝑛𝑑 ℎ′ ≠ ℎ

1, 𝑗′ = 𝑗 𝑎𝑛𝑑 ℎ′ = ℎ
   

The resulting regression equation for each farm has the form:  

∑ ∑ (𝛽0𝑗ℎ + 𝛽1𝑗ℎ ∗ 𝑖−1.8 + 𝛽2𝑗ℎ ∗ 𝑝𝑟𝑖𝑐𝑒𝑗ℎ) ∗ 𝐼𝑗′ℎ′ℎ𝑗 = 𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗
𝑖       ∀  𝑗′ ∈ 𝐽; ℎ′ ∈ 𝐻   (7-9) 

7.4.3 Clustering and Model Building  

Upon reducing the dimensionality of the data through PCA and after creating a 

predictive model for the bids of each farmer, we proceeded to cluster the data using 
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standard agglomerative hierarchical clustering. For this, the similarity between farms is 

measured using Euclidean distance and three major variants of hierarchical clustering were 

used: Single Link, Average Link and Complete Link (Tan et al., 2006). This approach 

yields a full spectrum of clusters ranging from 𝑀 clusters (where each farm is a cluster in 

itself) and 1 cluster (where all farms are clustered together). With this approach, we have 

information for the member farms for any number of clusters in the hierarchical clustering 

algorithm; moreover, due to the nested arrangement of clusters, this result can be assessed 

as a continuum through the results of each hierarchical clustering output. 

 

Figure 7.1 – Performance Comparison of Clustering For Three Algorithms 

With the predictive models for each farm as given by equation (7-9) and with the use 

of equation (7-5) for, we now predict the values of  𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑙
𝑖 , for each farmer, iteration, 

crop and week combination; moreover, with these predictions, we assess the error of 

prediction for any cluster by comparing the measured values of  𝑉𝑡𝑟𝑎𝑛𝑠ℎ𝑗𝑙
𝑖  to the predicted 

values 𝑉𝑡𝑟𝑎𝑛𝑠̂
ℎ𝑗𝑙
𝑐 . Now using a measure of prediction error for any number of clusters on 

each of the clustering methods we assess which variation of the hierarchical clustering 

algorithm is best suited for this problem. The comparison of prediction error for each of 
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these clustering results and throughout the continuum of the clusters is illustrated in Figure 

7.1 above. 

 

As it can be observed, the behavior of prediction error follows an expected pattern. 

On one extreme, when each farm is a cluster in itself prediction error is minimized as each 

model is fine tuned to each farmer; however, as we aggregate these farms into clusters 

predictive performance starts to degrade. Moreover, the loss in predictive performance is 

initially low, as farms of greater similarity are being clustered together; thus it is expected 

that the formula for the cluster can be extrapolated to its members. Nonetheless, as we 

continue to agglomerate clusters we find that predictive performance degrades, having a 

rapid decline once the number of clusters is small. 

From these results we conclude that using complete link provides the best overall 

prediction performance regardless of the number of clusters being chosen. Moreover, we 

can also observe that predictive performance remains relatively flat, starting to pick up 

significantly at the 25 cluster mark, but also having a dramatic decrease in performance at 

the 4-5 cluster range. This result leads us to believe that from a managerial standpoint, the 

area of most interest lies between aggregating farmers in 5 clusters and ends at an 

aggregation of 25 clusters. 

7.4.4 Analysis of Clusters 

As it was noted in Section 7.2, the main interest in clustering farmers is to make 

inferences about farmers without needing to engage on additional data collection. For this 

case study, the objective is to catalogue farmers based on their “unobservable” primary 

characteristics (yields, costs, management skills), using the “observable” secondary 

characteristics (production bids). In this section we detail a visualization of these 
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characteristics for the clusters formed using the Complete Link implementation of the 

hierarchical clustering algorithm. 

7.4.4.1 Visualizing primary characteristics 

For the purpose of this case study, the primary characteristics are known to the 

investigator. As a result, it is possible to visualize this information and how it differs across 

various clusters. The primary characteristics of each farmer are scaled to the range [0-1] to 

reflect the relative competence of each farmer on each of these characteristics; (where zero 

corresponds to least competent). Thereafter, each of these characteristics is averaged across 

its cluster to reflect to collective competency of the farmers in that cluster. For the 

characteristics illustrated we use the Yields and Fixed Costs of the four crops modeled, as 

well as the size of their Land and Labor available. 

