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ABSTRACT

I propose a new communications scheme where signature signals are used to

carry digital data by suitably modulating the signal parameters with information bits.

One possible application for the proposed scheme is in underwater acoustic (UWA)

communications; with this motivation, I demonstrate how it can be applied in UWA

communications. In order to do that, I exploit existing parameterized models for

mammalian sounds by using them as signature signals. Digital data is transmitted

by mapping vectors of information bits to a carefully designed set of parameters with

values obtained from the biomimetic signal models. To complete the overall system

design, I develop appropriate receivers taking into account the specific UWA channel

models. I present some numerical results from the analysis of data recorded during

the Kauai Acomms MURI 2011 (KAM11) UWA communications experiment.

It is shown that the proposed communication scheme results in approximate

channel models with amplitude-limited inputs and signal-dependent additive noise.

Motivated by this observation, I study capacity of amplitude-limited channels un-

der di↵erent transmission scenarios. Specifically, I consider fading channels, signal-

dependent additive Gaussian noise channels, multiple-input multiple-output (MIMO)

systems and parallel Gaussian channels under peak power constraints.

I also consider practical channel coding problems for channels with signal-

dependent noise. I consider two specific models; signal-dependent additive Gaussian

noise channels and Z-channels which serve as binary-input binary-output approxima-

tions to the Gaussian case. I propose a new upper bound on the probability of error,

and utilize it for design of codes. I illustrate the tightness of the derived bounds and

the performance of the designed codes via examples.
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 و رخفلا و هداعسلا ةماستبإ اهولعت هوجوب امكتيؤرل ىجايتحإ و امكل ىقايتشلإ عماد بلقب امكيلإ بتكأ ،ىمأ و ىبأ
 ليزج نع ريبعتلل ىنفعست لا دق ىتاملكف امكل رذتعأ نأ دوأ ةيادبلا ىف .ةيهانتم ريغلا امكتحرفب ىنيقي ىناولس
 تاظحللا ىمأ اي ركذتأ .أدبلأ تنك ام و لمعلا اذه تيهنأ الم مكلاولف ،هدشب مكركشأ .ىلع امكلضفل ىنافرع و ىركش
 ىنتده ىتلا كتضراعم و ديدشلا كضفرً اضيأ ركذتأ و ايلعلا ىتاسارد لامكتسإ نع فقوتأ نأ افش ىلع تنك ىتلا
 و كمعد و همئادلا هدناسلما ىلع كركشأ ،زيزعلا ىبأ .هدشب كركشأ .بئاصلا رارقلا هنأ دقتعأ ىذلا رارقلا ذاختلإ
 باعصلا مكلمحت ىلع مكركشأ .ضرلما تاظحل ىسقأ و حرفلا تاظحل لمجأ ىف ىناسني مل نم تنأف ،هيلاغلا كتقث
.ليمجلا امكل درلأ تقولا ىنفعسي نأ ىنمتأ و امكقارف تاظحل نم بعصأ ام و ىلجأ نم

 .ىل مئادلا مكمعد و مكبح ،مكتقث ىلع مكركشأ .فسوي ،ينمساي ،انيد ،ماشه ،ملاسإ ،ىناوخأ و ىتاوخأ

 كتدناسم ىسنأ نل و مل ،هتمدق ام لك ىلع كركشأ .كيف صٌخلم قيدصلا فيرعتف ،كمأ هدلت مل خأ بر ،نمحرلا دبع
 رئاصلما" ىتلوقم ركذتل و هئاهنإ ىلع انقفتإ ام تيهنأ دق ىقيدص اي انأ اه و لولأا مويلا نم ىل كعيجشت و همئادلا
."هكرتشلما
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However, the common flaw among the humans is to see the hardest stu↵ like the

most beautiful things. And most of the people believe that they do not learn anything

when they find a clear and simple reason. While they accept the deep and

transcendental theories made by the philosophers, even if it was often on basis that

was not been su�ciently examined.
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Chapter 1

INTRODUCTION

In this dissertation, we propose a new communication scheme where signature signals

are used to carry digital data by modulating the parameters of these signals with

transmitted bits. For that purpose, we utilize analytical models for certain types of

signature signals which are parametrized. Digital data is transmitted by mapping

the vectors of information bits to the parameters of these signature signals. At the

receiver side, a reverse process is utilized: the parameters of the received signals are

estimated, and are demapped back to the information bits.

One possible application for the proposed communication scheme is in un-

derwater acoustic (UWA) communications. There are lot of emerging applications

that require UWA communications including o↵shore oil industry, pollution mon-

itoring, scientific data collection, and military use. However, underwater acoustic

communications is considered as one of the most challenging communication envi-

ronments due to the very highly time-varying nature of the communication medium,

large distortions due to extensive multipath spreads, frequency-dependent path loss,

time variation of the path propagation which causes Doppler shift and spread, and

low propagation speed of the sound in the water [4]. In addition to the average path

loss due to spreading and absorption losses, the received power fluctuates as a result

of small-scale fading e↵ects due to multipath propagation. UWA channels are often

characterized by significant frequency and time selectivity, due to variations in the

underwater environment (e.g., surface waves) or due to the relative motion between

the transmitter and the receiver. Furthermore, since the speed of the sound in water

is low, the transmitted signal may also undergo time-scaling (severe Doppler) e↵ects,

due to the fact that the carrier frequencies are in the order of the signal bandwidths

1



used.

UWA communications have evolved over the years; in earlier UWA communi-

cations systems, noncoherent detection is considered in order to overcome the rapid

variations in the phase of the channels. For instance, frequency shift keying (FSK)

with noncoherent detection is used [5]. Using noncoherent receivers solves the trans-

mitted carrier phase recovery problem, however, it does not solve the intersymbol

interference (ISI) problem resulting from long delay spreads. One way to overcome

the ISI problem is to insert a long guard period between the adjacent transmitted

symbols accounting for the spread of the signal during the transmission. However,

long guard periods severely reduce the throughput of the system. Di↵erentially co-

herent transmission schemes are also considered for use in UWA systems [6]. In

di↵erentially coherent systems, the information sequence is used to modulate the

phase di↵erence or phase transitions between consecutive symbols and hence we do

not have to estimate the absolute phase of the carrier signal. However, di↵erentially

coherent modulation systems result in performance degradation [7]. Systems based on

coherent modulation are first introduced by Stojanovic, Capitovic and Proakis in [8]

which demonstrated for the first time the feasibility of phase coherent communica-

tions via a decision feedback equalizer (DFE). To enable coherent transmissions, the

DFE coe�cients are updated along with the carrier phase by minimizing of the mean

square error (MSE) in an adaptive fashion. To guarantee that the receiver would be

able to track the rapid phase changes, they used the recursive least square (RLS)

algorithm [9] to estimate the filter coe�cients, this guarantees a fast convergence.

Recently, orthogonal frequency division multiplexing (OFDM) based multi-

carrier communication schemes have received great attention in UWA communica-

tions as well [10, 11], especially, for applications that require high data rates. For

2



UWA communications, OFDM trades o↵ ISI with intercarrier interference (ICI) due

to the highly time varying nature of the communication medium, see, e.g., [12, 13] and

references therein. In the last decade, space-time coding techniques (for multi-input

multi-output (MIMO) systems) have also been demonstrated successfully for UWA

channels [14–17]. Another fundamental line of research in UWA communications is

devoted to the time reversal (TR) techniques [18–25], in which the reciprocity of the

UWA channel between the transmitter and the receiver is exploited.

In this dissertation, we utilize analytical models for certain biomimetic sig-

nals characterized by certain parameters that distinguish mammalian sound signals.

Digital data is transmitted by mapping vectors of information bits to a carefully de-

signed set of parameters with values obtained from the biomimetic signal models.

To complete the overall system design, we develop appropriate receivers taking into

account the specific UWA channel models. The basic premise is the following: since

there will be no artificial embedding of digital data on a (biological) host signal, the

transmitted signal mimics a natural sound. Such a scenario may have applications in

covert communications with low probability of detection (LPD) and low probability

intercept (LPI) characteristics.

In our proposal of using natural sounds for signal transmission, where digital

data modulates the parameters of carefully modeled biomimetic signals, our approach

provides a way for which signals generated do not sound artificial due to the way in

which they are constructed. In other words, signals matched to mammal sounds could

be useful for UWA communications even at relatively high transmit power levels.

They can also co-exist with other acoustic communication systems without adversely

a↵ecting their performance or without being a↵ected by them. Our proposal, as

in two very recent papers [26, 27], aims to incorporate biological sounds in UWA
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communications systems, however, the specific approach used is completely di↵erent.

One of the main challenges that confronts the design of the proposed scheme

is the choice of the set of parameters. As we described before, the digital information

is transmitted by mapping the transmitted information bits to a carefully designed

set of parameters of the biological signals. The problem now lies on the methodology

of the design of the signal parameters. Motivated by this problem and using the

capacity as the ultimate performance metric, we study the information capacity of

the equivalent channel model for the proposed communications scheme. We optimize

the input distribution to decide on the specific values of the signal parameters to pick

and their probabilities.

As we will see later, an equivalent channel model for the system shows that the

estimated values of the parameters can be approximated as the actual transmitted

values of the parameters contaminated by signal dependent Gaussian noise. This

approximation is based on the asymptotic behavior of the maximum likelihood (ML)

estimator which indicates that the estimated parameter—when the length of the

received signal is su�ciently large—is distributed according to a Gaussian distribution

with mean equal to the true value and variance which can be found from the inverse of

the Fisher information matrix which depends on the transmitted signal parameters.

Given the fact that the parameters have a specific range that can be used, the capacity

optimization problem boils down to the capacity optimization problem of a Gaussian

channel with amplitude-limited inputs and signal-dependent noise.

Capacity of Gaussian channels with peak and average power constraints is first

studied by Smith [28] where he shows that under these constraints on the input the

capacity-achieving distribution is discrete. His approach is based on two propositions:

the first one shows that the mutual information function is a strictly concave, weakly
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di↵erentiable function of the input probability distribution function, and the space

of probability distribution functions is convex and compact in some topology. The

second proposition shows that the optimal distribution that achieves the capacity is

discrete utilizing ideas from complex analysis. Finding the mass point locations of

this discrete distribution and its associated probabilities is done through a numerical

convex optimization algorithm, as the problem is reduced to a finite-dimensional prob-

lem. Tchamkerten [29] extends Smith’s results on channel capacity with amplitude

limited inputs to general additive noise channels, and he derives su�cient conditions

on the noise probability density functions that guarantee that the capacity-achieving

input has a finite number of mass points.

Discrete input distributions show up as the optimal inputs in other scenarios

as well. For instance, the authors in [30] study the quadrature Gaussian channel, and

they show that a uniform distribution of the phase and discrete distribution of the

amplitude achieve the channel capacity. In [31], the authors consider transmission

over Rayleigh fading channels where neither the transmitter nor the receiver has

the channel state information. They prove that the capacity achieving distribution

for average power-constrained inputs is discrete. Also, in [32], the authors study the

non-coherent additive white Gaussian noise (AWGN) channels and they show that the

optimal distribution is discrete. By characterizing the capacity-achieving distribution,

they also compute a tight lower bound on the capacity of the channel based on

examination of suboptimal input distributions. In [33], the authors investigate the

capacity of Rician fading channels with inputs that have constraints on the second and

the forth moments, and the capacity-achieving distribution is shown to be discrete

with finite number of mass points. In addition, they study channels with peak power

constraints and show that the optimal distribution is discrete as well. Recently, multi-

user systems with amplitude-limited inputs have also been considered. The authors
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in [34] develop a framework at which the channel capacity is maximized by a unique

distribution and this distribution features finite number of mass points, they show

that there are many systems that fall within their framework such as parallel Gaussian

channels, intensity modulation optical channels, etc. In [35, 36], the authors study

the multiple access channel (MAC) with amplitude-constrained inputs. They show

that the sum-capacity achieving distribution is discrete. This distribution achieves

rates at any of the corner points of the capacity region.

In this dissertation, we study the capacity of several channels that include

signal-antenna systems such as fading channels, and signal-dependent Gaussian noise

channels. We also study the capacity of multiple-antenna systems that include gen-

eral multiple-input multiple-output (MIMO) channels and parallel Gaussian channels.

Finally, we study the code design problem for signal-dependent Gaussian noise chan-

nels and BAC which considered as binary-input binary-output approximation for the

signal-dependent Gaussian noise channels.

A BAC and a binary symmetric channel (BSC) are quite di↵erent, for instance,

the capacity-achieving distribution for a BSC is uniform which is not the case for a

BAC. The di↵erences between the BSC and the BAC make the design of channel

codes quite distinct. One of the main ideas that has been developed for channel

coding over binary asymmetric channels is through the use of a mapper, i.e., a map-

per is introduced after a channel encoder designed for a BSC, and at the decoder

side, an iterative algorithm that takes the mapper into account is employed [38].

As another approach, in [39], the authors introduce a new class of codes referred

as group-theoretic codes, and they prove that this class of codes are able to correct

one bit error that may occur during transmission. In [40], a new density evolution

technique is derived for optimization of the low density parity check (LDPC) codes.
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In [41], the authors propose two methods for code construction; the first one is based

on codebook expurgation where the goal is to alter the binary codebook such that the

resulting input distribution for the channel becomes nonuniform. The second con-

struction method is based on introducing a mapper after the encoder. This mapper

is from a non-binary linear block code into a binary codebook keeping in mind the

same objective which is to have a biased (optimal) input distribution. In [42], the

authors present new constructions of codes for asymmetric channels for both binary

and nonbinary alphabets, based on methods of generalized code concatenation. Re-

cently, di↵erent classes of ultra-small finite block-length codes are introduced, called

flip codes and weak flip codes [43, 44]. In these papers, the authors introduce another

approach to the code design problem referred as the column-based approach. They

define set of columns called candidates and the code is constructed by taking com-

binations of these columns. The authors show the optimality of these codes for the

BSC and the Z-channel (binary channel at which one of the cross-over probabilities is

zero) when the number of messages is less than four. They also introduce a recursive

approach to design codes with large number of messages but the optimality of the

modified approach is not established.

In the last part of the dissertation, we focus our study on special classes of

codes called ultra-small codes. This class of codes appears in many communication

scenarios as viable solutions, e.g., in the initiation of communication links in which

we have a small number of messages to be transmitted, also in applications that are

so sensitive to delay which do not tolerate transmission of long blocks. Thus, we are

interested in using the channel for a limited time, and transmitting all the required

information within one signal duration. Considering also the reliability requirements

leads to channel codes with a small number of messages and limited block lengths.

The study of ultra-small block-codes is interesting not only because of its potential
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applications, but also because of their analytical description which is a first step to

a better fundamental understanding of optimal nonlinear coding schemes (with ML

decoding).

1.1 Contributions of the Dissertation

In Chapter 2, we propose a new communication scheme that uses biological signals to

carry the digital information. We show the system model and the receiver design for

both AWGN channels and multi-path channels. To validate the proposed communi-

cations scheme, we present some numerical results from the analysis of the recorded

data during the recent KAM11 experiment. The results show that we can successfully

decode the transmitted bits with a relatively low bit error probability under di↵erent

transmission rates. We also present some numerical examples to show the robustness

of the proposed scheme agains interference.

In Chapter 3, we study the capacity of point-to-point amplitude-limited fading

channels. We assume that the channel gains are real, have finite support and are

known at the receiver. We show that a unique optimal input distribution exists and

this optimal distribution is discrete with a finite number of mass points. We prove

the result by showing that the conditional mutual information function between the

input, output and the channel coe�cient is a continuous, strictly concave, and weakly

di↵erentiable function of the input distribution. We then we use techniques from

complex analysis to establish arguments about the discreteness of the optimal input

distribution.

In Chapter 4, we study the capacity of signal-dependent Gaussian channels un-

der amplitude-limited inputs. This model is implied by an equivalent system model

to the proposed communication scheme in Chapter 2. This is not the first time signal-

dependent noise is considered in the literature as it appears in many communication
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scenarios that include optical communications and magnetic recording systems. In

a closely related work [34], the authors study the capacity of optical communication

channels with intensity modulation for which the noise variance is linearly depen-

dent on the inputs, and show the discreteness of the capacity-achieving distribution.

In [66], the authors develop upper and lower bounds on the channel capacity. In

this work, we consider an arbitrary noise variance function, and show that the capac-

ity of the signal-dependent Gaussian noise channels with amplitude-limited inputs is

achieved by input distribution with a finite number of mass points. We follow similar

arguments to the ones followed in Chapter 3; we show that the mutual information

is a continuous, concave, and weakly di↵erentiable function of the input distribu-

tion, and then use techniques from complex analysis to show that the optimal input

distribution has finite number of mass points.

In Chapter 5, we study the capacity of multi-antenna systems with amplitude-

limited inputs. Unfortunately, extending the results of Smith to vector random vari-

ables is unattainable since the Identity Theorem (one of the main theorems we use

to show the discreteness of the capacity-achieving distributions) is only available for

one-dimensional functions. Thus, we derive upper and lower bounds on the channel

capacity. These bounds are derived for an equivalent channel obtained from the sin-

gular value decomposition of the multiple-input multiple-output channel and solving

the capacity optimization problem over rectangular regions that inscribe the feasi-

ble region (for the upper bound) and rectangular regions that are inscribed by the

feasible region (for the lower bound). For the special case of multiple-input single-

output (MISO) systems, we are able to compute the capacity as it follows directly

from Smith’s results by defining an auxiliary variable representing the sum of the

channel inputs. We solve the capacity optimization problem between the channel

output and this auxiliary variable, and using the solution of this optimization prob-
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lem we can generate channel inputs such that the distribution of their sum follows

the distribution of the auxiliary random variable. Finally, we study the capacity of

parallel Gaussian channels with amplitude-limited and power-limited inputs. We de-

rive analytical bounds on the capacity at low and high noise levels which feature low

computational complexity compared to the exact evaluation of the capacity. We then

use these upper and lower bound expressions to assign the power for each parallel

channel at di↵erent noise levels.

Chapter 6 of the dissertation is devoted to the study of the coding problem for

signal-dependent Gaussian noise channels, namely we consider practical channel cod-

ing problems for the approximate model of the proposed communications scheme in

Chapter 2. Specifically, we consider two channel models. The first one uses Gaussian

noise channels but with noise variance that depends on the transmitted signal. The

second model considers binary asymmetric channels (BACs) which approximate the

Gaussian model. We propose a new upper bound on the error probability which is

based on Bonferroni type inequalities by considering triplets of pairwise error events.

We then use this bound to derive a new metric for designing codes for the Z-channel

(a special case of BAC) called the weighted sum Hamming distance. We then use this

metric to design specific codes. Our results show that we are able to design codes

with low error probabilities for di↵erent numbers of messages in the codebook for

the case of Z-channels. We also use these codes on signal-dependent Gaussian noise

channels, and compare their performance with that of codes designed for BSC.

We finally summarize the contributions of this dissertation in Chapter 7.
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Chapter 2

A NEW SIGNALING SCHEME FOR UWA COMMUNICATIONS EXPLOITING

BIOLOGICAL SOUNDS

In this chapter, we propose a communication scheme that uses biomimetic signals to

transmit digital information. We develop analytical models for certain biomimetic

signals and we parametrize them. Digital data is transmitted by mapping vectors of

information bits to a carefully designed set of parameters with values obtained from

the biomimetic signal models. To complete the overall system design, we develop

appropriate receivers taking into account the specific UWA channel models. The

basic premise is the following: since there will be no artificial embedding of digital

data on a (biological) host signal, the transmitted signal will mimic a natural sound.

As mentioned in Chapter 1, a possible application for the proposed biomimetic

communication scheme of this work is for covert UWA communications in which we

are interested in low probability of detection (LPD) and/or low probability intercept

(LPI). That is, we may be interested in transmitting our signals in such a way that

the presence of communication cannot be sensed by eavesdroppers (LPD) and/or

cannot be demodulated (LPI) except for intended users. Most existing techniques

developed for covert communications rely on spread spectrum ideas. For instance,

with the direct sequence spread spectrum (DSSS) techniques, the transmitted signal

is spread, using a spreading code, over a certain frequency band such that its power

spectral density goes below the noise level which makes it di�cult to be detected.

At the intended receiver, the spreading code is known, hence the signal is despread

and the original transmitted signal is retrieved. The key point in using the DSSS

is that as long as the spreading code is long enough, a better performance can be

achieved. Di↵erent communication schemes have been developed for UWA covert
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communications based on spread spectrum techniques [45, 46].

A di↵erent approach to provide covertness is based on the use of natural sounds

in transmission. The bottlenose dolphin sound signals are used for convert communi-

cation, the dolphin whistles are modeled as weighted superpositions of harmonically

related sinusoids, and single sinusoidal frequencies are estimated over windowed data;

the whistle is assumed to be time-invariant over the window duration [47]. Due to

the methodology adopted, the generated signal may sound man-made which may

present a problem in using this approach for LPD/LPI communications under wa-

ter. Two other very recent schemes [26, 27] that use biological sounds for covert

communications are presented. In the first one, the authors use dolphin whistles for

synchronization purposes, and the time interval between dolphin clicks to convey dig-

ital information, while in the second one, DSSS signals which carry digital data are

masked with a relatively loud whale sound.

Coming back to our proposal of using natural sounds for signal transmission

where digital data is modulated on the parameters of a carefully modelled biological

signals, our approach provides a way for which signals generated do not sound arti-

ficial due to the way in which they are constructed. In other words, signals matched

to mammal sounds could be useful for UWA communications even at relatively high

transmit power levels. They can also co-exist with other acoustic communication

systems without adversely a↵ecting their performance or without being a↵ected by

them. Our proposal, as in two very recent papers [26, 27], aims to incorporate bio-

logical sounds in UWA communications systems, however the specific approach used

is completely di↵erent. A preliminary and brief version of our proposal appeared in

the literature [1].

The chapter is organized as follows. In Section 2.1, we develop analytical
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models for the biomimetic signals and we provide a parametrization for these models.

In Section 2.2, we describe our communication scheme; the signaling scheme, and the

receiver structure for additive white Gaussian noise (AWGN) channels and multipath

channels, respectively. In Section 2.3, we provide a brief performance analysis for the

proposed communication system and derive bounds on error rates. In Section 2.4,

we present a detailed set of experimental results demonstrating the feasibility of the

proposed communication scheme using data recorded in the KAM11 experiment. We

conclude the chapter with a brief summary in Section 2.5.

2.1 Biomimetic Signal Modeling

In this section, we utilize some of the existing models for the biomimetic signals from

the literature. The underwater acoustic communications channel has been shown to

cause nonlinear time-varying changes to the instantaneous frequency of a waveform.

Thus, we define nonlinear frequency-modulated (NFM) signals as [1, 48, 49],

s(t;b) = A↵(t) ej2⇡(c ⇠(t/tr)+f
0

t) (2.1)

where ⇠(t/tr) is the signal’s phase function, f
0

is the carrier frequency, A is the

amplitude, c 2 R is the frequency modulation (FM) rate, and tr > 0 is a fixed time

constant used for unit normalization. The parameter vector b of the NFM signal in

(1) consists of the FM rate c, amplitude A, phase function ⇠(t/tr) and signal duration

Td. We select ↵(t) =
p

|⌫(t)|, where ⌫(t) is the signal’s instantaneous frequency (or

derivative of the phase function). Discretizing the real part of the NFM signal using

sampling period Ts and M = bTd/Tsc yields

s[n;b] = s(nTs;b) = A
p

|⌫[n]| cos(2⇡c ⇠[n] + 2⇡f
0

Tsn) , n = 0, 1, . . . ,M � 1 .

(2.2)

In Figures 2.1 and 2.2 we show comparison of the spectrogram TFR of an

actual long-finned pilot whale whistle and its reconstructed NFM signal with tr = 1.
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Figure 2.1: Spectrogram TFR of long-finned pilot whale whistle taken from [1].
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Figure 2.2: Spectrogram TFR of reconstructed noiseless linear FM chirp signal that
best matches the time-frequency signature of the whistle taken from [1].

As it can be seen, the time-frequency structure of the whistle and the reconstructed

signal are well-matched. Similar results are shown in Figures 2.3 and 2.4 for the

whistle of a white-sided dolphin. With models of cetacean mammal sounds developed

with appropriate parametrization, we can now propose a new communication scheme
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Figure 2.3: Spectrogram TFR of white-sided dolphin whistle taken from [1].
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Figure 2.4: Spectrogram TFR of reconstructed noiseless linear FM chirp that best
matches the time-frequency structure of the whistle taken from [1].
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exploiting such sounds.