 

Figure 7.2 – Relative Competency of Farmers in 5 Clusters 

For the breakdown of farmers in 5 clusters, we observe the variation of these 

characteristics in Figure 7.2 above. On this level, farmers are roughly catalogued on five 

groups; one specialized group for each crop and one unspecialized group of farmers.  
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In order to gain further information, these groups are further expanded using the 

hierarchy given by the algorithm. The most appropriate level on which to expand was also 

identified from Figure 7.1 and was determined to be 25 clusters. To better illustrate the 

differences between the sub-clusters at each of these groups, we show the expansion of the 

25 main clusters by segmenting them according to their place in the hierarchy from Figure 

7.2. This are illustrated in Figure 7.3 - Figure 7.7 below. 

 

Figure 7.3 – Romaine Specialists 

 

Figure 7.4 – Broccoli Specialists 

 

Figure 7.5 – Iceberg Specialists 

 

Figure 7.6 – Cauliflower Specialists 
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Figure 7.7 – Non-Specialized 

As it can be seen from these figures, the components of each of the main clusters 

have significant differences between each other; nonetheless, they intra cluster similarity 

is greater than the inter-cluster similarity. Moreover, the defining characteristic which 

makes farmers cluster together appears to be the yields of the crops rather than the fixed 

costs associated with planting these crops. 

Finally, for Figure 7.7, note that for the Non-Specialized farmers, making a clear 

distinctions becomes difficult. Nonetheless, clusters 5 and 6 appear to be the least 

competent overall in all crops and would be expected to be the least profitable operations. 

As a matter of fact, it turns out that some of the least profitable operations on this case 

study are concentrated in clusters 5 and 6.  

To better illustrate this, we show the cluster assignments of the 20% least profitable 

farming operations in Figure 7.8. Here we show the total number of farms belonging to 

each of the 5th-level clusters as well as the 25th-level clusters. As it can be seen, most of 

these lower percentile cases are concentrated in only two clusters, while the remaining 

cases are scattered in other clusters. 
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Figure 7.8 – 25 Least Profitable Farming Operations by Cluster 

7.4.4.2 Visualizing secondary characteristics  

In the previous chapter we note that the clustering framework provides useful 

information and behaves in a way that can be validated through the primary characteristics. 

However, in practice these primary characteristics may not be observable and thus we must 

rely on the secondary characteristics to make inferences about the composition of the 

clusters. In this section we illustrate the information conveyed by the bids placed by 

farmers once these are visualized in a cluster by cluster basis. 

 

Figure 7.9 – Average Production per Acre by Cluster 

To illustrate the qualities of the clustering algorithm, we first visualize the production 

commitments on each cluster. To do this, we follow the same approach as Section 7.4.1.1 

and split the clusters in two levels (5 and 25 clusters); thereafter, we present the production 
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commitments of each group of farmers as the average committed production per acre of 

land (Figure 7.9) and the total committed production (Figure 7.10).  

 

Figure 7.10 – Total Production per Acre by Cluster 

As it can be seen, the general behavior of each cluster can be inferred from the 

secondary characteristics when they are visualized by their corresponding cluster 

segmentation. Furthermore, clusters 5 and 6 which were identified as the least competent 

in terms of their primary characteristics also reflect this fact by looking at their secondary 

characteristics.  

7.5 Discussion 

As it was argued throughout this chapter, many times in agricultural cooperatives it 

may be necessary to make decisions regarding the assignment of resources; for instance, 

resources can be allocated to the least competent farmers in order to raise the 

competitiveness of the cooperative as a whole. Unfortunately the assignment of resources 

can also be hampered by the difficulties of asymmetric information and competitive 

behavior. This presents a challenge, as additional information would have to be elicited 

from farmers or significant investigation may be required. 
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To address the problem of identifying groups of farmers for managerial purposes, we 

have formulated a methodology based on a clustering algorithm which utilizes existing 

information to make grouping inferences. In this chapter we show that the bidding 

information derived from the mechanism of Chapter 5 can be applied to problems that go 

beyond the assignment of production contracts; in this case, the information is used to 

segment farmers into different groups. Moreover, it was shown that these groups have 

structural properties which can convey significant information and are representative of 

production profiles of interest.  

The segmenting of farmers into groups will also have implications that go beyond 

the assignment of resources and tactical level decisions. By having this information, the 

cooperative can also make better informed long term decisions such as determining the 

long term goals of the cooperative, exploring new crops to plant and revising production 

targets for upcoming seasons. Furthermore, these results can also be tied back to the auction 

mechanism, giving the auctioneer better control on the magnitude of price changes or 

design of the mechanism as well as identifying significant deviations from the expected 

behavior of farmers during the course of the auction.  