2.2 Proposed Communication Scheme

We propose to use a signaling scheme that uses biomimetic signals as the transmis-

sion signals that carry digital data. The structure of such signals has been already

reviewed in the previous section. Such a communication system may have appli-

cations requiring LPI and LPD since these kind of signals sound like other natural

sounds that exist in the environment. Specifically, in this paper, we propose to use

generalized NFM signals to model the mammal sounds. We first select NFM signals

to mimic mammal whistles by matching their TF structures, and then we parametrize

this analytical model and we modulate these parameters with our digital data.

The complex envelope of the acoustic NFM signal can be given in the time-

domain as

s̃(t;b) = A↵(t) exp(j2⇡c⇠(t/tr)), 0 < t  Td, (2.3)

where ⇠(t/tr) is the signal’s time-varying phase function (assumed di↵erentiable), and

tr > 0 is a normalization time constant. The vector parameter b contains information

about the signal’s FM rate c 2 R, duration Td, amplitude A 2 R, and phase function

⇠(t/tr). The amplitude modulation ↵(t) can be changed without a↵ecting the TF

of the whistle, and it can be used as another parameter to carry data. As we see

from (2.3), we can use the amplitude, the carrier frequency, the chirp rate, and the

chirp duration as the parameters that carry our bitstream. At the receiver side, as

a practical solution, we develop a maximum likelihood estimator (MLE) to estimate

the value of these parameters and decode for the transmitted bits accordingly.

To summarize, a vector I of information bits will be mapped onto the vector of
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Figure 2.5: Block diagram of the communication system.

parameters b using a certain mapping rule f(I) that maps between the information

bits and the set of signal parameters C. There are several mapping rules that can

be considered here, for example, the range of each parameters is divided into 2n (n

is the number of bits) levels then linear mapping is performed between the digital

data and the parameter’s levels. Then, the acoustic signal s̃(t;b) is synthesized and

transmitted over the channel. At the receiver side, we develop a detector to find an

estimate b̂ of the values of these signal parameters. We use a MLE to accomplish

this. Finally, a demapping function f�1(b̂) is used to restore the transmitted bits.

This process is illustrated using a block diagram shown in Figure 2.5.

2.2.1 Receiver Design for AWGN Channels

In this section, we consider the use of the proposed communication scheme over an

AWGN channel. We develop the MLE for the Gaussian channel and we characterize

its performance.

We have a sequence of information bits a, we split this information sequence

into words each consisting of a given number of bits. We use these consecutive words
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to modulate the mammalian sound parameters, i.e., amplitude, phase, and frequency

by picking a certain value for these parameters from the set of values specified for

each parameter. Upon receiving the signal at the receiver, we find an estimate for

the transmitted parameters and demap these estimates into bits according to the

demapping rule.

The discrete time version of a real generalized chirp is defined as

s[n] = A
p
⌫[n] cos (2⇡c⇠[n]) , n = 0, 1, . . . ,M � 1, (2.4)

where A is the amplitude of the signal, c is the generalized chirp parameter that

controls the shape of the instantaneous frequency, ⇠[n] is the frequency modulation

function, ⌫[n] is the discrete version of the instantaneous frequency ⌫(t) = d
dt
⇠(t), M

is the number of samples that corresponds to the signal duration. We consider the

NFM signal in (2.4) as the transmitted chirp signal with parameters A, c, and M

that convey the digital bits. The duration of the signal is used as a parameter such

that for a fixed interval N , the signal duration varies within this N period. Thus, the

received signal can be written as,

x[n] =

8
>><

>>:

s[n] + w[n] if n = 0, 1, . . . ,M � 1,

w[n] if n = M, . . . , N � 1,

(2.5)

where w[n] is the AWGN noise with zero mean and variance �2.

Before we describe the proposed receiver structure, we note that the optimal

solution (to minimize the error probability) is the solution of an M�ary hypothesis

testing problem where each of the hypotheses corresponds to a particular sequence of

bits being packed into the NFM chirp signal. However, the number of bits transmit-

ted with each packet (e.g., dolphin sound) is too many, and hence coming up with the

optimal solution becomes problematic (as one would need to consider each of these
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M hypotheses, compute their likelihoods and pick the one with the largest value).

For instance, when there are 50 bits in a packet, there are a total of 250 di↵erent

hypotheses making the optimal solution impractical. Therefore, we consider a subop-

timal approach to complete the receiver design: using an ML estimator to estimate

the signal parameters and then demapping the estimated values into bits.

An MLE [50] of a scalar parameter � is defined as the value of the parame-

ter that maximizes the conditional probability density function (PDF) p(x;�) of the

sequence x. The maximization is performed over the space constructed by the pa-

rameter �. The conditional PDF of the received signal x[n] defined in (2.5) is given

by,

p(x;A, c,M) =

1

(2⇡�2
)

N/2
exp

"
� 1

2�2

 
M�1X

n=0

⇣
x[n]�A

p
⌫[n] cos (2⇡c⇠[n])

⌘2
+

N�1X

n=M

(x[n])
2

!#
.

Thus the ML estimate of the parameters A, c, and M is,
2

66664

ĉ

ˆM

ˆA

3

77775
= argmax

c,M,A

c1cc2

M1MM2

A1AA2

1

(2⇡�2
)

N/2
exp

"
� 1

2�2

 
M�1X

n=0

⇣
x[n]�A

p
⌫[n] cos (2⇡c⇠[n])

⌘2
+

N�1X

n=M

(x[n])
2

!#
,

(2.6)

which is equivalent to
2

66664

ĉ

M̂

Â

3

77775
= argmin

c,M,A

c1cc2

M1MM2

A1AA2

(
M�1X

n=0

⇣
x[n]� A

p
⌫[n] cos (2⇡c⇠[n])

⌘
2

+
N�1X

n=M

(x[n])2
)
. (2.7)
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This problem can be reformulated as follows;

2

66664

ĉ

M̂

Â

3

77775
= argmin

M,M
1

MM
2

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

min
c,A

c1cc2

A1AA2

M�1X

n=0

⇣
x[n]� A

p
⌫[n] cos (2⇡c⇠[n])

⌘
2

| {z }
separate optimization problem

+
N�1X

n=M

(x[n])2

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

.

(2.8)

Thus, for a fixed value of M we can separate the problem into two consecutive

problems, one optimizes over the chirp duration and the other optimizes over the

other parameters (the chirp rate c and amplitude A), for a specific chirp duration.

Therefore, the optimal solution (for the estimation problem) can be obtained by

considering all possible values of the signal duration (determined from the particular

mapping from bits to parameters adopted), performing the inner optimization for

each of these values, and picking the most likely result as the optimal estimates

for the three parameters embedded into the signal. Each of the inner optimization

problems (optimization of A and c for a givenM) involve (as we will see shortly) a one-

dimensional grid search which may be costly. Therefore, to reduce the computational

burden of the algorithm we propose the following: estimate the A and c values based

on the lowest possible value for the signal duration (hence it is guaranteed that the

actual signal is present in this window), and then use these estimates search over

the parameter M (going over all possibilities). We adopt the latter simplification in

our results section. There is another suboptimal solution that can be considered to

solve the optimization problem in (2.8) using a simple energy detector followed by a

decoder that estimates the other parameters, in other words, changing the order at

which the parameters are estimated. Our experimental results show that there is no
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significant di↵erence on the system performance by changing the order at which the

parameters get estimated, i.e., both simplifications result in similar performance.

For a given chirp duration M̃ , we define r[n] =
p
⌫[n] cos (2⇡c⇠[n]) , n =

0, . . . , M̃ � 1, and the vector of parameters ✓

✓ =

2

64
A

c

3

75 . (2.9)

The cost function g(A, c; M̃) is defined as

g(A, c; M̃) =

˜M�1X

n=0

⇣
x[n]� A

p
⌫[n] cos (2⇡c⇠[n])

⌘
2

(2.10)

=

˜M�1X

n=0

(x[n]� Ar[n])2 . (2.11)

Thus, the solution to the maximum likelihood estimation problem is reduced to

✓̂ = argmin
c,A

c1cc2

A1AA2

g(A, c; M̃). (2.12)

To estimate the parameters A and c we need to do a two-dimensional grid search

over the given range of both parameters. However, this two-dimensional search can

be reduced to a one-dimensional search instead as we are able to find a closed form

expression for the optimal estimator of the amplitude given any value of c. That is,

for each value of c, the optimal amplitude parameter value can be found by solving

the following capacity optimization problem,

Â = argmin
A:A

1

AA
2

˜M�1X

n=0

(x[n]� Ar[n])2 . (2.13)

the Lagrangian is given by,

L(A,�
1

,�
2

) =

˜M�1X

n=0

(x[n]� Ar[n])2 + �
1

(A� A
2

)� �
2

(A� A
1

). (2.14)
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The resulting KKT conditions are then

�2

˜M�1X

n=0

(x[n]� Ar[n]) r[n] + �
1

� �
2

= 0, (2.15)

�
1

� 0, �
2

� 0, �
1

(A� A
1

) = 0, �
2

(A� A
2

) = 0. (2.16)

Define Â = argmin
A

P
˜M�1

n=0

(x[n]� Ar[n])2, thus, an optimal solution for the problem

is

A⇤ =

8
>>>>>><

>>>>>>:

Â if A
1

 Â  A
2

,

A
1

if Â < A
1

,

A
2

if Â > A
2

.

(2.17)

We now study the asymptotic behavior of the MLE for the parameters A

and c. Under certain regularity conditions [51], the maximum likelihood estimator

has asymptotically (as the number of samples become large) a Gaussian distribution

with mean being the true mean and variance-covariance matrix given by the inverse of

the Fisher information matrix [50]. These regularity conditions include the following:

the true parameter value must be interior to the parameter space, the log-likelihood

function must be twice di↵erentiable, the second derivatives must be bounded, the

expected value of the log-likelihood function equals zero when the values of the pa-

rameters are taken as the true values. It is straightforward to show that the MLE

of the vector ✓ in our case satisfies these conditions, and hence for large number of

samples, the estimated vector of parameters ✓̂ has a Gaussian distribution

✓̂ ⇠ N
�
✓, I(✓)�1

�
, (2.18)

where I(✓)�1 is the Fisher Information matrix derived in Appendix A.

2.2.2 Receiver Design for Time-Varying Multipath Channels

We now consider the case of transmission over a time and frequency dispersive chan-

nel, which is typical in UWA communications. In this case, the discrete time received
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signal can be written as

x[n] =

8
>><

>>:

PL�1

l=0

hl[n]s[n� l] + w[n] if n = 0, 1, . . . ,M � 1, . . . ,M + L� 2

w[n] if n = M + L� 1, . . . , N � 1,

(2.19)

where w[n] is an AWGN, and hl[n] is the time varying channel coe�cient at the lth

delay pin and the nth instant. We assume that the receiver has an estimate for these

channel coe�cients. In practice the time varying channel taps can be estimated with

some accuracy using known transmitted bits (pilot bits). To accomplish this, we can

use one of the common channel estimation techniques for UWA channels, e.g. the

matching pursuit (MP) [52, 53] or basis pursuit (BP) [54] algorithms.

The PDF of the received signal for a given set of parameters A, c and M is

given by

p(x;A, c,M) =

1

(2⇡�2
)

N/2
exp

2

4� 1

2�2

0

@
M�1X

n=0

 
x[n]�A

L�1X

l=0

h
l

[n]r[n� l]

!2

+

N�1X

n=M

(x[n])
2

1

A

3

5 .

(2.20)

Thus, the MLE problem can be written as,
2

66664

ĉ

ˆM

ˆA

3

77775
= argmax

c,M,A

c1cc2

M1MM2

A1AA2

1

(2⇡�2
)

N/2
exp

2

4� 1

2�2

0

@
M�1X

n=0

 
x[n]�A

L�1X

l=0

h
l

[n]r[n� l]

!2

+

N�1X

n=M

(x[n])
2

1

A

3

5 .

(2.21)

where r[n] is as defined before, r[n] =
p
⌫[n] cos (2⇡c⇠[n]) , n = 0, . . . ,M � 1.

Let us define u[n] =
PL�1

l=0

hl[n]r[n�l], n = 0, . . . ,M . Thus, the maximization
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defined before is equivalent to
2

66664

ĉ

M̂

Â

3

77775
= argmin

c,M,A

c1cc2

M1MM2

A1AA2

(
M�1X

n=0

(x[n]� Au[n])2 +
N�1X

n=M

(x[n])2
)
, (2.22)

which can be reformulated as
2

66664

ĉ

M̂

Â

3

77775
= argmin

M :M
1

MM
2

8
>>>><

>>>>:

min
c,A

M�1X

n=0

(x[n]� Au[n])2

| {z }
separate optimization problem

+
N�1X

n=M

(x[n])2

9
>>>>=

>>>>;

. (2.23)

To perform the inner optimization for each value of M , as in the previous

case, we perform a one-dimensional grid search (over the parameter c) instead of the

two-dimensional grid search over the two parameters A and c since we are able to find

the optimal estimator for the amplitude given the value of c. For a given value of the

signal duration and the c value, the optimal solution for the amplitude estimate is

Â =

P
ˆM
n=0

x[n]u[n]
P

ˆM
n=0

u2[n]
, (2.24)

Therefore, the optimal MLE can be obtained similar to the one in the previous section.

As an alternative, to simplify the solution, we can estimate the parameters A and c

for the lowest possible value of the signal duration, and then search over the possible

signal durations using these estimated quantities. This is the approach adopted in

the examples section.

As in the previous subsection the asymptotic distribution of the ML estimated

vector ✓̂ is Gaussian with mean equal to the true mean and covariance matrix given

by the inverse of the Fisher information matrix, i.e.,
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✓̂ ⇠ N
�
✓, I(✓)�1

�
, (2.25)

where I(✓)�1 is the Fisher Information matrix derived in Appendix B.

2.3 Error Probability Analysis

In the previous section, we have argued that the estimated parameter vector in our

digital communication system can be modeled as

✓̂ = ✓ + ⇢, (2.26)

where ✓̂ is a vector of the estimated parameters, ✓ is a vector of the actual the

parameter values, and ⇢ is a Gaussian distributed noise vector with zero mean and

covariance matrix given by the inverse of the Fisher information matrix as shown

before. This is a common channel model, and there are many standard techniques

that can be used to analyze the bit error probability (BEP) of the proposed system.

For instance, we can resort to the union bound on the BEP.

In our proposed communication scheme, the acoustic signal that is being trans-

mitted has n parameters that convey the digital bits; these signal parameters take

values from their given range. Thus every transmitted acoustic signal is synthesized

by picking a combination from these parameters. An equivalent model for the system

is derived from the analysis of the asymptotic ML estimator of the signal param-

eters in (2.18). In this equivalent model the received signal can be represented as

an n-dimensional vector of parameters that are transmitted over an additive colored

Gaussian noise. Hence we can use noise whitening and apply the standard union

bound to estimate the error rates.

We now give a specific (toy) example to demonstrate the performance of the

proposed communication system. We use a hyperbolic chirp signal with two param-
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Figure 2.6: Simulated BEP and union bound.

eters used for the modulation purposes; namely the amplitude A and the chirp rate

c. We transmit the signal x(t)

x(t) = A
p

v(t) cos(2⇡c⇠(t)), 0 < t < T, (2.27)

where ⇠(t) = ln(t) and v(t) = d⌘(t)
dt

= 1

t
. In this example, T is the signal duration

taken as 10 ms, A, and c are the parameters that are used to carry the information

bits. The value of the parameter A ranges between 1 and 8, and c ranges between

20 kHz and 22 kHz. Each parameter is quantized into five bits. Thus, the size of

the two-dimensional signal constellation is 1024 points. Figure 2.6 shows the BEP of

the proposed communication scheme, using Monte Carlo simulations, and the union

bound computed using the approach in the previous paragraph. It is clear that the

union bound on the BEP matches the BEP computed from the simulations well for

high SNR.
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2.4 Experimental Results

We now provide some experimental results for the proposed communication system

based on measurements taken at the recent KAM11 experiment [2].

2.4.1 KAM11 Experiment

The KAM11 experiment was conducted in shallow water o↵ the western coast of

Kauai, Hawaii, at the Pacific Missile Range Facility (PMRF) during the period 23

June and 12 July 2011. The bathymetry of the operation area is shown in Figure 2.7.

We consider a fixed-source scenario at which there is no intentional motion between

the transmitter and the receiver. The positions of the adopted transmitters and

receivers are illustrated in Figs. 2.8 and 2.9. An 8-element vertical-array source was

deployed with an inter-element separation of 7.5 m and an aperture of 52.5 m. The top

element was at a nominal depth of 30 m, and the bottom element was not anchored

to the sea floor. At the receiver side, a 16-element vertical array was deployed at a

distance of 3 km from the source. The inter-element spacing was 3.75 m, with the

top element deployed at a nominal depth of 35.5 m.

The transmitted signal is a linear phase chirp signal x(t), given by

x(t) = A cos
�
2⇡f

0

t+ 2⇡ct2
�
, 0 < t < T (2.28)

where A is the amplitude of the chirp signal, f
0

is the center frequency, c is the chirp

rate, and T is the signal duration. The amplitude was then between 0.5 and 1; the

center frequency was between 22 kHz and 26 kHz; the chirp rate was changed between

2 kHz and 10 kHz, and the signal duration was selected from 100 ms and 200 ms.

Each parameter is quantized into four to ten bits to obtain di↵erent transmission

rates.
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Figure 2.7: The operation area in the KAM11 (taken from [2]).

Every recoding consists of seven transmission frames (sometimes, called sub-

groups) where each subgroup corresponds to a di↵erent transmission rate. These

di↵erent rates are attained from the fact that we map each parameter to di↵erent

number of bits, e.g., in the first subgroup the parameters are mapped to four bits, in

the second subgroup the parameters are mapped to five bits, etc. In each subgroup,

we transmit 30 consecutive chirp sequences separated by a 60 ms guard period. Thus,

the transmission rates that correspond to these subgroups are 107 bps, 127 bps, 147

bps, 167 bps, 187 bps, 207 bps, and 227 bps, respectively. In Section 2.4.4, we

will present decoding results obtained for these di↵erent rates using di↵erent receiver

combining techniques.

During the experiment, the transmitter/receiver separation was about 3 km.
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Figure 2.8: The positions of the adopted transmitters (taken from [2]).
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Figure 2.9: The positions of the adopted receivers (taken from [2]).
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Figure 2.10: BER as a function of the SNR (emulated by adding Gaussian noise on
the recorded data).

Defining the SNR at the receiver as the ratio between the signal power and the noise

power after the amplifier and the bandpass digital filter, the corresponding SNR dur-

ing the transmission is estimated to be around 11 dB. Since the SNR observed during

the experiment was relatively high, we also consider decoding of the experimental data

at lower SNRs by adding artificial (Gaussian) noise to the observations. Figure 2.10

shows the bit error rate (BER) versus the SNR for di↵erent transmission rates which

are obtained by using majority voting combining technique (will be discussed later in

more details) across the 16-antenna elements. It is clear that it is possible to decode

the transmitted data with a reasonable BEP even at very low SNR values.

2.4.2 Channel Estimation

For the channel estimation purposes, we use the transmitted chirp signals as the

channel probes as well. We employ the MP algorithm [53] to find an estimate of the

channel coe�cients. The MP algorithm is based on synthesizing a signal dictionary

that consists of the transmitted signal and delayed versions of this signal. Since the
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Figure 2.11: Power spectral density function of a chirp signal.

power spectral density of chirp signals is not close to being white, a resolution issue

appears in the channel estimation process as the chirp cannot resolve all the arrivals

that lie in a certain time interval. Nevertheless, we are constrained to using these

signals as channel probes as no other signals were transmitted during the experiment.

As an example, Figure 2.11 shows the power spectral density of a chirp signal. In

other words, we cannot use a dictionary with a high resolution, and we have to settle

for a coarse channel estimate. Even with this coarse channel estimate, we will be able

to report acceptable raw error probabilities hence this is not a major issue.

For the MP algorithm due to the correlation structure of the transmitted

signal, we use a dictionary that allows us to resolve only paths within 1 ms separation.

The stopping criteria we set for the MP algorithm is the number of resolvable paths

identified. We stop the algorithm when the number of resolvable paths equals 20

which means that we are able to span a delay spread of about 20 ms.

As an example, Figure 2.12 shows the time varying channel impulse response

32



Figure 2.12: Channel impulse response for 30 consecutive chirps at the first receive
element (these estimates have been computed from the data recorded on July 2nd,
2011 at 3:24 during the KAM11 experiment)

which is computed over a duration equals to the duration spanned by 30 adjacent chirp

signals. These channel responses correspond to the channel between the transmitter

and the first receive element. From these figures we can notice that the channel does

not significantly change from signal block to the other. The reason that we observe

a slowly varying channel is due to our channel estimator being a coarse one. The

channel in KAM 2011 at a finer resolution changes more significantly as reported

in [2]. For instance, we see from Figure 14(b) on page 34 and Figure 15(b) on page

35 in [2] that the change in the channel taps within a second or less is due to slight

change in the arrival time – which is not being resolved in our channel estimates

(being obtained from chirp signals as opposed to OFDM or other probe signals with

a high resolution). This observation (on the estimated channel being slowly varying)

will help us in the decoding process as we will see later.
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2.4.3 Receiver Structure

The receiver has 16 elements, therefore it is possible to use receive diversity to en-

hance the performance of the system. During our investigations, we explore di↵erent

combining techniques that can be used. The decoding process works as follows: we

use the MLE to find estimates of the signal parameters at each receive element, then

we decode these parameters into bits according to the mapping rule used at the trans-

mitter side. Then, we apply a diversity combining technique to combine the decoded

bits across all the receive elements. In the following subsections, we summarize the

di↵erent combining techniques we use.

2.4.3.1 Majority Voting Combining

In the majority voting (MV) combining technique, the final decision is made by the

majority voting rule. In other words, the final decision is said to be “1” if more than

half of the receive elements decide for “1” and vice versa.

2.4.3.2 Weighted Sum Combining

In weighted sum (WS) combining schemes, the overall rule is based on weighting

each receive element with a certain weight based on the reliability of its decision. We

propose to use two di↵erent weighting schemes based on the model of the decoded

bits. The first model is derived from the asymptotic behavior of the MLE. We know

that the PDF of the estimated parameters is Gaussian with means equal the true

value and the variance computed from the inverse of the Fisher information matrix.

So, for the ith receive element we have

⌘i s N (⌘
0

, Ii(⌘0)
�1), (2.29)
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where ⌘
0

is the true value. In our case, the vector of parameters ⌘ is given by,

⌘ =

2

64
C

F
0

3

75 . (2.30)

Thus MLE of the mean ⌘
0

is,

⌘̂
0

=

 
Nr�1X

i=0

Ii(⌘̂i)

!�1 Nr�1X

i=0

Ii(⌘̂i)⌘i, (2.31)

where Nr is the number of the receive elements at the receiver, and ⌘̂i is the estimate

of the vector of parameters ⌘ at the ith receiver element.

The second WS combining technique we use is based on the classical maximum

ratio combining (MRC) model. In this scheme, the output bit from the ith receive

element is modeled as

d(i) = ↵(i)q + n(i), (2.32)

where q is the original transmitted bit, ↵(i) is the `2-norm of the estimated channel

vector h(i) at the ith receive element, and n(i) is the additive noise at the ith receive

element. Thus, the weight of the output bit at the ith receive element is

�i =
|↵(i)|2

�̂i
2

, (2.33)

where �̂i
2 is the noise variance at the ith receive element. We measure the noise

variance from the silence period that exist between the transmission blocks using

�̂2 =
1

Ns

Ns�1X

n=0

x[n]2, (2.34)

where Ns is the length of the silence period, and x[n] is the received signal at the nth

instant. We define the vector � = [�
1

, �
2

, . . . , �Nr ]
T and we combine the soft values

of the bits as follows

dcombined =
1

||�||
1

�Td, (2.35)
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where || · ||
1

denotes `
1

-norm. This combined value dcombined is used with a threshold

to make the final decision, the value of this threshold is 1

2

as we assume the same a

priori probabilities for “0” and “1”.

2.4.3.3 Selection Combining

The last combining technique used is the selection combining (SC). In this case, we

perform the selection based on the two models described before. For the first model,

we select the decision made by the receive element that has the lowest noise variance.

For the chirp rate c we choose the decision made by the element lc which is given by,

lc = argmin
i

�2

c(i) , (2.36)

and for the frequency f
0

we choose the decision made by the element lf
0

which is

given by,

lf
0

= argmin
i

�2

f
(i)
0

. (2.37)

2.4.4 Decoding Results

We now present bit error rate results for our proposed communication scheme. At

the receiver, a chirp signal block is used to estimate the channel; then this channel

estimate is used to decode the next block, and so on. We can justify this from

Figure 2.12 that shows that the channel impulses responses separated by a chirp

duration are close to each other and the channel does not change significantly from

one signal block to the other. We use the 16 receive elements at the receiver to

decode the chirp parameters. Table 2.1 shows the uncoded error probability of the

chirp parameters for the three combining techniques described before. We show the

error probability results for nineteen di↵erent recordings. The results correspond to a

transmission rate of 107bps. These recordings were taken on July 2nd, 2011 at 3:24,

5:24, 7:24, 9:24, 11:24, 13:24, 15:24, 17:24, 19:24, 21:24, and 23:24, respectively, and on
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Figure 2.13: The BER for di↵erent parameters. “Blank space” means that no error
for that frame is observed. The average error rate of the frequency parameter is
0.92%, the average error rate of the chirp rate parameter is 1.62%, and the average
BER of the signal duration parameter is 2.17%.

July 3rd 2011 at 3:24, 5:24, 7:24, 9:24, 11:24, 13:24, 17:24, 21:24, 23:24, respectively.

As another example, Table 2.2 shows the error probability for di↵erent transmission

rates using the majority voting combining technique. Figure 2.13 shows the BER for

di↵erent parameters separately.

From the decoding results, it is clear that we are able to decode the signal

parameters successfully with a good BER. Our results indicate that the amplitude

and the signal duration parameters are more vulnerable to errors than the frequency

and chirp rate which is expected since the UWA channel is highly dispersive and it

a↵ects the amplitude and the signal duration than the other parameters. Also, the

WS technique with the Gaussian model shows an average BER better than the other

combining techniques. However, sometimes the MV shows a better BER than the

WS. We have observed that the SC technique shows the worst performance among

all the techniques (we did not show the resulting decoding error for that technique).
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Env. MV WS, 1st model WS, 2nd model
1 1.67% 2.5% 1.67%
2 0% 0% 0.83%
3 0% 1.25% 2.5%
4 2.5% 2.08% 3.33%
5 0.42% 2.08% 1.25%
6 1.67% 2.5% 1.67%
7 2.92% 3.33% 3.75%
8 2.92% 2.5% 1.67%
9 0.83% 0.42% 0.83%
10 3.33% 3.33% 3.75%
11 0.42% 1.25% 1.25%
12 0% 0% 0.42%
13 1.25% 0% 0.42%
14 2.92% 2.92% 4.17%
15 1.25% 0.42% 1.25%
16 1.25% 4.17% 3.33%
17 0% 0% 0%
18 2.08% 1.25% 1.67%
19 0% 0% 0%

Table 2.1: The uncoded error probability of the chirp parameters at rate equals to 107
bps. The table shows the uncoded BER for the three combining techniques, majority
voting, weighted sum (two versions).

Rate (bps) 107 127 147 167 187 207 227
Env. 1 1.67% 3.67% 2.22% 1.67% 5.63% 8.15% 13.5%
Env. 2 0% 0% 1.94% 2.86% 4.37% 8.33% 11.67%
Env. 3 0% 2% 1.11% 0.71% 6.54% 7.41% 13%
Env. 4 2.5% 7% 1.11% 1.9% 7.71% 8.33% 13.5%

Table 2.2: Error probability for di↵erent transmission rates using the MV combining
technique.
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Also, by comparing the two models of the WS technique we can notice that the first

model (the Gaussian one) shows a better average performance than the other model.

From the decoding results of di↵erent transmission rates we can notice that for

lower data rates, the BER is not monotonically increasing with the rate. However, for

higher rates, the BER states to follow a monotonically increasing behavior (increasing

the rate results on increasing the BER) as it is expected.

Although it is not our major focus, we would also like to comment on the data

rates obtained in our work compared to some other work reported on covert UWA

communications. In [46], the authors present results from the SPACE’08 experiment

during which DSSS technique was used for data transmission (to provide covertness).

The transmitter/receiver separations in this experiment are 60 m, 200 m, and 1 km.

The transmit bandwidth is 7.8125 kHz that leads to a payload data rate of 156.25

bps. In this paper, we have demonstrated successful decoding results up to 207 bps

over a bandwdith of 10 kHz with a transmitter/receiver separation of about 3 km

(significantly longer than the ones in [46]). In [26], the authors use the duration

between dolphin clicks to convey digital bits. In their work, the data rate obtained

is 37 bps with transmitter/receiver separation of about 2 km, which is a lower rate

than what we have demonstrated over a longer transmitter/receiver separation in this

paper. We further note that we were not very aggressive in selecting the transmission

rates; we anticipate that it would have been possible to pack more bits and decode

them successfully, or even use other set of parameters (using a di↵erent chirp signal)

to carry more bits.

2.4.5 Interference Analysis

In this subsection, we study the e↵ect of the coexisting other mammalian sounds on

the system performance. We conduct our study by simple method of emulation for the
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f
0

c T
SINR = 8dB 25kHz 2kHz 260msec
SINR = 4dB 25kHz 2kHz 260msec

Table 2.3: Signal parameters of the hyperbolic interfering signal.

KAM11 experiment. Specifically, we generate synthesized mammalian sounds using

the signal models described in Section 2.1 and add it to the recorded data during

the KAM11 experiment. For that purpose, we assume the following: the received

does not know the existence of the interference and we use the decoder described in

Section 2.4.3, the parameters of the interfering signal is random but fixed for during

the experiment. We consider two interference scenarios cause by two di↵erent sound

signals. The first one is the hyperbolic signal which is given by

i[nTs] = A
p

c/nTs cos(2⇡c lnnTs + 2⇡f
0

nTs). (2.38)

Table 2.3 shows the signal parameters that have been used in the emulation. The

parameters are chosen such that the interfering signal is located in the same frequency

band of the transmitted signal with the maximum spread over this band and there

is severe interference. Figure 2.14 shows the BER for di↵erent values of signal-to-

interference plus noise ratios (SINRs). The figure shows that the BER changes by no

more than 1%.

The second interference model we consider is the logarithmic signal which is

given by

i[nTs] = A
p

c lnnTs cos(2⇡cnTs(lnnTs � 1) + 2⇡f
0

nTs), (2.39)

Table 2.4 shows the signal parameters that have been used in the emulation. Figure 2.15

shows the resulting BER. From 2.14 and 2.15 we can notice that the proposed scheme

shows an immunity against interference from coexisting signals.
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f
0

c T
SINR = 9dB 25kHz 500Hz 260msec
SINR = 6dB 25kHz 500Hz 260msec

Table 2.4: Signal parameters of the logarithmic interfering signal.
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Figure 2.14: BERs for di↵erent values of SINRs, the interfering signal is hyperbolic.
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Figure 2.15: BERs for di↵erent values of SINRs, the interfering signal is logarithmic.
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2.5 Chapter Summary

In this chapter, we have proposed a new communications scheme which uses signa-

ture signals to carry digital data through a mapping of information bits into the

parameters characterizing them. At the receiver side, a decoder is developed which

estimates the parameters of the signal used, and demaps these estimates back to bits.

We show how this communications scheme can be applied in a UWA communications

setting. We utilize existing parametrized biomimetic signals as signature signals, and

design decoders that take into account the UWA channel conditions. We then derive

an equivalent approximate channel model for the proposed communications scheme

which implies a channel modeled with amplitude limited inputs and additive noise

which is signal-dependent. We demonstrate the viability of the proposed communi-

cation scheme via some experimental results recorded at the Kauai Acomms MURI

2011 experiment.
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Chapter 3

CAPACITY OF FADING CHANNELS WITH PEAK-POWER CONSTRAINED

INPUTS

Information transfer over fading channels is one of the major challenges that con-

fronts communication over wireless channels. The knowledge of the channel capacity

and optimal input distribution is of crucial importance and plays a fundamental role

in the design of channel codes. In this chapter, motivated by the amplitude-limited

channel models implied by the proposed communications scheme in Chapter 2, we

consider fading channels with amplitude limited inputs and channel gain with arbi-

trary distribution and finite support. We compute the capacity of fading channels

under peak power constraint where the channel state information is only available at

the receiver side.

Smith in [28] studies the capacity of scalar Gaussian channel under peak and

average power constraints. He shows that there is a unique optimal distribution

that maximizes the mutual information function and this distribution has a finite

number of mass points. His results are based on two propositions. In the first propo-

sition he shows that the mutual information function is a continuous function of the

distribution, and it is strictly concave and weakly di↵erentiable. Combining these

characteristics of the mutual information function for such a channel leads to prov-

ing the existence of a unique optimal input distribution. In the second proposition,

he uses techniques from measure theory and complex analysis to establish that this

capacity-achieving distribution has a finite number of mass points.

The capacity of fading channels with amplitude-limited inputs has been stud-

ied previously in the literature for certain fading distributions and di↵erent input

constraints. For instance, in [31] the authors consider transmission over Rayleigh
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fading channels where neither the transmitter nor the receiver has the channel state

information. They prove that the capacity-achieving distribution for average power-

constrained inputs is discrete. Their approach is based on the following: they show

that the capacity optimization problem is a convex optimization problem and hence

there is a unique distribution that maximizes the mutual information function. Then,

they use the KKT conditions to derive conditions on the optimal input distribution.

They establish the discreteness of the optimal distribution by arriving at contradic-

tions using techniques from complex analysis and measure theory. In fact, their proof

shares the same spirit with that of Smith’s for a standard AWGN channel in [28].

In [33], the authors investigate the capacity of Rician fading channels with

inputs having constraints on the second and the fourth moments. The capacity-

achieving distribution is shown to be discrete with a finite number of mass points.

They also study channels with peak power constraints and show that the optimal

distribution is discrete as well. In a closely related work [34], the authors gener-

alize the previous results, and show that any conditionally Gaussian channel with

amplitude-limited inputs has a discrete input distribution that achieves the capac-

ity. By conditionally Gaussian channels, the authors refer to the distribution of the

channel output conditioned on the channel input. The uniqueness of the capacity-

achieving distribution is a result of the strict convexity of the capacity optimization

problem. The discreteness of the optimal distribution is shown for conditionally Gaus-

sian channels. In their work, the authors show that when the set of points of increase

is a collection of concentric shells and bounded, it is sparse (has a finite number of

mass points) if and only if its number of shells is finite.

In this chapter, we consider fading channels with amplitude-limited inputs

with a well-behaved probability density function for the fading gain. We assume that
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the channel gains are real, have finite support and are known at the receiver. We show

that the capacity achieving distribution for a general fading model is discrete with a

finite number of mass points. Note that the channel model under consideration does

not fall within the framework of conditionally Gaussian channel studied in [34]. We

also illustrate our findings in some examples.

The chapter is organized as follows. In Section 3.1, we present the fading

channel model under consideration at which the transmitted signal is exposed to

fading that follows an arbitrary probability density function with a finite support.

In Section 3.2, we show that the capacity is maximized by a unique distribution.

To do this, we prove that the mutual information is continuous, strictly concave, and

weakly di↵erentiable function of the input distribution. Then, we show, in Section 3.3,

that this input distribution is discrete using techniques from complex analysis. In

Section 3.4, we present numerical examples to illustrate our findings, and conclude

the chapter in Section 5.6 with a summary.

3.1 Channel Model and Definitions

The received signal Y is given by

Y = ↵X +N (3.1)

where X is the channel input that is amplitude-constrained to [�A, A], i.e., it has

a probability distribution function FX(x) that belongs to the class of probability

distribution functions FX such that for any FX 2 FX , FX(x) = 0 for any x < �A

and FX(x) = 1 for any x > A. The channel coe�cient ↵ is the fading channel

coe�cient that has a probability distribution function F↵(u), we assume that the

channel coe�cient ↵ has a finite support, i.e., ↵ 2 [0, u
0

] for some u
0

< 1. The

noise N is Gaussian, i.e., N ⇠ N (0, �2), and it is independent for di↵erent uses of the

channel. We assume that the input X and the fading coe�cient ↵ are independent.
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The probability density function of the denoted output is given by

fY (y;FX) =

Z u
0

0

Z A

�A

PN(y � ux)dFX(x)dF↵(u), (3.2)

where PN(y � ux) = fY |X,↵(y|x, u) is the probability density function of the channel

output Y conditioned on specific values of X and ↵, and fY (y;FX) is the probability

density function of the channel output Y when the input has a probability distribution

function FX . The existence of fY (y;FX) is guaranteed by the existence of PN which

can be verified by computing the probability distribution function of the output

FY (y;FX) =

Z u
0

0

Z A

�A

FN(y � ux)dFX(x)dF↵(u),

=

Z u
0

0

Z A

�A

Z y

�1
PN(y

0 � ux)dy0dFX(x)dF↵(u),

=

Z y

�1

Z u
0

0

Z A

�A

PN(y
0 � ux)dFX(x)dF↵(u)dy

0

=

Z y

�1
fY (y

0;FX)dy
0,

where the interchange of the order of the integration is justified by the Fubini’s

Theorem because the probability density function of the noise PN is non-negative

and integrable.

In the following, we derive bounds on the probability density function of the

noise function PN(y � ux) and the conditional probability density function fY |↵(y|u)

for later use. It is straightforward to show that, for u > 0, the probability density

function is bounded as follows

q(y, u)  PN(y � ux)  Q(y, u), (3.3)

where

q(y, u) =

8
>><

>>:

k
1

exp(�k
2

(y � uA)2) if y  0,

k
1

exp(�k
2

(y + uA)2) if y > 0,

(3.4)
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and

Q(y, u) =

8
>>>>>><

>>>>>>:

k
3

exp(�k
4

(y + uA)2) if y  �A,

k
3

if y 2 [�A,A],

k
3

exp(�k
4

(y � uA)2) if y > A,

(3.5)

for some finite and positive k
1

, k
2

, k
3

, and k
4

. As a result, the conditional probability

density function fY |↵(y|u) can be bounded as well

�(y, u)  fY |↵(y|u)  �(y, u), (3.6)

where

�(y, u) = q(y, u), (3.7)

and

�(y, u) = Q(y, u). (3.8)

Thus, we can use the Fubini’s theorem to interchange the order of integration which

can be justified by using (3.6) such that

fY (y;FX) =

Z u
0

0

Z A

�A

PN(y � ux)dFX(x)dF↵(u),

 k
3

Z A

�A

Z u
0

0

dF↵(u)dFX(x),

= k
3

,

< 1.

Thus,

fY (y;FX) =

Z u
0

0

Z A

�A

PN(y � ux)dFX(x)dF↵(u),

=

Z A

�A

Z u
0

0

PN(y � ux)dF↵(u)dFX(x).
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The average mutual information between the input, output conditioned on the

channel is defined as [55, 56]

IFX
(X;Y |↵) ,

Z u
0

0

IFX
(X;Y |↵ = u)dF↵(u) (3.9)

where

IFX
(X;Y |↵ = u) ,

Z 1

�1

Z A

�A

PN(y � ux) log

✓
PN(y � ux)

fY |↵(y|u;FX)

◆
dFX(x)dy (3.10)

We define the conditional entropy HFX
(Y |↵) as

HFX
(Y |↵) , �

Z u
0

0

Z 1

�1
fY |↵(y|u;FX) log fY |↵(y|u;FX)dF↵(u)dy. (3.11)

For noise with finite variance and bounded density function, the conditional mutual

information function can be written as,

IFX
(X;Y |↵) = HFX

(Y |↵)�D, (3.12)

where D is the noise entropy which is defined as

D , �
Z 1

�1
PN(z) logPN(z)dz. (3.13)

For a Gaussian channel of mean 0 and variance �2, the noise entropy is

D =
1

2
log
�
2⇡e�2

�
. (3.14)

The channel capacity is defined as

C = max
FX2FX

IFX
(X;Y |↵). (3.15)

We define the conditional mutual information density iF (x|↵ = u) conditioned

on a specific value of ↵, and the conditional entropy density hF (x|↵ = u) conditioned

on a specific value of ↵ as

iFX
(x|↵ = u) ,

Z 1

�1
PN(y � ux) log

PN(y � ux)

fY |↵(y|u;FX)
dy, (3.16)

hFX
(x|↵ = u) , �

Z 1

�1
PN(y � ux) log fY |↵(y|u;FX)dy. (3.17)
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Thus, the following equation holds

iFX
(x|↵ = u) = hFX

(x|↵ = u)�D. (3.18)

Define the conditional mutual information density iFX
(x|↵) and the conditional

entropy density as hFX
(x|↵)

iFX
(x|↵) ,

Z u
0

0

iFX
(x|↵ = u)dF↵(u), (3.19)

hFX
(x|↵) ,

Z u
0

0

hFX
(x|↵ = u)dF↵(u). (3.20)

Thus, the following equations hold

iFX
(x|↵) = hFX

(x|↵)�D, (3.21)

IFX
(X;Y |↵) =

Z A

�A

iFX
(x|↵)dFX(x), (3.22)

HFX
(Y |↵) =

Z A

�A

hFX
(x|↵)dFX(x). (3.23)

These equations hold by the definition of the information density and the definition

of the entropy density.

Lemma 3.1.1. The entropy density hFX
(x|↵) and the the mutual information density

iFX
(x|↵) are finite.

Proof. It is su�cient to show the finiteness of HFX
(Y |↵) as the di↵erence between

IFX
(X;Y |↵) and HFX

(Y |↵) is just a constant. In order to show the finiteness of

HFX
(Y |↵), we show the finiteness of hFX

(x|↵) and hence conclude the finiteness of
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HFX
(Y |↵). 8x 2 [�A,A], we have

|hFX
(x|↵)| =

����
Z u

0

0

hFX
(x|↵ = u)dF↵(u)

����


Z u

0

0

Z 1

�1

��PN(y � ux) log(fY |↵(y|u;FX))
�� dF↵(u)dy


Z u

0

0

Z 1

�1
PN(y � ux)[� log(fY |↵(y|u;FX)) + 2| log(k

3

)|]dF↵(u)dy


Z u

0

0

Z 1

�1
Q(y, u)[� log(q(y, u)) + 2| log(k

3

)|]dF↵(u)dy

= 2

Z u
0

0

Z 1

0

(�Q(y, u) log(q(y, u)) + 2Q(y, u)| log(k
3

)|) dF↵(u)dy.

It is easy to show that
R u

0

0

R1
0

2Q(y, u)| log(k
3

)|)dF↵(u)dy < 1, e.g., similar to the

arguments in [35]. Hence, hFX
(x|↵) is finite, and |hFX

(x|↵)|  k, for some k < 1.

This implies

HFX
(Y |↵) =

Z A

�A

hFX
(x|↵)dFX(x),

 k

Z A

�A

dFX(x),

< 1,

that is, IFX
(X;Y |↵) and HFX

(Y |↵) are both finite.

3.2 Capacity Optimization Problem

In this sub-section, we show that the mutual information is a strictly concave function,

weakly di↵erentiable, and continuous function of the input distribution. In order to

show the concavity of the mutual information, we use Ash’s Lemma [57] to bound

the mutual information. The weak di↵erentiability is shown by following similar line

of arguments as in [28]. Continuity of the mutual information is shown using the

Helly-Bray Theorem.
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3.2.1 The Mutual Information is a Continuous Function of the Distribution

The conditional mutual information is

IFX
(X;Y |↵) = HFX

(Y |↵)�D, (3.24)

and the conditional entropy is

HFX
(Y |↵) =

Z u
0

0

HFX
(Y |↵ = u)dF↵(u). (3.25)

Thus, if we can show that HFX
(Y |↵ = u) is a continuous function of the input

distribution, we can invoke the Dominated Convergence Theorem to conclude the

continuity of HFX
(Y |↵).

Let us fix a sequence {F (n)
X (x)}n�1

in FX such that F (n)
X (x) ! FX(x) for some FX 2

FX .

lim
n!1

fY |↵(y|u;F (n)
X ) = lim

n!1

Z A

�A

PN(y � ux)dF (n)
X (x),

(a)
=

Z A

�A

PN(y � ux)dFX(x),

= fY (y;FX),

where (a) follows by the Helly-Bray Theorem [58]. Then,

lim
n!1

fY |↵(y|u;F (n)
X ) log

⇣
fY |↵(y|u;F (n)

X )
⌘
= fY |↵(y|u;FX) log

�
fY |↵(y|u;FX)

�
. (3.26)

On the other hand, from (3.6),

����fY |↵(y|u;F (n)
X ) log

⇣
fY |↵(y|u;F (n)

X )
⌘���  �(y, u) [� log(�(y, u)) + 2| log(k

3

)|] ,

(3.27)

and hence we can easily verify that

����
Z 1

�1
fY |↵(y|u;FX) log

�
fY |↵(y|u;FX)

�
dy

���� < 1. (3.28)
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Thus, by applying the Dominated Convergence Theorem, we can conclude that

the function HFX
(Y |↵) is continuous function of the input distribution and hence

IFX
(X;Y |↵) is a continuous function of FX(x) as well.

3.2.2 The Mutual Information Function is a Strictly Concave Function of the

Input Distribution

We have

IFX
(Y ;X|↵) = HFX

(Y |↵)�D. (3.29)

Hence, it is enough to show that the conditional entropy HFX
(Y |↵) is strictly concave

function of the distribution to conclude the strict concavity of the mutual information

function. The conditional entropy is given by

HFX
(Y |↵) =

Z u
0

0

HFX
(Y |↵ = u)dF↵(u). (3.30)

To show the strict concavity of the conditional entropy, we first show that

HFX
(Y |↵ = u) is strictly concave for every u in the support of the random variable

↵ by considering

Y = uX +N. (3.31)

for a fixed u. For u > 0, we define a new random variable Y 0 = Y
u
, and hence

Y 0 = X +
N

u
. (3.32)

This equivalent model is the same as the scalar Gaussian channel model studied by

Smith in [28], however, the noise variance for our case is �2

u2

. The strict concavity

applies immediately using his results and we conclude the strict concavity of the

conditional output entropy since positive weighted sum of strictly concave function

is strictly concave [59]. For the case of u = 0, the received signal Y = N and hence

the conditional mutual information IFX
(X;Y |↵ = 0) = 0
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3.2.3 The Mutual Information is a Weakly Di↵erentiable Function

Lemma 3.2.1. The mutual information function I(X;Y |↵) is a weakly di↵erentiable

function and its weak derivative is

I 0F
1

,F
2

(X;Y |↵) =
Z A

�A

iF
1

(x|↵)dF
2

(x)� IF
1

(X;Y |↵). (3.33)

Proof. The weak derivative is defined as [60]

I 0F
1

,F
2

(X;Y |↵) = lim
✓!0

I
(1�✓)F

1

+✓F
2

(X;Y |↵)� IF
1

(X;Y |↵)
✓

= lim
✓!0

Z u
0

0

I
(1�✓)F

1

+✓F
2

(X;Y |↵ = u)� IF
1

(X;Y |↵ = u)

✓
dF↵(u),

= lim
✓!0

Z u
0

0

H
(1�✓)F

1

+✓F
2

(Y |↵ = u)�HF
1

(Y |↵ = u)

✓
dF↵(u).