From a methodological perspective, we also show that predictive models such as 

ordinary least squares can be utilized in combination with unsupervised clustering 

algorithms to better assess the quality of the clustering results. This combination of OLS 

and clustering was shown to be computationally efficient and to be easily implemented in 

practice, thus making it attractive for applications to problems of the size being analyzed 

in this dissertation.  
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8 CONCLUSIONS AND FUTURE RESEARCH 

In this chapter we present a summary of the analysis and results obtained throughout 

this dissertation. We provide conclusions and comment on the contribution of the 

dissertation to the advance of knowledge in supply chain coordination and the management 

of agricultural systems. Finally, we provide recommendations for future research taking a 

high level perspective on the various contributions of this dissertation. 

8.1 Dissertation Summary and Conclusions 

Throughout this dissertation, we addressed the pressing issue of supply chain 

coordination in agricultural supply chains. Increased coordination has great potential to 

tackle the environmental shortcomings of food waste and socioeconomic issues which stem 

from the decline of small and medium farms. Yet, despite its promise, academic research 

has paid little attention to this growing concern. We found no coordination mechanisms for 

tactical production planning of multiple growers in agriculture; furthermore, little research 

has been done on coordination between fresh produce growers and buyers, with an 

emphasis on coordination. 

Horizontal coordination in agricultural cooperatives reveals a pressing problem: 

difficulties arise when information asymmetry is present and internal competition hampers 

information sharing. Under this environment, coordination efforts may be compromised. 

As a result, not only should optimal solutions be attainable in a distributed manner, but a 

mechanism should elicit truthful production information; moreover, the mechanism must 

remain viable when participants deviate from the ideal assumptions of truthful 

communication. Finally, we also analyze additional shortcomings which stem from the 

nature of stochastic crop yields and their impact on planting decisions. 
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We successfully address the greatest challenges for coordination stated above. First, 

we formulated a model for tactical production planning, which coordinates production for 

various farms and a consolidation facility. We solved the coordination problem in a 

distributed fashion, despite the difficulties posed by information asymmetry, by using an 

auction mechanism. The auction iteratively varies prices for multiple crops throughout the 

growing season, allowing farmers to choose their own production quantities. 

Computational results show that the mechanism formulated converges rapidly towards the 

optimal solution, is simple and is an effective form of coordination. 

Secondly, we address coordination in the presence of strategic behavior by farmers. 

We acknowledge that, despite being part of the same cooperative, farmers seek their own 

best interest and may benefit from misrepresenting their information. We developed a 

decision model for the farmer sub-problem, which strategically considerers bid placement 

to maximize profits throughout the entire auction. The aforementioned decision model 

effectively increases farmer’s profits and better represents optimal bidding strategies (from 

the farmer’s perspective). Thereafter, we highlight the main pathologies of the coordination 

mechanism and how they can be avoided. We show, through computational results, that 

the mechanism is robust against strategic bidding and it provides solutions with a high 

system-wide efficiency. 

Our third outcome concentrates on the stochastic nature of crop yields. Specifically, 

we tackle the problem of stochastic yields as they pertain to the coordination mechanism 

put forth in this dissertation. We take the perspective of a farmer who has already 

committed to a given supply quantity at the conclusion of the auction. Farmers, who 

commit to a specified supply quantity, face the decision of how much to plant in order to 
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honor their commitments. This decision problem is formulated as a newsvendor model 

with stochastic yields, which balances the risks of over/underproduction from farmers. 

Furthermore, an expansion to the model allows farmers to buy options contracts. It is 

shown theoretically and computationally that the supply chain can be coordinated through 

an appropriate choice of cost parameters from the CF, and that using option contracts 

benefits coordination. 

Finally, we perform a case study as an expansion and follow-up to the auction 

mechanism. This shows that the auction generates a wealth of information, which can be 

used for purposes beyond coordinated tactical planning. Specifically, we note that the data 

structure arising from production bids is well suited for clustering methods, and that 

farmers can be segmented in groups consistent with their cost structures. Moreover, 

predictive measures verify the appropriateness of the clusters. This approach demonstrates 

great managerial value, as it reveals additional information for the assignment of resources, 

making competitiveness assessments or preparing strategic plans for the cooperative. 

8.2 Dissertation Contribution 

Throughout this dissertation, each chapter presented brought forth a variety of 

relevant academic contributions. Below, we describe some of the most important 

contributions. 