Let us define F✓ , (1� ✓)F
1

+ ✓F
2

and

J(✓, F
1

, F2) ,
Z u

0

0

HF✓
(Y |↵ = u)�HF

1

(Y |↵ = u)

✓
dF↵(u). (3.34)

Noting that

fY |↵(y|↵ = u;F✓) = fY |↵(y|↵ = u;F
1

) + ✓
�
fY |↵(y|↵ = u;F

2

)� fY |↵(y|↵ = u;F
1

)
�
,

(3.35)

we can write

J(✓, F1, F2) = �1

✓

Z
u0

0

Z 1

�1
f
Y |↵(y|↵ = u;F

✓

) log

�
f
Y |↵(y|↵ = u;F

✓

)

�
dydF

↵

(u)

+

1

✓

Z
u0

0

Z 1

�1
f
Y |↵(y|↵ = u;F1) log

�
f
Y |↵(y|↵ = u;F1)

�
dydF

↵

(u)

= �
Z

u0

0

Z 1

�1

f
Y |↵(y|↵ = u;F1)

✓

log

�
f
Y |↵(y|↵ = u;F1) + ✓

�
f
Y |↵(y|↵ = u;F2)� f

Y |↵(y|↵ = u;F1)
��

dydF
↵

(u)

�
Z

u0

0

Z 1

�1

�
f
Y |↵(y|↵ = u;F2)� f

Y |↵(y|↵ = u;F1)
�

log

�
f
Y |↵(y|↵ = u;F1) + ✓

�
f
Y |↵(y|↵ = u;F2)� f

Y |↵(y|↵ = u;F1)
��

dydF
↵

(u)

+

Z
u0

0

Z 1

�1

f
Y |↵(y|↵ = u;F1)

✓
log

�
f
Y |↵(y|↵ = u;F1)

�
dydF

↵

(u)
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From Taylor expansion (similar to [28, 35]) we have

log
�
fY |↵(y|↵ = u;F

1

) + ✓
�
fY |↵(y|↵ = u;F

2

)� fY |↵(y|↵ = u;F
1

)
��

= log
�
fY |↵(y|↵ = u;F

1

)
�
+ ✓

✓
fY |↵(y|↵ = u;F

2

)� fY |↵(y|↵ = u;F
1

)

fY |↵(y|↵ = u;F
1

)

◆

� ✓2

2

 
fY |↵(y|↵ = u;F

2

)� fY |↵(y|↵ = u;F
1

)

fY |↵(y|↵ = u;F
1

) + ✏✓
�
fY |↵(y|↵ = u;F

2

)� fY |↵(y|↵ = u;F
1

)
�
!

2

for some ✏ 2 [0, 1]. Rewriting (3.36) using the previous expansion gives us

J(✓, F
1

, F
2

) +

Z u
0

0

Z 1

�1
(fY |↵(y|↵=u;F

2

)�fY |↵(y|↵=u;F
1

)) log(fY |↵(y|↵=u;F
1

))dydu

= ✓

Z u
0

0

Z 1

�1

0

@(fY |↵(y|↵=u;F
2

)�fY |↵(y|↵=u;F
1

))
2

(fY |↵(y|↵=u;F
1

)+✓(fY |↵(y|↵=u;F
2

)�fY |↵(y|↵=u;F
1

)))
2(fY |↵(y|↵=u;F

1

)+✏✓(fY |↵(y|↵=u;F
2

)�fY |↵(y|↵=u;F
1

)))
2

�
(fY |↵(y|↵=u;F

2

)�fY |↵(y|↵=u;F
1

))
2

fY |↵(y|↵=u;F
1

)

1

AdydF↵(u) (3.36)

J(✓, F1, F2) +

Z
u0

0

Z 1

�1

�
f
Y |↵(y|↵ = u;F2)� f

Y |↵(y|↵ = u;F1)
�
log

�
f
Y |↵(y|↵ = u;F1)

�
dydF

↵

(u)

= ✓

Z
u0

0

Z 1

�1
⌘(y, u)dydF

↵

(u),

where ⌘(y, u) is the integrand in (3.36). Using exact line of arguments as in [28, 35],

and using Lemma 3.1.1 to show the finiteness of
R u

0

0

R1
�1 ⌘(y, u)dydF↵(u), we obtain

lim✓!0

J(✓,F
1

,F
2

) = �
R u

0

0

R1
�1(fY |↵(y|↵=u;F

2

)�fY |↵(y|↵=u;F
1

)) log(fY |↵(y|↵=u;F
1

))dydF↵(u)

= �
R u

0

0

R1
�1 fY |↵(y|↵=u;F

2

) log(fY |↵(y|↵=u;F
1

))dydF↵(u)�HF
1

(y|↵)

=
RA
�A hF

1

(x|↵)dF
2

(x)�HF
1

(y|↵).

As a result, the weak derivative is

I 0F
1

,F
2

(X;Y |↵) =

Z u
0

0

✓Z A

�A

iF
1

(x|↵ = u)dF
2

(x)� IF
1

(X;Y |↵ = u)

◆
dF↵(u),

=

Z A

�A

iF
1

(x|↵)dF
2

(x)� IF
1

(X;Y |↵). (3.37)
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Theorem 3.2.2. C, the capacity of the channel, is achieved by a unique probability

distribution function F
0

in FX , i.e.,

C , max
FX inFX

I(X;Y |↵) (3.38)

for some unique F
0

in FX .

Proof. The space FX is convex and compact in some topology [61]. We showed that

the function I : FX ! R is strictly concave, continuous, and weakly di↵erentiable in

FX which concludes the proof of the theorem.

Corollary 3.2.3. There exists an optimal F
0

2 FX which satisfies

Z A

�A

iF
0

(x|↵)dF (x)� IF
0

(X;Y |↵)  0 (3.39)

Also,

iF
0

(x|↵)  IF
0

(X;Y |↵), 8x 2 [�A,A], (3.40)

iF
0

(x|↵) = IF
0

(X;Y |↵), 8x 2 E
0

, (3.41)

where E
0

is the set of points of increase of the probability distribution function FX .

Proof. The proof follows from similar lines of reasoning as in [28]. Assume that F
0

is

optimal but the first equation is not true. Then there exists X
1

2 [�A,A] such that

iF
0

(x|↵) > IF
0

(X;Y |↵). Let Fx(x) , U(x� x
1

). Then,

Z A

�A

iF
0

(x|↵)dF
1

(x) = iF
0

(x
1

|↵) > IF
0

(X;Y |↵). (3.42)

This contradicts the results of Theorem 3.2.2. Thus, the first equation is valid, i.e.,

iF
0

(x|↵)  IF
0

(X;Y |↵), 8x 2 [�A,A]. (3.43)
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Now, assume that the second equality is not valid. Define E 0 as a subset of

E
0

with positive measure, Z

E0
dF

0

(x) = � > 0, (3.44)

and

iF
0

(x|↵) < IF
0

(X;Y |↵), 8x 2 [�A,A]. (3.45)

Since Z

E
0

�E0
dF

0

(x) = 1� � (3.46)

and

iF
0

(x|↵) = IF
0

(X;Y |↵) on E
0

� E 0 (3.47)

then

IF
0

(X;Y |↵) =

Z

E
0

iF
0

(x|↵)dF
0

(x)

=

Z

E0
iF

0

(x|↵)dF
0

(x) +

Z

E
0

�E0
iF

0

(x|↵)dF
0

(x)

< �IF
0

(X;Y |↵) + (1� �)IF
0

(X;Y |↵)

= IF
0

(X;Y |↵)

which is a contradiction. Thus, the second statement holds.

3.3 Discreteness of the Optimal Distribution

In this subsection, we prove that the optimal distribution that maximizes the mutual

information function is discrete with a finite number of mass points. The proof is

based on contradiction arguments as in [28] by assuming that the set E
0

has an

infinite number of mass points, and since the set E
0

is bounded, we can use Bolzano

Weierstrass to argue that the set E
0

has a limit point. Then, we extend the conditional

entropy function to the complex and show its analyticity on an open connected set

in the complex plane (including the real line). By doing so, we can use the Identity
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Theorem to establish contradiction arguments that lead to the impossibility of the

set E
0

to have infinite number of points.

We extend the conditional entropy density hF
0

(x|↵) to the complex plane. The

conditional entropy density is given by

hF
0

(x|↵) =
Z u

0

0

hF
0

(x|↵ = u)dF↵(u). (3.48)

We first extend hF
0

(x|↵ = u) to the complex plane. For any z = ⌘ + i⇣ 2 C and

u 2 [0, u
0

],

|h
FX (z|↵ = u)| 

Z 1

�1
|P

N

(y � uz)|| log f
Y |↵(y|u;FX

)|dy,

=

Z 1

�1

1p
2⇡�2

����exp
✓
�(y � uz)2

2⇡�2

◆���� | log fY |↵(y|u;FX

)|dy,


Z 1

�1

1p
2⇡�2

����exp
✓
�(y � u⌘ � iu⇣)2

2⇡�2

◆���� [� log(�(y, u)) + 2| log(k3)|]dy,

 1p
2⇡�2

exp

✓
u⇣2

2�2

◆Z 1

�1

����exp
✓
�(y � u⌘)2

2⇡�2

◆����
⇥
log(k1) + k2|(y � uz)2|+ 2| log(k3)|

⇤
dy,

 1p
2⇡�2

exp

✓
u⇣2

2�2

◆Z 1

�1
|P

N

(y � u⌘)|
⇥
log(k1) + k2|(y � uz)2|+ 2| log(k3)|

⇤
dy,

< 1,

which is finite for any |z|  1. Thus, the extension of hFX
(z|↵ = u) is well defined.

The existence of the extension of hF
0

(z|↵) is shown by defining Mu

Mu = max
u2[0, u

0

]

|hFX
(z|↵ = u)|. (3.49)

Note that the Mu exists and attained since the conditional entropy |hFX
(z|↵ = u)| is

bounded and the support of ↵ is compact.
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Thus,

|hF
0

(z|↵)| =

����
Z u

0

0

hFX
(z|↵ = u)dF↵(u)

���� ,


Z u

0

0

|hFX
(z|↵ = u)| dF↵(u),

 Mu

Z u
0

0

dF↵(u),

= Mu,

< 1,

and hence hF
0

(z|↵) has an extension to the complex plane.

Since the probability density function of the noise PN(y� uz) is analytic, i.e.,

using Morera’s theorem we can write

I

!

PN(z)dz = 0, (3.50)

where ! is a closed contour on the complex plane. As a result, to show the analyticity

of the of the conditional entropy density we need to show that the integration of the

conditional entropy over a closed contour is zero. This can be shown as follows:

I

!

hFX
(z|↵)dz = �

I

!

Z u
0

0

Z 1

�1
PN(y � uz) log(fY |↵(y|u;FX))dudydz,

a
=

Z u
0

0

Z 1

�1
log(fY |↵(y|u;FX))

I

!

PN(y � uz)dzdudy,

= 0,

where in (a) we used Fubini’s Theorem to change the order of integrations which can

be justified by recalling that the inner integration is the conditional entropy density

|hFX
(z|↵)| which was shown to be finite in (3.49). Now let us define M! as

M! = max
z2!

|hFX
(z|↵)| , (3.51)
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M! exists since the conditional entropy |hFX
(z|↵)| is bounded and the contour ! is

closed. Hence
����
I

!

hFX
(z|↵)dz

���� =

����
I

!

Z u
0

0

Z 1

�1
PN(y � uz) log(fY |↵(y|u;FX))dudydz

���� ,


I

!

����
Z 1

�1

Z u
0

0

PN(y � uz) log(fY |↵(y|u;FX))dudy

���� dz,


I

!

M!dz,

 M!l!,

< 1,

where l! is the length of ! which is finite as ! is a closed contour.

It is now straightforward to establish that the extension of the marginal density

iF
0

(z|↵) is well defined (since its di↵erence with the entropy density is a constant).

Also it is analytic on some open connected set D ⇢ C including the real line.

To show that E
0

should have a finite number of mass points let us define the

function g(x, u) = iF
0

(x|↵ = u) � IF
0

(X;Y |↵ = u). The optimality condition is
R u

0

0

g(x, u)dF↵(u) = 0. Thus,
Z u

0

0

(iF
0

(x|↵ = u)� IF
0

(X;Y |↵ = u)) dF↵(u) = 0, (3.52)

Z
u0

0

✓
�
Z 1

�1
P
N

(y � ux) log f
y|↵(y|u)dy �

1

2

log(2⇡�2
)� I

F0(X;Y |↵ = u)

◆
dF

↵

(u) = 0. (3.53)

We note that the lower bound of the integration can be changed to 0+ instead of

0; that is because if u = 0, iF
0

(x|↵ = u) = IF
0

(X;Y |↵ = u) = 0. Let us define

L(u) = IF
0

(X;Y |↵ = u) + 1

2

log(2⇡�2) and ⇢(y, u) , log fy|↵(y|u) + L(u). Define

⌦+

u = {y : ⇢(y, u) � 0}, and ⌦�
u = {y : ⇢(y, u) < 0}. (3.54)

Then,
Z u

0

0

Z

⌦

+

u

PN(y � ux)⇢(y, u)dy +

Z

⌦

�
u

PN(y � ux)⇢(y, u)dy

�
dF↵(u) = 0. (3.55)
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For the set ⌦+

u , we have ⇢(y, u)  log(�(y, u)) + L(u)  log(k
3

) + L(u), hence,

k
3

(u) > 2�L(u). Choose a constant l such that l > 2uA+
q

log(k
3

(u))+L(u)
k
4

log(e)
. Therefore,

for very large values of x and u > 0

Z

⌦

+

u

PN(y � ux)⇢(y, u)dy 
Z l

�l

PN(y � ux)⇢(y, u)dy,

 (log(k
3

(u)) + L(u))

Z l

�l

Q(y � ux)dy, (3.56)

which can be made arbitrary small by choosing large values for x, i.e.,

Z

⌦

+

u

PN(y � ux)⇢(y, u)dy  0. (3.57)

On the other hand,

Z

⌦

�
u

PN(y � ux)⇢(y, u)dy 
Z 1

l

PN(y � ux)⇢(y, u)dy,


Z 1

l

PN(y � ux) [log(�(y, u)) + L(u)] dy,

(a)
<

Z x+A

x�A

q(A, u) [log(�(x+ A, u)) + L(u)] dy,

< 2Aq(A, u) [log(�(x+ A, u)) + L(u)] ,

< 0, (3.58)

where (a) follows from (4.4) and the fact that the integrable function is monotone in

y. Let us define M(x) as

M(x) = max
u2[0,u

0

]

g(x, u). (3.59)

First we note that M(x) is attainable for some u 2 [0, u
0

] since the function g(x, u)

is continuous, and defined over a compact set. We also note from (3.56) and (3.58)
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that M(x) < 0. As a result, we have

Z u
0

0

g(x, u)dF↵(u) 
Z u

0

0

M(x)dF↵(u),

= M(x)

Z u
0

0

dF↵(u),

= M(x),

< 0,

which contradicts with the optimality condition in (3.55), hence the set E
0

cannot

have infinite number of mass points concluding the proof of the desired result.

3.4 Numerical Example

In order to exemplify our findings, we present the following numerical example. We

consider a fading channel for which the channel coe�cient ↵ follows a truncated

Rayleigh distribution, i.e., the probability density function of the channel coe�cient

is given by

f↵(u) =
4u

1� exp(�32)
exp(�2u2), u 2 [0, 4]. (3.60)

We take a noise variance of 1.5, and an amplitude constraint of A = 3. We compute

the capacity-achieving distribution by following an iterative algorithm similar to the

one in [28] that starts by assuming that the input distribution has only two points

and keep changing the number of points and computing the associated probabilities

until the optimality conditions are satisfied. Figure 3.1 shows the resulting optimal

input distribution for the example above.

We also compare the capacity of the truncated Rayleigh fading channel, with

the same fading distribution, for two di↵erent input constraints: the first one is the

peak-power constrained inputs and the second one is the average power constrained

inputs. Both capacities are plotted in Figure 3.2 which shows that constraining the

peak power reduces the channel capacity compared to constraining the average power.
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Figure 3.1: The optimal input distribution of a truncated Rayleigh fading channel
with variance 1.5 and amplitude constraint equals to three.
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Figure 3.2: The capacity of the Rayleigh fading channel vs the amplitude constraint
A.
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3.5 Chapter Summary

In this chapter, we study the capacity of fading channels where the channel gain

which is available at the receiver follows an arbitrary distribution with finite support.

We show that the channel capacity is achieved by a unique optimal distribution and

this distribution is discrete with a finite number of mass points, and we illustrate our

findings via some numerical examples.
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Chapter 4

CAPACITY OF AMPLITUDE-LIMITED AWGN CHANNELS WITH

SIGNAL-DEPENDENT NOISE

The proposed communication scheme in Chapter 2 implies that the approximate chan-

nel model is a Gaussian channel with signal-dependent noise and amplitude-limited

inputs. This motivates us to study the capacity of channels with signal-dependent

additive Gaussian noise under peak power constraints. Such channel models appear

in other applications as well. For instance, it appears in magnetic recording for which

the media noise a↵ects the reading and recording on the disk due to the jitter in the

read head [62, 63]. As another example, this model is also suitable in free space optical

communications where message bits are encoded and then modulated to create coded

symbols which are transmitted via a laser beam through the optical channel. At the

receiver side, the received optical signal is detected by avalanche photodiodes that

convert it to an electrical signal. The photo detection process introduces extra noise

to the system, this noise is modeled as signal-dependent noise. An existing channel

model for the photo detection process in the optical communication is the Poisson

channel model [64] at which the number of photons has a Poisson distribution with

rate that depends on the current input. An approximate model is presented in [65] in

which the the added noise to the transmitted signal is a signal-dependent Gaussian

noise with variance related to the system parameter and the input signal.

Finding the capacity of signal-dependent additive Gaussian noise channels is

of significant interest to facilitate a through understanding of the system proposed

in Chapter 2. Motivated by this and other applications, in this chapter, we consider

a Gaussian channel with signal-dependent noise with amplitude-limited inputs. We

investigate the capacity of such channels and the capacity-achieving distributions.
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Certain aspects of the problem of finding the capacity of signal-dependent

Gaussian noise channels with amplitude-limited inputs has been studied in the pre-

vious literature. For example, Moser in [66] derives upper and lower bounds on the

capacity of certain channels with input-dependent Gaussian noise. The upper bound

relies on a dual expression for channel capacity and a new notion called the capacity-

achieving input distributions that escape to infinity. The lower bound is based on a

lower bound on the di↵erential entropy of the channel output in terms of the di↵er-

ential entropy of the input.

Tchamkerten in [29] generalizes Smith’s results in [28] for channels with ad-

ditive noise which is not necessarily Gaussian. He shows that the capacity-achieving

distributions of certain class of additive channels (that satisfy some regularity condi-

tions) are discrete as well. Discrete distributions appear as optimal inputs in other

cases too. As an example, quadrature Gaussian channels have been studied in [30],

where the authors show that the capacity-achieving distribution has a uniformly dis-

tributed phase and discrete distribution of the amplitude. In [32], the authors study

non-coherent AWGN channels and prove that the optimal input distribution is dis-

crete, and they compute tight lower bounds on the capacity of the channel based on

examination of some suboptimal input distributions. The authors in [35, 36] study

the capacity of the multiple access channel (MAC) with amplitude-constrained inputs.

They show that the sum-capacity achieving distribution is discrete. This distribution

achieves rates at any of the corner points of the capacity region. In Chapter 3, we

compute the capacity of fading channels under peak power constraints, and show that

the capacity-achieving distribution is discrete even when the receiver has access to

the channel state information.

In this chapter, we show that under some technical conditions and for well-
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behaved noise, the capacity of signal-dependent Gaussian noise with arbitrary noise

variance is achieved by a discrete input distribution. We follow similar arguments as

in [35, 61], and show that the mutual information function is concave, continuous,

and weakly di↵erentiable over a compact and convex space of distributions. Then,

we show that for well-behaved noise variance functions, the capacity is achieved by a

discrete input distribution.

The chapter is organized as follows: In Section 4.1, we present the specific

channel model under consideration where the additive noise is Gaussian with vari-

ance that depends on the transmitted signal. In Section 4.2, we show that the there is

an input distribution that maximizes the mutual information by proving that the ca-

pacity is a continuous, concave function of the distribution, and weakly di↵erentiable

function. Then, in Section 4.3, we show that under some technical conditions on the

noise variance, the input distribution is discrete using techniques from complex anal-

ysis. In Section 4.4, we present numerical examples for two models that exist in the

literature; the first one is an optical communication based on intensity modulation

which introduced by Moser in [66] and the second one is an example from magnetic

recording channels. We finally conclude the chapter in Section 4.5 with a summary.

4.1 Channel Model

The received signal Y is given by

Y = X +N(X) + Z (4.1)

whereX is the channel input, N(X) is the noise, and Y is the output random variable.

We assume that the random variable X has an amplitude-constraint such that |X| 

A for some A > 0. Let FX denote the corresponding class of distribution functions

FX ; i.e., FX in FX implies FX(x) = 0 for all x < �A and FX(x) = 1 for all x � A.

N(X) is an additive Gaussian noise, that depends on the transmitted signal X, with
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zero mean and variance �2

n(x) when X = x. We define �2

n(x) = �2

n(A) for all x � A,

and �2

n(x) = �2

n(�A) for all x  �A without loss of generality. We assume that �2

n(x)

is a bounded, continuous, and di↵erentiable function of the input x. We note that if

�2

n(x) = 0, then N(X) = 0, 8x 2 [�A, A]. Z is an independent additive Gaussian

noise with variance �2

z .

The existence of fY (y;FX) is guaranteed by the boundedness and integrability

of the noise function PN , i.e.,

fY (y;FX) =

Z A

�A

PN(y � x, x)dFX(x). (4.2)

The probability density function of the output fY (y;FX) can be bounded by

�(y)  fY (y;Fx)  �(y), (4.3)

where

�(y) = min
x2[�A,A]

PN(y � x, x)

= min
x2[�A,A]

1p
2⇡(�2

z + �2

n(x))
exp


� (y � x)2

2(�2

z + �2

n(x))

�
.

= k
1

e�k
2

(y�x
0

)

2

where x
0

= argmin
x2[�A,A]

PN(y � x, x) and

�(y) = max
x2[�A,A]

k exp� (y � x)2

2(�2

z + �2

n(x))
, (4.4)

where k is defined as k , max
x2[�A,A]

1p
2⇡(�2

z+�2

n(x))
; we clearly have k < 1.

For a given distribution function FX on the channel input X the average

mutual information betweenX and Y will be denoted by IF (X;Y ) and will be written

as I(FX). The output entropy HF (Y ) will be denoted as H(FX), and the conditional
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entropy is denoted as HF (Y |X). The conditional entropy HF (Y |X) is given by

HF (Y |X) =

Z A

�A

H(Y |X = x)dF (x), (4.5)

=

Z A

�A

1

2
log(2⇡e(�2

n(x) + �2

z)dF (x),

=

Z A

�A

1

2
log(2⇡e�2

z)dF (x) +
1

2

Z A

�A

log

✓
1 +

�2

n(x)

�2

z

◆
dF (x),

=
1

2
log(2⇡e�2

z) +
1

2
E[log(�2(X))],

where �2(x) = 1+ �2

n(x)
�2

z
. We note that the function �2(x) is continuous and bounded

and greater than or equal to one, hence the expectation 1

2

E[log(�2(X))] exists. Thus,

the average mutual information between the random variables X and Y is

I(FX) = H(FX)�D � 1

2
EF [log(�

2(X))], (4.6)

where D = 1

2

log(2⇡e�2

z).

We define the mutual information density iF (x) and the entropy density hF (x)

as

iFX
(x) ,

Z 1

�1
PN(y � x, x) log

PN(y � x, x)

fY (y;Fx)
dy, (4.7)

hFX
(x) , �

Z 1

�1
PN(y � x, x) log fY (y;Fx)dy. (4.8)

Thus, the following equation holds

iFX
(x) = hFX

(x)� 1

2
log(�2(x))�D. (4.9)

The capacity C(A) of such channel is defined as the maximum of the mutual infor-

mation over the space of the probability distribution functions which is given by:

C(A) = max
FX in FX

I(FX). (4.10)
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4.2 Capacity Optimization Problem

In this section, we present our results on the capacity optimization problem of signal-

dependent Gaussian channels with amplitude-limited inputs. Our results show that

there is an optimal distribution that maximizes the mutual information and this dis-

tribution is discrete under certain technical conditions. To accomplish this, we first

show that the mutual information is a concave function and hence an optimal dis-

tribution exists, and then we derive conditions on the optimal distribution using the

Karush-Kuhn-Tucker (KKT) conditions. Finally, we investigate this optimal distribu-

tion using techniques from the real analysis, and we show that under some technical

conditions on the function that relates the noise variance to the input signal the

capacity-achieving distribution is discrete with a finite number of mass points. Our

result is given in the following theorem:

Theorem 4.2.1. C is achieved by a random variable, denoted by X
0

with probability

distribution function F
0

2 FX , i.e.,

C = max
FX2FX

I(FX) = I(F
0

) (4.11)

for some F
0

2 FX . A necessary and su�cient condition for F
0

to achieve capacity is

iF
0

(x)  I(F
0

), 8x 2 [�A,A]. (4.12)

Furthermore, this distribution is discrete and consists of finite number of mass points

if some technical conditions on �2(X) hold.

Proof. To prove the theorem, it is su�cient to show that the FX is convex and

compact in some topology, and that the mutual information I(X;Y ) : FX ! R

is a continuous, concave function, and weakly di↵erentiable. Thus, invoking the

KKT Theorem results in su�cient and necessary conditions for the optimal input

probability distribution.
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For the functional space FX , convexity and compactness follow by following

similar arguments as in [61]. For the mutual information function, we first show that

it is a continuous function using Helly-Bray Theorem [58]. Then, we show that it is

concave in the input distribution. Finally, weak di↵erentiability is shown by following

similar line of arguments as in [61].

The discreteness of the input distribution is established using Bolzano-Weierstrass

and the Identity Theorems that lead to contradiction arguments which conclude the

discreteness of the input distribution. In the following subsections, we present the

details of the proof.

As described before the mutual information function is given by

I(FX) = H(FX)�D � 1

2
EF [log(�

2(X))]. (4.13)

Hence, clearly, we note that the main di↵erence between this work and the work

in [61] is the existence of the expectation term 1

2

EF [log(�2(X))] and the di↵erence in

the form of H(FX) in the mutual information function. The objective of this work

boils down to studying the e↵ects of these on the concavity of the mutual information,

its weak di↵erentiability, and discreteness of the capacity-achieving distribution.

4.2.1 The Mutual Information is a Continuous Function of the Distribution

Let us fix a sequence {F (n)
X (x)}n�1

in FX such that F (n)
X (x) ! FX for some FX 2 FX .

Since the noise variance function �2(X) continuous by assumption, PN(· ) is bounded

and continuous as well. As a result

lim
n!1

fY (y;F
(n)
X ) = lim

n!1

Z A

�A

PN(y � x, x)dF (n)
X (x),

(a)
=

Z A

�A

PN(y � x, x)dFX(x),

= fY (y;FX),
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where (a) follows by the Helly-Bray Theorem [58]. Then,

lim
n!1

fY (y;F
(n)
X ) log

⇣
fY (y;F

(n)
X )
⌘
= fY (y;FX) log (fY (y;FX)) . (4.14)

On the other hand, from (4.4),

����fY (y;F
(n)
X ) log

⇣
fY (y;F

(n)
X )
⌘���  �(y)[� log(�(y)) + 2 |log(k)|], (4.15)

and hence we can easily verify that
����
Z 1

�1
fY (y;FX) log (fY (y;FX)) dy

���� < 1. (4.16)

Thus, by applying the Dominated Convergence Theorem, we have

lim
n!1

Z 1

�1
fY (y;F

(n)
X ) log

⇣
fY (y;F

(n)
X )
⌘
dy =

Z 1

�1
lim
n!1

fY (y;F
(n)
X ) log

⇣
fY (y;F

(n)
X )
⌘
dy,

=

Z 1

�1
fY (y;FX) log (fY (y;FX)) dy.

We can conclude that the function H(FX) is a continuous function of the distribution.

The continuity of EF [log(�2(X))] is straightforward and follows by another applica-

tion of the Dominated Convergence Theorem (since �2(X) � 1 and it is bounded

from above).

4.2.2 Concavity of the Mutual Information Function

The mutual information function is given by

I(FX) = H(FX)�D � 1

2
EFX

[log(�2(X))]. (4.17)

Since �2(x) is bounded, we can write 0  log(�2(x))  M
0

, where M
0

< 1. Thus,

we have,

EFX
[log(�2(X))] =

Z A

�A

log(�2(x))dFX(x),

 M
0

Z A

�A

dFX(x),

= M
0

,

< 1.
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The concavity of the output entropy H(FX) can be shown by considering the

input distribution function F✓ = ✓F
1

+ (1� ✓)F
2

. We can write

fY (y;F✓) =

Z A

�A

PN(y � x, x)dF✓(x),

= ✓

Z A

�A

PN(y � x, x)dF
1

(x) + (1� ✓)

Z A

�A

PN(y � x, x)dF
2

(x),

= ✓fY (y;F1

) + (1� ✓)fY (y;F2

).

To show the concavity of the entropy function we will use Ash’s Lemma [57] to bound

the entropy which applies due to its finiteness, i.e.,

|H(FX)| =

�����
Z 1

�1
fY (y;FX) log (fY (y;FX)) dy

���� ,


Z 1

�1
|fY (y;FX)| |log (fY (y;FX))| dy,


Z 1

�1
�(y) [� log(�(y)) + 2| log k

1

|] dy,

< 1.

Hence, the output entropies corresponding to the input distribution functions F
1

and

F
2

, respectively, are

H(F
1

)  �
Z 1

�1
fY (y;F1

) log (fY (y;F✓)) dy, (4.18)

and

H(F
2

)  �
Z 1

�1
fY (y;F2

) log (fY (y;F✓)) dy. (4.19)

As a result, the output entropy corresponding to the input distribution F✓ is

H(F
✓

) = �✓

Z 1

�1
f
Y

(y;F1) log (fY (y;F✓

)) dy � (1� ✓)

Z 1

�1
f
Y

(y;F2) log (fY (y;F✓

)) dy,

� ✓H(F1) + (1� ✓)H(F2).

Thus, H(FX) is a concave function of the input distribution function. For the mutual
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information, we can write

I(✓F
1

+ (1� ✓)F
2

) = H(✓F
1

+ (1� ✓)F
2

)�D � 1

2

Z A

�A
log(�2

(x)) (✓dF
1

+ (1� ✓)dF
2

) ,

� ✓H(F
1

)�✓
RA
�A log(�2

(x))dF
1

�✓D+(1�✓)H(F
2

)�(1�✓)
RA
�A log(�2

(x))dF
2

�(1�✓)D,

= ✓I(F
1

) + (1� ✓)I(F
2

).

Hence, the function I(FX) is a concave function of the input distribution.

4.2.3 The Mutual Information Function I(FX) Is Weakly Di↵erentiable

For arbitrary F
1

, F
2

, ✓ 2 [0, 1], defining F✓ = (1� ✓)F
1

+ ✓F
2

, we have

I(F✓) = H(F✓)�D � 1

2
EF✓

[(log(�2(X))]. (4.20)

Define J(✓, F
1

, F
2

) = I(F✓)�I(F
1

)

✓
, we can write

J(✓, F
1

, F
2

) =
H(F✓)�H(F

1

)

✓
� 1

2

EF✓
[log(�2(X))]� EF

1

[log(�2(X))]

✓
,

=
H(F✓)�H(F

1

)

✓
� 1

2

�
EF

2

[(log(�2(X))]� EF
1

[log(�2(X))]
�
.

We then have

I 0
F1(F2) = lim

✓!0
J(✓, F1, F2) (4.21)

= lim

✓!0


H(F

✓

)�H(F1)

✓

�
� 1

2

�
E

F2 [log(�
2
(X))]�E

F1 [log(�
2
(X))]

�
. (4.22)

Following similar arguments as in Smith [28], we obtain

lim
✓!0

H(F✓)�H(F
1

)

✓
=

Z A

�A

h(x;F
1

)dF
2

(x)�H(F
1

) (4.23)

I 0F
1

(F
2

) =

Z A

�A

✓
h(x;F

1

)� 1

2
log(�2(x))

◆
dF

2

(x)�H(F
1

)� 1

2
EF

1

[(log(�2(X))].

(4.24)

Thus,

I 0F
1

(F
2

) =

Z A

�A

i(x;F
1

)dF
2

� I(F
1

). (4.25)
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As a result of this theorem and similar to what is done in [28], we can show

that the following conditions are su�cient and necessary conditions on the optimal

distribution F
0

:

i(x;F
0

)� I(F
0

)  0, 8x 2 [�A,A], (4.26)

i(x;F
0

)� I(F
0

) = 0, 8x 2 E
0

, (4.27)

where E
0

is the set of points of increase of F
0

.

We have shown that there is an optimal distribution that maximizes the mutual

information. In the next subsection, we show that under certain technical conditions

on the noise function, the capacity-achieving distribution of the signal-dependent

AWGN channel is discrete with finite number of mass points.

4.3 The Capacity-Achieving Distribution is Discrete

We first assume the following: the logarithm of the noise variance function log(�2(x))

can be extended to an open connected set in the complex plane containing the real

line R (possible excluding certain branch points denoted by the set  ). We also

assume that the function log(�2(z)) is analytic over some open connected set D 2 C

on the complex domain1.

We define the extension of the noise variance function on the real line as

follows:

�2

r(x) =

8
>>>>>><

>>>>>>:

�2(�A) if x < �A,

�2(x) if x 2 [�A,A],

�2(A) if x > A.

(4.28)

From the optimality condition,

iFX
(x) = hFX

(x)� 1

2
log(�2(x))�D, 8x 2 E

0

(4.29)

1
The function log(�2

(z)) is defined over an open connected set on the complex plane except

branch cuts that can be defined such that they do not include the entire real line.
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First, we extend the function iFX
(x) to the complex plane. In order to do so, we

show that the entropy can be extended to the complex plane as shown in Appendix C

and D. The discreteness of the optimal distribution can be established through the

following contradiction arguments.

• We assume that the set E
0

contains infinite number of mass points.

• Since E
0

is a bounded set, then any sequence in E
0

has a limit point (Bolzano-

Weierstrass Theorem).

• The functions hF
0

(z), and I(F
0

) + 1

2

log(�2(z)) +D are analytic on some open

connected set D in the complex plane C that includes the real line R except

the set of branch points  . Using the Identity Theorem, we conclude that this

equality holds on an open connected set in the complex plane, i.e.,

hF
0

(z) = I(F
0

) +
1

2
log(�2(z)) +D, 8z 2 D. (4.30)

• This implies that hF
0

(x) = I(F
0

) + 1

2

log(�2(x)) + D on the entire real line

except the branch points of log(�2(z)) which leads to a contradiction when x is

su�ciently large. We note that the branch points of the function log(�2(z)) are

only located in the region between [�A,A] because out of this region the noise

variance is defined to be constant and strictly greater than one.

A contradiction can be established by following similar line of arguments as

in [35]. From the optimality condition we have

hF
0

(x)� I(F
0

)� 1

2
log(�2

r(x))�D = 0, 8x 2 R� . (4.31)

We note that �2(x) � 1, and hence log(�2(x)) � 0. Let us define L , I(F
0

) +

D + 1

2

log(�2(A)) and ⇢(y) , log(fY (y;F0

)) + L+ 1

2

log(�2(A)). For su�ciently
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large values of x, i.e., x > A, we have

hFx(x)� I(FX)�
1

2
log(�2(A))�D = 0, 8x > A, (4.32)

which can be written as

Z 1

�1
PN(y � x, x)


log(fY (y;F0

))� 1

2
log(�2(A))�D

�
dy = 0, 8x > A,

(4.33)

and

PN(y�x, x) = P ⇤
N(y�x) =

1p
2⇡(�2

z + �2

n(A))
exp

✓
� (y � x)2

2(�2

z + �2

n(A))

◆
, 8x > A.

(4.34)

We define

⌦+ , {y : ⇢(y) � 0}, and ⌦� , {y : ⇢(y) < 0}. (4.35)

Then, Z

⌦

+

PN(y � x, x)⇢(y)dy +

Z

⌦

�
PN(y � x, x)⇢(y)dy = 0. (4.36)

By (4.4), we get ⇢(y)  log(�(y))+L+ 1

2

log(�2(A))  log(k)+L+ 1

2

log(�2(A)),

for any y 2 R, and x > A. From, (4.36) we choose k > 2�(L+ 1

2

log(�2

(A))). Choose

a constant l such that l > A � 1

⇡k2
log(k). Using (4.4), one has ⌦+ ✓ [�l, l].

Therefore,

Z

⌦+

P
N

(y � x, x)⇢(y)dy 
Z

l

�l

P ⇤
N

(y � x, x)⇢(y)dy,


✓
log(k) + L+

1

2

log(�2
(A))

◆Z
l

�l

P ⇤
N

(y � x)dy, (4.37)

 0, (4.38)

which can be arbitrarily small by choosing x large enough due to the behavior

of the noise probability density function. On the other hand, for x > A+ l, we
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have

Z

⌦�
P
N

(y � x, x)⇢(y)dy 
Z 1

l

P
N

(y � x, x)⇢(y)dy,


Z 1

l

P
N

(y � x, x)


log(�(y)) + L+

1

2

log(�2
(A))

�
dy,

(a)
<

Z
x+A

x�A

q(A, x)


log(�(x+A)) + L+

1

2

log(�2
(A))

�
dy

< 2Aq(A, x)


log(�(x+A)) + L+

1

2

log(�2
(A))

�

< 0

where (a) follows from (4.4) and the fact that the integrable function is mono-

tone in y. By combining (4.38) and (4.39), we can establish that (4.31) does

not hold for large values of x and hence there is contradiction and the set E
0

cannot have an infinite number of mass points. Hence the proof is complete.

4.4 Numerical Examples

In this section, we present two examples that show the capacity for some signal-

dependent noise Gaussian channels with amplitude-limited inputs. The first model

we consider is the optical communication channel based on intensity modulation which

has been studied in detail by Moser in [66]. The received signal Y is given by,

Y = x+
p
xZ

1

+ Z
0

, (4.39)

where x � 0 denotes the channel input Z
0

⇠ N (0, �2) is a zero-mean, variance �2

Gaussian random variable describing the input-independent noise and Z
1

⇠ N (0, &�2)

is a zero-mean, variance &�2 Gaussian random variable describing the input-dependent

noise. Here Z
0

and Z
1

are assumed to be independent. The parameter �2 > 0

describes the strength of the input-independent noise, while & > 0 is the ratio of the

input-dependent noise variance to the input-independent noise. Thus, �2(x) = 1+&x.

In [66], Moser derives an approximation for the channel capacity at small signal-to-
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Figure 4.1: Asymptotic capacity of intensity modulated optical channel at low values
of SNRs.

noise ratios (SNRs) and a universal lower bound for any amplitude value and an

upper bound that is valid only at high SNRs.

The function log(�2(z)) = log(1+ &z) has a branch point at z = �1

&
and hence

we can define a branch cut as the line connecting the two points {(�1

&
, 0), (�1

&
, 1̃)},

where 1̃ represents the complex infinity. The, the extension of the function �2(x) is

well defined on the whole complex plane except the line connecting the two points

{(�1

&
, 0), (�1

&
, 1̃)}.

Figure 4.1 shows the capacity of the above optical channel model at low SNRs

along with the approximate formula for the capacity derived in [66]. Figure 4.3 shows

the capacity of intensity modulated optical channel along with a universal lower bound

derived by Moser in his work in [66] and an upper bound that is valid only at high

SNR values.

As a second illustration, we present another example in which the signal-

dependent noise appears as the dominating noise, i.e., in magnetic recording systems
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Figure 4.2: The capacity of intensity modulated optical channel along with an upper
and lower bound on it.

where the media noise is strongly signal-dependent and is modeled as Gaussian noise

with variance �2(x) = 1+
p
1� x2, where the input signal |x| < 1 [3]. The extension

of the function log(�2(x)) to the complex plane log(1 +
p
1� z2) has two branch

points, (1, 0), (�1, 0), the branch cuts can be chosen such that they do not include

other parts of the real line as, for instance, as the lines connecting {(1, 0), (1, 1̃)} and

{(�1, 0), (�1, 1̃)}. Figure 4.3 shows the capacity of this magnetic recording system

along with a lower bound on it. The lower bound is computed based on an evaluation

of the mutual information with a suboptimal input distribution. We observe that the

capacity calculated is much higher than the mutual information evaluated with the

specific truncated Gaussian distributions.
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Figure 4.3: The capacity of the magnetic recording system modeled as in [3].

4.5 Chapter Summary

In this chapter, we studied the capacity of Gaussian channels with signal-dependent

noise and peak power constrained inputs. We show that under some technical condi-

tions on the noise variance functions, the capacity achieving distribution is discrete

with a finite number of mass points. We developed the results by showing that the

mutual information is a continuous, concave, and weakly di↵erentiable function of the

input distribution. We used some theorems and arguments from the complex analysis

to conclude the discreteness of the optimal input distribution. We have also presented

numerical examples using channel models that appear in optical communication and

magnetic recording systems.
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Chapter 5

MULTIPLE-ANTENNA SYSTEMS WITH AMPLITUDE-LIMITED INPUTS

Motivated by the equivalent system model proposed in Chapter 2, we now study the

capacity of mutiple-antenna systems under peak power constraints. In Chapters 3

and 4, we have studied the capacity of single-antenna fading channels under peak

power constraints, and the capacity of scalar Gaussian channel with signal-dependent

noise. We now turn our attention to the case of mutiple-antenna systems and parallel

Gaussian channels.

Capacity of multi-input channels with amplitude-limited inputs has been con-

sidered recently, but in a di↵erent communication scenario. Specifically, the authors

in [35, 36] study the capacity of the multiple access channel (MAC) with amplitude-

constrained inputs. They show that the sum-capacity achieving distribution is dis-

crete. This distribution achieves rates at any of the corner points of the capacity

region. We note, however, that these results are not applicable to the problem at

hand, i.e., on the problem of capacity of MIMO channels with amplitude-limited

inputs.

In the first part of the chapter, we study the capacity of MIMO systems. For

the special case of multiple-input single-output (MISO) channels, it is easy to argue

that the capacity achieving distribution exists and it is discrete. However, there is no

uniqueness result as the capacity-optimization problem boils down to an optimiza-

tion problem that aims to choose a distribution for the sum of the channel inputs

which maximizes the mutual information. Hence, di↵erent marginal distributions for

the inputs can be chosen such that the distribution of their sum is the same as the

distribution that results from the solution of the optimization problem. However, for

the case of MIMO communications showing the discreteness of the capacity-achieving
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distribution does not seem possible by adopting the existing techniques. The reason

behind this non-viability is that the discreteness of the capacity-achieving distribu-

tion is proved through some arguments based on the Identity Theorem in complex

analysis [67]. However, the Identity Theorem is only available for one-dimensional

functions and there is no equivalent result for the multi-dimensional case. More pre-

cisely, we can show that there is a unique optimal distribution that maximizes the

mutual information function. However, we are not be able to provide any character-

ization for that distribution, hence finding the capacity-achieving distribution does

not seem feasible. Therefore, we direct our attention to computation of bounds on

the capacity, that is, we derive upper and lower bounds on the capacity of MIMO

systems. The bounds rely on transforming the coupled MIMO channel into decou-

pled (independent) channels with coupled inputs, and then relaxing the constraint

imposed on these inputs or restricting them further. In our study, we consider the

2 ⇥ 2 MIMO case in detail and simply note that extending the results for arbitrary

number of antennas is possible.

In the second part of the chapter, we investigate the capacity of parallel Gaus-

sian channels under peak and average power constraints. It is straightforward to show

that the capacity achieving distribution is discrete as this can be implied directly from

Smith’s results. Also, the authors in [34] show (through a di↵erent approach) that the

capacity-achieving distribution is discrete. However, there is no-closed form expres-

sion and finding the capacity achieving distribution requires numerical computations

with high complexity particularly when the number of parallel channels is large. With

this motivation, we consider the behavior of such channels asymptotically in the low

and high signal-to-noise ratio (SNR) regimes. Our approach is based on the fol-

lowing: in the very high noise variance regime, the capacity-achieving distribution

consists only of two points, hence using the data processing inequality the problem
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boils down to be finding the capacity of (parallel) binary channels, and in the low

noise variance regime, the capacity-achieving distribution can be approximated by a

continuous distribution. We provide the optimal power assignment for the case of

N -parallel channels case; by adopting a technique from the calculus of variations to

show that the capacity-achieving distribution in the very low noise variance regime

is a Gaussian-like distribution with a truncated domain.

The chapter is organized as follows. In Section 5.1, we describe the channel

model for a general MIMO system. In Section 5.2, we compute the capacity of MISO

systems, and we show that the capacity-achieving distribution is discrete. In Sec-

tion 5.3, we use singular value decomposition to decouple the system into parallel

independent channels. Then, we propose the upper and lower bounds by relaxing the

input constraints of the new optimization problem. Finally, we describe an alterna-

tive lower bounding approach. In Section 5.4, we study the capacity of the parallel

Gaussian channels under peak and average power constraints. In Section 5.5, we

present numerical examples to demonstrate our findings, and conclude the chapter

with a summary in Section 5.6.

5.1 System Models

We consider a MIMO system where the received signal y is written as

y = Hx+ z, (5.1)

where H is an Nr ⇥ Nt channel matrix, Nr is the number of receive elements, and

Nt is the number of transmit elements. The channel matrix H is assumed to be

deterministic. The vector z denotes an AWGN vector whose elements are independent

and identically distributed (i.i.d.) and each is zi ⇠ N (0, �2), where �2 is the noise

variance. We assume that the channel inputs and outputs, the channel matrix and

noise terms are all real valued to simplify the exposition of the results.
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For much of the results on the MIMO communications, we consider the case of

a 2⇥2 MIMO system with Nr = 2 and Nt = 2. Hence, the channel input x has a two-

dimensional joint distribution f(x
1

, x
2

) and the channel inputs are amplitude limited

as |X
1

|  Ax
1

and |X
2

|  Ax
2

. As the channel under consideration is deterministic,

we assume that it is known both at the transmitter and the receiver. The capacity

of the 2 ⇥ 2 MIMO system is the maximum of the mutual information between the

input and the output of the channel under the given input constraints, i.e.,

C = max
f(x

1

,x
2

):|X
1

|Ax
1

,|X
2

|Ax
2

I(Y
1

, Y
2

;X
1

, X
2

). (5.2)

The main issue in solving this optimization problem using Smith’s original approach is

that the Identity Theorem used in characterizing the capacity achieving distribution

is only applicable for one-dimensional functions.

For the parallel Gaussian channels, we have a set of N Gaussian channels with

outputs given by

yi = xi + zi, 8i = 1, 2, · · · , N, (5.3)

where |xi|  Ai, and zi is an AWGN with zero mean and variance �2

i . For N paral-

lel Gaussian channels, the mutual information between the input vector X and the

output vector Y is given by

I(X
1

, X
2

, · · · , XN ;Y1

, Y
2

, · · · , YN) = h(Y
1

, Y
2

, , · · · , YN)�
NX

i=1

h(Zi), (5.4)

where h(Zi) is the entropy of the Gaussian noise random variable Zi which is given

by h(Zi) =
1

2

log(2⇡e�2). The optimal input distribution for the N parallel Gaussian

channels under peak and average power constraints has been shown in to be discrete

and independent of each other [34]. Hence,

I(X
1

, X
2

, · · · , XN ;Y1

, Y
2

, · · · , YN) =
NX

i=1

h(Yi)�
NX

i=1

h(Zi). (5.5)
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The channel capacity is then

C = max

f(x
1

,x
2

,··· ,xN ):|Xi|Ai,P
i X

2

i P
0

NX

i=1

h(Yi)�
NX

i=1

h(Zi). (5.6)

5.2 Capacity of MISO Systems with Amplitude-Limited Inputs

Since there is only one receive antenna in this case, the received signal y can be

written as

y = h
1

x
1

+ h
2

x
2

+ z. (5.7)

Define an auxiliary variable u such that u = h
1

x
1

+ h
2

x
2

. Since x
1

and x
2

are

amplitude-limited, u will also be amplitude limited, i.e.,

�|h
1

|Ax
1

� |h
2

|Ax
2

 u  |h
1

|Ax
1

+ |h
2

|Ax
2

. (5.8)

Thus, the received signal y can be written as y = u+ z, and the problem boils down

to the classical point-to-point scalar problem that has been investigated by Smith.

Hence, the distribution of the auxiliary random variable U that achieves the capacity

is discrete, i.e.,

fU(u) =
N�1X

i=0

p(ui)�(u� ui) (5.9)

where the number of mass points N are to be determined numerically by solving

the capacity optimization problem using the algorithm given in [28]. The specific

channel inputs x
1

and x
2

can be arbitrarily generated such that their weighted sum

(weighted by the channel coe�cients) follows the optimal probability mass function

of the random variable U .
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5.3 Bounds on the Capacity of 2⇥ 2 MIMO Systems with Amplitude-Limited

Inputs

For a 2 ⇥ 2 MIMO system, we obtain an equivalent model via the singular value

decomposition of the channel matrix H, i.e., H = U⌦WH . That is,

ỹ = ⌦x̃+ z̃, (5.10)

where ỹ = UHy, x̃ = WHx, and z̃ = UHz, where U and W are unitary matrices.