We develop a mechanism, through which the necessary information is elicited from 

farmers, in the form of an auction. This method relieves the cooperative from the burden 

of negotiation, and allows contracts to be assigned in a fair, transparent and efficient 

manner. To the best of our knowledge, this area of research had not been explored and 

agricultural decision problems of this scale were not previously available. 
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We followed this first contribution with research considering the game-theoretic 

aspects of the agricultural coordination mechanism. We explore the practical 

implementation of an auction mechanism that allocates contracts for production of multiple 

interdependent and divisible goods. This is a novel approach in a field which has 

historically placed its attention in discrete goods and the combinatorial auctions required 

to allocate them. Our research is among the few supply chain coordination mechanisms 

which consider incentive compatibility explicitly; moreover, we found no other auctions, 

used for supply chain coordination, which consider bidder speculation as a formal 

optimization problem, through the use of dynamic programming, to derive analytical and 

computational results. 

Most important, by analyzing the strategic implications of the coordination 

mechanism, we show that the auction developed is a simple and effective way to coordinate 

agricultural supply chains. This is a major contribution to the field of agricultural 

operations management, since we provide a mechanism which coordinates the supply chain 

and is robust to sophisticated agents misbehaving. This outcome should provide strong 

assurances to cooperatives seeking to implement coordination mechanisms; not only can 

these cooperatives rest assured that the mechanism converges, but they can also implement 

it without concern for pathological bidding problems at implementation. 

As an additional contribution, we develop a newsvendor model with stochastic yields 

for determining planting quantities. We find that the problem of production with stochastic 

yields and with option contracts made available to the supplier (rather than the 

manufacturer) has not been researched. We modeled the farmer decision as a newsvendor 

problem, which is convex in planting quantities and option contracts. We show that option 
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contracts facilitate coordinated outcomes by making the difference between expected 

production and committed supply smaller and less sensitive to the costs of underage and 

overage seen by farmers. 

Finally, we contribute to the managerial insights obtained by analyzing bid data 

acquired throughout the course of the auction. We show that, by using clustering methods, 

farmers can be segmented in homogeneous groups that reflect the true characteristics of 

their cost structures. Moreover, we achieve this through a combination of hierarchical 

clustering and prediction models to quantify the error of a given clustering outcome. 

Nonetheless, the greatest contribution comes from looking at the dissertation as a 

whole. Throughout this dissertation, we developed a coordination mechanism which 

addresses one of the greatest challenges of agricultural cooperatives--determining tactical 

plans for the upcoming season which are efficient, fair and which provide a transparent 

method of contract assignment. Moreover, we address two great concerns for coordination: 

(1) Strategic bidding from farmers, and (2) failure to meet production targets due to 

stochastic yields. By developing this framework, as a whole, and connecting each of its 

components clearly in a single dissertation, we provide a solid foundation for future 

research and for practical implementation of the mechanisms developed. Not only are the 

models developed complete and mathematically rigorous; but they also reflect the behavior 

of agricultural systems more accurately by considering asymmetric information, strategic 

behavior and stochastic yields. 

8.3 Recommendations for Future Research 

Detailed throughout each chapter some potential expansions and avenues of research 

are detailed. However, two main avenues of research surface by taking the dissertation as 
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a whole: (1) The development of new tactical coordination models which incorporate 

stochastic optimization in the auction itself, and (2) a case study where the models 

developed are implemented in an actual agricultural cooperative. 

For the development of tactical planning models, we argue that the foundation for 

this already exists in this dissertation. Stochastic planning can be incorporated to the 

expanded bidder’s sub-problem. Moreover, a connection between farm planning and the 

CF problem can be made by continuing to use options as tools for coordination. The 

quantities of options purchased carry implicit risk assessments made by producers; as a 

result, the CF can estimate the variance of yields for each farmer. Ultimately, if the CF is 

able to extract information on yield risk from the purchase of option contracts, we can 

envision a coordinated outcome which is not only efficient in expectation, but one that also 

minimizes risk for the overall cooperative. We believe that this is the next logical step in 

developing coordination mechanisms which are more realistic and which provide even 

greater benefits to farmers. 

Finally, although the research developed in this dissertation is promising and of 

strong theoretical value, farmers seldom use decision tools and optimization models to plan 

their production. Moreover, for farmers to use decision tools, these must be consistent with 

farmers’ intuition and have results which they can relate to. Performing a detailed 

implementation and case study, involving a real agricultural cooperative, would facilitate 

the adoption of these models. For this, we endorse the idea of seeking a small agricultural 

cooperative where these tools can be implemented. Not only will this create interest in the 

agricultural community, but it will also surface academic insights in the coordination 

problem, leading to further refinement of the models developed in this dissertation. 
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