Define V = WH . Since the amplitude of the first channel input is constrained by

Ax
1

and the amplitude of the second input is constrained by Ax
2

, the domain of x

is a rectangular region. However, after applying the singular value decomposition,

in the equivalent formulation, the region defining the input constraint turns out to

be a parallelogram. Further, this region will be centered at origin (since the original

rectangular region is symmetric around origin).

Define the following terms that characterize the new input constraint

a =
det(V)

v
22

, b =
v
12

v
22

,

and

c = �det(V)

v
21

, d =
v
11

v
21

,

where vij is the ijth element of the matrix V.

Then the feasible region of the equivalent channel in (5.10) is,

�1

a
x+

b

a
y  Ax

1

,
1

a
x� b

a
y  Ax

1

,

and

�1

c
x+

d

c
y  Ax

2

,
1

c
x� d

c
y  Ax

2

.
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Figure 5.1: The actual feasible region and a smaller region represents the lower bound
and an outer region represent the upper bound.

We derive upper and lower bounds on the capacity using this new formulation.

We obtain the lower bound by looking for a smaller feasible region inside the parallel-

ogram, i.e., we consider a rectangle inside, and we compute the corresponding mutual

information between the input and output with the channel input vector constrained

to be inside this rectangular region. For the upper bound, we follow a similar ap-

proach, i.e., we look for the the smallest rectangle that inscribes the parallelogram.

This geometrical interpretation of the approach is illustrated in Fig. 5.1.

In both the lower and upper bounds, we choose to replace the feasible re-

gion with a rectangular one as the rectangular feasible region enables us to separate

the two-dimensional problem into two one-dimensional problems whose solutions are

readily available.
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5.3.1 An Upper Bound on the Capacity of 2⇥ 2 MIMO Systems with

Amplitude-Limited Inputs

A capacity upper bound is derived by solving the capacity optimization problem over

the smallest rectangle that inscribes the original feasible region. This rectangle is

constructed from the intersection points of every pair of lines forming the feasible

region. The first intersection point is

x =
bc

d� b
Ax

2

� ad

d� b
Ax

1

, y =
c

d� b
Ax

2

� a

d� b
Ax

1

,

the second point is

x = � bc

d� b
Ax

2

� ad

d� b
Ax

1

, y = � c

d� b
Ax

2

� a

d� b
Ax

1

,

the third point is

x =
bc

d� b
Ax

2

+
ad

d� b
Ax

1

, y =
c

d� b
Ax

2

+
a

d� b
Ax

1

,

and the forth point is

x = � bc

d� b
Ax

2

+
ad

d� b
Ax

1

, y = � c

d� b
Ax

2

+
a

d� b
Ax

1

.

Using the geometric interpretation of the feasible region, it is easy to show

that in the equivalent formulation of the 2 ⇥ 2 MIMO system, the new amplitude

limits on the two inputs

�xupp =

����
bc

d� b
Ax

2

����+
����
ad

d� b
Ax

1

���� , (5.11)

�yupp =

����
c

d� b
Ax

2

����+
����

a

d� b
Ax

1

���� , (5.12)
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can be used to compute an upper bound on the channel capacity of the original MIMO

system. Namely, the upper bound of the channel capacity is given by

C  C
0

(�xupp) + C
0

(�yupp), (5.13)

where C
0

(A) is the capacity of the point-to-point AWGN channel for a given ampli-

tude constraint A (computed using Smith’s approach).

5.3.2 A Lower Bound on the Capacity of MIMO Systems with Amplitude-Limited

Inputs

A lower bound on the capacity of the channel can be found by optimizing the mutual

information over a smaller rectangular region inside the feasible region (parallelo-

gram). To find such a rectangle, we determine the intersection of a straight line,

y = mx, that passes through the origin (as the region is centered at the origin) and

the boundary of the feasible region. In this case, it is easy to show that

�x
low

= min

✓����
aA

x1

1 + bm

���� ,
����
aA

x1

1� bm

���� ,
����
cA

x2

1 + dm

���� ,
����
cA

x2

1� dm

����

◆
, (5.14)

�y
low

= min

✓����
amA

x1

1 + bm

���� ,
����
amA

x1

1� bm

���� ,
����
cmA

x2

1 + dm

���� ,
����
cmA

x2

1� dm

����

◆
, (5.15)

for some arbitrary values for the slope m such that the set of points

{(l�xlow, k�ylow) 2 R : l, k 2 {1,�1}} ,

where R is the feasible region. Thus, the lower bound on the channel capacity is

given by

C � C
0

(�xlow) + C
0

(�ylow). (5.16)

5.3.3 Bounds on the Capacity of General MIMO Systems with Amplitude-Limited

Inputs

For the case of MIMO systems with larger number of transmit and receive elements, a

similar approach can be followed to derive upper and lower bounds on the capacity of

the channel with amplitude constraints. However, the feasible region of the capacity
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optimization problem will not be a simple rectangle in the two-dimensional space as

in the case of 2 ⇥ 2 systems. In other words, although numerical methods can be

used to compute the resulting upper and lower bounds on the channel capacity for

di↵erent noise levels, closed form expressions may not be easy to obtain.

These results can also be extended to the case of transmission over wireless

bandpass channels for which the channel coe�cients and the inputs can be taken as

complex variables, and hence the inputs are complex variables. However, with MIMO

systems, the dimensionality of the problem grows further. We do not consider this

scenario as part of the current work for ease of explanation.

5.3.4 Capacity of 2⇥ 2 MIMO Systems with Amplitude-Limited and

Power-Limited Inputs

Smith in [28] showed that for any amplitude-limited and power-limited point-to-point

Gaussian channel, a unique capacity-achieving distribution exists and it is discrete.

Again, extending these results to the case of MIMO systems is not feasible since there

is no result corresponding to the Identity Theorem used in Smith’s proof for multi-

dimensional functions. However, we can follow a similar procedure to find upper and

lower bounds on the capacity of MIMO systems with amplitude-limited inputs by

relaxing the constraint on the amplitude and solving the capacity optimization prob-

lem over rectangular regions that inscribe and are inscribed by the original feasible

region, respectively. We do not pursue this problem formulation any further in this

work.

5.3.5 Asymptotic Bounds on the Capacity of the 2⇥ 2 MIMO Systems with

Amplitude-Limited Inputs

In this section we study the asymptotic behavior of the upper and lower bounds on

the capacity of MIMO systems at very high and low noise levels.
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5.3.5.1 Very Low Noise Levels

For the point-to-point scalar Gaussian channel for very low noise variances, the en-

tropy of the noise is very small compared to the entropy of the input. Thus, the

following approximations are valid,

h(Y ) � h(Y |X) and h(X) � h(X|Y ).

As a result,

h(X) = I(X;Y ) + h(X|Y ) = h(Y )� h(Y |X) + h(X|Y ) ⇡ h(Y ).

That is, the capacity can be approximated as

C = max I(X;Y ),

⇡ maxh(X)� h(Y |X),

= log(2A)� 1

2
log(2⇡e�2).

Therefore, the capacity of the 2⇥ 2 MIMO system can be upper and lower bounded

for low noise variances as

C  log(4�xupp�yupp)�
1

2
log(2⇡e�2

1

)� 1

2
log(2⇡e�2

2

), (5.17)

C � log(4�xlow�ylow)�
1

2
log(2⇡e�2

1

)� 1

2
log(2⇡e�2

2

). (5.18)

The lower bound on the capacity can be optimized by choosing the slope m

(as defined in the previous section) that maximizes the mutual information between

the input and the output. We have

C � max
m

log (4 |�xlow�ylow|)

�1

2
log(2⇡e�2

1

)� 1

2
log(2⇡e�2

2

), (5.19)
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such that the set of points

{(l�xlow, k�ylow) 2 R : l, k 2 {1,�1}} ,

where �xlow, �ylow, and R are as defined in the previous section.

5.3.5.2 Very High Noise Levels

For very high noise variances, the optimal distribution is discrete and consists of only

two mass points with the same probability [68]. The capacity of this discrete-time

binary-input AWGN is well known [69], and the upper and lower bounds on the

capacity are

C  g

✓
�xupp

�
1

◆
+ g

✓
�yupp
�
2

◆
, (5.20)

C � g

✓
�xlow

�
1

◆
+ g

✓
�ylow
�
2

◆
, (5.21)

where g(x) = 1�
R1
�1

1p
2⇡
e�

(u�x)2

2 log
2

(1 + e�2ux) du.

5.3.5.3 The Gap Between the Upper and Lower Bounds

For very low noise variances, it is easy to see that the gap between the upper and

lower bounds does not depend on the amplitude constraint if Ax
1

= Ax
2

. From (5.11)

and (5.12), and if Ax
1

= Ax
2

= A
0

we have,

�xupp = GuppA0

, �yupp = HuppA0

,

where Gupp and Hupp are only function of the channel coe�cients. Also from (5.14)

and (5.15),

�xlow = GlowA0

, �yupp = HlowA0

,

where Glow and Hlow are only functions of the channel coe�cients.

Thus, the gap between the upper and lower bounds �C can be written as

�C = log
�
4GuppHuppA

2

0

�
� log

�
4GlowHlowA

2

0

�
,

= log

✓
GuppHupp

GlowHlow

◆
,
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Figure 5.2: A suboptimal input distribution constructed from the cartesian product
of the inputs distribution correspond to the upper bound.

which is independent of the amplitude constraints imposed on the inputs.

5.3.6 An Alternative Lower Bound on the Capacity

In this subsection, we demonstrate an alternative lower bound to the earlier results

in the section 5.3.2. We note that the mutual information computed based on any

arbitrarily chosen input distribution is a lower bound on the capacity, and we simply

compute the mutual information for a particular input distribution. We consider a

discrete distribution by constructing an input distribution from the cartesian product

of the inputs distribution corresponding to the upper bound with mass points falling

within the feasible region. An illustration is shown in Fig. 5.2. Examples on the

resulting capacity lower bound with this approach will be given in Section 5.5.
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5.4 Capacity of Independent Parallel Gaussian Channels with an Amplitude and

Power-Limited Inputs

In this section, we turn our attention to a more tractable problem compared to the

case of MIMO channels, namely to the parallel Gaussian channels, and we study the

capacity of N independent parallel Gaussian channels with peak and average power-

limited inputs. The capacity of parallel Gaussian channel under peak and average

power constraints can be derived from Smith’s results on the capacity of scalar Gaus-

sian channels with amplitude-limited and power-limited inputs and has been reported

previously in [34]. However, the solution for such problems relies on numerical cal-

culations to find the optimal input distribution and the resulting capacity. Here, we

deviate a bit by considering an analytical approximation to the capacity at low and

low noise level regimes. In the following, we examine the asymptotic behavior of the

capacity expressions in (5.6) at low and high noise levels.

5.4.1 Capacity of Parallel Gaussian Channels at Very High Noise Levels

At very high noise levels, the optimal input distribution that maximizes the mutual

information between the input and the output (for amplitude-limited and power-

limited inputs) is discrete with only two mass points and each one has a probability

of one half [28]. Using the data processing inequality, one can easily argue that

the capacity of each parallel channel is lower bounded by the capacity of a binary

symmetric channel denoted by CBSC . Recall that CBSC = 1 � H(p), where p is the

cross-over probability which can be computed for the problem at hand as

p = Q

 r
P

�2

!
, (5.22)

where P is the average power at the transmitter side. We consider N parallel channels

where the power assigned to each is P
1

, P
2

, · · · , PN , respectively. Thus, the capacity
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of the channel is determined by the power assigned to each channel, and the capacity

optimization problem boils down to a power assignment problem, i.e., choosing the

optimal power for each channel so that the mutual information is maximized.

Since the input distribution for each channel input consists of two mass points

with equal probabilities, we also have

Pi  A2

i , 8i = 1, 2, · · · , N. (5.23)

Define a function J(Pi), which is basically the binary entropy function, as

J(Pi) = �Q

 s
Pi

�2

i

!
log

 
Q

 s
Pi

�2

i

!!
�
 
1�Q

 s
Pi

�2

i

!!
log

 
1�Q

 s
Pi

�2

i

!!
.

(5.24)

Then, the channel capacity of the parallel Gaussian channel is lower bounded by,

C � max

Pi, 8i=1,2,··· ,N, 0PiA2

i
1TPP

0

N �
NX

i=1

J(Pi). (5.25)

Solving this optimization problem results in the following power assignment policy

(the proof is detailed in Appendix E) . Let us assume that the power assigned to the

ith channel is P ⇤
i . Then, we consider three cases P ⇤

i = 0, 0 < P ⇤
i < A2

i , and Pi = A2

i

separately, for i = 1, 2, · · · , N , and solve for the candidate power assignments for the

resulting 3N�2 cases. For each case, considering only the non-zero power assignments

with P ⇤
i < A2

i , the water-filing parameter ⌫ is chosen such that P ⇤
i = g�1

i (⌫), where

gi(Pi) is defined as follows

gi(Pi) =
1

2
p

2⇡Pi�2

i

exp

✓
� Pi

2�2

i

◆
log

✓
1

Qi

� 1

◆
. (5.26)

We also have
PN

i=1

P ⇤
i = P

0

. The optimal power assignment policy is chosen such

that the KKT conditions are satisfied and the channel capacity is maximized.
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There is an analogy between this solution and the classical water-filling solu-

tion used in assigning transmitted signal powers in the standard parallel Gaussian

channel problem. The term “water-filling” arises from the similarity between the

curve gi(Pi) and a bowl into which water (power) is poured, filling the bowl until

there is no more power to use. The amount of water/energy in any subchannel is the

depth of the water at the corresponding point in the bowl. There are some bowls

that will be left empty. For the non-empty bowls a water (power) level is chosen such

that there is no power and the mutual information is maximized.

5.4.2 Capacity of Parallel Gaussian Channels at Very Low Noise Levels

For a point-to-point scalar Gaussian channel for very low noise variances, the entropy

of the noise is very small compared to the entropy of the input. Thus, the following

approximations are valid [28],

h(Y ) � h(Y |X) and h(X) � h(X|Y ).

That is, the capacity can be approximated as [28]

C , max
fX(x): |X|A

I(X;Y ),

= max
fX(x): |X|A

h(Y )� h(Y |X),

⇡ max
fX(x): |X|A

h(X)� h(Y |X),

where fX(x) is the input probability density function. Intuitively, at very low noise

levels the output is not highly a↵ected by the imposed noise and hence the entropy of

the input does not change and instead of finding the input distribution that maximizes

the output entropy, we solve a relaxed problem that aims to find the input distribution

that maximizes the output entropy.

Lemma 5.4.1. Consider a random variable X with a probability density function

fX(x) 2 FX where |X|  A, E[X2]  P , and FX denotes the corresponding class

96



of probability density functions such that P (X > A) = 0 and P (X < �A) = 0.

The probability density function that maximizes its entropy is fX(x) = c
1

exp(�c
2

x2),

where c
1

and c
2

are the solutions of

c
1

=
1� 2c

2

P

2A exp(�c
2

A2)
, (5.27)

and
1� 2c

2

P

2A exp(�c
2

A2)

r
⇡

c
2

erf(
p
c
2

A)

�
= 1. (5.28)

Proof. See Appendix F.

The resulting di↵erential entropy is given by

h(X) = �
Z A

�A

f(x) log(f(x))dx, (5.29)

= h(X) = � log(c
1

) + c
2

P. (5.30)

Finally, the mutual information between (X
1

, X
2

, · · · , XN) and (Y
1

, Y
2

, · · · , YN) is

approximated as

I(X
1

, X
2

, · · · , XN ;Y1

, Y
2

, · · · , YN) ⇡
NX

i=1

h(Xi)�
NX

i=1

1

2
log(2⇡e�2

i ). (5.31)

Similar to the previous subsection, the optimal power assignment for each channel can

be performed through water-filling (details of the power assignment policy are given

in Appendix G). For the ith channel, let us assume that the power assigned is P ⇤
i .

Then, there are three possible cases, i.e., P ⇤
i = 0 or P ⇤

i = A2

i or 0 < P ⇤
i < A2

i . One can

consider 3N � 2 cases separately, and when 0 < Pi < A2

i , the water-filing parameter

⌫ is chosen such that P ⇤
i = w�1

i (⌫), where the function and wi(Pi) is the derivative of

the objective function which is defined in Appendix G. The optimal power assignment

policy is chosen by examining the necessary conditions for optimality and selecting

the case with largest information rate.
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We note an important di↵erence between the power assignment policy derived

for the low and low noise levels cases, the high noise levels policy depends on the noise

variance of the channel besides the the amplitude constraints. However, the low noise

levels policy does not depend on the noise variance, i.e., the same power assignment

policy applies for the entire SNR range.

5.5 Numerical Examples

In this section, we present numerical examples that show the derived upper and lower

bounds on the capacity of general MIMO systems for di↵erent channels and di↵erent

input constraints. Along with the bounds of the capacity, we show the asymptotic

bounds on the capacity of MIMO systems at low and high levels of noise variance.

For the parallel Gaussian channels, we present an evaluation for the proposed bounds

on the capacity of parallel Gaussian channels along with the exact capacity evaluated

using the optimal power assignment (the optimal power is assigned through brute

force approach). We also show an evaluation for the capacity using suboptimal power

assigned using the policy derived at high and low noise variances as described in the

previous section.

5.5.1 2⇥ 2 MIMO Systems

In this subsection, we present numerical examples that show the upper and lower

bounds on the capacity of 2⇥ 2 MIMO systems for di↵erent channel coe�cient ma-

trices and di↵erent amplitude constraints. For the given channel coe�cient matrices

and amplitude constraints we use the results of the previous section to come up with

new rectangular regions for the channel inputs, and then we numerically evaluate the

mutual information as

I(Ỹ
1

, Ỹ
2

; X̃
1

, X̃
2

) = I(Ỹ
1

; X̃
1

) + I(Ỹ
2

; X̃
2

),

= h(Ỹ
1

) + h(Ỹ
2

)�D
1

�D
2

,
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where h(⇧) is the di↵erential entropy, and Di = 1

2

log(2⇡e�2

i ) is the entropy of the

Gaussian noise with variance equals to �2

i , i = 1, 2.

We consider two arbitrarily picked channel matrices given by

H
1

=

2

64
0.177 0.28

1 0.31

3

75 , H
2

=

2

64
0.997 0.295

1 0.232

3

75 .

We assume that the amplitude constraints imposed on the inputs are identical, and

both channels have the same noise variances.

Fig. 5.3 and Fig. 5.4 show the upper and lower bounds on the capacity and their

asymptotic behavior for the two channels considered, we observe that the asymptotic

characterizations of the bounds are tight with the bounds at low and high SNR,

respectively. The gap between the upper and lower bounds indicate that there is

more work to be done for a tighter characterization of the MIMO channel capacity

with amplitude constraints. Fig. 5.5 shows the upper and lower bounds on the

capacity of the second channel for di↵erent values of amplitude constraints. Clearly,

when the amplitude constraint is increased, the capacity upper and lower bounds are

also increased. Also, we observe that the gap between the upper and lower bounds

does not depend on the amplitude constraint for very low noise variance values given

that the same amplitude constraints are imposed on both antenna elements. As the

value of the noise variance increases, i.e., the SNR decreases, the gap between the

upper and lower bound decreases as the number of mass points for the optimal input

distribution decreases (eventually it converges to only two mass points). Fig. 5.6

shows the upper and lower bounds derived from the approach described before a long

with the alternative achievable lower bound at which we consider a suboptimal input

distribution inspired by the optimal input distributions for the bounds, the alternative

input distribution shows a better performance, yet the approach of constructing this
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Figure 5.3: Upper and lower bounds on the capacity forH
1

, along with the asymptotic
capacity at low and high noise variances, with an amplitude constraint of 2 (for both
inputs).

input distribution is heuristic.

5.5.2 Parallel Gaussian Channels

In this subsection, we present three numerical examples that demonstrate the behavior

of the capacity and the bounds for di↵erent noise levels regimes. In the first example,

we consider two parallel Gaussian channels where the peak power constraint on each

channel is |A
1

|  2, and |A
2

|  4. The total power constraint is 4. We assume that

the variance of the two parallel channels is the same. Fig. 5.7 shows the capacity of

the two parallel Gaussian channel along with the upper and lower bounds derived

in the Section 5.4. We also show the evaluation for the channel capacity using the

low noise levels policy, high noise levels policy, and uniform power assignment, i.e.,

for each subchannel the optimal solution is computed using numerical techniques as

in [28], given the particular power and amplitude limits. We note that low noise (high
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Figure 5.4: Upper and lower bounds on the capacity forH
2

, along with the asymptotic
capacity at low and high noise variances, with an amplitude constraint of 2 (for both
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Figure 5.5: Illustration of capacity upper and lower bounds of the capacity of H
2

for
di↵erent amplitude constraints on the inputs.
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Figure 5.6: The upper and lower bounds on the capacity along with an alternative
lower bound on the capacity of the MIMO channel.

noise) levels power assignment policy works better at low noise (high noise) levels as

expected. For the second example we consider six parallel Gaussian channels with

the total power constraint P
0

= 15 and with di↵erent amplitude constraints for each

channel, i.e., |A
1

|  0.1, |A
2

|  0.1, |A
3

|  1, |A
4

|  1, |A
5

|  10, |A
6

|  10.

Fig. 5.8 shows the capacity of the channel evaluated using power assignments resulting

from the policy developed for high noise levels, the policy for the low noise variance

case, and with uniform power assignments. From the figure we notice that at high

noise levels there is a gap between the exact capacity and the the bound with the

BSC approximation which is due to the fact that the BSC acts as a quantized version

of the Gaussian channel (sometimes, it is called Gaussian channel with hard decision

decoding [7]). The benefits of the proposed bounds appear when the number of

parallel channels is very large as in that case computing the exact channel capacity

is not viable as the brute force calculation of the optimal power assignments requires
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Figure 5.7: The channel capacity evaluated using low noise levels policy and high
noise levels policy for two parallel Gaussian channel.

extensive computations. However, by using the proposed bounds we can characterize

the channel capacity at di↵erent noise levels with a low computational complexity

and at the same time obtain tight bounds.
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Figure 5.8: The channel capacity evaluated using low noise levels policy and high
noise levels policy for six parallel Gaussian channel.
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5.6 Chapter Summary

In this chapter, we studied the capacity of MIMO systems with amplitude-limited

inputs. We computed analytical upper and lower bounds on the capacity of such

systems. The upper bounds are derived by relaxing the feasible region of the capacity

optimization problem. For the lower bound, we solve the problem by constraining the

feasible region to a smaller one inscribed within the original. Furthermore, we study

the capacity of parallel Gaussian channels, and provide an analytical characterization

at low and high noise levels. In both cases, the corresponding optimal power assign-

ment policy is derived by solving the capacity optimization problem by a suitable

application of the KKT conditions. Several numerical examples are used to illustrate

our findings on both MIMO and parallel Gaussian channels.
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Chapter 6

CODING FOR CHANNELS WITH SIGNAL-DEPENDENT NOISE

In this chapter, we consider the problem of channel coding towards a further un-

derstanding of the proposed communication scheme in Chapter 2. The equivalent

(approximate) channel model in (2.18) implies that the received signal parameters

are contaminated by Gaussian noise with variance that depends on the transmit-

ted signal. This model brings up new problems in coding to deal with impairments

introduced by channels with signal-dependent additive noise. To address these prob-

lems, we consider two channel models. The first one is an AWGN channel but with

noise variance that depends on the transmitted signal. The second one is a binary

asymmetric channel (BAC) which serves as an approximation to the AWGN model.

There has been significant progress in designing channel codes for BACs in

recent years. For instance, in [39], the authors introduce a new class of codes referred

as group-theoretic codes, and they prove that this class of codes are able to correct

one bit error that may occur during transmission. In [40], a new density evolution

technique is developed for optimization of the low density parity check (LDPC) codes.

In [41], the authors propose two methods for code construction; the first one is based

on codebook expurgation where the goal is to alter the input distribution within

the codebook such that the resulting input distribution for the channel becomes

nonuniform and closer to the optimal one. The second construction method is based

on introducing a mapper after a linear channel code. This mapper is from a non-

binary linear block code into a binary codebook keeping in mind the same objective

which is to have a biased (optimal) input distribution. We note that this is not the

first time a mapper is introduced after a channel encoder; for example, the same

idea has been used before in [38], where a non-linear mapper is introduced after
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LDPC encoding to make the input distribution closer to the optimal one. In [42], the

authors present new constructions of codes for asymmetric channels for both binary

and nonbinary alphabets, based on methods of generalized code concatenation.

In our study, we focus on certain class of block-codes called ultra-small codes,

which feature codebooks with small number of messages and codewords with short

block lengths. These codes appear in many communication scenarios as viable solu-

tions, e.g., in the initiation of communication links in which we have a small number

of messages to be transmitted, and also for applications that are so sensitive to delay

that cannot tolerate transmission of long blocks.

The literature is not rich in the context of ultra-small codes. For instance, [43,

44] introduce a family of ultra-small block codes called flip and weak-flip codes. The

approach is to design optimal codes (optimal in the sense that they minimize the

average error probability) for the BSC, BAC, and Z-channels. The authors propose a

new approach toward code design, specifically, they design codes using a column-wise

representation by collecting combinations of columns from a set of alternatives called

candidate columns. The authors are able to design optimal codes when the number

of messages is limited to four or five. Also, they provide performance assessments for

the case where the number of messages is four or five, however, designing larger codes

and providing performance assessments when the dimension grows seems intractable.

Towards the goal of code design, we first propose a new upper bound on the

error probability of a coded system based on Bonferroni-type inequalities by consid-

ering the error probability resulting from the intersection of two and three pairwise

error events. We apply the proposed bound for three di↵erent channel models and

employ it to design codes for one of the Z-channel. The channel models considered

here are the usual AWGN channels, additive Gaussian noise channels for which the
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noise variance depends on the transmitted signal, binary-input binary-output asym-

metric channels, and as a special case the Z-channel. The interest in BACs is due to

the fact that it is a more general model than the BSC, and it acts as an approximation

to the equivalent system model we provide in Chapter 2. We note that the proposed

upper bound performs as good as one of the best upper bounds that exists in the

literature [70] for the examples considered.

One of the main benefits of this new proposed upper bound is that it helps in

providing performance assessments for the class of codes that we are interested in. To

be more specific, we note that although the error probability of short codes seems to

be tractable due to their small size, we still cannot provide closed form expressions for

it when the code sizes are increased even slightly. On the other hand, we are able to

compute tight approximations for the error probability for scenarios where an exact

error probability expression is not achievable. We also are able to use the proposed

upper bound to design codes for Z-channels by defining a new metric that we call the

weighted sum Hamming distance as directly motivated by the derived bounds.

The chapter is organized as follows. In Section 6.1, we propose an upper bound

on the probability of error of a coded system. We then we show how this upper bound

can be applied for the AWGN case in Section 6.2, for the signal-dependent Gaussian

noise channel in Section 6.3, BAC in Section 6.4, and Z-channel in Section 6.5. In

Section 6.6, we propose a new metric for code design, and detail the code design

procedure for Z-channels. In Section 6.7, we present several numerical examples to

illustrate the use of the proposed upper bounds and the performance of the newly

designed codes. Finally, we summarize the chapter in Section 6.8.
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6.1 Upper Bound on the Error Probability

In this section, we derive an upper bound on the error probability of a coded system

based on Bonferroni type inequalities. The objective is to communicate M equally

likely messages, x
0

,x
1

, · · · ,xM�1

, of dimension N , i.e., M messages are picked from

the codebook C with dimensions (M,N), we assume that x
0

,x
1

, · · · ,xM�1

are binary

modulates, i.e., “0” is mapped to “ � 1” and “1” is mapped to “1”. At the receiver

side we assume that a maximum likelihood (ML) decoder is used such that

x̂ = argmax
xu2C

P (y|xu). (6.1)

The probability of error given that xu is transmitted is given by

P ("|xu) = Pr

" 
[

xi2C,i 6=u

"iu

!�����xu

#
, (6.2)

where "iu is the pairwise error event defined as

"iu = {P (y|xi) � P (y|xu)}, 8xi,xu 2 C, i 6= u, (6.3)

and

" =
[

i 6=u

"iu, 8xi,xu 2 C. (6.4)

The average error probability is then given by

P (") =
1

M

M�1X

u=0

P ("|xu). (6.5)

A classical upper bound on the error probability is the union bound that

bounds the error probability by summing up the pairwise error probabilities such

that

P ("|xu) 
M�1X

j=0

j 6=u

P ("ju|xu) . (6.6)
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A lower bound on the error probability that is based on Bonferroni type inequalities

is given by

P ("|xu) �
M�1X

i=0

i 6=u

P ("iu)�
M�1X

k=0

k 6=u

k�1X

i=0

P ("iu \ "ku). (6.7)

In order to come up with a tighter upper bound than the union bound, we uti-

lize intersections of triplet error events as well. The resulting bound can be expressed

as follows

P ("|xu) 
M�1X

i=0

i 6=u

P ("iu)�
M�1X

k=0

k 6=u

k�1X

i=0

P ("iu \ "ku) +
M�1X

j=0

j 6=u

j�1X

k=0

k�1X

i=0

P ("iu \ "ku \ "ju). (6.8)

The average error probability is then upper bounded as,

P (")  1

M

M�1X

u=0

M�1X

i=0

i 6=u

P ("
iu

)� 1

M

M�1X

u=0

M�1X

k=0

k 6=u

k�1X

i=0

P ("
iu

\ "
ku

)

+

1

M

M�1X

u=0

M�1X

j=0

j 6=u

j�1X

k=0

k�1X

i=0

P ("
iu

\ "
ku

\ "
ju

).

This new upper bound is tight compared to the union bound. Also, numerical ex-

amples will show that in some cases it is extremely close to the exact bit error rates

estimated using Monte Carlo simulations.

6.2 Upper Bounds for Additive White Gaussian Noise Channels

In this section, we apply the proposed upper bound to the case of information transfer

over AWGN channels. The received signal y is given by

y = x+ n, (6.9)

where x is the transmitted codeword, and n = [n
0

, n
1

, · · · , nN�1

] is an AWGN vector.

The elements of this vector are independent of x, and each other such that ni ⇠

N (0, N
0

/2). In the AWGN case, the ML decoder boils down to

x̂ = arg min
xu2C

||y � xu||. (6.10)
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The pairwise error event in this case is

"iu = {||y � xi|| < ||y � xu||}, (6.11)

and the pairwise error probability is [7]

P (✏iu|xu) = Q

✓
||xu � xi||p

2N
0

◆
. (6.12)

For the sake of convenience, we refer to [71] for the probability of the intersection of

two pairwise error events. Here, we derive the probability of intersection of triplet

error events defined as

P (✏
iu

\✏
ju

\✏
ku

|x
u

) = Pr[||y�x

i

|| < ||y�x

u

||, ||y�x

j

|| < ||y�x

u

||, ||y�x

k

|| < ||y�x

u

|| |x
u

] (6.13)

which reduces to

Pr


Xi �

diup
2N

0

, Xj �
djup
2N

0

, Xk �
dkup
2N

0

�
(6.14)

where diu is the Euclidean distance between the codeword xi and xu, and

Xi =

p
2p

N
0

||xi � xu||
< n,xi � xu > . (6.15)

We define the mutual correlation coe�cients ⇢ij, ⇢ik, ⇢jk as

⇢ij = E[XiXj] =
< xi � xu,xj � xu >

||xi � xu||||xj � xu||
, (6.16)

⇢ik = E[XiXk] =
< xi � xu,xk � xu >

||xi � xu||||xk � xu||
, (6.17)

⇢jk = E[XjXk] =
< xj � xu,xk � xu >

||xj � xu||||xk � xu||
, (6.18)

where < x,y > is the dot product between the vectors x and y which is defined as

< x,y >,
N�1X

i=0

x(i)y(i), (6.19)
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where x(i), y(i) are the i-th element of the vectors x and y, respectively. The

correlation matrix ⇢ is defined as

⇢ =

2

66664

1 ⇢ij ⇢ik

⇢ji 1 ⇢jk

⇢ki ⇢kj 1

3

77775
. (6.20)

The probability of the intersection of triplet error events is then

P (✏ui \ ✏uj \ ✏uk|xu)

=
1p

(2⇡)3|⇢|

Z 1

dui/
p
2N

0

Z 1

duj/
p
2N

0

Z 1

duk/
p
2N

0

exp

✓
�1

2
[x y z]⇢�1[x y z]T

◆
dx dy dz

(6.21)

where |⇢| is the determinant of the correlation matrix ⇢

|⇢| = 1� ⇢2jk � ⇢2ik � ⇢2ij + 2⇢ij⇢ik⇢jk, (6.22)

and

⇢�1 =
1

|⇢|

2

66664

1� ⇢2jk ⇢ik⇢jk � ⇢ij ⇢ij⇢jk � ⇢ik

⇢jk⇢ki � ⇢ij 1� ⇢2ik ⇢ik⇢ij � ⇢jk

⇢ij⇢jk � ⇢ik ⇢ij⇢ik � ⇢kj 1� ⇢2ij

3

77775
. (6.23)

The integral above can be equivalently be written as

P (✏
ui

\ ✏
uj

\ ✏
uk

|x
u

)

=

1p
(2⇡)3|⇢|

Z 1

dui/
p
2N0

Z 1

duj/
p
2N0

Z 1

duk/
p
2N0

exp

✓
� 1

2|⇢|

⇣
(1� ⇢2

jk

)x2
+ (1� ⇢2

ik

)y2 + (1� ⇢2
ij

)z2

+ 2(⇢
jk

⇢
ik

� ⇢
ij

)xy + 2(⇢
ij

⇢
jk

� ⇢
ik

)xz + 2(⇢
ij

⇢
ik

� ⇢
jk

)yz
⌘◆

dx dy dz. (6.24)

Direct calculation of the bound given above requires calculation of the triple inte-

gral for all codeword triplets, and calculation of the double integral for all codeword

pairs. To overcome this computational di�culty, an enumeration can be done for the

codebook by counting the number of triplets corresponding to the same correlation

matrix which is similar to defining a weight enumerating function for a code.
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6.3 Upper Bounds for Signal-Dependent Gaussian Noise Channels

In this section, we apply the proposed upper bound in Section 6.1 to the case of

Gaussian channels with additive noise whose variance depends on the transmitted

signal. In our model, the received signal y is given by

y = x+ n(x), (6.25)

where x is the transmitted modulated codeword, and n = [n
0

, n
1

, · · · , nN�1

] is an

AWGN vector. The elements of this vector has a Gaussian distribution such that

the variance corresponding to transmission of zeros is di↵erent than the variance

corresponding to transmission of ones; namely ni ⇠ N (0, N (i)
0

(x)/2) where N
(i)
0

2

{N (0)

0

, N
(1)

0

} and

N
(i)
0

(x) =

8
>><

>>:

N
(0)

0

if x(i) = �1,

N
(1)

0

if x(i) = 1.

(6.26)

The maximum likelihood decoder in that case is more di�cult to analyze. Hence, we

consider a suboptimal minimum distance decoder which results in an upper bound

on the error probability. Namely, using

x̂ = arg min
xu2C

||y � xu||, (6.27)

as the decoding rule, we can derive an error rate bound. The pairwise error event

defined as

"iu = {||y � xi|| < ||y � xu||}, (6.28)

has the probability

P (✏iu|xu) = Q

0

@ ||xu � xi||2q
2N̂

0

(ij)

1

A , (6.29)
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where N̂
0

(ij)
(xu) =

N�1P
m=0

N
(m)

0

(xu)(xi(m)�xu(m))2. For the probability of intersection

of two pairwise error events, we have

P (✏iu \ ✏ju|xu) = Pr[||y � xi|| < ||y � xu||, ||y � xj|| < ||y � xu|| |xu] (6.30)

which reduces to

Pr


Xi �

d2iu
2
, Xj �

d2ju
2
|xu

�
(6.31)

where diu is the Euclidean distance between the codeword xi and xu, and

Xi =< n,xi � xu > . (6.32)

We define the mutual correlation coe�cients ⇢ij, ⇢ik, ⇢jk as

⇢ij = E[XiXj] =
N̂

0

(iju)

q
N̂

0

(iu)
N̂

0

(ju)
, (6.33)

where N̂
0

(iju)
=

N�1P
m=0

N
(m)

0

(xu)(xi(m)� xu(m))(xj(m)� xu(m)). We then obtain

P (✏
ui

\ ✏
uj

|x
u

) =

1

2⇡
p
1� ⇢

ij

Z 1

dui/

p
2N̂0

(iu)

Z 1

duj/

p
2N̂0

(ju)
exp

 
� (x2 � 2⇢

ij

xy + y2)

2(1� ⇢2
ij

)

!
dx dy.

(6.34)

We now derive the probability of intersection of triplet error events that is defined as

P (✏
iu

\✏
ju

\✏
ku

|x
u

) = Pr[||y�x

i

|| < ||y�x

u

||, ||y�x

j

|| < ||y�x

u

||, ||y�x

k

|| < ||y�x

u

|| |x
u

] (6.35)

which reduces to

P (✏iu \ ✏ju \ ✏ku|xu) = Pr


Xi �

d2iu
2
, Xj �

d2ju
2
, Xk �

d2ku
2

|xu

�
. (6.36)

We define the mutual correlation coe�cients ⇢ij, ⇢ik, ⇢jk as

⇢ij = E[XiXj] =
N̂

0

(iju)

q
N̂

0

(iu)
N̂

0

(ju)
, (6.37)

⇢ik = E[XiXk] =
N̂

0

(iku)

q
N̂

0

(iu)
N̂

0

(ku)
, (6.38)
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⇢jk = E[XjXk] =
N̂

0

(jku)

q
N̂

0

(ju)
N̂

0

(ku)
, (6.39)

and construct the correlation matrix ⇢ as

⇢ =

2

66664

1 ⇢ij ⇢ik

⇢ji 1 ⇢jk

⇢ki ⇢kj 1

3

77775
. (6.40)

Then, the probability of intersection of triplet error events can be computed as

P (✏
ui

\ ✏
uj

\ ✏
uk

|x
u

)

=

1p
(2⇡)3|⇢|

Z 1

dui/
p
2N0

Z 1

duj/
p
2N0

Z 1

duk/
p
2N0

exp

✓
�1

2

[x y z]⇢�1
[x y z]T

◆
dx dy dz. (6.41)

This can be equivalently be written as

P (✏
ui

\ ✏
uj

\ ✏
uk

|x
u

)

=

1p
(2⇡)3|⇢|

Z 1

dui/

p
2N̂0

(iu)

Z 1

duj/

p
2N̂0

(ju)

Z 1

duk/

p
2N̂0

(ku)
exp

✓
� 1

2|⇢|

⇣
(1�⇢2

jk

)x2
+(1�⇢2

ik

)y2+(1�⇢2
ij

)z2

+ 2(⇢
jk

⇢
ik

� ⇢
ij

)xy + 2(⇢
ij

⇢
jk

� ⇢
ik

)xz + 2(⇢
ij

⇢
ik

� ⇢
jk

)yz
⌘◆

dx dy dz. (6.42)

As discussed in the case of AWGN channels, code enumeration is required in order

to reduce the computational complexity of the proposed upper bound for evaluation

purposes.

6.4 Upper Bounds for Binary Asymmetric Channels

In this section, we apply the upper bound derived in Section 6.1 to the BAC case.

Consider the general BAC with cross-over probabilities ✏
0

and ✏
1

, the conditional

probability of the received vector y given that the codeword x sent is

PY |X(y|x) = (1� ✏
0

)d00(x,y).✏d01(x,y)
0

.✏
d
10

(x,y)
1

.(1� ✏
1

)d11(x,y). (6.43)

where we define d↵�(x,y) to be the number of positions m at which xm = ↵ and

ym = �. So, d
10

(x,y) denotes the number of locations at which x = 1 and y = 0
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while d
11

(x,y) is the number of locations at which x = 1 and y = 1. We define Di as

Di = (1� ✏
0

)d00(xi,y).✏
d
01

(xi,y)
0

.✏
d
10

(xi,y)
1

.(1� ✏
1

)d11(xi,y) (6.44)

and Du as

Du = (1� ✏
0

)d00(xu,y).✏
d
01

(xu,y)
0

.✏
d
10

(xu,y)
1

.(1� ✏
1

)d11(xu,y). (6.45)

The pairwise error event "iu is

"iu = {Du  Di}. (6.46)

We note that the event {Du = Di} is considered as an error event which results in

an upper bound on the probability of error. The pairwise error probability can then

be written as

P ("iu|xu) =
X

y

I{Du  Di}P (y), (6.47)

where

I(statement) =

8
>><

>>:

1 if statement is true,

0 if statement is false.

(6.48)

The probability of intersection of two error events is given by

P ("iu \ "ju|xu) =
X

y

I{Du  Di}I{Du  Dj}P (y), (6.49)

and the probability of intersection of triplet error events is

P ("iu \ "ju \ "ku|xu) =
X

y

I{Du  Di}I{Du  Dj}I{Du  Dk}P (y). (6.50)

As a result, the average error probability is bounded by

P (")  1

M

X

u

X

i 6=u

X

y

I{Du  Di}P (y)

� 1

M

X

u

X

i,j 6=u

X

y

I{Du  Di}I{Du  Dj}P (y)

+
1

M

X

u

X

i,j,k 6=u

X

y

I{Du  Di}I{Du  Dj}I{Du  Dk}P (y). (6.51)

(6.52)
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6.5 Upper Bounds for the Z-Channel

A special case of the BAC is the Z-channel where one of the cross-over probabilities

is zero. We consider the model shown in Figure 6.1.

Figure 6.1: Z-channel.

The conditional probability of the received vector given the sent codeword can

now be written as

PY |X(y|x) = (1� ✏)d00(x,y).✏d01(x,y), (6.53)

where y is the received codeword, x = [x
0

, x
1

, . . . , xN�1

] is the transmitted codeword.

The ML decoder is given by

g(y) , arg max
1iM

PY |X(y|xi). (6.54)

We define the pairwise error probability as the probability of transmitting the code-

word xi and decoding it as xj, i.e.,

Pr(xi ! xj|xi) , Pr[g̃(y) = j|x = xi],

=
X

y

P (y|xi)I(g(y) = j, j 6= i),

where g̃(y) , arg max
k=[i,j]

PY |X(y|xk) is the decoding rule for the codebook with two-

codewords only. To compute the pairwise error probability, we need to compute the

conditional output probability P (y|xi) and the indicator function I(g(y) = j). For
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the conditional output error probability, we can write

P (y|xi) = (1� ✏)d00(xi,y).✏d01(xi,y),

= (1� ✏)n�wH(y).✏wH(y)�wH(xi),

= (1� ✏)n✏�wH(xi)

✓
✏

1� ✏

◆wH(y)

,

where wH(x) indicates the weight of the codeword x defined as wH(x) =
N�1P
m=0

x(m).

For the indicator function, we write

I(g̃(y) = j) = I
�
PY |X(y|xj)) � PY |X(y|xi)

�
,

= I
�
(1� ✏)d00(xj ,y).✏d01(xj ,y) � (1� ✏)d00(xi,y).✏d01(xi,y)

�
.

To simplify the notations, we denote d
00

(xj,y) as d
(j)
00

, d
01

(xj,y) as d
(j)
01

, and d
11

(xj,y)

as d(j)
11

. Hence, the indicator function is

I(g̃(y) = j) = I
⇣
(1� ✏)d

(j)
00

�d
(i)
00 .✏d

(j)
01

�d
(i)
01 � 1

⌘
, (6.55)

and the pairwise error probability is given by

P (xi ! xj|xi) = (1� ✏)n✏�wH(xi)
X

y

✓
✏

1� ✏

◆wH(y)

I
⇣
(1� ✏)d

(j)
00

�d
(i)
00 .✏d

(j)
01

�d
(i)
01 � 1

⌘
.

(6.56)

The upper bound is then computed by evaluation (6.52) for the probability of inter-

section of two error events and the intersection of triplet error events.

6.6 Code Design

In this section, we first propose a further simplification on the pairwise error probabil-

ity expression in (6.56) which results in a more insightful expression for the pairwise

probability that is helpful to derive a new metric for code design.

We consider the pairwise error probability. For the code pair xi and xj where

xi is the transmitted codeword over the Z-channel, the cardinality of the received
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signal set Y is 2N�wH(xi) (since the “1”s will not change but the “0”s may be altered

during the transmission over the channel). There are two sets of zeros in the codeword

xi, namely S
00

= {m|xi(m) = 0,xj(m) = 0} and S
01

= {m|xi(m) = 0,xj(m) = 1},

where xi(m) and xj(m) are the mth bit in the codewords xi and xj, respectively. For

any transmitted codeword xi there are N � wH(xi) locations at which the zeros will

be altered to one due to a channel error. These changes will not correspond to any

error (the received message y cannot be decoded as xj) as long as |S
01

| < d
01

(xi,xj),

this condition can also be written as |S
01

| < d
10

(xj,xi).

The indicator function can be rewritten as a function of the codeword pair as

follows: let us assume that there are k errors, and these k errors occur at the location

of zeros in the set S
00

. As a result,

d
00

(xi, y) = N � wH(xi)� k,

d
01

(xi, y) = k,

d
00

(xj, y) = d
00

(xj,xi)� k,

d
01

(xj, y) = d
01

(xj,xi) + k.

Then, the weight of the received codeword y is wH(y) = k + d
10

(xj,xi). Hence the

indicator function can be written as

I{Dj � Di} = I
⇣
(1� ✏)d

(j)
00

�d
(i)
00 ✏d

(j)
01

�d
(i)
01 � 1

⌘
,

= I
�
(1� ✏)d00(xj ,xi)�N+wH(xi)�2k✏d01(xj ,xi) � 1

�
.

Now, the probability of receiving y given that xi is transmitted can be written as

P (y|xi) = (1� ✏)N✏�wH(xi)

✓
✏

1� ✏

◆w
(

y)

,

= (1� ✏)N✏�wH(xi)

✓
✏

1� ✏

◆d
10

(xj ,xi)
✓

✏

1� ✏

◆k ✓
✏

1� ✏

◆w
(

xi)

,

= (1� ✏)N�wH(xi)

✓
✏

1� ✏

◆d
10

(xj ,xi)
✓

✏

1� ✏

◆k

.
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Code Parameter Weight
d
01

log(1� ✏)
d
10

log(✏)� log(1� ✏)
d
00

log(1� ✏)

Table 6.1: Code parameters and their associated weights.

Hence, the pairwise error probability is

P (xi ! xj|xi) = (1� ✏)N�wH(xi)

✓
✏

1� ✏

◆d
10

(xj ,xi)

(6.57)

I
�
(1� ✏)d00(xj ,xi)�N+wH(xi)�2k✏d01(xj ,xi) � 1

�

d
00

(xj ,xi)X

k=0

✓
✏

1� ✏

◆k

0

B@
d
00

(xj,xi)

k

1

CA . (6.58)

We note that the indicator function, and hence the pairwise error probability depends

on three parameters, i.e., d
00

(xj,xi), d01(xj,xi), and d
10

(xj,xi).

Based on the simplification of the pairwise error probability expression, we

propose to use a new metric that characterizes a certain codebook, called the weighted

sum Hamming distance between the code pairs defined as

d↵(i, j) , w
0

d
01

(xj,xi) + w
1

d
10

(xj,xi) + w
2

d
00

(xj,xi) (6.59)

in the design process. Suitable values for w
0

, w
1

, and w
2

need to be chosen depending

on the contribution of the parameters d
01

(xj,xi), d10(xj,xi), and d
00

(xj,xi) to the

error probability expression which can be obtained by further investigating (6.58).

These weights are summarized in Table 6.1.

For the purpose of designing practical codes, we assume that we have a collec-

tion of codewords C and the objective is to choose the optimal subset of codewords

C
0

; the optimality here is from the error probability point of view. From (6.58) it

is obvious that lower probability of error is associated with lower values for d↵(i, j)
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dominates the error probability and hence the objective is to choose the set of code-

words that maximize the minimum weighted sum Hamming distance, i.e., the code

design principle is

C
0

= argmax
C

min
code pairs

d↵(i, j). (6.60)

6.7 Numerical Examples

In this section, we present several numerical examples that illustrate the use of the

proposed upper bound for Gaussian and binary channels in the previous sections. We

also show some examples of newly designed codes, study their performance, and we

compare our proposed code design process with one of the new design approaches for

ultrasmall codes developed in [43].

6.7.1 Proposed Upper Bound on the Probability of Error

We now present numerical examples of the proposed error rate upper bound along

with some of the known bounds in the literature. Figure 6.2 shows the newly derived

upper bound along with the one in [70] and the union bound for transmission over

an AWGN channel. The bit error probability is computed for codebook with four

codewords and the length of each codeword is taken as 15. The codewords used are

C
1

=

2

66666664

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

3

77777775

. (6.61)

We observe that the performance of the proposed upper bound is extremely close to

the exact bit error rate estimated using Monte Carlo simulations.

120



E
b
/N

0

-4 -2 0 2 4 6 8

P
e

10-5

10-4

10-3

10-2

10-1

100

Union bound
Two events based lower bound
Proposed upper bound
Monte Carlo simulation

-4 -3.998 -3.996 -3.994 -3.992

0.3092

0.3094

0.3096

0.3098

0.31

0.3102

Figure 6.2: Bounds on the probability of error for the code in (6.61) over an AWGN
channel.

Figure 6.3 compares the same bounds on the error probability for a larger

codebook that consists of eight codewords with length 15 given by

C
2

=

2

666666666666666666664

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

3

777777777777777777775

. (6.62)

We observe that the proposed upper bound performs much better than the union

bound and as good as the upper bound in [70]. The figure also shows that at high

SNRs, the proposed upper bound is excellent. Despite not being very tight at low
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Figure 6.3: Bounds on the probability of error for the code in (6.62) over an AWGN
channel.

SNRs, the bound still closely characterizes the probability of error much more closely

than the classical union bound.

Figure 6.4 shows the performance of the proposed upper bound for transmis-

sion over a Z-channel with parameter ✏. The codebook that is used to compute this

bound consists of four codewords given in (6.61). We observe that the proposed up-

per bound performs better than the union bound and it is extremely close to the

exact probability of error values estimated via Monte Carlo simulations. The figure

shows that when the cross-over probability is low, the upper bound is tight. More-

over, when the cross-over probability is high (when there are more frequent channel

errors), the proposed upper bound performs very well, i.e., the di↵erence between the

upper bound and the estimated error probability (using Monte Carlo simulation) is

quite small.
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Figure 6.4: Bounds on the probability of error for the code in (6.61) over BAC.

6.7.2 Code Design

We now give a code design example. Using the proposed method we are able to design

non-standard sized codes. We design codes of length 15 with the number of messages

in each code being four, six, and eight messages, respectively. For comparison, we

compute the error probability associated with the designed codes and some codes

picked arbitrarily from the pool of codewords we are choosing from. The designed

codes are given below in (6.63), (6.64), and (6.65):

C
4 codewords

=

2

66666664

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

3

77777775

, (6.63)
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C
6 codewords

=

2

666666666666664

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3

777777777777775

, (6.64)

C
8 codewords

=

2

666666666666666666664

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

3

777777777777777777775

. (6.65)

The resulting performance comparisons between our designs and some other codes

are made in Figures 6.5, 6.6, and 6.7, respectively. The figures show that the newly

designed codes over perform significantly better than others picked arbitrarily among

possible codebooks.

Let us recall that the main objective of our study is to design codes for additive

channels with signal-dependent noise. Motivated by this, we now use one of the newly

designed codes for the Z-channel on a Gaussian channel with additive noise whose

variance depends on the transmitted signal. We assume that the power spectral

density of the noise is N
(0)

0

for “0” and N
(1)

0

for “1”, we assume that the between

these variances N
(1)

0

N
(0)

0

= 2. Figure 6.8 shows a comparison between the performance

of the newly designed code and another one constructed from four codewords of a
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Figure 6.5: Bounds on the probability of error for the code in (6.63) over a BAC.

(15, 11) Hamming code. The codebook used for comparison purposes is

C 0 =

2

66666664

1 1 0 0 0 1 0 0 1 0 1 1 0 0 1

1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

1 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 1 0 0 0 1 1 1 1 1 1 0 1 1 1

3

77777775

. (6.66)

The figure shows that the newly designed codes over signal-dependent Gaussian noise

channels perform better than other codes designed for BSCs. This preliminary results

suggests that signal dependent noise channels require new design rules to capture their

di↵erent behavior. To accomplish this, one may obtain a new metric adapted for these

channels by studying carefully the error probability bound.
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Figure 6.6: Bounds on the probability of error for the code in (6.64) over a BAC.
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Figure 6.7: Bounds on the probability of error for the code in (6.65) over a BAC.
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Figure 6.8: Performance comparison between the designed codes for a Z-channel,
and C 0 with codewords picked from a (15, 11) Hamming code for transmission over
Gaussian channels with additive noise whose variance depends on the transmitted
signal.

6.8 Chapter Summary

In this chapter, we have studied the code design problem for signal-dependent Gaus-

sian noise channels. We proposed a tight upper bound on the error probability, and

applied it on AWGN, the signal-dependent Gaussian noise, binary asymmetric and

Z-channels. We then employed them for designing codes over the Z-channel by defin-

ing a new metric, namely, the weighted sum Hamming distance. We demonstrated

via examples the tightness of the bounds and showed that the newly designed codes

o↵er superior performance for di↵erent channels.
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Chapter 7

SUMMARY AND CONCLUSIONS

We have proposed a new communications scheme where signature signals are used

to carry digital data. One possible application for this communications scheme is in

UWA communications. With this motivation, we have applied the proposed scheme

by using biomimetic sound signals as the signature signals. We have utilized ana-

lytical models for the mammalian sounds specified by certain signal parameters, and

to complete the design, we have developed a two-stage decoder to reduce the com-

putational complexity. The decoder aims to find estimates of the parameters of the

transmitted signal, and demaps them into information bits. We have also derived an

approximate system model to facilitate its analysis. Furthermore, we have illustrated

the viability of the proposed scheme via experimental data recorded at the recent

KAM11 experiment.

We have also performed an information theoretic study of the equivalent ap-

proximate system model implied by the proposed communications scheme. The equiv-

alent system model suggests that the channel can be modeled as an AWGN channel

with amplitude-limited inputs and signal-dependent noise. With this motivation, we

have studied capacity of single-antenna communications with amplitude-limited in-

puts. We have also explored the capacity of arbitrary fading channels with amplitude-

limited inputs when the channel state information is available at the receiver. We

have shown that the capacity achieving distribution is discrete. To accomplish this,

we proved that the conditional mutual information function is a continuous, strictly

concave, and weakly di↵erentiable function of the input distribution. Then, the ca-

pacity optimization turns out to be a convex optimization problem. Hence, there is a

unique optimal distribution that maximizes the conditional mutual information func-
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tion. We have used techniques from complex analysis and measure theory to show the

discreteness of the capacity-achieving distribution. We have also considered Gaus-

sian channels with signal-dependent noise and amplitude-limited inputs, and shown

that for arbitrary but well-behaved noise variance functions, the capacity-achieving

distribution is discrete with a finite number of mass points.

Furthermore, we have studied the capacity of the multi-antenna systems and

parallel Gaussian channels under peak and average power constraints. For the MIMO

systems, computing the capacity is not viable using the existing techniques since

the Identity Theorem is available only for one-dimensional functions, and there is no

equivalent form for the multi-dimensional case. Therefore, we have derived upper and

lower bounds on the capacity. We have derived these bounds by solving the capacity

optimization problem over di↵erent feasible regions than the original one. For the

upper bound, we have relaxed the capacity optimization problem by assuming inputs

over a large region that inscribes the feasible region, and for the lower bound we have

constrained the capacity optimization problem by assuming inputs over a smaller

region inside the feasible one. We have also proposed an alternative upper bound

by inspecting other suboptimal input distributions. For parallel Gaussian channels

with peak and average power constraints, we have derived analytical bounds on the

capacity for low and high noise variances, and utilized these asymptotic results to

obtain an information theoretic characterization for the entire SNR range.

Finally, we have considered the practical channel coding problem for the equiv-

alent system model studied in Chapter 2. We have considered two channel models;

Gaussian channels with additive noise whose variance depends on the transmitted

signal, and binary-input binary-output asymmetric channels that serve as approxi-

mations. In our study, we have considered ultra-small block codes. We have developed
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a new upper bound on the error probability based on Bonferroni type inequalities by

considering the doublet and triplet pairwise error events. Furthermore, we have de-

veloped an error probability expression for Z-channels that leads to a universal metric

for code design. This new metric, called weighted sum Hamming distance, results in

characterizing the codebooks without the need of extensive computations of the error

probabilities. We have employed this metric to design new codes and illustrated their

performance via several examples.

As possible extensions of the work in this dissertation, we cite several di↵er-

ent directions. For the proposed communication scheme, in order to improve the

performance of the decoder, a more advanced receiver can be designed. This new

receiver may incorporate a joint channel estimator and parameter vector decoder.

The receiver can also be designed to compensate for the UWA channel e↵ects such

as Doppler scaling.

In our work, we considered fading channels and signal dependent noise for

amplitude-limited channels for which the additive noise is Gaussian. A possible ex-

tension is for channels that are not necessarily Gaussian. Under certain conditions

on the noise probability density functions similar results on the channel capacity may

be obtained.

Another possible extension is in the subject of code design. In this dissertation,

we have considered code design for Z-channels by proposing a new performance metric.

A similar metric can be developed for signal-dependent Gaussian channels to design

codes by examining the derived error rate bounds closely. We speculate that it could

be possible to design codes that perform better in signal-dependent Gaussian channels

than the conventional codes designed for AWGN channels or BSCs.
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FISHER INFORMATION MATRIX FOR MLE OF SIGNAL PARAMETERS

TRANSMITTED ON AWGN
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For a given value of the transmitted sequence length M (treated as known in

the sequel) we have,

x[n] = s[n] + w[n] (A.1)

= A
p
⌫[n] cos (2⇡c⇠[n]) + w[n], n = 0, 1, . . . ,M � 1.

we define the likelihood function for the parameters ✓ as

ln p = ln p(x; ✓) = �M

2
ln(2⇡�2)� 1

2�2

M�1X

n=0

(x[n]� Ar[n])2. (A.2)

The ijth element of the Fisher information matrix [50] is defined as

[I (✓)]ij = �E


@ ln p

@✓i

@ ln p

@✓j

�
. (A.3)

From (A.2) we can write the following,

@ ln p

@A
=

1

�2

M�1X

n=0

(x[n]� Ar[n]) r[n], (A.4)

@ ln p

@c
=
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n=0

(x[n]� Ar[n])A
@r[n]

@c
, (A.5)

@2 ln p

@2A
= � 1
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M�1X

n=0

(r[n])2 , (A.6)

@2 ln p

@2c
=

1

�2
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n=0

 
�A2

✓
@r[n]

@c

◆
2

+ (x[n]� Ar[n])A
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, (A.7)
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, (A.8)

dr[n]

dc
= �2⇡⇠[n]

p
⌫[n] sin (2⇡c⇠[n]) , (A.9)

and, since E [(x[n]� Ar[n])] = 0, we obtain
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Given the transmitted sequence length M we have,

x[n] =

8
>><

>>:

PL�1

l=0

hl[n]s[n� l] + w[n] if n = 0, 1, . . . ,M � 1, . . . ,M + L� 2

w[n] if n = M + L� 1, . . . , N � 1,

(B.1)

similar to the AWGN case, the likelihood function for the vector ✓ for a given M is

ln p(x; ✓) = �M

2
ln(2⇡�2)� 1

2�2

M�1X

n=0

(x[n]� Au[n])2. (B.2)

Also,
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p
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and, since E [(x[n]� Au[n])] = 0, we obtain Thus, the elements of the Fisher infor-

mation matrix are,
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The marginal entropy density h(x;FX) is, for arbitrary FX 2 F ,

h(x;Fx) = �
Z 1

�1
PN(y � x, x) log fY (y;Fx)dy, 8x 2 [�A,A]. (C.1)

First, we assume that the function log(�2(z)) can be extended to the entire complex

plane C excluding the branch cuts of log(�2(z)), i.e.,

�2

n(z) + �2

z = �2

r + j�2

i . (C.2)

That is, 8 z 2 C, i.e., z = a+ jb, |�2(z)| < 1, |�2

r | < 1, and |�2

i | < 1.

The function h(x;FX) can be extended to the entire complex plane C by showing

that 8 z s.t. |z| < 1
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����exp
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◆���� [� log(�(y)) + 2| log k|]dy,
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where ⌘, ⇣, and ✏ are function of a, b, �2

r , �
2

i . The last step follows since we can show

the finiteness of the integration as in [35]. Thus, h(z;FX) can be extended to the

complex domain.
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In this appendix, we show that the marginal entropy is an analytic function

under some restrictions on the noise variance. We assume that the noise variance

function log(�2(x)) can be extended to an open connected set in the complex plane

containing the real line. We also assume that the function log(�2(z)) is analytic over

some open connected set on the complex domain excluding some branch cuts .

First, we show that the function h(z;FX) is continuous on any domain D�.

If we can show that there is an integrable function g : R ! [0,1) such that

|PN(y � zn, zn) log(PY (y;FX))|  g(y) for any y 2 R, and
R1
�1 g(y)dy < 1 then

we can invoke the Dominated Convergence Theorem to conclude the continuity of

PN(y � zn, zn). But we have

|PN(y � zn, zn) log(fY (y;FX))| < |PN(y � zn, zn)| |log(fY (y;FX))| . (D.1)

Let {zn}n�1

be a sequence of complex numbers in D� converging to z 2 D�. Let

zn = ⌘n + ⇠n such that |⇠n|  �. First, let us write the noise variance as.

�2

n(zn) + �2

z = �2

r(zn) + j�2

i (zn), (D.2)

hence

���2

n(zn) + �2

z

�� = (�2

r(zn))
2 + (�2

i (zn))
2,

� (�2

r(zn))
2,

= M(�).
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Now, we have

|PN(y � zn, zn)| =

�����
1p

2⇡(�2

z + �2

n(zn))
exp

✓
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,

which results in

|PN(y � zn, zn)| |log(fY (y;FX))| 
1p
M(�)

exp

✓
�2

2

◆
[�2 log(�(y)) + 2| log(k

1

)|] .

(D.3)

We can then invoke the Dominated Convergence Theorem to conclude the continuity

of h(z;FX) for any domain D�.

To show that the function h(z;FX) is analytic on the complex plane, it is

su�cient to show that this function is analytic for any z 2 C such that |z| < 1. We

assume that the function �2(z) is analytic, then it is clear the function PN(y � z, z)

is analytic as well. Thus, by invoking Morera’s Theorem we have

I

!

h(z;FX)dz = �
I

!

Z 1

�1
PN(y � z, z) log(PY (y;FX))dydz,

(a)
=

Z 1

�1
log(PY (y;FX))

I

!

PN(y � z, z)dydz,

= 0,

where the order of integration in (a) is changed using Fubini’s Theorem. In order

to apply Fubini’s Theorem we need to show the finiteness of the whole integration.
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Recall that the inner integration is the entropy density h(z;FX) which was shown to

be finite in Appendix C. Now let us define M! as

M! = max
z2!

|h(z;FX)| , (D.4)

and hence

����
I

!

h(z;FX)dz

���� =

����
I

!

Z 1

�1
PN(y � z, z) log(fY (y;FX))dydz

���� ,


I

!

Z 1

�1
|PN(y � z, z) log(fY (y;FX))| dydz,


I

!

M!dz,

 M!l!,

< 1,

where l! is the length of ! which is finite as ! is a closed contour.
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In this subsection, we obtain the optimal power assignment for the N parallel

Gaussian channels for high noise levels. The channel capacity is the sum of the

capacity of the individual channels, i.e., we can write (5.25) as

C � max
Pi, 8i = 1, 2, · · · , N

1

T
P  P

0

0  Pi  A2

i

N �
NX

i=1

J(Pi). (E.1)

We first assume that P
0

<
PN

i=1

A2

i , since for P
0

�
PN

i=1

A2

i , it is straightforward

to see that the optimal power assignment policy is Pi = A2

i , 8i = 1, 2, · · · , N . For

notational simplicity, we define Qi as

Qi , Q

 s
Pi

�2

i

!
8i = 1, 2, · · · , N, (E.2)

and J(Pi) as

J(Pi) = �Qi logQi � (1�Qi) log(1�Qi) 8i = 1, 2, · · · , N. (E.3)

Clearly, for the optimal power assignment
PN

i=1

Pi = P
0

. Hence, the Lagrangian of

the optimization problem as a minimization of negative of the RHS in (E.1) is

L(Pi,�, ⌫) = �N +
NX

i=1

J(Pi) +
NX

i=1

�i(Pi � A2

i )�
NX

i=1

�0iPi + ⌫(1TP� P
0

). (E.4)

The derivative of the entropy term with respect to the power assigned to the channel

is
dJ(Pi)

dPi

= Q0
i log

✓
1

Qi

� 1

◆
8i = 1, 2, · · · , N, (E.5)

where
dQi

dPi

=
�1

2
p

2⇡Pi�2

i

exp

✓
� Pi

2�2

i

◆
8i = 1, 2, · · · , N. (E.6)

From the KKT conditions, necessary conditions for optimality are

1

T

P = P0, �
i

� 0, P
i

� 0, �
i

(P
i

�A2
i

) = 0, �0
i

� 0, �0
i

P
i

= 0,

⌫(1T
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2
p

2⇡Pi�
2
i

exp
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i

⌘
log
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1
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� 1

⌘
+ �

i

� �0
i

+ ⌫ = 0, i = 1, · · · , N.
(E.7)
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For simplicity, we define the function g(Pi) as

gi(Pi) =
1

2
p

2⇡Pi�2

i

exp

✓
� Pi

2�2

i

◆
log

✓
1

Qi

� 1

◆
, (E.8)

and write the last condition as

gi(Pi) + �i � �0i + ⌫ = 0, i = 1, · · · , N. (E.9)

We note that

lim
Pi!0

gi(Pi) =
1

⇡�2

i

, (E.10)

and

lim
Pi!1

gi(Pi) = 0. (E.11)

Moreover, it is easy to show that the function gi(Pi) is monotonically decreasing. Let

us assume that the power assigned to the ith channel is P ⇤
i . Then, there are three

possible power assignments, i.e., P ⇤
i = 0 or P ⇤

i = A2

i or 0 < P ⇤
i < A2

i . Thus, we have

3N � 2 cases to consider (we exclude P ⇤
i = 0 8i = 1, 2, · · · , N and P ⇤

i = A2

i 8i =

1, 2, · · · , N). For the non-zero power assignments if P ⇤
i < A2

i , we have P ⇤
i = g�1

i (⌫).
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APPENDIX F

ASYMPTOTIC CAPACITY ACHIEVING DISTRIBUTION OF PEAK AND

AVERAGE POWER CONSTRAINED GAUSSIAN CHANNEL IS CONTINUOUS

WITH A TRUNCATED GAUSSIAN-LIKE PDF
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For a random variable X with a probability density function f(x), |X|  A

almost surely, and E[X2]  P , we are interested in the probability density function

that maximizes the entropy h(X), i.e., we want to

maximize h(X) = �
R A

�A
f(x)log(f(x))dx,

subject to E[X2]  P,
R A

�A
f(x)dx = 1.

(F.1)

The Lagrangian can be written as,

u(x,f(x))=
RA
�A f(x)log(f(x)) dx+�

1

RA
�A f(x)(x2�P) dx+�

2

RA
�A(f(x)� 1

2A) dx, (F.2)

where �
1

and �
2

are the Lagrange multipliers where �
1

� 0. We can rewrite u(x, f(x))

as

u(x, f(x)) =

Z A

�A

g(x, f(x)) dx, (F.3)

and

g(x, f(x)) = f(x) log(f(x)) + �
1

x2f(x)� �
1

Pf(x) + �
2

f(x)� �
2

2A
. (F.4)

Using the Euler-Lagrange equation from calculus of variations [72], i.e.,

@g(x, f(x))

@f(x)
= 0, (F.5)

results in

log(f(x)) + 1 + �
1

x2 � �
1

P + �
2

= 0, for x 2 [�A,A]. (F.6)

Then, for the optimal probability density function we obtain

f(x) = exp(��
1

x2 + �
1

P � �
2

� 1), (F.7)

= c
1

exp(�c
2

x2), (F.8)

for some constants c
1

, c
2

. We have (since f(x) is a probability density function)

c
1

R A

�A
exp(�c

2

x2)dx = 1 and c
1

R A

�A
x2 exp(�c

2

x2)dx = P , hence we can solve for c
1

and c
2

using

c
1

=
1� 2c

2

P

2A exp(�c
2

A2)
, (F.9)
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and

c
1

r
⇡

c
2

erf (
p
c
2

A)

�
= 1, (F.10)

where the error function erf (·) is defined as erf (x) , 2p
⇡

R x

0

exp(�t2)dt. By combin-

ing (F.9) and (F.10), the solution for c
2

can be obtained from

1� 2c
2

P

2A exp(�c
2

A2)

r
⇡

c
2

erf (
p
c
2

A)

�
= 1. (F.11)

We can then use in (F.9) to solve for c
1

.
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APPENDIX G

OPTIMAL POWER ASSIGNMENT FOR THE PARALLEL GAUSSIAN

CHANNELS AT LOW NOISE LEVELS
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We have shown in Appendix D that the input distribution fX(x) that maxi-

mizes the input entropy h(X) is given by (F.8), (F.9), and (F.11). The corresponding

di↵erential entropy is given by

h(X) = � log(c
1

) + c
2

P. (G.1)

Using (F.9), the entropy of X can be written as

h(X) = � log(1� 2c
2

P ) + log(2A)� c
2

A2 + c
2

P, (G.2)

where c
2

satisfies (F.11). For simplicity, we refer to the single constant c
2

as ci for

the ith channel in the following.

To find the optimal power assignment at low noise levels, we solve the following

capacity optimization problem (assuming that
PN

i=1

A2

i � P
0

).

max
Pi, 8i = 1, 2, · · · , N

1

T
P = P

0

0  Pi  A2

i

NX

i=1

� log(1� 2ciPi) + log(2Ai)� ciA
2

i + ciPi �
1

2

NX

i=1

log(2⇡e�2

i ).

(G.3)

The Lagrangian of the optimization problem is

L(Pi,!,⌫)=
PN

i=1

log(1�2ciPi)�log(2Ai)+ciA
2

i�ciPi�
PN

i=1

!0
iPi+

PN
i=1

!i(Pi�A2

i )+⌫(1T
P�P

0

). (G.4)

The derivative of the Lagrangian is given by

dL(Pi,!, ⌫)

dPi

= � 2ci
1� 2ciPi

�
2Pi

dci
dPi

1� 2ciPi

+ A2

i

dci
dPi

� Pi
dci
dPi

� ci � !0
i + !i + ⌫ (G.5)

where dci
dPi

can be found by from (F.11) as

dci
dPi

=

⇡ci(erf (
p
ciAi))

2

� ⇡
ci
(

erf (

p
ciAi))

2

+A3

i
p
⇡cierf (

p
ciAi) exp(�ciA

2

i
)+

A
2

p
⇡
ci

erf (

p
ciAi) exp(�ciA

2

i
)+A2

i
exp(�2ciA

2

i
)

. (G.6)

Let us denote dci
dPi

by r(ci). Therefore, we can replace g(ci, Pi) by r(ci). Thus,

dL(Pi,!, ⌫)

dPi

=
�2ci

1� 2ciPi

� 2Pir(ci)

1� 2ciPi

�A2

i r(ci) + Pir(ci) + ci +�!0
i + !i + ⌫. (G.7)
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By applying the KKT conditions, we obtain the following necessary conditions for

optimality

!i � 0, !0
i � 0, Pi � 0, !0

iPi = 0, !i(Pi�A2

i ) = 0 i = 1, 2, · · · , N, ⌫(1TP�P
0

) = 0,

(G.8)

and

dL(Pi,!, ⌫)

dPi

=
�2ci

1� 2ciPi

� 2Pir(ci)

1� 2ciPi

�A2

i r(ci)+Pir(ci)+ ci�!0
i+!i+⌫ = 0. (G.9)

For simplicity we define the function wi(Pi) as

wi(Pi) =
2ci

1� 2u�1(Pi)Pi

+
2Pir(u�1(Pi))

1� 2Piu�1(Pi)
+ A2

i r(u
�1(Pi))� Pir(u

�1(Pi)) + u�1(Pi).

(G.10)

For the ith channel, lets assume that the power assigned to this channel is P ⇤
i . Then,

there are three possible power assignments, i.e., P ⇤
i = 0 or P ⇤

i = A2

i or 0 < P ⇤
i < A2

i .

For the non-zero power assignments, we have P ⇤
i = w�1

i (⌫), and
PN

i=1

P ⇤
i = P

0

. The

optimal power assignment policy is chosen such that the KKT conditions are satisfied

and the channel capacity is maximized 1.

1
We note that the KKT conditions in this case are necessary but not su�cient.
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